xref: /openbmc/linux/mm/memblock.c (revision 5df29bca)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25 
26 #include "internal.h"
27 
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33 
34 struct memblock memblock __initdata_memblock = {
35 	.memory.regions		= memblock_memory_init_regions,
36 	.memory.cnt		= 1,	/* empty dummy entry */
37 	.memory.max		= INIT_MEMBLOCK_REGIONS,
38 
39 	.reserved.regions	= memblock_reserved_init_regions,
40 	.reserved.cnt		= 1,	/* empty dummy entry */
41 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
42 
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 	.physmem.regions	= memblock_physmem_init_regions,
45 	.physmem.cnt		= 1,	/* empty dummy entry */
46 	.physmem.max		= INIT_PHYSMEM_REGIONS,
47 #endif
48 
49 	.bottom_up		= false,
50 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
51 };
52 
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61 
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66 
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
70 {
71 	if (type == &memblock.memory)
72 		return "memory";
73 	else if (type == &memblock.reserved)
74 		return "reserved";
75 	else
76 		return "unknown";
77 }
78 
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84 
85 /*
86  * Address comparison utilities
87  */
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 				       phys_addr_t base2, phys_addr_t size2)
90 {
91 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93 
94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 					phys_addr_t base, phys_addr_t size)
96 {
97 	unsigned long i;
98 
99 	for (i = 0; i < type->cnt; i++) {
100 		phys_addr_t rgnbase = type->regions[i].base;
101 		phys_addr_t rgnsize = type->regions[i].size;
102 		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
103 			break;
104 	}
105 
106 	return i < type->cnt;
107 }
108 
109 /*
110  * __memblock_find_range_bottom_up - find free area utility in bottom-up
111  * @start: start of candidate range
112  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
113  * @size: size of free area to find
114  * @align: alignment of free area to find
115  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
116  * @flags: pick from blocks based on memory attributes
117  *
118  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
119  *
120  * RETURNS:
121  * Found address on success, 0 on failure.
122  */
123 static phys_addr_t __init_memblock
124 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
125 				phys_addr_t size, phys_addr_t align, int nid,
126 				ulong flags)
127 {
128 	phys_addr_t this_start, this_end, cand;
129 	u64 i;
130 
131 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
132 		this_start = clamp(this_start, start, end);
133 		this_end = clamp(this_end, start, end);
134 
135 		cand = round_up(this_start, align);
136 		if (cand < this_end && this_end - cand >= size)
137 			return cand;
138 	}
139 
140 	return 0;
141 }
142 
143 /**
144  * __memblock_find_range_top_down - find free area utility, in top-down
145  * @start: start of candidate range
146  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
147  * @size: size of free area to find
148  * @align: alignment of free area to find
149  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
150  * @flags: pick from blocks based on memory attributes
151  *
152  * Utility called from memblock_find_in_range_node(), find free area top-down.
153  *
154  * RETURNS:
155  * Found address on success, 0 on failure.
156  */
157 static phys_addr_t __init_memblock
158 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
159 			       phys_addr_t size, phys_addr_t align, int nid,
160 			       ulong flags)
161 {
162 	phys_addr_t this_start, this_end, cand;
163 	u64 i;
164 
165 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
166 					NULL) {
167 		this_start = clamp(this_start, start, end);
168 		this_end = clamp(this_end, start, end);
169 
170 		if (this_end < size)
171 			continue;
172 
173 		cand = round_down(this_end - size, align);
174 		if (cand >= this_start)
175 			return cand;
176 	}
177 
178 	return 0;
179 }
180 
181 /**
182  * memblock_find_in_range_node - find free area in given range and node
183  * @size: size of free area to find
184  * @align: alignment of free area to find
185  * @start: start of candidate range
186  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
187  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
188  * @flags: pick from blocks based on memory attributes
189  *
190  * Find @size free area aligned to @align in the specified range and node.
191  *
192  * When allocation direction is bottom-up, the @start should be greater
193  * than the end of the kernel image. Otherwise, it will be trimmed. The
194  * reason is that we want the bottom-up allocation just near the kernel
195  * image so it is highly likely that the allocated memory and the kernel
196  * will reside in the same node.
197  *
198  * If bottom-up allocation failed, will try to allocate memory top-down.
199  *
200  * RETURNS:
201  * Found address on success, 0 on failure.
202  */
203 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
204 					phys_addr_t align, phys_addr_t start,
205 					phys_addr_t end, int nid, ulong flags)
206 {
207 	phys_addr_t kernel_end, ret;
208 
209 	/* pump up @end */
210 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
211 		end = memblock.current_limit;
212 
213 	/* avoid allocating the first page */
214 	start = max_t(phys_addr_t, start, PAGE_SIZE);
215 	end = max(start, end);
216 	kernel_end = __pa_symbol(_end);
217 
218 	/*
219 	 * try bottom-up allocation only when bottom-up mode
220 	 * is set and @end is above the kernel image.
221 	 */
222 	if (memblock_bottom_up() && end > kernel_end) {
223 		phys_addr_t bottom_up_start;
224 
225 		/* make sure we will allocate above the kernel */
226 		bottom_up_start = max(start, kernel_end);
227 
228 		/* ok, try bottom-up allocation first */
229 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
230 						      size, align, nid, flags);
231 		if (ret)
232 			return ret;
233 
234 		/*
235 		 * we always limit bottom-up allocation above the kernel,
236 		 * but top-down allocation doesn't have the limit, so
237 		 * retrying top-down allocation may succeed when bottom-up
238 		 * allocation failed.
239 		 *
240 		 * bottom-up allocation is expected to be fail very rarely,
241 		 * so we use WARN_ONCE() here to see the stack trace if
242 		 * fail happens.
243 		 */
244 		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
245 			     "memory hotunplug may be affected\n");
246 	}
247 
248 	return __memblock_find_range_top_down(start, end, size, align, nid,
249 					      flags);
250 }
251 
252 /**
253  * memblock_find_in_range - find free area in given range
254  * @start: start of candidate range
255  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
256  * @size: size of free area to find
257  * @align: alignment of free area to find
258  *
259  * Find @size free area aligned to @align in the specified range.
260  *
261  * RETURNS:
262  * Found address on success, 0 on failure.
263  */
264 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
265 					phys_addr_t end, phys_addr_t size,
266 					phys_addr_t align)
267 {
268 	phys_addr_t ret;
269 	ulong flags = choose_memblock_flags();
270 
271 again:
272 	ret = memblock_find_in_range_node(size, align, start, end,
273 					    NUMA_NO_NODE, flags);
274 
275 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
276 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
277 			&size);
278 		flags &= ~MEMBLOCK_MIRROR;
279 		goto again;
280 	}
281 
282 	return ret;
283 }
284 
285 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
286 {
287 	type->total_size -= type->regions[r].size;
288 	memmove(&type->regions[r], &type->regions[r + 1],
289 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
290 	type->cnt--;
291 
292 	/* Special case for empty arrays */
293 	if (type->cnt == 0) {
294 		WARN_ON(type->total_size != 0);
295 		type->cnt = 1;
296 		type->regions[0].base = 0;
297 		type->regions[0].size = 0;
298 		type->regions[0].flags = 0;
299 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
300 	}
301 }
302 
303 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
304 
305 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
306 					phys_addr_t *addr)
307 {
308 	if (memblock.reserved.regions == memblock_reserved_init_regions)
309 		return 0;
310 
311 	*addr = __pa(memblock.reserved.regions);
312 
313 	return PAGE_ALIGN(sizeof(struct memblock_region) *
314 			  memblock.reserved.max);
315 }
316 
317 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
318 					phys_addr_t *addr)
319 {
320 	if (memblock.memory.regions == memblock_memory_init_regions)
321 		return 0;
322 
323 	*addr = __pa(memblock.memory.regions);
324 
325 	return PAGE_ALIGN(sizeof(struct memblock_region) *
326 			  memblock.memory.max);
327 }
328 
329 #endif
330 
331 /**
332  * memblock_double_array - double the size of the memblock regions array
333  * @type: memblock type of the regions array being doubled
334  * @new_area_start: starting address of memory range to avoid overlap with
335  * @new_area_size: size of memory range to avoid overlap with
336  *
337  * Double the size of the @type regions array. If memblock is being used to
338  * allocate memory for a new reserved regions array and there is a previously
339  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
340  * waiting to be reserved, ensure the memory used by the new array does
341  * not overlap.
342  *
343  * RETURNS:
344  * 0 on success, -1 on failure.
345  */
346 static int __init_memblock memblock_double_array(struct memblock_type *type,
347 						phys_addr_t new_area_start,
348 						phys_addr_t new_area_size)
349 {
350 	struct memblock_region *new_array, *old_array;
351 	phys_addr_t old_alloc_size, new_alloc_size;
352 	phys_addr_t old_size, new_size, addr;
353 	int use_slab = slab_is_available();
354 	int *in_slab;
355 
356 	/* We don't allow resizing until we know about the reserved regions
357 	 * of memory that aren't suitable for allocation
358 	 */
359 	if (!memblock_can_resize)
360 		return -1;
361 
362 	/* Calculate new doubled size */
363 	old_size = type->max * sizeof(struct memblock_region);
364 	new_size = old_size << 1;
365 	/*
366 	 * We need to allocated new one align to PAGE_SIZE,
367 	 *   so we can free them completely later.
368 	 */
369 	old_alloc_size = PAGE_ALIGN(old_size);
370 	new_alloc_size = PAGE_ALIGN(new_size);
371 
372 	/* Retrieve the slab flag */
373 	if (type == &memblock.memory)
374 		in_slab = &memblock_memory_in_slab;
375 	else
376 		in_slab = &memblock_reserved_in_slab;
377 
378 	/* Try to find some space for it.
379 	 *
380 	 * WARNING: We assume that either slab_is_available() and we use it or
381 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
382 	 * use when bootmem is currently active (unless bootmem itself is
383 	 * implemented on top of MEMBLOCK which isn't the case yet)
384 	 *
385 	 * This should however not be an issue for now, as we currently only
386 	 * call into MEMBLOCK while it's still active, or much later when slab
387 	 * is active for memory hotplug operations
388 	 */
389 	if (use_slab) {
390 		new_array = kmalloc(new_size, GFP_KERNEL);
391 		addr = new_array ? __pa(new_array) : 0;
392 	} else {
393 		/* only exclude range when trying to double reserved.regions */
394 		if (type != &memblock.reserved)
395 			new_area_start = new_area_size = 0;
396 
397 		addr = memblock_find_in_range(new_area_start + new_area_size,
398 						memblock.current_limit,
399 						new_alloc_size, PAGE_SIZE);
400 		if (!addr && new_area_size)
401 			addr = memblock_find_in_range(0,
402 				min(new_area_start, memblock.current_limit),
403 				new_alloc_size, PAGE_SIZE);
404 
405 		new_array = addr ? __va(addr) : NULL;
406 	}
407 	if (!addr) {
408 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
409 		       memblock_type_name(type), type->max, type->max * 2);
410 		return -1;
411 	}
412 
413 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
414 			memblock_type_name(type), type->max * 2, (u64)addr,
415 			(u64)addr + new_size - 1);
416 
417 	/*
418 	 * Found space, we now need to move the array over before we add the
419 	 * reserved region since it may be our reserved array itself that is
420 	 * full.
421 	 */
422 	memcpy(new_array, type->regions, old_size);
423 	memset(new_array + type->max, 0, old_size);
424 	old_array = type->regions;
425 	type->regions = new_array;
426 	type->max <<= 1;
427 
428 	/* Free old array. We needn't free it if the array is the static one */
429 	if (*in_slab)
430 		kfree(old_array);
431 	else if (old_array != memblock_memory_init_regions &&
432 		 old_array != memblock_reserved_init_regions)
433 		memblock_free(__pa(old_array), old_alloc_size);
434 
435 	/*
436 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
437 	 * needn't do it
438 	 */
439 	if (!use_slab)
440 		BUG_ON(memblock_reserve(addr, new_alloc_size));
441 
442 	/* Update slab flag */
443 	*in_slab = use_slab;
444 
445 	return 0;
446 }
447 
448 /**
449  * memblock_merge_regions - merge neighboring compatible regions
450  * @type: memblock type to scan
451  *
452  * Scan @type and merge neighboring compatible regions.
453  */
454 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
455 {
456 	int i = 0;
457 
458 	/* cnt never goes below 1 */
459 	while (i < type->cnt - 1) {
460 		struct memblock_region *this = &type->regions[i];
461 		struct memblock_region *next = &type->regions[i + 1];
462 
463 		if (this->base + this->size != next->base ||
464 		    memblock_get_region_node(this) !=
465 		    memblock_get_region_node(next) ||
466 		    this->flags != next->flags) {
467 			BUG_ON(this->base + this->size > next->base);
468 			i++;
469 			continue;
470 		}
471 
472 		this->size += next->size;
473 		/* move forward from next + 1, index of which is i + 2 */
474 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
475 		type->cnt--;
476 	}
477 }
478 
479 /**
480  * memblock_insert_region - insert new memblock region
481  * @type:	memblock type to insert into
482  * @idx:	index for the insertion point
483  * @base:	base address of the new region
484  * @size:	size of the new region
485  * @nid:	node id of the new region
486  * @flags:	flags of the new region
487  *
488  * Insert new memblock region [@base,@base+@size) into @type at @idx.
489  * @type must already have extra room to accomodate the new region.
490  */
491 static void __init_memblock memblock_insert_region(struct memblock_type *type,
492 						   int idx, phys_addr_t base,
493 						   phys_addr_t size,
494 						   int nid, unsigned long flags)
495 {
496 	struct memblock_region *rgn = &type->regions[idx];
497 
498 	BUG_ON(type->cnt >= type->max);
499 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
500 	rgn->base = base;
501 	rgn->size = size;
502 	rgn->flags = flags;
503 	memblock_set_region_node(rgn, nid);
504 	type->cnt++;
505 	type->total_size += size;
506 }
507 
508 /**
509  * memblock_add_range - add new memblock region
510  * @type: memblock type to add new region into
511  * @base: base address of the new region
512  * @size: size of the new region
513  * @nid: nid of the new region
514  * @flags: flags of the new region
515  *
516  * Add new memblock region [@base,@base+@size) into @type.  The new region
517  * is allowed to overlap with existing ones - overlaps don't affect already
518  * existing regions.  @type is guaranteed to be minimal (all neighbouring
519  * compatible regions are merged) after the addition.
520  *
521  * RETURNS:
522  * 0 on success, -errno on failure.
523  */
524 int __init_memblock memblock_add_range(struct memblock_type *type,
525 				phys_addr_t base, phys_addr_t size,
526 				int nid, unsigned long flags)
527 {
528 	bool insert = false;
529 	phys_addr_t obase = base;
530 	phys_addr_t end = base + memblock_cap_size(base, &size);
531 	int i, nr_new;
532 
533 	if (!size)
534 		return 0;
535 
536 	/* special case for empty array */
537 	if (type->regions[0].size == 0) {
538 		WARN_ON(type->cnt != 1 || type->total_size);
539 		type->regions[0].base = base;
540 		type->regions[0].size = size;
541 		type->regions[0].flags = flags;
542 		memblock_set_region_node(&type->regions[0], nid);
543 		type->total_size = size;
544 		return 0;
545 	}
546 repeat:
547 	/*
548 	 * The following is executed twice.  Once with %false @insert and
549 	 * then with %true.  The first counts the number of regions needed
550 	 * to accomodate the new area.  The second actually inserts them.
551 	 */
552 	base = obase;
553 	nr_new = 0;
554 
555 	for (i = 0; i < type->cnt; i++) {
556 		struct memblock_region *rgn = &type->regions[i];
557 		phys_addr_t rbase = rgn->base;
558 		phys_addr_t rend = rbase + rgn->size;
559 
560 		if (rbase >= end)
561 			break;
562 		if (rend <= base)
563 			continue;
564 		/*
565 		 * @rgn overlaps.  If it separates the lower part of new
566 		 * area, insert that portion.
567 		 */
568 		if (rbase > base) {
569 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
570 			WARN_ON(nid != memblock_get_region_node(rgn));
571 #endif
572 			WARN_ON(flags != rgn->flags);
573 			nr_new++;
574 			if (insert)
575 				memblock_insert_region(type, i++, base,
576 						       rbase - base, nid,
577 						       flags);
578 		}
579 		/* area below @rend is dealt with, forget about it */
580 		base = min(rend, end);
581 	}
582 
583 	/* insert the remaining portion */
584 	if (base < end) {
585 		nr_new++;
586 		if (insert)
587 			memblock_insert_region(type, i, base, end - base,
588 					       nid, flags);
589 	}
590 
591 	/*
592 	 * If this was the first round, resize array and repeat for actual
593 	 * insertions; otherwise, merge and return.
594 	 */
595 	if (!insert) {
596 		while (type->cnt + nr_new > type->max)
597 			if (memblock_double_array(type, obase, size) < 0)
598 				return -ENOMEM;
599 		insert = true;
600 		goto repeat;
601 	} else {
602 		memblock_merge_regions(type);
603 		return 0;
604 	}
605 }
606 
607 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
608 				       int nid)
609 {
610 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
611 }
612 
613 static int __init_memblock memblock_add_region(phys_addr_t base,
614 						phys_addr_t size,
615 						int nid,
616 						unsigned long flags)
617 {
618 	struct memblock_type *type = &memblock.memory;
619 
620 	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
621 		     (unsigned long long)base,
622 		     (unsigned long long)base + size - 1,
623 		     flags, (void *)_RET_IP_);
624 
625 	return memblock_add_range(type, base, size, nid, flags);
626 }
627 
628 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
629 {
630 	return memblock_add_region(base, size, MAX_NUMNODES, 0);
631 }
632 
633 /**
634  * memblock_isolate_range - isolate given range into disjoint memblocks
635  * @type: memblock type to isolate range for
636  * @base: base of range to isolate
637  * @size: size of range to isolate
638  * @start_rgn: out parameter for the start of isolated region
639  * @end_rgn: out parameter for the end of isolated region
640  *
641  * Walk @type and ensure that regions don't cross the boundaries defined by
642  * [@base,@base+@size).  Crossing regions are split at the boundaries,
643  * which may create at most two more regions.  The index of the first
644  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
645  *
646  * RETURNS:
647  * 0 on success, -errno on failure.
648  */
649 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
650 					phys_addr_t base, phys_addr_t size,
651 					int *start_rgn, int *end_rgn)
652 {
653 	phys_addr_t end = base + memblock_cap_size(base, &size);
654 	int i;
655 
656 	*start_rgn = *end_rgn = 0;
657 
658 	if (!size)
659 		return 0;
660 
661 	/* we'll create at most two more regions */
662 	while (type->cnt + 2 > type->max)
663 		if (memblock_double_array(type, base, size) < 0)
664 			return -ENOMEM;
665 
666 	for (i = 0; i < type->cnt; i++) {
667 		struct memblock_region *rgn = &type->regions[i];
668 		phys_addr_t rbase = rgn->base;
669 		phys_addr_t rend = rbase + rgn->size;
670 
671 		if (rbase >= end)
672 			break;
673 		if (rend <= base)
674 			continue;
675 
676 		if (rbase < base) {
677 			/*
678 			 * @rgn intersects from below.  Split and continue
679 			 * to process the next region - the new top half.
680 			 */
681 			rgn->base = base;
682 			rgn->size -= base - rbase;
683 			type->total_size -= base - rbase;
684 			memblock_insert_region(type, i, rbase, base - rbase,
685 					       memblock_get_region_node(rgn),
686 					       rgn->flags);
687 		} else if (rend > end) {
688 			/*
689 			 * @rgn intersects from above.  Split and redo the
690 			 * current region - the new bottom half.
691 			 */
692 			rgn->base = end;
693 			rgn->size -= end - rbase;
694 			type->total_size -= end - rbase;
695 			memblock_insert_region(type, i--, rbase, end - rbase,
696 					       memblock_get_region_node(rgn),
697 					       rgn->flags);
698 		} else {
699 			/* @rgn is fully contained, record it */
700 			if (!*end_rgn)
701 				*start_rgn = i;
702 			*end_rgn = i + 1;
703 		}
704 	}
705 
706 	return 0;
707 }
708 
709 static int __init_memblock memblock_remove_range(struct memblock_type *type,
710 					  phys_addr_t base, phys_addr_t size)
711 {
712 	int start_rgn, end_rgn;
713 	int i, ret;
714 
715 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
716 	if (ret)
717 		return ret;
718 
719 	for (i = end_rgn - 1; i >= start_rgn; i--)
720 		memblock_remove_region(type, i);
721 	return 0;
722 }
723 
724 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
725 {
726 	return memblock_remove_range(&memblock.memory, base, size);
727 }
728 
729 
730 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
731 {
732 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
733 		     (unsigned long long)base,
734 		     (unsigned long long)base + size - 1,
735 		     (void *)_RET_IP_);
736 
737 	kmemleak_free_part(__va(base), size);
738 	return memblock_remove_range(&memblock.reserved, base, size);
739 }
740 
741 static int __init_memblock memblock_reserve_region(phys_addr_t base,
742 						   phys_addr_t size,
743 						   int nid,
744 						   unsigned long flags)
745 {
746 	struct memblock_type *type = &memblock.reserved;
747 
748 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
749 		     (unsigned long long)base,
750 		     (unsigned long long)base + size - 1,
751 		     flags, (void *)_RET_IP_);
752 
753 	return memblock_add_range(type, base, size, nid, flags);
754 }
755 
756 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
757 {
758 	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
759 }
760 
761 /**
762  *
763  * This function isolates region [@base, @base + @size), and sets/clears flag
764  *
765  * Return 0 on success, -errno on failure.
766  */
767 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
768 				phys_addr_t size, int set, int flag)
769 {
770 	struct memblock_type *type = &memblock.memory;
771 	int i, ret, start_rgn, end_rgn;
772 
773 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
774 	if (ret)
775 		return ret;
776 
777 	for (i = start_rgn; i < end_rgn; i++)
778 		if (set)
779 			memblock_set_region_flags(&type->regions[i], flag);
780 		else
781 			memblock_clear_region_flags(&type->regions[i], flag);
782 
783 	memblock_merge_regions(type);
784 	return 0;
785 }
786 
787 /**
788  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
789  * @base: the base phys addr of the region
790  * @size: the size of the region
791  *
792  * Return 0 on success, -errno on failure.
793  */
794 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
795 {
796 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
797 }
798 
799 /**
800  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
801  * @base: the base phys addr of the region
802  * @size: the size of the region
803  *
804  * Return 0 on success, -errno on failure.
805  */
806 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
807 {
808 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
809 }
810 
811 /**
812  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
813  * @base: the base phys addr of the region
814  * @size: the size of the region
815  *
816  * Return 0 on success, -errno on failure.
817  */
818 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
819 {
820 	system_has_some_mirror = true;
821 
822 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
823 }
824 
825 
826 /**
827  * __next_reserved_mem_region - next function for for_each_reserved_region()
828  * @idx: pointer to u64 loop variable
829  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
830  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
831  *
832  * Iterate over all reserved memory regions.
833  */
834 void __init_memblock __next_reserved_mem_region(u64 *idx,
835 					   phys_addr_t *out_start,
836 					   phys_addr_t *out_end)
837 {
838 	struct memblock_type *type = &memblock.reserved;
839 
840 	if (*idx >= 0 && *idx < type->cnt) {
841 		struct memblock_region *r = &type->regions[*idx];
842 		phys_addr_t base = r->base;
843 		phys_addr_t size = r->size;
844 
845 		if (out_start)
846 			*out_start = base;
847 		if (out_end)
848 			*out_end = base + size - 1;
849 
850 		*idx += 1;
851 		return;
852 	}
853 
854 	/* signal end of iteration */
855 	*idx = ULLONG_MAX;
856 }
857 
858 /**
859  * __next__mem_range - next function for for_each_free_mem_range() etc.
860  * @idx: pointer to u64 loop variable
861  * @nid: node selector, %NUMA_NO_NODE for all nodes
862  * @flags: pick from blocks based on memory attributes
863  * @type_a: pointer to memblock_type from where the range is taken
864  * @type_b: pointer to memblock_type which excludes memory from being taken
865  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
866  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
867  * @out_nid: ptr to int for nid of the range, can be %NULL
868  *
869  * Find the first area from *@idx which matches @nid, fill the out
870  * parameters, and update *@idx for the next iteration.  The lower 32bit of
871  * *@idx contains index into type_a and the upper 32bit indexes the
872  * areas before each region in type_b.	For example, if type_b regions
873  * look like the following,
874  *
875  *	0:[0-16), 1:[32-48), 2:[128-130)
876  *
877  * The upper 32bit indexes the following regions.
878  *
879  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
880  *
881  * As both region arrays are sorted, the function advances the two indices
882  * in lockstep and returns each intersection.
883  */
884 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
885 				      struct memblock_type *type_a,
886 				      struct memblock_type *type_b,
887 				      phys_addr_t *out_start,
888 				      phys_addr_t *out_end, int *out_nid)
889 {
890 	int idx_a = *idx & 0xffffffff;
891 	int idx_b = *idx >> 32;
892 
893 	if (WARN_ONCE(nid == MAX_NUMNODES,
894 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
895 		nid = NUMA_NO_NODE;
896 
897 	for (; idx_a < type_a->cnt; idx_a++) {
898 		struct memblock_region *m = &type_a->regions[idx_a];
899 
900 		phys_addr_t m_start = m->base;
901 		phys_addr_t m_end = m->base + m->size;
902 		int	    m_nid = memblock_get_region_node(m);
903 
904 		/* only memory regions are associated with nodes, check it */
905 		if (nid != NUMA_NO_NODE && nid != m_nid)
906 			continue;
907 
908 		/* skip hotpluggable memory regions if needed */
909 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
910 			continue;
911 
912 		/* if we want mirror memory skip non-mirror memory regions */
913 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
914 			continue;
915 
916 		if (!type_b) {
917 			if (out_start)
918 				*out_start = m_start;
919 			if (out_end)
920 				*out_end = m_end;
921 			if (out_nid)
922 				*out_nid = m_nid;
923 			idx_a++;
924 			*idx = (u32)idx_a | (u64)idx_b << 32;
925 			return;
926 		}
927 
928 		/* scan areas before each reservation */
929 		for (; idx_b < type_b->cnt + 1; idx_b++) {
930 			struct memblock_region *r;
931 			phys_addr_t r_start;
932 			phys_addr_t r_end;
933 
934 			r = &type_b->regions[idx_b];
935 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
936 			r_end = idx_b < type_b->cnt ?
937 				r->base : ULLONG_MAX;
938 
939 			/*
940 			 * if idx_b advanced past idx_a,
941 			 * break out to advance idx_a
942 			 */
943 			if (r_start >= m_end)
944 				break;
945 			/* if the two regions intersect, we're done */
946 			if (m_start < r_end) {
947 				if (out_start)
948 					*out_start =
949 						max(m_start, r_start);
950 				if (out_end)
951 					*out_end = min(m_end, r_end);
952 				if (out_nid)
953 					*out_nid = m_nid;
954 				/*
955 				 * The region which ends first is
956 				 * advanced for the next iteration.
957 				 */
958 				if (m_end <= r_end)
959 					idx_a++;
960 				else
961 					idx_b++;
962 				*idx = (u32)idx_a | (u64)idx_b << 32;
963 				return;
964 			}
965 		}
966 	}
967 
968 	/* signal end of iteration */
969 	*idx = ULLONG_MAX;
970 }
971 
972 /**
973  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
974  *
975  * Finds the next range from type_a which is not marked as unsuitable
976  * in type_b.
977  *
978  * @idx: pointer to u64 loop variable
979  * @nid: node selector, %NUMA_NO_NODE for all nodes
980  * @flags: pick from blocks based on memory attributes
981  * @type_a: pointer to memblock_type from where the range is taken
982  * @type_b: pointer to memblock_type which excludes memory from being taken
983  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
984  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
985  * @out_nid: ptr to int for nid of the range, can be %NULL
986  *
987  * Reverse of __next_mem_range().
988  */
989 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
990 					  struct memblock_type *type_a,
991 					  struct memblock_type *type_b,
992 					  phys_addr_t *out_start,
993 					  phys_addr_t *out_end, int *out_nid)
994 {
995 	int idx_a = *idx & 0xffffffff;
996 	int idx_b = *idx >> 32;
997 
998 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
999 		nid = NUMA_NO_NODE;
1000 
1001 	if (*idx == (u64)ULLONG_MAX) {
1002 		idx_a = type_a->cnt - 1;
1003 		idx_b = type_b->cnt;
1004 	}
1005 
1006 	for (; idx_a >= 0; idx_a--) {
1007 		struct memblock_region *m = &type_a->regions[idx_a];
1008 
1009 		phys_addr_t m_start = m->base;
1010 		phys_addr_t m_end = m->base + m->size;
1011 		int m_nid = memblock_get_region_node(m);
1012 
1013 		/* only memory regions are associated with nodes, check it */
1014 		if (nid != NUMA_NO_NODE && nid != m_nid)
1015 			continue;
1016 
1017 		/* skip hotpluggable memory regions if needed */
1018 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1019 			continue;
1020 
1021 		/* if we want mirror memory skip non-mirror memory regions */
1022 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1023 			continue;
1024 
1025 		if (!type_b) {
1026 			if (out_start)
1027 				*out_start = m_start;
1028 			if (out_end)
1029 				*out_end = m_end;
1030 			if (out_nid)
1031 				*out_nid = m_nid;
1032 			idx_a++;
1033 			*idx = (u32)idx_a | (u64)idx_b << 32;
1034 			return;
1035 		}
1036 
1037 		/* scan areas before each reservation */
1038 		for (; idx_b >= 0; idx_b--) {
1039 			struct memblock_region *r;
1040 			phys_addr_t r_start;
1041 			phys_addr_t r_end;
1042 
1043 			r = &type_b->regions[idx_b];
1044 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1045 			r_end = idx_b < type_b->cnt ?
1046 				r->base : ULLONG_MAX;
1047 			/*
1048 			 * if idx_b advanced past idx_a,
1049 			 * break out to advance idx_a
1050 			 */
1051 
1052 			if (r_end <= m_start)
1053 				break;
1054 			/* if the two regions intersect, we're done */
1055 			if (m_end > r_start) {
1056 				if (out_start)
1057 					*out_start = max(m_start, r_start);
1058 				if (out_end)
1059 					*out_end = min(m_end, r_end);
1060 				if (out_nid)
1061 					*out_nid = m_nid;
1062 				if (m_start >= r_start)
1063 					idx_a--;
1064 				else
1065 					idx_b--;
1066 				*idx = (u32)idx_a | (u64)idx_b << 32;
1067 				return;
1068 			}
1069 		}
1070 	}
1071 	/* signal end of iteration */
1072 	*idx = ULLONG_MAX;
1073 }
1074 
1075 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1076 /*
1077  * Common iterator interface used to define for_each_mem_range().
1078  */
1079 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1080 				unsigned long *out_start_pfn,
1081 				unsigned long *out_end_pfn, int *out_nid)
1082 {
1083 	struct memblock_type *type = &memblock.memory;
1084 	struct memblock_region *r;
1085 
1086 	while (++*idx < type->cnt) {
1087 		r = &type->regions[*idx];
1088 
1089 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1090 			continue;
1091 		if (nid == MAX_NUMNODES || nid == r->nid)
1092 			break;
1093 	}
1094 	if (*idx >= type->cnt) {
1095 		*idx = -1;
1096 		return;
1097 	}
1098 
1099 	if (out_start_pfn)
1100 		*out_start_pfn = PFN_UP(r->base);
1101 	if (out_end_pfn)
1102 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1103 	if (out_nid)
1104 		*out_nid = r->nid;
1105 }
1106 
1107 /**
1108  * memblock_set_node - set node ID on memblock regions
1109  * @base: base of area to set node ID for
1110  * @size: size of area to set node ID for
1111  * @type: memblock type to set node ID for
1112  * @nid: node ID to set
1113  *
1114  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1115  * Regions which cross the area boundaries are split as necessary.
1116  *
1117  * RETURNS:
1118  * 0 on success, -errno on failure.
1119  */
1120 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1121 				      struct memblock_type *type, int nid)
1122 {
1123 	int start_rgn, end_rgn;
1124 	int i, ret;
1125 
1126 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1127 	if (ret)
1128 		return ret;
1129 
1130 	for (i = start_rgn; i < end_rgn; i++)
1131 		memblock_set_region_node(&type->regions[i], nid);
1132 
1133 	memblock_merge_regions(type);
1134 	return 0;
1135 }
1136 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1137 
1138 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1139 					phys_addr_t align, phys_addr_t start,
1140 					phys_addr_t end, int nid, ulong flags)
1141 {
1142 	phys_addr_t found;
1143 
1144 	if (!align)
1145 		align = SMP_CACHE_BYTES;
1146 
1147 	found = memblock_find_in_range_node(size, align, start, end, nid,
1148 					    flags);
1149 	if (found && !memblock_reserve(found, size)) {
1150 		/*
1151 		 * The min_count is set to 0 so that memblock allocations are
1152 		 * never reported as leaks.
1153 		 */
1154 		kmemleak_alloc(__va(found), size, 0, 0);
1155 		return found;
1156 	}
1157 	return 0;
1158 }
1159 
1160 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1161 					phys_addr_t start, phys_addr_t end,
1162 					ulong flags)
1163 {
1164 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1165 					flags);
1166 }
1167 
1168 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1169 					phys_addr_t align, phys_addr_t max_addr,
1170 					int nid, ulong flags)
1171 {
1172 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1173 }
1174 
1175 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1176 {
1177 	ulong flags = choose_memblock_flags();
1178 	phys_addr_t ret;
1179 
1180 again:
1181 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1182 				      nid, flags);
1183 
1184 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1185 		flags &= ~MEMBLOCK_MIRROR;
1186 		goto again;
1187 	}
1188 	return ret;
1189 }
1190 
1191 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1192 {
1193 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1194 				       MEMBLOCK_NONE);
1195 }
1196 
1197 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1198 {
1199 	phys_addr_t alloc;
1200 
1201 	alloc = __memblock_alloc_base(size, align, max_addr);
1202 
1203 	if (alloc == 0)
1204 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1205 		      (unsigned long long) size, (unsigned long long) max_addr);
1206 
1207 	return alloc;
1208 }
1209 
1210 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1211 {
1212 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1213 }
1214 
1215 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1216 {
1217 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1218 
1219 	if (res)
1220 		return res;
1221 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1222 }
1223 
1224 /**
1225  * memblock_virt_alloc_internal - allocate boot memory block
1226  * @size: size of memory block to be allocated in bytes
1227  * @align: alignment of the region and block's size
1228  * @min_addr: the lower bound of the memory region to allocate (phys address)
1229  * @max_addr: the upper bound of the memory region to allocate (phys address)
1230  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1231  *
1232  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1233  * will fall back to memory below @min_addr. Also, allocation may fall back
1234  * to any node in the system if the specified node can not
1235  * hold the requested memory.
1236  *
1237  * The allocation is performed from memory region limited by
1238  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1239  *
1240  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1241  *
1242  * The phys address of allocated boot memory block is converted to virtual and
1243  * allocated memory is reset to 0.
1244  *
1245  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1246  * allocated boot memory block, so that it is never reported as leaks.
1247  *
1248  * RETURNS:
1249  * Virtual address of allocated memory block on success, NULL on failure.
1250  */
1251 static void * __init memblock_virt_alloc_internal(
1252 				phys_addr_t size, phys_addr_t align,
1253 				phys_addr_t min_addr, phys_addr_t max_addr,
1254 				int nid)
1255 {
1256 	phys_addr_t alloc;
1257 	void *ptr;
1258 	ulong flags = choose_memblock_flags();
1259 
1260 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1261 		nid = NUMA_NO_NODE;
1262 
1263 	/*
1264 	 * Detect any accidental use of these APIs after slab is ready, as at
1265 	 * this moment memblock may be deinitialized already and its
1266 	 * internal data may be destroyed (after execution of free_all_bootmem)
1267 	 */
1268 	if (WARN_ON_ONCE(slab_is_available()))
1269 		return kzalloc_node(size, GFP_NOWAIT, nid);
1270 
1271 	if (!align)
1272 		align = SMP_CACHE_BYTES;
1273 
1274 	if (max_addr > memblock.current_limit)
1275 		max_addr = memblock.current_limit;
1276 
1277 again:
1278 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1279 					    nid, flags);
1280 	if (alloc)
1281 		goto done;
1282 
1283 	if (nid != NUMA_NO_NODE) {
1284 		alloc = memblock_find_in_range_node(size, align, min_addr,
1285 						    max_addr, NUMA_NO_NODE,
1286 						    flags);
1287 		if (alloc)
1288 			goto done;
1289 	}
1290 
1291 	if (min_addr) {
1292 		min_addr = 0;
1293 		goto again;
1294 	}
1295 
1296 	if (flags & MEMBLOCK_MIRROR) {
1297 		flags &= ~MEMBLOCK_MIRROR;
1298 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1299 			&size);
1300 		goto again;
1301 	}
1302 
1303 	return NULL;
1304 done:
1305 	memblock_reserve(alloc, size);
1306 	ptr = phys_to_virt(alloc);
1307 	memset(ptr, 0, size);
1308 
1309 	/*
1310 	 * The min_count is set to 0 so that bootmem allocated blocks
1311 	 * are never reported as leaks. This is because many of these blocks
1312 	 * are only referred via the physical address which is not
1313 	 * looked up by kmemleak.
1314 	 */
1315 	kmemleak_alloc(ptr, size, 0, 0);
1316 
1317 	return ptr;
1318 }
1319 
1320 /**
1321  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1322  * @size: size of memory block to be allocated in bytes
1323  * @align: alignment of the region and block's size
1324  * @min_addr: the lower bound of the memory region from where the allocation
1325  *	  is preferred (phys address)
1326  * @max_addr: the upper bound of the memory region from where the allocation
1327  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1328  *	      allocate only from memory limited by memblock.current_limit value
1329  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1330  *
1331  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1332  * additional debug information (including caller info), if enabled.
1333  *
1334  * RETURNS:
1335  * Virtual address of allocated memory block on success, NULL on failure.
1336  */
1337 void * __init memblock_virt_alloc_try_nid_nopanic(
1338 				phys_addr_t size, phys_addr_t align,
1339 				phys_addr_t min_addr, phys_addr_t max_addr,
1340 				int nid)
1341 {
1342 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1343 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1344 		     (u64)max_addr, (void *)_RET_IP_);
1345 	return memblock_virt_alloc_internal(size, align, min_addr,
1346 					     max_addr, nid);
1347 }
1348 
1349 /**
1350  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1351  * @size: size of memory block to be allocated in bytes
1352  * @align: alignment of the region and block's size
1353  * @min_addr: the lower bound of the memory region from where the allocation
1354  *	  is preferred (phys address)
1355  * @max_addr: the upper bound of the memory region from where the allocation
1356  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1357  *	      allocate only from memory limited by memblock.current_limit value
1358  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1359  *
1360  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1361  * which provides debug information (including caller info), if enabled,
1362  * and panics if the request can not be satisfied.
1363  *
1364  * RETURNS:
1365  * Virtual address of allocated memory block on success, NULL on failure.
1366  */
1367 void * __init memblock_virt_alloc_try_nid(
1368 			phys_addr_t size, phys_addr_t align,
1369 			phys_addr_t min_addr, phys_addr_t max_addr,
1370 			int nid)
1371 {
1372 	void *ptr;
1373 
1374 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1375 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1376 		     (u64)max_addr, (void *)_RET_IP_);
1377 	ptr = memblock_virt_alloc_internal(size, align,
1378 					   min_addr, max_addr, nid);
1379 	if (ptr)
1380 		return ptr;
1381 
1382 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1383 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1384 	      (u64)max_addr);
1385 	return NULL;
1386 }
1387 
1388 /**
1389  * __memblock_free_early - free boot memory block
1390  * @base: phys starting address of the  boot memory block
1391  * @size: size of the boot memory block in bytes
1392  *
1393  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1394  * The freeing memory will not be released to the buddy allocator.
1395  */
1396 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1397 {
1398 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1399 		     __func__, (u64)base, (u64)base + size - 1,
1400 		     (void *)_RET_IP_);
1401 	kmemleak_free_part(__va(base), size);
1402 	memblock_remove_range(&memblock.reserved, base, size);
1403 }
1404 
1405 /*
1406  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1407  * @addr: phys starting address of the  boot memory block
1408  * @size: size of the boot memory block in bytes
1409  *
1410  * This is only useful when the bootmem allocator has already been torn
1411  * down, but we are still initializing the system.  Pages are released directly
1412  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1413  */
1414 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1415 {
1416 	u64 cursor, end;
1417 
1418 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1419 		     __func__, (u64)base, (u64)base + size - 1,
1420 		     (void *)_RET_IP_);
1421 	kmemleak_free_part(__va(base), size);
1422 	cursor = PFN_UP(base);
1423 	end = PFN_DOWN(base + size);
1424 
1425 	for (; cursor < end; cursor++) {
1426 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1427 		totalram_pages++;
1428 	}
1429 }
1430 
1431 /*
1432  * Remaining API functions
1433  */
1434 
1435 phys_addr_t __init memblock_phys_mem_size(void)
1436 {
1437 	return memblock.memory.total_size;
1438 }
1439 
1440 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1441 {
1442 	unsigned long pages = 0;
1443 	struct memblock_region *r;
1444 	unsigned long start_pfn, end_pfn;
1445 
1446 	for_each_memblock(memory, r) {
1447 		start_pfn = memblock_region_memory_base_pfn(r);
1448 		end_pfn = memblock_region_memory_end_pfn(r);
1449 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1450 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1451 		pages += end_pfn - start_pfn;
1452 	}
1453 
1454 	return PFN_PHYS(pages);
1455 }
1456 
1457 /* lowest address */
1458 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1459 {
1460 	return memblock.memory.regions[0].base;
1461 }
1462 
1463 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1464 {
1465 	int idx = memblock.memory.cnt - 1;
1466 
1467 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1468 }
1469 
1470 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1471 {
1472 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1473 	struct memblock_region *r;
1474 
1475 	if (!limit)
1476 		return;
1477 
1478 	/* find out max address */
1479 	for_each_memblock(memory, r) {
1480 		if (limit <= r->size) {
1481 			max_addr = r->base + limit;
1482 			break;
1483 		}
1484 		limit -= r->size;
1485 	}
1486 
1487 	/* truncate both memory and reserved regions */
1488 	memblock_remove_range(&memblock.memory, max_addr,
1489 			      (phys_addr_t)ULLONG_MAX);
1490 	memblock_remove_range(&memblock.reserved, max_addr,
1491 			      (phys_addr_t)ULLONG_MAX);
1492 }
1493 
1494 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1495 {
1496 	unsigned int left = 0, right = type->cnt;
1497 
1498 	do {
1499 		unsigned int mid = (right + left) / 2;
1500 
1501 		if (addr < type->regions[mid].base)
1502 			right = mid;
1503 		else if (addr >= (type->regions[mid].base +
1504 				  type->regions[mid].size))
1505 			left = mid + 1;
1506 		else
1507 			return mid;
1508 	} while (left < right);
1509 	return -1;
1510 }
1511 
1512 int __init memblock_is_reserved(phys_addr_t addr)
1513 {
1514 	return memblock_search(&memblock.reserved, addr) != -1;
1515 }
1516 
1517 int __init_memblock memblock_is_memory(phys_addr_t addr)
1518 {
1519 	return memblock_search(&memblock.memory, addr) != -1;
1520 }
1521 
1522 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1523 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1524 			 unsigned long *start_pfn, unsigned long *end_pfn)
1525 {
1526 	struct memblock_type *type = &memblock.memory;
1527 	int mid = memblock_search(type, PFN_PHYS(pfn));
1528 
1529 	if (mid == -1)
1530 		return -1;
1531 
1532 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1533 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1534 
1535 	return type->regions[mid].nid;
1536 }
1537 #endif
1538 
1539 /**
1540  * memblock_is_region_memory - check if a region is a subset of memory
1541  * @base: base of region to check
1542  * @size: size of region to check
1543  *
1544  * Check if the region [@base, @base+@size) is a subset of a memory block.
1545  *
1546  * RETURNS:
1547  * 0 if false, non-zero if true
1548  */
1549 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1550 {
1551 	int idx = memblock_search(&memblock.memory, base);
1552 	phys_addr_t end = base + memblock_cap_size(base, &size);
1553 
1554 	if (idx == -1)
1555 		return 0;
1556 	return memblock.memory.regions[idx].base <= base &&
1557 		(memblock.memory.regions[idx].base +
1558 		 memblock.memory.regions[idx].size) >= end;
1559 }
1560 
1561 /**
1562  * memblock_is_region_reserved - check if a region intersects reserved memory
1563  * @base: base of region to check
1564  * @size: size of region to check
1565  *
1566  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1567  *
1568  * RETURNS:
1569  * True if they intersect, false if not.
1570  */
1571 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1572 {
1573 	memblock_cap_size(base, &size);
1574 	return memblock_overlaps_region(&memblock.reserved, base, size);
1575 }
1576 
1577 void __init_memblock memblock_trim_memory(phys_addr_t align)
1578 {
1579 	phys_addr_t start, end, orig_start, orig_end;
1580 	struct memblock_region *r;
1581 
1582 	for_each_memblock(memory, r) {
1583 		orig_start = r->base;
1584 		orig_end = r->base + r->size;
1585 		start = round_up(orig_start, align);
1586 		end = round_down(orig_end, align);
1587 
1588 		if (start == orig_start && end == orig_end)
1589 			continue;
1590 
1591 		if (start < end) {
1592 			r->base = start;
1593 			r->size = end - start;
1594 		} else {
1595 			memblock_remove_region(&memblock.memory,
1596 					       r - memblock.memory.regions);
1597 			r--;
1598 		}
1599 	}
1600 }
1601 
1602 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1603 {
1604 	memblock.current_limit = limit;
1605 }
1606 
1607 phys_addr_t __init_memblock memblock_get_current_limit(void)
1608 {
1609 	return memblock.current_limit;
1610 }
1611 
1612 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1613 {
1614 	unsigned long long base, size;
1615 	unsigned long flags;
1616 	int i;
1617 
1618 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1619 
1620 	for (i = 0; i < type->cnt; i++) {
1621 		struct memblock_region *rgn = &type->regions[i];
1622 		char nid_buf[32] = "";
1623 
1624 		base = rgn->base;
1625 		size = rgn->size;
1626 		flags = rgn->flags;
1627 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1628 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1629 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1630 				 memblock_get_region_node(rgn));
1631 #endif
1632 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1633 			name, i, base, base + size - 1, size, nid_buf, flags);
1634 	}
1635 }
1636 
1637 void __init_memblock __memblock_dump_all(void)
1638 {
1639 	pr_info("MEMBLOCK configuration:\n");
1640 	pr_info(" memory size = %#llx reserved size = %#llx\n",
1641 		(unsigned long long)memblock.memory.total_size,
1642 		(unsigned long long)memblock.reserved.total_size);
1643 
1644 	memblock_dump(&memblock.memory, "memory");
1645 	memblock_dump(&memblock.reserved, "reserved");
1646 }
1647 
1648 void __init memblock_allow_resize(void)
1649 {
1650 	memblock_can_resize = 1;
1651 }
1652 
1653 static int __init early_memblock(char *p)
1654 {
1655 	if (p && strstr(p, "debug"))
1656 		memblock_debug = 1;
1657 	return 0;
1658 }
1659 early_param("memblock", early_memblock);
1660 
1661 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1662 
1663 static int memblock_debug_show(struct seq_file *m, void *private)
1664 {
1665 	struct memblock_type *type = m->private;
1666 	struct memblock_region *reg;
1667 	int i;
1668 
1669 	for (i = 0; i < type->cnt; i++) {
1670 		reg = &type->regions[i];
1671 		seq_printf(m, "%4d: ", i);
1672 		if (sizeof(phys_addr_t) == 4)
1673 			seq_printf(m, "0x%08lx..0x%08lx\n",
1674 				   (unsigned long)reg->base,
1675 				   (unsigned long)(reg->base + reg->size - 1));
1676 		else
1677 			seq_printf(m, "0x%016llx..0x%016llx\n",
1678 				   (unsigned long long)reg->base,
1679 				   (unsigned long long)(reg->base + reg->size - 1));
1680 
1681 	}
1682 	return 0;
1683 }
1684 
1685 static int memblock_debug_open(struct inode *inode, struct file *file)
1686 {
1687 	return single_open(file, memblock_debug_show, inode->i_private);
1688 }
1689 
1690 static const struct file_operations memblock_debug_fops = {
1691 	.open = memblock_debug_open,
1692 	.read = seq_read,
1693 	.llseek = seq_lseek,
1694 	.release = single_release,
1695 };
1696 
1697 static int __init memblock_init_debugfs(void)
1698 {
1699 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1700 	if (!root)
1701 		return -ENXIO;
1702 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1703 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1704 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1705 	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1706 #endif
1707 
1708 	return 0;
1709 }
1710 __initcall(memblock_init_debugfs);
1711 
1712 #endif /* CONFIG_DEBUG_FS */
1713