1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 #include <asm/sections.h> 24 #include <linux/io.h> 25 26 #include "internal.h" 27 28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 32 #endif 33 34 struct memblock memblock __initdata_memblock = { 35 .memory.regions = memblock_memory_init_regions, 36 .memory.cnt = 1, /* empty dummy entry */ 37 .memory.max = INIT_MEMBLOCK_REGIONS, 38 .memory.name = "memory", 39 40 .reserved.regions = memblock_reserved_init_regions, 41 .reserved.cnt = 1, /* empty dummy entry */ 42 .reserved.max = INIT_MEMBLOCK_REGIONS, 43 .reserved.name = "reserved", 44 45 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 46 .physmem.regions = memblock_physmem_init_regions, 47 .physmem.cnt = 1, /* empty dummy entry */ 48 .physmem.max = INIT_PHYSMEM_REGIONS, 49 .physmem.name = "physmem", 50 #endif 51 52 .bottom_up = false, 53 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 54 }; 55 56 int memblock_debug __initdata_memblock; 57 static bool system_has_some_mirror __initdata_memblock = false; 58 static int memblock_can_resize __initdata_memblock; 59 static int memblock_memory_in_slab __initdata_memblock = 0; 60 static int memblock_reserved_in_slab __initdata_memblock = 0; 61 62 ulong __init_memblock choose_memblock_flags(void) 63 { 64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 65 } 66 67 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 68 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 69 { 70 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 71 } 72 73 /* 74 * Address comparison utilities 75 */ 76 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 77 phys_addr_t base2, phys_addr_t size2) 78 { 79 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 80 } 81 82 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 83 phys_addr_t base, phys_addr_t size) 84 { 85 unsigned long i; 86 87 for (i = 0; i < type->cnt; i++) 88 if (memblock_addrs_overlap(base, size, type->regions[i].base, 89 type->regions[i].size)) 90 break; 91 return i < type->cnt; 92 } 93 94 /* 95 * __memblock_find_range_bottom_up - find free area utility in bottom-up 96 * @start: start of candidate range 97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 98 * @size: size of free area to find 99 * @align: alignment of free area to find 100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 101 * @flags: pick from blocks based on memory attributes 102 * 103 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 104 * 105 * RETURNS: 106 * Found address on success, 0 on failure. 107 */ 108 static phys_addr_t __init_memblock 109 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 110 phys_addr_t size, phys_addr_t align, int nid, 111 ulong flags) 112 { 113 phys_addr_t this_start, this_end, cand; 114 u64 i; 115 116 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 117 this_start = clamp(this_start, start, end); 118 this_end = clamp(this_end, start, end); 119 120 cand = round_up(this_start, align); 121 if (cand < this_end && this_end - cand >= size) 122 return cand; 123 } 124 125 return 0; 126 } 127 128 /** 129 * __memblock_find_range_top_down - find free area utility, in top-down 130 * @start: start of candidate range 131 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 132 * @size: size of free area to find 133 * @align: alignment of free area to find 134 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 135 * @flags: pick from blocks based on memory attributes 136 * 137 * Utility called from memblock_find_in_range_node(), find free area top-down. 138 * 139 * RETURNS: 140 * Found address on success, 0 on failure. 141 */ 142 static phys_addr_t __init_memblock 143 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 144 phys_addr_t size, phys_addr_t align, int nid, 145 ulong flags) 146 { 147 phys_addr_t this_start, this_end, cand; 148 u64 i; 149 150 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 151 NULL) { 152 this_start = clamp(this_start, start, end); 153 this_end = clamp(this_end, start, end); 154 155 if (this_end < size) 156 continue; 157 158 cand = round_down(this_end - size, align); 159 if (cand >= this_start) 160 return cand; 161 } 162 163 return 0; 164 } 165 166 /** 167 * memblock_find_in_range_node - find free area in given range and node 168 * @size: size of free area to find 169 * @align: alignment of free area to find 170 * @start: start of candidate range 171 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 172 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 173 * @flags: pick from blocks based on memory attributes 174 * 175 * Find @size free area aligned to @align in the specified range and node. 176 * 177 * When allocation direction is bottom-up, the @start should be greater 178 * than the end of the kernel image. Otherwise, it will be trimmed. The 179 * reason is that we want the bottom-up allocation just near the kernel 180 * image so it is highly likely that the allocated memory and the kernel 181 * will reside in the same node. 182 * 183 * If bottom-up allocation failed, will try to allocate memory top-down. 184 * 185 * RETURNS: 186 * Found address on success, 0 on failure. 187 */ 188 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 189 phys_addr_t align, phys_addr_t start, 190 phys_addr_t end, int nid, ulong flags) 191 { 192 phys_addr_t kernel_end, ret; 193 194 /* pump up @end */ 195 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 196 end = memblock.current_limit; 197 198 /* avoid allocating the first page */ 199 start = max_t(phys_addr_t, start, PAGE_SIZE); 200 end = max(start, end); 201 kernel_end = __pa_symbol(_end); 202 203 /* 204 * try bottom-up allocation only when bottom-up mode 205 * is set and @end is above the kernel image. 206 */ 207 if (memblock_bottom_up() && end > kernel_end) { 208 phys_addr_t bottom_up_start; 209 210 /* make sure we will allocate above the kernel */ 211 bottom_up_start = max(start, kernel_end); 212 213 /* ok, try bottom-up allocation first */ 214 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 215 size, align, nid, flags); 216 if (ret) 217 return ret; 218 219 /* 220 * we always limit bottom-up allocation above the kernel, 221 * but top-down allocation doesn't have the limit, so 222 * retrying top-down allocation may succeed when bottom-up 223 * allocation failed. 224 * 225 * bottom-up allocation is expected to be fail very rarely, 226 * so we use WARN_ONCE() here to see the stack trace if 227 * fail happens. 228 */ 229 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n"); 230 } 231 232 return __memblock_find_range_top_down(start, end, size, align, nid, 233 flags); 234 } 235 236 /** 237 * memblock_find_in_range - find free area in given range 238 * @start: start of candidate range 239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 240 * @size: size of free area to find 241 * @align: alignment of free area to find 242 * 243 * Find @size free area aligned to @align in the specified range. 244 * 245 * RETURNS: 246 * Found address on success, 0 on failure. 247 */ 248 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 249 phys_addr_t end, phys_addr_t size, 250 phys_addr_t align) 251 { 252 phys_addr_t ret; 253 ulong flags = choose_memblock_flags(); 254 255 again: 256 ret = memblock_find_in_range_node(size, align, start, end, 257 NUMA_NO_NODE, flags); 258 259 if (!ret && (flags & MEMBLOCK_MIRROR)) { 260 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 261 &size); 262 flags &= ~MEMBLOCK_MIRROR; 263 goto again; 264 } 265 266 return ret; 267 } 268 269 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 270 { 271 type->total_size -= type->regions[r].size; 272 memmove(&type->regions[r], &type->regions[r + 1], 273 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 274 type->cnt--; 275 276 /* Special case for empty arrays */ 277 if (type->cnt == 0) { 278 WARN_ON(type->total_size != 0); 279 type->cnt = 1; 280 type->regions[0].base = 0; 281 type->regions[0].size = 0; 282 type->regions[0].flags = 0; 283 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 284 } 285 } 286 287 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 288 289 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 290 phys_addr_t *addr) 291 { 292 if (memblock.reserved.regions == memblock_reserved_init_regions) 293 return 0; 294 295 *addr = __pa(memblock.reserved.regions); 296 297 return PAGE_ALIGN(sizeof(struct memblock_region) * 298 memblock.reserved.max); 299 } 300 301 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info( 302 phys_addr_t *addr) 303 { 304 if (memblock.memory.regions == memblock_memory_init_regions) 305 return 0; 306 307 *addr = __pa(memblock.memory.regions); 308 309 return PAGE_ALIGN(sizeof(struct memblock_region) * 310 memblock.memory.max); 311 } 312 313 #endif 314 315 /** 316 * memblock_double_array - double the size of the memblock regions array 317 * @type: memblock type of the regions array being doubled 318 * @new_area_start: starting address of memory range to avoid overlap with 319 * @new_area_size: size of memory range to avoid overlap with 320 * 321 * Double the size of the @type regions array. If memblock is being used to 322 * allocate memory for a new reserved regions array and there is a previously 323 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 324 * waiting to be reserved, ensure the memory used by the new array does 325 * not overlap. 326 * 327 * RETURNS: 328 * 0 on success, -1 on failure. 329 */ 330 static int __init_memblock memblock_double_array(struct memblock_type *type, 331 phys_addr_t new_area_start, 332 phys_addr_t new_area_size) 333 { 334 struct memblock_region *new_array, *old_array; 335 phys_addr_t old_alloc_size, new_alloc_size; 336 phys_addr_t old_size, new_size, addr; 337 int use_slab = slab_is_available(); 338 int *in_slab; 339 340 /* We don't allow resizing until we know about the reserved regions 341 * of memory that aren't suitable for allocation 342 */ 343 if (!memblock_can_resize) 344 return -1; 345 346 /* Calculate new doubled size */ 347 old_size = type->max * sizeof(struct memblock_region); 348 new_size = old_size << 1; 349 /* 350 * We need to allocated new one align to PAGE_SIZE, 351 * so we can free them completely later. 352 */ 353 old_alloc_size = PAGE_ALIGN(old_size); 354 new_alloc_size = PAGE_ALIGN(new_size); 355 356 /* Retrieve the slab flag */ 357 if (type == &memblock.memory) 358 in_slab = &memblock_memory_in_slab; 359 else 360 in_slab = &memblock_reserved_in_slab; 361 362 /* Try to find some space for it. 363 * 364 * WARNING: We assume that either slab_is_available() and we use it or 365 * we use MEMBLOCK for allocations. That means that this is unsafe to 366 * use when bootmem is currently active (unless bootmem itself is 367 * implemented on top of MEMBLOCK which isn't the case yet) 368 * 369 * This should however not be an issue for now, as we currently only 370 * call into MEMBLOCK while it's still active, or much later when slab 371 * is active for memory hotplug operations 372 */ 373 if (use_slab) { 374 new_array = kmalloc(new_size, GFP_KERNEL); 375 addr = new_array ? __pa(new_array) : 0; 376 } else { 377 /* only exclude range when trying to double reserved.regions */ 378 if (type != &memblock.reserved) 379 new_area_start = new_area_size = 0; 380 381 addr = memblock_find_in_range(new_area_start + new_area_size, 382 memblock.current_limit, 383 new_alloc_size, PAGE_SIZE); 384 if (!addr && new_area_size) 385 addr = memblock_find_in_range(0, 386 min(new_area_start, memblock.current_limit), 387 new_alloc_size, PAGE_SIZE); 388 389 new_array = addr ? __va(addr) : NULL; 390 } 391 if (!addr) { 392 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 393 type->name, type->max, type->max * 2); 394 return -1; 395 } 396 397 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 398 type->name, type->max * 2, (u64)addr, 399 (u64)addr + new_size - 1); 400 401 /* 402 * Found space, we now need to move the array over before we add the 403 * reserved region since it may be our reserved array itself that is 404 * full. 405 */ 406 memcpy(new_array, type->regions, old_size); 407 memset(new_array + type->max, 0, old_size); 408 old_array = type->regions; 409 type->regions = new_array; 410 type->max <<= 1; 411 412 /* Free old array. We needn't free it if the array is the static one */ 413 if (*in_slab) 414 kfree(old_array); 415 else if (old_array != memblock_memory_init_regions && 416 old_array != memblock_reserved_init_regions) 417 memblock_free(__pa(old_array), old_alloc_size); 418 419 /* 420 * Reserve the new array if that comes from the memblock. Otherwise, we 421 * needn't do it 422 */ 423 if (!use_slab) 424 BUG_ON(memblock_reserve(addr, new_alloc_size)); 425 426 /* Update slab flag */ 427 *in_slab = use_slab; 428 429 return 0; 430 } 431 432 /** 433 * memblock_merge_regions - merge neighboring compatible regions 434 * @type: memblock type to scan 435 * 436 * Scan @type and merge neighboring compatible regions. 437 */ 438 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 439 { 440 int i = 0; 441 442 /* cnt never goes below 1 */ 443 while (i < type->cnt - 1) { 444 struct memblock_region *this = &type->regions[i]; 445 struct memblock_region *next = &type->regions[i + 1]; 446 447 if (this->base + this->size != next->base || 448 memblock_get_region_node(this) != 449 memblock_get_region_node(next) || 450 this->flags != next->flags) { 451 BUG_ON(this->base + this->size > next->base); 452 i++; 453 continue; 454 } 455 456 this->size += next->size; 457 /* move forward from next + 1, index of which is i + 2 */ 458 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 459 type->cnt--; 460 } 461 } 462 463 /** 464 * memblock_insert_region - insert new memblock region 465 * @type: memblock type to insert into 466 * @idx: index for the insertion point 467 * @base: base address of the new region 468 * @size: size of the new region 469 * @nid: node id of the new region 470 * @flags: flags of the new region 471 * 472 * Insert new memblock region [@base,@base+@size) into @type at @idx. 473 * @type must already have extra room to accommodate the new region. 474 */ 475 static void __init_memblock memblock_insert_region(struct memblock_type *type, 476 int idx, phys_addr_t base, 477 phys_addr_t size, 478 int nid, unsigned long flags) 479 { 480 struct memblock_region *rgn = &type->regions[idx]; 481 482 BUG_ON(type->cnt >= type->max); 483 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 484 rgn->base = base; 485 rgn->size = size; 486 rgn->flags = flags; 487 memblock_set_region_node(rgn, nid); 488 type->cnt++; 489 type->total_size += size; 490 } 491 492 /** 493 * memblock_add_range - add new memblock region 494 * @type: memblock type to add new region into 495 * @base: base address of the new region 496 * @size: size of the new region 497 * @nid: nid of the new region 498 * @flags: flags of the new region 499 * 500 * Add new memblock region [@base,@base+@size) into @type. The new region 501 * is allowed to overlap with existing ones - overlaps don't affect already 502 * existing regions. @type is guaranteed to be minimal (all neighbouring 503 * compatible regions are merged) after the addition. 504 * 505 * RETURNS: 506 * 0 on success, -errno on failure. 507 */ 508 int __init_memblock memblock_add_range(struct memblock_type *type, 509 phys_addr_t base, phys_addr_t size, 510 int nid, unsigned long flags) 511 { 512 bool insert = false; 513 phys_addr_t obase = base; 514 phys_addr_t end = base + memblock_cap_size(base, &size); 515 int idx, nr_new; 516 struct memblock_region *rgn; 517 518 if (!size) 519 return 0; 520 521 /* special case for empty array */ 522 if (type->regions[0].size == 0) { 523 WARN_ON(type->cnt != 1 || type->total_size); 524 type->regions[0].base = base; 525 type->regions[0].size = size; 526 type->regions[0].flags = flags; 527 memblock_set_region_node(&type->regions[0], nid); 528 type->total_size = size; 529 return 0; 530 } 531 repeat: 532 /* 533 * The following is executed twice. Once with %false @insert and 534 * then with %true. The first counts the number of regions needed 535 * to accommodate the new area. The second actually inserts them. 536 */ 537 base = obase; 538 nr_new = 0; 539 540 for_each_memblock_type(type, rgn) { 541 phys_addr_t rbase = rgn->base; 542 phys_addr_t rend = rbase + rgn->size; 543 544 if (rbase >= end) 545 break; 546 if (rend <= base) 547 continue; 548 /* 549 * @rgn overlaps. If it separates the lower part of new 550 * area, insert that portion. 551 */ 552 if (rbase > base) { 553 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 554 WARN_ON(nid != memblock_get_region_node(rgn)); 555 #endif 556 WARN_ON(flags != rgn->flags); 557 nr_new++; 558 if (insert) 559 memblock_insert_region(type, idx++, base, 560 rbase - base, nid, 561 flags); 562 } 563 /* area below @rend is dealt with, forget about it */ 564 base = min(rend, end); 565 } 566 567 /* insert the remaining portion */ 568 if (base < end) { 569 nr_new++; 570 if (insert) 571 memblock_insert_region(type, idx, base, end - base, 572 nid, flags); 573 } 574 575 if (!nr_new) 576 return 0; 577 578 /* 579 * If this was the first round, resize array and repeat for actual 580 * insertions; otherwise, merge and return. 581 */ 582 if (!insert) { 583 while (type->cnt + nr_new > type->max) 584 if (memblock_double_array(type, obase, size) < 0) 585 return -ENOMEM; 586 insert = true; 587 goto repeat; 588 } else { 589 memblock_merge_regions(type); 590 return 0; 591 } 592 } 593 594 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 595 int nid) 596 { 597 return memblock_add_range(&memblock.memory, base, size, nid, 0); 598 } 599 600 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 601 { 602 phys_addr_t end = base + size - 1; 603 604 memblock_dbg("memblock_add: [%pa-%pa] %pF\n", 605 &base, &end, (void *)_RET_IP_); 606 607 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 608 } 609 610 /** 611 * memblock_isolate_range - isolate given range into disjoint memblocks 612 * @type: memblock type to isolate range for 613 * @base: base of range to isolate 614 * @size: size of range to isolate 615 * @start_rgn: out parameter for the start of isolated region 616 * @end_rgn: out parameter for the end of isolated region 617 * 618 * Walk @type and ensure that regions don't cross the boundaries defined by 619 * [@base,@base+@size). Crossing regions are split at the boundaries, 620 * which may create at most two more regions. The index of the first 621 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 622 * 623 * RETURNS: 624 * 0 on success, -errno on failure. 625 */ 626 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 627 phys_addr_t base, phys_addr_t size, 628 int *start_rgn, int *end_rgn) 629 { 630 phys_addr_t end = base + memblock_cap_size(base, &size); 631 int idx; 632 struct memblock_region *rgn; 633 634 *start_rgn = *end_rgn = 0; 635 636 if (!size) 637 return 0; 638 639 /* we'll create at most two more regions */ 640 while (type->cnt + 2 > type->max) 641 if (memblock_double_array(type, base, size) < 0) 642 return -ENOMEM; 643 644 for_each_memblock_type(type, rgn) { 645 phys_addr_t rbase = rgn->base; 646 phys_addr_t rend = rbase + rgn->size; 647 648 if (rbase >= end) 649 break; 650 if (rend <= base) 651 continue; 652 653 if (rbase < base) { 654 /* 655 * @rgn intersects from below. Split and continue 656 * to process the next region - the new top half. 657 */ 658 rgn->base = base; 659 rgn->size -= base - rbase; 660 type->total_size -= base - rbase; 661 memblock_insert_region(type, idx, rbase, base - rbase, 662 memblock_get_region_node(rgn), 663 rgn->flags); 664 } else if (rend > end) { 665 /* 666 * @rgn intersects from above. Split and redo the 667 * current region - the new bottom half. 668 */ 669 rgn->base = end; 670 rgn->size -= end - rbase; 671 type->total_size -= end - rbase; 672 memblock_insert_region(type, idx--, rbase, end - rbase, 673 memblock_get_region_node(rgn), 674 rgn->flags); 675 } else { 676 /* @rgn is fully contained, record it */ 677 if (!*end_rgn) 678 *start_rgn = idx; 679 *end_rgn = idx + 1; 680 } 681 } 682 683 return 0; 684 } 685 686 static int __init_memblock memblock_remove_range(struct memblock_type *type, 687 phys_addr_t base, phys_addr_t size) 688 { 689 int start_rgn, end_rgn; 690 int i, ret; 691 692 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 693 if (ret) 694 return ret; 695 696 for (i = end_rgn - 1; i >= start_rgn; i--) 697 memblock_remove_region(type, i); 698 return 0; 699 } 700 701 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 702 { 703 return memblock_remove_range(&memblock.memory, base, size); 704 } 705 706 707 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 708 { 709 phys_addr_t end = base + size - 1; 710 711 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n", 712 &base, &end, (void *)_RET_IP_); 713 714 kmemleak_free_part_phys(base, size); 715 return memblock_remove_range(&memblock.reserved, base, size); 716 } 717 718 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 719 { 720 phys_addr_t end = base + size - 1; 721 722 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n", 723 &base, &end, (void *)_RET_IP_); 724 725 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 726 } 727 728 /** 729 * 730 * This function isolates region [@base, @base + @size), and sets/clears flag 731 * 732 * Return 0 on success, -errno on failure. 733 */ 734 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 735 phys_addr_t size, int set, int flag) 736 { 737 struct memblock_type *type = &memblock.memory; 738 int i, ret, start_rgn, end_rgn; 739 740 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 741 if (ret) 742 return ret; 743 744 for (i = start_rgn; i < end_rgn; i++) 745 if (set) 746 memblock_set_region_flags(&type->regions[i], flag); 747 else 748 memblock_clear_region_flags(&type->regions[i], flag); 749 750 memblock_merge_regions(type); 751 return 0; 752 } 753 754 /** 755 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 756 * @base: the base phys addr of the region 757 * @size: the size of the region 758 * 759 * Return 0 on success, -errno on failure. 760 */ 761 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 762 { 763 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 764 } 765 766 /** 767 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 768 * @base: the base phys addr of the region 769 * @size: the size of the region 770 * 771 * Return 0 on success, -errno on failure. 772 */ 773 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 774 { 775 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 776 } 777 778 /** 779 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 780 * @base: the base phys addr of the region 781 * @size: the size of the region 782 * 783 * Return 0 on success, -errno on failure. 784 */ 785 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 786 { 787 system_has_some_mirror = true; 788 789 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 790 } 791 792 /** 793 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 794 * @base: the base phys addr of the region 795 * @size: the size of the region 796 * 797 * Return 0 on success, -errno on failure. 798 */ 799 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 800 { 801 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 802 } 803 804 /** 805 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 806 * @base: the base phys addr of the region 807 * @size: the size of the region 808 * 809 * Return 0 on success, -errno on failure. 810 */ 811 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 812 { 813 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 814 } 815 816 /** 817 * __next_reserved_mem_region - next function for for_each_reserved_region() 818 * @idx: pointer to u64 loop variable 819 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 820 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 821 * 822 * Iterate over all reserved memory regions. 823 */ 824 void __init_memblock __next_reserved_mem_region(u64 *idx, 825 phys_addr_t *out_start, 826 phys_addr_t *out_end) 827 { 828 struct memblock_type *type = &memblock.reserved; 829 830 if (*idx < type->cnt) { 831 struct memblock_region *r = &type->regions[*idx]; 832 phys_addr_t base = r->base; 833 phys_addr_t size = r->size; 834 835 if (out_start) 836 *out_start = base; 837 if (out_end) 838 *out_end = base + size - 1; 839 840 *idx += 1; 841 return; 842 } 843 844 /* signal end of iteration */ 845 *idx = ULLONG_MAX; 846 } 847 848 /** 849 * __next__mem_range - next function for for_each_free_mem_range() etc. 850 * @idx: pointer to u64 loop variable 851 * @nid: node selector, %NUMA_NO_NODE for all nodes 852 * @flags: pick from blocks based on memory attributes 853 * @type_a: pointer to memblock_type from where the range is taken 854 * @type_b: pointer to memblock_type which excludes memory from being taken 855 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 856 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 857 * @out_nid: ptr to int for nid of the range, can be %NULL 858 * 859 * Find the first area from *@idx which matches @nid, fill the out 860 * parameters, and update *@idx for the next iteration. The lower 32bit of 861 * *@idx contains index into type_a and the upper 32bit indexes the 862 * areas before each region in type_b. For example, if type_b regions 863 * look like the following, 864 * 865 * 0:[0-16), 1:[32-48), 2:[128-130) 866 * 867 * The upper 32bit indexes the following regions. 868 * 869 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 870 * 871 * As both region arrays are sorted, the function advances the two indices 872 * in lockstep and returns each intersection. 873 */ 874 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags, 875 struct memblock_type *type_a, 876 struct memblock_type *type_b, 877 phys_addr_t *out_start, 878 phys_addr_t *out_end, int *out_nid) 879 { 880 int idx_a = *idx & 0xffffffff; 881 int idx_b = *idx >> 32; 882 883 if (WARN_ONCE(nid == MAX_NUMNODES, 884 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 885 nid = NUMA_NO_NODE; 886 887 for (; idx_a < type_a->cnt; idx_a++) { 888 struct memblock_region *m = &type_a->regions[idx_a]; 889 890 phys_addr_t m_start = m->base; 891 phys_addr_t m_end = m->base + m->size; 892 int m_nid = memblock_get_region_node(m); 893 894 /* only memory regions are associated with nodes, check it */ 895 if (nid != NUMA_NO_NODE && nid != m_nid) 896 continue; 897 898 /* skip hotpluggable memory regions if needed */ 899 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 900 continue; 901 902 /* if we want mirror memory skip non-mirror memory regions */ 903 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 904 continue; 905 906 /* skip nomap memory unless we were asked for it explicitly */ 907 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 908 continue; 909 910 if (!type_b) { 911 if (out_start) 912 *out_start = m_start; 913 if (out_end) 914 *out_end = m_end; 915 if (out_nid) 916 *out_nid = m_nid; 917 idx_a++; 918 *idx = (u32)idx_a | (u64)idx_b << 32; 919 return; 920 } 921 922 /* scan areas before each reservation */ 923 for (; idx_b < type_b->cnt + 1; idx_b++) { 924 struct memblock_region *r; 925 phys_addr_t r_start; 926 phys_addr_t r_end; 927 928 r = &type_b->regions[idx_b]; 929 r_start = idx_b ? r[-1].base + r[-1].size : 0; 930 r_end = idx_b < type_b->cnt ? 931 r->base : ULLONG_MAX; 932 933 /* 934 * if idx_b advanced past idx_a, 935 * break out to advance idx_a 936 */ 937 if (r_start >= m_end) 938 break; 939 /* if the two regions intersect, we're done */ 940 if (m_start < r_end) { 941 if (out_start) 942 *out_start = 943 max(m_start, r_start); 944 if (out_end) 945 *out_end = min(m_end, r_end); 946 if (out_nid) 947 *out_nid = m_nid; 948 /* 949 * The region which ends first is 950 * advanced for the next iteration. 951 */ 952 if (m_end <= r_end) 953 idx_a++; 954 else 955 idx_b++; 956 *idx = (u32)idx_a | (u64)idx_b << 32; 957 return; 958 } 959 } 960 } 961 962 /* signal end of iteration */ 963 *idx = ULLONG_MAX; 964 } 965 966 /** 967 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 968 * 969 * Finds the next range from type_a which is not marked as unsuitable 970 * in type_b. 971 * 972 * @idx: pointer to u64 loop variable 973 * @nid: node selector, %NUMA_NO_NODE for all nodes 974 * @flags: pick from blocks based on memory attributes 975 * @type_a: pointer to memblock_type from where the range is taken 976 * @type_b: pointer to memblock_type which excludes memory from being taken 977 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 978 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 979 * @out_nid: ptr to int for nid of the range, can be %NULL 980 * 981 * Reverse of __next_mem_range(). 982 */ 983 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags, 984 struct memblock_type *type_a, 985 struct memblock_type *type_b, 986 phys_addr_t *out_start, 987 phys_addr_t *out_end, int *out_nid) 988 { 989 int idx_a = *idx & 0xffffffff; 990 int idx_b = *idx >> 32; 991 992 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 993 nid = NUMA_NO_NODE; 994 995 if (*idx == (u64)ULLONG_MAX) { 996 idx_a = type_a->cnt - 1; 997 if (type_b != NULL) 998 idx_b = type_b->cnt; 999 else 1000 idx_b = 0; 1001 } 1002 1003 for (; idx_a >= 0; idx_a--) { 1004 struct memblock_region *m = &type_a->regions[idx_a]; 1005 1006 phys_addr_t m_start = m->base; 1007 phys_addr_t m_end = m->base + m->size; 1008 int m_nid = memblock_get_region_node(m); 1009 1010 /* only memory regions are associated with nodes, check it */ 1011 if (nid != NUMA_NO_NODE && nid != m_nid) 1012 continue; 1013 1014 /* skip hotpluggable memory regions if needed */ 1015 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 1016 continue; 1017 1018 /* if we want mirror memory skip non-mirror memory regions */ 1019 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1020 continue; 1021 1022 /* skip nomap memory unless we were asked for it explicitly */ 1023 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1024 continue; 1025 1026 if (!type_b) { 1027 if (out_start) 1028 *out_start = m_start; 1029 if (out_end) 1030 *out_end = m_end; 1031 if (out_nid) 1032 *out_nid = m_nid; 1033 idx_a--; 1034 *idx = (u32)idx_a | (u64)idx_b << 32; 1035 return; 1036 } 1037 1038 /* scan areas before each reservation */ 1039 for (; idx_b >= 0; idx_b--) { 1040 struct memblock_region *r; 1041 phys_addr_t r_start; 1042 phys_addr_t r_end; 1043 1044 r = &type_b->regions[idx_b]; 1045 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1046 r_end = idx_b < type_b->cnt ? 1047 r->base : ULLONG_MAX; 1048 /* 1049 * if idx_b advanced past idx_a, 1050 * break out to advance idx_a 1051 */ 1052 1053 if (r_end <= m_start) 1054 break; 1055 /* if the two regions intersect, we're done */ 1056 if (m_end > r_start) { 1057 if (out_start) 1058 *out_start = max(m_start, r_start); 1059 if (out_end) 1060 *out_end = min(m_end, r_end); 1061 if (out_nid) 1062 *out_nid = m_nid; 1063 if (m_start >= r_start) 1064 idx_a--; 1065 else 1066 idx_b--; 1067 *idx = (u32)idx_a | (u64)idx_b << 32; 1068 return; 1069 } 1070 } 1071 } 1072 /* signal end of iteration */ 1073 *idx = ULLONG_MAX; 1074 } 1075 1076 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1077 /* 1078 * Common iterator interface used to define for_each_mem_range(). 1079 */ 1080 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1081 unsigned long *out_start_pfn, 1082 unsigned long *out_end_pfn, int *out_nid) 1083 { 1084 struct memblock_type *type = &memblock.memory; 1085 struct memblock_region *r; 1086 1087 while (++*idx < type->cnt) { 1088 r = &type->regions[*idx]; 1089 1090 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1091 continue; 1092 if (nid == MAX_NUMNODES || nid == r->nid) 1093 break; 1094 } 1095 if (*idx >= type->cnt) { 1096 *idx = -1; 1097 return; 1098 } 1099 1100 if (out_start_pfn) 1101 *out_start_pfn = PFN_UP(r->base); 1102 if (out_end_pfn) 1103 *out_end_pfn = PFN_DOWN(r->base + r->size); 1104 if (out_nid) 1105 *out_nid = r->nid; 1106 } 1107 1108 unsigned long __init_memblock memblock_next_valid_pfn(unsigned long pfn, 1109 unsigned long max_pfn) 1110 { 1111 struct memblock_type *type = &memblock.memory; 1112 unsigned int right = type->cnt; 1113 unsigned int mid, left = 0; 1114 phys_addr_t addr = PFN_PHYS(pfn + 1); 1115 1116 do { 1117 mid = (right + left) / 2; 1118 1119 if (addr < type->regions[mid].base) 1120 right = mid; 1121 else if (addr >= (type->regions[mid].base + 1122 type->regions[mid].size)) 1123 left = mid + 1; 1124 else { 1125 /* addr is within the region, so pfn + 1 is valid */ 1126 return min(pfn + 1, max_pfn); 1127 } 1128 } while (left < right); 1129 1130 if (right == type->cnt) 1131 return max_pfn; 1132 else 1133 return min(PHYS_PFN(type->regions[right].base), max_pfn); 1134 } 1135 1136 /** 1137 * memblock_set_node - set node ID on memblock regions 1138 * @base: base of area to set node ID for 1139 * @size: size of area to set node ID for 1140 * @type: memblock type to set node ID for 1141 * @nid: node ID to set 1142 * 1143 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. 1144 * Regions which cross the area boundaries are split as necessary. 1145 * 1146 * RETURNS: 1147 * 0 on success, -errno on failure. 1148 */ 1149 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1150 struct memblock_type *type, int nid) 1151 { 1152 int start_rgn, end_rgn; 1153 int i, ret; 1154 1155 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1156 if (ret) 1157 return ret; 1158 1159 for (i = start_rgn; i < end_rgn; i++) 1160 memblock_set_region_node(&type->regions[i], nid); 1161 1162 memblock_merge_regions(type); 1163 return 0; 1164 } 1165 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1166 1167 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1168 phys_addr_t align, phys_addr_t start, 1169 phys_addr_t end, int nid, ulong flags) 1170 { 1171 phys_addr_t found; 1172 1173 if (!align) 1174 align = SMP_CACHE_BYTES; 1175 1176 found = memblock_find_in_range_node(size, align, start, end, nid, 1177 flags); 1178 if (found && !memblock_reserve(found, size)) { 1179 /* 1180 * The min_count is set to 0 so that memblock allocations are 1181 * never reported as leaks. 1182 */ 1183 kmemleak_alloc_phys(found, size, 0, 0); 1184 return found; 1185 } 1186 return 0; 1187 } 1188 1189 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1190 phys_addr_t start, phys_addr_t end, 1191 ulong flags) 1192 { 1193 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1194 flags); 1195 } 1196 1197 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1198 phys_addr_t align, phys_addr_t max_addr, 1199 int nid, ulong flags) 1200 { 1201 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags); 1202 } 1203 1204 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1205 { 1206 ulong flags = choose_memblock_flags(); 1207 phys_addr_t ret; 1208 1209 again: 1210 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, 1211 nid, flags); 1212 1213 if (!ret && (flags & MEMBLOCK_MIRROR)) { 1214 flags &= ~MEMBLOCK_MIRROR; 1215 goto again; 1216 } 1217 return ret; 1218 } 1219 1220 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1221 { 1222 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE, 1223 MEMBLOCK_NONE); 1224 } 1225 1226 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1227 { 1228 phys_addr_t alloc; 1229 1230 alloc = __memblock_alloc_base(size, align, max_addr); 1231 1232 if (alloc == 0) 1233 panic("ERROR: Failed to allocate %pa bytes below %pa.\n", 1234 &size, &max_addr); 1235 1236 return alloc; 1237 } 1238 1239 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 1240 { 1241 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1242 } 1243 1244 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1245 { 1246 phys_addr_t res = memblock_alloc_nid(size, align, nid); 1247 1248 if (res) 1249 return res; 1250 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1251 } 1252 1253 /** 1254 * memblock_virt_alloc_internal - allocate boot memory block 1255 * @size: size of memory block to be allocated in bytes 1256 * @align: alignment of the region and block's size 1257 * @min_addr: the lower bound of the memory region to allocate (phys address) 1258 * @max_addr: the upper bound of the memory region to allocate (phys address) 1259 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1260 * 1261 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1262 * will fall back to memory below @min_addr. Also, allocation may fall back 1263 * to any node in the system if the specified node can not 1264 * hold the requested memory. 1265 * 1266 * The allocation is performed from memory region limited by 1267 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. 1268 * 1269 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. 1270 * 1271 * The phys address of allocated boot memory block is converted to virtual and 1272 * allocated memory is reset to 0. 1273 * 1274 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1275 * allocated boot memory block, so that it is never reported as leaks. 1276 * 1277 * RETURNS: 1278 * Virtual address of allocated memory block on success, NULL on failure. 1279 */ 1280 static void * __init memblock_virt_alloc_internal( 1281 phys_addr_t size, phys_addr_t align, 1282 phys_addr_t min_addr, phys_addr_t max_addr, 1283 int nid) 1284 { 1285 phys_addr_t alloc; 1286 void *ptr; 1287 ulong flags = choose_memblock_flags(); 1288 1289 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1290 nid = NUMA_NO_NODE; 1291 1292 /* 1293 * Detect any accidental use of these APIs after slab is ready, as at 1294 * this moment memblock may be deinitialized already and its 1295 * internal data may be destroyed (after execution of free_all_bootmem) 1296 */ 1297 if (WARN_ON_ONCE(slab_is_available())) 1298 return kzalloc_node(size, GFP_NOWAIT, nid); 1299 1300 if (!align) 1301 align = SMP_CACHE_BYTES; 1302 1303 if (max_addr > memblock.current_limit) 1304 max_addr = memblock.current_limit; 1305 again: 1306 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1307 nid, flags); 1308 if (alloc && !memblock_reserve(alloc, size)) 1309 goto done; 1310 1311 if (nid != NUMA_NO_NODE) { 1312 alloc = memblock_find_in_range_node(size, align, min_addr, 1313 max_addr, NUMA_NO_NODE, 1314 flags); 1315 if (alloc && !memblock_reserve(alloc, size)) 1316 goto done; 1317 } 1318 1319 if (min_addr) { 1320 min_addr = 0; 1321 goto again; 1322 } 1323 1324 if (flags & MEMBLOCK_MIRROR) { 1325 flags &= ~MEMBLOCK_MIRROR; 1326 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1327 &size); 1328 goto again; 1329 } 1330 1331 return NULL; 1332 done: 1333 ptr = phys_to_virt(alloc); 1334 memset(ptr, 0, size); 1335 1336 /* 1337 * The min_count is set to 0 so that bootmem allocated blocks 1338 * are never reported as leaks. This is because many of these blocks 1339 * are only referred via the physical address which is not 1340 * looked up by kmemleak. 1341 */ 1342 kmemleak_alloc(ptr, size, 0, 0); 1343 1344 return ptr; 1345 } 1346 1347 /** 1348 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block 1349 * @size: size of memory block to be allocated in bytes 1350 * @align: alignment of the region and block's size 1351 * @min_addr: the lower bound of the memory region from where the allocation 1352 * is preferred (phys address) 1353 * @max_addr: the upper bound of the memory region from where the allocation 1354 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1355 * allocate only from memory limited by memblock.current_limit value 1356 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1357 * 1358 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides 1359 * additional debug information (including caller info), if enabled. 1360 * 1361 * RETURNS: 1362 * Virtual address of allocated memory block on success, NULL on failure. 1363 */ 1364 void * __init memblock_virt_alloc_try_nid_nopanic( 1365 phys_addr_t size, phys_addr_t align, 1366 phys_addr_t min_addr, phys_addr_t max_addr, 1367 int nid) 1368 { 1369 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1370 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1371 (u64)max_addr, (void *)_RET_IP_); 1372 return memblock_virt_alloc_internal(size, align, min_addr, 1373 max_addr, nid); 1374 } 1375 1376 /** 1377 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking 1378 * @size: size of memory block to be allocated in bytes 1379 * @align: alignment of the region and block's size 1380 * @min_addr: the lower bound of the memory region from where the allocation 1381 * is preferred (phys address) 1382 * @max_addr: the upper bound of the memory region from where the allocation 1383 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1384 * allocate only from memory limited by memblock.current_limit value 1385 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1386 * 1387 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic() 1388 * which provides debug information (including caller info), if enabled, 1389 * and panics if the request can not be satisfied. 1390 * 1391 * RETURNS: 1392 * Virtual address of allocated memory block on success, NULL on failure. 1393 */ 1394 void * __init memblock_virt_alloc_try_nid( 1395 phys_addr_t size, phys_addr_t align, 1396 phys_addr_t min_addr, phys_addr_t max_addr, 1397 int nid) 1398 { 1399 void *ptr; 1400 1401 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1402 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1403 (u64)max_addr, (void *)_RET_IP_); 1404 ptr = memblock_virt_alloc_internal(size, align, 1405 min_addr, max_addr, nid); 1406 if (ptr) 1407 return ptr; 1408 1409 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", 1410 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1411 (u64)max_addr); 1412 return NULL; 1413 } 1414 1415 /** 1416 * __memblock_free_early - free boot memory block 1417 * @base: phys starting address of the boot memory block 1418 * @size: size of the boot memory block in bytes 1419 * 1420 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. 1421 * The freeing memory will not be released to the buddy allocator. 1422 */ 1423 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) 1424 { 1425 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1426 __func__, (u64)base, (u64)base + size - 1, 1427 (void *)_RET_IP_); 1428 kmemleak_free_part_phys(base, size); 1429 memblock_remove_range(&memblock.reserved, base, size); 1430 } 1431 1432 /* 1433 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1434 * @addr: phys starting address of the boot memory block 1435 * @size: size of the boot memory block in bytes 1436 * 1437 * This is only useful when the bootmem allocator has already been torn 1438 * down, but we are still initializing the system. Pages are released directly 1439 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1440 */ 1441 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1442 { 1443 u64 cursor, end; 1444 1445 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1446 __func__, (u64)base, (u64)base + size - 1, 1447 (void *)_RET_IP_); 1448 kmemleak_free_part_phys(base, size); 1449 cursor = PFN_UP(base); 1450 end = PFN_DOWN(base + size); 1451 1452 for (; cursor < end; cursor++) { 1453 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0); 1454 totalram_pages++; 1455 } 1456 } 1457 1458 /* 1459 * Remaining API functions 1460 */ 1461 1462 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1463 { 1464 return memblock.memory.total_size; 1465 } 1466 1467 phys_addr_t __init_memblock memblock_reserved_size(void) 1468 { 1469 return memblock.reserved.total_size; 1470 } 1471 1472 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1473 { 1474 unsigned long pages = 0; 1475 struct memblock_region *r; 1476 unsigned long start_pfn, end_pfn; 1477 1478 for_each_memblock(memory, r) { 1479 start_pfn = memblock_region_memory_base_pfn(r); 1480 end_pfn = memblock_region_memory_end_pfn(r); 1481 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1482 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1483 pages += end_pfn - start_pfn; 1484 } 1485 1486 return PFN_PHYS(pages); 1487 } 1488 1489 /* lowest address */ 1490 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1491 { 1492 return memblock.memory.regions[0].base; 1493 } 1494 1495 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1496 { 1497 int idx = memblock.memory.cnt - 1; 1498 1499 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1500 } 1501 1502 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1503 { 1504 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1505 struct memblock_region *r; 1506 1507 /* 1508 * translate the memory @limit size into the max address within one of 1509 * the memory memblock regions, if the @limit exceeds the total size 1510 * of those regions, max_addr will keep original value ULLONG_MAX 1511 */ 1512 for_each_memblock(memory, r) { 1513 if (limit <= r->size) { 1514 max_addr = r->base + limit; 1515 break; 1516 } 1517 limit -= r->size; 1518 } 1519 1520 return max_addr; 1521 } 1522 1523 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1524 { 1525 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1526 1527 if (!limit) 1528 return; 1529 1530 max_addr = __find_max_addr(limit); 1531 1532 /* @limit exceeds the total size of the memory, do nothing */ 1533 if (max_addr == (phys_addr_t)ULLONG_MAX) 1534 return; 1535 1536 /* truncate both memory and reserved regions */ 1537 memblock_remove_range(&memblock.memory, max_addr, 1538 (phys_addr_t)ULLONG_MAX); 1539 memblock_remove_range(&memblock.reserved, max_addr, 1540 (phys_addr_t)ULLONG_MAX); 1541 } 1542 1543 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1544 { 1545 int start_rgn, end_rgn; 1546 int i, ret; 1547 1548 if (!size) 1549 return; 1550 1551 ret = memblock_isolate_range(&memblock.memory, base, size, 1552 &start_rgn, &end_rgn); 1553 if (ret) 1554 return; 1555 1556 /* remove all the MAP regions */ 1557 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1558 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1559 memblock_remove_region(&memblock.memory, i); 1560 1561 for (i = start_rgn - 1; i >= 0; i--) 1562 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1563 memblock_remove_region(&memblock.memory, i); 1564 1565 /* truncate the reserved regions */ 1566 memblock_remove_range(&memblock.reserved, 0, base); 1567 memblock_remove_range(&memblock.reserved, 1568 base + size, (phys_addr_t)ULLONG_MAX); 1569 } 1570 1571 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1572 { 1573 phys_addr_t max_addr; 1574 1575 if (!limit) 1576 return; 1577 1578 max_addr = __find_max_addr(limit); 1579 1580 /* @limit exceeds the total size of the memory, do nothing */ 1581 if (max_addr == (phys_addr_t)ULLONG_MAX) 1582 return; 1583 1584 memblock_cap_memory_range(0, max_addr); 1585 } 1586 1587 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1588 { 1589 unsigned int left = 0, right = type->cnt; 1590 1591 do { 1592 unsigned int mid = (right + left) / 2; 1593 1594 if (addr < type->regions[mid].base) 1595 right = mid; 1596 else if (addr >= (type->regions[mid].base + 1597 type->regions[mid].size)) 1598 left = mid + 1; 1599 else 1600 return mid; 1601 } while (left < right); 1602 return -1; 1603 } 1604 1605 bool __init memblock_is_reserved(phys_addr_t addr) 1606 { 1607 return memblock_search(&memblock.reserved, addr) != -1; 1608 } 1609 1610 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1611 { 1612 return memblock_search(&memblock.memory, addr) != -1; 1613 } 1614 1615 int __init_memblock memblock_is_map_memory(phys_addr_t addr) 1616 { 1617 int i = memblock_search(&memblock.memory, addr); 1618 1619 if (i == -1) 1620 return false; 1621 return !memblock_is_nomap(&memblock.memory.regions[i]); 1622 } 1623 1624 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1625 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1626 unsigned long *start_pfn, unsigned long *end_pfn) 1627 { 1628 struct memblock_type *type = &memblock.memory; 1629 int mid = memblock_search(type, PFN_PHYS(pfn)); 1630 1631 if (mid == -1) 1632 return -1; 1633 1634 *start_pfn = PFN_DOWN(type->regions[mid].base); 1635 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1636 1637 return type->regions[mid].nid; 1638 } 1639 #endif 1640 1641 /** 1642 * memblock_is_region_memory - check if a region is a subset of memory 1643 * @base: base of region to check 1644 * @size: size of region to check 1645 * 1646 * Check if the region [@base, @base+@size) is a subset of a memory block. 1647 * 1648 * RETURNS: 1649 * 0 if false, non-zero if true 1650 */ 1651 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1652 { 1653 int idx = memblock_search(&memblock.memory, base); 1654 phys_addr_t end = base + memblock_cap_size(base, &size); 1655 1656 if (idx == -1) 1657 return 0; 1658 return (memblock.memory.regions[idx].base + 1659 memblock.memory.regions[idx].size) >= end; 1660 } 1661 1662 /** 1663 * memblock_is_region_reserved - check if a region intersects reserved memory 1664 * @base: base of region to check 1665 * @size: size of region to check 1666 * 1667 * Check if the region [@base, @base+@size) intersects a reserved memory block. 1668 * 1669 * RETURNS: 1670 * True if they intersect, false if not. 1671 */ 1672 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1673 { 1674 memblock_cap_size(base, &size); 1675 return memblock_overlaps_region(&memblock.reserved, base, size); 1676 } 1677 1678 void __init_memblock memblock_trim_memory(phys_addr_t align) 1679 { 1680 phys_addr_t start, end, orig_start, orig_end; 1681 struct memblock_region *r; 1682 1683 for_each_memblock(memory, r) { 1684 orig_start = r->base; 1685 orig_end = r->base + r->size; 1686 start = round_up(orig_start, align); 1687 end = round_down(orig_end, align); 1688 1689 if (start == orig_start && end == orig_end) 1690 continue; 1691 1692 if (start < end) { 1693 r->base = start; 1694 r->size = end - start; 1695 } else { 1696 memblock_remove_region(&memblock.memory, 1697 r - memblock.memory.regions); 1698 r--; 1699 } 1700 } 1701 } 1702 1703 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1704 { 1705 memblock.current_limit = limit; 1706 } 1707 1708 phys_addr_t __init_memblock memblock_get_current_limit(void) 1709 { 1710 return memblock.current_limit; 1711 } 1712 1713 static void __init_memblock memblock_dump(struct memblock_type *type) 1714 { 1715 phys_addr_t base, end, size; 1716 unsigned long flags; 1717 int idx; 1718 struct memblock_region *rgn; 1719 1720 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1721 1722 for_each_memblock_type(type, rgn) { 1723 char nid_buf[32] = ""; 1724 1725 base = rgn->base; 1726 size = rgn->size; 1727 end = base + size - 1; 1728 flags = rgn->flags; 1729 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1730 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1731 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1732 memblock_get_region_node(rgn)); 1733 #endif 1734 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n", 1735 type->name, idx, &base, &end, &size, nid_buf, flags); 1736 } 1737 } 1738 1739 extern unsigned long __init_memblock 1740 memblock_reserved_memory_within(phys_addr_t start_addr, phys_addr_t end_addr) 1741 { 1742 struct memblock_region *rgn; 1743 unsigned long size = 0; 1744 int idx; 1745 1746 for_each_memblock_type((&memblock.reserved), rgn) { 1747 phys_addr_t start, end; 1748 1749 if (rgn->base + rgn->size < start_addr) 1750 continue; 1751 if (rgn->base > end_addr) 1752 continue; 1753 1754 start = rgn->base; 1755 end = start + rgn->size; 1756 size += end - start; 1757 } 1758 1759 return size; 1760 } 1761 1762 void __init_memblock __memblock_dump_all(void) 1763 { 1764 pr_info("MEMBLOCK configuration:\n"); 1765 pr_info(" memory size = %pa reserved size = %pa\n", 1766 &memblock.memory.total_size, 1767 &memblock.reserved.total_size); 1768 1769 memblock_dump(&memblock.memory); 1770 memblock_dump(&memblock.reserved); 1771 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1772 memblock_dump(&memblock.physmem); 1773 #endif 1774 } 1775 1776 void __init memblock_allow_resize(void) 1777 { 1778 memblock_can_resize = 1; 1779 } 1780 1781 static int __init early_memblock(char *p) 1782 { 1783 if (p && strstr(p, "debug")) 1784 memblock_debug = 1; 1785 return 0; 1786 } 1787 early_param("memblock", early_memblock); 1788 1789 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1790 1791 static int memblock_debug_show(struct seq_file *m, void *private) 1792 { 1793 struct memblock_type *type = m->private; 1794 struct memblock_region *reg; 1795 int i; 1796 phys_addr_t end; 1797 1798 for (i = 0; i < type->cnt; i++) { 1799 reg = &type->regions[i]; 1800 end = reg->base + reg->size - 1; 1801 1802 seq_printf(m, "%4d: ", i); 1803 seq_printf(m, "%pa..%pa\n", ®->base, &end); 1804 } 1805 return 0; 1806 } 1807 1808 static int memblock_debug_open(struct inode *inode, struct file *file) 1809 { 1810 return single_open(file, memblock_debug_show, inode->i_private); 1811 } 1812 1813 static const struct file_operations memblock_debug_fops = { 1814 .open = memblock_debug_open, 1815 .read = seq_read, 1816 .llseek = seq_lseek, 1817 .release = single_release, 1818 }; 1819 1820 static int __init memblock_init_debugfs(void) 1821 { 1822 struct dentry *root = debugfs_create_dir("memblock", NULL); 1823 if (!root) 1824 return -ENXIO; 1825 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1826 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1827 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1828 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops); 1829 #endif 1830 1831 return 0; 1832 } 1833 __initcall(memblock_init_debugfs); 1834 1835 #endif /* CONFIG_DEBUG_FS */ 1836