1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/kmemleak.h> 21 #include <linux/seq_file.h> 22 #include <linux/memblock.h> 23 24 #include <asm/sections.h> 25 #include <linux/io.h> 26 27 #include "internal.h" 28 29 /** 30 * DOC: memblock overview 31 * 32 * Memblock is a method of managing memory regions during the early 33 * boot period when the usual kernel memory allocators are not up and 34 * running. 35 * 36 * Memblock views the system memory as collections of contiguous 37 * regions. There are several types of these collections: 38 * 39 * * ``memory`` - describes the physical memory available to the 40 * kernel; this may differ from the actual physical memory installed 41 * in the system, for instance when the memory is restricted with 42 * ``mem=`` command line parameter 43 * * ``reserved`` - describes the regions that were allocated 44 * * ``physmap`` - describes the actual physical memory regardless of 45 * the possible restrictions; the ``physmap`` type is only available 46 * on some architectures. 47 * 48 * Each region is represented by :c:type:`struct memblock_region` that 49 * defines the region extents, its attributes and NUMA node id on NUMA 50 * systems. Every memory type is described by the :c:type:`struct 51 * memblock_type` which contains an array of memory regions along with 52 * the allocator metadata. The memory types are nicely wrapped with 53 * :c:type:`struct memblock`. This structure is statically initialzed 54 * at build time. The region arrays for the "memory" and "reserved" 55 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the 56 * "physmap" type to %INIT_PHYSMEM_REGIONS. 57 * The :c:func:`memblock_allow_resize` enables automatic resizing of 58 * the region arrays during addition of new regions. This feature 59 * should be used with care so that memory allocated for the region 60 * array will not overlap with areas that should be reserved, for 61 * example initrd. 62 * 63 * The early architecture setup should tell memblock what the physical 64 * memory layout is by using :c:func:`memblock_add` or 65 * :c:func:`memblock_add_node` functions. The first function does not 66 * assign the region to a NUMA node and it is appropriate for UMA 67 * systems. Yet, it is possible to use it on NUMA systems as well and 68 * assign the region to a NUMA node later in the setup process using 69 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node` 70 * performs such an assignment directly. 71 * 72 * Once memblock is setup the memory can be allocated using either 73 * memblock or bootmem APIs. 74 * 75 * As the system boot progresses, the architecture specific 76 * :c:func:`mem_init` function frees all the memory to the buddy page 77 * allocator. 78 * 79 * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the 80 * memblock data structures will be discarded after the system 81 * initialization compltes. 82 */ 83 84 #ifndef CONFIG_NEED_MULTIPLE_NODES 85 struct pglist_data __refdata contig_page_data; 86 EXPORT_SYMBOL(contig_page_data); 87 #endif 88 89 unsigned long max_low_pfn; 90 unsigned long min_low_pfn; 91 unsigned long max_pfn; 92 unsigned long long max_possible_pfn; 93 94 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 95 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 96 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 97 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 98 #endif 99 100 struct memblock memblock __initdata_memblock = { 101 .memory.regions = memblock_memory_init_regions, 102 .memory.cnt = 1, /* empty dummy entry */ 103 .memory.max = INIT_MEMBLOCK_REGIONS, 104 .memory.name = "memory", 105 106 .reserved.regions = memblock_reserved_init_regions, 107 .reserved.cnt = 1, /* empty dummy entry */ 108 .reserved.max = INIT_MEMBLOCK_REGIONS, 109 .reserved.name = "reserved", 110 111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 112 .physmem.regions = memblock_physmem_init_regions, 113 .physmem.cnt = 1, /* empty dummy entry */ 114 .physmem.max = INIT_PHYSMEM_REGIONS, 115 .physmem.name = "physmem", 116 #endif 117 118 .bottom_up = false, 119 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 120 }; 121 122 int memblock_debug __initdata_memblock; 123 static bool system_has_some_mirror __initdata_memblock = false; 124 static int memblock_can_resize __initdata_memblock; 125 static int memblock_memory_in_slab __initdata_memblock = 0; 126 static int memblock_reserved_in_slab __initdata_memblock = 0; 127 128 enum memblock_flags __init_memblock choose_memblock_flags(void) 129 { 130 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 131 } 132 133 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 134 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 135 { 136 return *size = min(*size, PHYS_ADDR_MAX - base); 137 } 138 139 /* 140 * Address comparison utilities 141 */ 142 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 143 phys_addr_t base2, phys_addr_t size2) 144 { 145 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 146 } 147 148 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 149 phys_addr_t base, phys_addr_t size) 150 { 151 unsigned long i; 152 153 for (i = 0; i < type->cnt; i++) 154 if (memblock_addrs_overlap(base, size, type->regions[i].base, 155 type->regions[i].size)) 156 break; 157 return i < type->cnt; 158 } 159 160 /** 161 * __memblock_find_range_bottom_up - find free area utility in bottom-up 162 * @start: start of candidate range 163 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 164 * %MEMBLOCK_ALLOC_ACCESSIBLE 165 * @size: size of free area to find 166 * @align: alignment of free area to find 167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 168 * @flags: pick from blocks based on memory attributes 169 * 170 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 171 * 172 * Return: 173 * Found address on success, 0 on failure. 174 */ 175 static phys_addr_t __init_memblock 176 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 177 phys_addr_t size, phys_addr_t align, int nid, 178 enum memblock_flags flags) 179 { 180 phys_addr_t this_start, this_end, cand; 181 u64 i; 182 183 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 184 this_start = clamp(this_start, start, end); 185 this_end = clamp(this_end, start, end); 186 187 cand = round_up(this_start, align); 188 if (cand < this_end && this_end - cand >= size) 189 return cand; 190 } 191 192 return 0; 193 } 194 195 /** 196 * __memblock_find_range_top_down - find free area utility, in top-down 197 * @start: start of candidate range 198 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 199 * %MEMBLOCK_ALLOC_ACCESSIBLE 200 * @size: size of free area to find 201 * @align: alignment of free area to find 202 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 203 * @flags: pick from blocks based on memory attributes 204 * 205 * Utility called from memblock_find_in_range_node(), find free area top-down. 206 * 207 * Return: 208 * Found address on success, 0 on failure. 209 */ 210 static phys_addr_t __init_memblock 211 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 212 phys_addr_t size, phys_addr_t align, int nid, 213 enum memblock_flags flags) 214 { 215 phys_addr_t this_start, this_end, cand; 216 u64 i; 217 218 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 219 NULL) { 220 this_start = clamp(this_start, start, end); 221 this_end = clamp(this_end, start, end); 222 223 if (this_end < size) 224 continue; 225 226 cand = round_down(this_end - size, align); 227 if (cand >= this_start) 228 return cand; 229 } 230 231 return 0; 232 } 233 234 /** 235 * memblock_find_in_range_node - find free area in given range and node 236 * @size: size of free area to find 237 * @align: alignment of free area to find 238 * @start: start of candidate range 239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 240 * %MEMBLOCK_ALLOC_ACCESSIBLE 241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 242 * @flags: pick from blocks based on memory attributes 243 * 244 * Find @size free area aligned to @align in the specified range and node. 245 * 246 * When allocation direction is bottom-up, the @start should be greater 247 * than the end of the kernel image. Otherwise, it will be trimmed. The 248 * reason is that we want the bottom-up allocation just near the kernel 249 * image so it is highly likely that the allocated memory and the kernel 250 * will reside in the same node. 251 * 252 * If bottom-up allocation failed, will try to allocate memory top-down. 253 * 254 * Return: 255 * Found address on success, 0 on failure. 256 */ 257 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 258 phys_addr_t align, phys_addr_t start, 259 phys_addr_t end, int nid, 260 enum memblock_flags flags) 261 { 262 phys_addr_t kernel_end, ret; 263 264 /* pump up @end */ 265 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 266 end == MEMBLOCK_ALLOC_KASAN) 267 end = memblock.current_limit; 268 269 /* avoid allocating the first page */ 270 start = max_t(phys_addr_t, start, PAGE_SIZE); 271 end = max(start, end); 272 kernel_end = __pa_symbol(_end); 273 274 /* 275 * try bottom-up allocation only when bottom-up mode 276 * is set and @end is above the kernel image. 277 */ 278 if (memblock_bottom_up() && end > kernel_end) { 279 phys_addr_t bottom_up_start; 280 281 /* make sure we will allocate above the kernel */ 282 bottom_up_start = max(start, kernel_end); 283 284 /* ok, try bottom-up allocation first */ 285 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 286 size, align, nid, flags); 287 if (ret) 288 return ret; 289 290 /* 291 * we always limit bottom-up allocation above the kernel, 292 * but top-down allocation doesn't have the limit, so 293 * retrying top-down allocation may succeed when bottom-up 294 * allocation failed. 295 * 296 * bottom-up allocation is expected to be fail very rarely, 297 * so we use WARN_ONCE() here to see the stack trace if 298 * fail happens. 299 */ 300 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE), 301 "memblock: bottom-up allocation failed, memory hotremove may be affected\n"); 302 } 303 304 return __memblock_find_range_top_down(start, end, size, align, nid, 305 flags); 306 } 307 308 /** 309 * memblock_find_in_range - find free area in given range 310 * @start: start of candidate range 311 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 312 * %MEMBLOCK_ALLOC_ACCESSIBLE 313 * @size: size of free area to find 314 * @align: alignment of free area to find 315 * 316 * Find @size free area aligned to @align in the specified range. 317 * 318 * Return: 319 * Found address on success, 0 on failure. 320 */ 321 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 322 phys_addr_t end, phys_addr_t size, 323 phys_addr_t align) 324 { 325 phys_addr_t ret; 326 enum memblock_flags flags = choose_memblock_flags(); 327 328 again: 329 ret = memblock_find_in_range_node(size, align, start, end, 330 NUMA_NO_NODE, flags); 331 332 if (!ret && (flags & MEMBLOCK_MIRROR)) { 333 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 334 &size); 335 flags &= ~MEMBLOCK_MIRROR; 336 goto again; 337 } 338 339 return ret; 340 } 341 342 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 343 { 344 type->total_size -= type->regions[r].size; 345 memmove(&type->regions[r], &type->regions[r + 1], 346 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 347 type->cnt--; 348 349 /* Special case for empty arrays */ 350 if (type->cnt == 0) { 351 WARN_ON(type->total_size != 0); 352 type->cnt = 1; 353 type->regions[0].base = 0; 354 type->regions[0].size = 0; 355 type->regions[0].flags = 0; 356 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 357 } 358 } 359 360 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 361 /** 362 * memblock_discard - discard memory and reserved arrays if they were allocated 363 */ 364 void __init memblock_discard(void) 365 { 366 phys_addr_t addr, size; 367 368 if (memblock.reserved.regions != memblock_reserved_init_regions) { 369 addr = __pa(memblock.reserved.regions); 370 size = PAGE_ALIGN(sizeof(struct memblock_region) * 371 memblock.reserved.max); 372 __memblock_free_late(addr, size); 373 } 374 375 if (memblock.memory.regions != memblock_memory_init_regions) { 376 addr = __pa(memblock.memory.regions); 377 size = PAGE_ALIGN(sizeof(struct memblock_region) * 378 memblock.memory.max); 379 __memblock_free_late(addr, size); 380 } 381 } 382 #endif 383 384 /** 385 * memblock_double_array - double the size of the memblock regions array 386 * @type: memblock type of the regions array being doubled 387 * @new_area_start: starting address of memory range to avoid overlap with 388 * @new_area_size: size of memory range to avoid overlap with 389 * 390 * Double the size of the @type regions array. If memblock is being used to 391 * allocate memory for a new reserved regions array and there is a previously 392 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 393 * waiting to be reserved, ensure the memory used by the new array does 394 * not overlap. 395 * 396 * Return: 397 * 0 on success, -1 on failure. 398 */ 399 static int __init_memblock memblock_double_array(struct memblock_type *type, 400 phys_addr_t new_area_start, 401 phys_addr_t new_area_size) 402 { 403 struct memblock_region *new_array, *old_array; 404 phys_addr_t old_alloc_size, new_alloc_size; 405 phys_addr_t old_size, new_size, addr, new_end; 406 int use_slab = slab_is_available(); 407 int *in_slab; 408 409 /* We don't allow resizing until we know about the reserved regions 410 * of memory that aren't suitable for allocation 411 */ 412 if (!memblock_can_resize) 413 return -1; 414 415 /* Calculate new doubled size */ 416 old_size = type->max * sizeof(struct memblock_region); 417 new_size = old_size << 1; 418 /* 419 * We need to allocated new one align to PAGE_SIZE, 420 * so we can free them completely later. 421 */ 422 old_alloc_size = PAGE_ALIGN(old_size); 423 new_alloc_size = PAGE_ALIGN(new_size); 424 425 /* Retrieve the slab flag */ 426 if (type == &memblock.memory) 427 in_slab = &memblock_memory_in_slab; 428 else 429 in_slab = &memblock_reserved_in_slab; 430 431 /* Try to find some space for it. 432 * 433 * WARNING: We assume that either slab_is_available() and we use it or 434 * we use MEMBLOCK for allocations. That means that this is unsafe to 435 * use when bootmem is currently active (unless bootmem itself is 436 * implemented on top of MEMBLOCK which isn't the case yet) 437 * 438 * This should however not be an issue for now, as we currently only 439 * call into MEMBLOCK while it's still active, or much later when slab 440 * is active for memory hotplug operations 441 */ 442 if (use_slab) { 443 new_array = kmalloc(new_size, GFP_KERNEL); 444 addr = new_array ? __pa(new_array) : 0; 445 } else { 446 /* only exclude range when trying to double reserved.regions */ 447 if (type != &memblock.reserved) 448 new_area_start = new_area_size = 0; 449 450 addr = memblock_find_in_range(new_area_start + new_area_size, 451 memblock.current_limit, 452 new_alloc_size, PAGE_SIZE); 453 if (!addr && new_area_size) 454 addr = memblock_find_in_range(0, 455 min(new_area_start, memblock.current_limit), 456 new_alloc_size, PAGE_SIZE); 457 458 new_array = addr ? __va(addr) : NULL; 459 } 460 if (!addr) { 461 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 462 type->name, type->max, type->max * 2); 463 return -1; 464 } 465 466 new_end = addr + new_size - 1; 467 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 468 type->name, type->max * 2, &addr, &new_end); 469 470 /* 471 * Found space, we now need to move the array over before we add the 472 * reserved region since it may be our reserved array itself that is 473 * full. 474 */ 475 memcpy(new_array, type->regions, old_size); 476 memset(new_array + type->max, 0, old_size); 477 old_array = type->regions; 478 type->regions = new_array; 479 type->max <<= 1; 480 481 /* Free old array. We needn't free it if the array is the static one */ 482 if (*in_slab) 483 kfree(old_array); 484 else if (old_array != memblock_memory_init_regions && 485 old_array != memblock_reserved_init_regions) 486 memblock_free(__pa(old_array), old_alloc_size); 487 488 /* 489 * Reserve the new array if that comes from the memblock. Otherwise, we 490 * needn't do it 491 */ 492 if (!use_slab) 493 BUG_ON(memblock_reserve(addr, new_alloc_size)); 494 495 /* Update slab flag */ 496 *in_slab = use_slab; 497 498 return 0; 499 } 500 501 /** 502 * memblock_merge_regions - merge neighboring compatible regions 503 * @type: memblock type to scan 504 * 505 * Scan @type and merge neighboring compatible regions. 506 */ 507 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 508 { 509 int i = 0; 510 511 /* cnt never goes below 1 */ 512 while (i < type->cnt - 1) { 513 struct memblock_region *this = &type->regions[i]; 514 struct memblock_region *next = &type->regions[i + 1]; 515 516 if (this->base + this->size != next->base || 517 memblock_get_region_node(this) != 518 memblock_get_region_node(next) || 519 this->flags != next->flags) { 520 BUG_ON(this->base + this->size > next->base); 521 i++; 522 continue; 523 } 524 525 this->size += next->size; 526 /* move forward from next + 1, index of which is i + 2 */ 527 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 528 type->cnt--; 529 } 530 } 531 532 /** 533 * memblock_insert_region - insert new memblock region 534 * @type: memblock type to insert into 535 * @idx: index for the insertion point 536 * @base: base address of the new region 537 * @size: size of the new region 538 * @nid: node id of the new region 539 * @flags: flags of the new region 540 * 541 * Insert new memblock region [@base, @base + @size) into @type at @idx. 542 * @type must already have extra room to accommodate the new region. 543 */ 544 static void __init_memblock memblock_insert_region(struct memblock_type *type, 545 int idx, phys_addr_t base, 546 phys_addr_t size, 547 int nid, 548 enum memblock_flags flags) 549 { 550 struct memblock_region *rgn = &type->regions[idx]; 551 552 BUG_ON(type->cnt >= type->max); 553 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 554 rgn->base = base; 555 rgn->size = size; 556 rgn->flags = flags; 557 memblock_set_region_node(rgn, nid); 558 type->cnt++; 559 type->total_size += size; 560 } 561 562 /** 563 * memblock_add_range - add new memblock region 564 * @type: memblock type to add new region into 565 * @base: base address of the new region 566 * @size: size of the new region 567 * @nid: nid of the new region 568 * @flags: flags of the new region 569 * 570 * Add new memblock region [@base, @base + @size) into @type. The new region 571 * is allowed to overlap with existing ones - overlaps don't affect already 572 * existing regions. @type is guaranteed to be minimal (all neighbouring 573 * compatible regions are merged) after the addition. 574 * 575 * Return: 576 * 0 on success, -errno on failure. 577 */ 578 int __init_memblock memblock_add_range(struct memblock_type *type, 579 phys_addr_t base, phys_addr_t size, 580 int nid, enum memblock_flags flags) 581 { 582 bool insert = false; 583 phys_addr_t obase = base; 584 phys_addr_t end = base + memblock_cap_size(base, &size); 585 int idx, nr_new; 586 struct memblock_region *rgn; 587 588 if (!size) 589 return 0; 590 591 /* special case for empty array */ 592 if (type->regions[0].size == 0) { 593 WARN_ON(type->cnt != 1 || type->total_size); 594 type->regions[0].base = base; 595 type->regions[0].size = size; 596 type->regions[0].flags = flags; 597 memblock_set_region_node(&type->regions[0], nid); 598 type->total_size = size; 599 return 0; 600 } 601 repeat: 602 /* 603 * The following is executed twice. Once with %false @insert and 604 * then with %true. The first counts the number of regions needed 605 * to accommodate the new area. The second actually inserts them. 606 */ 607 base = obase; 608 nr_new = 0; 609 610 for_each_memblock_type(idx, type, rgn) { 611 phys_addr_t rbase = rgn->base; 612 phys_addr_t rend = rbase + rgn->size; 613 614 if (rbase >= end) 615 break; 616 if (rend <= base) 617 continue; 618 /* 619 * @rgn overlaps. If it separates the lower part of new 620 * area, insert that portion. 621 */ 622 if (rbase > base) { 623 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 624 WARN_ON(nid != memblock_get_region_node(rgn)); 625 #endif 626 WARN_ON(flags != rgn->flags); 627 nr_new++; 628 if (insert) 629 memblock_insert_region(type, idx++, base, 630 rbase - base, nid, 631 flags); 632 } 633 /* area below @rend is dealt with, forget about it */ 634 base = min(rend, end); 635 } 636 637 /* insert the remaining portion */ 638 if (base < end) { 639 nr_new++; 640 if (insert) 641 memblock_insert_region(type, idx, base, end - base, 642 nid, flags); 643 } 644 645 if (!nr_new) 646 return 0; 647 648 /* 649 * If this was the first round, resize array and repeat for actual 650 * insertions; otherwise, merge and return. 651 */ 652 if (!insert) { 653 while (type->cnt + nr_new > type->max) 654 if (memblock_double_array(type, obase, size) < 0) 655 return -ENOMEM; 656 insert = true; 657 goto repeat; 658 } else { 659 memblock_merge_regions(type); 660 return 0; 661 } 662 } 663 664 /** 665 * memblock_add_node - add new memblock region within a NUMA node 666 * @base: base address of the new region 667 * @size: size of the new region 668 * @nid: nid of the new region 669 * 670 * Add new memblock region [@base, @base + @size) to the "memory" 671 * type. See memblock_add_range() description for mode details 672 * 673 * Return: 674 * 0 on success, -errno on failure. 675 */ 676 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 677 int nid) 678 { 679 return memblock_add_range(&memblock.memory, base, size, nid, 0); 680 } 681 682 /** 683 * memblock_add - add new memblock region 684 * @base: base address of the new region 685 * @size: size of the new region 686 * 687 * Add new memblock region [@base, @base + @size) to the "memory" 688 * type. See memblock_add_range() description for mode details 689 * 690 * Return: 691 * 0 on success, -errno on failure. 692 */ 693 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 694 { 695 phys_addr_t end = base + size - 1; 696 697 memblock_dbg("memblock_add: [%pa-%pa] %pF\n", 698 &base, &end, (void *)_RET_IP_); 699 700 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 701 } 702 703 /** 704 * memblock_isolate_range - isolate given range into disjoint memblocks 705 * @type: memblock type to isolate range for 706 * @base: base of range to isolate 707 * @size: size of range to isolate 708 * @start_rgn: out parameter for the start of isolated region 709 * @end_rgn: out parameter for the end of isolated region 710 * 711 * Walk @type and ensure that regions don't cross the boundaries defined by 712 * [@base, @base + @size). Crossing regions are split at the boundaries, 713 * which may create at most two more regions. The index of the first 714 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 715 * 716 * Return: 717 * 0 on success, -errno on failure. 718 */ 719 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 720 phys_addr_t base, phys_addr_t size, 721 int *start_rgn, int *end_rgn) 722 { 723 phys_addr_t end = base + memblock_cap_size(base, &size); 724 int idx; 725 struct memblock_region *rgn; 726 727 *start_rgn = *end_rgn = 0; 728 729 if (!size) 730 return 0; 731 732 /* we'll create at most two more regions */ 733 while (type->cnt + 2 > type->max) 734 if (memblock_double_array(type, base, size) < 0) 735 return -ENOMEM; 736 737 for_each_memblock_type(idx, type, rgn) { 738 phys_addr_t rbase = rgn->base; 739 phys_addr_t rend = rbase + rgn->size; 740 741 if (rbase >= end) 742 break; 743 if (rend <= base) 744 continue; 745 746 if (rbase < base) { 747 /* 748 * @rgn intersects from below. Split and continue 749 * to process the next region - the new top half. 750 */ 751 rgn->base = base; 752 rgn->size -= base - rbase; 753 type->total_size -= base - rbase; 754 memblock_insert_region(type, idx, rbase, base - rbase, 755 memblock_get_region_node(rgn), 756 rgn->flags); 757 } else if (rend > end) { 758 /* 759 * @rgn intersects from above. Split and redo the 760 * current region - the new bottom half. 761 */ 762 rgn->base = end; 763 rgn->size -= end - rbase; 764 type->total_size -= end - rbase; 765 memblock_insert_region(type, idx--, rbase, end - rbase, 766 memblock_get_region_node(rgn), 767 rgn->flags); 768 } else { 769 /* @rgn is fully contained, record it */ 770 if (!*end_rgn) 771 *start_rgn = idx; 772 *end_rgn = idx + 1; 773 } 774 } 775 776 return 0; 777 } 778 779 static int __init_memblock memblock_remove_range(struct memblock_type *type, 780 phys_addr_t base, phys_addr_t size) 781 { 782 int start_rgn, end_rgn; 783 int i, ret; 784 785 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 786 if (ret) 787 return ret; 788 789 for (i = end_rgn - 1; i >= start_rgn; i--) 790 memblock_remove_region(type, i); 791 return 0; 792 } 793 794 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 795 { 796 phys_addr_t end = base + size - 1; 797 798 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n", 799 &base, &end, (void *)_RET_IP_); 800 801 return memblock_remove_range(&memblock.memory, base, size); 802 } 803 804 /** 805 * memblock_free - free boot memory block 806 * @base: phys starting address of the boot memory block 807 * @size: size of the boot memory block in bytes 808 * 809 * Free boot memory block previously allocated by memblock_alloc_xx() API. 810 * The freeing memory will not be released to the buddy allocator. 811 */ 812 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 813 { 814 phys_addr_t end = base + size - 1; 815 816 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n", 817 &base, &end, (void *)_RET_IP_); 818 819 kmemleak_free_part_phys(base, size); 820 return memblock_remove_range(&memblock.reserved, base, size); 821 } 822 823 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 824 { 825 phys_addr_t end = base + size - 1; 826 827 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n", 828 &base, &end, (void *)_RET_IP_); 829 830 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 831 } 832 833 /** 834 * memblock_setclr_flag - set or clear flag for a memory region 835 * @base: base address of the region 836 * @size: size of the region 837 * @set: set or clear the flag 838 * @flag: the flag to udpate 839 * 840 * This function isolates region [@base, @base + @size), and sets/clears flag 841 * 842 * Return: 0 on success, -errno on failure. 843 */ 844 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 845 phys_addr_t size, int set, int flag) 846 { 847 struct memblock_type *type = &memblock.memory; 848 int i, ret, start_rgn, end_rgn; 849 850 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 851 if (ret) 852 return ret; 853 854 for (i = start_rgn; i < end_rgn; i++) 855 if (set) 856 memblock_set_region_flags(&type->regions[i], flag); 857 else 858 memblock_clear_region_flags(&type->regions[i], flag); 859 860 memblock_merge_regions(type); 861 return 0; 862 } 863 864 /** 865 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 866 * @base: the base phys addr of the region 867 * @size: the size of the region 868 * 869 * Return: 0 on success, -errno on failure. 870 */ 871 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 872 { 873 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 874 } 875 876 /** 877 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 878 * @base: the base phys addr of the region 879 * @size: the size of the region 880 * 881 * Return: 0 on success, -errno on failure. 882 */ 883 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 884 { 885 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 886 } 887 888 /** 889 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 890 * @base: the base phys addr of the region 891 * @size: the size of the region 892 * 893 * Return: 0 on success, -errno on failure. 894 */ 895 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 896 { 897 system_has_some_mirror = true; 898 899 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 900 } 901 902 /** 903 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 904 * @base: the base phys addr of the region 905 * @size: the size of the region 906 * 907 * Return: 0 on success, -errno on failure. 908 */ 909 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 910 { 911 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 912 } 913 914 /** 915 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 916 * @base: the base phys addr of the region 917 * @size: the size of the region 918 * 919 * Return: 0 on success, -errno on failure. 920 */ 921 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 922 { 923 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 924 } 925 926 /** 927 * __next_reserved_mem_region - next function for for_each_reserved_region() 928 * @idx: pointer to u64 loop variable 929 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 930 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 931 * 932 * Iterate over all reserved memory regions. 933 */ 934 void __init_memblock __next_reserved_mem_region(u64 *idx, 935 phys_addr_t *out_start, 936 phys_addr_t *out_end) 937 { 938 struct memblock_type *type = &memblock.reserved; 939 940 if (*idx < type->cnt) { 941 struct memblock_region *r = &type->regions[*idx]; 942 phys_addr_t base = r->base; 943 phys_addr_t size = r->size; 944 945 if (out_start) 946 *out_start = base; 947 if (out_end) 948 *out_end = base + size - 1; 949 950 *idx += 1; 951 return; 952 } 953 954 /* signal end of iteration */ 955 *idx = ULLONG_MAX; 956 } 957 958 /** 959 * __next__mem_range - next function for for_each_free_mem_range() etc. 960 * @idx: pointer to u64 loop variable 961 * @nid: node selector, %NUMA_NO_NODE for all nodes 962 * @flags: pick from blocks based on memory attributes 963 * @type_a: pointer to memblock_type from where the range is taken 964 * @type_b: pointer to memblock_type which excludes memory from being taken 965 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 966 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 967 * @out_nid: ptr to int for nid of the range, can be %NULL 968 * 969 * Find the first area from *@idx which matches @nid, fill the out 970 * parameters, and update *@idx for the next iteration. The lower 32bit of 971 * *@idx contains index into type_a and the upper 32bit indexes the 972 * areas before each region in type_b. For example, if type_b regions 973 * look like the following, 974 * 975 * 0:[0-16), 1:[32-48), 2:[128-130) 976 * 977 * The upper 32bit indexes the following regions. 978 * 979 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 980 * 981 * As both region arrays are sorted, the function advances the two indices 982 * in lockstep and returns each intersection. 983 */ 984 void __init_memblock __next_mem_range(u64 *idx, int nid, 985 enum memblock_flags flags, 986 struct memblock_type *type_a, 987 struct memblock_type *type_b, 988 phys_addr_t *out_start, 989 phys_addr_t *out_end, int *out_nid) 990 { 991 int idx_a = *idx & 0xffffffff; 992 int idx_b = *idx >> 32; 993 994 if (WARN_ONCE(nid == MAX_NUMNODES, 995 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 996 nid = NUMA_NO_NODE; 997 998 for (; idx_a < type_a->cnt; idx_a++) { 999 struct memblock_region *m = &type_a->regions[idx_a]; 1000 1001 phys_addr_t m_start = m->base; 1002 phys_addr_t m_end = m->base + m->size; 1003 int m_nid = memblock_get_region_node(m); 1004 1005 /* only memory regions are associated with nodes, check it */ 1006 if (nid != NUMA_NO_NODE && nid != m_nid) 1007 continue; 1008 1009 /* skip hotpluggable memory regions if needed */ 1010 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 1011 continue; 1012 1013 /* if we want mirror memory skip non-mirror memory regions */ 1014 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1015 continue; 1016 1017 /* skip nomap memory unless we were asked for it explicitly */ 1018 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1019 continue; 1020 1021 if (!type_b) { 1022 if (out_start) 1023 *out_start = m_start; 1024 if (out_end) 1025 *out_end = m_end; 1026 if (out_nid) 1027 *out_nid = m_nid; 1028 idx_a++; 1029 *idx = (u32)idx_a | (u64)idx_b << 32; 1030 return; 1031 } 1032 1033 /* scan areas before each reservation */ 1034 for (; idx_b < type_b->cnt + 1; idx_b++) { 1035 struct memblock_region *r; 1036 phys_addr_t r_start; 1037 phys_addr_t r_end; 1038 1039 r = &type_b->regions[idx_b]; 1040 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1041 r_end = idx_b < type_b->cnt ? 1042 r->base : PHYS_ADDR_MAX; 1043 1044 /* 1045 * if idx_b advanced past idx_a, 1046 * break out to advance idx_a 1047 */ 1048 if (r_start >= m_end) 1049 break; 1050 /* if the two regions intersect, we're done */ 1051 if (m_start < r_end) { 1052 if (out_start) 1053 *out_start = 1054 max(m_start, r_start); 1055 if (out_end) 1056 *out_end = min(m_end, r_end); 1057 if (out_nid) 1058 *out_nid = m_nid; 1059 /* 1060 * The region which ends first is 1061 * advanced for the next iteration. 1062 */ 1063 if (m_end <= r_end) 1064 idx_a++; 1065 else 1066 idx_b++; 1067 *idx = (u32)idx_a | (u64)idx_b << 32; 1068 return; 1069 } 1070 } 1071 } 1072 1073 /* signal end of iteration */ 1074 *idx = ULLONG_MAX; 1075 } 1076 1077 /** 1078 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1079 * 1080 * @idx: pointer to u64 loop variable 1081 * @nid: node selector, %NUMA_NO_NODE for all nodes 1082 * @flags: pick from blocks based on memory attributes 1083 * @type_a: pointer to memblock_type from where the range is taken 1084 * @type_b: pointer to memblock_type which excludes memory from being taken 1085 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1086 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1087 * @out_nid: ptr to int for nid of the range, can be %NULL 1088 * 1089 * Finds the next range from type_a which is not marked as unsuitable 1090 * in type_b. 1091 * 1092 * Reverse of __next_mem_range(). 1093 */ 1094 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1095 enum memblock_flags flags, 1096 struct memblock_type *type_a, 1097 struct memblock_type *type_b, 1098 phys_addr_t *out_start, 1099 phys_addr_t *out_end, int *out_nid) 1100 { 1101 int idx_a = *idx & 0xffffffff; 1102 int idx_b = *idx >> 32; 1103 1104 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1105 nid = NUMA_NO_NODE; 1106 1107 if (*idx == (u64)ULLONG_MAX) { 1108 idx_a = type_a->cnt - 1; 1109 if (type_b != NULL) 1110 idx_b = type_b->cnt; 1111 else 1112 idx_b = 0; 1113 } 1114 1115 for (; idx_a >= 0; idx_a--) { 1116 struct memblock_region *m = &type_a->regions[idx_a]; 1117 1118 phys_addr_t m_start = m->base; 1119 phys_addr_t m_end = m->base + m->size; 1120 int m_nid = memblock_get_region_node(m); 1121 1122 /* only memory regions are associated with nodes, check it */ 1123 if (nid != NUMA_NO_NODE && nid != m_nid) 1124 continue; 1125 1126 /* skip hotpluggable memory regions if needed */ 1127 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 1128 continue; 1129 1130 /* if we want mirror memory skip non-mirror memory regions */ 1131 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1132 continue; 1133 1134 /* skip nomap memory unless we were asked for it explicitly */ 1135 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1136 continue; 1137 1138 if (!type_b) { 1139 if (out_start) 1140 *out_start = m_start; 1141 if (out_end) 1142 *out_end = m_end; 1143 if (out_nid) 1144 *out_nid = m_nid; 1145 idx_a--; 1146 *idx = (u32)idx_a | (u64)idx_b << 32; 1147 return; 1148 } 1149 1150 /* scan areas before each reservation */ 1151 for (; idx_b >= 0; idx_b--) { 1152 struct memblock_region *r; 1153 phys_addr_t r_start; 1154 phys_addr_t r_end; 1155 1156 r = &type_b->regions[idx_b]; 1157 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1158 r_end = idx_b < type_b->cnt ? 1159 r->base : PHYS_ADDR_MAX; 1160 /* 1161 * if idx_b advanced past idx_a, 1162 * break out to advance idx_a 1163 */ 1164 1165 if (r_end <= m_start) 1166 break; 1167 /* if the two regions intersect, we're done */ 1168 if (m_end > r_start) { 1169 if (out_start) 1170 *out_start = max(m_start, r_start); 1171 if (out_end) 1172 *out_end = min(m_end, r_end); 1173 if (out_nid) 1174 *out_nid = m_nid; 1175 if (m_start >= r_start) 1176 idx_a--; 1177 else 1178 idx_b--; 1179 *idx = (u32)idx_a | (u64)idx_b << 32; 1180 return; 1181 } 1182 } 1183 } 1184 /* signal end of iteration */ 1185 *idx = ULLONG_MAX; 1186 } 1187 1188 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1189 /* 1190 * Common iterator interface used to define for_each_mem_pfn_range(). 1191 */ 1192 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1193 unsigned long *out_start_pfn, 1194 unsigned long *out_end_pfn, int *out_nid) 1195 { 1196 struct memblock_type *type = &memblock.memory; 1197 struct memblock_region *r; 1198 1199 while (++*idx < type->cnt) { 1200 r = &type->regions[*idx]; 1201 1202 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1203 continue; 1204 if (nid == MAX_NUMNODES || nid == r->nid) 1205 break; 1206 } 1207 if (*idx >= type->cnt) { 1208 *idx = -1; 1209 return; 1210 } 1211 1212 if (out_start_pfn) 1213 *out_start_pfn = PFN_UP(r->base); 1214 if (out_end_pfn) 1215 *out_end_pfn = PFN_DOWN(r->base + r->size); 1216 if (out_nid) 1217 *out_nid = r->nid; 1218 } 1219 1220 /** 1221 * memblock_set_node - set node ID on memblock regions 1222 * @base: base of area to set node ID for 1223 * @size: size of area to set node ID for 1224 * @type: memblock type to set node ID for 1225 * @nid: node ID to set 1226 * 1227 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1228 * Regions which cross the area boundaries are split as necessary. 1229 * 1230 * Return: 1231 * 0 on success, -errno on failure. 1232 */ 1233 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1234 struct memblock_type *type, int nid) 1235 { 1236 int start_rgn, end_rgn; 1237 int i, ret; 1238 1239 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1240 if (ret) 1241 return ret; 1242 1243 for (i = start_rgn; i < end_rgn; i++) 1244 memblock_set_region_node(&type->regions[i], nid); 1245 1246 memblock_merge_regions(type); 1247 return 0; 1248 } 1249 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1250 1251 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1252 phys_addr_t align, phys_addr_t start, 1253 phys_addr_t end, int nid, 1254 enum memblock_flags flags) 1255 { 1256 phys_addr_t found; 1257 1258 if (!align) { 1259 /* Can't use WARNs this early in boot on powerpc */ 1260 dump_stack(); 1261 align = SMP_CACHE_BYTES; 1262 } 1263 1264 found = memblock_find_in_range_node(size, align, start, end, nid, 1265 flags); 1266 if (found && !memblock_reserve(found, size)) { 1267 /* 1268 * The min_count is set to 0 so that memblock allocations are 1269 * never reported as leaks. 1270 */ 1271 kmemleak_alloc_phys(found, size, 0, 0); 1272 return found; 1273 } 1274 return 0; 1275 } 1276 1277 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1278 phys_addr_t start, phys_addr_t end, 1279 enum memblock_flags flags) 1280 { 1281 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1282 flags); 1283 } 1284 1285 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1286 phys_addr_t align, phys_addr_t max_addr, 1287 int nid, enum memblock_flags flags) 1288 { 1289 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags); 1290 } 1291 1292 phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1293 { 1294 enum memblock_flags flags = choose_memblock_flags(); 1295 phys_addr_t ret; 1296 1297 again: 1298 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, 1299 nid, flags); 1300 1301 if (!ret && (flags & MEMBLOCK_MIRROR)) { 1302 flags &= ~MEMBLOCK_MIRROR; 1303 goto again; 1304 } 1305 return ret; 1306 } 1307 1308 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1309 { 1310 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE, 1311 MEMBLOCK_NONE); 1312 } 1313 1314 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1315 { 1316 phys_addr_t alloc; 1317 1318 alloc = __memblock_alloc_base(size, align, max_addr); 1319 1320 if (alloc == 0) 1321 panic("ERROR: Failed to allocate %pa bytes below %pa.\n", 1322 &size, &max_addr); 1323 1324 return alloc; 1325 } 1326 1327 phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align) 1328 { 1329 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1330 } 1331 1332 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1333 { 1334 phys_addr_t res = memblock_phys_alloc_nid(size, align, nid); 1335 1336 if (res) 1337 return res; 1338 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1339 } 1340 1341 /** 1342 * memblock_alloc_internal - allocate boot memory block 1343 * @size: size of memory block to be allocated in bytes 1344 * @align: alignment of the region and block's size 1345 * @min_addr: the lower bound of the memory region to allocate (phys address) 1346 * @max_addr: the upper bound of the memory region to allocate (phys address) 1347 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1348 * 1349 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1350 * will fall back to memory below @min_addr. Also, allocation may fall back 1351 * to any node in the system if the specified node can not 1352 * hold the requested memory. 1353 * 1354 * The allocation is performed from memory region limited by 1355 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE. 1356 * 1357 * The phys address of allocated boot memory block is converted to virtual and 1358 * allocated memory is reset to 0. 1359 * 1360 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1361 * allocated boot memory block, so that it is never reported as leaks. 1362 * 1363 * Return: 1364 * Virtual address of allocated memory block on success, NULL on failure. 1365 */ 1366 static void * __init memblock_alloc_internal( 1367 phys_addr_t size, phys_addr_t align, 1368 phys_addr_t min_addr, phys_addr_t max_addr, 1369 int nid) 1370 { 1371 phys_addr_t alloc; 1372 void *ptr; 1373 enum memblock_flags flags = choose_memblock_flags(); 1374 1375 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1376 nid = NUMA_NO_NODE; 1377 1378 /* 1379 * Detect any accidental use of these APIs after slab is ready, as at 1380 * this moment memblock may be deinitialized already and its 1381 * internal data may be destroyed (after execution of memblock_free_all) 1382 */ 1383 if (WARN_ON_ONCE(slab_is_available())) 1384 return kzalloc_node(size, GFP_NOWAIT, nid); 1385 1386 if (!align) { 1387 dump_stack(); 1388 align = SMP_CACHE_BYTES; 1389 } 1390 1391 if (max_addr > memblock.current_limit) 1392 max_addr = memblock.current_limit; 1393 again: 1394 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1395 nid, flags); 1396 if (alloc && !memblock_reserve(alloc, size)) 1397 goto done; 1398 1399 if (nid != NUMA_NO_NODE) { 1400 alloc = memblock_find_in_range_node(size, align, min_addr, 1401 max_addr, NUMA_NO_NODE, 1402 flags); 1403 if (alloc && !memblock_reserve(alloc, size)) 1404 goto done; 1405 } 1406 1407 if (min_addr) { 1408 min_addr = 0; 1409 goto again; 1410 } 1411 1412 if (flags & MEMBLOCK_MIRROR) { 1413 flags &= ~MEMBLOCK_MIRROR; 1414 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1415 &size); 1416 goto again; 1417 } 1418 1419 return NULL; 1420 done: 1421 ptr = phys_to_virt(alloc); 1422 1423 /* Skip kmemleak for kasan_init() due to high volume. */ 1424 if (max_addr != MEMBLOCK_ALLOC_KASAN) 1425 /* 1426 * The min_count is set to 0 so that bootmem allocated 1427 * blocks are never reported as leaks. This is because many 1428 * of these blocks are only referred via the physical 1429 * address which is not looked up by kmemleak. 1430 */ 1431 kmemleak_alloc(ptr, size, 0, 0); 1432 1433 return ptr; 1434 } 1435 1436 /** 1437 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1438 * memory and without panicking 1439 * @size: size of memory block to be allocated in bytes 1440 * @align: alignment of the region and block's size 1441 * @min_addr: the lower bound of the memory region from where the allocation 1442 * is preferred (phys address) 1443 * @max_addr: the upper bound of the memory region from where the allocation 1444 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1445 * allocate only from memory limited by memblock.current_limit value 1446 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1447 * 1448 * Public function, provides additional debug information (including caller 1449 * info), if enabled. Does not zero allocated memory, does not panic if request 1450 * cannot be satisfied. 1451 * 1452 * Return: 1453 * Virtual address of allocated memory block on success, NULL on failure. 1454 */ 1455 void * __init memblock_alloc_try_nid_raw( 1456 phys_addr_t size, phys_addr_t align, 1457 phys_addr_t min_addr, phys_addr_t max_addr, 1458 int nid) 1459 { 1460 void *ptr; 1461 1462 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n", 1463 __func__, (u64)size, (u64)align, nid, &min_addr, 1464 &max_addr, (void *)_RET_IP_); 1465 1466 ptr = memblock_alloc_internal(size, align, 1467 min_addr, max_addr, nid); 1468 if (ptr && size > 0) 1469 page_init_poison(ptr, size); 1470 1471 return ptr; 1472 } 1473 1474 /** 1475 * memblock_alloc_try_nid_nopanic - allocate boot memory block 1476 * @size: size of memory block to be allocated in bytes 1477 * @align: alignment of the region and block's size 1478 * @min_addr: the lower bound of the memory region from where the allocation 1479 * is preferred (phys address) 1480 * @max_addr: the upper bound of the memory region from where the allocation 1481 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1482 * allocate only from memory limited by memblock.current_limit value 1483 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1484 * 1485 * Public function, provides additional debug information (including caller 1486 * info), if enabled. This function zeroes the allocated memory. 1487 * 1488 * Return: 1489 * Virtual address of allocated memory block on success, NULL on failure. 1490 */ 1491 void * __init memblock_alloc_try_nid_nopanic( 1492 phys_addr_t size, phys_addr_t align, 1493 phys_addr_t min_addr, phys_addr_t max_addr, 1494 int nid) 1495 { 1496 void *ptr; 1497 1498 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n", 1499 __func__, (u64)size, (u64)align, nid, &min_addr, 1500 &max_addr, (void *)_RET_IP_); 1501 1502 ptr = memblock_alloc_internal(size, align, 1503 min_addr, max_addr, nid); 1504 if (ptr) 1505 memset(ptr, 0, size); 1506 return ptr; 1507 } 1508 1509 /** 1510 * memblock_alloc_try_nid - allocate boot memory block with panicking 1511 * @size: size of memory block to be allocated in bytes 1512 * @align: alignment of the region and block's size 1513 * @min_addr: the lower bound of the memory region from where the allocation 1514 * is preferred (phys address) 1515 * @max_addr: the upper bound of the memory region from where the allocation 1516 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1517 * allocate only from memory limited by memblock.current_limit value 1518 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1519 * 1520 * Public panicking version of memblock_alloc_try_nid_nopanic() 1521 * which provides debug information (including caller info), if enabled, 1522 * and panics if the request can not be satisfied. 1523 * 1524 * Return: 1525 * Virtual address of allocated memory block on success, NULL on failure. 1526 */ 1527 void * __init memblock_alloc_try_nid( 1528 phys_addr_t size, phys_addr_t align, 1529 phys_addr_t min_addr, phys_addr_t max_addr, 1530 int nid) 1531 { 1532 void *ptr; 1533 1534 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n", 1535 __func__, (u64)size, (u64)align, nid, &min_addr, 1536 &max_addr, (void *)_RET_IP_); 1537 ptr = memblock_alloc_internal(size, align, 1538 min_addr, max_addr, nid); 1539 if (ptr) { 1540 memset(ptr, 0, size); 1541 return ptr; 1542 } 1543 1544 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n", 1545 __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr); 1546 return NULL; 1547 } 1548 1549 /** 1550 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1551 * @base: phys starting address of the boot memory block 1552 * @size: size of the boot memory block in bytes 1553 * 1554 * This is only useful when the bootmem allocator has already been torn 1555 * down, but we are still initializing the system. Pages are released directly 1556 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1557 */ 1558 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1559 { 1560 phys_addr_t cursor, end; 1561 1562 end = base + size - 1; 1563 memblock_dbg("%s: [%pa-%pa] %pF\n", 1564 __func__, &base, &end, (void *)_RET_IP_); 1565 kmemleak_free_part_phys(base, size); 1566 cursor = PFN_UP(base); 1567 end = PFN_DOWN(base + size); 1568 1569 for (; cursor < end; cursor++) { 1570 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1571 totalram_pages_inc(); 1572 } 1573 } 1574 1575 /* 1576 * Remaining API functions 1577 */ 1578 1579 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1580 { 1581 return memblock.memory.total_size; 1582 } 1583 1584 phys_addr_t __init_memblock memblock_reserved_size(void) 1585 { 1586 return memblock.reserved.total_size; 1587 } 1588 1589 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1590 { 1591 unsigned long pages = 0; 1592 struct memblock_region *r; 1593 unsigned long start_pfn, end_pfn; 1594 1595 for_each_memblock(memory, r) { 1596 start_pfn = memblock_region_memory_base_pfn(r); 1597 end_pfn = memblock_region_memory_end_pfn(r); 1598 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1599 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1600 pages += end_pfn - start_pfn; 1601 } 1602 1603 return PFN_PHYS(pages); 1604 } 1605 1606 /* lowest address */ 1607 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1608 { 1609 return memblock.memory.regions[0].base; 1610 } 1611 1612 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1613 { 1614 int idx = memblock.memory.cnt - 1; 1615 1616 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1617 } 1618 1619 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1620 { 1621 phys_addr_t max_addr = PHYS_ADDR_MAX; 1622 struct memblock_region *r; 1623 1624 /* 1625 * translate the memory @limit size into the max address within one of 1626 * the memory memblock regions, if the @limit exceeds the total size 1627 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1628 */ 1629 for_each_memblock(memory, r) { 1630 if (limit <= r->size) { 1631 max_addr = r->base + limit; 1632 break; 1633 } 1634 limit -= r->size; 1635 } 1636 1637 return max_addr; 1638 } 1639 1640 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1641 { 1642 phys_addr_t max_addr = PHYS_ADDR_MAX; 1643 1644 if (!limit) 1645 return; 1646 1647 max_addr = __find_max_addr(limit); 1648 1649 /* @limit exceeds the total size of the memory, do nothing */ 1650 if (max_addr == PHYS_ADDR_MAX) 1651 return; 1652 1653 /* truncate both memory and reserved regions */ 1654 memblock_remove_range(&memblock.memory, max_addr, 1655 PHYS_ADDR_MAX); 1656 memblock_remove_range(&memblock.reserved, max_addr, 1657 PHYS_ADDR_MAX); 1658 } 1659 1660 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1661 { 1662 int start_rgn, end_rgn; 1663 int i, ret; 1664 1665 if (!size) 1666 return; 1667 1668 ret = memblock_isolate_range(&memblock.memory, base, size, 1669 &start_rgn, &end_rgn); 1670 if (ret) 1671 return; 1672 1673 /* remove all the MAP regions */ 1674 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1675 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1676 memblock_remove_region(&memblock.memory, i); 1677 1678 for (i = start_rgn - 1; i >= 0; i--) 1679 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1680 memblock_remove_region(&memblock.memory, i); 1681 1682 /* truncate the reserved regions */ 1683 memblock_remove_range(&memblock.reserved, 0, base); 1684 memblock_remove_range(&memblock.reserved, 1685 base + size, PHYS_ADDR_MAX); 1686 } 1687 1688 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1689 { 1690 phys_addr_t max_addr; 1691 1692 if (!limit) 1693 return; 1694 1695 max_addr = __find_max_addr(limit); 1696 1697 /* @limit exceeds the total size of the memory, do nothing */ 1698 if (max_addr == PHYS_ADDR_MAX) 1699 return; 1700 1701 memblock_cap_memory_range(0, max_addr); 1702 } 1703 1704 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1705 { 1706 unsigned int left = 0, right = type->cnt; 1707 1708 do { 1709 unsigned int mid = (right + left) / 2; 1710 1711 if (addr < type->regions[mid].base) 1712 right = mid; 1713 else if (addr >= (type->regions[mid].base + 1714 type->regions[mid].size)) 1715 left = mid + 1; 1716 else 1717 return mid; 1718 } while (left < right); 1719 return -1; 1720 } 1721 1722 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1723 { 1724 return memblock_search(&memblock.reserved, addr) != -1; 1725 } 1726 1727 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1728 { 1729 return memblock_search(&memblock.memory, addr) != -1; 1730 } 1731 1732 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1733 { 1734 int i = memblock_search(&memblock.memory, addr); 1735 1736 if (i == -1) 1737 return false; 1738 return !memblock_is_nomap(&memblock.memory.regions[i]); 1739 } 1740 1741 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1742 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1743 unsigned long *start_pfn, unsigned long *end_pfn) 1744 { 1745 struct memblock_type *type = &memblock.memory; 1746 int mid = memblock_search(type, PFN_PHYS(pfn)); 1747 1748 if (mid == -1) 1749 return -1; 1750 1751 *start_pfn = PFN_DOWN(type->regions[mid].base); 1752 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1753 1754 return type->regions[mid].nid; 1755 } 1756 #endif 1757 1758 /** 1759 * memblock_is_region_memory - check if a region is a subset of memory 1760 * @base: base of region to check 1761 * @size: size of region to check 1762 * 1763 * Check if the region [@base, @base + @size) is a subset of a memory block. 1764 * 1765 * Return: 1766 * 0 if false, non-zero if true 1767 */ 1768 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1769 { 1770 int idx = memblock_search(&memblock.memory, base); 1771 phys_addr_t end = base + memblock_cap_size(base, &size); 1772 1773 if (idx == -1) 1774 return false; 1775 return (memblock.memory.regions[idx].base + 1776 memblock.memory.regions[idx].size) >= end; 1777 } 1778 1779 /** 1780 * memblock_is_region_reserved - check if a region intersects reserved memory 1781 * @base: base of region to check 1782 * @size: size of region to check 1783 * 1784 * Check if the region [@base, @base + @size) intersects a reserved 1785 * memory block. 1786 * 1787 * Return: 1788 * True if they intersect, false if not. 1789 */ 1790 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1791 { 1792 memblock_cap_size(base, &size); 1793 return memblock_overlaps_region(&memblock.reserved, base, size); 1794 } 1795 1796 void __init_memblock memblock_trim_memory(phys_addr_t align) 1797 { 1798 phys_addr_t start, end, orig_start, orig_end; 1799 struct memblock_region *r; 1800 1801 for_each_memblock(memory, r) { 1802 orig_start = r->base; 1803 orig_end = r->base + r->size; 1804 start = round_up(orig_start, align); 1805 end = round_down(orig_end, align); 1806 1807 if (start == orig_start && end == orig_end) 1808 continue; 1809 1810 if (start < end) { 1811 r->base = start; 1812 r->size = end - start; 1813 } else { 1814 memblock_remove_region(&memblock.memory, 1815 r - memblock.memory.regions); 1816 r--; 1817 } 1818 } 1819 } 1820 1821 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1822 { 1823 memblock.current_limit = limit; 1824 } 1825 1826 phys_addr_t __init_memblock memblock_get_current_limit(void) 1827 { 1828 return memblock.current_limit; 1829 } 1830 1831 static void __init_memblock memblock_dump(struct memblock_type *type) 1832 { 1833 phys_addr_t base, end, size; 1834 enum memblock_flags flags; 1835 int idx; 1836 struct memblock_region *rgn; 1837 1838 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1839 1840 for_each_memblock_type(idx, type, rgn) { 1841 char nid_buf[32] = ""; 1842 1843 base = rgn->base; 1844 size = rgn->size; 1845 end = base + size - 1; 1846 flags = rgn->flags; 1847 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1848 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1849 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1850 memblock_get_region_node(rgn)); 1851 #endif 1852 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1853 type->name, idx, &base, &end, &size, nid_buf, flags); 1854 } 1855 } 1856 1857 void __init_memblock __memblock_dump_all(void) 1858 { 1859 pr_info("MEMBLOCK configuration:\n"); 1860 pr_info(" memory size = %pa reserved size = %pa\n", 1861 &memblock.memory.total_size, 1862 &memblock.reserved.total_size); 1863 1864 memblock_dump(&memblock.memory); 1865 memblock_dump(&memblock.reserved); 1866 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1867 memblock_dump(&memblock.physmem); 1868 #endif 1869 } 1870 1871 void __init memblock_allow_resize(void) 1872 { 1873 memblock_can_resize = 1; 1874 } 1875 1876 static int __init early_memblock(char *p) 1877 { 1878 if (p && strstr(p, "debug")) 1879 memblock_debug = 1; 1880 return 0; 1881 } 1882 early_param("memblock", early_memblock); 1883 1884 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1885 { 1886 int order; 1887 1888 while (start < end) { 1889 order = min(MAX_ORDER - 1UL, __ffs(start)); 1890 1891 while (start + (1UL << order) > end) 1892 order--; 1893 1894 memblock_free_pages(pfn_to_page(start), start, order); 1895 1896 start += (1UL << order); 1897 } 1898 } 1899 1900 static unsigned long __init __free_memory_core(phys_addr_t start, 1901 phys_addr_t end) 1902 { 1903 unsigned long start_pfn = PFN_UP(start); 1904 unsigned long end_pfn = min_t(unsigned long, 1905 PFN_DOWN(end), max_low_pfn); 1906 1907 if (start_pfn >= end_pfn) 1908 return 0; 1909 1910 __free_pages_memory(start_pfn, end_pfn); 1911 1912 return end_pfn - start_pfn; 1913 } 1914 1915 static unsigned long __init free_low_memory_core_early(void) 1916 { 1917 unsigned long count = 0; 1918 phys_addr_t start, end; 1919 u64 i; 1920 1921 memblock_clear_hotplug(0, -1); 1922 1923 for_each_reserved_mem_region(i, &start, &end) 1924 reserve_bootmem_region(start, end); 1925 1926 /* 1927 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 1928 * because in some case like Node0 doesn't have RAM installed 1929 * low ram will be on Node1 1930 */ 1931 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 1932 NULL) 1933 count += __free_memory_core(start, end); 1934 1935 return count; 1936 } 1937 1938 static int reset_managed_pages_done __initdata; 1939 1940 void reset_node_managed_pages(pg_data_t *pgdat) 1941 { 1942 struct zone *z; 1943 1944 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1945 atomic_long_set(&z->managed_pages, 0); 1946 } 1947 1948 void __init reset_all_zones_managed_pages(void) 1949 { 1950 struct pglist_data *pgdat; 1951 1952 if (reset_managed_pages_done) 1953 return; 1954 1955 for_each_online_pgdat(pgdat) 1956 reset_node_managed_pages(pgdat); 1957 1958 reset_managed_pages_done = 1; 1959 } 1960 1961 /** 1962 * memblock_free_all - release free pages to the buddy allocator 1963 * 1964 * Return: the number of pages actually released. 1965 */ 1966 unsigned long __init memblock_free_all(void) 1967 { 1968 unsigned long pages; 1969 1970 reset_all_zones_managed_pages(); 1971 1972 pages = free_low_memory_core_early(); 1973 totalram_pages_add(pages); 1974 1975 return pages; 1976 } 1977 1978 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1979 1980 static int memblock_debug_show(struct seq_file *m, void *private) 1981 { 1982 struct memblock_type *type = m->private; 1983 struct memblock_region *reg; 1984 int i; 1985 phys_addr_t end; 1986 1987 for (i = 0; i < type->cnt; i++) { 1988 reg = &type->regions[i]; 1989 end = reg->base + reg->size - 1; 1990 1991 seq_printf(m, "%4d: ", i); 1992 seq_printf(m, "%pa..%pa\n", ®->base, &end); 1993 } 1994 return 0; 1995 } 1996 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 1997 1998 static int __init memblock_init_debugfs(void) 1999 { 2000 struct dentry *root = debugfs_create_dir("memblock", NULL); 2001 if (!root) 2002 return -ENXIO; 2003 debugfs_create_file("memory", 0444, root, 2004 &memblock.memory, &memblock_debug_fops); 2005 debugfs_create_file("reserved", 0444, root, 2006 &memblock.reserved, &memblock_debug_fops); 2007 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2008 debugfs_create_file("physmem", 0444, root, 2009 &memblock.physmem, &memblock_debug_fops); 2010 #endif 2011 2012 return 0; 2013 } 2014 __initcall(memblock_init_debugfs); 2015 2016 #endif /* CONFIG_DEBUG_FS */ 2017