1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/kmemleak.h> 21 #include <linux/seq_file.h> 22 #include <linux/memblock.h> 23 24 #include <asm/sections.h> 25 #include <linux/io.h> 26 27 #include "internal.h" 28 29 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 30 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 31 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 32 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 33 #endif 34 35 struct memblock memblock __initdata_memblock = { 36 .memory.regions = memblock_memory_init_regions, 37 .memory.cnt = 1, /* empty dummy entry */ 38 .memory.max = INIT_MEMBLOCK_REGIONS, 39 .memory.name = "memory", 40 41 .reserved.regions = memblock_reserved_init_regions, 42 .reserved.cnt = 1, /* empty dummy entry */ 43 .reserved.max = INIT_MEMBLOCK_REGIONS, 44 .reserved.name = "reserved", 45 46 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 47 .physmem.regions = memblock_physmem_init_regions, 48 .physmem.cnt = 1, /* empty dummy entry */ 49 .physmem.max = INIT_PHYSMEM_REGIONS, 50 .physmem.name = "physmem", 51 #endif 52 53 .bottom_up = false, 54 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 55 }; 56 57 int memblock_debug __initdata_memblock; 58 static bool system_has_some_mirror __initdata_memblock = false; 59 static int memblock_can_resize __initdata_memblock; 60 static int memblock_memory_in_slab __initdata_memblock = 0; 61 static int memblock_reserved_in_slab __initdata_memblock = 0; 62 63 ulong __init_memblock choose_memblock_flags(void) 64 { 65 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 66 } 67 68 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 69 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 70 { 71 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 72 } 73 74 /* 75 * Address comparison utilities 76 */ 77 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 78 phys_addr_t base2, phys_addr_t size2) 79 { 80 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 81 } 82 83 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 84 phys_addr_t base, phys_addr_t size) 85 { 86 unsigned long i; 87 88 for (i = 0; i < type->cnt; i++) 89 if (memblock_addrs_overlap(base, size, type->regions[i].base, 90 type->regions[i].size)) 91 break; 92 return i < type->cnt; 93 } 94 95 /* 96 * __memblock_find_range_bottom_up - find free area utility in bottom-up 97 * @start: start of candidate range 98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 99 * @size: size of free area to find 100 * @align: alignment of free area to find 101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 102 * @flags: pick from blocks based on memory attributes 103 * 104 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 105 * 106 * RETURNS: 107 * Found address on success, 0 on failure. 108 */ 109 static phys_addr_t __init_memblock 110 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 111 phys_addr_t size, phys_addr_t align, int nid, 112 ulong flags) 113 { 114 phys_addr_t this_start, this_end, cand; 115 u64 i; 116 117 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 118 this_start = clamp(this_start, start, end); 119 this_end = clamp(this_end, start, end); 120 121 cand = round_up(this_start, align); 122 if (cand < this_end && this_end - cand >= size) 123 return cand; 124 } 125 126 return 0; 127 } 128 129 /** 130 * __memblock_find_range_top_down - find free area utility, in top-down 131 * @start: start of candidate range 132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 133 * @size: size of free area to find 134 * @align: alignment of free area to find 135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 136 * @flags: pick from blocks based on memory attributes 137 * 138 * Utility called from memblock_find_in_range_node(), find free area top-down. 139 * 140 * RETURNS: 141 * Found address on success, 0 on failure. 142 */ 143 static phys_addr_t __init_memblock 144 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 145 phys_addr_t size, phys_addr_t align, int nid, 146 ulong flags) 147 { 148 phys_addr_t this_start, this_end, cand; 149 u64 i; 150 151 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 152 NULL) { 153 this_start = clamp(this_start, start, end); 154 this_end = clamp(this_end, start, end); 155 156 if (this_end < size) 157 continue; 158 159 cand = round_down(this_end - size, align); 160 if (cand >= this_start) 161 return cand; 162 } 163 164 return 0; 165 } 166 167 /** 168 * memblock_find_in_range_node - find free area in given range and node 169 * @size: size of free area to find 170 * @align: alignment of free area to find 171 * @start: start of candidate range 172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 174 * @flags: pick from blocks based on memory attributes 175 * 176 * Find @size free area aligned to @align in the specified range and node. 177 * 178 * When allocation direction is bottom-up, the @start should be greater 179 * than the end of the kernel image. Otherwise, it will be trimmed. The 180 * reason is that we want the bottom-up allocation just near the kernel 181 * image so it is highly likely that the allocated memory and the kernel 182 * will reside in the same node. 183 * 184 * If bottom-up allocation failed, will try to allocate memory top-down. 185 * 186 * RETURNS: 187 * Found address on success, 0 on failure. 188 */ 189 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 190 phys_addr_t align, phys_addr_t start, 191 phys_addr_t end, int nid, ulong flags) 192 { 193 phys_addr_t kernel_end, ret; 194 195 /* pump up @end */ 196 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 197 end = memblock.current_limit; 198 199 /* avoid allocating the first page */ 200 start = max_t(phys_addr_t, start, PAGE_SIZE); 201 end = max(start, end); 202 kernel_end = __pa_symbol(_end); 203 204 /* 205 * try bottom-up allocation only when bottom-up mode 206 * is set and @end is above the kernel image. 207 */ 208 if (memblock_bottom_up() && end > kernel_end) { 209 phys_addr_t bottom_up_start; 210 211 /* make sure we will allocate above the kernel */ 212 bottom_up_start = max(start, kernel_end); 213 214 /* ok, try bottom-up allocation first */ 215 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 216 size, align, nid, flags); 217 if (ret) 218 return ret; 219 220 /* 221 * we always limit bottom-up allocation above the kernel, 222 * but top-down allocation doesn't have the limit, so 223 * retrying top-down allocation may succeed when bottom-up 224 * allocation failed. 225 * 226 * bottom-up allocation is expected to be fail very rarely, 227 * so we use WARN_ONCE() here to see the stack trace if 228 * fail happens. 229 */ 230 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n"); 231 } 232 233 return __memblock_find_range_top_down(start, end, size, align, nid, 234 flags); 235 } 236 237 /** 238 * memblock_find_in_range - find free area in given range 239 * @start: start of candidate range 240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 241 * @size: size of free area to find 242 * @align: alignment of free area to find 243 * 244 * Find @size free area aligned to @align in the specified range. 245 * 246 * RETURNS: 247 * Found address on success, 0 on failure. 248 */ 249 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 250 phys_addr_t end, phys_addr_t size, 251 phys_addr_t align) 252 { 253 phys_addr_t ret; 254 ulong flags = choose_memblock_flags(); 255 256 again: 257 ret = memblock_find_in_range_node(size, align, start, end, 258 NUMA_NO_NODE, flags); 259 260 if (!ret && (flags & MEMBLOCK_MIRROR)) { 261 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 262 &size); 263 flags &= ~MEMBLOCK_MIRROR; 264 goto again; 265 } 266 267 return ret; 268 } 269 270 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 271 { 272 type->total_size -= type->regions[r].size; 273 memmove(&type->regions[r], &type->regions[r + 1], 274 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 275 type->cnt--; 276 277 /* Special case for empty arrays */ 278 if (type->cnt == 0) { 279 WARN_ON(type->total_size != 0); 280 type->cnt = 1; 281 type->regions[0].base = 0; 282 type->regions[0].size = 0; 283 type->regions[0].flags = 0; 284 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 285 } 286 } 287 288 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 289 /** 290 * Discard memory and reserved arrays if they were allocated 291 */ 292 void __init memblock_discard(void) 293 { 294 phys_addr_t addr, size; 295 296 if (memblock.reserved.regions != memblock_reserved_init_regions) { 297 addr = __pa(memblock.reserved.regions); 298 size = PAGE_ALIGN(sizeof(struct memblock_region) * 299 memblock.reserved.max); 300 __memblock_free_late(addr, size); 301 } 302 303 if (memblock.memory.regions != memblock_memory_init_regions) { 304 addr = __pa(memblock.memory.regions); 305 size = PAGE_ALIGN(sizeof(struct memblock_region) * 306 memblock.memory.max); 307 __memblock_free_late(addr, size); 308 } 309 } 310 #endif 311 312 /** 313 * memblock_double_array - double the size of the memblock regions array 314 * @type: memblock type of the regions array being doubled 315 * @new_area_start: starting address of memory range to avoid overlap with 316 * @new_area_size: size of memory range to avoid overlap with 317 * 318 * Double the size of the @type regions array. If memblock is being used to 319 * allocate memory for a new reserved regions array and there is a previously 320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 321 * waiting to be reserved, ensure the memory used by the new array does 322 * not overlap. 323 * 324 * RETURNS: 325 * 0 on success, -1 on failure. 326 */ 327 static int __init_memblock memblock_double_array(struct memblock_type *type, 328 phys_addr_t new_area_start, 329 phys_addr_t new_area_size) 330 { 331 struct memblock_region *new_array, *old_array; 332 phys_addr_t old_alloc_size, new_alloc_size; 333 phys_addr_t old_size, new_size, addr; 334 int use_slab = slab_is_available(); 335 int *in_slab; 336 337 /* We don't allow resizing until we know about the reserved regions 338 * of memory that aren't suitable for allocation 339 */ 340 if (!memblock_can_resize) 341 return -1; 342 343 /* Calculate new doubled size */ 344 old_size = type->max * sizeof(struct memblock_region); 345 new_size = old_size << 1; 346 /* 347 * We need to allocated new one align to PAGE_SIZE, 348 * so we can free them completely later. 349 */ 350 old_alloc_size = PAGE_ALIGN(old_size); 351 new_alloc_size = PAGE_ALIGN(new_size); 352 353 /* Retrieve the slab flag */ 354 if (type == &memblock.memory) 355 in_slab = &memblock_memory_in_slab; 356 else 357 in_slab = &memblock_reserved_in_slab; 358 359 /* Try to find some space for it. 360 * 361 * WARNING: We assume that either slab_is_available() and we use it or 362 * we use MEMBLOCK for allocations. That means that this is unsafe to 363 * use when bootmem is currently active (unless bootmem itself is 364 * implemented on top of MEMBLOCK which isn't the case yet) 365 * 366 * This should however not be an issue for now, as we currently only 367 * call into MEMBLOCK while it's still active, or much later when slab 368 * is active for memory hotplug operations 369 */ 370 if (use_slab) { 371 new_array = kmalloc(new_size, GFP_KERNEL); 372 addr = new_array ? __pa(new_array) : 0; 373 } else { 374 /* only exclude range when trying to double reserved.regions */ 375 if (type != &memblock.reserved) 376 new_area_start = new_area_size = 0; 377 378 addr = memblock_find_in_range(new_area_start + new_area_size, 379 memblock.current_limit, 380 new_alloc_size, PAGE_SIZE); 381 if (!addr && new_area_size) 382 addr = memblock_find_in_range(0, 383 min(new_area_start, memblock.current_limit), 384 new_alloc_size, PAGE_SIZE); 385 386 new_array = addr ? __va(addr) : NULL; 387 } 388 if (!addr) { 389 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 390 type->name, type->max, type->max * 2); 391 return -1; 392 } 393 394 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 395 type->name, type->max * 2, (u64)addr, 396 (u64)addr + new_size - 1); 397 398 /* 399 * Found space, we now need to move the array over before we add the 400 * reserved region since it may be our reserved array itself that is 401 * full. 402 */ 403 memcpy(new_array, type->regions, old_size); 404 memset(new_array + type->max, 0, old_size); 405 old_array = type->regions; 406 type->regions = new_array; 407 type->max <<= 1; 408 409 /* Free old array. We needn't free it if the array is the static one */ 410 if (*in_slab) 411 kfree(old_array); 412 else if (old_array != memblock_memory_init_regions && 413 old_array != memblock_reserved_init_regions) 414 memblock_free(__pa(old_array), old_alloc_size); 415 416 /* 417 * Reserve the new array if that comes from the memblock. Otherwise, we 418 * needn't do it 419 */ 420 if (!use_slab) 421 BUG_ON(memblock_reserve(addr, new_alloc_size)); 422 423 /* Update slab flag */ 424 *in_slab = use_slab; 425 426 return 0; 427 } 428 429 /** 430 * memblock_merge_regions - merge neighboring compatible regions 431 * @type: memblock type to scan 432 * 433 * Scan @type and merge neighboring compatible regions. 434 */ 435 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 436 { 437 int i = 0; 438 439 /* cnt never goes below 1 */ 440 while (i < type->cnt - 1) { 441 struct memblock_region *this = &type->regions[i]; 442 struct memblock_region *next = &type->regions[i + 1]; 443 444 if (this->base + this->size != next->base || 445 memblock_get_region_node(this) != 446 memblock_get_region_node(next) || 447 this->flags != next->flags) { 448 BUG_ON(this->base + this->size > next->base); 449 i++; 450 continue; 451 } 452 453 this->size += next->size; 454 /* move forward from next + 1, index of which is i + 2 */ 455 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 456 type->cnt--; 457 } 458 } 459 460 /** 461 * memblock_insert_region - insert new memblock region 462 * @type: memblock type to insert into 463 * @idx: index for the insertion point 464 * @base: base address of the new region 465 * @size: size of the new region 466 * @nid: node id of the new region 467 * @flags: flags of the new region 468 * 469 * Insert new memblock region [@base,@base+@size) into @type at @idx. 470 * @type must already have extra room to accommodate the new region. 471 */ 472 static void __init_memblock memblock_insert_region(struct memblock_type *type, 473 int idx, phys_addr_t base, 474 phys_addr_t size, 475 int nid, unsigned long flags) 476 { 477 struct memblock_region *rgn = &type->regions[idx]; 478 479 BUG_ON(type->cnt >= type->max); 480 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 481 rgn->base = base; 482 rgn->size = size; 483 rgn->flags = flags; 484 memblock_set_region_node(rgn, nid); 485 type->cnt++; 486 type->total_size += size; 487 } 488 489 /** 490 * memblock_add_range - add new memblock region 491 * @type: memblock type to add new region into 492 * @base: base address of the new region 493 * @size: size of the new region 494 * @nid: nid of the new region 495 * @flags: flags of the new region 496 * 497 * Add new memblock region [@base,@base+@size) into @type. The new region 498 * is allowed to overlap with existing ones - overlaps don't affect already 499 * existing regions. @type is guaranteed to be minimal (all neighbouring 500 * compatible regions are merged) after the addition. 501 * 502 * RETURNS: 503 * 0 on success, -errno on failure. 504 */ 505 int __init_memblock memblock_add_range(struct memblock_type *type, 506 phys_addr_t base, phys_addr_t size, 507 int nid, unsigned long flags) 508 { 509 bool insert = false; 510 phys_addr_t obase = base; 511 phys_addr_t end = base + memblock_cap_size(base, &size); 512 int idx, nr_new; 513 struct memblock_region *rgn; 514 515 if (!size) 516 return 0; 517 518 /* special case for empty array */ 519 if (type->regions[0].size == 0) { 520 WARN_ON(type->cnt != 1 || type->total_size); 521 type->regions[0].base = base; 522 type->regions[0].size = size; 523 type->regions[0].flags = flags; 524 memblock_set_region_node(&type->regions[0], nid); 525 type->total_size = size; 526 return 0; 527 } 528 repeat: 529 /* 530 * The following is executed twice. Once with %false @insert and 531 * then with %true. The first counts the number of regions needed 532 * to accommodate the new area. The second actually inserts them. 533 */ 534 base = obase; 535 nr_new = 0; 536 537 for_each_memblock_type(idx, type, rgn) { 538 phys_addr_t rbase = rgn->base; 539 phys_addr_t rend = rbase + rgn->size; 540 541 if (rbase >= end) 542 break; 543 if (rend <= base) 544 continue; 545 /* 546 * @rgn overlaps. If it separates the lower part of new 547 * area, insert that portion. 548 */ 549 if (rbase > base) { 550 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 551 WARN_ON(nid != memblock_get_region_node(rgn)); 552 #endif 553 WARN_ON(flags != rgn->flags); 554 nr_new++; 555 if (insert) 556 memblock_insert_region(type, idx++, base, 557 rbase - base, nid, 558 flags); 559 } 560 /* area below @rend is dealt with, forget about it */ 561 base = min(rend, end); 562 } 563 564 /* insert the remaining portion */ 565 if (base < end) { 566 nr_new++; 567 if (insert) 568 memblock_insert_region(type, idx, base, end - base, 569 nid, flags); 570 } 571 572 if (!nr_new) 573 return 0; 574 575 /* 576 * If this was the first round, resize array and repeat for actual 577 * insertions; otherwise, merge and return. 578 */ 579 if (!insert) { 580 while (type->cnt + nr_new > type->max) 581 if (memblock_double_array(type, obase, size) < 0) 582 return -ENOMEM; 583 insert = true; 584 goto repeat; 585 } else { 586 memblock_merge_regions(type); 587 return 0; 588 } 589 } 590 591 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 592 int nid) 593 { 594 return memblock_add_range(&memblock.memory, base, size, nid, 0); 595 } 596 597 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 598 { 599 phys_addr_t end = base + size - 1; 600 601 memblock_dbg("memblock_add: [%pa-%pa] %pF\n", 602 &base, &end, (void *)_RET_IP_); 603 604 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 605 } 606 607 /** 608 * memblock_isolate_range - isolate given range into disjoint memblocks 609 * @type: memblock type to isolate range for 610 * @base: base of range to isolate 611 * @size: size of range to isolate 612 * @start_rgn: out parameter for the start of isolated region 613 * @end_rgn: out parameter for the end of isolated region 614 * 615 * Walk @type and ensure that regions don't cross the boundaries defined by 616 * [@base,@base+@size). Crossing regions are split at the boundaries, 617 * which may create at most two more regions. The index of the first 618 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 619 * 620 * RETURNS: 621 * 0 on success, -errno on failure. 622 */ 623 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 624 phys_addr_t base, phys_addr_t size, 625 int *start_rgn, int *end_rgn) 626 { 627 phys_addr_t end = base + memblock_cap_size(base, &size); 628 int idx; 629 struct memblock_region *rgn; 630 631 *start_rgn = *end_rgn = 0; 632 633 if (!size) 634 return 0; 635 636 /* we'll create at most two more regions */ 637 while (type->cnt + 2 > type->max) 638 if (memblock_double_array(type, base, size) < 0) 639 return -ENOMEM; 640 641 for_each_memblock_type(idx, type, rgn) { 642 phys_addr_t rbase = rgn->base; 643 phys_addr_t rend = rbase + rgn->size; 644 645 if (rbase >= end) 646 break; 647 if (rend <= base) 648 continue; 649 650 if (rbase < base) { 651 /* 652 * @rgn intersects from below. Split and continue 653 * to process the next region - the new top half. 654 */ 655 rgn->base = base; 656 rgn->size -= base - rbase; 657 type->total_size -= base - rbase; 658 memblock_insert_region(type, idx, rbase, base - rbase, 659 memblock_get_region_node(rgn), 660 rgn->flags); 661 } else if (rend > end) { 662 /* 663 * @rgn intersects from above. Split and redo the 664 * current region - the new bottom half. 665 */ 666 rgn->base = end; 667 rgn->size -= end - rbase; 668 type->total_size -= end - rbase; 669 memblock_insert_region(type, idx--, rbase, end - rbase, 670 memblock_get_region_node(rgn), 671 rgn->flags); 672 } else { 673 /* @rgn is fully contained, record it */ 674 if (!*end_rgn) 675 *start_rgn = idx; 676 *end_rgn = idx + 1; 677 } 678 } 679 680 return 0; 681 } 682 683 static int __init_memblock memblock_remove_range(struct memblock_type *type, 684 phys_addr_t base, phys_addr_t size) 685 { 686 int start_rgn, end_rgn; 687 int i, ret; 688 689 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 690 if (ret) 691 return ret; 692 693 for (i = end_rgn - 1; i >= start_rgn; i--) 694 memblock_remove_region(type, i); 695 return 0; 696 } 697 698 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 699 { 700 return memblock_remove_range(&memblock.memory, base, size); 701 } 702 703 704 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 705 { 706 phys_addr_t end = base + size - 1; 707 708 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n", 709 &base, &end, (void *)_RET_IP_); 710 711 kmemleak_free_part_phys(base, size); 712 return memblock_remove_range(&memblock.reserved, base, size); 713 } 714 715 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 716 { 717 phys_addr_t end = base + size - 1; 718 719 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n", 720 &base, &end, (void *)_RET_IP_); 721 722 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 723 } 724 725 /** 726 * 727 * This function isolates region [@base, @base + @size), and sets/clears flag 728 * 729 * Return 0 on success, -errno on failure. 730 */ 731 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 732 phys_addr_t size, int set, int flag) 733 { 734 struct memblock_type *type = &memblock.memory; 735 int i, ret, start_rgn, end_rgn; 736 737 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 738 if (ret) 739 return ret; 740 741 for (i = start_rgn; i < end_rgn; i++) 742 if (set) 743 memblock_set_region_flags(&type->regions[i], flag); 744 else 745 memblock_clear_region_flags(&type->regions[i], flag); 746 747 memblock_merge_regions(type); 748 return 0; 749 } 750 751 /** 752 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 753 * @base: the base phys addr of the region 754 * @size: the size of the region 755 * 756 * Return 0 on success, -errno on failure. 757 */ 758 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 759 { 760 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 761 } 762 763 /** 764 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 765 * @base: the base phys addr of the region 766 * @size: the size of the region 767 * 768 * Return 0 on success, -errno on failure. 769 */ 770 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 771 { 772 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 773 } 774 775 /** 776 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 777 * @base: the base phys addr of the region 778 * @size: the size of the region 779 * 780 * Return 0 on success, -errno on failure. 781 */ 782 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 783 { 784 system_has_some_mirror = true; 785 786 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 787 } 788 789 /** 790 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 791 * @base: the base phys addr of the region 792 * @size: the size of the region 793 * 794 * Return 0 on success, -errno on failure. 795 */ 796 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 797 { 798 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 799 } 800 801 /** 802 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 803 * @base: the base phys addr of the region 804 * @size: the size of the region 805 * 806 * Return 0 on success, -errno on failure. 807 */ 808 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 809 { 810 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 811 } 812 813 /** 814 * __next_reserved_mem_region - next function for for_each_reserved_region() 815 * @idx: pointer to u64 loop variable 816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 818 * 819 * Iterate over all reserved memory regions. 820 */ 821 void __init_memblock __next_reserved_mem_region(u64 *idx, 822 phys_addr_t *out_start, 823 phys_addr_t *out_end) 824 { 825 struct memblock_type *type = &memblock.reserved; 826 827 if (*idx < type->cnt) { 828 struct memblock_region *r = &type->regions[*idx]; 829 phys_addr_t base = r->base; 830 phys_addr_t size = r->size; 831 832 if (out_start) 833 *out_start = base; 834 if (out_end) 835 *out_end = base + size - 1; 836 837 *idx += 1; 838 return; 839 } 840 841 /* signal end of iteration */ 842 *idx = ULLONG_MAX; 843 } 844 845 /** 846 * __next__mem_range - next function for for_each_free_mem_range() etc. 847 * @idx: pointer to u64 loop variable 848 * @nid: node selector, %NUMA_NO_NODE for all nodes 849 * @flags: pick from blocks based on memory attributes 850 * @type_a: pointer to memblock_type from where the range is taken 851 * @type_b: pointer to memblock_type which excludes memory from being taken 852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 854 * @out_nid: ptr to int for nid of the range, can be %NULL 855 * 856 * Find the first area from *@idx which matches @nid, fill the out 857 * parameters, and update *@idx for the next iteration. The lower 32bit of 858 * *@idx contains index into type_a and the upper 32bit indexes the 859 * areas before each region in type_b. For example, if type_b regions 860 * look like the following, 861 * 862 * 0:[0-16), 1:[32-48), 2:[128-130) 863 * 864 * The upper 32bit indexes the following regions. 865 * 866 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 867 * 868 * As both region arrays are sorted, the function advances the two indices 869 * in lockstep and returns each intersection. 870 */ 871 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags, 872 struct memblock_type *type_a, 873 struct memblock_type *type_b, 874 phys_addr_t *out_start, 875 phys_addr_t *out_end, int *out_nid) 876 { 877 int idx_a = *idx & 0xffffffff; 878 int idx_b = *idx >> 32; 879 880 if (WARN_ONCE(nid == MAX_NUMNODES, 881 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 882 nid = NUMA_NO_NODE; 883 884 for (; idx_a < type_a->cnt; idx_a++) { 885 struct memblock_region *m = &type_a->regions[idx_a]; 886 887 phys_addr_t m_start = m->base; 888 phys_addr_t m_end = m->base + m->size; 889 int m_nid = memblock_get_region_node(m); 890 891 /* only memory regions are associated with nodes, check it */ 892 if (nid != NUMA_NO_NODE && nid != m_nid) 893 continue; 894 895 /* skip hotpluggable memory regions if needed */ 896 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 897 continue; 898 899 /* if we want mirror memory skip non-mirror memory regions */ 900 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 901 continue; 902 903 /* skip nomap memory unless we were asked for it explicitly */ 904 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 905 continue; 906 907 if (!type_b) { 908 if (out_start) 909 *out_start = m_start; 910 if (out_end) 911 *out_end = m_end; 912 if (out_nid) 913 *out_nid = m_nid; 914 idx_a++; 915 *idx = (u32)idx_a | (u64)idx_b << 32; 916 return; 917 } 918 919 /* scan areas before each reservation */ 920 for (; idx_b < type_b->cnt + 1; idx_b++) { 921 struct memblock_region *r; 922 phys_addr_t r_start; 923 phys_addr_t r_end; 924 925 r = &type_b->regions[idx_b]; 926 r_start = idx_b ? r[-1].base + r[-1].size : 0; 927 r_end = idx_b < type_b->cnt ? 928 r->base : (phys_addr_t)ULLONG_MAX; 929 930 /* 931 * if idx_b advanced past idx_a, 932 * break out to advance idx_a 933 */ 934 if (r_start >= m_end) 935 break; 936 /* if the two regions intersect, we're done */ 937 if (m_start < r_end) { 938 if (out_start) 939 *out_start = 940 max(m_start, r_start); 941 if (out_end) 942 *out_end = min(m_end, r_end); 943 if (out_nid) 944 *out_nid = m_nid; 945 /* 946 * The region which ends first is 947 * advanced for the next iteration. 948 */ 949 if (m_end <= r_end) 950 idx_a++; 951 else 952 idx_b++; 953 *idx = (u32)idx_a | (u64)idx_b << 32; 954 return; 955 } 956 } 957 } 958 959 /* signal end of iteration */ 960 *idx = ULLONG_MAX; 961 } 962 963 /** 964 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 965 * 966 * Finds the next range from type_a which is not marked as unsuitable 967 * in type_b. 968 * 969 * @idx: pointer to u64 loop variable 970 * @nid: node selector, %NUMA_NO_NODE for all nodes 971 * @flags: pick from blocks based on memory attributes 972 * @type_a: pointer to memblock_type from where the range is taken 973 * @type_b: pointer to memblock_type which excludes memory from being taken 974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 976 * @out_nid: ptr to int for nid of the range, can be %NULL 977 * 978 * Reverse of __next_mem_range(). 979 */ 980 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags, 981 struct memblock_type *type_a, 982 struct memblock_type *type_b, 983 phys_addr_t *out_start, 984 phys_addr_t *out_end, int *out_nid) 985 { 986 int idx_a = *idx & 0xffffffff; 987 int idx_b = *idx >> 32; 988 989 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 990 nid = NUMA_NO_NODE; 991 992 if (*idx == (u64)ULLONG_MAX) { 993 idx_a = type_a->cnt - 1; 994 if (type_b != NULL) 995 idx_b = type_b->cnt; 996 else 997 idx_b = 0; 998 } 999 1000 for (; idx_a >= 0; idx_a--) { 1001 struct memblock_region *m = &type_a->regions[idx_a]; 1002 1003 phys_addr_t m_start = m->base; 1004 phys_addr_t m_end = m->base + m->size; 1005 int m_nid = memblock_get_region_node(m); 1006 1007 /* only memory regions are associated with nodes, check it */ 1008 if (nid != NUMA_NO_NODE && nid != m_nid) 1009 continue; 1010 1011 /* skip hotpluggable memory regions if needed */ 1012 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 1013 continue; 1014 1015 /* if we want mirror memory skip non-mirror memory regions */ 1016 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1017 continue; 1018 1019 /* skip nomap memory unless we were asked for it explicitly */ 1020 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1021 continue; 1022 1023 if (!type_b) { 1024 if (out_start) 1025 *out_start = m_start; 1026 if (out_end) 1027 *out_end = m_end; 1028 if (out_nid) 1029 *out_nid = m_nid; 1030 idx_a--; 1031 *idx = (u32)idx_a | (u64)idx_b << 32; 1032 return; 1033 } 1034 1035 /* scan areas before each reservation */ 1036 for (; idx_b >= 0; idx_b--) { 1037 struct memblock_region *r; 1038 phys_addr_t r_start; 1039 phys_addr_t r_end; 1040 1041 r = &type_b->regions[idx_b]; 1042 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1043 r_end = idx_b < type_b->cnt ? 1044 r->base : (phys_addr_t)ULLONG_MAX; 1045 /* 1046 * if idx_b advanced past idx_a, 1047 * break out to advance idx_a 1048 */ 1049 1050 if (r_end <= m_start) 1051 break; 1052 /* if the two regions intersect, we're done */ 1053 if (m_end > r_start) { 1054 if (out_start) 1055 *out_start = max(m_start, r_start); 1056 if (out_end) 1057 *out_end = min(m_end, r_end); 1058 if (out_nid) 1059 *out_nid = m_nid; 1060 if (m_start >= r_start) 1061 idx_a--; 1062 else 1063 idx_b--; 1064 *idx = (u32)idx_a | (u64)idx_b << 32; 1065 return; 1066 } 1067 } 1068 } 1069 /* signal end of iteration */ 1070 *idx = ULLONG_MAX; 1071 } 1072 1073 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1074 /* 1075 * Common iterator interface used to define for_each_mem_range(). 1076 */ 1077 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1078 unsigned long *out_start_pfn, 1079 unsigned long *out_end_pfn, int *out_nid) 1080 { 1081 struct memblock_type *type = &memblock.memory; 1082 struct memblock_region *r; 1083 1084 while (++*idx < type->cnt) { 1085 r = &type->regions[*idx]; 1086 1087 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1088 continue; 1089 if (nid == MAX_NUMNODES || nid == r->nid) 1090 break; 1091 } 1092 if (*idx >= type->cnt) { 1093 *idx = -1; 1094 return; 1095 } 1096 1097 if (out_start_pfn) 1098 *out_start_pfn = PFN_UP(r->base); 1099 if (out_end_pfn) 1100 *out_end_pfn = PFN_DOWN(r->base + r->size); 1101 if (out_nid) 1102 *out_nid = r->nid; 1103 } 1104 1105 /** 1106 * memblock_set_node - set node ID on memblock regions 1107 * @base: base of area to set node ID for 1108 * @size: size of area to set node ID for 1109 * @type: memblock type to set node ID for 1110 * @nid: node ID to set 1111 * 1112 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. 1113 * Regions which cross the area boundaries are split as necessary. 1114 * 1115 * RETURNS: 1116 * 0 on success, -errno on failure. 1117 */ 1118 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1119 struct memblock_type *type, int nid) 1120 { 1121 int start_rgn, end_rgn; 1122 int i, ret; 1123 1124 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1125 if (ret) 1126 return ret; 1127 1128 for (i = start_rgn; i < end_rgn; i++) 1129 memblock_set_region_node(&type->regions[i], nid); 1130 1131 memblock_merge_regions(type); 1132 return 0; 1133 } 1134 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1135 1136 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1137 phys_addr_t align, phys_addr_t start, 1138 phys_addr_t end, int nid, ulong flags) 1139 { 1140 phys_addr_t found; 1141 1142 if (!align) 1143 align = SMP_CACHE_BYTES; 1144 1145 found = memblock_find_in_range_node(size, align, start, end, nid, 1146 flags); 1147 if (found && !memblock_reserve(found, size)) { 1148 /* 1149 * The min_count is set to 0 so that memblock allocations are 1150 * never reported as leaks. 1151 */ 1152 kmemleak_alloc_phys(found, size, 0, 0); 1153 return found; 1154 } 1155 return 0; 1156 } 1157 1158 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1159 phys_addr_t start, phys_addr_t end, 1160 ulong flags) 1161 { 1162 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1163 flags); 1164 } 1165 1166 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1167 phys_addr_t align, phys_addr_t max_addr, 1168 int nid, ulong flags) 1169 { 1170 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags); 1171 } 1172 1173 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1174 { 1175 ulong flags = choose_memblock_flags(); 1176 phys_addr_t ret; 1177 1178 again: 1179 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, 1180 nid, flags); 1181 1182 if (!ret && (flags & MEMBLOCK_MIRROR)) { 1183 flags &= ~MEMBLOCK_MIRROR; 1184 goto again; 1185 } 1186 return ret; 1187 } 1188 1189 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1190 { 1191 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE, 1192 MEMBLOCK_NONE); 1193 } 1194 1195 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1196 { 1197 phys_addr_t alloc; 1198 1199 alloc = __memblock_alloc_base(size, align, max_addr); 1200 1201 if (alloc == 0) 1202 panic("ERROR: Failed to allocate %pa bytes below %pa.\n", 1203 &size, &max_addr); 1204 1205 return alloc; 1206 } 1207 1208 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 1209 { 1210 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1211 } 1212 1213 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1214 { 1215 phys_addr_t res = memblock_alloc_nid(size, align, nid); 1216 1217 if (res) 1218 return res; 1219 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1220 } 1221 1222 /** 1223 * memblock_virt_alloc_internal - allocate boot memory block 1224 * @size: size of memory block to be allocated in bytes 1225 * @align: alignment of the region and block's size 1226 * @min_addr: the lower bound of the memory region to allocate (phys address) 1227 * @max_addr: the upper bound of the memory region to allocate (phys address) 1228 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1229 * 1230 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1231 * will fall back to memory below @min_addr. Also, allocation may fall back 1232 * to any node in the system if the specified node can not 1233 * hold the requested memory. 1234 * 1235 * The allocation is performed from memory region limited by 1236 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. 1237 * 1238 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. 1239 * 1240 * The phys address of allocated boot memory block is converted to virtual and 1241 * allocated memory is reset to 0. 1242 * 1243 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1244 * allocated boot memory block, so that it is never reported as leaks. 1245 * 1246 * RETURNS: 1247 * Virtual address of allocated memory block on success, NULL on failure. 1248 */ 1249 static void * __init memblock_virt_alloc_internal( 1250 phys_addr_t size, phys_addr_t align, 1251 phys_addr_t min_addr, phys_addr_t max_addr, 1252 int nid) 1253 { 1254 phys_addr_t alloc; 1255 void *ptr; 1256 ulong flags = choose_memblock_flags(); 1257 1258 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1259 nid = NUMA_NO_NODE; 1260 1261 /* 1262 * Detect any accidental use of these APIs after slab is ready, as at 1263 * this moment memblock may be deinitialized already and its 1264 * internal data may be destroyed (after execution of free_all_bootmem) 1265 */ 1266 if (WARN_ON_ONCE(slab_is_available())) 1267 return kzalloc_node(size, GFP_NOWAIT, nid); 1268 1269 if (!align) 1270 align = SMP_CACHE_BYTES; 1271 1272 if (max_addr > memblock.current_limit) 1273 max_addr = memblock.current_limit; 1274 again: 1275 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1276 nid, flags); 1277 if (alloc && !memblock_reserve(alloc, size)) 1278 goto done; 1279 1280 if (nid != NUMA_NO_NODE) { 1281 alloc = memblock_find_in_range_node(size, align, min_addr, 1282 max_addr, NUMA_NO_NODE, 1283 flags); 1284 if (alloc && !memblock_reserve(alloc, size)) 1285 goto done; 1286 } 1287 1288 if (min_addr) { 1289 min_addr = 0; 1290 goto again; 1291 } 1292 1293 if (flags & MEMBLOCK_MIRROR) { 1294 flags &= ~MEMBLOCK_MIRROR; 1295 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1296 &size); 1297 goto again; 1298 } 1299 1300 return NULL; 1301 done: 1302 ptr = phys_to_virt(alloc); 1303 1304 /* 1305 * The min_count is set to 0 so that bootmem allocated blocks 1306 * are never reported as leaks. This is because many of these blocks 1307 * are only referred via the physical address which is not 1308 * looked up by kmemleak. 1309 */ 1310 kmemleak_alloc(ptr, size, 0, 0); 1311 1312 return ptr; 1313 } 1314 1315 /** 1316 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing 1317 * memory and without panicking 1318 * @size: size of memory block to be allocated in bytes 1319 * @align: alignment of the region and block's size 1320 * @min_addr: the lower bound of the memory region from where the allocation 1321 * is preferred (phys address) 1322 * @max_addr: the upper bound of the memory region from where the allocation 1323 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1324 * allocate only from memory limited by memblock.current_limit value 1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1326 * 1327 * Public function, provides additional debug information (including caller 1328 * info), if enabled. Does not zero allocated memory, does not panic if request 1329 * cannot be satisfied. 1330 * 1331 * RETURNS: 1332 * Virtual address of allocated memory block on success, NULL on failure. 1333 */ 1334 void * __init memblock_virt_alloc_try_nid_raw( 1335 phys_addr_t size, phys_addr_t align, 1336 phys_addr_t min_addr, phys_addr_t max_addr, 1337 int nid) 1338 { 1339 void *ptr; 1340 1341 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1342 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1343 (u64)max_addr, (void *)_RET_IP_); 1344 1345 ptr = memblock_virt_alloc_internal(size, align, 1346 min_addr, max_addr, nid); 1347 #ifdef CONFIG_DEBUG_VM 1348 if (ptr && size > 0) 1349 memset(ptr, PAGE_POISON_PATTERN, size); 1350 #endif 1351 return ptr; 1352 } 1353 1354 /** 1355 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block 1356 * @size: size of memory block to be allocated in bytes 1357 * @align: alignment of the region and block's size 1358 * @min_addr: the lower bound of the memory region from where the allocation 1359 * is preferred (phys address) 1360 * @max_addr: the upper bound of the memory region from where the allocation 1361 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1362 * allocate only from memory limited by memblock.current_limit value 1363 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1364 * 1365 * Public function, provides additional debug information (including caller 1366 * info), if enabled. This function zeroes the allocated memory. 1367 * 1368 * RETURNS: 1369 * Virtual address of allocated memory block on success, NULL on failure. 1370 */ 1371 void * __init memblock_virt_alloc_try_nid_nopanic( 1372 phys_addr_t size, phys_addr_t align, 1373 phys_addr_t min_addr, phys_addr_t max_addr, 1374 int nid) 1375 { 1376 void *ptr; 1377 1378 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1379 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1380 (u64)max_addr, (void *)_RET_IP_); 1381 1382 ptr = memblock_virt_alloc_internal(size, align, 1383 min_addr, max_addr, nid); 1384 if (ptr) 1385 memset(ptr, 0, size); 1386 return ptr; 1387 } 1388 1389 /** 1390 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking 1391 * @size: size of memory block to be allocated in bytes 1392 * @align: alignment of the region and block's size 1393 * @min_addr: the lower bound of the memory region from where the allocation 1394 * is preferred (phys address) 1395 * @max_addr: the upper bound of the memory region from where the allocation 1396 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1397 * allocate only from memory limited by memblock.current_limit value 1398 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1399 * 1400 * Public panicking version of memblock_virt_alloc_try_nid_nopanic() 1401 * which provides debug information (including caller info), if enabled, 1402 * and panics if the request can not be satisfied. 1403 * 1404 * RETURNS: 1405 * Virtual address of allocated memory block on success, NULL on failure. 1406 */ 1407 void * __init memblock_virt_alloc_try_nid( 1408 phys_addr_t size, phys_addr_t align, 1409 phys_addr_t min_addr, phys_addr_t max_addr, 1410 int nid) 1411 { 1412 void *ptr; 1413 1414 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1415 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1416 (u64)max_addr, (void *)_RET_IP_); 1417 ptr = memblock_virt_alloc_internal(size, align, 1418 min_addr, max_addr, nid); 1419 if (ptr) { 1420 memset(ptr, 0, size); 1421 return ptr; 1422 } 1423 1424 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", 1425 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1426 (u64)max_addr); 1427 return NULL; 1428 } 1429 1430 /** 1431 * __memblock_free_early - free boot memory block 1432 * @base: phys starting address of the boot memory block 1433 * @size: size of the boot memory block in bytes 1434 * 1435 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. 1436 * The freeing memory will not be released to the buddy allocator. 1437 */ 1438 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) 1439 { 1440 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1441 __func__, (u64)base, (u64)base + size - 1, 1442 (void *)_RET_IP_); 1443 kmemleak_free_part_phys(base, size); 1444 memblock_remove_range(&memblock.reserved, base, size); 1445 } 1446 1447 /* 1448 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1449 * @addr: phys starting address of the boot memory block 1450 * @size: size of the boot memory block in bytes 1451 * 1452 * This is only useful when the bootmem allocator has already been torn 1453 * down, but we are still initializing the system. Pages are released directly 1454 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1455 */ 1456 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1457 { 1458 u64 cursor, end; 1459 1460 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1461 __func__, (u64)base, (u64)base + size - 1, 1462 (void *)_RET_IP_); 1463 kmemleak_free_part_phys(base, size); 1464 cursor = PFN_UP(base); 1465 end = PFN_DOWN(base + size); 1466 1467 for (; cursor < end; cursor++) { 1468 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0); 1469 totalram_pages++; 1470 } 1471 } 1472 1473 /* 1474 * Remaining API functions 1475 */ 1476 1477 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1478 { 1479 return memblock.memory.total_size; 1480 } 1481 1482 phys_addr_t __init_memblock memblock_reserved_size(void) 1483 { 1484 return memblock.reserved.total_size; 1485 } 1486 1487 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1488 { 1489 unsigned long pages = 0; 1490 struct memblock_region *r; 1491 unsigned long start_pfn, end_pfn; 1492 1493 for_each_memblock(memory, r) { 1494 start_pfn = memblock_region_memory_base_pfn(r); 1495 end_pfn = memblock_region_memory_end_pfn(r); 1496 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1497 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1498 pages += end_pfn - start_pfn; 1499 } 1500 1501 return PFN_PHYS(pages); 1502 } 1503 1504 /* lowest address */ 1505 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1506 { 1507 return memblock.memory.regions[0].base; 1508 } 1509 1510 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1511 { 1512 int idx = memblock.memory.cnt - 1; 1513 1514 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1515 } 1516 1517 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1518 { 1519 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1520 struct memblock_region *r; 1521 1522 /* 1523 * translate the memory @limit size into the max address within one of 1524 * the memory memblock regions, if the @limit exceeds the total size 1525 * of those regions, max_addr will keep original value ULLONG_MAX 1526 */ 1527 for_each_memblock(memory, r) { 1528 if (limit <= r->size) { 1529 max_addr = r->base + limit; 1530 break; 1531 } 1532 limit -= r->size; 1533 } 1534 1535 return max_addr; 1536 } 1537 1538 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1539 { 1540 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1541 1542 if (!limit) 1543 return; 1544 1545 max_addr = __find_max_addr(limit); 1546 1547 /* @limit exceeds the total size of the memory, do nothing */ 1548 if (max_addr == (phys_addr_t)ULLONG_MAX) 1549 return; 1550 1551 /* truncate both memory and reserved regions */ 1552 memblock_remove_range(&memblock.memory, max_addr, 1553 (phys_addr_t)ULLONG_MAX); 1554 memblock_remove_range(&memblock.reserved, max_addr, 1555 (phys_addr_t)ULLONG_MAX); 1556 } 1557 1558 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1559 { 1560 int start_rgn, end_rgn; 1561 int i, ret; 1562 1563 if (!size) 1564 return; 1565 1566 ret = memblock_isolate_range(&memblock.memory, base, size, 1567 &start_rgn, &end_rgn); 1568 if (ret) 1569 return; 1570 1571 /* remove all the MAP regions */ 1572 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1573 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1574 memblock_remove_region(&memblock.memory, i); 1575 1576 for (i = start_rgn - 1; i >= 0; i--) 1577 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1578 memblock_remove_region(&memblock.memory, i); 1579 1580 /* truncate the reserved regions */ 1581 memblock_remove_range(&memblock.reserved, 0, base); 1582 memblock_remove_range(&memblock.reserved, 1583 base + size, (phys_addr_t)ULLONG_MAX); 1584 } 1585 1586 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1587 { 1588 phys_addr_t max_addr; 1589 1590 if (!limit) 1591 return; 1592 1593 max_addr = __find_max_addr(limit); 1594 1595 /* @limit exceeds the total size of the memory, do nothing */ 1596 if (max_addr == (phys_addr_t)ULLONG_MAX) 1597 return; 1598 1599 memblock_cap_memory_range(0, max_addr); 1600 } 1601 1602 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1603 { 1604 unsigned int left = 0, right = type->cnt; 1605 1606 do { 1607 unsigned int mid = (right + left) / 2; 1608 1609 if (addr < type->regions[mid].base) 1610 right = mid; 1611 else if (addr >= (type->regions[mid].base + 1612 type->regions[mid].size)) 1613 left = mid + 1; 1614 else 1615 return mid; 1616 } while (left < right); 1617 return -1; 1618 } 1619 1620 bool __init memblock_is_reserved(phys_addr_t addr) 1621 { 1622 return memblock_search(&memblock.reserved, addr) != -1; 1623 } 1624 1625 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1626 { 1627 return memblock_search(&memblock.memory, addr) != -1; 1628 } 1629 1630 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1631 { 1632 int i = memblock_search(&memblock.memory, addr); 1633 1634 if (i == -1) 1635 return false; 1636 return !memblock_is_nomap(&memblock.memory.regions[i]); 1637 } 1638 1639 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1640 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1641 unsigned long *start_pfn, unsigned long *end_pfn) 1642 { 1643 struct memblock_type *type = &memblock.memory; 1644 int mid = memblock_search(type, PFN_PHYS(pfn)); 1645 1646 if (mid == -1) 1647 return -1; 1648 1649 *start_pfn = PFN_DOWN(type->regions[mid].base); 1650 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1651 1652 return type->regions[mid].nid; 1653 } 1654 #endif 1655 1656 /** 1657 * memblock_is_region_memory - check if a region is a subset of memory 1658 * @base: base of region to check 1659 * @size: size of region to check 1660 * 1661 * Check if the region [@base, @base+@size) is a subset of a memory block. 1662 * 1663 * RETURNS: 1664 * 0 if false, non-zero if true 1665 */ 1666 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1667 { 1668 int idx = memblock_search(&memblock.memory, base); 1669 phys_addr_t end = base + memblock_cap_size(base, &size); 1670 1671 if (idx == -1) 1672 return false; 1673 return (memblock.memory.regions[idx].base + 1674 memblock.memory.regions[idx].size) >= end; 1675 } 1676 1677 /** 1678 * memblock_is_region_reserved - check if a region intersects reserved memory 1679 * @base: base of region to check 1680 * @size: size of region to check 1681 * 1682 * Check if the region [@base, @base+@size) intersects a reserved memory block. 1683 * 1684 * RETURNS: 1685 * True if they intersect, false if not. 1686 */ 1687 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1688 { 1689 memblock_cap_size(base, &size); 1690 return memblock_overlaps_region(&memblock.reserved, base, size); 1691 } 1692 1693 void __init_memblock memblock_trim_memory(phys_addr_t align) 1694 { 1695 phys_addr_t start, end, orig_start, orig_end; 1696 struct memblock_region *r; 1697 1698 for_each_memblock(memory, r) { 1699 orig_start = r->base; 1700 orig_end = r->base + r->size; 1701 start = round_up(orig_start, align); 1702 end = round_down(orig_end, align); 1703 1704 if (start == orig_start && end == orig_end) 1705 continue; 1706 1707 if (start < end) { 1708 r->base = start; 1709 r->size = end - start; 1710 } else { 1711 memblock_remove_region(&memblock.memory, 1712 r - memblock.memory.regions); 1713 r--; 1714 } 1715 } 1716 } 1717 1718 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1719 { 1720 memblock.current_limit = limit; 1721 } 1722 1723 phys_addr_t __init_memblock memblock_get_current_limit(void) 1724 { 1725 return memblock.current_limit; 1726 } 1727 1728 static void __init_memblock memblock_dump(struct memblock_type *type) 1729 { 1730 phys_addr_t base, end, size; 1731 unsigned long flags; 1732 int idx; 1733 struct memblock_region *rgn; 1734 1735 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1736 1737 for_each_memblock_type(idx, type, rgn) { 1738 char nid_buf[32] = ""; 1739 1740 base = rgn->base; 1741 size = rgn->size; 1742 end = base + size - 1; 1743 flags = rgn->flags; 1744 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1745 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1746 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1747 memblock_get_region_node(rgn)); 1748 #endif 1749 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n", 1750 type->name, idx, &base, &end, &size, nid_buf, flags); 1751 } 1752 } 1753 1754 void __init_memblock __memblock_dump_all(void) 1755 { 1756 pr_info("MEMBLOCK configuration:\n"); 1757 pr_info(" memory size = %pa reserved size = %pa\n", 1758 &memblock.memory.total_size, 1759 &memblock.reserved.total_size); 1760 1761 memblock_dump(&memblock.memory); 1762 memblock_dump(&memblock.reserved); 1763 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1764 memblock_dump(&memblock.physmem); 1765 #endif 1766 } 1767 1768 void __init memblock_allow_resize(void) 1769 { 1770 memblock_can_resize = 1; 1771 } 1772 1773 static int __init early_memblock(char *p) 1774 { 1775 if (p && strstr(p, "debug")) 1776 memblock_debug = 1; 1777 return 0; 1778 } 1779 early_param("memblock", early_memblock); 1780 1781 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1782 1783 static int memblock_debug_show(struct seq_file *m, void *private) 1784 { 1785 struct memblock_type *type = m->private; 1786 struct memblock_region *reg; 1787 int i; 1788 phys_addr_t end; 1789 1790 for (i = 0; i < type->cnt; i++) { 1791 reg = &type->regions[i]; 1792 end = reg->base + reg->size - 1; 1793 1794 seq_printf(m, "%4d: ", i); 1795 seq_printf(m, "%pa..%pa\n", ®->base, &end); 1796 } 1797 return 0; 1798 } 1799 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 1800 1801 static int __init memblock_init_debugfs(void) 1802 { 1803 struct dentry *root = debugfs_create_dir("memblock", NULL); 1804 if (!root) 1805 return -ENXIO; 1806 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1807 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1808 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1809 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops); 1810 #endif 1811 1812 return 0; 1813 } 1814 __initcall(memblock_init_debugfs); 1815 1816 #endif /* CONFIG_DEBUG_FS */ 1817