1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 #include <linux/memblock.h> 22 23 #include <asm-generic/sections.h> 24 #include <linux/io.h> 25 26 #include "internal.h" 27 28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 32 #endif 33 34 struct memblock memblock __initdata_memblock = { 35 .memory.regions = memblock_memory_init_regions, 36 .memory.cnt = 1, /* empty dummy entry */ 37 .memory.max = INIT_MEMBLOCK_REGIONS, 38 39 .reserved.regions = memblock_reserved_init_regions, 40 .reserved.cnt = 1, /* empty dummy entry */ 41 .reserved.max = INIT_MEMBLOCK_REGIONS, 42 43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 44 .physmem.regions = memblock_physmem_init_regions, 45 .physmem.cnt = 1, /* empty dummy entry */ 46 .physmem.max = INIT_PHYSMEM_REGIONS, 47 #endif 48 49 .bottom_up = false, 50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 51 }; 52 53 int memblock_debug __initdata_memblock; 54 #ifdef CONFIG_MOVABLE_NODE 55 bool movable_node_enabled __initdata_memblock = false; 56 #endif 57 static bool system_has_some_mirror __initdata_memblock = false; 58 static int memblock_can_resize __initdata_memblock; 59 static int memblock_memory_in_slab __initdata_memblock = 0; 60 static int memblock_reserved_in_slab __initdata_memblock = 0; 61 62 ulong __init_memblock choose_memblock_flags(void) 63 { 64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 65 } 66 67 /* inline so we don't get a warning when pr_debug is compiled out */ 68 static __init_memblock const char * 69 memblock_type_name(struct memblock_type *type) 70 { 71 if (type == &memblock.memory) 72 return "memory"; 73 else if (type == &memblock.reserved) 74 return "reserved"; 75 else 76 return "unknown"; 77 } 78 79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 81 { 82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); 83 } 84 85 /* 86 * Address comparison utilities 87 */ 88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 89 phys_addr_t base2, phys_addr_t size2) 90 { 91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 92 } 93 94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 95 phys_addr_t base, phys_addr_t size) 96 { 97 unsigned long i; 98 99 for (i = 0; i < type->cnt; i++) 100 if (memblock_addrs_overlap(base, size, type->regions[i].base, 101 type->regions[i].size)) 102 break; 103 return i < type->cnt; 104 } 105 106 /* 107 * __memblock_find_range_bottom_up - find free area utility in bottom-up 108 * @start: start of candidate range 109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 110 * @size: size of free area to find 111 * @align: alignment of free area to find 112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 113 * @flags: pick from blocks based on memory attributes 114 * 115 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 116 * 117 * RETURNS: 118 * Found address on success, 0 on failure. 119 */ 120 static phys_addr_t __init_memblock 121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 122 phys_addr_t size, phys_addr_t align, int nid, 123 ulong flags) 124 { 125 phys_addr_t this_start, this_end, cand; 126 u64 i; 127 128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 129 this_start = clamp(this_start, start, end); 130 this_end = clamp(this_end, start, end); 131 132 cand = round_up(this_start, align); 133 if (cand < this_end && this_end - cand >= size) 134 return cand; 135 } 136 137 return 0; 138 } 139 140 /** 141 * __memblock_find_range_top_down - find free area utility, in top-down 142 * @start: start of candidate range 143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 144 * @size: size of free area to find 145 * @align: alignment of free area to find 146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 147 * @flags: pick from blocks based on memory attributes 148 * 149 * Utility called from memblock_find_in_range_node(), find free area top-down. 150 * 151 * RETURNS: 152 * Found address on success, 0 on failure. 153 */ 154 static phys_addr_t __init_memblock 155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 156 phys_addr_t size, phys_addr_t align, int nid, 157 ulong flags) 158 { 159 phys_addr_t this_start, this_end, cand; 160 u64 i; 161 162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 163 NULL) { 164 this_start = clamp(this_start, start, end); 165 this_end = clamp(this_end, start, end); 166 167 if (this_end < size) 168 continue; 169 170 cand = round_down(this_end - size, align); 171 if (cand >= this_start) 172 return cand; 173 } 174 175 return 0; 176 } 177 178 /** 179 * memblock_find_in_range_node - find free area in given range and node 180 * @size: size of free area to find 181 * @align: alignment of free area to find 182 * @start: start of candidate range 183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 185 * @flags: pick from blocks based on memory attributes 186 * 187 * Find @size free area aligned to @align in the specified range and node. 188 * 189 * When allocation direction is bottom-up, the @start should be greater 190 * than the end of the kernel image. Otherwise, it will be trimmed. The 191 * reason is that we want the bottom-up allocation just near the kernel 192 * image so it is highly likely that the allocated memory and the kernel 193 * will reside in the same node. 194 * 195 * If bottom-up allocation failed, will try to allocate memory top-down. 196 * 197 * RETURNS: 198 * Found address on success, 0 on failure. 199 */ 200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 201 phys_addr_t align, phys_addr_t start, 202 phys_addr_t end, int nid, ulong flags) 203 { 204 phys_addr_t kernel_end, ret; 205 206 /* pump up @end */ 207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE) 208 end = memblock.current_limit; 209 210 /* avoid allocating the first page */ 211 start = max_t(phys_addr_t, start, PAGE_SIZE); 212 end = max(start, end); 213 kernel_end = __pa_symbol(_end); 214 215 /* 216 * try bottom-up allocation only when bottom-up mode 217 * is set and @end is above the kernel image. 218 */ 219 if (memblock_bottom_up() && end > kernel_end) { 220 phys_addr_t bottom_up_start; 221 222 /* make sure we will allocate above the kernel */ 223 bottom_up_start = max(start, kernel_end); 224 225 /* ok, try bottom-up allocation first */ 226 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 227 size, align, nid, flags); 228 if (ret) 229 return ret; 230 231 /* 232 * we always limit bottom-up allocation above the kernel, 233 * but top-down allocation doesn't have the limit, so 234 * retrying top-down allocation may succeed when bottom-up 235 * allocation failed. 236 * 237 * bottom-up allocation is expected to be fail very rarely, 238 * so we use WARN_ONCE() here to see the stack trace if 239 * fail happens. 240 */ 241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n"); 242 } 243 244 return __memblock_find_range_top_down(start, end, size, align, nid, 245 flags); 246 } 247 248 /** 249 * memblock_find_in_range - find free area in given range 250 * @start: start of candidate range 251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} 252 * @size: size of free area to find 253 * @align: alignment of free area to find 254 * 255 * Find @size free area aligned to @align in the specified range. 256 * 257 * RETURNS: 258 * Found address on success, 0 on failure. 259 */ 260 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 261 phys_addr_t end, phys_addr_t size, 262 phys_addr_t align) 263 { 264 phys_addr_t ret; 265 ulong flags = choose_memblock_flags(); 266 267 again: 268 ret = memblock_find_in_range_node(size, align, start, end, 269 NUMA_NO_NODE, flags); 270 271 if (!ret && (flags & MEMBLOCK_MIRROR)) { 272 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 273 &size); 274 flags &= ~MEMBLOCK_MIRROR; 275 goto again; 276 } 277 278 return ret; 279 } 280 281 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 282 { 283 type->total_size -= type->regions[r].size; 284 memmove(&type->regions[r], &type->regions[r + 1], 285 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 286 type->cnt--; 287 288 /* Special case for empty arrays */ 289 if (type->cnt == 0) { 290 WARN_ON(type->total_size != 0); 291 type->cnt = 1; 292 type->regions[0].base = 0; 293 type->regions[0].size = 0; 294 type->regions[0].flags = 0; 295 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 296 } 297 } 298 299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 300 301 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( 302 phys_addr_t *addr) 303 { 304 if (memblock.reserved.regions == memblock_reserved_init_regions) 305 return 0; 306 307 *addr = __pa(memblock.reserved.regions); 308 309 return PAGE_ALIGN(sizeof(struct memblock_region) * 310 memblock.reserved.max); 311 } 312 313 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info( 314 phys_addr_t *addr) 315 { 316 if (memblock.memory.regions == memblock_memory_init_regions) 317 return 0; 318 319 *addr = __pa(memblock.memory.regions); 320 321 return PAGE_ALIGN(sizeof(struct memblock_region) * 322 memblock.memory.max); 323 } 324 325 #endif 326 327 /** 328 * memblock_double_array - double the size of the memblock regions array 329 * @type: memblock type of the regions array being doubled 330 * @new_area_start: starting address of memory range to avoid overlap with 331 * @new_area_size: size of memory range to avoid overlap with 332 * 333 * Double the size of the @type regions array. If memblock is being used to 334 * allocate memory for a new reserved regions array and there is a previously 335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size] 336 * waiting to be reserved, ensure the memory used by the new array does 337 * not overlap. 338 * 339 * RETURNS: 340 * 0 on success, -1 on failure. 341 */ 342 static int __init_memblock memblock_double_array(struct memblock_type *type, 343 phys_addr_t new_area_start, 344 phys_addr_t new_area_size) 345 { 346 struct memblock_region *new_array, *old_array; 347 phys_addr_t old_alloc_size, new_alloc_size; 348 phys_addr_t old_size, new_size, addr; 349 int use_slab = slab_is_available(); 350 int *in_slab; 351 352 /* We don't allow resizing until we know about the reserved regions 353 * of memory that aren't suitable for allocation 354 */ 355 if (!memblock_can_resize) 356 return -1; 357 358 /* Calculate new doubled size */ 359 old_size = type->max * sizeof(struct memblock_region); 360 new_size = old_size << 1; 361 /* 362 * We need to allocated new one align to PAGE_SIZE, 363 * so we can free them completely later. 364 */ 365 old_alloc_size = PAGE_ALIGN(old_size); 366 new_alloc_size = PAGE_ALIGN(new_size); 367 368 /* Retrieve the slab flag */ 369 if (type == &memblock.memory) 370 in_slab = &memblock_memory_in_slab; 371 else 372 in_slab = &memblock_reserved_in_slab; 373 374 /* Try to find some space for it. 375 * 376 * WARNING: We assume that either slab_is_available() and we use it or 377 * we use MEMBLOCK for allocations. That means that this is unsafe to 378 * use when bootmem is currently active (unless bootmem itself is 379 * implemented on top of MEMBLOCK which isn't the case yet) 380 * 381 * This should however not be an issue for now, as we currently only 382 * call into MEMBLOCK while it's still active, or much later when slab 383 * is active for memory hotplug operations 384 */ 385 if (use_slab) { 386 new_array = kmalloc(new_size, GFP_KERNEL); 387 addr = new_array ? __pa(new_array) : 0; 388 } else { 389 /* only exclude range when trying to double reserved.regions */ 390 if (type != &memblock.reserved) 391 new_area_start = new_area_size = 0; 392 393 addr = memblock_find_in_range(new_area_start + new_area_size, 394 memblock.current_limit, 395 new_alloc_size, PAGE_SIZE); 396 if (!addr && new_area_size) 397 addr = memblock_find_in_range(0, 398 min(new_area_start, memblock.current_limit), 399 new_alloc_size, PAGE_SIZE); 400 401 new_array = addr ? __va(addr) : NULL; 402 } 403 if (!addr) { 404 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 405 memblock_type_name(type), type->max, type->max * 2); 406 return -1; 407 } 408 409 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", 410 memblock_type_name(type), type->max * 2, (u64)addr, 411 (u64)addr + new_size - 1); 412 413 /* 414 * Found space, we now need to move the array over before we add the 415 * reserved region since it may be our reserved array itself that is 416 * full. 417 */ 418 memcpy(new_array, type->regions, old_size); 419 memset(new_array + type->max, 0, old_size); 420 old_array = type->regions; 421 type->regions = new_array; 422 type->max <<= 1; 423 424 /* Free old array. We needn't free it if the array is the static one */ 425 if (*in_slab) 426 kfree(old_array); 427 else if (old_array != memblock_memory_init_regions && 428 old_array != memblock_reserved_init_regions) 429 memblock_free(__pa(old_array), old_alloc_size); 430 431 /* 432 * Reserve the new array if that comes from the memblock. Otherwise, we 433 * needn't do it 434 */ 435 if (!use_slab) 436 BUG_ON(memblock_reserve(addr, new_alloc_size)); 437 438 /* Update slab flag */ 439 *in_slab = use_slab; 440 441 return 0; 442 } 443 444 /** 445 * memblock_merge_regions - merge neighboring compatible regions 446 * @type: memblock type to scan 447 * 448 * Scan @type and merge neighboring compatible regions. 449 */ 450 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 451 { 452 int i = 0; 453 454 /* cnt never goes below 1 */ 455 while (i < type->cnt - 1) { 456 struct memblock_region *this = &type->regions[i]; 457 struct memblock_region *next = &type->regions[i + 1]; 458 459 if (this->base + this->size != next->base || 460 memblock_get_region_node(this) != 461 memblock_get_region_node(next) || 462 this->flags != next->flags) { 463 BUG_ON(this->base + this->size > next->base); 464 i++; 465 continue; 466 } 467 468 this->size += next->size; 469 /* move forward from next + 1, index of which is i + 2 */ 470 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 471 type->cnt--; 472 } 473 } 474 475 /** 476 * memblock_insert_region - insert new memblock region 477 * @type: memblock type to insert into 478 * @idx: index for the insertion point 479 * @base: base address of the new region 480 * @size: size of the new region 481 * @nid: node id of the new region 482 * @flags: flags of the new region 483 * 484 * Insert new memblock region [@base,@base+@size) into @type at @idx. 485 * @type must already have extra room to accomodate the new region. 486 */ 487 static void __init_memblock memblock_insert_region(struct memblock_type *type, 488 int idx, phys_addr_t base, 489 phys_addr_t size, 490 int nid, unsigned long flags) 491 { 492 struct memblock_region *rgn = &type->regions[idx]; 493 494 BUG_ON(type->cnt >= type->max); 495 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 496 rgn->base = base; 497 rgn->size = size; 498 rgn->flags = flags; 499 memblock_set_region_node(rgn, nid); 500 type->cnt++; 501 type->total_size += size; 502 } 503 504 /** 505 * memblock_add_range - add new memblock region 506 * @type: memblock type to add new region into 507 * @base: base address of the new region 508 * @size: size of the new region 509 * @nid: nid of the new region 510 * @flags: flags of the new region 511 * 512 * Add new memblock region [@base,@base+@size) into @type. The new region 513 * is allowed to overlap with existing ones - overlaps don't affect already 514 * existing regions. @type is guaranteed to be minimal (all neighbouring 515 * compatible regions are merged) after the addition. 516 * 517 * RETURNS: 518 * 0 on success, -errno on failure. 519 */ 520 int __init_memblock memblock_add_range(struct memblock_type *type, 521 phys_addr_t base, phys_addr_t size, 522 int nid, unsigned long flags) 523 { 524 bool insert = false; 525 phys_addr_t obase = base; 526 phys_addr_t end = base + memblock_cap_size(base, &size); 527 int idx, nr_new; 528 struct memblock_region *rgn; 529 530 if (!size) 531 return 0; 532 533 /* special case for empty array */ 534 if (type->regions[0].size == 0) { 535 WARN_ON(type->cnt != 1 || type->total_size); 536 type->regions[0].base = base; 537 type->regions[0].size = size; 538 type->regions[0].flags = flags; 539 memblock_set_region_node(&type->regions[0], nid); 540 type->total_size = size; 541 return 0; 542 } 543 repeat: 544 /* 545 * The following is executed twice. Once with %false @insert and 546 * then with %true. The first counts the number of regions needed 547 * to accomodate the new area. The second actually inserts them. 548 */ 549 base = obase; 550 nr_new = 0; 551 552 for_each_memblock_type(type, rgn) { 553 phys_addr_t rbase = rgn->base; 554 phys_addr_t rend = rbase + rgn->size; 555 556 if (rbase >= end) 557 break; 558 if (rend <= base) 559 continue; 560 /* 561 * @rgn overlaps. If it separates the lower part of new 562 * area, insert that portion. 563 */ 564 if (rbase > base) { 565 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 566 WARN_ON(nid != memblock_get_region_node(rgn)); 567 #endif 568 WARN_ON(flags != rgn->flags); 569 nr_new++; 570 if (insert) 571 memblock_insert_region(type, idx++, base, 572 rbase - base, nid, 573 flags); 574 } 575 /* area below @rend is dealt with, forget about it */ 576 base = min(rend, end); 577 } 578 579 /* insert the remaining portion */ 580 if (base < end) { 581 nr_new++; 582 if (insert) 583 memblock_insert_region(type, idx, base, end - base, 584 nid, flags); 585 } 586 587 /* 588 * If this was the first round, resize array and repeat for actual 589 * insertions; otherwise, merge and return. 590 */ 591 if (!insert) { 592 while (type->cnt + nr_new > type->max) 593 if (memblock_double_array(type, obase, size) < 0) 594 return -ENOMEM; 595 insert = true; 596 goto repeat; 597 } else { 598 memblock_merge_regions(type); 599 return 0; 600 } 601 } 602 603 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 604 int nid) 605 { 606 return memblock_add_range(&memblock.memory, base, size, nid, 0); 607 } 608 609 static int __init_memblock memblock_add_region(phys_addr_t base, 610 phys_addr_t size, 611 int nid, 612 unsigned long flags) 613 { 614 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n", 615 (unsigned long long)base, 616 (unsigned long long)base + size - 1, 617 flags, (void *)_RET_IP_); 618 619 return memblock_add_range(&memblock.memory, base, size, nid, flags); 620 } 621 622 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 623 { 624 return memblock_add_region(base, size, MAX_NUMNODES, 0); 625 } 626 627 /** 628 * memblock_isolate_range - isolate given range into disjoint memblocks 629 * @type: memblock type to isolate range for 630 * @base: base of range to isolate 631 * @size: size of range to isolate 632 * @start_rgn: out parameter for the start of isolated region 633 * @end_rgn: out parameter for the end of isolated region 634 * 635 * Walk @type and ensure that regions don't cross the boundaries defined by 636 * [@base,@base+@size). Crossing regions are split at the boundaries, 637 * which may create at most two more regions. The index of the first 638 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 639 * 640 * RETURNS: 641 * 0 on success, -errno on failure. 642 */ 643 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 644 phys_addr_t base, phys_addr_t size, 645 int *start_rgn, int *end_rgn) 646 { 647 phys_addr_t end = base + memblock_cap_size(base, &size); 648 int idx; 649 struct memblock_region *rgn; 650 651 *start_rgn = *end_rgn = 0; 652 653 if (!size) 654 return 0; 655 656 /* we'll create at most two more regions */ 657 while (type->cnt + 2 > type->max) 658 if (memblock_double_array(type, base, size) < 0) 659 return -ENOMEM; 660 661 for_each_memblock_type(type, rgn) { 662 phys_addr_t rbase = rgn->base; 663 phys_addr_t rend = rbase + rgn->size; 664 665 if (rbase >= end) 666 break; 667 if (rend <= base) 668 continue; 669 670 if (rbase < base) { 671 /* 672 * @rgn intersects from below. Split and continue 673 * to process the next region - the new top half. 674 */ 675 rgn->base = base; 676 rgn->size -= base - rbase; 677 type->total_size -= base - rbase; 678 memblock_insert_region(type, idx, rbase, base - rbase, 679 memblock_get_region_node(rgn), 680 rgn->flags); 681 } else if (rend > end) { 682 /* 683 * @rgn intersects from above. Split and redo the 684 * current region - the new bottom half. 685 */ 686 rgn->base = end; 687 rgn->size -= end - rbase; 688 type->total_size -= end - rbase; 689 memblock_insert_region(type, idx--, rbase, end - rbase, 690 memblock_get_region_node(rgn), 691 rgn->flags); 692 } else { 693 /* @rgn is fully contained, record it */ 694 if (!*end_rgn) 695 *start_rgn = idx; 696 *end_rgn = idx + 1; 697 } 698 } 699 700 return 0; 701 } 702 703 static int __init_memblock memblock_remove_range(struct memblock_type *type, 704 phys_addr_t base, phys_addr_t size) 705 { 706 int start_rgn, end_rgn; 707 int i, ret; 708 709 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 710 if (ret) 711 return ret; 712 713 for (i = end_rgn - 1; i >= start_rgn; i--) 714 memblock_remove_region(type, i); 715 return 0; 716 } 717 718 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 719 { 720 return memblock_remove_range(&memblock.memory, base, size); 721 } 722 723 724 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 725 { 726 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", 727 (unsigned long long)base, 728 (unsigned long long)base + size - 1, 729 (void *)_RET_IP_); 730 731 kmemleak_free_part(__va(base), size); 732 return memblock_remove_range(&memblock.reserved, base, size); 733 } 734 735 static int __init_memblock memblock_reserve_region(phys_addr_t base, 736 phys_addr_t size, 737 int nid, 738 unsigned long flags) 739 { 740 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n", 741 (unsigned long long)base, 742 (unsigned long long)base + size - 1, 743 flags, (void *)_RET_IP_); 744 745 return memblock_add_range(&memblock.reserved, base, size, nid, flags); 746 } 747 748 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 749 { 750 return memblock_reserve_region(base, size, MAX_NUMNODES, 0); 751 } 752 753 /** 754 * 755 * This function isolates region [@base, @base + @size), and sets/clears flag 756 * 757 * Return 0 on success, -errno on failure. 758 */ 759 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 760 phys_addr_t size, int set, int flag) 761 { 762 struct memblock_type *type = &memblock.memory; 763 int i, ret, start_rgn, end_rgn; 764 765 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 766 if (ret) 767 return ret; 768 769 for (i = start_rgn; i < end_rgn; i++) 770 if (set) 771 memblock_set_region_flags(&type->regions[i], flag); 772 else 773 memblock_clear_region_flags(&type->regions[i], flag); 774 775 memblock_merge_regions(type); 776 return 0; 777 } 778 779 /** 780 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 781 * @base: the base phys addr of the region 782 * @size: the size of the region 783 * 784 * Return 0 on success, -errno on failure. 785 */ 786 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 787 { 788 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 789 } 790 791 /** 792 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 793 * @base: the base phys addr of the region 794 * @size: the size of the region 795 * 796 * Return 0 on success, -errno on failure. 797 */ 798 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 799 { 800 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 801 } 802 803 /** 804 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 805 * @base: the base phys addr of the region 806 * @size: the size of the region 807 * 808 * Return 0 on success, -errno on failure. 809 */ 810 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 811 { 812 system_has_some_mirror = true; 813 814 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 815 } 816 817 /** 818 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 819 * @base: the base phys addr of the region 820 * @size: the size of the region 821 * 822 * Return 0 on success, -errno on failure. 823 */ 824 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 825 { 826 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 827 } 828 829 /** 830 * __next_reserved_mem_region - next function for for_each_reserved_region() 831 * @idx: pointer to u64 loop variable 832 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 833 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 834 * 835 * Iterate over all reserved memory regions. 836 */ 837 void __init_memblock __next_reserved_mem_region(u64 *idx, 838 phys_addr_t *out_start, 839 phys_addr_t *out_end) 840 { 841 struct memblock_type *type = &memblock.reserved; 842 843 if (*idx >= 0 && *idx < type->cnt) { 844 struct memblock_region *r = &type->regions[*idx]; 845 phys_addr_t base = r->base; 846 phys_addr_t size = r->size; 847 848 if (out_start) 849 *out_start = base; 850 if (out_end) 851 *out_end = base + size - 1; 852 853 *idx += 1; 854 return; 855 } 856 857 /* signal end of iteration */ 858 *idx = ULLONG_MAX; 859 } 860 861 /** 862 * __next__mem_range - next function for for_each_free_mem_range() etc. 863 * @idx: pointer to u64 loop variable 864 * @nid: node selector, %NUMA_NO_NODE for all nodes 865 * @flags: pick from blocks based on memory attributes 866 * @type_a: pointer to memblock_type from where the range is taken 867 * @type_b: pointer to memblock_type which excludes memory from being taken 868 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 869 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 870 * @out_nid: ptr to int for nid of the range, can be %NULL 871 * 872 * Find the first area from *@idx which matches @nid, fill the out 873 * parameters, and update *@idx for the next iteration. The lower 32bit of 874 * *@idx contains index into type_a and the upper 32bit indexes the 875 * areas before each region in type_b. For example, if type_b regions 876 * look like the following, 877 * 878 * 0:[0-16), 1:[32-48), 2:[128-130) 879 * 880 * The upper 32bit indexes the following regions. 881 * 882 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 883 * 884 * As both region arrays are sorted, the function advances the two indices 885 * in lockstep and returns each intersection. 886 */ 887 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags, 888 struct memblock_type *type_a, 889 struct memblock_type *type_b, 890 phys_addr_t *out_start, 891 phys_addr_t *out_end, int *out_nid) 892 { 893 int idx_a = *idx & 0xffffffff; 894 int idx_b = *idx >> 32; 895 896 if (WARN_ONCE(nid == MAX_NUMNODES, 897 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 898 nid = NUMA_NO_NODE; 899 900 for (; idx_a < type_a->cnt; idx_a++) { 901 struct memblock_region *m = &type_a->regions[idx_a]; 902 903 phys_addr_t m_start = m->base; 904 phys_addr_t m_end = m->base + m->size; 905 int m_nid = memblock_get_region_node(m); 906 907 /* only memory regions are associated with nodes, check it */ 908 if (nid != NUMA_NO_NODE && nid != m_nid) 909 continue; 910 911 /* skip hotpluggable memory regions if needed */ 912 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 913 continue; 914 915 /* if we want mirror memory skip non-mirror memory regions */ 916 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 917 continue; 918 919 /* skip nomap memory unless we were asked for it explicitly */ 920 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 921 continue; 922 923 if (!type_b) { 924 if (out_start) 925 *out_start = m_start; 926 if (out_end) 927 *out_end = m_end; 928 if (out_nid) 929 *out_nid = m_nid; 930 idx_a++; 931 *idx = (u32)idx_a | (u64)idx_b << 32; 932 return; 933 } 934 935 /* scan areas before each reservation */ 936 for (; idx_b < type_b->cnt + 1; idx_b++) { 937 struct memblock_region *r; 938 phys_addr_t r_start; 939 phys_addr_t r_end; 940 941 r = &type_b->regions[idx_b]; 942 r_start = idx_b ? r[-1].base + r[-1].size : 0; 943 r_end = idx_b < type_b->cnt ? 944 r->base : ULLONG_MAX; 945 946 /* 947 * if idx_b advanced past idx_a, 948 * break out to advance idx_a 949 */ 950 if (r_start >= m_end) 951 break; 952 /* if the two regions intersect, we're done */ 953 if (m_start < r_end) { 954 if (out_start) 955 *out_start = 956 max(m_start, r_start); 957 if (out_end) 958 *out_end = min(m_end, r_end); 959 if (out_nid) 960 *out_nid = m_nid; 961 /* 962 * The region which ends first is 963 * advanced for the next iteration. 964 */ 965 if (m_end <= r_end) 966 idx_a++; 967 else 968 idx_b++; 969 *idx = (u32)idx_a | (u64)idx_b << 32; 970 return; 971 } 972 } 973 } 974 975 /* signal end of iteration */ 976 *idx = ULLONG_MAX; 977 } 978 979 /** 980 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 981 * 982 * Finds the next range from type_a which is not marked as unsuitable 983 * in type_b. 984 * 985 * @idx: pointer to u64 loop variable 986 * @nid: node selector, %NUMA_NO_NODE for all nodes 987 * @flags: pick from blocks based on memory attributes 988 * @type_a: pointer to memblock_type from where the range is taken 989 * @type_b: pointer to memblock_type which excludes memory from being taken 990 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 991 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 992 * @out_nid: ptr to int for nid of the range, can be %NULL 993 * 994 * Reverse of __next_mem_range(). 995 */ 996 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags, 997 struct memblock_type *type_a, 998 struct memblock_type *type_b, 999 phys_addr_t *out_start, 1000 phys_addr_t *out_end, int *out_nid) 1001 { 1002 int idx_a = *idx & 0xffffffff; 1003 int idx_b = *idx >> 32; 1004 1005 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1006 nid = NUMA_NO_NODE; 1007 1008 if (*idx == (u64)ULLONG_MAX) { 1009 idx_a = type_a->cnt - 1; 1010 idx_b = type_b->cnt; 1011 } 1012 1013 for (; idx_a >= 0; idx_a--) { 1014 struct memblock_region *m = &type_a->regions[idx_a]; 1015 1016 phys_addr_t m_start = m->base; 1017 phys_addr_t m_end = m->base + m->size; 1018 int m_nid = memblock_get_region_node(m); 1019 1020 /* only memory regions are associated with nodes, check it */ 1021 if (nid != NUMA_NO_NODE && nid != m_nid) 1022 continue; 1023 1024 /* skip hotpluggable memory regions if needed */ 1025 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 1026 continue; 1027 1028 /* if we want mirror memory skip non-mirror memory regions */ 1029 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 1030 continue; 1031 1032 /* skip nomap memory unless we were asked for it explicitly */ 1033 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 1034 continue; 1035 1036 if (!type_b) { 1037 if (out_start) 1038 *out_start = m_start; 1039 if (out_end) 1040 *out_end = m_end; 1041 if (out_nid) 1042 *out_nid = m_nid; 1043 idx_a++; 1044 *idx = (u32)idx_a | (u64)idx_b << 32; 1045 return; 1046 } 1047 1048 /* scan areas before each reservation */ 1049 for (; idx_b >= 0; idx_b--) { 1050 struct memblock_region *r; 1051 phys_addr_t r_start; 1052 phys_addr_t r_end; 1053 1054 r = &type_b->regions[idx_b]; 1055 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1056 r_end = idx_b < type_b->cnt ? 1057 r->base : ULLONG_MAX; 1058 /* 1059 * if idx_b advanced past idx_a, 1060 * break out to advance idx_a 1061 */ 1062 1063 if (r_end <= m_start) 1064 break; 1065 /* if the two regions intersect, we're done */ 1066 if (m_end > r_start) { 1067 if (out_start) 1068 *out_start = max(m_start, r_start); 1069 if (out_end) 1070 *out_end = min(m_end, r_end); 1071 if (out_nid) 1072 *out_nid = m_nid; 1073 if (m_start >= r_start) 1074 idx_a--; 1075 else 1076 idx_b--; 1077 *idx = (u32)idx_a | (u64)idx_b << 32; 1078 return; 1079 } 1080 } 1081 } 1082 /* signal end of iteration */ 1083 *idx = ULLONG_MAX; 1084 } 1085 1086 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1087 /* 1088 * Common iterator interface used to define for_each_mem_range(). 1089 */ 1090 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1091 unsigned long *out_start_pfn, 1092 unsigned long *out_end_pfn, int *out_nid) 1093 { 1094 struct memblock_type *type = &memblock.memory; 1095 struct memblock_region *r; 1096 1097 while (++*idx < type->cnt) { 1098 r = &type->regions[*idx]; 1099 1100 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1101 continue; 1102 if (nid == MAX_NUMNODES || nid == r->nid) 1103 break; 1104 } 1105 if (*idx >= type->cnt) { 1106 *idx = -1; 1107 return; 1108 } 1109 1110 if (out_start_pfn) 1111 *out_start_pfn = PFN_UP(r->base); 1112 if (out_end_pfn) 1113 *out_end_pfn = PFN_DOWN(r->base + r->size); 1114 if (out_nid) 1115 *out_nid = r->nid; 1116 } 1117 1118 /** 1119 * memblock_set_node - set node ID on memblock regions 1120 * @base: base of area to set node ID for 1121 * @size: size of area to set node ID for 1122 * @type: memblock type to set node ID for 1123 * @nid: node ID to set 1124 * 1125 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. 1126 * Regions which cross the area boundaries are split as necessary. 1127 * 1128 * RETURNS: 1129 * 0 on success, -errno on failure. 1130 */ 1131 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1132 struct memblock_type *type, int nid) 1133 { 1134 int start_rgn, end_rgn; 1135 int i, ret; 1136 1137 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1138 if (ret) 1139 return ret; 1140 1141 for (i = start_rgn; i < end_rgn; i++) 1142 memblock_set_region_node(&type->regions[i], nid); 1143 1144 memblock_merge_regions(type); 1145 return 0; 1146 } 1147 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1148 1149 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1150 phys_addr_t align, phys_addr_t start, 1151 phys_addr_t end, int nid, ulong flags) 1152 { 1153 phys_addr_t found; 1154 1155 if (!align) 1156 align = SMP_CACHE_BYTES; 1157 1158 found = memblock_find_in_range_node(size, align, start, end, nid, 1159 flags); 1160 if (found && !memblock_reserve(found, size)) { 1161 /* 1162 * The min_count is set to 0 so that memblock allocations are 1163 * never reported as leaks. 1164 */ 1165 kmemleak_alloc(__va(found), size, 0, 0); 1166 return found; 1167 } 1168 return 0; 1169 } 1170 1171 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, 1172 phys_addr_t start, phys_addr_t end, 1173 ulong flags) 1174 { 1175 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1176 flags); 1177 } 1178 1179 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, 1180 phys_addr_t align, phys_addr_t max_addr, 1181 int nid, ulong flags) 1182 { 1183 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags); 1184 } 1185 1186 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) 1187 { 1188 ulong flags = choose_memblock_flags(); 1189 phys_addr_t ret; 1190 1191 again: 1192 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, 1193 nid, flags); 1194 1195 if (!ret && (flags & MEMBLOCK_MIRROR)) { 1196 flags &= ~MEMBLOCK_MIRROR; 1197 goto again; 1198 } 1199 return ret; 1200 } 1201 1202 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1203 { 1204 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE, 1205 MEMBLOCK_NONE); 1206 } 1207 1208 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) 1209 { 1210 phys_addr_t alloc; 1211 1212 alloc = __memblock_alloc_base(size, align, max_addr); 1213 1214 if (alloc == 0) 1215 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 1216 (unsigned long long) size, (unsigned long long) max_addr); 1217 1218 return alloc; 1219 } 1220 1221 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) 1222 { 1223 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1224 } 1225 1226 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1227 { 1228 phys_addr_t res = memblock_alloc_nid(size, align, nid); 1229 1230 if (res) 1231 return res; 1232 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 1233 } 1234 1235 /** 1236 * memblock_virt_alloc_internal - allocate boot memory block 1237 * @size: size of memory block to be allocated in bytes 1238 * @align: alignment of the region and block's size 1239 * @min_addr: the lower bound of the memory region to allocate (phys address) 1240 * @max_addr: the upper bound of the memory region to allocate (phys address) 1241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1242 * 1243 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1244 * will fall back to memory below @min_addr. Also, allocation may fall back 1245 * to any node in the system if the specified node can not 1246 * hold the requested memory. 1247 * 1248 * The allocation is performed from memory region limited by 1249 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. 1250 * 1251 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. 1252 * 1253 * The phys address of allocated boot memory block is converted to virtual and 1254 * allocated memory is reset to 0. 1255 * 1256 * In addition, function sets the min_count to 0 using kmemleak_alloc for 1257 * allocated boot memory block, so that it is never reported as leaks. 1258 * 1259 * RETURNS: 1260 * Virtual address of allocated memory block on success, NULL on failure. 1261 */ 1262 static void * __init memblock_virt_alloc_internal( 1263 phys_addr_t size, phys_addr_t align, 1264 phys_addr_t min_addr, phys_addr_t max_addr, 1265 int nid) 1266 { 1267 phys_addr_t alloc; 1268 void *ptr; 1269 ulong flags = choose_memblock_flags(); 1270 1271 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1272 nid = NUMA_NO_NODE; 1273 1274 /* 1275 * Detect any accidental use of these APIs after slab is ready, as at 1276 * this moment memblock may be deinitialized already and its 1277 * internal data may be destroyed (after execution of free_all_bootmem) 1278 */ 1279 if (WARN_ON_ONCE(slab_is_available())) 1280 return kzalloc_node(size, GFP_NOWAIT, nid); 1281 1282 if (!align) 1283 align = SMP_CACHE_BYTES; 1284 1285 if (max_addr > memblock.current_limit) 1286 max_addr = memblock.current_limit; 1287 1288 again: 1289 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, 1290 nid, flags); 1291 if (alloc) 1292 goto done; 1293 1294 if (nid != NUMA_NO_NODE) { 1295 alloc = memblock_find_in_range_node(size, align, min_addr, 1296 max_addr, NUMA_NO_NODE, 1297 flags); 1298 if (alloc) 1299 goto done; 1300 } 1301 1302 if (min_addr) { 1303 min_addr = 0; 1304 goto again; 1305 } 1306 1307 if (flags & MEMBLOCK_MIRROR) { 1308 flags &= ~MEMBLOCK_MIRROR; 1309 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1310 &size); 1311 goto again; 1312 } 1313 1314 return NULL; 1315 done: 1316 memblock_reserve(alloc, size); 1317 ptr = phys_to_virt(alloc); 1318 memset(ptr, 0, size); 1319 1320 /* 1321 * The min_count is set to 0 so that bootmem allocated blocks 1322 * are never reported as leaks. This is because many of these blocks 1323 * are only referred via the physical address which is not 1324 * looked up by kmemleak. 1325 */ 1326 kmemleak_alloc(ptr, size, 0, 0); 1327 1328 return ptr; 1329 } 1330 1331 /** 1332 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block 1333 * @size: size of memory block to be allocated in bytes 1334 * @align: alignment of the region and block's size 1335 * @min_addr: the lower bound of the memory region from where the allocation 1336 * is preferred (phys address) 1337 * @max_addr: the upper bound of the memory region from where the allocation 1338 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1339 * allocate only from memory limited by memblock.current_limit value 1340 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1341 * 1342 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides 1343 * additional debug information (including caller info), if enabled. 1344 * 1345 * RETURNS: 1346 * Virtual address of allocated memory block on success, NULL on failure. 1347 */ 1348 void * __init memblock_virt_alloc_try_nid_nopanic( 1349 phys_addr_t size, phys_addr_t align, 1350 phys_addr_t min_addr, phys_addr_t max_addr, 1351 int nid) 1352 { 1353 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1354 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1355 (u64)max_addr, (void *)_RET_IP_); 1356 return memblock_virt_alloc_internal(size, align, min_addr, 1357 max_addr, nid); 1358 } 1359 1360 /** 1361 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking 1362 * @size: size of memory block to be allocated in bytes 1363 * @align: alignment of the region and block's size 1364 * @min_addr: the lower bound of the memory region from where the allocation 1365 * is preferred (phys address) 1366 * @max_addr: the upper bound of the memory region from where the allocation 1367 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to 1368 * allocate only from memory limited by memblock.current_limit value 1369 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1370 * 1371 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic() 1372 * which provides debug information (including caller info), if enabled, 1373 * and panics if the request can not be satisfied. 1374 * 1375 * RETURNS: 1376 * Virtual address of allocated memory block on success, NULL on failure. 1377 */ 1378 void * __init memblock_virt_alloc_try_nid( 1379 phys_addr_t size, phys_addr_t align, 1380 phys_addr_t min_addr, phys_addr_t max_addr, 1381 int nid) 1382 { 1383 void *ptr; 1384 1385 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", 1386 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1387 (u64)max_addr, (void *)_RET_IP_); 1388 ptr = memblock_virt_alloc_internal(size, align, 1389 min_addr, max_addr, nid); 1390 if (ptr) 1391 return ptr; 1392 1393 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", 1394 __func__, (u64)size, (u64)align, nid, (u64)min_addr, 1395 (u64)max_addr); 1396 return NULL; 1397 } 1398 1399 /** 1400 * __memblock_free_early - free boot memory block 1401 * @base: phys starting address of the boot memory block 1402 * @size: size of the boot memory block in bytes 1403 * 1404 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. 1405 * The freeing memory will not be released to the buddy allocator. 1406 */ 1407 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) 1408 { 1409 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1410 __func__, (u64)base, (u64)base + size - 1, 1411 (void *)_RET_IP_); 1412 kmemleak_free_part(__va(base), size); 1413 memblock_remove_range(&memblock.reserved, base, size); 1414 } 1415 1416 /* 1417 * __memblock_free_late - free bootmem block pages directly to buddy allocator 1418 * @addr: phys starting address of the boot memory block 1419 * @size: size of the boot memory block in bytes 1420 * 1421 * This is only useful when the bootmem allocator has already been torn 1422 * down, but we are still initializing the system. Pages are released directly 1423 * to the buddy allocator, no bootmem metadata is updated because it is gone. 1424 */ 1425 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1426 { 1427 u64 cursor, end; 1428 1429 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", 1430 __func__, (u64)base, (u64)base + size - 1, 1431 (void *)_RET_IP_); 1432 kmemleak_free_part(__va(base), size); 1433 cursor = PFN_UP(base); 1434 end = PFN_DOWN(base + size); 1435 1436 for (; cursor < end; cursor++) { 1437 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0); 1438 totalram_pages++; 1439 } 1440 } 1441 1442 /* 1443 * Remaining API functions 1444 */ 1445 1446 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1447 { 1448 return memblock.memory.total_size; 1449 } 1450 1451 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1452 { 1453 unsigned long pages = 0; 1454 struct memblock_region *r; 1455 unsigned long start_pfn, end_pfn; 1456 1457 for_each_memblock(memory, r) { 1458 start_pfn = memblock_region_memory_base_pfn(r); 1459 end_pfn = memblock_region_memory_end_pfn(r); 1460 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1461 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1462 pages += end_pfn - start_pfn; 1463 } 1464 1465 return PFN_PHYS(pages); 1466 } 1467 1468 /* lowest address */ 1469 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1470 { 1471 return memblock.memory.regions[0].base; 1472 } 1473 1474 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1475 { 1476 int idx = memblock.memory.cnt - 1; 1477 1478 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1479 } 1480 1481 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1482 { 1483 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; 1484 struct memblock_region *r; 1485 1486 if (!limit) 1487 return; 1488 1489 /* find out max address */ 1490 for_each_memblock(memory, r) { 1491 if (limit <= r->size) { 1492 max_addr = r->base + limit; 1493 break; 1494 } 1495 limit -= r->size; 1496 } 1497 1498 /* truncate both memory and reserved regions */ 1499 memblock_remove_range(&memblock.memory, max_addr, 1500 (phys_addr_t)ULLONG_MAX); 1501 memblock_remove_range(&memblock.reserved, max_addr, 1502 (phys_addr_t)ULLONG_MAX); 1503 } 1504 1505 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1506 { 1507 unsigned int left = 0, right = type->cnt; 1508 1509 do { 1510 unsigned int mid = (right + left) / 2; 1511 1512 if (addr < type->regions[mid].base) 1513 right = mid; 1514 else if (addr >= (type->regions[mid].base + 1515 type->regions[mid].size)) 1516 left = mid + 1; 1517 else 1518 return mid; 1519 } while (left < right); 1520 return -1; 1521 } 1522 1523 bool __init memblock_is_reserved(phys_addr_t addr) 1524 { 1525 return memblock_search(&memblock.reserved, addr) != -1; 1526 } 1527 1528 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1529 { 1530 return memblock_search(&memblock.memory, addr) != -1; 1531 } 1532 1533 int __init_memblock memblock_is_map_memory(phys_addr_t addr) 1534 { 1535 int i = memblock_search(&memblock.memory, addr); 1536 1537 if (i == -1) 1538 return false; 1539 return !memblock_is_nomap(&memblock.memory.regions[i]); 1540 } 1541 1542 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1543 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1544 unsigned long *start_pfn, unsigned long *end_pfn) 1545 { 1546 struct memblock_type *type = &memblock.memory; 1547 int mid = memblock_search(type, PFN_PHYS(pfn)); 1548 1549 if (mid == -1) 1550 return -1; 1551 1552 *start_pfn = PFN_DOWN(type->regions[mid].base); 1553 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1554 1555 return type->regions[mid].nid; 1556 } 1557 #endif 1558 1559 /** 1560 * memblock_is_region_memory - check if a region is a subset of memory 1561 * @base: base of region to check 1562 * @size: size of region to check 1563 * 1564 * Check if the region [@base, @base+@size) is a subset of a memory block. 1565 * 1566 * RETURNS: 1567 * 0 if false, non-zero if true 1568 */ 1569 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1570 { 1571 int idx = memblock_search(&memblock.memory, base); 1572 phys_addr_t end = base + memblock_cap_size(base, &size); 1573 1574 if (idx == -1) 1575 return 0; 1576 return memblock.memory.regions[idx].base <= base && 1577 (memblock.memory.regions[idx].base + 1578 memblock.memory.regions[idx].size) >= end; 1579 } 1580 1581 /** 1582 * memblock_is_region_reserved - check if a region intersects reserved memory 1583 * @base: base of region to check 1584 * @size: size of region to check 1585 * 1586 * Check if the region [@base, @base+@size) intersects a reserved memory block. 1587 * 1588 * RETURNS: 1589 * True if they intersect, false if not. 1590 */ 1591 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1592 { 1593 memblock_cap_size(base, &size); 1594 return memblock_overlaps_region(&memblock.reserved, base, size); 1595 } 1596 1597 void __init_memblock memblock_trim_memory(phys_addr_t align) 1598 { 1599 phys_addr_t start, end, orig_start, orig_end; 1600 struct memblock_region *r; 1601 1602 for_each_memblock(memory, r) { 1603 orig_start = r->base; 1604 orig_end = r->base + r->size; 1605 start = round_up(orig_start, align); 1606 end = round_down(orig_end, align); 1607 1608 if (start == orig_start && end == orig_end) 1609 continue; 1610 1611 if (start < end) { 1612 r->base = start; 1613 r->size = end - start; 1614 } else { 1615 memblock_remove_region(&memblock.memory, 1616 r - memblock.memory.regions); 1617 r--; 1618 } 1619 } 1620 } 1621 1622 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1623 { 1624 memblock.current_limit = limit; 1625 } 1626 1627 phys_addr_t __init_memblock memblock_get_current_limit(void) 1628 { 1629 return memblock.current_limit; 1630 } 1631 1632 static void __init_memblock memblock_dump(struct memblock_type *type, char *name) 1633 { 1634 unsigned long long base, size; 1635 unsigned long flags; 1636 int idx; 1637 struct memblock_region *rgn; 1638 1639 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); 1640 1641 for_each_memblock_type(type, rgn) { 1642 char nid_buf[32] = ""; 1643 1644 base = rgn->base; 1645 size = rgn->size; 1646 flags = rgn->flags; 1647 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1648 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1649 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1650 memblock_get_region_node(rgn)); 1651 #endif 1652 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n", 1653 name, idx, base, base + size - 1, size, nid_buf, flags); 1654 } 1655 } 1656 1657 void __init_memblock __memblock_dump_all(void) 1658 { 1659 pr_info("MEMBLOCK configuration:\n"); 1660 pr_info(" memory size = %#llx reserved size = %#llx\n", 1661 (unsigned long long)memblock.memory.total_size, 1662 (unsigned long long)memblock.reserved.total_size); 1663 1664 memblock_dump(&memblock.memory, "memory"); 1665 memblock_dump(&memblock.reserved, "reserved"); 1666 } 1667 1668 void __init memblock_allow_resize(void) 1669 { 1670 memblock_can_resize = 1; 1671 } 1672 1673 static int __init early_memblock(char *p) 1674 { 1675 if (p && strstr(p, "debug")) 1676 memblock_debug = 1; 1677 return 0; 1678 } 1679 early_param("memblock", early_memblock); 1680 1681 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) 1682 1683 static int memblock_debug_show(struct seq_file *m, void *private) 1684 { 1685 struct memblock_type *type = m->private; 1686 struct memblock_region *reg; 1687 int i; 1688 1689 for (i = 0; i < type->cnt; i++) { 1690 reg = &type->regions[i]; 1691 seq_printf(m, "%4d: ", i); 1692 if (sizeof(phys_addr_t) == 4) 1693 seq_printf(m, "0x%08lx..0x%08lx\n", 1694 (unsigned long)reg->base, 1695 (unsigned long)(reg->base + reg->size - 1)); 1696 else 1697 seq_printf(m, "0x%016llx..0x%016llx\n", 1698 (unsigned long long)reg->base, 1699 (unsigned long long)(reg->base + reg->size - 1)); 1700 1701 } 1702 return 0; 1703 } 1704 1705 static int memblock_debug_open(struct inode *inode, struct file *file) 1706 { 1707 return single_open(file, memblock_debug_show, inode->i_private); 1708 } 1709 1710 static const struct file_operations memblock_debug_fops = { 1711 .open = memblock_debug_open, 1712 .read = seq_read, 1713 .llseek = seq_lseek, 1714 .release = single_release, 1715 }; 1716 1717 static int __init memblock_init_debugfs(void) 1718 { 1719 struct dentry *root = debugfs_create_dir("memblock", NULL); 1720 if (!root) 1721 return -ENXIO; 1722 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); 1723 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); 1724 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1725 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops); 1726 #endif 1727 1728 return 0; 1729 } 1730 __initcall(memblock_init_debugfs); 1731 1732 #endif /* CONFIG_DEBUG_FS */ 1733