xref: /openbmc/linux/mm/memblock.c (revision 483eb062)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25 
26 #include "internal.h"
27 
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 
31 struct memblock memblock __initdata_memblock = {
32 	.memory.regions		= memblock_memory_init_regions,
33 	.memory.cnt		= 1,	/* empty dummy entry */
34 	.memory.max		= INIT_MEMBLOCK_REGIONS,
35 
36 	.reserved.regions	= memblock_reserved_init_regions,
37 	.reserved.cnt		= 1,	/* empty dummy entry */
38 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
39 
40 	.bottom_up		= false,
41 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
42 };
43 
44 int memblock_debug __initdata_memblock;
45 #ifdef CONFIG_MOVABLE_NODE
46 bool movable_node_enabled __initdata_memblock = false;
47 #endif
48 static int memblock_can_resize __initdata_memblock;
49 static int memblock_memory_in_slab __initdata_memblock = 0;
50 static int memblock_reserved_in_slab __initdata_memblock = 0;
51 
52 /* inline so we don't get a warning when pr_debug is compiled out */
53 static __init_memblock const char *
54 memblock_type_name(struct memblock_type *type)
55 {
56 	if (type == &memblock.memory)
57 		return "memory";
58 	else if (type == &memblock.reserved)
59 		return "reserved";
60 	else
61 		return "unknown";
62 }
63 
64 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
65 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
66 {
67 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
68 }
69 
70 /*
71  * Address comparison utilities
72  */
73 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
74 				       phys_addr_t base2, phys_addr_t size2)
75 {
76 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
77 }
78 
79 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
80 					phys_addr_t base, phys_addr_t size)
81 {
82 	unsigned long i;
83 
84 	for (i = 0; i < type->cnt; i++) {
85 		phys_addr_t rgnbase = type->regions[i].base;
86 		phys_addr_t rgnsize = type->regions[i].size;
87 		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
88 			break;
89 	}
90 
91 	return (i < type->cnt) ? i : -1;
92 }
93 
94 /*
95  * __memblock_find_range_bottom_up - find free area utility in bottom-up
96  * @start: start of candidate range
97  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98  * @size: size of free area to find
99  * @align: alignment of free area to find
100  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
101  *
102  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
103  *
104  * RETURNS:
105  * Found address on success, 0 on failure.
106  */
107 static phys_addr_t __init_memblock
108 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
109 				phys_addr_t size, phys_addr_t align, int nid)
110 {
111 	phys_addr_t this_start, this_end, cand;
112 	u64 i;
113 
114 	for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
115 		this_start = clamp(this_start, start, end);
116 		this_end = clamp(this_end, start, end);
117 
118 		cand = round_up(this_start, align);
119 		if (cand < this_end && this_end - cand >= size)
120 			return cand;
121 	}
122 
123 	return 0;
124 }
125 
126 /**
127  * __memblock_find_range_top_down - find free area utility, in top-down
128  * @start: start of candidate range
129  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130  * @size: size of free area to find
131  * @align: alignment of free area to find
132  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
133  *
134  * Utility called from memblock_find_in_range_node(), find free area top-down.
135  *
136  * RETURNS:
137  * Found address on success, 0 on failure.
138  */
139 static phys_addr_t __init_memblock
140 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
141 			       phys_addr_t size, phys_addr_t align, int nid)
142 {
143 	phys_addr_t this_start, this_end, cand;
144 	u64 i;
145 
146 	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
147 		this_start = clamp(this_start, start, end);
148 		this_end = clamp(this_end, start, end);
149 
150 		if (this_end < size)
151 			continue;
152 
153 		cand = round_down(this_end - size, align);
154 		if (cand >= this_start)
155 			return cand;
156 	}
157 
158 	return 0;
159 }
160 
161 /**
162  * memblock_find_in_range_node - find free area in given range and node
163  * @size: size of free area to find
164  * @align: alignment of free area to find
165  * @start: start of candidate range
166  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
167  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
168  *
169  * Find @size free area aligned to @align in the specified range and node.
170  *
171  * When allocation direction is bottom-up, the @start should be greater
172  * than the end of the kernel image. Otherwise, it will be trimmed. The
173  * reason is that we want the bottom-up allocation just near the kernel
174  * image so it is highly likely that the allocated memory and the kernel
175  * will reside in the same node.
176  *
177  * If bottom-up allocation failed, will try to allocate memory top-down.
178  *
179  * RETURNS:
180  * Found address on success, 0 on failure.
181  */
182 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
183 					phys_addr_t align, phys_addr_t start,
184 					phys_addr_t end, int nid)
185 {
186 	int ret;
187 	phys_addr_t kernel_end;
188 
189 	/* pump up @end */
190 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
191 		end = memblock.current_limit;
192 
193 	/* avoid allocating the first page */
194 	start = max_t(phys_addr_t, start, PAGE_SIZE);
195 	end = max(start, end);
196 	kernel_end = __pa_symbol(_end);
197 
198 	/*
199 	 * try bottom-up allocation only when bottom-up mode
200 	 * is set and @end is above the kernel image.
201 	 */
202 	if (memblock_bottom_up() && end > kernel_end) {
203 		phys_addr_t bottom_up_start;
204 
205 		/* make sure we will allocate above the kernel */
206 		bottom_up_start = max(start, kernel_end);
207 
208 		/* ok, try bottom-up allocation first */
209 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
210 						      size, align, nid);
211 		if (ret)
212 			return ret;
213 
214 		/*
215 		 * we always limit bottom-up allocation above the kernel,
216 		 * but top-down allocation doesn't have the limit, so
217 		 * retrying top-down allocation may succeed when bottom-up
218 		 * allocation failed.
219 		 *
220 		 * bottom-up allocation is expected to be fail very rarely,
221 		 * so we use WARN_ONCE() here to see the stack trace if
222 		 * fail happens.
223 		 */
224 		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
225 			     "memory hotunplug may be affected\n");
226 	}
227 
228 	return __memblock_find_range_top_down(start, end, size, align, nid);
229 }
230 
231 /**
232  * memblock_find_in_range - find free area in given range
233  * @start: start of candidate range
234  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
235  * @size: size of free area to find
236  * @align: alignment of free area to find
237  *
238  * Find @size free area aligned to @align in the specified range.
239  *
240  * RETURNS:
241  * Found address on success, 0 on failure.
242  */
243 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
244 					phys_addr_t end, phys_addr_t size,
245 					phys_addr_t align)
246 {
247 	return memblock_find_in_range_node(size, align, start, end,
248 					    NUMA_NO_NODE);
249 }
250 
251 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
252 {
253 	type->total_size -= type->regions[r].size;
254 	memmove(&type->regions[r], &type->regions[r + 1],
255 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
256 	type->cnt--;
257 
258 	/* Special case for empty arrays */
259 	if (type->cnt == 0) {
260 		WARN_ON(type->total_size != 0);
261 		type->cnt = 1;
262 		type->regions[0].base = 0;
263 		type->regions[0].size = 0;
264 		type->regions[0].flags = 0;
265 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
266 	}
267 }
268 
269 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
270 
271 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
272 					phys_addr_t *addr)
273 {
274 	if (memblock.reserved.regions == memblock_reserved_init_regions)
275 		return 0;
276 
277 	*addr = __pa(memblock.reserved.regions);
278 
279 	return PAGE_ALIGN(sizeof(struct memblock_region) *
280 			  memblock.reserved.max);
281 }
282 
283 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
284 					phys_addr_t *addr)
285 {
286 	if (memblock.memory.regions == memblock_memory_init_regions)
287 		return 0;
288 
289 	*addr = __pa(memblock.memory.regions);
290 
291 	return PAGE_ALIGN(sizeof(struct memblock_region) *
292 			  memblock.memory.max);
293 }
294 
295 #endif
296 
297 /**
298  * memblock_double_array - double the size of the memblock regions array
299  * @type: memblock type of the regions array being doubled
300  * @new_area_start: starting address of memory range to avoid overlap with
301  * @new_area_size: size of memory range to avoid overlap with
302  *
303  * Double the size of the @type regions array. If memblock is being used to
304  * allocate memory for a new reserved regions array and there is a previously
305  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
306  * waiting to be reserved, ensure the memory used by the new array does
307  * not overlap.
308  *
309  * RETURNS:
310  * 0 on success, -1 on failure.
311  */
312 static int __init_memblock memblock_double_array(struct memblock_type *type,
313 						phys_addr_t new_area_start,
314 						phys_addr_t new_area_size)
315 {
316 	struct memblock_region *new_array, *old_array;
317 	phys_addr_t old_alloc_size, new_alloc_size;
318 	phys_addr_t old_size, new_size, addr;
319 	int use_slab = slab_is_available();
320 	int *in_slab;
321 
322 	/* We don't allow resizing until we know about the reserved regions
323 	 * of memory that aren't suitable for allocation
324 	 */
325 	if (!memblock_can_resize)
326 		return -1;
327 
328 	/* Calculate new doubled size */
329 	old_size = type->max * sizeof(struct memblock_region);
330 	new_size = old_size << 1;
331 	/*
332 	 * We need to allocated new one align to PAGE_SIZE,
333 	 *   so we can free them completely later.
334 	 */
335 	old_alloc_size = PAGE_ALIGN(old_size);
336 	new_alloc_size = PAGE_ALIGN(new_size);
337 
338 	/* Retrieve the slab flag */
339 	if (type == &memblock.memory)
340 		in_slab = &memblock_memory_in_slab;
341 	else
342 		in_slab = &memblock_reserved_in_slab;
343 
344 	/* Try to find some space for it.
345 	 *
346 	 * WARNING: We assume that either slab_is_available() and we use it or
347 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
348 	 * use when bootmem is currently active (unless bootmem itself is
349 	 * implemented on top of MEMBLOCK which isn't the case yet)
350 	 *
351 	 * This should however not be an issue for now, as we currently only
352 	 * call into MEMBLOCK while it's still active, or much later when slab
353 	 * is active for memory hotplug operations
354 	 */
355 	if (use_slab) {
356 		new_array = kmalloc(new_size, GFP_KERNEL);
357 		addr = new_array ? __pa(new_array) : 0;
358 	} else {
359 		/* only exclude range when trying to double reserved.regions */
360 		if (type != &memblock.reserved)
361 			new_area_start = new_area_size = 0;
362 
363 		addr = memblock_find_in_range(new_area_start + new_area_size,
364 						memblock.current_limit,
365 						new_alloc_size, PAGE_SIZE);
366 		if (!addr && new_area_size)
367 			addr = memblock_find_in_range(0,
368 				min(new_area_start, memblock.current_limit),
369 				new_alloc_size, PAGE_SIZE);
370 
371 		new_array = addr ? __va(addr) : NULL;
372 	}
373 	if (!addr) {
374 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
375 		       memblock_type_name(type), type->max, type->max * 2);
376 		return -1;
377 	}
378 
379 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
380 			memblock_type_name(type), type->max * 2, (u64)addr,
381 			(u64)addr + new_size - 1);
382 
383 	/*
384 	 * Found space, we now need to move the array over before we add the
385 	 * reserved region since it may be our reserved array itself that is
386 	 * full.
387 	 */
388 	memcpy(new_array, type->regions, old_size);
389 	memset(new_array + type->max, 0, old_size);
390 	old_array = type->regions;
391 	type->regions = new_array;
392 	type->max <<= 1;
393 
394 	/* Free old array. We needn't free it if the array is the static one */
395 	if (*in_slab)
396 		kfree(old_array);
397 	else if (old_array != memblock_memory_init_regions &&
398 		 old_array != memblock_reserved_init_regions)
399 		memblock_free(__pa(old_array), old_alloc_size);
400 
401 	/*
402 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
403 	 * needn't do it
404 	 */
405 	if (!use_slab)
406 		BUG_ON(memblock_reserve(addr, new_alloc_size));
407 
408 	/* Update slab flag */
409 	*in_slab = use_slab;
410 
411 	return 0;
412 }
413 
414 /**
415  * memblock_merge_regions - merge neighboring compatible regions
416  * @type: memblock type to scan
417  *
418  * Scan @type and merge neighboring compatible regions.
419  */
420 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
421 {
422 	int i = 0;
423 
424 	/* cnt never goes below 1 */
425 	while (i < type->cnt - 1) {
426 		struct memblock_region *this = &type->regions[i];
427 		struct memblock_region *next = &type->regions[i + 1];
428 
429 		if (this->base + this->size != next->base ||
430 		    memblock_get_region_node(this) !=
431 		    memblock_get_region_node(next) ||
432 		    this->flags != next->flags) {
433 			BUG_ON(this->base + this->size > next->base);
434 			i++;
435 			continue;
436 		}
437 
438 		this->size += next->size;
439 		/* move forward from next + 1, index of which is i + 2 */
440 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
441 		type->cnt--;
442 	}
443 }
444 
445 /**
446  * memblock_insert_region - insert new memblock region
447  * @type:	memblock type to insert into
448  * @idx:	index for the insertion point
449  * @base:	base address of the new region
450  * @size:	size of the new region
451  * @nid:	node id of the new region
452  * @flags:	flags of the new region
453  *
454  * Insert new memblock region [@base,@base+@size) into @type at @idx.
455  * @type must already have extra room to accomodate the new region.
456  */
457 static void __init_memblock memblock_insert_region(struct memblock_type *type,
458 						   int idx, phys_addr_t base,
459 						   phys_addr_t size,
460 						   int nid, unsigned long flags)
461 {
462 	struct memblock_region *rgn = &type->regions[idx];
463 
464 	BUG_ON(type->cnt >= type->max);
465 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
466 	rgn->base = base;
467 	rgn->size = size;
468 	rgn->flags = flags;
469 	memblock_set_region_node(rgn, nid);
470 	type->cnt++;
471 	type->total_size += size;
472 }
473 
474 /**
475  * memblock_add_region - add new memblock region
476  * @type: memblock type to add new region into
477  * @base: base address of the new region
478  * @size: size of the new region
479  * @nid: nid of the new region
480  * @flags: flags of the new region
481  *
482  * Add new memblock region [@base,@base+@size) into @type.  The new region
483  * is allowed to overlap with existing ones - overlaps don't affect already
484  * existing regions.  @type is guaranteed to be minimal (all neighbouring
485  * compatible regions are merged) after the addition.
486  *
487  * RETURNS:
488  * 0 on success, -errno on failure.
489  */
490 static int __init_memblock memblock_add_region(struct memblock_type *type,
491 				phys_addr_t base, phys_addr_t size,
492 				int nid, unsigned long flags)
493 {
494 	bool insert = false;
495 	phys_addr_t obase = base;
496 	phys_addr_t end = base + memblock_cap_size(base, &size);
497 	int i, nr_new;
498 
499 	if (!size)
500 		return 0;
501 
502 	/* special case for empty array */
503 	if (type->regions[0].size == 0) {
504 		WARN_ON(type->cnt != 1 || type->total_size);
505 		type->regions[0].base = base;
506 		type->regions[0].size = size;
507 		type->regions[0].flags = flags;
508 		memblock_set_region_node(&type->regions[0], nid);
509 		type->total_size = size;
510 		return 0;
511 	}
512 repeat:
513 	/*
514 	 * The following is executed twice.  Once with %false @insert and
515 	 * then with %true.  The first counts the number of regions needed
516 	 * to accomodate the new area.  The second actually inserts them.
517 	 */
518 	base = obase;
519 	nr_new = 0;
520 
521 	for (i = 0; i < type->cnt; i++) {
522 		struct memblock_region *rgn = &type->regions[i];
523 		phys_addr_t rbase = rgn->base;
524 		phys_addr_t rend = rbase + rgn->size;
525 
526 		if (rbase >= end)
527 			break;
528 		if (rend <= base)
529 			continue;
530 		/*
531 		 * @rgn overlaps.  If it separates the lower part of new
532 		 * area, insert that portion.
533 		 */
534 		if (rbase > base) {
535 			nr_new++;
536 			if (insert)
537 				memblock_insert_region(type, i++, base,
538 						       rbase - base, nid,
539 						       flags);
540 		}
541 		/* area below @rend is dealt with, forget about it */
542 		base = min(rend, end);
543 	}
544 
545 	/* insert the remaining portion */
546 	if (base < end) {
547 		nr_new++;
548 		if (insert)
549 			memblock_insert_region(type, i, base, end - base,
550 					       nid, flags);
551 	}
552 
553 	/*
554 	 * If this was the first round, resize array and repeat for actual
555 	 * insertions; otherwise, merge and return.
556 	 */
557 	if (!insert) {
558 		while (type->cnt + nr_new > type->max)
559 			if (memblock_double_array(type, obase, size) < 0)
560 				return -ENOMEM;
561 		insert = true;
562 		goto repeat;
563 	} else {
564 		memblock_merge_regions(type);
565 		return 0;
566 	}
567 }
568 
569 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
570 				       int nid)
571 {
572 	return memblock_add_region(&memblock.memory, base, size, nid, 0);
573 }
574 
575 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
576 {
577 	return memblock_add_region(&memblock.memory, base, size,
578 				   MAX_NUMNODES, 0);
579 }
580 
581 /**
582  * memblock_isolate_range - isolate given range into disjoint memblocks
583  * @type: memblock type to isolate range for
584  * @base: base of range to isolate
585  * @size: size of range to isolate
586  * @start_rgn: out parameter for the start of isolated region
587  * @end_rgn: out parameter for the end of isolated region
588  *
589  * Walk @type and ensure that regions don't cross the boundaries defined by
590  * [@base,@base+@size).  Crossing regions are split at the boundaries,
591  * which may create at most two more regions.  The index of the first
592  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
593  *
594  * RETURNS:
595  * 0 on success, -errno on failure.
596  */
597 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
598 					phys_addr_t base, phys_addr_t size,
599 					int *start_rgn, int *end_rgn)
600 {
601 	phys_addr_t end = base + memblock_cap_size(base, &size);
602 	int i;
603 
604 	*start_rgn = *end_rgn = 0;
605 
606 	if (!size)
607 		return 0;
608 
609 	/* we'll create at most two more regions */
610 	while (type->cnt + 2 > type->max)
611 		if (memblock_double_array(type, base, size) < 0)
612 			return -ENOMEM;
613 
614 	for (i = 0; i < type->cnt; i++) {
615 		struct memblock_region *rgn = &type->regions[i];
616 		phys_addr_t rbase = rgn->base;
617 		phys_addr_t rend = rbase + rgn->size;
618 
619 		if (rbase >= end)
620 			break;
621 		if (rend <= base)
622 			continue;
623 
624 		if (rbase < base) {
625 			/*
626 			 * @rgn intersects from below.  Split and continue
627 			 * to process the next region - the new top half.
628 			 */
629 			rgn->base = base;
630 			rgn->size -= base - rbase;
631 			type->total_size -= base - rbase;
632 			memblock_insert_region(type, i, rbase, base - rbase,
633 					       memblock_get_region_node(rgn),
634 					       rgn->flags);
635 		} else if (rend > end) {
636 			/*
637 			 * @rgn intersects from above.  Split and redo the
638 			 * current region - the new bottom half.
639 			 */
640 			rgn->base = end;
641 			rgn->size -= end - rbase;
642 			type->total_size -= end - rbase;
643 			memblock_insert_region(type, i--, rbase, end - rbase,
644 					       memblock_get_region_node(rgn),
645 					       rgn->flags);
646 		} else {
647 			/* @rgn is fully contained, record it */
648 			if (!*end_rgn)
649 				*start_rgn = i;
650 			*end_rgn = i + 1;
651 		}
652 	}
653 
654 	return 0;
655 }
656 
657 static int __init_memblock __memblock_remove(struct memblock_type *type,
658 					     phys_addr_t base, phys_addr_t size)
659 {
660 	int start_rgn, end_rgn;
661 	int i, ret;
662 
663 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
664 	if (ret)
665 		return ret;
666 
667 	for (i = end_rgn - 1; i >= start_rgn; i--)
668 		memblock_remove_region(type, i);
669 	return 0;
670 }
671 
672 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
673 {
674 	return __memblock_remove(&memblock.memory, base, size);
675 }
676 
677 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
678 {
679 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
680 		     (unsigned long long)base,
681 		     (unsigned long long)base + size - 1,
682 		     (void *)_RET_IP_);
683 
684 	return __memblock_remove(&memblock.reserved, base, size);
685 }
686 
687 static int __init_memblock memblock_reserve_region(phys_addr_t base,
688 						   phys_addr_t size,
689 						   int nid,
690 						   unsigned long flags)
691 {
692 	struct memblock_type *_rgn = &memblock.reserved;
693 
694 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
695 		     (unsigned long long)base,
696 		     (unsigned long long)base + size - 1,
697 		     flags, (void *)_RET_IP_);
698 
699 	return memblock_add_region(_rgn, base, size, nid, flags);
700 }
701 
702 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
703 {
704 	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
705 }
706 
707 /**
708  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
709  * @base: the base phys addr of the region
710  * @size: the size of the region
711  *
712  * This function isolates region [@base, @base + @size), and mark it with flag
713  * MEMBLOCK_HOTPLUG.
714  *
715  * Return 0 on succees, -errno on failure.
716  */
717 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
718 {
719 	struct memblock_type *type = &memblock.memory;
720 	int i, ret, start_rgn, end_rgn;
721 
722 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
723 	if (ret)
724 		return ret;
725 
726 	for (i = start_rgn; i < end_rgn; i++)
727 		memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
728 
729 	memblock_merge_regions(type);
730 	return 0;
731 }
732 
733 /**
734  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
735  * @base: the base phys addr of the region
736  * @size: the size of the region
737  *
738  * This function isolates region [@base, @base + @size), and clear flag
739  * MEMBLOCK_HOTPLUG for the isolated regions.
740  *
741  * Return 0 on succees, -errno on failure.
742  */
743 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
744 {
745 	struct memblock_type *type = &memblock.memory;
746 	int i, ret, start_rgn, end_rgn;
747 
748 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
749 	if (ret)
750 		return ret;
751 
752 	for (i = start_rgn; i < end_rgn; i++)
753 		memblock_clear_region_flags(&type->regions[i],
754 					    MEMBLOCK_HOTPLUG);
755 
756 	memblock_merge_regions(type);
757 	return 0;
758 }
759 
760 /**
761  * __next_free_mem_range - next function for for_each_free_mem_range()
762  * @idx: pointer to u64 loop variable
763  * @nid: node selector, %NUMA_NO_NODE for all nodes
764  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
765  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
766  * @out_nid: ptr to int for nid of the range, can be %NULL
767  *
768  * Find the first free area from *@idx which matches @nid, fill the out
769  * parameters, and update *@idx for the next iteration.  The lower 32bit of
770  * *@idx contains index into memory region and the upper 32bit indexes the
771  * areas before each reserved region.  For example, if reserved regions
772  * look like the following,
773  *
774  *	0:[0-16), 1:[32-48), 2:[128-130)
775  *
776  * The upper 32bit indexes the following regions.
777  *
778  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
779  *
780  * As both region arrays are sorted, the function advances the two indices
781  * in lockstep and returns each intersection.
782  */
783 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
784 					   phys_addr_t *out_start,
785 					   phys_addr_t *out_end, int *out_nid)
786 {
787 	struct memblock_type *mem = &memblock.memory;
788 	struct memblock_type *rsv = &memblock.reserved;
789 	int mi = *idx & 0xffffffff;
790 	int ri = *idx >> 32;
791 
792 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
793 		nid = NUMA_NO_NODE;
794 
795 	for ( ; mi < mem->cnt; mi++) {
796 		struct memblock_region *m = &mem->regions[mi];
797 		phys_addr_t m_start = m->base;
798 		phys_addr_t m_end = m->base + m->size;
799 
800 		/* only memory regions are associated with nodes, check it */
801 		if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
802 			continue;
803 
804 		/* scan areas before each reservation for intersection */
805 		for ( ; ri < rsv->cnt + 1; ri++) {
806 			struct memblock_region *r = &rsv->regions[ri];
807 			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
808 			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
809 
810 			/* if ri advanced past mi, break out to advance mi */
811 			if (r_start >= m_end)
812 				break;
813 			/* if the two regions intersect, we're done */
814 			if (m_start < r_end) {
815 				if (out_start)
816 					*out_start = max(m_start, r_start);
817 				if (out_end)
818 					*out_end = min(m_end, r_end);
819 				if (out_nid)
820 					*out_nid = memblock_get_region_node(m);
821 				/*
822 				 * The region which ends first is advanced
823 				 * for the next iteration.
824 				 */
825 				if (m_end <= r_end)
826 					mi++;
827 				else
828 					ri++;
829 				*idx = (u32)mi | (u64)ri << 32;
830 				return;
831 			}
832 		}
833 	}
834 
835 	/* signal end of iteration */
836 	*idx = ULLONG_MAX;
837 }
838 
839 /**
840  * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
841  * @idx: pointer to u64 loop variable
842  * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
843  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
844  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
845  * @out_nid: ptr to int for nid of the range, can be %NULL
846  *
847  * Reverse of __next_free_mem_range().
848  *
849  * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't
850  * be able to hot-remove hotpluggable memory used by the kernel. So this
851  * function skip hotpluggable regions if needed when allocating memory for the
852  * kernel.
853  */
854 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
855 					   phys_addr_t *out_start,
856 					   phys_addr_t *out_end, int *out_nid)
857 {
858 	struct memblock_type *mem = &memblock.memory;
859 	struct memblock_type *rsv = &memblock.reserved;
860 	int mi = *idx & 0xffffffff;
861 	int ri = *idx >> 32;
862 
863 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
864 		nid = NUMA_NO_NODE;
865 
866 	if (*idx == (u64)ULLONG_MAX) {
867 		mi = mem->cnt - 1;
868 		ri = rsv->cnt;
869 	}
870 
871 	for ( ; mi >= 0; mi--) {
872 		struct memblock_region *m = &mem->regions[mi];
873 		phys_addr_t m_start = m->base;
874 		phys_addr_t m_end = m->base + m->size;
875 
876 		/* only memory regions are associated with nodes, check it */
877 		if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
878 			continue;
879 
880 		/* skip hotpluggable memory regions if needed */
881 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
882 			continue;
883 
884 		/* scan areas before each reservation for intersection */
885 		for ( ; ri >= 0; ri--) {
886 			struct memblock_region *r = &rsv->regions[ri];
887 			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
888 			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
889 
890 			/* if ri advanced past mi, break out to advance mi */
891 			if (r_end <= m_start)
892 				break;
893 			/* if the two regions intersect, we're done */
894 			if (m_end > r_start) {
895 				if (out_start)
896 					*out_start = max(m_start, r_start);
897 				if (out_end)
898 					*out_end = min(m_end, r_end);
899 				if (out_nid)
900 					*out_nid = memblock_get_region_node(m);
901 
902 				if (m_start >= r_start)
903 					mi--;
904 				else
905 					ri--;
906 				*idx = (u32)mi | (u64)ri << 32;
907 				return;
908 			}
909 		}
910 	}
911 
912 	*idx = ULLONG_MAX;
913 }
914 
915 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
916 /*
917  * Common iterator interface used to define for_each_mem_range().
918  */
919 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
920 				unsigned long *out_start_pfn,
921 				unsigned long *out_end_pfn, int *out_nid)
922 {
923 	struct memblock_type *type = &memblock.memory;
924 	struct memblock_region *r;
925 
926 	while (++*idx < type->cnt) {
927 		r = &type->regions[*idx];
928 
929 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
930 			continue;
931 		if (nid == MAX_NUMNODES || nid == r->nid)
932 			break;
933 	}
934 	if (*idx >= type->cnt) {
935 		*idx = -1;
936 		return;
937 	}
938 
939 	if (out_start_pfn)
940 		*out_start_pfn = PFN_UP(r->base);
941 	if (out_end_pfn)
942 		*out_end_pfn = PFN_DOWN(r->base + r->size);
943 	if (out_nid)
944 		*out_nid = r->nid;
945 }
946 
947 /**
948  * memblock_set_node - set node ID on memblock regions
949  * @base: base of area to set node ID for
950  * @size: size of area to set node ID for
951  * @type: memblock type to set node ID for
952  * @nid: node ID to set
953  *
954  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
955  * Regions which cross the area boundaries are split as necessary.
956  *
957  * RETURNS:
958  * 0 on success, -errno on failure.
959  */
960 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
961 				      struct memblock_type *type, int nid)
962 {
963 	int start_rgn, end_rgn;
964 	int i, ret;
965 
966 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
967 	if (ret)
968 		return ret;
969 
970 	for (i = start_rgn; i < end_rgn; i++)
971 		memblock_set_region_node(&type->regions[i], nid);
972 
973 	memblock_merge_regions(type);
974 	return 0;
975 }
976 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
977 
978 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
979 					phys_addr_t align, phys_addr_t max_addr,
980 					int nid)
981 {
982 	phys_addr_t found;
983 
984 	if (!align)
985 		align = SMP_CACHE_BYTES;
986 
987 	found = memblock_find_in_range_node(size, align, 0, max_addr, nid);
988 	if (found && !memblock_reserve(found, size))
989 		return found;
990 
991 	return 0;
992 }
993 
994 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
995 {
996 	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
997 }
998 
999 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1000 {
1001 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1002 }
1003 
1004 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1005 {
1006 	phys_addr_t alloc;
1007 
1008 	alloc = __memblock_alloc_base(size, align, max_addr);
1009 
1010 	if (alloc == 0)
1011 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1012 		      (unsigned long long) size, (unsigned long long) max_addr);
1013 
1014 	return alloc;
1015 }
1016 
1017 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1018 {
1019 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1020 }
1021 
1022 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1023 {
1024 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1025 
1026 	if (res)
1027 		return res;
1028 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1029 }
1030 
1031 /**
1032  * memblock_virt_alloc_internal - allocate boot memory block
1033  * @size: size of memory block to be allocated in bytes
1034  * @align: alignment of the region and block's size
1035  * @min_addr: the lower bound of the memory region to allocate (phys address)
1036  * @max_addr: the upper bound of the memory region to allocate (phys address)
1037  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1038  *
1039  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1040  * will fall back to memory below @min_addr. Also, allocation may fall back
1041  * to any node in the system if the specified node can not
1042  * hold the requested memory.
1043  *
1044  * The allocation is performed from memory region limited by
1045  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1046  *
1047  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1048  *
1049  * The phys address of allocated boot memory block is converted to virtual and
1050  * allocated memory is reset to 0.
1051  *
1052  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1053  * allocated boot memory block, so that it is never reported as leaks.
1054  *
1055  * RETURNS:
1056  * Virtual address of allocated memory block on success, NULL on failure.
1057  */
1058 static void * __init memblock_virt_alloc_internal(
1059 				phys_addr_t size, phys_addr_t align,
1060 				phys_addr_t min_addr, phys_addr_t max_addr,
1061 				int nid)
1062 {
1063 	phys_addr_t alloc;
1064 	void *ptr;
1065 
1066 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1067 		nid = NUMA_NO_NODE;
1068 
1069 	/*
1070 	 * Detect any accidental use of these APIs after slab is ready, as at
1071 	 * this moment memblock may be deinitialized already and its
1072 	 * internal data may be destroyed (after execution of free_all_bootmem)
1073 	 */
1074 	if (WARN_ON_ONCE(slab_is_available()))
1075 		return kzalloc_node(size, GFP_NOWAIT, nid);
1076 
1077 	if (!align)
1078 		align = SMP_CACHE_BYTES;
1079 
1080 	if (max_addr > memblock.current_limit)
1081 		max_addr = memblock.current_limit;
1082 
1083 again:
1084 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1085 					    nid);
1086 	if (alloc)
1087 		goto done;
1088 
1089 	if (nid != NUMA_NO_NODE) {
1090 		alloc = memblock_find_in_range_node(size, align, min_addr,
1091 						    max_addr,  NUMA_NO_NODE);
1092 		if (alloc)
1093 			goto done;
1094 	}
1095 
1096 	if (min_addr) {
1097 		min_addr = 0;
1098 		goto again;
1099 	} else {
1100 		goto error;
1101 	}
1102 
1103 done:
1104 	memblock_reserve(alloc, size);
1105 	ptr = phys_to_virt(alloc);
1106 	memset(ptr, 0, size);
1107 
1108 	/*
1109 	 * The min_count is set to 0 so that bootmem allocated blocks
1110 	 * are never reported as leaks. This is because many of these blocks
1111 	 * are only referred via the physical address which is not
1112 	 * looked up by kmemleak.
1113 	 */
1114 	kmemleak_alloc(ptr, size, 0, 0);
1115 
1116 	return ptr;
1117 
1118 error:
1119 	return NULL;
1120 }
1121 
1122 /**
1123  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1124  * @size: size of memory block to be allocated in bytes
1125  * @align: alignment of the region and block's size
1126  * @min_addr: the lower bound of the memory region from where the allocation
1127  *	  is preferred (phys address)
1128  * @max_addr: the upper bound of the memory region from where the allocation
1129  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1130  *	      allocate only from memory limited by memblock.current_limit value
1131  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1132  *
1133  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1134  * additional debug information (including caller info), if enabled.
1135  *
1136  * RETURNS:
1137  * Virtual address of allocated memory block on success, NULL on failure.
1138  */
1139 void * __init memblock_virt_alloc_try_nid_nopanic(
1140 				phys_addr_t size, phys_addr_t align,
1141 				phys_addr_t min_addr, phys_addr_t max_addr,
1142 				int nid)
1143 {
1144 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1145 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1146 		     (u64)max_addr, (void *)_RET_IP_);
1147 	return memblock_virt_alloc_internal(size, align, min_addr,
1148 					     max_addr, nid);
1149 }
1150 
1151 /**
1152  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1153  * @size: size of memory block to be allocated in bytes
1154  * @align: alignment of the region and block's size
1155  * @min_addr: the lower bound of the memory region from where the allocation
1156  *	  is preferred (phys address)
1157  * @max_addr: the upper bound of the memory region from where the allocation
1158  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1159  *	      allocate only from memory limited by memblock.current_limit value
1160  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1161  *
1162  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1163  * which provides debug information (including caller info), if enabled,
1164  * and panics if the request can not be satisfied.
1165  *
1166  * RETURNS:
1167  * Virtual address of allocated memory block on success, NULL on failure.
1168  */
1169 void * __init memblock_virt_alloc_try_nid(
1170 			phys_addr_t size, phys_addr_t align,
1171 			phys_addr_t min_addr, phys_addr_t max_addr,
1172 			int nid)
1173 {
1174 	void *ptr;
1175 
1176 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1177 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1178 		     (u64)max_addr, (void *)_RET_IP_);
1179 	ptr = memblock_virt_alloc_internal(size, align,
1180 					   min_addr, max_addr, nid);
1181 	if (ptr)
1182 		return ptr;
1183 
1184 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1185 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1186 	      (u64)max_addr);
1187 	return NULL;
1188 }
1189 
1190 /**
1191  * __memblock_free_early - free boot memory block
1192  * @base: phys starting address of the  boot memory block
1193  * @size: size of the boot memory block in bytes
1194  *
1195  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1196  * The freeing memory will not be released to the buddy allocator.
1197  */
1198 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1199 {
1200 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1201 		     __func__, (u64)base, (u64)base + size - 1,
1202 		     (void *)_RET_IP_);
1203 	kmemleak_free_part(__va(base), size);
1204 	__memblock_remove(&memblock.reserved, base, size);
1205 }
1206 
1207 /*
1208  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1209  * @addr: phys starting address of the  boot memory block
1210  * @size: size of the boot memory block in bytes
1211  *
1212  * This is only useful when the bootmem allocator has already been torn
1213  * down, but we are still initializing the system.  Pages are released directly
1214  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1215  */
1216 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1217 {
1218 	u64 cursor, end;
1219 
1220 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1221 		     __func__, (u64)base, (u64)base + size - 1,
1222 		     (void *)_RET_IP_);
1223 	kmemleak_free_part(__va(base), size);
1224 	cursor = PFN_UP(base);
1225 	end = PFN_DOWN(base + size);
1226 
1227 	for (; cursor < end; cursor++) {
1228 		__free_pages_bootmem(pfn_to_page(cursor), 0);
1229 		totalram_pages++;
1230 	}
1231 }
1232 
1233 /*
1234  * Remaining API functions
1235  */
1236 
1237 phys_addr_t __init memblock_phys_mem_size(void)
1238 {
1239 	return memblock.memory.total_size;
1240 }
1241 
1242 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1243 {
1244 	unsigned long pages = 0;
1245 	struct memblock_region *r;
1246 	unsigned long start_pfn, end_pfn;
1247 
1248 	for_each_memblock(memory, r) {
1249 		start_pfn = memblock_region_memory_base_pfn(r);
1250 		end_pfn = memblock_region_memory_end_pfn(r);
1251 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1252 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1253 		pages += end_pfn - start_pfn;
1254 	}
1255 
1256 	return (phys_addr_t)pages << PAGE_SHIFT;
1257 }
1258 
1259 /* lowest address */
1260 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1261 {
1262 	return memblock.memory.regions[0].base;
1263 }
1264 
1265 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1266 {
1267 	int idx = memblock.memory.cnt - 1;
1268 
1269 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1270 }
1271 
1272 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1273 {
1274 	unsigned long i;
1275 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1276 
1277 	if (!limit)
1278 		return;
1279 
1280 	/* find out max address */
1281 	for (i = 0; i < memblock.memory.cnt; i++) {
1282 		struct memblock_region *r = &memblock.memory.regions[i];
1283 
1284 		if (limit <= r->size) {
1285 			max_addr = r->base + limit;
1286 			break;
1287 		}
1288 		limit -= r->size;
1289 	}
1290 
1291 	/* truncate both memory and reserved regions */
1292 	__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
1293 	__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
1294 }
1295 
1296 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1297 {
1298 	unsigned int left = 0, right = type->cnt;
1299 
1300 	do {
1301 		unsigned int mid = (right + left) / 2;
1302 
1303 		if (addr < type->regions[mid].base)
1304 			right = mid;
1305 		else if (addr >= (type->regions[mid].base +
1306 				  type->regions[mid].size))
1307 			left = mid + 1;
1308 		else
1309 			return mid;
1310 	} while (left < right);
1311 	return -1;
1312 }
1313 
1314 int __init memblock_is_reserved(phys_addr_t addr)
1315 {
1316 	return memblock_search(&memblock.reserved, addr) != -1;
1317 }
1318 
1319 int __init_memblock memblock_is_memory(phys_addr_t addr)
1320 {
1321 	return memblock_search(&memblock.memory, addr) != -1;
1322 }
1323 
1324 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1325 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1326 			 unsigned long *start_pfn, unsigned long *end_pfn)
1327 {
1328 	struct memblock_type *type = &memblock.memory;
1329 	int mid = memblock_search(type, (phys_addr_t)pfn << PAGE_SHIFT);
1330 
1331 	if (mid == -1)
1332 		return -1;
1333 
1334 	*start_pfn = type->regions[mid].base >> PAGE_SHIFT;
1335 	*end_pfn = (type->regions[mid].base + type->regions[mid].size)
1336 			>> PAGE_SHIFT;
1337 
1338 	return type->regions[mid].nid;
1339 }
1340 #endif
1341 
1342 /**
1343  * memblock_is_region_memory - check if a region is a subset of memory
1344  * @base: base of region to check
1345  * @size: size of region to check
1346  *
1347  * Check if the region [@base, @base+@size) is a subset of a memory block.
1348  *
1349  * RETURNS:
1350  * 0 if false, non-zero if true
1351  */
1352 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1353 {
1354 	int idx = memblock_search(&memblock.memory, base);
1355 	phys_addr_t end = base + memblock_cap_size(base, &size);
1356 
1357 	if (idx == -1)
1358 		return 0;
1359 	return memblock.memory.regions[idx].base <= base &&
1360 		(memblock.memory.regions[idx].base +
1361 		 memblock.memory.regions[idx].size) >= end;
1362 }
1363 
1364 /**
1365  * memblock_is_region_reserved - check if a region intersects reserved memory
1366  * @base: base of region to check
1367  * @size: size of region to check
1368  *
1369  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1370  *
1371  * RETURNS:
1372  * 0 if false, non-zero if true
1373  */
1374 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1375 {
1376 	memblock_cap_size(base, &size);
1377 	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1378 }
1379 
1380 void __init_memblock memblock_trim_memory(phys_addr_t align)
1381 {
1382 	int i;
1383 	phys_addr_t start, end, orig_start, orig_end;
1384 	struct memblock_type *mem = &memblock.memory;
1385 
1386 	for (i = 0; i < mem->cnt; i++) {
1387 		orig_start = mem->regions[i].base;
1388 		orig_end = mem->regions[i].base + mem->regions[i].size;
1389 		start = round_up(orig_start, align);
1390 		end = round_down(orig_end, align);
1391 
1392 		if (start == orig_start && end == orig_end)
1393 			continue;
1394 
1395 		if (start < end) {
1396 			mem->regions[i].base = start;
1397 			mem->regions[i].size = end - start;
1398 		} else {
1399 			memblock_remove_region(mem, i);
1400 			i--;
1401 		}
1402 	}
1403 }
1404 
1405 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1406 {
1407 	memblock.current_limit = limit;
1408 }
1409 
1410 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1411 {
1412 	unsigned long long base, size;
1413 	unsigned long flags;
1414 	int i;
1415 
1416 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1417 
1418 	for (i = 0; i < type->cnt; i++) {
1419 		struct memblock_region *rgn = &type->regions[i];
1420 		char nid_buf[32] = "";
1421 
1422 		base = rgn->base;
1423 		size = rgn->size;
1424 		flags = rgn->flags;
1425 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1426 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1427 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1428 				 memblock_get_region_node(rgn));
1429 #endif
1430 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1431 			name, i, base, base + size - 1, size, nid_buf, flags);
1432 	}
1433 }
1434 
1435 void __init_memblock __memblock_dump_all(void)
1436 {
1437 	pr_info("MEMBLOCK configuration:\n");
1438 	pr_info(" memory size = %#llx reserved size = %#llx\n",
1439 		(unsigned long long)memblock.memory.total_size,
1440 		(unsigned long long)memblock.reserved.total_size);
1441 
1442 	memblock_dump(&memblock.memory, "memory");
1443 	memblock_dump(&memblock.reserved, "reserved");
1444 }
1445 
1446 void __init memblock_allow_resize(void)
1447 {
1448 	memblock_can_resize = 1;
1449 }
1450 
1451 static int __init early_memblock(char *p)
1452 {
1453 	if (p && strstr(p, "debug"))
1454 		memblock_debug = 1;
1455 	return 0;
1456 }
1457 early_param("memblock", early_memblock);
1458 
1459 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1460 
1461 static int memblock_debug_show(struct seq_file *m, void *private)
1462 {
1463 	struct memblock_type *type = m->private;
1464 	struct memblock_region *reg;
1465 	int i;
1466 
1467 	for (i = 0; i < type->cnt; i++) {
1468 		reg = &type->regions[i];
1469 		seq_printf(m, "%4d: ", i);
1470 		if (sizeof(phys_addr_t) == 4)
1471 			seq_printf(m, "0x%08lx..0x%08lx\n",
1472 				   (unsigned long)reg->base,
1473 				   (unsigned long)(reg->base + reg->size - 1));
1474 		else
1475 			seq_printf(m, "0x%016llx..0x%016llx\n",
1476 				   (unsigned long long)reg->base,
1477 				   (unsigned long long)(reg->base + reg->size - 1));
1478 
1479 	}
1480 	return 0;
1481 }
1482 
1483 static int memblock_debug_open(struct inode *inode, struct file *file)
1484 {
1485 	return single_open(file, memblock_debug_show, inode->i_private);
1486 }
1487 
1488 static const struct file_operations memblock_debug_fops = {
1489 	.open = memblock_debug_open,
1490 	.read = seq_read,
1491 	.llseek = seq_lseek,
1492 	.release = single_release,
1493 };
1494 
1495 static int __init memblock_init_debugfs(void)
1496 {
1497 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1498 	if (!root)
1499 		return -ENXIO;
1500 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1501 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1502 
1503 	return 0;
1504 }
1505 __initcall(memblock_init_debugfs);
1506 
1507 #endif /* CONFIG_DEBUG_FS */
1508