xref: /openbmc/linux/mm/memblock.c (revision 4800cd83)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 struct memblock memblock __initdata_memblock;
24 
25 int memblock_debug __initdata_memblock;
26 int memblock_can_resize __initdata_memblock;
27 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
28 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
29 
30 /* inline so we don't get a warning when pr_debug is compiled out */
31 static inline const char *memblock_type_name(struct memblock_type *type)
32 {
33 	if (type == &memblock.memory)
34 		return "memory";
35 	else if (type == &memblock.reserved)
36 		return "reserved";
37 	else
38 		return "unknown";
39 }
40 
41 /*
42  * Address comparison utilities
43  */
44 
45 static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
46 {
47 	return addr & ~(size - 1);
48 }
49 
50 static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
51 {
52 	return (addr + (size - 1)) & ~(size - 1);
53 }
54 
55 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
56 				       phys_addr_t base2, phys_addr_t size2)
57 {
58 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
59 }
60 
61 static long __init_memblock memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
62 			       phys_addr_t base2, phys_addr_t size2)
63 {
64 	if (base2 == base1 + size1)
65 		return 1;
66 	else if (base1 == base2 + size2)
67 		return -1;
68 
69 	return 0;
70 }
71 
72 static long __init_memblock memblock_regions_adjacent(struct memblock_type *type,
73 				 unsigned long r1, unsigned long r2)
74 {
75 	phys_addr_t base1 = type->regions[r1].base;
76 	phys_addr_t size1 = type->regions[r1].size;
77 	phys_addr_t base2 = type->regions[r2].base;
78 	phys_addr_t size2 = type->regions[r2].size;
79 
80 	return memblock_addrs_adjacent(base1, size1, base2, size2);
81 }
82 
83 long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
84 {
85 	unsigned long i;
86 
87 	for (i = 0; i < type->cnt; i++) {
88 		phys_addr_t rgnbase = type->regions[i].base;
89 		phys_addr_t rgnsize = type->regions[i].size;
90 		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
91 			break;
92 	}
93 
94 	return (i < type->cnt) ? i : -1;
95 }
96 
97 /*
98  * Find, allocate, deallocate or reserve unreserved regions. All allocations
99  * are top-down.
100  */
101 
102 static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
103 					  phys_addr_t size, phys_addr_t align)
104 {
105 	phys_addr_t base, res_base;
106 	long j;
107 
108 	/* In case, huge size is requested */
109 	if (end < size)
110 		return MEMBLOCK_ERROR;
111 
112 	base = memblock_align_down((end - size), align);
113 
114 	/* Prevent allocations returning 0 as it's also used to
115 	 * indicate an allocation failure
116 	 */
117 	if (start == 0)
118 		start = PAGE_SIZE;
119 
120 	while (start <= base) {
121 		j = memblock_overlaps_region(&memblock.reserved, base, size);
122 		if (j < 0)
123 			return base;
124 		res_base = memblock.reserved.regions[j].base;
125 		if (res_base < size)
126 			break;
127 		base = memblock_align_down(res_base - size, align);
128 	}
129 
130 	return MEMBLOCK_ERROR;
131 }
132 
133 static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
134 			phys_addr_t align, phys_addr_t start, phys_addr_t end)
135 {
136 	long i;
137 
138 	BUG_ON(0 == size);
139 
140 	/* Pump up max_addr */
141 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
142 		end = memblock.current_limit;
143 
144 	/* We do a top-down search, this tends to limit memory
145 	 * fragmentation by keeping early boot allocs near the
146 	 * top of memory
147 	 */
148 	for (i = memblock.memory.cnt - 1; i >= 0; i--) {
149 		phys_addr_t memblockbase = memblock.memory.regions[i].base;
150 		phys_addr_t memblocksize = memblock.memory.regions[i].size;
151 		phys_addr_t bottom, top, found;
152 
153 		if (memblocksize < size)
154 			continue;
155 		if ((memblockbase + memblocksize) <= start)
156 			break;
157 		bottom = max(memblockbase, start);
158 		top = min(memblockbase + memblocksize, end);
159 		if (bottom >= top)
160 			continue;
161 		found = memblock_find_region(bottom, top, size, align);
162 		if (found != MEMBLOCK_ERROR)
163 			return found;
164 	}
165 	return MEMBLOCK_ERROR;
166 }
167 
168 /*
169  * Find a free area with specified alignment in a specific range.
170  */
171 u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
172 {
173 	return memblock_find_base(size, align, start, end);
174 }
175 
176 /*
177  * Free memblock.reserved.regions
178  */
179 int __init_memblock memblock_free_reserved_regions(void)
180 {
181 	if (memblock.reserved.regions == memblock_reserved_init_regions)
182 		return 0;
183 
184 	return memblock_free(__pa(memblock.reserved.regions),
185 		 sizeof(struct memblock_region) * memblock.reserved.max);
186 }
187 
188 /*
189  * Reserve memblock.reserved.regions
190  */
191 int __init_memblock memblock_reserve_reserved_regions(void)
192 {
193 	if (memblock.reserved.regions == memblock_reserved_init_regions)
194 		return 0;
195 
196 	return memblock_reserve(__pa(memblock.reserved.regions),
197 		 sizeof(struct memblock_region) * memblock.reserved.max);
198 }
199 
200 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
201 {
202 	unsigned long i;
203 
204 	for (i = r; i < type->cnt - 1; i++) {
205 		type->regions[i].base = type->regions[i + 1].base;
206 		type->regions[i].size = type->regions[i + 1].size;
207 	}
208 	type->cnt--;
209 }
210 
211 /* Assumption: base addr of region 1 < base addr of region 2 */
212 static void __init_memblock memblock_coalesce_regions(struct memblock_type *type,
213 		unsigned long r1, unsigned long r2)
214 {
215 	type->regions[r1].size += type->regions[r2].size;
216 	memblock_remove_region(type, r2);
217 }
218 
219 /* Defined below but needed now */
220 static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
221 
222 static int __init_memblock memblock_double_array(struct memblock_type *type)
223 {
224 	struct memblock_region *new_array, *old_array;
225 	phys_addr_t old_size, new_size, addr;
226 	int use_slab = slab_is_available();
227 
228 	/* We don't allow resizing until we know about the reserved regions
229 	 * of memory that aren't suitable for allocation
230 	 */
231 	if (!memblock_can_resize)
232 		return -1;
233 
234 	/* Calculate new doubled size */
235 	old_size = type->max * sizeof(struct memblock_region);
236 	new_size = old_size << 1;
237 
238 	/* Try to find some space for it.
239 	 *
240 	 * WARNING: We assume that either slab_is_available() and we use it or
241 	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
242 	 * when bootmem is currently active (unless bootmem itself is implemented
243 	 * on top of MEMBLOCK which isn't the case yet)
244 	 *
245 	 * This should however not be an issue for now, as we currently only
246 	 * call into MEMBLOCK while it's still active, or much later when slab is
247 	 * active for memory hotplug operations
248 	 */
249 	if (use_slab) {
250 		new_array = kmalloc(new_size, GFP_KERNEL);
251 		addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
252 	} else
253 		addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
254 	if (addr == MEMBLOCK_ERROR) {
255 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
256 		       memblock_type_name(type), type->max, type->max * 2);
257 		return -1;
258 	}
259 	new_array = __va(addr);
260 
261 	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
262 		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
263 
264 	/* Found space, we now need to move the array over before
265 	 * we add the reserved region since it may be our reserved
266 	 * array itself that is full.
267 	 */
268 	memcpy(new_array, type->regions, old_size);
269 	memset(new_array + type->max, 0, old_size);
270 	old_array = type->regions;
271 	type->regions = new_array;
272 	type->max <<= 1;
273 
274 	/* If we use SLAB that's it, we are done */
275 	if (use_slab)
276 		return 0;
277 
278 	/* Add the new reserved region now. Should not fail ! */
279 	BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size) < 0);
280 
281 	/* If the array wasn't our static init one, then free it. We only do
282 	 * that before SLAB is available as later on, we don't know whether
283 	 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
284 	 * anyways
285 	 */
286 	if (old_array != memblock_memory_init_regions &&
287 	    old_array != memblock_reserved_init_regions)
288 		memblock_free(__pa(old_array), old_size);
289 
290 	return 0;
291 }
292 
293 extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
294 					  phys_addr_t addr2, phys_addr_t size2)
295 {
296 	return 1;
297 }
298 
299 static long __init_memblock memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
300 {
301 	unsigned long coalesced = 0;
302 	long adjacent, i;
303 
304 	if ((type->cnt == 1) && (type->regions[0].size == 0)) {
305 		type->regions[0].base = base;
306 		type->regions[0].size = size;
307 		return 0;
308 	}
309 
310 	/* First try and coalesce this MEMBLOCK with another. */
311 	for (i = 0; i < type->cnt; i++) {
312 		phys_addr_t rgnbase = type->regions[i].base;
313 		phys_addr_t rgnsize = type->regions[i].size;
314 
315 		if ((rgnbase == base) && (rgnsize == size))
316 			/* Already have this region, so we're done */
317 			return 0;
318 
319 		adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
320 		/* Check if arch allows coalescing */
321 		if (adjacent != 0 && type == &memblock.memory &&
322 		    !memblock_memory_can_coalesce(base, size, rgnbase, rgnsize))
323 			break;
324 		if (adjacent > 0) {
325 			type->regions[i].base -= size;
326 			type->regions[i].size += size;
327 			coalesced++;
328 			break;
329 		} else if (adjacent < 0) {
330 			type->regions[i].size += size;
331 			coalesced++;
332 			break;
333 		}
334 	}
335 
336 	/* If we plugged a hole, we may want to also coalesce with the
337 	 * next region
338 	 */
339 	if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1) &&
340 	    ((type != &memblock.memory || memblock_memory_can_coalesce(type->regions[i].base,
341 							     type->regions[i].size,
342 							     type->regions[i+1].base,
343 							     type->regions[i+1].size)))) {
344 		memblock_coalesce_regions(type, i, i+1);
345 		coalesced++;
346 	}
347 
348 	if (coalesced)
349 		return coalesced;
350 
351 	/* If we are out of space, we fail. It's too late to resize the array
352 	 * but then this shouldn't have happened in the first place.
353 	 */
354 	if (WARN_ON(type->cnt >= type->max))
355 		return -1;
356 
357 	/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
358 	for (i = type->cnt - 1; i >= 0; i--) {
359 		if (base < type->regions[i].base) {
360 			type->regions[i+1].base = type->regions[i].base;
361 			type->regions[i+1].size = type->regions[i].size;
362 		} else {
363 			type->regions[i+1].base = base;
364 			type->regions[i+1].size = size;
365 			break;
366 		}
367 	}
368 
369 	if (base < type->regions[0].base) {
370 		type->regions[0].base = base;
371 		type->regions[0].size = size;
372 	}
373 	type->cnt++;
374 
375 	/* The array is full ? Try to resize it. If that fails, we undo
376 	 * our allocation and return an error
377 	 */
378 	if (type->cnt == type->max && memblock_double_array(type)) {
379 		type->cnt--;
380 		return -1;
381 	}
382 
383 	return 0;
384 }
385 
386 long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
387 {
388 	return memblock_add_region(&memblock.memory, base, size);
389 
390 }
391 
392 static long __init_memblock __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
393 {
394 	phys_addr_t rgnbegin, rgnend;
395 	phys_addr_t end = base + size;
396 	int i;
397 
398 	rgnbegin = rgnend = 0; /* supress gcc warnings */
399 
400 	/* Find the region where (base, size) belongs to */
401 	for (i=0; i < type->cnt; i++) {
402 		rgnbegin = type->regions[i].base;
403 		rgnend = rgnbegin + type->regions[i].size;
404 
405 		if ((rgnbegin <= base) && (end <= rgnend))
406 			break;
407 	}
408 
409 	/* Didn't find the region */
410 	if (i == type->cnt)
411 		return -1;
412 
413 	/* Check to see if we are removing entire region */
414 	if ((rgnbegin == base) && (rgnend == end)) {
415 		memblock_remove_region(type, i);
416 		return 0;
417 	}
418 
419 	/* Check to see if region is matching at the front */
420 	if (rgnbegin == base) {
421 		type->regions[i].base = end;
422 		type->regions[i].size -= size;
423 		return 0;
424 	}
425 
426 	/* Check to see if the region is matching at the end */
427 	if (rgnend == end) {
428 		type->regions[i].size -= size;
429 		return 0;
430 	}
431 
432 	/*
433 	 * We need to split the entry -  adjust the current one to the
434 	 * beginging of the hole and add the region after hole.
435 	 */
436 	type->regions[i].size = base - type->regions[i].base;
437 	return memblock_add_region(type, end, rgnend - end);
438 }
439 
440 long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
441 {
442 	return __memblock_remove(&memblock.memory, base, size);
443 }
444 
445 long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
446 {
447 	return __memblock_remove(&memblock.reserved, base, size);
448 }
449 
450 long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
451 {
452 	struct memblock_type *_rgn = &memblock.reserved;
453 
454 	BUG_ON(0 == size);
455 
456 	return memblock_add_region(_rgn, base, size);
457 }
458 
459 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
460 {
461 	phys_addr_t found;
462 
463 	/* We align the size to limit fragmentation. Without this, a lot of
464 	 * small allocs quickly eat up the whole reserve array on sparc
465 	 */
466 	size = memblock_align_up(size, align);
467 
468 	found = memblock_find_base(size, align, 0, max_addr);
469 	if (found != MEMBLOCK_ERROR &&
470 	    memblock_add_region(&memblock.reserved, found, size) >= 0)
471 		return found;
472 
473 	return 0;
474 }
475 
476 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
477 {
478 	phys_addr_t alloc;
479 
480 	alloc = __memblock_alloc_base(size, align, max_addr);
481 
482 	if (alloc == 0)
483 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
484 		      (unsigned long long) size, (unsigned long long) max_addr);
485 
486 	return alloc;
487 }
488 
489 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
490 {
491 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
492 }
493 
494 
495 /*
496  * Additional node-local allocators. Search for node memory is bottom up
497  * and walks memblock regions within that node bottom-up as well, but allocation
498  * within an memblock region is top-down. XXX I plan to fix that at some stage
499  *
500  * WARNING: Only available after early_node_map[] has been populated,
501  * on some architectures, that is after all the calls to add_active_range()
502  * have been done to populate it.
503  */
504 
505 phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
506 {
507 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
508 	/*
509 	 * This code originates from sparc which really wants use to walk by addresses
510 	 * and returns the nid. This is not very convenient for early_pfn_map[] users
511 	 * as the map isn't sorted yet, and it really wants to be walked by nid.
512 	 *
513 	 * For now, I implement the inefficient method below which walks the early
514 	 * map multiple times. Eventually we may want to use an ARCH config option
515 	 * to implement a completely different method for both case.
516 	 */
517 	unsigned long start_pfn, end_pfn;
518 	int i;
519 
520 	for (i = 0; i < MAX_NUMNODES; i++) {
521 		get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
522 		if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
523 			continue;
524 		*nid = i;
525 		return min(end, PFN_PHYS(end_pfn));
526 	}
527 #endif
528 	*nid = 0;
529 
530 	return end;
531 }
532 
533 static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
534 					       phys_addr_t size,
535 					       phys_addr_t align, int nid)
536 {
537 	phys_addr_t start, end;
538 
539 	start = mp->base;
540 	end = start + mp->size;
541 
542 	start = memblock_align_up(start, align);
543 	while (start < end) {
544 		phys_addr_t this_end;
545 		int this_nid;
546 
547 		this_end = memblock_nid_range(start, end, &this_nid);
548 		if (this_nid == nid) {
549 			phys_addr_t ret = memblock_find_region(start, this_end, size, align);
550 			if (ret != MEMBLOCK_ERROR &&
551 			    memblock_add_region(&memblock.reserved, ret, size) >= 0)
552 				return ret;
553 		}
554 		start = this_end;
555 	}
556 
557 	return MEMBLOCK_ERROR;
558 }
559 
560 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
561 {
562 	struct memblock_type *mem = &memblock.memory;
563 	int i;
564 
565 	BUG_ON(0 == size);
566 
567 	/* We align the size to limit fragmentation. Without this, a lot of
568 	 * small allocs quickly eat up the whole reserve array on sparc
569 	 */
570 	size = memblock_align_up(size, align);
571 
572 	/* We do a bottom-up search for a region with the right
573 	 * nid since that's easier considering how memblock_nid_range()
574 	 * works
575 	 */
576 	for (i = 0; i < mem->cnt; i++) {
577 		phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
578 					       size, align, nid);
579 		if (ret != MEMBLOCK_ERROR)
580 			return ret;
581 	}
582 
583 	return 0;
584 }
585 
586 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
587 {
588 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
589 
590 	if (res)
591 		return res;
592 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
593 }
594 
595 
596 /*
597  * Remaining API functions
598  */
599 
600 /* You must call memblock_analyze() before this. */
601 phys_addr_t __init memblock_phys_mem_size(void)
602 {
603 	return memblock.memory_size;
604 }
605 
606 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
607 {
608 	int idx = memblock.memory.cnt - 1;
609 
610 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
611 }
612 
613 /* You must call memblock_analyze() after this. */
614 void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
615 {
616 	unsigned long i;
617 	phys_addr_t limit;
618 	struct memblock_region *p;
619 
620 	if (!memory_limit)
621 		return;
622 
623 	/* Truncate the memblock regions to satisfy the memory limit. */
624 	limit = memory_limit;
625 	for (i = 0; i < memblock.memory.cnt; i++) {
626 		if (limit > memblock.memory.regions[i].size) {
627 			limit -= memblock.memory.regions[i].size;
628 			continue;
629 		}
630 
631 		memblock.memory.regions[i].size = limit;
632 		memblock.memory.cnt = i + 1;
633 		break;
634 	}
635 
636 	memory_limit = memblock_end_of_DRAM();
637 
638 	/* And truncate any reserves above the limit also. */
639 	for (i = 0; i < memblock.reserved.cnt; i++) {
640 		p = &memblock.reserved.regions[i];
641 
642 		if (p->base > memory_limit)
643 			p->size = 0;
644 		else if ((p->base + p->size) > memory_limit)
645 			p->size = memory_limit - p->base;
646 
647 		if (p->size == 0) {
648 			memblock_remove_region(&memblock.reserved, i);
649 			i--;
650 		}
651 	}
652 }
653 
654 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
655 {
656 	unsigned int left = 0, right = type->cnt;
657 
658 	do {
659 		unsigned int mid = (right + left) / 2;
660 
661 		if (addr < type->regions[mid].base)
662 			right = mid;
663 		else if (addr >= (type->regions[mid].base +
664 				  type->regions[mid].size))
665 			left = mid + 1;
666 		else
667 			return mid;
668 	} while (left < right);
669 	return -1;
670 }
671 
672 int __init memblock_is_reserved(phys_addr_t addr)
673 {
674 	return memblock_search(&memblock.reserved, addr) != -1;
675 }
676 
677 int __init_memblock memblock_is_memory(phys_addr_t addr)
678 {
679 	return memblock_search(&memblock.memory, addr) != -1;
680 }
681 
682 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
683 {
684 	int idx = memblock_search(&memblock.memory, base);
685 
686 	if (idx == -1)
687 		return 0;
688 	return memblock.memory.regions[idx].base <= base &&
689 		(memblock.memory.regions[idx].base +
690 		 memblock.memory.regions[idx].size) >= (base + size);
691 }
692 
693 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
694 {
695 	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
696 }
697 
698 
699 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
700 {
701 	memblock.current_limit = limit;
702 }
703 
704 static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
705 {
706 	unsigned long long base, size;
707 	int i;
708 
709 	pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);
710 
711 	for (i = 0; i < region->cnt; i++) {
712 		base = region->regions[i].base;
713 		size = region->regions[i].size;
714 
715 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
716 		    name, i, base, base + size - 1, size);
717 	}
718 }
719 
720 void __init_memblock memblock_dump_all(void)
721 {
722 	if (!memblock_debug)
723 		return;
724 
725 	pr_info("MEMBLOCK configuration:\n");
726 	pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
727 
728 	memblock_dump(&memblock.memory, "memory");
729 	memblock_dump(&memblock.reserved, "reserved");
730 }
731 
732 void __init memblock_analyze(void)
733 {
734 	int i;
735 
736 	/* Check marker in the unused last array entry */
737 	WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
738 		!= (phys_addr_t)RED_INACTIVE);
739 	WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
740 		!= (phys_addr_t)RED_INACTIVE);
741 
742 	memblock.memory_size = 0;
743 
744 	for (i = 0; i < memblock.memory.cnt; i++)
745 		memblock.memory_size += memblock.memory.regions[i].size;
746 
747 	/* We allow resizing from there */
748 	memblock_can_resize = 1;
749 }
750 
751 void __init memblock_init(void)
752 {
753 	static int init_done __initdata = 0;
754 
755 	if (init_done)
756 		return;
757 	init_done = 1;
758 
759 	/* Hookup the initial arrays */
760 	memblock.memory.regions	= memblock_memory_init_regions;
761 	memblock.memory.max		= INIT_MEMBLOCK_REGIONS;
762 	memblock.reserved.regions	= memblock_reserved_init_regions;
763 	memblock.reserved.max	= INIT_MEMBLOCK_REGIONS;
764 
765 	/* Write a marker in the unused last array entry */
766 	memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
767 	memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
768 
769 	/* Create a dummy zero size MEMBLOCK which will get coalesced away later.
770 	 * This simplifies the memblock_add() code below...
771 	 */
772 	memblock.memory.regions[0].base = 0;
773 	memblock.memory.regions[0].size = 0;
774 	memblock.memory.cnt = 1;
775 
776 	/* Ditto. */
777 	memblock.reserved.regions[0].base = 0;
778 	memblock.reserved.regions[0].size = 0;
779 	memblock.reserved.cnt = 1;
780 
781 	memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
782 }
783 
784 static int __init early_memblock(char *p)
785 {
786 	if (p && strstr(p, "debug"))
787 		memblock_debug = 1;
788 	return 0;
789 }
790 early_param("memblock", early_memblock);
791 
792 #if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
793 
794 static int memblock_debug_show(struct seq_file *m, void *private)
795 {
796 	struct memblock_type *type = m->private;
797 	struct memblock_region *reg;
798 	int i;
799 
800 	for (i = 0; i < type->cnt; i++) {
801 		reg = &type->regions[i];
802 		seq_printf(m, "%4d: ", i);
803 		if (sizeof(phys_addr_t) == 4)
804 			seq_printf(m, "0x%08lx..0x%08lx\n",
805 				   (unsigned long)reg->base,
806 				   (unsigned long)(reg->base + reg->size - 1));
807 		else
808 			seq_printf(m, "0x%016llx..0x%016llx\n",
809 				   (unsigned long long)reg->base,
810 				   (unsigned long long)(reg->base + reg->size - 1));
811 
812 	}
813 	return 0;
814 }
815 
816 static int memblock_debug_open(struct inode *inode, struct file *file)
817 {
818 	return single_open(file, memblock_debug_show, inode->i_private);
819 }
820 
821 static const struct file_operations memblock_debug_fops = {
822 	.open = memblock_debug_open,
823 	.read = seq_read,
824 	.llseek = seq_lseek,
825 	.release = single_release,
826 };
827 
828 static int __init memblock_init_debugfs(void)
829 {
830 	struct dentry *root = debugfs_create_dir("memblock", NULL);
831 	if (!root)
832 		return -ENXIO;
833 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
834 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
835 
836 	return 0;
837 }
838 __initcall(memblock_init_debugfs);
839 
840 #endif /* CONFIG_DEBUG_FS */
841