1 /* 2 * Procedures for maintaining information about logical memory blocks. 3 * 4 * Peter Bergner, IBM Corp. June 2001. 5 * Copyright (C) 2001 Peter Bergner. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/bitops.h> 17 #include <linux/poison.h> 18 #include <linux/pfn.h> 19 #include <linux/debugfs.h> 20 #include <linux/kmemleak.h> 21 #include <linux/seq_file.h> 22 #include <linux/memblock.h> 23 24 #include <asm/sections.h> 25 #include <linux/io.h> 26 27 #include "internal.h" 28 29 #define INIT_MEMBLOCK_REGIONS 128 30 #define INIT_PHYSMEM_REGIONS 4 31 32 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 33 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 34 #endif 35 36 /** 37 * DOC: memblock overview 38 * 39 * Memblock is a method of managing memory regions during the early 40 * boot period when the usual kernel memory allocators are not up and 41 * running. 42 * 43 * Memblock views the system memory as collections of contiguous 44 * regions. There are several types of these collections: 45 * 46 * * ``memory`` - describes the physical memory available to the 47 * kernel; this may differ from the actual physical memory installed 48 * in the system, for instance when the memory is restricted with 49 * ``mem=`` command line parameter 50 * * ``reserved`` - describes the regions that were allocated 51 * * ``physmap`` - describes the actual physical memory regardless of 52 * the possible restrictions; the ``physmap`` type is only available 53 * on some architectures. 54 * 55 * Each region is represented by :c:type:`struct memblock_region` that 56 * defines the region extents, its attributes and NUMA node id on NUMA 57 * systems. Every memory type is described by the :c:type:`struct 58 * memblock_type` which contains an array of memory regions along with 59 * the allocator metadata. The memory types are nicely wrapped with 60 * :c:type:`struct memblock`. This structure is statically initialzed 61 * at build time. The region arrays for the "memory" and "reserved" 62 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the 63 * "physmap" type to %INIT_PHYSMEM_REGIONS. 64 * The :c:func:`memblock_allow_resize` enables automatic resizing of 65 * the region arrays during addition of new regions. This feature 66 * should be used with care so that memory allocated for the region 67 * array will not overlap with areas that should be reserved, for 68 * example initrd. 69 * 70 * The early architecture setup should tell memblock what the physical 71 * memory layout is by using :c:func:`memblock_add` or 72 * :c:func:`memblock_add_node` functions. The first function does not 73 * assign the region to a NUMA node and it is appropriate for UMA 74 * systems. Yet, it is possible to use it on NUMA systems as well and 75 * assign the region to a NUMA node later in the setup process using 76 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node` 77 * performs such an assignment directly. 78 * 79 * Once memblock is setup the memory can be allocated using one of the 80 * API variants: 81 * 82 * * :c:func:`memblock_phys_alloc*` - these functions return the 83 * **physical** address of the allocated memory 84 * * :c:func:`memblock_alloc*` - these functions return the **virtual** 85 * address of the allocated memory. 86 * 87 * Note, that both API variants use implict assumptions about allowed 88 * memory ranges and the fallback methods. Consult the documentation 89 * of :c:func:`memblock_alloc_internal` and 90 * :c:func:`memblock_alloc_range_nid` functions for more elaboarte 91 * description. 92 * 93 * As the system boot progresses, the architecture specific 94 * :c:func:`mem_init` function frees all the memory to the buddy page 95 * allocator. 96 * 97 * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 98 * memblock data structures will be discarded after the system 99 * initialization compltes. 100 */ 101 102 #ifndef CONFIG_NEED_MULTIPLE_NODES 103 struct pglist_data __refdata contig_page_data; 104 EXPORT_SYMBOL(contig_page_data); 105 #endif 106 107 unsigned long max_low_pfn; 108 unsigned long min_low_pfn; 109 unsigned long max_pfn; 110 unsigned long long max_possible_pfn; 111 112 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 113 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 114 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 115 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; 116 #endif 117 118 struct memblock memblock __initdata_memblock = { 119 .memory.regions = memblock_memory_init_regions, 120 .memory.cnt = 1, /* empty dummy entry */ 121 .memory.max = INIT_MEMBLOCK_REGIONS, 122 .memory.name = "memory", 123 124 .reserved.regions = memblock_reserved_init_regions, 125 .reserved.cnt = 1, /* empty dummy entry */ 126 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 127 .reserved.name = "reserved", 128 129 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 130 .physmem.regions = memblock_physmem_init_regions, 131 .physmem.cnt = 1, /* empty dummy entry */ 132 .physmem.max = INIT_PHYSMEM_REGIONS, 133 .physmem.name = "physmem", 134 #endif 135 136 .bottom_up = false, 137 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 138 }; 139 140 int memblock_debug __initdata_memblock; 141 static bool system_has_some_mirror __initdata_memblock = false; 142 static int memblock_can_resize __initdata_memblock; 143 static int memblock_memory_in_slab __initdata_memblock = 0; 144 static int memblock_reserved_in_slab __initdata_memblock = 0; 145 146 static enum memblock_flags __init_memblock choose_memblock_flags(void) 147 { 148 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 149 } 150 151 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 152 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 153 { 154 return *size = min(*size, PHYS_ADDR_MAX - base); 155 } 156 157 /* 158 * Address comparison utilities 159 */ 160 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 161 phys_addr_t base2, phys_addr_t size2) 162 { 163 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 164 } 165 166 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 167 phys_addr_t base, phys_addr_t size) 168 { 169 unsigned long i; 170 171 for (i = 0; i < type->cnt; i++) 172 if (memblock_addrs_overlap(base, size, type->regions[i].base, 173 type->regions[i].size)) 174 break; 175 return i < type->cnt; 176 } 177 178 /** 179 * __memblock_find_range_bottom_up - find free area utility in bottom-up 180 * @start: start of candidate range 181 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 182 * %MEMBLOCK_ALLOC_ACCESSIBLE 183 * @size: size of free area to find 184 * @align: alignment of free area to find 185 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 186 * @flags: pick from blocks based on memory attributes 187 * 188 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 189 * 190 * Return: 191 * Found address on success, 0 on failure. 192 */ 193 static phys_addr_t __init_memblock 194 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 195 phys_addr_t size, phys_addr_t align, int nid, 196 enum memblock_flags flags) 197 { 198 phys_addr_t this_start, this_end, cand; 199 u64 i; 200 201 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 202 this_start = clamp(this_start, start, end); 203 this_end = clamp(this_end, start, end); 204 205 cand = round_up(this_start, align); 206 if (cand < this_end && this_end - cand >= size) 207 return cand; 208 } 209 210 return 0; 211 } 212 213 /** 214 * __memblock_find_range_top_down - find free area utility, in top-down 215 * @start: start of candidate range 216 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 217 * %MEMBLOCK_ALLOC_ACCESSIBLE 218 * @size: size of free area to find 219 * @align: alignment of free area to find 220 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 221 * @flags: pick from blocks based on memory attributes 222 * 223 * Utility called from memblock_find_in_range_node(), find free area top-down. 224 * 225 * Return: 226 * Found address on success, 0 on failure. 227 */ 228 static phys_addr_t __init_memblock 229 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 230 phys_addr_t size, phys_addr_t align, int nid, 231 enum memblock_flags flags) 232 { 233 phys_addr_t this_start, this_end, cand; 234 u64 i; 235 236 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 237 NULL) { 238 this_start = clamp(this_start, start, end); 239 this_end = clamp(this_end, start, end); 240 241 if (this_end < size) 242 continue; 243 244 cand = round_down(this_end - size, align); 245 if (cand >= this_start) 246 return cand; 247 } 248 249 return 0; 250 } 251 252 /** 253 * memblock_find_in_range_node - find free area in given range and node 254 * @size: size of free area to find 255 * @align: alignment of free area to find 256 * @start: start of candidate range 257 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 258 * %MEMBLOCK_ALLOC_ACCESSIBLE 259 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 260 * @flags: pick from blocks based on memory attributes 261 * 262 * Find @size free area aligned to @align in the specified range and node. 263 * 264 * When allocation direction is bottom-up, the @start should be greater 265 * than the end of the kernel image. Otherwise, it will be trimmed. The 266 * reason is that we want the bottom-up allocation just near the kernel 267 * image so it is highly likely that the allocated memory and the kernel 268 * will reside in the same node. 269 * 270 * If bottom-up allocation failed, will try to allocate memory top-down. 271 * 272 * Return: 273 * Found address on success, 0 on failure. 274 */ 275 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 276 phys_addr_t align, phys_addr_t start, 277 phys_addr_t end, int nid, 278 enum memblock_flags flags) 279 { 280 phys_addr_t kernel_end, ret; 281 282 /* pump up @end */ 283 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 284 end == MEMBLOCK_ALLOC_KASAN) 285 end = memblock.current_limit; 286 287 /* avoid allocating the first page */ 288 start = max_t(phys_addr_t, start, PAGE_SIZE); 289 end = max(start, end); 290 kernel_end = __pa_symbol(_end); 291 292 /* 293 * try bottom-up allocation only when bottom-up mode 294 * is set and @end is above the kernel image. 295 */ 296 if (memblock_bottom_up() && end > kernel_end) { 297 phys_addr_t bottom_up_start; 298 299 /* make sure we will allocate above the kernel */ 300 bottom_up_start = max(start, kernel_end); 301 302 /* ok, try bottom-up allocation first */ 303 ret = __memblock_find_range_bottom_up(bottom_up_start, end, 304 size, align, nid, flags); 305 if (ret) 306 return ret; 307 308 /* 309 * we always limit bottom-up allocation above the kernel, 310 * but top-down allocation doesn't have the limit, so 311 * retrying top-down allocation may succeed when bottom-up 312 * allocation failed. 313 * 314 * bottom-up allocation is expected to be fail very rarely, 315 * so we use WARN_ONCE() here to see the stack trace if 316 * fail happens. 317 */ 318 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE), 319 "memblock: bottom-up allocation failed, memory hotremove may be affected\n"); 320 } 321 322 return __memblock_find_range_top_down(start, end, size, align, nid, 323 flags); 324 } 325 326 /** 327 * memblock_find_in_range - find free area in given range 328 * @start: start of candidate range 329 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 330 * %MEMBLOCK_ALLOC_ACCESSIBLE 331 * @size: size of free area to find 332 * @align: alignment of free area to find 333 * 334 * Find @size free area aligned to @align in the specified range. 335 * 336 * Return: 337 * Found address on success, 0 on failure. 338 */ 339 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 340 phys_addr_t end, phys_addr_t size, 341 phys_addr_t align) 342 { 343 phys_addr_t ret; 344 enum memblock_flags flags = choose_memblock_flags(); 345 346 again: 347 ret = memblock_find_in_range_node(size, align, start, end, 348 NUMA_NO_NODE, flags); 349 350 if (!ret && (flags & MEMBLOCK_MIRROR)) { 351 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 352 &size); 353 flags &= ~MEMBLOCK_MIRROR; 354 goto again; 355 } 356 357 return ret; 358 } 359 360 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 361 { 362 type->total_size -= type->regions[r].size; 363 memmove(&type->regions[r], &type->regions[r + 1], 364 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 365 type->cnt--; 366 367 /* Special case for empty arrays */ 368 if (type->cnt == 0) { 369 WARN_ON(type->total_size != 0); 370 type->cnt = 1; 371 type->regions[0].base = 0; 372 type->regions[0].size = 0; 373 type->regions[0].flags = 0; 374 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 375 } 376 } 377 378 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 379 /** 380 * memblock_discard - discard memory and reserved arrays if they were allocated 381 */ 382 void __init memblock_discard(void) 383 { 384 phys_addr_t addr, size; 385 386 if (memblock.reserved.regions != memblock_reserved_init_regions) { 387 addr = __pa(memblock.reserved.regions); 388 size = PAGE_ALIGN(sizeof(struct memblock_region) * 389 memblock.reserved.max); 390 __memblock_free_late(addr, size); 391 } 392 393 if (memblock.memory.regions != memblock_memory_init_regions) { 394 addr = __pa(memblock.memory.regions); 395 size = PAGE_ALIGN(sizeof(struct memblock_region) * 396 memblock.memory.max); 397 __memblock_free_late(addr, size); 398 } 399 } 400 #endif 401 402 /** 403 * memblock_double_array - double the size of the memblock regions array 404 * @type: memblock type of the regions array being doubled 405 * @new_area_start: starting address of memory range to avoid overlap with 406 * @new_area_size: size of memory range to avoid overlap with 407 * 408 * Double the size of the @type regions array. If memblock is being used to 409 * allocate memory for a new reserved regions array and there is a previously 410 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 411 * waiting to be reserved, ensure the memory used by the new array does 412 * not overlap. 413 * 414 * Return: 415 * 0 on success, -1 on failure. 416 */ 417 static int __init_memblock memblock_double_array(struct memblock_type *type, 418 phys_addr_t new_area_start, 419 phys_addr_t new_area_size) 420 { 421 struct memblock_region *new_array, *old_array; 422 phys_addr_t old_alloc_size, new_alloc_size; 423 phys_addr_t old_size, new_size, addr, new_end; 424 int use_slab = slab_is_available(); 425 int *in_slab; 426 427 /* We don't allow resizing until we know about the reserved regions 428 * of memory that aren't suitable for allocation 429 */ 430 if (!memblock_can_resize) 431 return -1; 432 433 /* Calculate new doubled size */ 434 old_size = type->max * sizeof(struct memblock_region); 435 new_size = old_size << 1; 436 /* 437 * We need to allocated new one align to PAGE_SIZE, 438 * so we can free them completely later. 439 */ 440 old_alloc_size = PAGE_ALIGN(old_size); 441 new_alloc_size = PAGE_ALIGN(new_size); 442 443 /* Retrieve the slab flag */ 444 if (type == &memblock.memory) 445 in_slab = &memblock_memory_in_slab; 446 else 447 in_slab = &memblock_reserved_in_slab; 448 449 /* Try to find some space for it */ 450 if (use_slab) { 451 new_array = kmalloc(new_size, GFP_KERNEL); 452 addr = new_array ? __pa(new_array) : 0; 453 } else { 454 /* only exclude range when trying to double reserved.regions */ 455 if (type != &memblock.reserved) 456 new_area_start = new_area_size = 0; 457 458 addr = memblock_find_in_range(new_area_start + new_area_size, 459 memblock.current_limit, 460 new_alloc_size, PAGE_SIZE); 461 if (!addr && new_area_size) 462 addr = memblock_find_in_range(0, 463 min(new_area_start, memblock.current_limit), 464 new_alloc_size, PAGE_SIZE); 465 466 new_array = addr ? __va(addr) : NULL; 467 } 468 if (!addr) { 469 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 470 type->name, type->max, type->max * 2); 471 return -1; 472 } 473 474 new_end = addr + new_size - 1; 475 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 476 type->name, type->max * 2, &addr, &new_end); 477 478 /* 479 * Found space, we now need to move the array over before we add the 480 * reserved region since it may be our reserved array itself that is 481 * full. 482 */ 483 memcpy(new_array, type->regions, old_size); 484 memset(new_array + type->max, 0, old_size); 485 old_array = type->regions; 486 type->regions = new_array; 487 type->max <<= 1; 488 489 /* Free old array. We needn't free it if the array is the static one */ 490 if (*in_slab) 491 kfree(old_array); 492 else if (old_array != memblock_memory_init_regions && 493 old_array != memblock_reserved_init_regions) 494 memblock_free(__pa(old_array), old_alloc_size); 495 496 /* 497 * Reserve the new array if that comes from the memblock. Otherwise, we 498 * needn't do it 499 */ 500 if (!use_slab) 501 BUG_ON(memblock_reserve(addr, new_alloc_size)); 502 503 /* Update slab flag */ 504 *in_slab = use_slab; 505 506 return 0; 507 } 508 509 /** 510 * memblock_merge_regions - merge neighboring compatible regions 511 * @type: memblock type to scan 512 * 513 * Scan @type and merge neighboring compatible regions. 514 */ 515 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 516 { 517 int i = 0; 518 519 /* cnt never goes below 1 */ 520 while (i < type->cnt - 1) { 521 struct memblock_region *this = &type->regions[i]; 522 struct memblock_region *next = &type->regions[i + 1]; 523 524 if (this->base + this->size != next->base || 525 memblock_get_region_node(this) != 526 memblock_get_region_node(next) || 527 this->flags != next->flags) { 528 BUG_ON(this->base + this->size > next->base); 529 i++; 530 continue; 531 } 532 533 this->size += next->size; 534 /* move forward from next + 1, index of which is i + 2 */ 535 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 536 type->cnt--; 537 } 538 } 539 540 /** 541 * memblock_insert_region - insert new memblock region 542 * @type: memblock type to insert into 543 * @idx: index for the insertion point 544 * @base: base address of the new region 545 * @size: size of the new region 546 * @nid: node id of the new region 547 * @flags: flags of the new region 548 * 549 * Insert new memblock region [@base, @base + @size) into @type at @idx. 550 * @type must already have extra room to accommodate the new region. 551 */ 552 static void __init_memblock memblock_insert_region(struct memblock_type *type, 553 int idx, phys_addr_t base, 554 phys_addr_t size, 555 int nid, 556 enum memblock_flags flags) 557 { 558 struct memblock_region *rgn = &type->regions[idx]; 559 560 BUG_ON(type->cnt >= type->max); 561 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 562 rgn->base = base; 563 rgn->size = size; 564 rgn->flags = flags; 565 memblock_set_region_node(rgn, nid); 566 type->cnt++; 567 type->total_size += size; 568 } 569 570 /** 571 * memblock_add_range - add new memblock region 572 * @type: memblock type to add new region into 573 * @base: base address of the new region 574 * @size: size of the new region 575 * @nid: nid of the new region 576 * @flags: flags of the new region 577 * 578 * Add new memblock region [@base, @base + @size) into @type. The new region 579 * is allowed to overlap with existing ones - overlaps don't affect already 580 * existing regions. @type is guaranteed to be minimal (all neighbouring 581 * compatible regions are merged) after the addition. 582 * 583 * Return: 584 * 0 on success, -errno on failure. 585 */ 586 int __init_memblock memblock_add_range(struct memblock_type *type, 587 phys_addr_t base, phys_addr_t size, 588 int nid, enum memblock_flags flags) 589 { 590 bool insert = false; 591 phys_addr_t obase = base; 592 phys_addr_t end = base + memblock_cap_size(base, &size); 593 int idx, nr_new; 594 struct memblock_region *rgn; 595 596 if (!size) 597 return 0; 598 599 /* special case for empty array */ 600 if (type->regions[0].size == 0) { 601 WARN_ON(type->cnt != 1 || type->total_size); 602 type->regions[0].base = base; 603 type->regions[0].size = size; 604 type->regions[0].flags = flags; 605 memblock_set_region_node(&type->regions[0], nid); 606 type->total_size = size; 607 return 0; 608 } 609 repeat: 610 /* 611 * The following is executed twice. Once with %false @insert and 612 * then with %true. The first counts the number of regions needed 613 * to accommodate the new area. The second actually inserts them. 614 */ 615 base = obase; 616 nr_new = 0; 617 618 for_each_memblock_type(idx, type, rgn) { 619 phys_addr_t rbase = rgn->base; 620 phys_addr_t rend = rbase + rgn->size; 621 622 if (rbase >= end) 623 break; 624 if (rend <= base) 625 continue; 626 /* 627 * @rgn overlaps. If it separates the lower part of new 628 * area, insert that portion. 629 */ 630 if (rbase > base) { 631 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 632 WARN_ON(nid != memblock_get_region_node(rgn)); 633 #endif 634 WARN_ON(flags != rgn->flags); 635 nr_new++; 636 if (insert) 637 memblock_insert_region(type, idx++, base, 638 rbase - base, nid, 639 flags); 640 } 641 /* area below @rend is dealt with, forget about it */ 642 base = min(rend, end); 643 } 644 645 /* insert the remaining portion */ 646 if (base < end) { 647 nr_new++; 648 if (insert) 649 memblock_insert_region(type, idx, base, end - base, 650 nid, flags); 651 } 652 653 if (!nr_new) 654 return 0; 655 656 /* 657 * If this was the first round, resize array and repeat for actual 658 * insertions; otherwise, merge and return. 659 */ 660 if (!insert) { 661 while (type->cnt + nr_new > type->max) 662 if (memblock_double_array(type, obase, size) < 0) 663 return -ENOMEM; 664 insert = true; 665 goto repeat; 666 } else { 667 memblock_merge_regions(type); 668 return 0; 669 } 670 } 671 672 /** 673 * memblock_add_node - add new memblock region within a NUMA node 674 * @base: base address of the new region 675 * @size: size of the new region 676 * @nid: nid of the new region 677 * 678 * Add new memblock region [@base, @base + @size) to the "memory" 679 * type. See memblock_add_range() description for mode details 680 * 681 * Return: 682 * 0 on success, -errno on failure. 683 */ 684 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 685 int nid) 686 { 687 return memblock_add_range(&memblock.memory, base, size, nid, 0); 688 } 689 690 /** 691 * memblock_add - add new memblock region 692 * @base: base address of the new region 693 * @size: size of the new region 694 * 695 * Add new memblock region [@base, @base + @size) to the "memory" 696 * type. See memblock_add_range() description for mode details 697 * 698 * Return: 699 * 0 on success, -errno on failure. 700 */ 701 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 702 { 703 phys_addr_t end = base + size - 1; 704 705 memblock_dbg("memblock_add: [%pa-%pa] %pS\n", 706 &base, &end, (void *)_RET_IP_); 707 708 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 709 } 710 711 /** 712 * memblock_isolate_range - isolate given range into disjoint memblocks 713 * @type: memblock type to isolate range for 714 * @base: base of range to isolate 715 * @size: size of range to isolate 716 * @start_rgn: out parameter for the start of isolated region 717 * @end_rgn: out parameter for the end of isolated region 718 * 719 * Walk @type and ensure that regions don't cross the boundaries defined by 720 * [@base, @base + @size). Crossing regions are split at the boundaries, 721 * which may create at most two more regions. The index of the first 722 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 723 * 724 * Return: 725 * 0 on success, -errno on failure. 726 */ 727 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 728 phys_addr_t base, phys_addr_t size, 729 int *start_rgn, int *end_rgn) 730 { 731 phys_addr_t end = base + memblock_cap_size(base, &size); 732 int idx; 733 struct memblock_region *rgn; 734 735 *start_rgn = *end_rgn = 0; 736 737 if (!size) 738 return 0; 739 740 /* we'll create at most two more regions */ 741 while (type->cnt + 2 > type->max) 742 if (memblock_double_array(type, base, size) < 0) 743 return -ENOMEM; 744 745 for_each_memblock_type(idx, type, rgn) { 746 phys_addr_t rbase = rgn->base; 747 phys_addr_t rend = rbase + rgn->size; 748 749 if (rbase >= end) 750 break; 751 if (rend <= base) 752 continue; 753 754 if (rbase < base) { 755 /* 756 * @rgn intersects from below. Split and continue 757 * to process the next region - the new top half. 758 */ 759 rgn->base = base; 760 rgn->size -= base - rbase; 761 type->total_size -= base - rbase; 762 memblock_insert_region(type, idx, rbase, base - rbase, 763 memblock_get_region_node(rgn), 764 rgn->flags); 765 } else if (rend > end) { 766 /* 767 * @rgn intersects from above. Split and redo the 768 * current region - the new bottom half. 769 */ 770 rgn->base = end; 771 rgn->size -= end - rbase; 772 type->total_size -= end - rbase; 773 memblock_insert_region(type, idx--, rbase, end - rbase, 774 memblock_get_region_node(rgn), 775 rgn->flags); 776 } else { 777 /* @rgn is fully contained, record it */ 778 if (!*end_rgn) 779 *start_rgn = idx; 780 *end_rgn = idx + 1; 781 } 782 } 783 784 return 0; 785 } 786 787 static int __init_memblock memblock_remove_range(struct memblock_type *type, 788 phys_addr_t base, phys_addr_t size) 789 { 790 int start_rgn, end_rgn; 791 int i, ret; 792 793 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 794 if (ret) 795 return ret; 796 797 for (i = end_rgn - 1; i >= start_rgn; i--) 798 memblock_remove_region(type, i); 799 return 0; 800 } 801 802 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 803 { 804 phys_addr_t end = base + size - 1; 805 806 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n", 807 &base, &end, (void *)_RET_IP_); 808 809 return memblock_remove_range(&memblock.memory, base, size); 810 } 811 812 /** 813 * memblock_free - free boot memory block 814 * @base: phys starting address of the boot memory block 815 * @size: size of the boot memory block in bytes 816 * 817 * Free boot memory block previously allocated by memblock_alloc_xx() API. 818 * The freeing memory will not be released to the buddy allocator. 819 */ 820 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 821 { 822 phys_addr_t end = base + size - 1; 823 824 memblock_dbg(" memblock_free: [%pa-%pa] %pS\n", 825 &base, &end, (void *)_RET_IP_); 826 827 kmemleak_free_part_phys(base, size); 828 return memblock_remove_range(&memblock.reserved, base, size); 829 } 830 831 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 832 { 833 phys_addr_t end = base + size - 1; 834 835 memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n", 836 &base, &end, (void *)_RET_IP_); 837 838 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 839 } 840 841 /** 842 * memblock_setclr_flag - set or clear flag for a memory region 843 * @base: base address of the region 844 * @size: size of the region 845 * @set: set or clear the flag 846 * @flag: the flag to udpate 847 * 848 * This function isolates region [@base, @base + @size), and sets/clears flag 849 * 850 * Return: 0 on success, -errno on failure. 851 */ 852 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 853 phys_addr_t size, int set, int flag) 854 { 855 struct memblock_type *type = &memblock.memory; 856 int i, ret, start_rgn, end_rgn; 857 858 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 859 if (ret) 860 return ret; 861 862 for (i = start_rgn; i < end_rgn; i++) { 863 struct memblock_region *r = &type->regions[i]; 864 865 if (set) 866 r->flags |= flag; 867 else 868 r->flags &= ~flag; 869 } 870 871 memblock_merge_regions(type); 872 return 0; 873 } 874 875 /** 876 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 877 * @base: the base phys addr of the region 878 * @size: the size of the region 879 * 880 * Return: 0 on success, -errno on failure. 881 */ 882 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 883 { 884 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 885 } 886 887 /** 888 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 889 * @base: the base phys addr of the region 890 * @size: the size of the region 891 * 892 * Return: 0 on success, -errno on failure. 893 */ 894 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 895 { 896 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 897 } 898 899 /** 900 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 901 * @base: the base phys addr of the region 902 * @size: the size of the region 903 * 904 * Return: 0 on success, -errno on failure. 905 */ 906 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 907 { 908 system_has_some_mirror = true; 909 910 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 911 } 912 913 /** 914 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 915 * @base: the base phys addr of the region 916 * @size: the size of the region 917 * 918 * Return: 0 on success, -errno on failure. 919 */ 920 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 921 { 922 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 923 } 924 925 /** 926 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 927 * @base: the base phys addr of the region 928 * @size: the size of the region 929 * 930 * Return: 0 on success, -errno on failure. 931 */ 932 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 933 { 934 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 935 } 936 937 /** 938 * __next_reserved_mem_region - next function for for_each_reserved_region() 939 * @idx: pointer to u64 loop variable 940 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL 941 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL 942 * 943 * Iterate over all reserved memory regions. 944 */ 945 void __init_memblock __next_reserved_mem_region(u64 *idx, 946 phys_addr_t *out_start, 947 phys_addr_t *out_end) 948 { 949 struct memblock_type *type = &memblock.reserved; 950 951 if (*idx < type->cnt) { 952 struct memblock_region *r = &type->regions[*idx]; 953 phys_addr_t base = r->base; 954 phys_addr_t size = r->size; 955 956 if (out_start) 957 *out_start = base; 958 if (out_end) 959 *out_end = base + size - 1; 960 961 *idx += 1; 962 return; 963 } 964 965 /* signal end of iteration */ 966 *idx = ULLONG_MAX; 967 } 968 969 static bool should_skip_region(struct memblock_region *m, int nid, int flags) 970 { 971 int m_nid = memblock_get_region_node(m); 972 973 /* only memory regions are associated with nodes, check it */ 974 if (nid != NUMA_NO_NODE && nid != m_nid) 975 return true; 976 977 /* skip hotpluggable memory regions if needed */ 978 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 979 return true; 980 981 /* if we want mirror memory skip non-mirror memory regions */ 982 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 983 return true; 984 985 /* skip nomap memory unless we were asked for it explicitly */ 986 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 987 return true; 988 989 return false; 990 } 991 992 /** 993 * __next_mem_range - next function for for_each_free_mem_range() etc. 994 * @idx: pointer to u64 loop variable 995 * @nid: node selector, %NUMA_NO_NODE for all nodes 996 * @flags: pick from blocks based on memory attributes 997 * @type_a: pointer to memblock_type from where the range is taken 998 * @type_b: pointer to memblock_type which excludes memory from being taken 999 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1000 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1001 * @out_nid: ptr to int for nid of the range, can be %NULL 1002 * 1003 * Find the first area from *@idx which matches @nid, fill the out 1004 * parameters, and update *@idx for the next iteration. The lower 32bit of 1005 * *@idx contains index into type_a and the upper 32bit indexes the 1006 * areas before each region in type_b. For example, if type_b regions 1007 * look like the following, 1008 * 1009 * 0:[0-16), 1:[32-48), 2:[128-130) 1010 * 1011 * The upper 32bit indexes the following regions. 1012 * 1013 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1014 * 1015 * As both region arrays are sorted, the function advances the two indices 1016 * in lockstep and returns each intersection. 1017 */ 1018 void __init_memblock __next_mem_range(u64 *idx, int nid, 1019 enum memblock_flags flags, 1020 struct memblock_type *type_a, 1021 struct memblock_type *type_b, 1022 phys_addr_t *out_start, 1023 phys_addr_t *out_end, int *out_nid) 1024 { 1025 int idx_a = *idx & 0xffffffff; 1026 int idx_b = *idx >> 32; 1027 1028 if (WARN_ONCE(nid == MAX_NUMNODES, 1029 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1030 nid = NUMA_NO_NODE; 1031 1032 for (; idx_a < type_a->cnt; idx_a++) { 1033 struct memblock_region *m = &type_a->regions[idx_a]; 1034 1035 phys_addr_t m_start = m->base; 1036 phys_addr_t m_end = m->base + m->size; 1037 int m_nid = memblock_get_region_node(m); 1038 1039 if (should_skip_region(m, nid, flags)) 1040 continue; 1041 1042 if (!type_b) { 1043 if (out_start) 1044 *out_start = m_start; 1045 if (out_end) 1046 *out_end = m_end; 1047 if (out_nid) 1048 *out_nid = m_nid; 1049 idx_a++; 1050 *idx = (u32)idx_a | (u64)idx_b << 32; 1051 return; 1052 } 1053 1054 /* scan areas before each reservation */ 1055 for (; idx_b < type_b->cnt + 1; idx_b++) { 1056 struct memblock_region *r; 1057 phys_addr_t r_start; 1058 phys_addr_t r_end; 1059 1060 r = &type_b->regions[idx_b]; 1061 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1062 r_end = idx_b < type_b->cnt ? 1063 r->base : PHYS_ADDR_MAX; 1064 1065 /* 1066 * if idx_b advanced past idx_a, 1067 * break out to advance idx_a 1068 */ 1069 if (r_start >= m_end) 1070 break; 1071 /* if the two regions intersect, we're done */ 1072 if (m_start < r_end) { 1073 if (out_start) 1074 *out_start = 1075 max(m_start, r_start); 1076 if (out_end) 1077 *out_end = min(m_end, r_end); 1078 if (out_nid) 1079 *out_nid = m_nid; 1080 /* 1081 * The region which ends first is 1082 * advanced for the next iteration. 1083 */ 1084 if (m_end <= r_end) 1085 idx_a++; 1086 else 1087 idx_b++; 1088 *idx = (u32)idx_a | (u64)idx_b << 32; 1089 return; 1090 } 1091 } 1092 } 1093 1094 /* signal end of iteration */ 1095 *idx = ULLONG_MAX; 1096 } 1097 1098 /** 1099 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1100 * 1101 * @idx: pointer to u64 loop variable 1102 * @nid: node selector, %NUMA_NO_NODE for all nodes 1103 * @flags: pick from blocks based on memory attributes 1104 * @type_a: pointer to memblock_type from where the range is taken 1105 * @type_b: pointer to memblock_type which excludes memory from being taken 1106 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1107 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1108 * @out_nid: ptr to int for nid of the range, can be %NULL 1109 * 1110 * Finds the next range from type_a which is not marked as unsuitable 1111 * in type_b. 1112 * 1113 * Reverse of __next_mem_range(). 1114 */ 1115 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1116 enum memblock_flags flags, 1117 struct memblock_type *type_a, 1118 struct memblock_type *type_b, 1119 phys_addr_t *out_start, 1120 phys_addr_t *out_end, int *out_nid) 1121 { 1122 int idx_a = *idx & 0xffffffff; 1123 int idx_b = *idx >> 32; 1124 1125 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1126 nid = NUMA_NO_NODE; 1127 1128 if (*idx == (u64)ULLONG_MAX) { 1129 idx_a = type_a->cnt - 1; 1130 if (type_b != NULL) 1131 idx_b = type_b->cnt; 1132 else 1133 idx_b = 0; 1134 } 1135 1136 for (; idx_a >= 0; idx_a--) { 1137 struct memblock_region *m = &type_a->regions[idx_a]; 1138 1139 phys_addr_t m_start = m->base; 1140 phys_addr_t m_end = m->base + m->size; 1141 int m_nid = memblock_get_region_node(m); 1142 1143 if (should_skip_region(m, nid, flags)) 1144 continue; 1145 1146 if (!type_b) { 1147 if (out_start) 1148 *out_start = m_start; 1149 if (out_end) 1150 *out_end = m_end; 1151 if (out_nid) 1152 *out_nid = m_nid; 1153 idx_a--; 1154 *idx = (u32)idx_a | (u64)idx_b << 32; 1155 return; 1156 } 1157 1158 /* scan areas before each reservation */ 1159 for (; idx_b >= 0; idx_b--) { 1160 struct memblock_region *r; 1161 phys_addr_t r_start; 1162 phys_addr_t r_end; 1163 1164 r = &type_b->regions[idx_b]; 1165 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1166 r_end = idx_b < type_b->cnt ? 1167 r->base : PHYS_ADDR_MAX; 1168 /* 1169 * if idx_b advanced past idx_a, 1170 * break out to advance idx_a 1171 */ 1172 1173 if (r_end <= m_start) 1174 break; 1175 /* if the two regions intersect, we're done */ 1176 if (m_end > r_start) { 1177 if (out_start) 1178 *out_start = max(m_start, r_start); 1179 if (out_end) 1180 *out_end = min(m_end, r_end); 1181 if (out_nid) 1182 *out_nid = m_nid; 1183 if (m_start >= r_start) 1184 idx_a--; 1185 else 1186 idx_b--; 1187 *idx = (u32)idx_a | (u64)idx_b << 32; 1188 return; 1189 } 1190 } 1191 } 1192 /* signal end of iteration */ 1193 *idx = ULLONG_MAX; 1194 } 1195 1196 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1197 /* 1198 * Common iterator interface used to define for_each_mem_pfn_range(). 1199 */ 1200 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1201 unsigned long *out_start_pfn, 1202 unsigned long *out_end_pfn, int *out_nid) 1203 { 1204 struct memblock_type *type = &memblock.memory; 1205 struct memblock_region *r; 1206 1207 while (++*idx < type->cnt) { 1208 r = &type->regions[*idx]; 1209 1210 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1211 continue; 1212 if (nid == MAX_NUMNODES || nid == r->nid) 1213 break; 1214 } 1215 if (*idx >= type->cnt) { 1216 *idx = -1; 1217 return; 1218 } 1219 1220 if (out_start_pfn) 1221 *out_start_pfn = PFN_UP(r->base); 1222 if (out_end_pfn) 1223 *out_end_pfn = PFN_DOWN(r->base + r->size); 1224 if (out_nid) 1225 *out_nid = r->nid; 1226 } 1227 1228 /** 1229 * memblock_set_node - set node ID on memblock regions 1230 * @base: base of area to set node ID for 1231 * @size: size of area to set node ID for 1232 * @type: memblock type to set node ID for 1233 * @nid: node ID to set 1234 * 1235 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1236 * Regions which cross the area boundaries are split as necessary. 1237 * 1238 * Return: 1239 * 0 on success, -errno on failure. 1240 */ 1241 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1242 struct memblock_type *type, int nid) 1243 { 1244 int start_rgn, end_rgn; 1245 int i, ret; 1246 1247 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1248 if (ret) 1249 return ret; 1250 1251 for (i = start_rgn; i < end_rgn; i++) 1252 memblock_set_region_node(&type->regions[i], nid); 1253 1254 memblock_merge_regions(type); 1255 return 0; 1256 } 1257 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1258 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1259 /** 1260 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1261 * 1262 * @idx: pointer to u64 loop variable 1263 * @zone: zone in which all of the memory blocks reside 1264 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1265 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1266 * 1267 * This function is meant to be a zone/pfn specific wrapper for the 1268 * for_each_mem_range type iterators. Specifically they are used in the 1269 * deferred memory init routines and as such we were duplicating much of 1270 * this logic throughout the code. So instead of having it in multiple 1271 * locations it seemed like it would make more sense to centralize this to 1272 * one new iterator that does everything they need. 1273 */ 1274 void __init_memblock 1275 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1276 unsigned long *out_spfn, unsigned long *out_epfn) 1277 { 1278 int zone_nid = zone_to_nid(zone); 1279 phys_addr_t spa, epa; 1280 int nid; 1281 1282 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1283 &memblock.memory, &memblock.reserved, 1284 &spa, &epa, &nid); 1285 1286 while (*idx != U64_MAX) { 1287 unsigned long epfn = PFN_DOWN(epa); 1288 unsigned long spfn = PFN_UP(spa); 1289 1290 /* 1291 * Verify the end is at least past the start of the zone and 1292 * that we have at least one PFN to initialize. 1293 */ 1294 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1295 /* if we went too far just stop searching */ 1296 if (zone_end_pfn(zone) <= spfn) { 1297 *idx = U64_MAX; 1298 break; 1299 } 1300 1301 if (out_spfn) 1302 *out_spfn = max(zone->zone_start_pfn, spfn); 1303 if (out_epfn) 1304 *out_epfn = min(zone_end_pfn(zone), epfn); 1305 1306 return; 1307 } 1308 1309 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1310 &memblock.memory, &memblock.reserved, 1311 &spa, &epa, &nid); 1312 } 1313 1314 /* signal end of iteration */ 1315 if (out_spfn) 1316 *out_spfn = ULONG_MAX; 1317 if (out_epfn) 1318 *out_epfn = 0; 1319 } 1320 1321 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1322 1323 /** 1324 * memblock_alloc_range_nid - allocate boot memory block 1325 * @size: size of memory block to be allocated in bytes 1326 * @align: alignment of the region and block's size 1327 * @start: the lower bound of the memory region to allocate (phys address) 1328 * @end: the upper bound of the memory region to allocate (phys address) 1329 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1330 * 1331 * The allocation is performed from memory region limited by 1332 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE. 1333 * 1334 * If the specified node can not hold the requested memory the 1335 * allocation falls back to any node in the system 1336 * 1337 * For systems with memory mirroring, the allocation is attempted first 1338 * from the regions with mirroring enabled and then retried from any 1339 * memory region. 1340 * 1341 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1342 * allocated boot memory block, so that it is never reported as leaks. 1343 * 1344 * Return: 1345 * Physical address of allocated memory block on success, %0 on failure. 1346 */ 1347 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1348 phys_addr_t align, phys_addr_t start, 1349 phys_addr_t end, int nid) 1350 { 1351 enum memblock_flags flags = choose_memblock_flags(); 1352 phys_addr_t found; 1353 1354 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1355 nid = NUMA_NO_NODE; 1356 1357 if (!align) { 1358 /* Can't use WARNs this early in boot on powerpc */ 1359 dump_stack(); 1360 align = SMP_CACHE_BYTES; 1361 } 1362 1363 if (end > memblock.current_limit) 1364 end = memblock.current_limit; 1365 1366 again: 1367 found = memblock_find_in_range_node(size, align, start, end, nid, 1368 flags); 1369 if (found && !memblock_reserve(found, size)) 1370 goto done; 1371 1372 if (nid != NUMA_NO_NODE) { 1373 found = memblock_find_in_range_node(size, align, start, 1374 end, NUMA_NO_NODE, 1375 flags); 1376 if (found && !memblock_reserve(found, size)) 1377 goto done; 1378 } 1379 1380 if (flags & MEMBLOCK_MIRROR) { 1381 flags &= ~MEMBLOCK_MIRROR; 1382 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1383 &size); 1384 goto again; 1385 } 1386 1387 return 0; 1388 1389 done: 1390 /* Skip kmemleak for kasan_init() due to high volume. */ 1391 if (end != MEMBLOCK_ALLOC_KASAN) 1392 /* 1393 * The min_count is set to 0 so that memblock allocated 1394 * blocks are never reported as leaks. This is because many 1395 * of these blocks are only referred via the physical 1396 * address which is not looked up by kmemleak. 1397 */ 1398 kmemleak_alloc_phys(found, size, 0, 0); 1399 1400 return found; 1401 } 1402 1403 /** 1404 * memblock_phys_alloc_range - allocate a memory block inside specified range 1405 * @size: size of memory block to be allocated in bytes 1406 * @align: alignment of the region and block's size 1407 * @start: the lower bound of the memory region to allocate (physical address) 1408 * @end: the upper bound of the memory region to allocate (physical address) 1409 * 1410 * Allocate @size bytes in the between @start and @end. 1411 * 1412 * Return: physical address of the allocated memory block on success, 1413 * %0 on failure. 1414 */ 1415 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1416 phys_addr_t align, 1417 phys_addr_t start, 1418 phys_addr_t end) 1419 { 1420 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE); 1421 } 1422 1423 /** 1424 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node 1425 * @size: size of memory block to be allocated in bytes 1426 * @align: alignment of the region and block's size 1427 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1428 * 1429 * Allocates memory block from the specified NUMA node. If the node 1430 * has no available memory, attempts to allocated from any node in the 1431 * system. 1432 * 1433 * Return: physical address of the allocated memory block on success, 1434 * %0 on failure. 1435 */ 1436 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1437 { 1438 return memblock_alloc_range_nid(size, align, 0, 1439 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 1440 } 1441 1442 /** 1443 * memblock_alloc_internal - allocate boot memory block 1444 * @size: size of memory block to be allocated in bytes 1445 * @align: alignment of the region and block's size 1446 * @min_addr: the lower bound of the memory region to allocate (phys address) 1447 * @max_addr: the upper bound of the memory region to allocate (phys address) 1448 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1449 * 1450 * Allocates memory block using memblock_alloc_range_nid() and 1451 * converts the returned physical address to virtual. 1452 * 1453 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1454 * will fall back to memory below @min_addr. Other constraints, such 1455 * as node and mirrored memory will be handled again in 1456 * memblock_alloc_range_nid(). 1457 * 1458 * Return: 1459 * Virtual address of allocated memory block on success, NULL on failure. 1460 */ 1461 static void * __init memblock_alloc_internal( 1462 phys_addr_t size, phys_addr_t align, 1463 phys_addr_t min_addr, phys_addr_t max_addr, 1464 int nid) 1465 { 1466 phys_addr_t alloc; 1467 1468 /* 1469 * Detect any accidental use of these APIs after slab is ready, as at 1470 * this moment memblock may be deinitialized already and its 1471 * internal data may be destroyed (after execution of memblock_free_all) 1472 */ 1473 if (WARN_ON_ONCE(slab_is_available())) 1474 return kzalloc_node(size, GFP_NOWAIT, nid); 1475 1476 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid); 1477 1478 /* retry allocation without lower limit */ 1479 if (!alloc && min_addr) 1480 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid); 1481 1482 if (!alloc) 1483 return NULL; 1484 1485 return phys_to_virt(alloc); 1486 } 1487 1488 /** 1489 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1490 * memory and without panicking 1491 * @size: size of memory block to be allocated in bytes 1492 * @align: alignment of the region and block's size 1493 * @min_addr: the lower bound of the memory region from where the allocation 1494 * is preferred (phys address) 1495 * @max_addr: the upper bound of the memory region from where the allocation 1496 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1497 * allocate only from memory limited by memblock.current_limit value 1498 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1499 * 1500 * Public function, provides additional debug information (including caller 1501 * info), if enabled. Does not zero allocated memory, does not panic if request 1502 * cannot be satisfied. 1503 * 1504 * Return: 1505 * Virtual address of allocated memory block on success, NULL on failure. 1506 */ 1507 void * __init memblock_alloc_try_nid_raw( 1508 phys_addr_t size, phys_addr_t align, 1509 phys_addr_t min_addr, phys_addr_t max_addr, 1510 int nid) 1511 { 1512 void *ptr; 1513 1514 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1515 __func__, (u64)size, (u64)align, nid, &min_addr, 1516 &max_addr, (void *)_RET_IP_); 1517 1518 ptr = memblock_alloc_internal(size, align, 1519 min_addr, max_addr, nid); 1520 if (ptr && size > 0) 1521 page_init_poison(ptr, size); 1522 1523 return ptr; 1524 } 1525 1526 /** 1527 * memblock_alloc_try_nid - allocate boot memory block 1528 * @size: size of memory block to be allocated in bytes 1529 * @align: alignment of the region and block's size 1530 * @min_addr: the lower bound of the memory region from where the allocation 1531 * is preferred (phys address) 1532 * @max_addr: the upper bound of the memory region from where the allocation 1533 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1534 * allocate only from memory limited by memblock.current_limit value 1535 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1536 * 1537 * Public function, provides additional debug information (including caller 1538 * info), if enabled. This function zeroes the allocated memory. 1539 * 1540 * Return: 1541 * Virtual address of allocated memory block on success, NULL on failure. 1542 */ 1543 void * __init memblock_alloc_try_nid( 1544 phys_addr_t size, phys_addr_t align, 1545 phys_addr_t min_addr, phys_addr_t max_addr, 1546 int nid) 1547 { 1548 void *ptr; 1549 1550 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1551 __func__, (u64)size, (u64)align, nid, &min_addr, 1552 &max_addr, (void *)_RET_IP_); 1553 ptr = memblock_alloc_internal(size, align, 1554 min_addr, max_addr, nid); 1555 if (ptr) 1556 memset(ptr, 0, size); 1557 1558 return ptr; 1559 } 1560 1561 /** 1562 * __memblock_free_late - free pages directly to buddy allocator 1563 * @base: phys starting address of the boot memory block 1564 * @size: size of the boot memory block in bytes 1565 * 1566 * This is only useful when the memblock allocator has already been torn 1567 * down, but we are still initializing the system. Pages are released directly 1568 * to the buddy allocator. 1569 */ 1570 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1571 { 1572 phys_addr_t cursor, end; 1573 1574 end = base + size - 1; 1575 memblock_dbg("%s: [%pa-%pa] %pS\n", 1576 __func__, &base, &end, (void *)_RET_IP_); 1577 kmemleak_free_part_phys(base, size); 1578 cursor = PFN_UP(base); 1579 end = PFN_DOWN(base + size); 1580 1581 for (; cursor < end; cursor++) { 1582 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1583 totalram_pages_inc(); 1584 } 1585 } 1586 1587 /* 1588 * Remaining API functions 1589 */ 1590 1591 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1592 { 1593 return memblock.memory.total_size; 1594 } 1595 1596 phys_addr_t __init_memblock memblock_reserved_size(void) 1597 { 1598 return memblock.reserved.total_size; 1599 } 1600 1601 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) 1602 { 1603 unsigned long pages = 0; 1604 struct memblock_region *r; 1605 unsigned long start_pfn, end_pfn; 1606 1607 for_each_memblock(memory, r) { 1608 start_pfn = memblock_region_memory_base_pfn(r); 1609 end_pfn = memblock_region_memory_end_pfn(r); 1610 start_pfn = min_t(unsigned long, start_pfn, limit_pfn); 1611 end_pfn = min_t(unsigned long, end_pfn, limit_pfn); 1612 pages += end_pfn - start_pfn; 1613 } 1614 1615 return PFN_PHYS(pages); 1616 } 1617 1618 /* lowest address */ 1619 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1620 { 1621 return memblock.memory.regions[0].base; 1622 } 1623 1624 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1625 { 1626 int idx = memblock.memory.cnt - 1; 1627 1628 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1629 } 1630 1631 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1632 { 1633 phys_addr_t max_addr = PHYS_ADDR_MAX; 1634 struct memblock_region *r; 1635 1636 /* 1637 * translate the memory @limit size into the max address within one of 1638 * the memory memblock regions, if the @limit exceeds the total size 1639 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1640 */ 1641 for_each_memblock(memory, r) { 1642 if (limit <= r->size) { 1643 max_addr = r->base + limit; 1644 break; 1645 } 1646 limit -= r->size; 1647 } 1648 1649 return max_addr; 1650 } 1651 1652 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1653 { 1654 phys_addr_t max_addr = PHYS_ADDR_MAX; 1655 1656 if (!limit) 1657 return; 1658 1659 max_addr = __find_max_addr(limit); 1660 1661 /* @limit exceeds the total size of the memory, do nothing */ 1662 if (max_addr == PHYS_ADDR_MAX) 1663 return; 1664 1665 /* truncate both memory and reserved regions */ 1666 memblock_remove_range(&memblock.memory, max_addr, 1667 PHYS_ADDR_MAX); 1668 memblock_remove_range(&memblock.reserved, max_addr, 1669 PHYS_ADDR_MAX); 1670 } 1671 1672 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1673 { 1674 int start_rgn, end_rgn; 1675 int i, ret; 1676 1677 if (!size) 1678 return; 1679 1680 ret = memblock_isolate_range(&memblock.memory, base, size, 1681 &start_rgn, &end_rgn); 1682 if (ret) 1683 return; 1684 1685 /* remove all the MAP regions */ 1686 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1687 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1688 memblock_remove_region(&memblock.memory, i); 1689 1690 for (i = start_rgn - 1; i >= 0; i--) 1691 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1692 memblock_remove_region(&memblock.memory, i); 1693 1694 /* truncate the reserved regions */ 1695 memblock_remove_range(&memblock.reserved, 0, base); 1696 memblock_remove_range(&memblock.reserved, 1697 base + size, PHYS_ADDR_MAX); 1698 } 1699 1700 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1701 { 1702 phys_addr_t max_addr; 1703 1704 if (!limit) 1705 return; 1706 1707 max_addr = __find_max_addr(limit); 1708 1709 /* @limit exceeds the total size of the memory, do nothing */ 1710 if (max_addr == PHYS_ADDR_MAX) 1711 return; 1712 1713 memblock_cap_memory_range(0, max_addr); 1714 } 1715 1716 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1717 { 1718 unsigned int left = 0, right = type->cnt; 1719 1720 do { 1721 unsigned int mid = (right + left) / 2; 1722 1723 if (addr < type->regions[mid].base) 1724 right = mid; 1725 else if (addr >= (type->regions[mid].base + 1726 type->regions[mid].size)) 1727 left = mid + 1; 1728 else 1729 return mid; 1730 } while (left < right); 1731 return -1; 1732 } 1733 1734 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1735 { 1736 return memblock_search(&memblock.reserved, addr) != -1; 1737 } 1738 1739 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1740 { 1741 return memblock_search(&memblock.memory, addr) != -1; 1742 } 1743 1744 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1745 { 1746 int i = memblock_search(&memblock.memory, addr); 1747 1748 if (i == -1) 1749 return false; 1750 return !memblock_is_nomap(&memblock.memory.regions[i]); 1751 } 1752 1753 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1754 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1755 unsigned long *start_pfn, unsigned long *end_pfn) 1756 { 1757 struct memblock_type *type = &memblock.memory; 1758 int mid = memblock_search(type, PFN_PHYS(pfn)); 1759 1760 if (mid == -1) 1761 return -1; 1762 1763 *start_pfn = PFN_DOWN(type->regions[mid].base); 1764 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1765 1766 return type->regions[mid].nid; 1767 } 1768 #endif 1769 1770 /** 1771 * memblock_is_region_memory - check if a region is a subset of memory 1772 * @base: base of region to check 1773 * @size: size of region to check 1774 * 1775 * Check if the region [@base, @base + @size) is a subset of a memory block. 1776 * 1777 * Return: 1778 * 0 if false, non-zero if true 1779 */ 1780 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1781 { 1782 int idx = memblock_search(&memblock.memory, base); 1783 phys_addr_t end = base + memblock_cap_size(base, &size); 1784 1785 if (idx == -1) 1786 return false; 1787 return (memblock.memory.regions[idx].base + 1788 memblock.memory.regions[idx].size) >= end; 1789 } 1790 1791 /** 1792 * memblock_is_region_reserved - check if a region intersects reserved memory 1793 * @base: base of region to check 1794 * @size: size of region to check 1795 * 1796 * Check if the region [@base, @base + @size) intersects a reserved 1797 * memory block. 1798 * 1799 * Return: 1800 * True if they intersect, false if not. 1801 */ 1802 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1803 { 1804 memblock_cap_size(base, &size); 1805 return memblock_overlaps_region(&memblock.reserved, base, size); 1806 } 1807 1808 void __init_memblock memblock_trim_memory(phys_addr_t align) 1809 { 1810 phys_addr_t start, end, orig_start, orig_end; 1811 struct memblock_region *r; 1812 1813 for_each_memblock(memory, r) { 1814 orig_start = r->base; 1815 orig_end = r->base + r->size; 1816 start = round_up(orig_start, align); 1817 end = round_down(orig_end, align); 1818 1819 if (start == orig_start && end == orig_end) 1820 continue; 1821 1822 if (start < end) { 1823 r->base = start; 1824 r->size = end - start; 1825 } else { 1826 memblock_remove_region(&memblock.memory, 1827 r - memblock.memory.regions); 1828 r--; 1829 } 1830 } 1831 } 1832 1833 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1834 { 1835 memblock.current_limit = limit; 1836 } 1837 1838 phys_addr_t __init_memblock memblock_get_current_limit(void) 1839 { 1840 return memblock.current_limit; 1841 } 1842 1843 static void __init_memblock memblock_dump(struct memblock_type *type) 1844 { 1845 phys_addr_t base, end, size; 1846 enum memblock_flags flags; 1847 int idx; 1848 struct memblock_region *rgn; 1849 1850 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1851 1852 for_each_memblock_type(idx, type, rgn) { 1853 char nid_buf[32] = ""; 1854 1855 base = rgn->base; 1856 size = rgn->size; 1857 end = base + size - 1; 1858 flags = rgn->flags; 1859 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1860 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1861 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1862 memblock_get_region_node(rgn)); 1863 #endif 1864 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1865 type->name, idx, &base, &end, &size, nid_buf, flags); 1866 } 1867 } 1868 1869 void __init_memblock __memblock_dump_all(void) 1870 { 1871 pr_info("MEMBLOCK configuration:\n"); 1872 pr_info(" memory size = %pa reserved size = %pa\n", 1873 &memblock.memory.total_size, 1874 &memblock.reserved.total_size); 1875 1876 memblock_dump(&memblock.memory); 1877 memblock_dump(&memblock.reserved); 1878 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1879 memblock_dump(&memblock.physmem); 1880 #endif 1881 } 1882 1883 void __init memblock_allow_resize(void) 1884 { 1885 memblock_can_resize = 1; 1886 } 1887 1888 static int __init early_memblock(char *p) 1889 { 1890 if (p && strstr(p, "debug")) 1891 memblock_debug = 1; 1892 return 0; 1893 } 1894 early_param("memblock", early_memblock); 1895 1896 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1897 { 1898 int order; 1899 1900 while (start < end) { 1901 order = min(MAX_ORDER - 1UL, __ffs(start)); 1902 1903 while (start + (1UL << order) > end) 1904 order--; 1905 1906 memblock_free_pages(pfn_to_page(start), start, order); 1907 1908 start += (1UL << order); 1909 } 1910 } 1911 1912 static unsigned long __init __free_memory_core(phys_addr_t start, 1913 phys_addr_t end) 1914 { 1915 unsigned long start_pfn = PFN_UP(start); 1916 unsigned long end_pfn = min_t(unsigned long, 1917 PFN_DOWN(end), max_low_pfn); 1918 1919 if (start_pfn >= end_pfn) 1920 return 0; 1921 1922 __free_pages_memory(start_pfn, end_pfn); 1923 1924 return end_pfn - start_pfn; 1925 } 1926 1927 static unsigned long __init free_low_memory_core_early(void) 1928 { 1929 unsigned long count = 0; 1930 phys_addr_t start, end; 1931 u64 i; 1932 1933 memblock_clear_hotplug(0, -1); 1934 1935 for_each_reserved_mem_region(i, &start, &end) 1936 reserve_bootmem_region(start, end); 1937 1938 /* 1939 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 1940 * because in some case like Node0 doesn't have RAM installed 1941 * low ram will be on Node1 1942 */ 1943 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 1944 NULL) 1945 count += __free_memory_core(start, end); 1946 1947 return count; 1948 } 1949 1950 static int reset_managed_pages_done __initdata; 1951 1952 void reset_node_managed_pages(pg_data_t *pgdat) 1953 { 1954 struct zone *z; 1955 1956 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1957 atomic_long_set(&z->managed_pages, 0); 1958 } 1959 1960 void __init reset_all_zones_managed_pages(void) 1961 { 1962 struct pglist_data *pgdat; 1963 1964 if (reset_managed_pages_done) 1965 return; 1966 1967 for_each_online_pgdat(pgdat) 1968 reset_node_managed_pages(pgdat); 1969 1970 reset_managed_pages_done = 1; 1971 } 1972 1973 /** 1974 * memblock_free_all - release free pages to the buddy allocator 1975 * 1976 * Return: the number of pages actually released. 1977 */ 1978 unsigned long __init memblock_free_all(void) 1979 { 1980 unsigned long pages; 1981 1982 reset_all_zones_managed_pages(); 1983 1984 pages = free_low_memory_core_early(); 1985 totalram_pages_add(pages); 1986 1987 return pages; 1988 } 1989 1990 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 1991 1992 static int memblock_debug_show(struct seq_file *m, void *private) 1993 { 1994 struct memblock_type *type = m->private; 1995 struct memblock_region *reg; 1996 int i; 1997 phys_addr_t end; 1998 1999 for (i = 0; i < type->cnt; i++) { 2000 reg = &type->regions[i]; 2001 end = reg->base + reg->size - 1; 2002 2003 seq_printf(m, "%4d: ", i); 2004 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2005 } 2006 return 0; 2007 } 2008 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2009 2010 static int __init memblock_init_debugfs(void) 2011 { 2012 struct dentry *root = debugfs_create_dir("memblock", NULL); 2013 2014 debugfs_create_file("memory", 0444, root, 2015 &memblock.memory, &memblock_debug_fops); 2016 debugfs_create_file("reserved", 0444, root, 2017 &memblock.reserved, &memblock_debug_fops); 2018 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2019 debugfs_create_file("physmem", 0444, root, 2020 &memblock.physmem, &memblock_debug_fops); 2021 #endif 2022 2023 return 0; 2024 } 2025 __initcall(memblock_init_debugfs); 2026 2027 #endif /* CONFIG_DEBUG_FS */ 2028