1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NUMA 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ 174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 for (i = 0; i < type->cnt; i++) 186 if (memblock_addrs_overlap(base, size, type->regions[i].base, 187 type->regions[i].size)) 188 break; 189 return i < type->cnt; 190 } 191 192 /** 193 * __memblock_find_range_bottom_up - find free area utility in bottom-up 194 * @start: start of candidate range 195 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 196 * %MEMBLOCK_ALLOC_ACCESSIBLE 197 * @size: size of free area to find 198 * @align: alignment of free area to find 199 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 200 * @flags: pick from blocks based on memory attributes 201 * 202 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 203 * 204 * Return: 205 * Found address on success, 0 on failure. 206 */ 207 static phys_addr_t __init_memblock 208 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 209 phys_addr_t size, phys_addr_t align, int nid, 210 enum memblock_flags flags) 211 { 212 phys_addr_t this_start, this_end, cand; 213 u64 i; 214 215 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 216 this_start = clamp(this_start, start, end); 217 this_end = clamp(this_end, start, end); 218 219 cand = round_up(this_start, align); 220 if (cand < this_end && this_end - cand >= size) 221 return cand; 222 } 223 224 return 0; 225 } 226 227 /** 228 * __memblock_find_range_top_down - find free area utility, in top-down 229 * @start: start of candidate range 230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 231 * %MEMBLOCK_ALLOC_ACCESSIBLE 232 * @size: size of free area to find 233 * @align: alignment of free area to find 234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 235 * @flags: pick from blocks based on memory attributes 236 * 237 * Utility called from memblock_find_in_range_node(), find free area top-down. 238 * 239 * Return: 240 * Found address on success, 0 on failure. 241 */ 242 static phys_addr_t __init_memblock 243 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 244 phys_addr_t size, phys_addr_t align, int nid, 245 enum memblock_flags flags) 246 { 247 phys_addr_t this_start, this_end, cand; 248 u64 i; 249 250 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 251 NULL) { 252 this_start = clamp(this_start, start, end); 253 this_end = clamp(this_end, start, end); 254 255 if (this_end < size) 256 continue; 257 258 cand = round_down(this_end - size, align); 259 if (cand >= this_start) 260 return cand; 261 } 262 263 return 0; 264 } 265 266 /** 267 * memblock_find_in_range_node - find free area in given range and node 268 * @size: size of free area to find 269 * @align: alignment of free area to find 270 * @start: start of candidate range 271 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 272 * %MEMBLOCK_ALLOC_ACCESSIBLE 273 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 274 * @flags: pick from blocks based on memory attributes 275 * 276 * Find @size free area aligned to @align in the specified range and node. 277 * 278 * Return: 279 * Found address on success, 0 on failure. 280 */ 281 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 282 phys_addr_t align, phys_addr_t start, 283 phys_addr_t end, int nid, 284 enum memblock_flags flags) 285 { 286 /* pump up @end */ 287 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 288 end == MEMBLOCK_ALLOC_KASAN) 289 end = memblock.current_limit; 290 291 /* avoid allocating the first page */ 292 start = max_t(phys_addr_t, start, PAGE_SIZE); 293 end = max(start, end); 294 295 if (memblock_bottom_up()) 296 return __memblock_find_range_bottom_up(start, end, size, align, 297 nid, flags); 298 else 299 return __memblock_find_range_top_down(start, end, size, align, 300 nid, flags); 301 } 302 303 /** 304 * memblock_find_in_range - find free area in given range 305 * @start: start of candidate range 306 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 307 * %MEMBLOCK_ALLOC_ACCESSIBLE 308 * @size: size of free area to find 309 * @align: alignment of free area to find 310 * 311 * Find @size free area aligned to @align in the specified range. 312 * 313 * Return: 314 * Found address on success, 0 on failure. 315 */ 316 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 317 phys_addr_t end, phys_addr_t size, 318 phys_addr_t align) 319 { 320 phys_addr_t ret; 321 enum memblock_flags flags = choose_memblock_flags(); 322 323 again: 324 ret = memblock_find_in_range_node(size, align, start, end, 325 NUMA_NO_NODE, flags); 326 327 if (!ret && (flags & MEMBLOCK_MIRROR)) { 328 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 329 &size); 330 flags &= ~MEMBLOCK_MIRROR; 331 goto again; 332 } 333 334 return ret; 335 } 336 337 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 338 { 339 type->total_size -= type->regions[r].size; 340 memmove(&type->regions[r], &type->regions[r + 1], 341 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 342 type->cnt--; 343 344 /* Special case for empty arrays */ 345 if (type->cnt == 0) { 346 WARN_ON(type->total_size != 0); 347 type->cnt = 1; 348 type->regions[0].base = 0; 349 type->regions[0].size = 0; 350 type->regions[0].flags = 0; 351 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 352 } 353 } 354 355 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 356 /** 357 * memblock_discard - discard memory and reserved arrays if they were allocated 358 */ 359 void __init memblock_discard(void) 360 { 361 phys_addr_t addr, size; 362 363 if (memblock.reserved.regions != memblock_reserved_init_regions) { 364 addr = __pa(memblock.reserved.regions); 365 size = PAGE_ALIGN(sizeof(struct memblock_region) * 366 memblock.reserved.max); 367 __memblock_free_late(addr, size); 368 } 369 370 if (memblock.memory.regions != memblock_memory_init_regions) { 371 addr = __pa(memblock.memory.regions); 372 size = PAGE_ALIGN(sizeof(struct memblock_region) * 373 memblock.memory.max); 374 __memblock_free_late(addr, size); 375 } 376 377 memblock_memory = NULL; 378 } 379 #endif 380 381 /** 382 * memblock_double_array - double the size of the memblock regions array 383 * @type: memblock type of the regions array being doubled 384 * @new_area_start: starting address of memory range to avoid overlap with 385 * @new_area_size: size of memory range to avoid overlap with 386 * 387 * Double the size of the @type regions array. If memblock is being used to 388 * allocate memory for a new reserved regions array and there is a previously 389 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 390 * waiting to be reserved, ensure the memory used by the new array does 391 * not overlap. 392 * 393 * Return: 394 * 0 on success, -1 on failure. 395 */ 396 static int __init_memblock memblock_double_array(struct memblock_type *type, 397 phys_addr_t new_area_start, 398 phys_addr_t new_area_size) 399 { 400 struct memblock_region *new_array, *old_array; 401 phys_addr_t old_alloc_size, new_alloc_size; 402 phys_addr_t old_size, new_size, addr, new_end; 403 int use_slab = slab_is_available(); 404 int *in_slab; 405 406 /* We don't allow resizing until we know about the reserved regions 407 * of memory that aren't suitable for allocation 408 */ 409 if (!memblock_can_resize) 410 return -1; 411 412 /* Calculate new doubled size */ 413 old_size = type->max * sizeof(struct memblock_region); 414 new_size = old_size << 1; 415 /* 416 * We need to allocated new one align to PAGE_SIZE, 417 * so we can free them completely later. 418 */ 419 old_alloc_size = PAGE_ALIGN(old_size); 420 new_alloc_size = PAGE_ALIGN(new_size); 421 422 /* Retrieve the slab flag */ 423 if (type == &memblock.memory) 424 in_slab = &memblock_memory_in_slab; 425 else 426 in_slab = &memblock_reserved_in_slab; 427 428 /* Try to find some space for it */ 429 if (use_slab) { 430 new_array = kmalloc(new_size, GFP_KERNEL); 431 addr = new_array ? __pa(new_array) : 0; 432 } else { 433 /* only exclude range when trying to double reserved.regions */ 434 if (type != &memblock.reserved) 435 new_area_start = new_area_size = 0; 436 437 addr = memblock_find_in_range(new_area_start + new_area_size, 438 memblock.current_limit, 439 new_alloc_size, PAGE_SIZE); 440 if (!addr && new_area_size) 441 addr = memblock_find_in_range(0, 442 min(new_area_start, memblock.current_limit), 443 new_alloc_size, PAGE_SIZE); 444 445 new_array = addr ? __va(addr) : NULL; 446 } 447 if (!addr) { 448 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 449 type->name, type->max, type->max * 2); 450 return -1; 451 } 452 453 new_end = addr + new_size - 1; 454 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 455 type->name, type->max * 2, &addr, &new_end); 456 457 /* 458 * Found space, we now need to move the array over before we add the 459 * reserved region since it may be our reserved array itself that is 460 * full. 461 */ 462 memcpy(new_array, type->regions, old_size); 463 memset(new_array + type->max, 0, old_size); 464 old_array = type->regions; 465 type->regions = new_array; 466 type->max <<= 1; 467 468 /* Free old array. We needn't free it if the array is the static one */ 469 if (*in_slab) 470 kfree(old_array); 471 else if (old_array != memblock_memory_init_regions && 472 old_array != memblock_reserved_init_regions) 473 memblock_free(__pa(old_array), old_alloc_size); 474 475 /* 476 * Reserve the new array if that comes from the memblock. Otherwise, we 477 * needn't do it 478 */ 479 if (!use_slab) 480 BUG_ON(memblock_reserve(addr, new_alloc_size)); 481 482 /* Update slab flag */ 483 *in_slab = use_slab; 484 485 return 0; 486 } 487 488 /** 489 * memblock_merge_regions - merge neighboring compatible regions 490 * @type: memblock type to scan 491 * 492 * Scan @type and merge neighboring compatible regions. 493 */ 494 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 495 { 496 int i = 0; 497 498 /* cnt never goes below 1 */ 499 while (i < type->cnt - 1) { 500 struct memblock_region *this = &type->regions[i]; 501 struct memblock_region *next = &type->regions[i + 1]; 502 503 if (this->base + this->size != next->base || 504 memblock_get_region_node(this) != 505 memblock_get_region_node(next) || 506 this->flags != next->flags) { 507 BUG_ON(this->base + this->size > next->base); 508 i++; 509 continue; 510 } 511 512 this->size += next->size; 513 /* move forward from next + 1, index of which is i + 2 */ 514 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 515 type->cnt--; 516 } 517 } 518 519 /** 520 * memblock_insert_region - insert new memblock region 521 * @type: memblock type to insert into 522 * @idx: index for the insertion point 523 * @base: base address of the new region 524 * @size: size of the new region 525 * @nid: node id of the new region 526 * @flags: flags of the new region 527 * 528 * Insert new memblock region [@base, @base + @size) into @type at @idx. 529 * @type must already have extra room to accommodate the new region. 530 */ 531 static void __init_memblock memblock_insert_region(struct memblock_type *type, 532 int idx, phys_addr_t base, 533 phys_addr_t size, 534 int nid, 535 enum memblock_flags flags) 536 { 537 struct memblock_region *rgn = &type->regions[idx]; 538 539 BUG_ON(type->cnt >= type->max); 540 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 541 rgn->base = base; 542 rgn->size = size; 543 rgn->flags = flags; 544 memblock_set_region_node(rgn, nid); 545 type->cnt++; 546 type->total_size += size; 547 } 548 549 /** 550 * memblock_add_range - add new memblock region 551 * @type: memblock type to add new region into 552 * @base: base address of the new region 553 * @size: size of the new region 554 * @nid: nid of the new region 555 * @flags: flags of the new region 556 * 557 * Add new memblock region [@base, @base + @size) into @type. The new region 558 * is allowed to overlap with existing ones - overlaps don't affect already 559 * existing regions. @type is guaranteed to be minimal (all neighbouring 560 * compatible regions are merged) after the addition. 561 * 562 * Return: 563 * 0 on success, -errno on failure. 564 */ 565 static int __init_memblock memblock_add_range(struct memblock_type *type, 566 phys_addr_t base, phys_addr_t size, 567 int nid, enum memblock_flags flags) 568 { 569 bool insert = false; 570 phys_addr_t obase = base; 571 phys_addr_t end = base + memblock_cap_size(base, &size); 572 int idx, nr_new; 573 struct memblock_region *rgn; 574 575 if (!size) 576 return 0; 577 578 /* special case for empty array */ 579 if (type->regions[0].size == 0) { 580 WARN_ON(type->cnt != 1 || type->total_size); 581 type->regions[0].base = base; 582 type->regions[0].size = size; 583 type->regions[0].flags = flags; 584 memblock_set_region_node(&type->regions[0], nid); 585 type->total_size = size; 586 return 0; 587 } 588 repeat: 589 /* 590 * The following is executed twice. Once with %false @insert and 591 * then with %true. The first counts the number of regions needed 592 * to accommodate the new area. The second actually inserts them. 593 */ 594 base = obase; 595 nr_new = 0; 596 597 for_each_memblock_type(idx, type, rgn) { 598 phys_addr_t rbase = rgn->base; 599 phys_addr_t rend = rbase + rgn->size; 600 601 if (rbase >= end) 602 break; 603 if (rend <= base) 604 continue; 605 /* 606 * @rgn overlaps. If it separates the lower part of new 607 * area, insert that portion. 608 */ 609 if (rbase > base) { 610 #ifdef CONFIG_NUMA 611 WARN_ON(nid != memblock_get_region_node(rgn)); 612 #endif 613 WARN_ON(flags != rgn->flags); 614 nr_new++; 615 if (insert) 616 memblock_insert_region(type, idx++, base, 617 rbase - base, nid, 618 flags); 619 } 620 /* area below @rend is dealt with, forget about it */ 621 base = min(rend, end); 622 } 623 624 /* insert the remaining portion */ 625 if (base < end) { 626 nr_new++; 627 if (insert) 628 memblock_insert_region(type, idx, base, end - base, 629 nid, flags); 630 } 631 632 if (!nr_new) 633 return 0; 634 635 /* 636 * If this was the first round, resize array and repeat for actual 637 * insertions; otherwise, merge and return. 638 */ 639 if (!insert) { 640 while (type->cnt + nr_new > type->max) 641 if (memblock_double_array(type, obase, size) < 0) 642 return -ENOMEM; 643 insert = true; 644 goto repeat; 645 } else { 646 memblock_merge_regions(type); 647 return 0; 648 } 649 } 650 651 /** 652 * memblock_add_node - add new memblock region within a NUMA node 653 * @base: base address of the new region 654 * @size: size of the new region 655 * @nid: nid of the new region 656 * 657 * Add new memblock region [@base, @base + @size) to the "memory" 658 * type. See memblock_add_range() description for mode details 659 * 660 * Return: 661 * 0 on success, -errno on failure. 662 */ 663 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 664 int nid) 665 { 666 return memblock_add_range(&memblock.memory, base, size, nid, 0); 667 } 668 669 /** 670 * memblock_add - add new memblock region 671 * @base: base address of the new region 672 * @size: size of the new region 673 * 674 * Add new memblock region [@base, @base + @size) to the "memory" 675 * type. See memblock_add_range() description for mode details 676 * 677 * Return: 678 * 0 on success, -errno on failure. 679 */ 680 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 681 { 682 phys_addr_t end = base + size - 1; 683 684 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 685 &base, &end, (void *)_RET_IP_); 686 687 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 688 } 689 690 /** 691 * memblock_isolate_range - isolate given range into disjoint memblocks 692 * @type: memblock type to isolate range for 693 * @base: base of range to isolate 694 * @size: size of range to isolate 695 * @start_rgn: out parameter for the start of isolated region 696 * @end_rgn: out parameter for the end of isolated region 697 * 698 * Walk @type and ensure that regions don't cross the boundaries defined by 699 * [@base, @base + @size). Crossing regions are split at the boundaries, 700 * which may create at most two more regions. The index of the first 701 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 702 * 703 * Return: 704 * 0 on success, -errno on failure. 705 */ 706 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 707 phys_addr_t base, phys_addr_t size, 708 int *start_rgn, int *end_rgn) 709 { 710 phys_addr_t end = base + memblock_cap_size(base, &size); 711 int idx; 712 struct memblock_region *rgn; 713 714 *start_rgn = *end_rgn = 0; 715 716 if (!size) 717 return 0; 718 719 /* we'll create at most two more regions */ 720 while (type->cnt + 2 > type->max) 721 if (memblock_double_array(type, base, size) < 0) 722 return -ENOMEM; 723 724 for_each_memblock_type(idx, type, rgn) { 725 phys_addr_t rbase = rgn->base; 726 phys_addr_t rend = rbase + rgn->size; 727 728 if (rbase >= end) 729 break; 730 if (rend <= base) 731 continue; 732 733 if (rbase < base) { 734 /* 735 * @rgn intersects from below. Split and continue 736 * to process the next region - the new top half. 737 */ 738 rgn->base = base; 739 rgn->size -= base - rbase; 740 type->total_size -= base - rbase; 741 memblock_insert_region(type, idx, rbase, base - rbase, 742 memblock_get_region_node(rgn), 743 rgn->flags); 744 } else if (rend > end) { 745 /* 746 * @rgn intersects from above. Split and redo the 747 * current region - the new bottom half. 748 */ 749 rgn->base = end; 750 rgn->size -= end - rbase; 751 type->total_size -= end - rbase; 752 memblock_insert_region(type, idx--, rbase, end - rbase, 753 memblock_get_region_node(rgn), 754 rgn->flags); 755 } else { 756 /* @rgn is fully contained, record it */ 757 if (!*end_rgn) 758 *start_rgn = idx; 759 *end_rgn = idx + 1; 760 } 761 } 762 763 return 0; 764 } 765 766 static int __init_memblock memblock_remove_range(struct memblock_type *type, 767 phys_addr_t base, phys_addr_t size) 768 { 769 int start_rgn, end_rgn; 770 int i, ret; 771 772 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 773 if (ret) 774 return ret; 775 776 for (i = end_rgn - 1; i >= start_rgn; i--) 777 memblock_remove_region(type, i); 778 return 0; 779 } 780 781 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 782 { 783 phys_addr_t end = base + size - 1; 784 785 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 786 &base, &end, (void *)_RET_IP_); 787 788 return memblock_remove_range(&memblock.memory, base, size); 789 } 790 791 /** 792 * memblock_free - free boot memory block 793 * @base: phys starting address of the boot memory block 794 * @size: size of the boot memory block in bytes 795 * 796 * Free boot memory block previously allocated by memblock_alloc_xx() API. 797 * The freeing memory will not be released to the buddy allocator. 798 */ 799 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 800 { 801 phys_addr_t end = base + size - 1; 802 803 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 804 &base, &end, (void *)_RET_IP_); 805 806 kmemleak_free_part_phys(base, size); 807 return memblock_remove_range(&memblock.reserved, base, size); 808 } 809 810 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 811 { 812 phys_addr_t end = base + size - 1; 813 814 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 815 &base, &end, (void *)_RET_IP_); 816 817 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 818 } 819 820 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 821 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 822 { 823 phys_addr_t end = base + size - 1; 824 825 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 826 &base, &end, (void *)_RET_IP_); 827 828 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 829 } 830 #endif 831 832 /** 833 * memblock_setclr_flag - set or clear flag for a memory region 834 * @base: base address of the region 835 * @size: size of the region 836 * @set: set or clear the flag 837 * @flag: the flag to update 838 * 839 * This function isolates region [@base, @base + @size), and sets/clears flag 840 * 841 * Return: 0 on success, -errno on failure. 842 */ 843 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 844 phys_addr_t size, int set, int flag) 845 { 846 struct memblock_type *type = &memblock.memory; 847 int i, ret, start_rgn, end_rgn; 848 849 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 850 if (ret) 851 return ret; 852 853 for (i = start_rgn; i < end_rgn; i++) { 854 struct memblock_region *r = &type->regions[i]; 855 856 if (set) 857 r->flags |= flag; 858 else 859 r->flags &= ~flag; 860 } 861 862 memblock_merge_regions(type); 863 return 0; 864 } 865 866 /** 867 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 868 * @base: the base phys addr of the region 869 * @size: the size of the region 870 * 871 * Return: 0 on success, -errno on failure. 872 */ 873 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 874 { 875 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 876 } 877 878 /** 879 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 880 * @base: the base phys addr of the region 881 * @size: the size of the region 882 * 883 * Return: 0 on success, -errno on failure. 884 */ 885 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 886 { 887 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 888 } 889 890 /** 891 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 892 * @base: the base phys addr of the region 893 * @size: the size of the region 894 * 895 * Return: 0 on success, -errno on failure. 896 */ 897 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 898 { 899 system_has_some_mirror = true; 900 901 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 902 } 903 904 /** 905 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 906 * @base: the base phys addr of the region 907 * @size: the size of the region 908 * 909 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 910 * direct mapping of the physical memory. These regions will still be 911 * covered by the memory map. The struct page representing NOMAP memory 912 * frames in the memory map will be PageReserved() 913 * 914 * Return: 0 on success, -errno on failure. 915 */ 916 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 917 { 918 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 919 } 920 921 /** 922 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 923 * @base: the base phys addr of the region 924 * @size: the size of the region 925 * 926 * Return: 0 on success, -errno on failure. 927 */ 928 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 929 { 930 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 931 } 932 933 static bool should_skip_region(struct memblock_type *type, 934 struct memblock_region *m, 935 int nid, int flags) 936 { 937 int m_nid = memblock_get_region_node(m); 938 939 /* we never skip regions when iterating memblock.reserved or physmem */ 940 if (type != memblock_memory) 941 return false; 942 943 /* only memory regions are associated with nodes, check it */ 944 if (nid != NUMA_NO_NODE && nid != m_nid) 945 return true; 946 947 /* skip hotpluggable memory regions if needed */ 948 if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) 949 return true; 950 951 /* if we want mirror memory skip non-mirror memory regions */ 952 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 953 return true; 954 955 /* skip nomap memory unless we were asked for it explicitly */ 956 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 957 return true; 958 959 return false; 960 } 961 962 /** 963 * __next_mem_range - next function for for_each_free_mem_range() etc. 964 * @idx: pointer to u64 loop variable 965 * @nid: node selector, %NUMA_NO_NODE for all nodes 966 * @flags: pick from blocks based on memory attributes 967 * @type_a: pointer to memblock_type from where the range is taken 968 * @type_b: pointer to memblock_type which excludes memory from being taken 969 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 970 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 971 * @out_nid: ptr to int for nid of the range, can be %NULL 972 * 973 * Find the first area from *@idx which matches @nid, fill the out 974 * parameters, and update *@idx for the next iteration. The lower 32bit of 975 * *@idx contains index into type_a and the upper 32bit indexes the 976 * areas before each region in type_b. For example, if type_b regions 977 * look like the following, 978 * 979 * 0:[0-16), 1:[32-48), 2:[128-130) 980 * 981 * The upper 32bit indexes the following regions. 982 * 983 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 984 * 985 * As both region arrays are sorted, the function advances the two indices 986 * in lockstep and returns each intersection. 987 */ 988 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 989 struct memblock_type *type_a, 990 struct memblock_type *type_b, phys_addr_t *out_start, 991 phys_addr_t *out_end, int *out_nid) 992 { 993 int idx_a = *idx & 0xffffffff; 994 int idx_b = *idx >> 32; 995 996 if (WARN_ONCE(nid == MAX_NUMNODES, 997 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 998 nid = NUMA_NO_NODE; 999 1000 for (; idx_a < type_a->cnt; idx_a++) { 1001 struct memblock_region *m = &type_a->regions[idx_a]; 1002 1003 phys_addr_t m_start = m->base; 1004 phys_addr_t m_end = m->base + m->size; 1005 int m_nid = memblock_get_region_node(m); 1006 1007 if (should_skip_region(type_a, m, nid, flags)) 1008 continue; 1009 1010 if (!type_b) { 1011 if (out_start) 1012 *out_start = m_start; 1013 if (out_end) 1014 *out_end = m_end; 1015 if (out_nid) 1016 *out_nid = m_nid; 1017 idx_a++; 1018 *idx = (u32)idx_a | (u64)idx_b << 32; 1019 return; 1020 } 1021 1022 /* scan areas before each reservation */ 1023 for (; idx_b < type_b->cnt + 1; idx_b++) { 1024 struct memblock_region *r; 1025 phys_addr_t r_start; 1026 phys_addr_t r_end; 1027 1028 r = &type_b->regions[idx_b]; 1029 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1030 r_end = idx_b < type_b->cnt ? 1031 r->base : PHYS_ADDR_MAX; 1032 1033 /* 1034 * if idx_b advanced past idx_a, 1035 * break out to advance idx_a 1036 */ 1037 if (r_start >= m_end) 1038 break; 1039 /* if the two regions intersect, we're done */ 1040 if (m_start < r_end) { 1041 if (out_start) 1042 *out_start = 1043 max(m_start, r_start); 1044 if (out_end) 1045 *out_end = min(m_end, r_end); 1046 if (out_nid) 1047 *out_nid = m_nid; 1048 /* 1049 * The region which ends first is 1050 * advanced for the next iteration. 1051 */ 1052 if (m_end <= r_end) 1053 idx_a++; 1054 else 1055 idx_b++; 1056 *idx = (u32)idx_a | (u64)idx_b << 32; 1057 return; 1058 } 1059 } 1060 } 1061 1062 /* signal end of iteration */ 1063 *idx = ULLONG_MAX; 1064 } 1065 1066 /** 1067 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1068 * 1069 * @idx: pointer to u64 loop variable 1070 * @nid: node selector, %NUMA_NO_NODE for all nodes 1071 * @flags: pick from blocks based on memory attributes 1072 * @type_a: pointer to memblock_type from where the range is taken 1073 * @type_b: pointer to memblock_type which excludes memory from being taken 1074 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1075 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1076 * @out_nid: ptr to int for nid of the range, can be %NULL 1077 * 1078 * Finds the next range from type_a which is not marked as unsuitable 1079 * in type_b. 1080 * 1081 * Reverse of __next_mem_range(). 1082 */ 1083 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1084 enum memblock_flags flags, 1085 struct memblock_type *type_a, 1086 struct memblock_type *type_b, 1087 phys_addr_t *out_start, 1088 phys_addr_t *out_end, int *out_nid) 1089 { 1090 int idx_a = *idx & 0xffffffff; 1091 int idx_b = *idx >> 32; 1092 1093 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1094 nid = NUMA_NO_NODE; 1095 1096 if (*idx == (u64)ULLONG_MAX) { 1097 idx_a = type_a->cnt - 1; 1098 if (type_b != NULL) 1099 idx_b = type_b->cnt; 1100 else 1101 idx_b = 0; 1102 } 1103 1104 for (; idx_a >= 0; idx_a--) { 1105 struct memblock_region *m = &type_a->regions[idx_a]; 1106 1107 phys_addr_t m_start = m->base; 1108 phys_addr_t m_end = m->base + m->size; 1109 int m_nid = memblock_get_region_node(m); 1110 1111 if (should_skip_region(type_a, m, nid, flags)) 1112 continue; 1113 1114 if (!type_b) { 1115 if (out_start) 1116 *out_start = m_start; 1117 if (out_end) 1118 *out_end = m_end; 1119 if (out_nid) 1120 *out_nid = m_nid; 1121 idx_a--; 1122 *idx = (u32)idx_a | (u64)idx_b << 32; 1123 return; 1124 } 1125 1126 /* scan areas before each reservation */ 1127 for (; idx_b >= 0; idx_b--) { 1128 struct memblock_region *r; 1129 phys_addr_t r_start; 1130 phys_addr_t r_end; 1131 1132 r = &type_b->regions[idx_b]; 1133 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1134 r_end = idx_b < type_b->cnt ? 1135 r->base : PHYS_ADDR_MAX; 1136 /* 1137 * if idx_b advanced past idx_a, 1138 * break out to advance idx_a 1139 */ 1140 1141 if (r_end <= m_start) 1142 break; 1143 /* if the two regions intersect, we're done */ 1144 if (m_end > r_start) { 1145 if (out_start) 1146 *out_start = max(m_start, r_start); 1147 if (out_end) 1148 *out_end = min(m_end, r_end); 1149 if (out_nid) 1150 *out_nid = m_nid; 1151 if (m_start >= r_start) 1152 idx_a--; 1153 else 1154 idx_b--; 1155 *idx = (u32)idx_a | (u64)idx_b << 32; 1156 return; 1157 } 1158 } 1159 } 1160 /* signal end of iteration */ 1161 *idx = ULLONG_MAX; 1162 } 1163 1164 /* 1165 * Common iterator interface used to define for_each_mem_pfn_range(). 1166 */ 1167 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1168 unsigned long *out_start_pfn, 1169 unsigned long *out_end_pfn, int *out_nid) 1170 { 1171 struct memblock_type *type = &memblock.memory; 1172 struct memblock_region *r; 1173 int r_nid; 1174 1175 while (++*idx < type->cnt) { 1176 r = &type->regions[*idx]; 1177 r_nid = memblock_get_region_node(r); 1178 1179 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1180 continue; 1181 if (nid == MAX_NUMNODES || nid == r_nid) 1182 break; 1183 } 1184 if (*idx >= type->cnt) { 1185 *idx = -1; 1186 return; 1187 } 1188 1189 if (out_start_pfn) 1190 *out_start_pfn = PFN_UP(r->base); 1191 if (out_end_pfn) 1192 *out_end_pfn = PFN_DOWN(r->base + r->size); 1193 if (out_nid) 1194 *out_nid = r_nid; 1195 } 1196 1197 /** 1198 * memblock_set_node - set node ID on memblock regions 1199 * @base: base of area to set node ID for 1200 * @size: size of area to set node ID for 1201 * @type: memblock type to set node ID for 1202 * @nid: node ID to set 1203 * 1204 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1205 * Regions which cross the area boundaries are split as necessary. 1206 * 1207 * Return: 1208 * 0 on success, -errno on failure. 1209 */ 1210 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1211 struct memblock_type *type, int nid) 1212 { 1213 #ifdef CONFIG_NUMA 1214 int start_rgn, end_rgn; 1215 int i, ret; 1216 1217 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1218 if (ret) 1219 return ret; 1220 1221 for (i = start_rgn; i < end_rgn; i++) 1222 memblock_set_region_node(&type->regions[i], nid); 1223 1224 memblock_merge_regions(type); 1225 #endif 1226 return 0; 1227 } 1228 1229 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1230 /** 1231 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1232 * 1233 * @idx: pointer to u64 loop variable 1234 * @zone: zone in which all of the memory blocks reside 1235 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1236 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1237 * 1238 * This function is meant to be a zone/pfn specific wrapper for the 1239 * for_each_mem_range type iterators. Specifically they are used in the 1240 * deferred memory init routines and as such we were duplicating much of 1241 * this logic throughout the code. So instead of having it in multiple 1242 * locations it seemed like it would make more sense to centralize this to 1243 * one new iterator that does everything they need. 1244 */ 1245 void __init_memblock 1246 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1247 unsigned long *out_spfn, unsigned long *out_epfn) 1248 { 1249 int zone_nid = zone_to_nid(zone); 1250 phys_addr_t spa, epa; 1251 int nid; 1252 1253 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1254 &memblock.memory, &memblock.reserved, 1255 &spa, &epa, &nid); 1256 1257 while (*idx != U64_MAX) { 1258 unsigned long epfn = PFN_DOWN(epa); 1259 unsigned long spfn = PFN_UP(spa); 1260 1261 /* 1262 * Verify the end is at least past the start of the zone and 1263 * that we have at least one PFN to initialize. 1264 */ 1265 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1266 /* if we went too far just stop searching */ 1267 if (zone_end_pfn(zone) <= spfn) { 1268 *idx = U64_MAX; 1269 break; 1270 } 1271 1272 if (out_spfn) 1273 *out_spfn = max(zone->zone_start_pfn, spfn); 1274 if (out_epfn) 1275 *out_epfn = min(zone_end_pfn(zone), epfn); 1276 1277 return; 1278 } 1279 1280 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1281 &memblock.memory, &memblock.reserved, 1282 &spa, &epa, &nid); 1283 } 1284 1285 /* signal end of iteration */ 1286 if (out_spfn) 1287 *out_spfn = ULONG_MAX; 1288 if (out_epfn) 1289 *out_epfn = 0; 1290 } 1291 1292 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1293 1294 /** 1295 * memblock_alloc_range_nid - allocate boot memory block 1296 * @size: size of memory block to be allocated in bytes 1297 * @align: alignment of the region and block's size 1298 * @start: the lower bound of the memory region to allocate (phys address) 1299 * @end: the upper bound of the memory region to allocate (phys address) 1300 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1301 * @exact_nid: control the allocation fall back to other nodes 1302 * 1303 * The allocation is performed from memory region limited by 1304 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1305 * 1306 * If the specified node can not hold the requested memory and @exact_nid 1307 * is false, the allocation falls back to any node in the system. 1308 * 1309 * For systems with memory mirroring, the allocation is attempted first 1310 * from the regions with mirroring enabled and then retried from any 1311 * memory region. 1312 * 1313 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1314 * allocated boot memory block, so that it is never reported as leaks. 1315 * 1316 * Return: 1317 * Physical address of allocated memory block on success, %0 on failure. 1318 */ 1319 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1320 phys_addr_t align, phys_addr_t start, 1321 phys_addr_t end, int nid, 1322 bool exact_nid) 1323 { 1324 enum memblock_flags flags = choose_memblock_flags(); 1325 phys_addr_t found; 1326 1327 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1328 nid = NUMA_NO_NODE; 1329 1330 if (!align) { 1331 /* Can't use WARNs this early in boot on powerpc */ 1332 dump_stack(); 1333 align = SMP_CACHE_BYTES; 1334 } 1335 1336 again: 1337 found = memblock_find_in_range_node(size, align, start, end, nid, 1338 flags); 1339 if (found && !memblock_reserve(found, size)) 1340 goto done; 1341 1342 if (nid != NUMA_NO_NODE && !exact_nid) { 1343 found = memblock_find_in_range_node(size, align, start, 1344 end, NUMA_NO_NODE, 1345 flags); 1346 if (found && !memblock_reserve(found, size)) 1347 goto done; 1348 } 1349 1350 if (flags & MEMBLOCK_MIRROR) { 1351 flags &= ~MEMBLOCK_MIRROR; 1352 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1353 &size); 1354 goto again; 1355 } 1356 1357 return 0; 1358 1359 done: 1360 /* Skip kmemleak for kasan_init() due to high volume. */ 1361 if (end != MEMBLOCK_ALLOC_KASAN) 1362 /* 1363 * The min_count is set to 0 so that memblock allocated 1364 * blocks are never reported as leaks. This is because many 1365 * of these blocks are only referred via the physical 1366 * address which is not looked up by kmemleak. 1367 */ 1368 kmemleak_alloc_phys(found, size, 0, 0); 1369 1370 return found; 1371 } 1372 1373 /** 1374 * memblock_phys_alloc_range - allocate a memory block inside specified range 1375 * @size: size of memory block to be allocated in bytes 1376 * @align: alignment of the region and block's size 1377 * @start: the lower bound of the memory region to allocate (physical address) 1378 * @end: the upper bound of the memory region to allocate (physical address) 1379 * 1380 * Allocate @size bytes in the between @start and @end. 1381 * 1382 * Return: physical address of the allocated memory block on success, 1383 * %0 on failure. 1384 */ 1385 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1386 phys_addr_t align, 1387 phys_addr_t start, 1388 phys_addr_t end) 1389 { 1390 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1391 __func__, (u64)size, (u64)align, &start, &end, 1392 (void *)_RET_IP_); 1393 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1394 false); 1395 } 1396 1397 /** 1398 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1399 * @size: size of memory block to be allocated in bytes 1400 * @align: alignment of the region and block's size 1401 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1402 * 1403 * Allocates memory block from the specified NUMA node. If the node 1404 * has no available memory, attempts to allocated from any node in the 1405 * system. 1406 * 1407 * Return: physical address of the allocated memory block on success, 1408 * %0 on failure. 1409 */ 1410 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1411 { 1412 return memblock_alloc_range_nid(size, align, 0, 1413 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1414 } 1415 1416 /** 1417 * memblock_alloc_internal - allocate boot memory block 1418 * @size: size of memory block to be allocated in bytes 1419 * @align: alignment of the region and block's size 1420 * @min_addr: the lower bound of the memory region to allocate (phys address) 1421 * @max_addr: the upper bound of the memory region to allocate (phys address) 1422 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1423 * @exact_nid: control the allocation fall back to other nodes 1424 * 1425 * Allocates memory block using memblock_alloc_range_nid() and 1426 * converts the returned physical address to virtual. 1427 * 1428 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1429 * will fall back to memory below @min_addr. Other constraints, such 1430 * as node and mirrored memory will be handled again in 1431 * memblock_alloc_range_nid(). 1432 * 1433 * Return: 1434 * Virtual address of allocated memory block on success, NULL on failure. 1435 */ 1436 static void * __init memblock_alloc_internal( 1437 phys_addr_t size, phys_addr_t align, 1438 phys_addr_t min_addr, phys_addr_t max_addr, 1439 int nid, bool exact_nid) 1440 { 1441 phys_addr_t alloc; 1442 1443 /* 1444 * Detect any accidental use of these APIs after slab is ready, as at 1445 * this moment memblock may be deinitialized already and its 1446 * internal data may be destroyed (after execution of memblock_free_all) 1447 */ 1448 if (WARN_ON_ONCE(slab_is_available())) 1449 return kzalloc_node(size, GFP_NOWAIT, nid); 1450 1451 if (max_addr > memblock.current_limit) 1452 max_addr = memblock.current_limit; 1453 1454 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1455 exact_nid); 1456 1457 /* retry allocation without lower limit */ 1458 if (!alloc && min_addr) 1459 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1460 exact_nid); 1461 1462 if (!alloc) 1463 return NULL; 1464 1465 return phys_to_virt(alloc); 1466 } 1467 1468 /** 1469 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1470 * without zeroing memory 1471 * @size: size of memory block to be allocated in bytes 1472 * @align: alignment of the region and block's size 1473 * @min_addr: the lower bound of the memory region from where the allocation 1474 * is preferred (phys address) 1475 * @max_addr: the upper bound of the memory region from where the allocation 1476 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1477 * allocate only from memory limited by memblock.current_limit value 1478 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1479 * 1480 * Public function, provides additional debug information (including caller 1481 * info), if enabled. Does not zero allocated memory. 1482 * 1483 * Return: 1484 * Virtual address of allocated memory block on success, NULL on failure. 1485 */ 1486 void * __init memblock_alloc_exact_nid_raw( 1487 phys_addr_t size, phys_addr_t align, 1488 phys_addr_t min_addr, phys_addr_t max_addr, 1489 int nid) 1490 { 1491 void *ptr; 1492 1493 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1494 __func__, (u64)size, (u64)align, nid, &min_addr, 1495 &max_addr, (void *)_RET_IP_); 1496 1497 ptr = memblock_alloc_internal(size, align, 1498 min_addr, max_addr, nid, true); 1499 if (ptr && size > 0) 1500 page_init_poison(ptr, size); 1501 1502 return ptr; 1503 } 1504 1505 /** 1506 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1507 * memory and without panicking 1508 * @size: size of memory block to be allocated in bytes 1509 * @align: alignment of the region and block's size 1510 * @min_addr: the lower bound of the memory region from where the allocation 1511 * is preferred (phys address) 1512 * @max_addr: the upper bound of the memory region from where the allocation 1513 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1514 * allocate only from memory limited by memblock.current_limit value 1515 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1516 * 1517 * Public function, provides additional debug information (including caller 1518 * info), if enabled. Does not zero allocated memory, does not panic if request 1519 * cannot be satisfied. 1520 * 1521 * Return: 1522 * Virtual address of allocated memory block on success, NULL on failure. 1523 */ 1524 void * __init memblock_alloc_try_nid_raw( 1525 phys_addr_t size, phys_addr_t align, 1526 phys_addr_t min_addr, phys_addr_t max_addr, 1527 int nid) 1528 { 1529 void *ptr; 1530 1531 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1532 __func__, (u64)size, (u64)align, nid, &min_addr, 1533 &max_addr, (void *)_RET_IP_); 1534 1535 ptr = memblock_alloc_internal(size, align, 1536 min_addr, max_addr, nid, false); 1537 if (ptr && size > 0) 1538 page_init_poison(ptr, size); 1539 1540 return ptr; 1541 } 1542 1543 /** 1544 * memblock_alloc_try_nid - allocate boot memory block 1545 * @size: size of memory block to be allocated in bytes 1546 * @align: alignment of the region and block's size 1547 * @min_addr: the lower bound of the memory region from where the allocation 1548 * is preferred (phys address) 1549 * @max_addr: the upper bound of the memory region from where the allocation 1550 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1551 * allocate only from memory limited by memblock.current_limit value 1552 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1553 * 1554 * Public function, provides additional debug information (including caller 1555 * info), if enabled. This function zeroes the allocated memory. 1556 * 1557 * Return: 1558 * Virtual address of allocated memory block on success, NULL on failure. 1559 */ 1560 void * __init memblock_alloc_try_nid( 1561 phys_addr_t size, phys_addr_t align, 1562 phys_addr_t min_addr, phys_addr_t max_addr, 1563 int nid) 1564 { 1565 void *ptr; 1566 1567 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1568 __func__, (u64)size, (u64)align, nid, &min_addr, 1569 &max_addr, (void *)_RET_IP_); 1570 ptr = memblock_alloc_internal(size, align, 1571 min_addr, max_addr, nid, false); 1572 if (ptr) 1573 memset(ptr, 0, size); 1574 1575 return ptr; 1576 } 1577 1578 /** 1579 * __memblock_free_late - free pages directly to buddy allocator 1580 * @base: phys starting address of the boot memory block 1581 * @size: size of the boot memory block in bytes 1582 * 1583 * This is only useful when the memblock allocator has already been torn 1584 * down, but we are still initializing the system. Pages are released directly 1585 * to the buddy allocator. 1586 */ 1587 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1588 { 1589 phys_addr_t cursor, end; 1590 1591 end = base + size - 1; 1592 memblock_dbg("%s: [%pa-%pa] %pS\n", 1593 __func__, &base, &end, (void *)_RET_IP_); 1594 kmemleak_free_part_phys(base, size); 1595 cursor = PFN_UP(base); 1596 end = PFN_DOWN(base + size); 1597 1598 for (; cursor < end; cursor++) { 1599 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1600 totalram_pages_inc(); 1601 } 1602 } 1603 1604 /* 1605 * Remaining API functions 1606 */ 1607 1608 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1609 { 1610 return memblock.memory.total_size; 1611 } 1612 1613 phys_addr_t __init_memblock memblock_reserved_size(void) 1614 { 1615 return memblock.reserved.total_size; 1616 } 1617 1618 /* lowest address */ 1619 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1620 { 1621 return memblock.memory.regions[0].base; 1622 } 1623 1624 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1625 { 1626 int idx = memblock.memory.cnt - 1; 1627 1628 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1629 } 1630 1631 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1632 { 1633 phys_addr_t max_addr = PHYS_ADDR_MAX; 1634 struct memblock_region *r; 1635 1636 /* 1637 * translate the memory @limit size into the max address within one of 1638 * the memory memblock regions, if the @limit exceeds the total size 1639 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1640 */ 1641 for_each_mem_region(r) { 1642 if (limit <= r->size) { 1643 max_addr = r->base + limit; 1644 break; 1645 } 1646 limit -= r->size; 1647 } 1648 1649 return max_addr; 1650 } 1651 1652 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1653 { 1654 phys_addr_t max_addr; 1655 1656 if (!limit) 1657 return; 1658 1659 max_addr = __find_max_addr(limit); 1660 1661 /* @limit exceeds the total size of the memory, do nothing */ 1662 if (max_addr == PHYS_ADDR_MAX) 1663 return; 1664 1665 /* truncate both memory and reserved regions */ 1666 memblock_remove_range(&memblock.memory, max_addr, 1667 PHYS_ADDR_MAX); 1668 memblock_remove_range(&memblock.reserved, max_addr, 1669 PHYS_ADDR_MAX); 1670 } 1671 1672 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1673 { 1674 int start_rgn, end_rgn; 1675 int i, ret; 1676 1677 if (!size) 1678 return; 1679 1680 ret = memblock_isolate_range(&memblock.memory, base, size, 1681 &start_rgn, &end_rgn); 1682 if (ret) 1683 return; 1684 1685 /* remove all the MAP regions */ 1686 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1687 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1688 memblock_remove_region(&memblock.memory, i); 1689 1690 for (i = start_rgn - 1; i >= 0; i--) 1691 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1692 memblock_remove_region(&memblock.memory, i); 1693 1694 /* truncate the reserved regions */ 1695 memblock_remove_range(&memblock.reserved, 0, base); 1696 memblock_remove_range(&memblock.reserved, 1697 base + size, PHYS_ADDR_MAX); 1698 } 1699 1700 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1701 { 1702 phys_addr_t max_addr; 1703 1704 if (!limit) 1705 return; 1706 1707 max_addr = __find_max_addr(limit); 1708 1709 /* @limit exceeds the total size of the memory, do nothing */ 1710 if (max_addr == PHYS_ADDR_MAX) 1711 return; 1712 1713 memblock_cap_memory_range(0, max_addr); 1714 } 1715 1716 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1717 { 1718 unsigned int left = 0, right = type->cnt; 1719 1720 do { 1721 unsigned int mid = (right + left) / 2; 1722 1723 if (addr < type->regions[mid].base) 1724 right = mid; 1725 else if (addr >= (type->regions[mid].base + 1726 type->regions[mid].size)) 1727 left = mid + 1; 1728 else 1729 return mid; 1730 } while (left < right); 1731 return -1; 1732 } 1733 1734 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1735 { 1736 return memblock_search(&memblock.reserved, addr) != -1; 1737 } 1738 1739 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1740 { 1741 return memblock_search(&memblock.memory, addr) != -1; 1742 } 1743 1744 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1745 { 1746 int i = memblock_search(&memblock.memory, addr); 1747 1748 if (i == -1) 1749 return false; 1750 return !memblock_is_nomap(&memblock.memory.regions[i]); 1751 } 1752 1753 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1754 unsigned long *start_pfn, unsigned long *end_pfn) 1755 { 1756 struct memblock_type *type = &memblock.memory; 1757 int mid = memblock_search(type, PFN_PHYS(pfn)); 1758 1759 if (mid == -1) 1760 return -1; 1761 1762 *start_pfn = PFN_DOWN(type->regions[mid].base); 1763 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1764 1765 return memblock_get_region_node(&type->regions[mid]); 1766 } 1767 1768 /** 1769 * memblock_is_region_memory - check if a region is a subset of memory 1770 * @base: base of region to check 1771 * @size: size of region to check 1772 * 1773 * Check if the region [@base, @base + @size) is a subset of a memory block. 1774 * 1775 * Return: 1776 * 0 if false, non-zero if true 1777 */ 1778 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1779 { 1780 int idx = memblock_search(&memblock.memory, base); 1781 phys_addr_t end = base + memblock_cap_size(base, &size); 1782 1783 if (idx == -1) 1784 return false; 1785 return (memblock.memory.regions[idx].base + 1786 memblock.memory.regions[idx].size) >= end; 1787 } 1788 1789 /** 1790 * memblock_is_region_reserved - check if a region intersects reserved memory 1791 * @base: base of region to check 1792 * @size: size of region to check 1793 * 1794 * Check if the region [@base, @base + @size) intersects a reserved 1795 * memory block. 1796 * 1797 * Return: 1798 * True if they intersect, false if not. 1799 */ 1800 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1801 { 1802 memblock_cap_size(base, &size); 1803 return memblock_overlaps_region(&memblock.reserved, base, size); 1804 } 1805 1806 void __init_memblock memblock_trim_memory(phys_addr_t align) 1807 { 1808 phys_addr_t start, end, orig_start, orig_end; 1809 struct memblock_region *r; 1810 1811 for_each_mem_region(r) { 1812 orig_start = r->base; 1813 orig_end = r->base + r->size; 1814 start = round_up(orig_start, align); 1815 end = round_down(orig_end, align); 1816 1817 if (start == orig_start && end == orig_end) 1818 continue; 1819 1820 if (start < end) { 1821 r->base = start; 1822 r->size = end - start; 1823 } else { 1824 memblock_remove_region(&memblock.memory, 1825 r - memblock.memory.regions); 1826 r--; 1827 } 1828 } 1829 } 1830 1831 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1832 { 1833 memblock.current_limit = limit; 1834 } 1835 1836 phys_addr_t __init_memblock memblock_get_current_limit(void) 1837 { 1838 return memblock.current_limit; 1839 } 1840 1841 static void __init_memblock memblock_dump(struct memblock_type *type) 1842 { 1843 phys_addr_t base, end, size; 1844 enum memblock_flags flags; 1845 int idx; 1846 struct memblock_region *rgn; 1847 1848 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1849 1850 for_each_memblock_type(idx, type, rgn) { 1851 char nid_buf[32] = ""; 1852 1853 base = rgn->base; 1854 size = rgn->size; 1855 end = base + size - 1; 1856 flags = rgn->flags; 1857 #ifdef CONFIG_NUMA 1858 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1859 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1860 memblock_get_region_node(rgn)); 1861 #endif 1862 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1863 type->name, idx, &base, &end, &size, nid_buf, flags); 1864 } 1865 } 1866 1867 static void __init_memblock __memblock_dump_all(void) 1868 { 1869 pr_info("MEMBLOCK configuration:\n"); 1870 pr_info(" memory size = %pa reserved size = %pa\n", 1871 &memblock.memory.total_size, 1872 &memblock.reserved.total_size); 1873 1874 memblock_dump(&memblock.memory); 1875 memblock_dump(&memblock.reserved); 1876 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1877 memblock_dump(&physmem); 1878 #endif 1879 } 1880 1881 void __init_memblock memblock_dump_all(void) 1882 { 1883 if (memblock_debug) 1884 __memblock_dump_all(); 1885 } 1886 1887 void __init memblock_allow_resize(void) 1888 { 1889 memblock_can_resize = 1; 1890 } 1891 1892 static int __init early_memblock(char *p) 1893 { 1894 if (p && strstr(p, "debug")) 1895 memblock_debug = 1; 1896 return 0; 1897 } 1898 early_param("memblock", early_memblock); 1899 1900 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1901 { 1902 struct page *start_pg, *end_pg; 1903 phys_addr_t pg, pgend; 1904 1905 /* 1906 * Convert start_pfn/end_pfn to a struct page pointer. 1907 */ 1908 start_pg = pfn_to_page(start_pfn - 1) + 1; 1909 end_pg = pfn_to_page(end_pfn - 1) + 1; 1910 1911 /* 1912 * Convert to physical addresses, and round start upwards and end 1913 * downwards. 1914 */ 1915 pg = PAGE_ALIGN(__pa(start_pg)); 1916 pgend = __pa(end_pg) & PAGE_MASK; 1917 1918 /* 1919 * If there are free pages between these, free the section of the 1920 * memmap array. 1921 */ 1922 if (pg < pgend) 1923 memblock_free(pg, pgend - pg); 1924 } 1925 1926 /* 1927 * The mem_map array can get very big. Free the unused area of the memory map. 1928 */ 1929 static void __init free_unused_memmap(void) 1930 { 1931 unsigned long start, end, prev_end = 0; 1932 int i; 1933 1934 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 1935 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 1936 return; 1937 1938 /* 1939 * This relies on each bank being in address order. 1940 * The banks are sorted previously in bootmem_init(). 1941 */ 1942 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 1943 #ifdef CONFIG_SPARSEMEM 1944 /* 1945 * Take care not to free memmap entries that don't exist 1946 * due to SPARSEMEM sections which aren't present. 1947 */ 1948 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 1949 #else 1950 /* 1951 * Align down here since the VM subsystem insists that the 1952 * memmap entries are valid from the bank start aligned to 1953 * MAX_ORDER_NR_PAGES. 1954 */ 1955 start = round_down(start, MAX_ORDER_NR_PAGES); 1956 #endif 1957 1958 /* 1959 * If we had a previous bank, and there is a space 1960 * between the current bank and the previous, free it. 1961 */ 1962 if (prev_end && prev_end < start) 1963 free_memmap(prev_end, start); 1964 1965 /* 1966 * Align up here since the VM subsystem insists that the 1967 * memmap entries are valid from the bank end aligned to 1968 * MAX_ORDER_NR_PAGES. 1969 */ 1970 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES); 1971 } 1972 1973 #ifdef CONFIG_SPARSEMEM 1974 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 1975 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 1976 #endif 1977 } 1978 1979 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1980 { 1981 int order; 1982 1983 while (start < end) { 1984 order = min(MAX_ORDER - 1UL, __ffs(start)); 1985 1986 while (start + (1UL << order) > end) 1987 order--; 1988 1989 memblock_free_pages(pfn_to_page(start), start, order); 1990 1991 start += (1UL << order); 1992 } 1993 } 1994 1995 static unsigned long __init __free_memory_core(phys_addr_t start, 1996 phys_addr_t end) 1997 { 1998 unsigned long start_pfn = PFN_UP(start); 1999 unsigned long end_pfn = min_t(unsigned long, 2000 PFN_DOWN(end), max_low_pfn); 2001 2002 if (start_pfn >= end_pfn) 2003 return 0; 2004 2005 __free_pages_memory(start_pfn, end_pfn); 2006 2007 return end_pfn - start_pfn; 2008 } 2009 2010 static void __init memmap_init_reserved_pages(void) 2011 { 2012 struct memblock_region *region; 2013 phys_addr_t start, end; 2014 u64 i; 2015 2016 /* initialize struct pages for the reserved regions */ 2017 for_each_reserved_mem_range(i, &start, &end) 2018 reserve_bootmem_region(start, end); 2019 2020 /* and also treat struct pages for the NOMAP regions as PageReserved */ 2021 for_each_mem_region(region) { 2022 if (memblock_is_nomap(region)) { 2023 start = region->base; 2024 end = start + region->size; 2025 reserve_bootmem_region(start, end); 2026 } 2027 } 2028 } 2029 2030 static unsigned long __init free_low_memory_core_early(void) 2031 { 2032 unsigned long count = 0; 2033 phys_addr_t start, end; 2034 u64 i; 2035 2036 memblock_clear_hotplug(0, -1); 2037 2038 memmap_init_reserved_pages(); 2039 2040 /* 2041 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2042 * because in some case like Node0 doesn't have RAM installed 2043 * low ram will be on Node1 2044 */ 2045 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2046 NULL) 2047 count += __free_memory_core(start, end); 2048 2049 return count; 2050 } 2051 2052 static int reset_managed_pages_done __initdata; 2053 2054 void reset_node_managed_pages(pg_data_t *pgdat) 2055 { 2056 struct zone *z; 2057 2058 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2059 atomic_long_set(&z->managed_pages, 0); 2060 } 2061 2062 void __init reset_all_zones_managed_pages(void) 2063 { 2064 struct pglist_data *pgdat; 2065 2066 if (reset_managed_pages_done) 2067 return; 2068 2069 for_each_online_pgdat(pgdat) 2070 reset_node_managed_pages(pgdat); 2071 2072 reset_managed_pages_done = 1; 2073 } 2074 2075 /** 2076 * memblock_free_all - release free pages to the buddy allocator 2077 */ 2078 void __init memblock_free_all(void) 2079 { 2080 unsigned long pages; 2081 2082 free_unused_memmap(); 2083 reset_all_zones_managed_pages(); 2084 2085 pages = free_low_memory_core_early(); 2086 totalram_pages_add(pages); 2087 } 2088 2089 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2090 2091 static int memblock_debug_show(struct seq_file *m, void *private) 2092 { 2093 struct memblock_type *type = m->private; 2094 struct memblock_region *reg; 2095 int i; 2096 phys_addr_t end; 2097 2098 for (i = 0; i < type->cnt; i++) { 2099 reg = &type->regions[i]; 2100 end = reg->base + reg->size - 1; 2101 2102 seq_printf(m, "%4d: ", i); 2103 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2104 } 2105 return 0; 2106 } 2107 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2108 2109 static int __init memblock_init_debugfs(void) 2110 { 2111 struct dentry *root = debugfs_create_dir("memblock", NULL); 2112 2113 debugfs_create_file("memory", 0444, root, 2114 &memblock.memory, &memblock_debug_fops); 2115 debugfs_create_file("reserved", 0444, root, 2116 &memblock.reserved, &memblock_debug_fops); 2117 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2118 debugfs_create_file("physmem", 0444, root, &physmem, 2119 &memblock_debug_fops); 2120 #endif 2121 2122 return 0; 2123 } 2124 __initcall(memblock_init_debugfs); 2125 2126 #endif /* CONFIG_DEBUG_FS */ 2127