xref: /openbmc/linux/mm/memblock.c (revision 1ab142d4)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25 
26 struct memblock memblock __initdata_memblock = {
27 	.memory.regions		= memblock_memory_init_regions,
28 	.memory.cnt		= 1,	/* empty dummy entry */
29 	.memory.max		= INIT_MEMBLOCK_REGIONS,
30 
31 	.reserved.regions	= memblock_reserved_init_regions,
32 	.reserved.cnt		= 1,	/* empty dummy entry */
33 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
34 
35 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
36 };
37 
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 
41 /* inline so we don't get a warning when pr_debug is compiled out */
42 static inline const char *memblock_type_name(struct memblock_type *type)
43 {
44 	if (type == &memblock.memory)
45 		return "memory";
46 	else if (type == &memblock.reserved)
47 		return "reserved";
48 	else
49 		return "unknown";
50 }
51 
52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
54 {
55 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
56 }
57 
58 /*
59  * Address comparison utilities
60  */
61 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
62 				       phys_addr_t base2, phys_addr_t size2)
63 {
64 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65 }
66 
67 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68 					phys_addr_t base, phys_addr_t size)
69 {
70 	unsigned long i;
71 
72 	for (i = 0; i < type->cnt; i++) {
73 		phys_addr_t rgnbase = type->regions[i].base;
74 		phys_addr_t rgnsize = type->regions[i].size;
75 		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76 			break;
77 	}
78 
79 	return (i < type->cnt) ? i : -1;
80 }
81 
82 /**
83  * memblock_find_in_range_node - find free area in given range and node
84  * @start: start of candidate range
85  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
86  * @size: size of free area to find
87  * @align: alignment of free area to find
88  * @nid: nid of the free area to find, %MAX_NUMNODES for any node
89  *
90  * Find @size free area aligned to @align in the specified range and node.
91  *
92  * RETURNS:
93  * Found address on success, %0 on failure.
94  */
95 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
96 					phys_addr_t end, phys_addr_t size,
97 					phys_addr_t align, int nid)
98 {
99 	phys_addr_t this_start, this_end, cand;
100 	u64 i;
101 
102 	/* pump up @end */
103 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
104 		end = memblock.current_limit;
105 
106 	/* avoid allocating the first page */
107 	start = max_t(phys_addr_t, start, PAGE_SIZE);
108 	end = max(start, end);
109 
110 	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
111 		this_start = clamp(this_start, start, end);
112 		this_end = clamp(this_end, start, end);
113 
114 		if (this_end < size)
115 			continue;
116 
117 		cand = round_down(this_end - size, align);
118 		if (cand >= this_start)
119 			return cand;
120 	}
121 	return 0;
122 }
123 
124 /**
125  * memblock_find_in_range - find free area in given range
126  * @start: start of candidate range
127  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
128  * @size: size of free area to find
129  * @align: alignment of free area to find
130  *
131  * Find @size free area aligned to @align in the specified range.
132  *
133  * RETURNS:
134  * Found address on success, %0 on failure.
135  */
136 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
137 					phys_addr_t end, phys_addr_t size,
138 					phys_addr_t align)
139 {
140 	return memblock_find_in_range_node(start, end, size, align,
141 					   MAX_NUMNODES);
142 }
143 
144 /*
145  * Free memblock.reserved.regions
146  */
147 int __init_memblock memblock_free_reserved_regions(void)
148 {
149 	if (memblock.reserved.regions == memblock_reserved_init_regions)
150 		return 0;
151 
152 	return memblock_free(__pa(memblock.reserved.regions),
153 		 sizeof(struct memblock_region) * memblock.reserved.max);
154 }
155 
156 /*
157  * Reserve memblock.reserved.regions
158  */
159 int __init_memblock memblock_reserve_reserved_regions(void)
160 {
161 	if (memblock.reserved.regions == memblock_reserved_init_regions)
162 		return 0;
163 
164 	return memblock_reserve(__pa(memblock.reserved.regions),
165 		 sizeof(struct memblock_region) * memblock.reserved.max);
166 }
167 
168 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
169 {
170 	type->total_size -= type->regions[r].size;
171 	memmove(&type->regions[r], &type->regions[r + 1],
172 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
173 	type->cnt--;
174 
175 	/* Special case for empty arrays */
176 	if (type->cnt == 0) {
177 		WARN_ON(type->total_size != 0);
178 		type->cnt = 1;
179 		type->regions[0].base = 0;
180 		type->regions[0].size = 0;
181 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
182 	}
183 }
184 
185 static int __init_memblock memblock_double_array(struct memblock_type *type)
186 {
187 	struct memblock_region *new_array, *old_array;
188 	phys_addr_t old_size, new_size, addr;
189 	int use_slab = slab_is_available();
190 
191 	/* We don't allow resizing until we know about the reserved regions
192 	 * of memory that aren't suitable for allocation
193 	 */
194 	if (!memblock_can_resize)
195 		return -1;
196 
197 	/* Calculate new doubled size */
198 	old_size = type->max * sizeof(struct memblock_region);
199 	new_size = old_size << 1;
200 
201 	/* Try to find some space for it.
202 	 *
203 	 * WARNING: We assume that either slab_is_available() and we use it or
204 	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
205 	 * when bootmem is currently active (unless bootmem itself is implemented
206 	 * on top of MEMBLOCK which isn't the case yet)
207 	 *
208 	 * This should however not be an issue for now, as we currently only
209 	 * call into MEMBLOCK while it's still active, or much later when slab is
210 	 * active for memory hotplug operations
211 	 */
212 	if (use_slab) {
213 		new_array = kmalloc(new_size, GFP_KERNEL);
214 		addr = new_array ? __pa(new_array) : 0;
215 	} else
216 		addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
217 	if (!addr) {
218 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
219 		       memblock_type_name(type), type->max, type->max * 2);
220 		return -1;
221 	}
222 	new_array = __va(addr);
223 
224 	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
225 		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
226 
227 	/* Found space, we now need to move the array over before
228 	 * we add the reserved region since it may be our reserved
229 	 * array itself that is full.
230 	 */
231 	memcpy(new_array, type->regions, old_size);
232 	memset(new_array + type->max, 0, old_size);
233 	old_array = type->regions;
234 	type->regions = new_array;
235 	type->max <<= 1;
236 
237 	/* If we use SLAB that's it, we are done */
238 	if (use_slab)
239 		return 0;
240 
241 	/* Add the new reserved region now. Should not fail ! */
242 	BUG_ON(memblock_reserve(addr, new_size));
243 
244 	/* If the array wasn't our static init one, then free it. We only do
245 	 * that before SLAB is available as later on, we don't know whether
246 	 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
247 	 * anyways
248 	 */
249 	if (old_array != memblock_memory_init_regions &&
250 	    old_array != memblock_reserved_init_regions)
251 		memblock_free(__pa(old_array), old_size);
252 
253 	return 0;
254 }
255 
256 /**
257  * memblock_merge_regions - merge neighboring compatible regions
258  * @type: memblock type to scan
259  *
260  * Scan @type and merge neighboring compatible regions.
261  */
262 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
263 {
264 	int i = 0;
265 
266 	/* cnt never goes below 1 */
267 	while (i < type->cnt - 1) {
268 		struct memblock_region *this = &type->regions[i];
269 		struct memblock_region *next = &type->regions[i + 1];
270 
271 		if (this->base + this->size != next->base ||
272 		    memblock_get_region_node(this) !=
273 		    memblock_get_region_node(next)) {
274 			BUG_ON(this->base + this->size > next->base);
275 			i++;
276 			continue;
277 		}
278 
279 		this->size += next->size;
280 		memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
281 		type->cnt--;
282 	}
283 }
284 
285 /**
286  * memblock_insert_region - insert new memblock region
287  * @type: memblock type to insert into
288  * @idx: index for the insertion point
289  * @base: base address of the new region
290  * @size: size of the new region
291  *
292  * Insert new memblock region [@base,@base+@size) into @type at @idx.
293  * @type must already have extra room to accomodate the new region.
294  */
295 static void __init_memblock memblock_insert_region(struct memblock_type *type,
296 						   int idx, phys_addr_t base,
297 						   phys_addr_t size, int nid)
298 {
299 	struct memblock_region *rgn = &type->regions[idx];
300 
301 	BUG_ON(type->cnt >= type->max);
302 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
303 	rgn->base = base;
304 	rgn->size = size;
305 	memblock_set_region_node(rgn, nid);
306 	type->cnt++;
307 	type->total_size += size;
308 }
309 
310 /**
311  * memblock_add_region - add new memblock region
312  * @type: memblock type to add new region into
313  * @base: base address of the new region
314  * @size: size of the new region
315  * @nid: nid of the new region
316  *
317  * Add new memblock region [@base,@base+@size) into @type.  The new region
318  * is allowed to overlap with existing ones - overlaps don't affect already
319  * existing regions.  @type is guaranteed to be minimal (all neighbouring
320  * compatible regions are merged) after the addition.
321  *
322  * RETURNS:
323  * 0 on success, -errno on failure.
324  */
325 static int __init_memblock memblock_add_region(struct memblock_type *type,
326 				phys_addr_t base, phys_addr_t size, int nid)
327 {
328 	bool insert = false;
329 	phys_addr_t obase = base;
330 	phys_addr_t end = base + memblock_cap_size(base, &size);
331 	int i, nr_new;
332 
333 	/* special case for empty array */
334 	if (type->regions[0].size == 0) {
335 		WARN_ON(type->cnt != 1 || type->total_size);
336 		type->regions[0].base = base;
337 		type->regions[0].size = size;
338 		memblock_set_region_node(&type->regions[0], nid);
339 		type->total_size = size;
340 		return 0;
341 	}
342 repeat:
343 	/*
344 	 * The following is executed twice.  Once with %false @insert and
345 	 * then with %true.  The first counts the number of regions needed
346 	 * to accomodate the new area.  The second actually inserts them.
347 	 */
348 	base = obase;
349 	nr_new = 0;
350 
351 	for (i = 0; i < type->cnt; i++) {
352 		struct memblock_region *rgn = &type->regions[i];
353 		phys_addr_t rbase = rgn->base;
354 		phys_addr_t rend = rbase + rgn->size;
355 
356 		if (rbase >= end)
357 			break;
358 		if (rend <= base)
359 			continue;
360 		/*
361 		 * @rgn overlaps.  If it separates the lower part of new
362 		 * area, insert that portion.
363 		 */
364 		if (rbase > base) {
365 			nr_new++;
366 			if (insert)
367 				memblock_insert_region(type, i++, base,
368 						       rbase - base, nid);
369 		}
370 		/* area below @rend is dealt with, forget about it */
371 		base = min(rend, end);
372 	}
373 
374 	/* insert the remaining portion */
375 	if (base < end) {
376 		nr_new++;
377 		if (insert)
378 			memblock_insert_region(type, i, base, end - base, nid);
379 	}
380 
381 	/*
382 	 * If this was the first round, resize array and repeat for actual
383 	 * insertions; otherwise, merge and return.
384 	 */
385 	if (!insert) {
386 		while (type->cnt + nr_new > type->max)
387 			if (memblock_double_array(type) < 0)
388 				return -ENOMEM;
389 		insert = true;
390 		goto repeat;
391 	} else {
392 		memblock_merge_regions(type);
393 		return 0;
394 	}
395 }
396 
397 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
398 				       int nid)
399 {
400 	return memblock_add_region(&memblock.memory, base, size, nid);
401 }
402 
403 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
404 {
405 	return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
406 }
407 
408 /**
409  * memblock_isolate_range - isolate given range into disjoint memblocks
410  * @type: memblock type to isolate range for
411  * @base: base of range to isolate
412  * @size: size of range to isolate
413  * @start_rgn: out parameter for the start of isolated region
414  * @end_rgn: out parameter for the end of isolated region
415  *
416  * Walk @type and ensure that regions don't cross the boundaries defined by
417  * [@base,@base+@size).  Crossing regions are split at the boundaries,
418  * which may create at most two more regions.  The index of the first
419  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
420  *
421  * RETURNS:
422  * 0 on success, -errno on failure.
423  */
424 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
425 					phys_addr_t base, phys_addr_t size,
426 					int *start_rgn, int *end_rgn)
427 {
428 	phys_addr_t end = base + memblock_cap_size(base, &size);
429 	int i;
430 
431 	*start_rgn = *end_rgn = 0;
432 
433 	/* we'll create at most two more regions */
434 	while (type->cnt + 2 > type->max)
435 		if (memblock_double_array(type) < 0)
436 			return -ENOMEM;
437 
438 	for (i = 0; i < type->cnt; i++) {
439 		struct memblock_region *rgn = &type->regions[i];
440 		phys_addr_t rbase = rgn->base;
441 		phys_addr_t rend = rbase + rgn->size;
442 
443 		if (rbase >= end)
444 			break;
445 		if (rend <= base)
446 			continue;
447 
448 		if (rbase < base) {
449 			/*
450 			 * @rgn intersects from below.  Split and continue
451 			 * to process the next region - the new top half.
452 			 */
453 			rgn->base = base;
454 			rgn->size -= base - rbase;
455 			type->total_size -= base - rbase;
456 			memblock_insert_region(type, i, rbase, base - rbase,
457 					       memblock_get_region_node(rgn));
458 		} else if (rend > end) {
459 			/*
460 			 * @rgn intersects from above.  Split and redo the
461 			 * current region - the new bottom half.
462 			 */
463 			rgn->base = end;
464 			rgn->size -= end - rbase;
465 			type->total_size -= end - rbase;
466 			memblock_insert_region(type, i--, rbase, end - rbase,
467 					       memblock_get_region_node(rgn));
468 		} else {
469 			/* @rgn is fully contained, record it */
470 			if (!*end_rgn)
471 				*start_rgn = i;
472 			*end_rgn = i + 1;
473 		}
474 	}
475 
476 	return 0;
477 }
478 
479 static int __init_memblock __memblock_remove(struct memblock_type *type,
480 					     phys_addr_t base, phys_addr_t size)
481 {
482 	int start_rgn, end_rgn;
483 	int i, ret;
484 
485 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
486 	if (ret)
487 		return ret;
488 
489 	for (i = end_rgn - 1; i >= start_rgn; i--)
490 		memblock_remove_region(type, i);
491 	return 0;
492 }
493 
494 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
495 {
496 	return __memblock_remove(&memblock.memory, base, size);
497 }
498 
499 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
500 {
501 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
502 		     (unsigned long long)base,
503 		     (unsigned long long)base + size,
504 		     (void *)_RET_IP_);
505 
506 	return __memblock_remove(&memblock.reserved, base, size);
507 }
508 
509 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
510 {
511 	struct memblock_type *_rgn = &memblock.reserved;
512 
513 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
514 		     (unsigned long long)base,
515 		     (unsigned long long)base + size,
516 		     (void *)_RET_IP_);
517 	BUG_ON(0 == size);
518 
519 	return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
520 }
521 
522 /**
523  * __next_free_mem_range - next function for for_each_free_mem_range()
524  * @idx: pointer to u64 loop variable
525  * @nid: nid: node selector, %MAX_NUMNODES for all nodes
526  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
527  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
528  * @p_nid: ptr to int for nid of the range, can be %NULL
529  *
530  * Find the first free area from *@idx which matches @nid, fill the out
531  * parameters, and update *@idx for the next iteration.  The lower 32bit of
532  * *@idx contains index into memory region and the upper 32bit indexes the
533  * areas before each reserved region.  For example, if reserved regions
534  * look like the following,
535  *
536  *	0:[0-16), 1:[32-48), 2:[128-130)
537  *
538  * The upper 32bit indexes the following regions.
539  *
540  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
541  *
542  * As both region arrays are sorted, the function advances the two indices
543  * in lockstep and returns each intersection.
544  */
545 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
546 					   phys_addr_t *out_start,
547 					   phys_addr_t *out_end, int *out_nid)
548 {
549 	struct memblock_type *mem = &memblock.memory;
550 	struct memblock_type *rsv = &memblock.reserved;
551 	int mi = *idx & 0xffffffff;
552 	int ri = *idx >> 32;
553 
554 	for ( ; mi < mem->cnt; mi++) {
555 		struct memblock_region *m = &mem->regions[mi];
556 		phys_addr_t m_start = m->base;
557 		phys_addr_t m_end = m->base + m->size;
558 
559 		/* only memory regions are associated with nodes, check it */
560 		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
561 			continue;
562 
563 		/* scan areas before each reservation for intersection */
564 		for ( ; ri < rsv->cnt + 1; ri++) {
565 			struct memblock_region *r = &rsv->regions[ri];
566 			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
567 			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
568 
569 			/* if ri advanced past mi, break out to advance mi */
570 			if (r_start >= m_end)
571 				break;
572 			/* if the two regions intersect, we're done */
573 			if (m_start < r_end) {
574 				if (out_start)
575 					*out_start = max(m_start, r_start);
576 				if (out_end)
577 					*out_end = min(m_end, r_end);
578 				if (out_nid)
579 					*out_nid = memblock_get_region_node(m);
580 				/*
581 				 * The region which ends first is advanced
582 				 * for the next iteration.
583 				 */
584 				if (m_end <= r_end)
585 					mi++;
586 				else
587 					ri++;
588 				*idx = (u32)mi | (u64)ri << 32;
589 				return;
590 			}
591 		}
592 	}
593 
594 	/* signal end of iteration */
595 	*idx = ULLONG_MAX;
596 }
597 
598 /**
599  * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
600  * @idx: pointer to u64 loop variable
601  * @nid: nid: node selector, %MAX_NUMNODES for all nodes
602  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
603  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
604  * @p_nid: ptr to int for nid of the range, can be %NULL
605  *
606  * Reverse of __next_free_mem_range().
607  */
608 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
609 					   phys_addr_t *out_start,
610 					   phys_addr_t *out_end, int *out_nid)
611 {
612 	struct memblock_type *mem = &memblock.memory;
613 	struct memblock_type *rsv = &memblock.reserved;
614 	int mi = *idx & 0xffffffff;
615 	int ri = *idx >> 32;
616 
617 	if (*idx == (u64)ULLONG_MAX) {
618 		mi = mem->cnt - 1;
619 		ri = rsv->cnt;
620 	}
621 
622 	for ( ; mi >= 0; mi--) {
623 		struct memblock_region *m = &mem->regions[mi];
624 		phys_addr_t m_start = m->base;
625 		phys_addr_t m_end = m->base + m->size;
626 
627 		/* only memory regions are associated with nodes, check it */
628 		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
629 			continue;
630 
631 		/* scan areas before each reservation for intersection */
632 		for ( ; ri >= 0; ri--) {
633 			struct memblock_region *r = &rsv->regions[ri];
634 			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
635 			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
636 
637 			/* if ri advanced past mi, break out to advance mi */
638 			if (r_end <= m_start)
639 				break;
640 			/* if the two regions intersect, we're done */
641 			if (m_end > r_start) {
642 				if (out_start)
643 					*out_start = max(m_start, r_start);
644 				if (out_end)
645 					*out_end = min(m_end, r_end);
646 				if (out_nid)
647 					*out_nid = memblock_get_region_node(m);
648 
649 				if (m_start >= r_start)
650 					mi--;
651 				else
652 					ri--;
653 				*idx = (u32)mi | (u64)ri << 32;
654 				return;
655 			}
656 		}
657 	}
658 
659 	*idx = ULLONG_MAX;
660 }
661 
662 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
663 /*
664  * Common iterator interface used to define for_each_mem_range().
665  */
666 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
667 				unsigned long *out_start_pfn,
668 				unsigned long *out_end_pfn, int *out_nid)
669 {
670 	struct memblock_type *type = &memblock.memory;
671 	struct memblock_region *r;
672 
673 	while (++*idx < type->cnt) {
674 		r = &type->regions[*idx];
675 
676 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
677 			continue;
678 		if (nid == MAX_NUMNODES || nid == r->nid)
679 			break;
680 	}
681 	if (*idx >= type->cnt) {
682 		*idx = -1;
683 		return;
684 	}
685 
686 	if (out_start_pfn)
687 		*out_start_pfn = PFN_UP(r->base);
688 	if (out_end_pfn)
689 		*out_end_pfn = PFN_DOWN(r->base + r->size);
690 	if (out_nid)
691 		*out_nid = r->nid;
692 }
693 
694 /**
695  * memblock_set_node - set node ID on memblock regions
696  * @base: base of area to set node ID for
697  * @size: size of area to set node ID for
698  * @nid: node ID to set
699  *
700  * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
701  * Regions which cross the area boundaries are split as necessary.
702  *
703  * RETURNS:
704  * 0 on success, -errno on failure.
705  */
706 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
707 				      int nid)
708 {
709 	struct memblock_type *type = &memblock.memory;
710 	int start_rgn, end_rgn;
711 	int i, ret;
712 
713 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
714 	if (ret)
715 		return ret;
716 
717 	for (i = start_rgn; i < end_rgn; i++)
718 		type->regions[i].nid = nid;
719 
720 	memblock_merge_regions(type);
721 	return 0;
722 }
723 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
724 
725 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
726 					phys_addr_t align, phys_addr_t max_addr,
727 					int nid)
728 {
729 	phys_addr_t found;
730 
731 	/* align @size to avoid excessive fragmentation on reserved array */
732 	size = round_up(size, align);
733 
734 	found = memblock_find_in_range_node(0, max_addr, size, align, nid);
735 	if (found && !memblock_reserve(found, size))
736 		return found;
737 
738 	return 0;
739 }
740 
741 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
742 {
743 	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
744 }
745 
746 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
747 {
748 	return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
749 }
750 
751 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
752 {
753 	phys_addr_t alloc;
754 
755 	alloc = __memblock_alloc_base(size, align, max_addr);
756 
757 	if (alloc == 0)
758 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
759 		      (unsigned long long) size, (unsigned long long) max_addr);
760 
761 	return alloc;
762 }
763 
764 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
765 {
766 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
767 }
768 
769 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
770 {
771 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
772 
773 	if (res)
774 		return res;
775 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
776 }
777 
778 
779 /*
780  * Remaining API functions
781  */
782 
783 phys_addr_t __init memblock_phys_mem_size(void)
784 {
785 	return memblock.memory.total_size;
786 }
787 
788 /* lowest address */
789 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
790 {
791 	return memblock.memory.regions[0].base;
792 }
793 
794 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
795 {
796 	int idx = memblock.memory.cnt - 1;
797 
798 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
799 }
800 
801 void __init memblock_enforce_memory_limit(phys_addr_t limit)
802 {
803 	unsigned long i;
804 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
805 
806 	if (!limit)
807 		return;
808 
809 	/* find out max address */
810 	for (i = 0; i < memblock.memory.cnt; i++) {
811 		struct memblock_region *r = &memblock.memory.regions[i];
812 
813 		if (limit <= r->size) {
814 			max_addr = r->base + limit;
815 			break;
816 		}
817 		limit -= r->size;
818 	}
819 
820 	/* truncate both memory and reserved regions */
821 	__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
822 	__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
823 }
824 
825 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
826 {
827 	unsigned int left = 0, right = type->cnt;
828 
829 	do {
830 		unsigned int mid = (right + left) / 2;
831 
832 		if (addr < type->regions[mid].base)
833 			right = mid;
834 		else if (addr >= (type->regions[mid].base +
835 				  type->regions[mid].size))
836 			left = mid + 1;
837 		else
838 			return mid;
839 	} while (left < right);
840 	return -1;
841 }
842 
843 int __init memblock_is_reserved(phys_addr_t addr)
844 {
845 	return memblock_search(&memblock.reserved, addr) != -1;
846 }
847 
848 int __init_memblock memblock_is_memory(phys_addr_t addr)
849 {
850 	return memblock_search(&memblock.memory, addr) != -1;
851 }
852 
853 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
854 {
855 	int idx = memblock_search(&memblock.memory, base);
856 	phys_addr_t end = base + memblock_cap_size(base, &size);
857 
858 	if (idx == -1)
859 		return 0;
860 	return memblock.memory.regions[idx].base <= base &&
861 		(memblock.memory.regions[idx].base +
862 		 memblock.memory.regions[idx].size) >= end;
863 }
864 
865 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
866 {
867 	memblock_cap_size(base, &size);
868 	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
869 }
870 
871 
872 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
873 {
874 	memblock.current_limit = limit;
875 }
876 
877 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
878 {
879 	unsigned long long base, size;
880 	int i;
881 
882 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
883 
884 	for (i = 0; i < type->cnt; i++) {
885 		struct memblock_region *rgn = &type->regions[i];
886 		char nid_buf[32] = "";
887 
888 		base = rgn->base;
889 		size = rgn->size;
890 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
891 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
892 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
893 				 memblock_get_region_node(rgn));
894 #endif
895 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
896 			name, i, base, base + size - 1, size, nid_buf);
897 	}
898 }
899 
900 void __init_memblock __memblock_dump_all(void)
901 {
902 	pr_info("MEMBLOCK configuration:\n");
903 	pr_info(" memory size = %#llx reserved size = %#llx\n",
904 		(unsigned long long)memblock.memory.total_size,
905 		(unsigned long long)memblock.reserved.total_size);
906 
907 	memblock_dump(&memblock.memory, "memory");
908 	memblock_dump(&memblock.reserved, "reserved");
909 }
910 
911 void __init memblock_allow_resize(void)
912 {
913 	memblock_can_resize = 1;
914 }
915 
916 static int __init early_memblock(char *p)
917 {
918 	if (p && strstr(p, "debug"))
919 		memblock_debug = 1;
920 	return 0;
921 }
922 early_param("memblock", early_memblock);
923 
924 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
925 
926 static int memblock_debug_show(struct seq_file *m, void *private)
927 {
928 	struct memblock_type *type = m->private;
929 	struct memblock_region *reg;
930 	int i;
931 
932 	for (i = 0; i < type->cnt; i++) {
933 		reg = &type->regions[i];
934 		seq_printf(m, "%4d: ", i);
935 		if (sizeof(phys_addr_t) == 4)
936 			seq_printf(m, "0x%08lx..0x%08lx\n",
937 				   (unsigned long)reg->base,
938 				   (unsigned long)(reg->base + reg->size - 1));
939 		else
940 			seq_printf(m, "0x%016llx..0x%016llx\n",
941 				   (unsigned long long)reg->base,
942 				   (unsigned long long)(reg->base + reg->size - 1));
943 
944 	}
945 	return 0;
946 }
947 
948 static int memblock_debug_open(struct inode *inode, struct file *file)
949 {
950 	return single_open(file, memblock_debug_show, inode->i_private);
951 }
952 
953 static const struct file_operations memblock_debug_fops = {
954 	.open = memblock_debug_open,
955 	.read = seq_read,
956 	.llseek = seq_lseek,
957 	.release = single_release,
958 };
959 
960 static int __init memblock_init_debugfs(void)
961 {
962 	struct dentry *root = debugfs_create_dir("memblock", NULL);
963 	if (!root)
964 		return -ENXIO;
965 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
966 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
967 
968 	return 0;
969 }
970 __initcall(memblock_init_debugfs);
971 
972 #endif /* CONFIG_DEBUG_FS */
973