xref: /openbmc/linux/mm/memblock.c (revision 151f4e2b)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 
24 #include <asm/sections.h>
25 #include <linux/io.h>
26 
27 #include "internal.h"
28 
29 #define INIT_MEMBLOCK_REGIONS			128
30 #define INIT_PHYSMEM_REGIONS			4
31 
32 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
33 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
34 #endif
35 
36 /**
37  * DOC: memblock overview
38  *
39  * Memblock is a method of managing memory regions during the early
40  * boot period when the usual kernel memory allocators are not up and
41  * running.
42  *
43  * Memblock views the system memory as collections of contiguous
44  * regions. There are several types of these collections:
45  *
46  * * ``memory`` - describes the physical memory available to the
47  *   kernel; this may differ from the actual physical memory installed
48  *   in the system, for instance when the memory is restricted with
49  *   ``mem=`` command line parameter
50  * * ``reserved`` - describes the regions that were allocated
51  * * ``physmap`` - describes the actual physical memory regardless of
52  *   the possible restrictions; the ``physmap`` type is only available
53  *   on some architectures.
54  *
55  * Each region is represented by :c:type:`struct memblock_region` that
56  * defines the region extents, its attributes and NUMA node id on NUMA
57  * systems. Every memory type is described by the :c:type:`struct
58  * memblock_type` which contains an array of memory regions along with
59  * the allocator metadata. The memory types are nicely wrapped with
60  * :c:type:`struct memblock`. This structure is statically initialzed
61  * at build time. The region arrays for the "memory" and "reserved"
62  * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
63  * "physmap" type to %INIT_PHYSMEM_REGIONS.
64  * The :c:func:`memblock_allow_resize` enables automatic resizing of
65  * the region arrays during addition of new regions. This feature
66  * should be used with care so that memory allocated for the region
67  * array will not overlap with areas that should be reserved, for
68  * example initrd.
69  *
70  * The early architecture setup should tell memblock what the physical
71  * memory layout is by using :c:func:`memblock_add` or
72  * :c:func:`memblock_add_node` functions. The first function does not
73  * assign the region to a NUMA node and it is appropriate for UMA
74  * systems. Yet, it is possible to use it on NUMA systems as well and
75  * assign the region to a NUMA node later in the setup process using
76  * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
77  * performs such an assignment directly.
78  *
79  * Once memblock is setup the memory can be allocated using one of the
80  * API variants:
81  *
82  * * :c:func:`memblock_phys_alloc*` - these functions return the
83  *   **physical** address of the allocated memory
84  * * :c:func:`memblock_alloc*` - these functions return the **virtual**
85  *   address of the allocated memory.
86  *
87  * Note, that both API variants use implict assumptions about allowed
88  * memory ranges and the fallback methods. Consult the documentation
89  * of :c:func:`memblock_alloc_internal` and
90  * :c:func:`memblock_alloc_range_nid` functions for more elaboarte
91  * description.
92  *
93  * As the system boot progresses, the architecture specific
94  * :c:func:`mem_init` function frees all the memory to the buddy page
95  * allocator.
96  *
97  * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
98  * memblock data structures will be discarded after the system
99  * initialization compltes.
100  */
101 
102 #ifndef CONFIG_NEED_MULTIPLE_NODES
103 struct pglist_data __refdata contig_page_data;
104 EXPORT_SYMBOL(contig_page_data);
105 #endif
106 
107 unsigned long max_low_pfn;
108 unsigned long min_low_pfn;
109 unsigned long max_pfn;
110 unsigned long long max_possible_pfn;
111 
112 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
113 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
114 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
115 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
116 #endif
117 
118 struct memblock memblock __initdata_memblock = {
119 	.memory.regions		= memblock_memory_init_regions,
120 	.memory.cnt		= 1,	/* empty dummy entry */
121 	.memory.max		= INIT_MEMBLOCK_REGIONS,
122 	.memory.name		= "memory",
123 
124 	.reserved.regions	= memblock_reserved_init_regions,
125 	.reserved.cnt		= 1,	/* empty dummy entry */
126 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
127 	.reserved.name		= "reserved",
128 
129 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
130 	.physmem.regions	= memblock_physmem_init_regions,
131 	.physmem.cnt		= 1,	/* empty dummy entry */
132 	.physmem.max		= INIT_PHYSMEM_REGIONS,
133 	.physmem.name		= "physmem",
134 #endif
135 
136 	.bottom_up		= false,
137 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
138 };
139 
140 int memblock_debug __initdata_memblock;
141 static bool system_has_some_mirror __initdata_memblock = false;
142 static int memblock_can_resize __initdata_memblock;
143 static int memblock_memory_in_slab __initdata_memblock = 0;
144 static int memblock_reserved_in_slab __initdata_memblock = 0;
145 
146 static enum memblock_flags __init_memblock choose_memblock_flags(void)
147 {
148 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
149 }
150 
151 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
152 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
153 {
154 	return *size = min(*size, PHYS_ADDR_MAX - base);
155 }
156 
157 /*
158  * Address comparison utilities
159  */
160 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
161 				       phys_addr_t base2, phys_addr_t size2)
162 {
163 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
164 }
165 
166 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
167 					phys_addr_t base, phys_addr_t size)
168 {
169 	unsigned long i;
170 
171 	for (i = 0; i < type->cnt; i++)
172 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
173 					   type->regions[i].size))
174 			break;
175 	return i < type->cnt;
176 }
177 
178 /**
179  * __memblock_find_range_bottom_up - find free area utility in bottom-up
180  * @start: start of candidate range
181  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
182  *       %MEMBLOCK_ALLOC_ACCESSIBLE
183  * @size: size of free area to find
184  * @align: alignment of free area to find
185  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
186  * @flags: pick from blocks based on memory attributes
187  *
188  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
189  *
190  * Return:
191  * Found address on success, 0 on failure.
192  */
193 static phys_addr_t __init_memblock
194 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
195 				phys_addr_t size, phys_addr_t align, int nid,
196 				enum memblock_flags flags)
197 {
198 	phys_addr_t this_start, this_end, cand;
199 	u64 i;
200 
201 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
202 		this_start = clamp(this_start, start, end);
203 		this_end = clamp(this_end, start, end);
204 
205 		cand = round_up(this_start, align);
206 		if (cand < this_end && this_end - cand >= size)
207 			return cand;
208 	}
209 
210 	return 0;
211 }
212 
213 /**
214  * __memblock_find_range_top_down - find free area utility, in top-down
215  * @start: start of candidate range
216  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
217  *       %MEMBLOCK_ALLOC_ACCESSIBLE
218  * @size: size of free area to find
219  * @align: alignment of free area to find
220  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
221  * @flags: pick from blocks based on memory attributes
222  *
223  * Utility called from memblock_find_in_range_node(), find free area top-down.
224  *
225  * Return:
226  * Found address on success, 0 on failure.
227  */
228 static phys_addr_t __init_memblock
229 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
230 			       phys_addr_t size, phys_addr_t align, int nid,
231 			       enum memblock_flags flags)
232 {
233 	phys_addr_t this_start, this_end, cand;
234 	u64 i;
235 
236 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
237 					NULL) {
238 		this_start = clamp(this_start, start, end);
239 		this_end = clamp(this_end, start, end);
240 
241 		if (this_end < size)
242 			continue;
243 
244 		cand = round_down(this_end - size, align);
245 		if (cand >= this_start)
246 			return cand;
247 	}
248 
249 	return 0;
250 }
251 
252 /**
253  * memblock_find_in_range_node - find free area in given range and node
254  * @size: size of free area to find
255  * @align: alignment of free area to find
256  * @start: start of candidate range
257  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
258  *       %MEMBLOCK_ALLOC_ACCESSIBLE
259  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
260  * @flags: pick from blocks based on memory attributes
261  *
262  * Find @size free area aligned to @align in the specified range and node.
263  *
264  * When allocation direction is bottom-up, the @start should be greater
265  * than the end of the kernel image. Otherwise, it will be trimmed. The
266  * reason is that we want the bottom-up allocation just near the kernel
267  * image so it is highly likely that the allocated memory and the kernel
268  * will reside in the same node.
269  *
270  * If bottom-up allocation failed, will try to allocate memory top-down.
271  *
272  * Return:
273  * Found address on success, 0 on failure.
274  */
275 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
276 					phys_addr_t align, phys_addr_t start,
277 					phys_addr_t end, int nid,
278 					enum memblock_flags flags)
279 {
280 	phys_addr_t kernel_end, ret;
281 
282 	/* pump up @end */
283 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
284 	    end == MEMBLOCK_ALLOC_KASAN)
285 		end = memblock.current_limit;
286 
287 	/* avoid allocating the first page */
288 	start = max_t(phys_addr_t, start, PAGE_SIZE);
289 	end = max(start, end);
290 	kernel_end = __pa_symbol(_end);
291 
292 	/*
293 	 * try bottom-up allocation only when bottom-up mode
294 	 * is set and @end is above the kernel image.
295 	 */
296 	if (memblock_bottom_up() && end > kernel_end) {
297 		phys_addr_t bottom_up_start;
298 
299 		/* make sure we will allocate above the kernel */
300 		bottom_up_start = max(start, kernel_end);
301 
302 		/* ok, try bottom-up allocation first */
303 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
304 						      size, align, nid, flags);
305 		if (ret)
306 			return ret;
307 
308 		/*
309 		 * we always limit bottom-up allocation above the kernel,
310 		 * but top-down allocation doesn't have the limit, so
311 		 * retrying top-down allocation may succeed when bottom-up
312 		 * allocation failed.
313 		 *
314 		 * bottom-up allocation is expected to be fail very rarely,
315 		 * so we use WARN_ONCE() here to see the stack trace if
316 		 * fail happens.
317 		 */
318 		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
319 			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
320 	}
321 
322 	return __memblock_find_range_top_down(start, end, size, align, nid,
323 					      flags);
324 }
325 
326 /**
327  * memblock_find_in_range - find free area in given range
328  * @start: start of candidate range
329  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
330  *       %MEMBLOCK_ALLOC_ACCESSIBLE
331  * @size: size of free area to find
332  * @align: alignment of free area to find
333  *
334  * Find @size free area aligned to @align in the specified range.
335  *
336  * Return:
337  * Found address on success, 0 on failure.
338  */
339 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
340 					phys_addr_t end, phys_addr_t size,
341 					phys_addr_t align)
342 {
343 	phys_addr_t ret;
344 	enum memblock_flags flags = choose_memblock_flags();
345 
346 again:
347 	ret = memblock_find_in_range_node(size, align, start, end,
348 					    NUMA_NO_NODE, flags);
349 
350 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
351 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
352 			&size);
353 		flags &= ~MEMBLOCK_MIRROR;
354 		goto again;
355 	}
356 
357 	return ret;
358 }
359 
360 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
361 {
362 	type->total_size -= type->regions[r].size;
363 	memmove(&type->regions[r], &type->regions[r + 1],
364 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
365 	type->cnt--;
366 
367 	/* Special case for empty arrays */
368 	if (type->cnt == 0) {
369 		WARN_ON(type->total_size != 0);
370 		type->cnt = 1;
371 		type->regions[0].base = 0;
372 		type->regions[0].size = 0;
373 		type->regions[0].flags = 0;
374 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
375 	}
376 }
377 
378 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
379 /**
380  * memblock_discard - discard memory and reserved arrays if they were allocated
381  */
382 void __init memblock_discard(void)
383 {
384 	phys_addr_t addr, size;
385 
386 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
387 		addr = __pa(memblock.reserved.regions);
388 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
389 				  memblock.reserved.max);
390 		__memblock_free_late(addr, size);
391 	}
392 
393 	if (memblock.memory.regions != memblock_memory_init_regions) {
394 		addr = __pa(memblock.memory.regions);
395 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
396 				  memblock.memory.max);
397 		__memblock_free_late(addr, size);
398 	}
399 }
400 #endif
401 
402 /**
403  * memblock_double_array - double the size of the memblock regions array
404  * @type: memblock type of the regions array being doubled
405  * @new_area_start: starting address of memory range to avoid overlap with
406  * @new_area_size: size of memory range to avoid overlap with
407  *
408  * Double the size of the @type regions array. If memblock is being used to
409  * allocate memory for a new reserved regions array and there is a previously
410  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
411  * waiting to be reserved, ensure the memory used by the new array does
412  * not overlap.
413  *
414  * Return:
415  * 0 on success, -1 on failure.
416  */
417 static int __init_memblock memblock_double_array(struct memblock_type *type,
418 						phys_addr_t new_area_start,
419 						phys_addr_t new_area_size)
420 {
421 	struct memblock_region *new_array, *old_array;
422 	phys_addr_t old_alloc_size, new_alloc_size;
423 	phys_addr_t old_size, new_size, addr, new_end;
424 	int use_slab = slab_is_available();
425 	int *in_slab;
426 
427 	/* We don't allow resizing until we know about the reserved regions
428 	 * of memory that aren't suitable for allocation
429 	 */
430 	if (!memblock_can_resize)
431 		return -1;
432 
433 	/* Calculate new doubled size */
434 	old_size = type->max * sizeof(struct memblock_region);
435 	new_size = old_size << 1;
436 	/*
437 	 * We need to allocated new one align to PAGE_SIZE,
438 	 *   so we can free them completely later.
439 	 */
440 	old_alloc_size = PAGE_ALIGN(old_size);
441 	new_alloc_size = PAGE_ALIGN(new_size);
442 
443 	/* Retrieve the slab flag */
444 	if (type == &memblock.memory)
445 		in_slab = &memblock_memory_in_slab;
446 	else
447 		in_slab = &memblock_reserved_in_slab;
448 
449 	/* Try to find some space for it */
450 	if (use_slab) {
451 		new_array = kmalloc(new_size, GFP_KERNEL);
452 		addr = new_array ? __pa(new_array) : 0;
453 	} else {
454 		/* only exclude range when trying to double reserved.regions */
455 		if (type != &memblock.reserved)
456 			new_area_start = new_area_size = 0;
457 
458 		addr = memblock_find_in_range(new_area_start + new_area_size,
459 						memblock.current_limit,
460 						new_alloc_size, PAGE_SIZE);
461 		if (!addr && new_area_size)
462 			addr = memblock_find_in_range(0,
463 				min(new_area_start, memblock.current_limit),
464 				new_alloc_size, PAGE_SIZE);
465 
466 		new_array = addr ? __va(addr) : NULL;
467 	}
468 	if (!addr) {
469 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
470 		       type->name, type->max, type->max * 2);
471 		return -1;
472 	}
473 
474 	new_end = addr + new_size - 1;
475 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
476 			type->name, type->max * 2, &addr, &new_end);
477 
478 	/*
479 	 * Found space, we now need to move the array over before we add the
480 	 * reserved region since it may be our reserved array itself that is
481 	 * full.
482 	 */
483 	memcpy(new_array, type->regions, old_size);
484 	memset(new_array + type->max, 0, old_size);
485 	old_array = type->regions;
486 	type->regions = new_array;
487 	type->max <<= 1;
488 
489 	/* Free old array. We needn't free it if the array is the static one */
490 	if (*in_slab)
491 		kfree(old_array);
492 	else if (old_array != memblock_memory_init_regions &&
493 		 old_array != memblock_reserved_init_regions)
494 		memblock_free(__pa(old_array), old_alloc_size);
495 
496 	/*
497 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
498 	 * needn't do it
499 	 */
500 	if (!use_slab)
501 		BUG_ON(memblock_reserve(addr, new_alloc_size));
502 
503 	/* Update slab flag */
504 	*in_slab = use_slab;
505 
506 	return 0;
507 }
508 
509 /**
510  * memblock_merge_regions - merge neighboring compatible regions
511  * @type: memblock type to scan
512  *
513  * Scan @type and merge neighboring compatible regions.
514  */
515 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
516 {
517 	int i = 0;
518 
519 	/* cnt never goes below 1 */
520 	while (i < type->cnt - 1) {
521 		struct memblock_region *this = &type->regions[i];
522 		struct memblock_region *next = &type->regions[i + 1];
523 
524 		if (this->base + this->size != next->base ||
525 		    memblock_get_region_node(this) !=
526 		    memblock_get_region_node(next) ||
527 		    this->flags != next->flags) {
528 			BUG_ON(this->base + this->size > next->base);
529 			i++;
530 			continue;
531 		}
532 
533 		this->size += next->size;
534 		/* move forward from next + 1, index of which is i + 2 */
535 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
536 		type->cnt--;
537 	}
538 }
539 
540 /**
541  * memblock_insert_region - insert new memblock region
542  * @type:	memblock type to insert into
543  * @idx:	index for the insertion point
544  * @base:	base address of the new region
545  * @size:	size of the new region
546  * @nid:	node id of the new region
547  * @flags:	flags of the new region
548  *
549  * Insert new memblock region [@base, @base + @size) into @type at @idx.
550  * @type must already have extra room to accommodate the new region.
551  */
552 static void __init_memblock memblock_insert_region(struct memblock_type *type,
553 						   int idx, phys_addr_t base,
554 						   phys_addr_t size,
555 						   int nid,
556 						   enum memblock_flags flags)
557 {
558 	struct memblock_region *rgn = &type->regions[idx];
559 
560 	BUG_ON(type->cnt >= type->max);
561 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
562 	rgn->base = base;
563 	rgn->size = size;
564 	rgn->flags = flags;
565 	memblock_set_region_node(rgn, nid);
566 	type->cnt++;
567 	type->total_size += size;
568 }
569 
570 /**
571  * memblock_add_range - add new memblock region
572  * @type: memblock type to add new region into
573  * @base: base address of the new region
574  * @size: size of the new region
575  * @nid: nid of the new region
576  * @flags: flags of the new region
577  *
578  * Add new memblock region [@base, @base + @size) into @type.  The new region
579  * is allowed to overlap with existing ones - overlaps don't affect already
580  * existing regions.  @type is guaranteed to be minimal (all neighbouring
581  * compatible regions are merged) after the addition.
582  *
583  * Return:
584  * 0 on success, -errno on failure.
585  */
586 int __init_memblock memblock_add_range(struct memblock_type *type,
587 				phys_addr_t base, phys_addr_t size,
588 				int nid, enum memblock_flags flags)
589 {
590 	bool insert = false;
591 	phys_addr_t obase = base;
592 	phys_addr_t end = base + memblock_cap_size(base, &size);
593 	int idx, nr_new;
594 	struct memblock_region *rgn;
595 
596 	if (!size)
597 		return 0;
598 
599 	/* special case for empty array */
600 	if (type->regions[0].size == 0) {
601 		WARN_ON(type->cnt != 1 || type->total_size);
602 		type->regions[0].base = base;
603 		type->regions[0].size = size;
604 		type->regions[0].flags = flags;
605 		memblock_set_region_node(&type->regions[0], nid);
606 		type->total_size = size;
607 		return 0;
608 	}
609 repeat:
610 	/*
611 	 * The following is executed twice.  Once with %false @insert and
612 	 * then with %true.  The first counts the number of regions needed
613 	 * to accommodate the new area.  The second actually inserts them.
614 	 */
615 	base = obase;
616 	nr_new = 0;
617 
618 	for_each_memblock_type(idx, type, rgn) {
619 		phys_addr_t rbase = rgn->base;
620 		phys_addr_t rend = rbase + rgn->size;
621 
622 		if (rbase >= end)
623 			break;
624 		if (rend <= base)
625 			continue;
626 		/*
627 		 * @rgn overlaps.  If it separates the lower part of new
628 		 * area, insert that portion.
629 		 */
630 		if (rbase > base) {
631 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
632 			WARN_ON(nid != memblock_get_region_node(rgn));
633 #endif
634 			WARN_ON(flags != rgn->flags);
635 			nr_new++;
636 			if (insert)
637 				memblock_insert_region(type, idx++, base,
638 						       rbase - base, nid,
639 						       flags);
640 		}
641 		/* area below @rend is dealt with, forget about it */
642 		base = min(rend, end);
643 	}
644 
645 	/* insert the remaining portion */
646 	if (base < end) {
647 		nr_new++;
648 		if (insert)
649 			memblock_insert_region(type, idx, base, end - base,
650 					       nid, flags);
651 	}
652 
653 	if (!nr_new)
654 		return 0;
655 
656 	/*
657 	 * If this was the first round, resize array and repeat for actual
658 	 * insertions; otherwise, merge and return.
659 	 */
660 	if (!insert) {
661 		while (type->cnt + nr_new > type->max)
662 			if (memblock_double_array(type, obase, size) < 0)
663 				return -ENOMEM;
664 		insert = true;
665 		goto repeat;
666 	} else {
667 		memblock_merge_regions(type);
668 		return 0;
669 	}
670 }
671 
672 /**
673  * memblock_add_node - add new memblock region within a NUMA node
674  * @base: base address of the new region
675  * @size: size of the new region
676  * @nid: nid of the new region
677  *
678  * Add new memblock region [@base, @base + @size) to the "memory"
679  * type. See memblock_add_range() description for mode details
680  *
681  * Return:
682  * 0 on success, -errno on failure.
683  */
684 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
685 				       int nid)
686 {
687 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
688 }
689 
690 /**
691  * memblock_add - add new memblock region
692  * @base: base address of the new region
693  * @size: size of the new region
694  *
695  * Add new memblock region [@base, @base + @size) to the "memory"
696  * type. See memblock_add_range() description for mode details
697  *
698  * Return:
699  * 0 on success, -errno on failure.
700  */
701 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
702 {
703 	phys_addr_t end = base + size - 1;
704 
705 	memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
706 		     &base, &end, (void *)_RET_IP_);
707 
708 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
709 }
710 
711 /**
712  * memblock_isolate_range - isolate given range into disjoint memblocks
713  * @type: memblock type to isolate range for
714  * @base: base of range to isolate
715  * @size: size of range to isolate
716  * @start_rgn: out parameter for the start of isolated region
717  * @end_rgn: out parameter for the end of isolated region
718  *
719  * Walk @type and ensure that regions don't cross the boundaries defined by
720  * [@base, @base + @size).  Crossing regions are split at the boundaries,
721  * which may create at most two more regions.  The index of the first
722  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
723  *
724  * Return:
725  * 0 on success, -errno on failure.
726  */
727 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
728 					phys_addr_t base, phys_addr_t size,
729 					int *start_rgn, int *end_rgn)
730 {
731 	phys_addr_t end = base + memblock_cap_size(base, &size);
732 	int idx;
733 	struct memblock_region *rgn;
734 
735 	*start_rgn = *end_rgn = 0;
736 
737 	if (!size)
738 		return 0;
739 
740 	/* we'll create at most two more regions */
741 	while (type->cnt + 2 > type->max)
742 		if (memblock_double_array(type, base, size) < 0)
743 			return -ENOMEM;
744 
745 	for_each_memblock_type(idx, type, rgn) {
746 		phys_addr_t rbase = rgn->base;
747 		phys_addr_t rend = rbase + rgn->size;
748 
749 		if (rbase >= end)
750 			break;
751 		if (rend <= base)
752 			continue;
753 
754 		if (rbase < base) {
755 			/*
756 			 * @rgn intersects from below.  Split and continue
757 			 * to process the next region - the new top half.
758 			 */
759 			rgn->base = base;
760 			rgn->size -= base - rbase;
761 			type->total_size -= base - rbase;
762 			memblock_insert_region(type, idx, rbase, base - rbase,
763 					       memblock_get_region_node(rgn),
764 					       rgn->flags);
765 		} else if (rend > end) {
766 			/*
767 			 * @rgn intersects from above.  Split and redo the
768 			 * current region - the new bottom half.
769 			 */
770 			rgn->base = end;
771 			rgn->size -= end - rbase;
772 			type->total_size -= end - rbase;
773 			memblock_insert_region(type, idx--, rbase, end - rbase,
774 					       memblock_get_region_node(rgn),
775 					       rgn->flags);
776 		} else {
777 			/* @rgn is fully contained, record it */
778 			if (!*end_rgn)
779 				*start_rgn = idx;
780 			*end_rgn = idx + 1;
781 		}
782 	}
783 
784 	return 0;
785 }
786 
787 static int __init_memblock memblock_remove_range(struct memblock_type *type,
788 					  phys_addr_t base, phys_addr_t size)
789 {
790 	int start_rgn, end_rgn;
791 	int i, ret;
792 
793 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
794 	if (ret)
795 		return ret;
796 
797 	for (i = end_rgn - 1; i >= start_rgn; i--)
798 		memblock_remove_region(type, i);
799 	return 0;
800 }
801 
802 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
803 {
804 	phys_addr_t end = base + size - 1;
805 
806 	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
807 		     &base, &end, (void *)_RET_IP_);
808 
809 	return memblock_remove_range(&memblock.memory, base, size);
810 }
811 
812 /**
813  * memblock_free - free boot memory block
814  * @base: phys starting address of the  boot memory block
815  * @size: size of the boot memory block in bytes
816  *
817  * Free boot memory block previously allocated by memblock_alloc_xx() API.
818  * The freeing memory will not be released to the buddy allocator.
819  */
820 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
821 {
822 	phys_addr_t end = base + size - 1;
823 
824 	memblock_dbg("   memblock_free: [%pa-%pa] %pS\n",
825 		     &base, &end, (void *)_RET_IP_);
826 
827 	kmemleak_free_part_phys(base, size);
828 	return memblock_remove_range(&memblock.reserved, base, size);
829 }
830 
831 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
832 {
833 	phys_addr_t end = base + size - 1;
834 
835 	memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
836 		     &base, &end, (void *)_RET_IP_);
837 
838 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
839 }
840 
841 /**
842  * memblock_setclr_flag - set or clear flag for a memory region
843  * @base: base address of the region
844  * @size: size of the region
845  * @set: set or clear the flag
846  * @flag: the flag to udpate
847  *
848  * This function isolates region [@base, @base + @size), and sets/clears flag
849  *
850  * Return: 0 on success, -errno on failure.
851  */
852 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
853 				phys_addr_t size, int set, int flag)
854 {
855 	struct memblock_type *type = &memblock.memory;
856 	int i, ret, start_rgn, end_rgn;
857 
858 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
859 	if (ret)
860 		return ret;
861 
862 	for (i = start_rgn; i < end_rgn; i++) {
863 		struct memblock_region *r = &type->regions[i];
864 
865 		if (set)
866 			r->flags |= flag;
867 		else
868 			r->flags &= ~flag;
869 	}
870 
871 	memblock_merge_regions(type);
872 	return 0;
873 }
874 
875 /**
876  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
877  * @base: the base phys addr of the region
878  * @size: the size of the region
879  *
880  * Return: 0 on success, -errno on failure.
881  */
882 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
883 {
884 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
885 }
886 
887 /**
888  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
889  * @base: the base phys addr of the region
890  * @size: the size of the region
891  *
892  * Return: 0 on success, -errno on failure.
893  */
894 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
895 {
896 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
897 }
898 
899 /**
900  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
901  * @base: the base phys addr of the region
902  * @size: the size of the region
903  *
904  * Return: 0 on success, -errno on failure.
905  */
906 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
907 {
908 	system_has_some_mirror = true;
909 
910 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
911 }
912 
913 /**
914  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
915  * @base: the base phys addr of the region
916  * @size: the size of the region
917  *
918  * Return: 0 on success, -errno on failure.
919  */
920 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
921 {
922 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
923 }
924 
925 /**
926  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
927  * @base: the base phys addr of the region
928  * @size: the size of the region
929  *
930  * Return: 0 on success, -errno on failure.
931  */
932 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
933 {
934 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
935 }
936 
937 /**
938  * __next_reserved_mem_region - next function for for_each_reserved_region()
939  * @idx: pointer to u64 loop variable
940  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
941  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
942  *
943  * Iterate over all reserved memory regions.
944  */
945 void __init_memblock __next_reserved_mem_region(u64 *idx,
946 					   phys_addr_t *out_start,
947 					   phys_addr_t *out_end)
948 {
949 	struct memblock_type *type = &memblock.reserved;
950 
951 	if (*idx < type->cnt) {
952 		struct memblock_region *r = &type->regions[*idx];
953 		phys_addr_t base = r->base;
954 		phys_addr_t size = r->size;
955 
956 		if (out_start)
957 			*out_start = base;
958 		if (out_end)
959 			*out_end = base + size - 1;
960 
961 		*idx += 1;
962 		return;
963 	}
964 
965 	/* signal end of iteration */
966 	*idx = ULLONG_MAX;
967 }
968 
969 static bool should_skip_region(struct memblock_region *m, int nid, int flags)
970 {
971 	int m_nid = memblock_get_region_node(m);
972 
973 	/* only memory regions are associated with nodes, check it */
974 	if (nid != NUMA_NO_NODE && nid != m_nid)
975 		return true;
976 
977 	/* skip hotpluggable memory regions if needed */
978 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
979 		return true;
980 
981 	/* if we want mirror memory skip non-mirror memory regions */
982 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
983 		return true;
984 
985 	/* skip nomap memory unless we were asked for it explicitly */
986 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
987 		return true;
988 
989 	return false;
990 }
991 
992 /**
993  * __next_mem_range - next function for for_each_free_mem_range() etc.
994  * @idx: pointer to u64 loop variable
995  * @nid: node selector, %NUMA_NO_NODE for all nodes
996  * @flags: pick from blocks based on memory attributes
997  * @type_a: pointer to memblock_type from where the range is taken
998  * @type_b: pointer to memblock_type which excludes memory from being taken
999  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1000  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1001  * @out_nid: ptr to int for nid of the range, can be %NULL
1002  *
1003  * Find the first area from *@idx which matches @nid, fill the out
1004  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1005  * *@idx contains index into type_a and the upper 32bit indexes the
1006  * areas before each region in type_b.	For example, if type_b regions
1007  * look like the following,
1008  *
1009  *	0:[0-16), 1:[32-48), 2:[128-130)
1010  *
1011  * The upper 32bit indexes the following regions.
1012  *
1013  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1014  *
1015  * As both region arrays are sorted, the function advances the two indices
1016  * in lockstep and returns each intersection.
1017  */
1018 void __init_memblock __next_mem_range(u64 *idx, int nid,
1019 				      enum memblock_flags flags,
1020 				      struct memblock_type *type_a,
1021 				      struct memblock_type *type_b,
1022 				      phys_addr_t *out_start,
1023 				      phys_addr_t *out_end, int *out_nid)
1024 {
1025 	int idx_a = *idx & 0xffffffff;
1026 	int idx_b = *idx >> 32;
1027 
1028 	if (WARN_ONCE(nid == MAX_NUMNODES,
1029 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1030 		nid = NUMA_NO_NODE;
1031 
1032 	for (; idx_a < type_a->cnt; idx_a++) {
1033 		struct memblock_region *m = &type_a->regions[idx_a];
1034 
1035 		phys_addr_t m_start = m->base;
1036 		phys_addr_t m_end = m->base + m->size;
1037 		int	    m_nid = memblock_get_region_node(m);
1038 
1039 		if (should_skip_region(m, nid, flags))
1040 			continue;
1041 
1042 		if (!type_b) {
1043 			if (out_start)
1044 				*out_start = m_start;
1045 			if (out_end)
1046 				*out_end = m_end;
1047 			if (out_nid)
1048 				*out_nid = m_nid;
1049 			idx_a++;
1050 			*idx = (u32)idx_a | (u64)idx_b << 32;
1051 			return;
1052 		}
1053 
1054 		/* scan areas before each reservation */
1055 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1056 			struct memblock_region *r;
1057 			phys_addr_t r_start;
1058 			phys_addr_t r_end;
1059 
1060 			r = &type_b->regions[idx_b];
1061 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1062 			r_end = idx_b < type_b->cnt ?
1063 				r->base : PHYS_ADDR_MAX;
1064 
1065 			/*
1066 			 * if idx_b advanced past idx_a,
1067 			 * break out to advance idx_a
1068 			 */
1069 			if (r_start >= m_end)
1070 				break;
1071 			/* if the two regions intersect, we're done */
1072 			if (m_start < r_end) {
1073 				if (out_start)
1074 					*out_start =
1075 						max(m_start, r_start);
1076 				if (out_end)
1077 					*out_end = min(m_end, r_end);
1078 				if (out_nid)
1079 					*out_nid = m_nid;
1080 				/*
1081 				 * The region which ends first is
1082 				 * advanced for the next iteration.
1083 				 */
1084 				if (m_end <= r_end)
1085 					idx_a++;
1086 				else
1087 					idx_b++;
1088 				*idx = (u32)idx_a | (u64)idx_b << 32;
1089 				return;
1090 			}
1091 		}
1092 	}
1093 
1094 	/* signal end of iteration */
1095 	*idx = ULLONG_MAX;
1096 }
1097 
1098 /**
1099  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1100  *
1101  * @idx: pointer to u64 loop variable
1102  * @nid: node selector, %NUMA_NO_NODE for all nodes
1103  * @flags: pick from blocks based on memory attributes
1104  * @type_a: pointer to memblock_type from where the range is taken
1105  * @type_b: pointer to memblock_type which excludes memory from being taken
1106  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1107  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1108  * @out_nid: ptr to int for nid of the range, can be %NULL
1109  *
1110  * Finds the next range from type_a which is not marked as unsuitable
1111  * in type_b.
1112  *
1113  * Reverse of __next_mem_range().
1114  */
1115 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1116 					  enum memblock_flags flags,
1117 					  struct memblock_type *type_a,
1118 					  struct memblock_type *type_b,
1119 					  phys_addr_t *out_start,
1120 					  phys_addr_t *out_end, int *out_nid)
1121 {
1122 	int idx_a = *idx & 0xffffffff;
1123 	int idx_b = *idx >> 32;
1124 
1125 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1126 		nid = NUMA_NO_NODE;
1127 
1128 	if (*idx == (u64)ULLONG_MAX) {
1129 		idx_a = type_a->cnt - 1;
1130 		if (type_b != NULL)
1131 			idx_b = type_b->cnt;
1132 		else
1133 			idx_b = 0;
1134 	}
1135 
1136 	for (; idx_a >= 0; idx_a--) {
1137 		struct memblock_region *m = &type_a->regions[idx_a];
1138 
1139 		phys_addr_t m_start = m->base;
1140 		phys_addr_t m_end = m->base + m->size;
1141 		int m_nid = memblock_get_region_node(m);
1142 
1143 		if (should_skip_region(m, nid, flags))
1144 			continue;
1145 
1146 		if (!type_b) {
1147 			if (out_start)
1148 				*out_start = m_start;
1149 			if (out_end)
1150 				*out_end = m_end;
1151 			if (out_nid)
1152 				*out_nid = m_nid;
1153 			idx_a--;
1154 			*idx = (u32)idx_a | (u64)idx_b << 32;
1155 			return;
1156 		}
1157 
1158 		/* scan areas before each reservation */
1159 		for (; idx_b >= 0; idx_b--) {
1160 			struct memblock_region *r;
1161 			phys_addr_t r_start;
1162 			phys_addr_t r_end;
1163 
1164 			r = &type_b->regions[idx_b];
1165 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1166 			r_end = idx_b < type_b->cnt ?
1167 				r->base : PHYS_ADDR_MAX;
1168 			/*
1169 			 * if idx_b advanced past idx_a,
1170 			 * break out to advance idx_a
1171 			 */
1172 
1173 			if (r_end <= m_start)
1174 				break;
1175 			/* if the two regions intersect, we're done */
1176 			if (m_end > r_start) {
1177 				if (out_start)
1178 					*out_start = max(m_start, r_start);
1179 				if (out_end)
1180 					*out_end = min(m_end, r_end);
1181 				if (out_nid)
1182 					*out_nid = m_nid;
1183 				if (m_start >= r_start)
1184 					idx_a--;
1185 				else
1186 					idx_b--;
1187 				*idx = (u32)idx_a | (u64)idx_b << 32;
1188 				return;
1189 			}
1190 		}
1191 	}
1192 	/* signal end of iteration */
1193 	*idx = ULLONG_MAX;
1194 }
1195 
1196 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1197 /*
1198  * Common iterator interface used to define for_each_mem_pfn_range().
1199  */
1200 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1201 				unsigned long *out_start_pfn,
1202 				unsigned long *out_end_pfn, int *out_nid)
1203 {
1204 	struct memblock_type *type = &memblock.memory;
1205 	struct memblock_region *r;
1206 
1207 	while (++*idx < type->cnt) {
1208 		r = &type->regions[*idx];
1209 
1210 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1211 			continue;
1212 		if (nid == MAX_NUMNODES || nid == r->nid)
1213 			break;
1214 	}
1215 	if (*idx >= type->cnt) {
1216 		*idx = -1;
1217 		return;
1218 	}
1219 
1220 	if (out_start_pfn)
1221 		*out_start_pfn = PFN_UP(r->base);
1222 	if (out_end_pfn)
1223 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1224 	if (out_nid)
1225 		*out_nid = r->nid;
1226 }
1227 
1228 /**
1229  * memblock_set_node - set node ID on memblock regions
1230  * @base: base of area to set node ID for
1231  * @size: size of area to set node ID for
1232  * @type: memblock type to set node ID for
1233  * @nid: node ID to set
1234  *
1235  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1236  * Regions which cross the area boundaries are split as necessary.
1237  *
1238  * Return:
1239  * 0 on success, -errno on failure.
1240  */
1241 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1242 				      struct memblock_type *type, int nid)
1243 {
1244 	int start_rgn, end_rgn;
1245 	int i, ret;
1246 
1247 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1248 	if (ret)
1249 		return ret;
1250 
1251 	for (i = start_rgn; i < end_rgn; i++)
1252 		memblock_set_region_node(&type->regions[i], nid);
1253 
1254 	memblock_merge_regions(type);
1255 	return 0;
1256 }
1257 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1258 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1259 /**
1260  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1261  *
1262  * @idx: pointer to u64 loop variable
1263  * @zone: zone in which all of the memory blocks reside
1264  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1265  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1266  *
1267  * This function is meant to be a zone/pfn specific wrapper for the
1268  * for_each_mem_range type iterators. Specifically they are used in the
1269  * deferred memory init routines and as such we were duplicating much of
1270  * this logic throughout the code. So instead of having it in multiple
1271  * locations it seemed like it would make more sense to centralize this to
1272  * one new iterator that does everything they need.
1273  */
1274 void __init_memblock
1275 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1276 			     unsigned long *out_spfn, unsigned long *out_epfn)
1277 {
1278 	int zone_nid = zone_to_nid(zone);
1279 	phys_addr_t spa, epa;
1280 	int nid;
1281 
1282 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1283 			 &memblock.memory, &memblock.reserved,
1284 			 &spa, &epa, &nid);
1285 
1286 	while (*idx != U64_MAX) {
1287 		unsigned long epfn = PFN_DOWN(epa);
1288 		unsigned long spfn = PFN_UP(spa);
1289 
1290 		/*
1291 		 * Verify the end is at least past the start of the zone and
1292 		 * that we have at least one PFN to initialize.
1293 		 */
1294 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1295 			/* if we went too far just stop searching */
1296 			if (zone_end_pfn(zone) <= spfn) {
1297 				*idx = U64_MAX;
1298 				break;
1299 			}
1300 
1301 			if (out_spfn)
1302 				*out_spfn = max(zone->zone_start_pfn, spfn);
1303 			if (out_epfn)
1304 				*out_epfn = min(zone_end_pfn(zone), epfn);
1305 
1306 			return;
1307 		}
1308 
1309 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1310 				 &memblock.memory, &memblock.reserved,
1311 				 &spa, &epa, &nid);
1312 	}
1313 
1314 	/* signal end of iteration */
1315 	if (out_spfn)
1316 		*out_spfn = ULONG_MAX;
1317 	if (out_epfn)
1318 		*out_epfn = 0;
1319 }
1320 
1321 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1322 
1323 /**
1324  * memblock_alloc_range_nid - allocate boot memory block
1325  * @size: size of memory block to be allocated in bytes
1326  * @align: alignment of the region and block's size
1327  * @start: the lower bound of the memory region to allocate (phys address)
1328  * @end: the upper bound of the memory region to allocate (phys address)
1329  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1330  *
1331  * The allocation is performed from memory region limited by
1332  * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1333  *
1334  * If the specified node can not hold the requested memory the
1335  * allocation falls back to any node in the system
1336  *
1337  * For systems with memory mirroring, the allocation is attempted first
1338  * from the regions with mirroring enabled and then retried from any
1339  * memory region.
1340  *
1341  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1342  * allocated boot memory block, so that it is never reported as leaks.
1343  *
1344  * Return:
1345  * Physical address of allocated memory block on success, %0 on failure.
1346  */
1347 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1348 					phys_addr_t align, phys_addr_t start,
1349 					phys_addr_t end, int nid)
1350 {
1351 	enum memblock_flags flags = choose_memblock_flags();
1352 	phys_addr_t found;
1353 
1354 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1355 		nid = NUMA_NO_NODE;
1356 
1357 	if (!align) {
1358 		/* Can't use WARNs this early in boot on powerpc */
1359 		dump_stack();
1360 		align = SMP_CACHE_BYTES;
1361 	}
1362 
1363 	if (end > memblock.current_limit)
1364 		end = memblock.current_limit;
1365 
1366 again:
1367 	found = memblock_find_in_range_node(size, align, start, end, nid,
1368 					    flags);
1369 	if (found && !memblock_reserve(found, size))
1370 		goto done;
1371 
1372 	if (nid != NUMA_NO_NODE) {
1373 		found = memblock_find_in_range_node(size, align, start,
1374 						    end, NUMA_NO_NODE,
1375 						    flags);
1376 		if (found && !memblock_reserve(found, size))
1377 			goto done;
1378 	}
1379 
1380 	if (flags & MEMBLOCK_MIRROR) {
1381 		flags &= ~MEMBLOCK_MIRROR;
1382 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1383 			&size);
1384 		goto again;
1385 	}
1386 
1387 	return 0;
1388 
1389 done:
1390 	/* Skip kmemleak for kasan_init() due to high volume. */
1391 	if (end != MEMBLOCK_ALLOC_KASAN)
1392 		/*
1393 		 * The min_count is set to 0 so that memblock allocated
1394 		 * blocks are never reported as leaks. This is because many
1395 		 * of these blocks are only referred via the physical
1396 		 * address which is not looked up by kmemleak.
1397 		 */
1398 		kmemleak_alloc_phys(found, size, 0, 0);
1399 
1400 	return found;
1401 }
1402 
1403 /**
1404  * memblock_phys_alloc_range - allocate a memory block inside specified range
1405  * @size: size of memory block to be allocated in bytes
1406  * @align: alignment of the region and block's size
1407  * @start: the lower bound of the memory region to allocate (physical address)
1408  * @end: the upper bound of the memory region to allocate (physical address)
1409  *
1410  * Allocate @size bytes in the between @start and @end.
1411  *
1412  * Return: physical address of the allocated memory block on success,
1413  * %0 on failure.
1414  */
1415 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1416 					     phys_addr_t align,
1417 					     phys_addr_t start,
1418 					     phys_addr_t end)
1419 {
1420 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1421 }
1422 
1423 /**
1424  * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1425  * @size: size of memory block to be allocated in bytes
1426  * @align: alignment of the region and block's size
1427  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1428  *
1429  * Allocates memory block from the specified NUMA node. If the node
1430  * has no available memory, attempts to allocated from any node in the
1431  * system.
1432  *
1433  * Return: physical address of the allocated memory block on success,
1434  * %0 on failure.
1435  */
1436 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1437 {
1438 	return memblock_alloc_range_nid(size, align, 0,
1439 					MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1440 }
1441 
1442 /**
1443  * memblock_alloc_internal - allocate boot memory block
1444  * @size: size of memory block to be allocated in bytes
1445  * @align: alignment of the region and block's size
1446  * @min_addr: the lower bound of the memory region to allocate (phys address)
1447  * @max_addr: the upper bound of the memory region to allocate (phys address)
1448  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1449  *
1450  * Allocates memory block using memblock_alloc_range_nid() and
1451  * converts the returned physical address to virtual.
1452  *
1453  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1454  * will fall back to memory below @min_addr. Other constraints, such
1455  * as node and mirrored memory will be handled again in
1456  * memblock_alloc_range_nid().
1457  *
1458  * Return:
1459  * Virtual address of allocated memory block on success, NULL on failure.
1460  */
1461 static void * __init memblock_alloc_internal(
1462 				phys_addr_t size, phys_addr_t align,
1463 				phys_addr_t min_addr, phys_addr_t max_addr,
1464 				int nid)
1465 {
1466 	phys_addr_t alloc;
1467 
1468 	/*
1469 	 * Detect any accidental use of these APIs after slab is ready, as at
1470 	 * this moment memblock may be deinitialized already and its
1471 	 * internal data may be destroyed (after execution of memblock_free_all)
1472 	 */
1473 	if (WARN_ON_ONCE(slab_is_available()))
1474 		return kzalloc_node(size, GFP_NOWAIT, nid);
1475 
1476 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
1477 
1478 	/* retry allocation without lower limit */
1479 	if (!alloc && min_addr)
1480 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1481 
1482 	if (!alloc)
1483 		return NULL;
1484 
1485 	return phys_to_virt(alloc);
1486 }
1487 
1488 /**
1489  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1490  * memory and without panicking
1491  * @size: size of memory block to be allocated in bytes
1492  * @align: alignment of the region and block's size
1493  * @min_addr: the lower bound of the memory region from where the allocation
1494  *	  is preferred (phys address)
1495  * @max_addr: the upper bound of the memory region from where the allocation
1496  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1497  *	      allocate only from memory limited by memblock.current_limit value
1498  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1499  *
1500  * Public function, provides additional debug information (including caller
1501  * info), if enabled. Does not zero allocated memory, does not panic if request
1502  * cannot be satisfied.
1503  *
1504  * Return:
1505  * Virtual address of allocated memory block on success, NULL on failure.
1506  */
1507 void * __init memblock_alloc_try_nid_raw(
1508 			phys_addr_t size, phys_addr_t align,
1509 			phys_addr_t min_addr, phys_addr_t max_addr,
1510 			int nid)
1511 {
1512 	void *ptr;
1513 
1514 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1515 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1516 		     &max_addr, (void *)_RET_IP_);
1517 
1518 	ptr = memblock_alloc_internal(size, align,
1519 					   min_addr, max_addr, nid);
1520 	if (ptr && size > 0)
1521 		page_init_poison(ptr, size);
1522 
1523 	return ptr;
1524 }
1525 
1526 /**
1527  * memblock_alloc_try_nid - allocate boot memory block
1528  * @size: size of memory block to be allocated in bytes
1529  * @align: alignment of the region and block's size
1530  * @min_addr: the lower bound of the memory region from where the allocation
1531  *	  is preferred (phys address)
1532  * @max_addr: the upper bound of the memory region from where the allocation
1533  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1534  *	      allocate only from memory limited by memblock.current_limit value
1535  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1536  *
1537  * Public function, provides additional debug information (including caller
1538  * info), if enabled. This function zeroes the allocated memory.
1539  *
1540  * Return:
1541  * Virtual address of allocated memory block on success, NULL on failure.
1542  */
1543 void * __init memblock_alloc_try_nid(
1544 			phys_addr_t size, phys_addr_t align,
1545 			phys_addr_t min_addr, phys_addr_t max_addr,
1546 			int nid)
1547 {
1548 	void *ptr;
1549 
1550 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1551 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1552 		     &max_addr, (void *)_RET_IP_);
1553 	ptr = memblock_alloc_internal(size, align,
1554 					   min_addr, max_addr, nid);
1555 	if (ptr)
1556 		memset(ptr, 0, size);
1557 
1558 	return ptr;
1559 }
1560 
1561 /**
1562  * __memblock_free_late - free pages directly to buddy allocator
1563  * @base: phys starting address of the  boot memory block
1564  * @size: size of the boot memory block in bytes
1565  *
1566  * This is only useful when the memblock allocator has already been torn
1567  * down, but we are still initializing the system.  Pages are released directly
1568  * to the buddy allocator.
1569  */
1570 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1571 {
1572 	phys_addr_t cursor, end;
1573 
1574 	end = base + size - 1;
1575 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1576 		     __func__, &base, &end, (void *)_RET_IP_);
1577 	kmemleak_free_part_phys(base, size);
1578 	cursor = PFN_UP(base);
1579 	end = PFN_DOWN(base + size);
1580 
1581 	for (; cursor < end; cursor++) {
1582 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1583 		totalram_pages_inc();
1584 	}
1585 }
1586 
1587 /*
1588  * Remaining API functions
1589  */
1590 
1591 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1592 {
1593 	return memblock.memory.total_size;
1594 }
1595 
1596 phys_addr_t __init_memblock memblock_reserved_size(void)
1597 {
1598 	return memblock.reserved.total_size;
1599 }
1600 
1601 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1602 {
1603 	unsigned long pages = 0;
1604 	struct memblock_region *r;
1605 	unsigned long start_pfn, end_pfn;
1606 
1607 	for_each_memblock(memory, r) {
1608 		start_pfn = memblock_region_memory_base_pfn(r);
1609 		end_pfn = memblock_region_memory_end_pfn(r);
1610 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1611 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1612 		pages += end_pfn - start_pfn;
1613 	}
1614 
1615 	return PFN_PHYS(pages);
1616 }
1617 
1618 /* lowest address */
1619 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1620 {
1621 	return memblock.memory.regions[0].base;
1622 }
1623 
1624 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1625 {
1626 	int idx = memblock.memory.cnt - 1;
1627 
1628 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1629 }
1630 
1631 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1632 {
1633 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1634 	struct memblock_region *r;
1635 
1636 	/*
1637 	 * translate the memory @limit size into the max address within one of
1638 	 * the memory memblock regions, if the @limit exceeds the total size
1639 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1640 	 */
1641 	for_each_memblock(memory, r) {
1642 		if (limit <= r->size) {
1643 			max_addr = r->base + limit;
1644 			break;
1645 		}
1646 		limit -= r->size;
1647 	}
1648 
1649 	return max_addr;
1650 }
1651 
1652 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1653 {
1654 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1655 
1656 	if (!limit)
1657 		return;
1658 
1659 	max_addr = __find_max_addr(limit);
1660 
1661 	/* @limit exceeds the total size of the memory, do nothing */
1662 	if (max_addr == PHYS_ADDR_MAX)
1663 		return;
1664 
1665 	/* truncate both memory and reserved regions */
1666 	memblock_remove_range(&memblock.memory, max_addr,
1667 			      PHYS_ADDR_MAX);
1668 	memblock_remove_range(&memblock.reserved, max_addr,
1669 			      PHYS_ADDR_MAX);
1670 }
1671 
1672 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1673 {
1674 	int start_rgn, end_rgn;
1675 	int i, ret;
1676 
1677 	if (!size)
1678 		return;
1679 
1680 	ret = memblock_isolate_range(&memblock.memory, base, size,
1681 						&start_rgn, &end_rgn);
1682 	if (ret)
1683 		return;
1684 
1685 	/* remove all the MAP regions */
1686 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1687 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688 			memblock_remove_region(&memblock.memory, i);
1689 
1690 	for (i = start_rgn - 1; i >= 0; i--)
1691 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1692 			memblock_remove_region(&memblock.memory, i);
1693 
1694 	/* truncate the reserved regions */
1695 	memblock_remove_range(&memblock.reserved, 0, base);
1696 	memblock_remove_range(&memblock.reserved,
1697 			base + size, PHYS_ADDR_MAX);
1698 }
1699 
1700 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1701 {
1702 	phys_addr_t max_addr;
1703 
1704 	if (!limit)
1705 		return;
1706 
1707 	max_addr = __find_max_addr(limit);
1708 
1709 	/* @limit exceeds the total size of the memory, do nothing */
1710 	if (max_addr == PHYS_ADDR_MAX)
1711 		return;
1712 
1713 	memblock_cap_memory_range(0, max_addr);
1714 }
1715 
1716 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1717 {
1718 	unsigned int left = 0, right = type->cnt;
1719 
1720 	do {
1721 		unsigned int mid = (right + left) / 2;
1722 
1723 		if (addr < type->regions[mid].base)
1724 			right = mid;
1725 		else if (addr >= (type->regions[mid].base +
1726 				  type->regions[mid].size))
1727 			left = mid + 1;
1728 		else
1729 			return mid;
1730 	} while (left < right);
1731 	return -1;
1732 }
1733 
1734 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1735 {
1736 	return memblock_search(&memblock.reserved, addr) != -1;
1737 }
1738 
1739 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1740 {
1741 	return memblock_search(&memblock.memory, addr) != -1;
1742 }
1743 
1744 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1745 {
1746 	int i = memblock_search(&memblock.memory, addr);
1747 
1748 	if (i == -1)
1749 		return false;
1750 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1751 }
1752 
1753 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1754 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1755 			 unsigned long *start_pfn, unsigned long *end_pfn)
1756 {
1757 	struct memblock_type *type = &memblock.memory;
1758 	int mid = memblock_search(type, PFN_PHYS(pfn));
1759 
1760 	if (mid == -1)
1761 		return -1;
1762 
1763 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1764 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1765 
1766 	return type->regions[mid].nid;
1767 }
1768 #endif
1769 
1770 /**
1771  * memblock_is_region_memory - check if a region is a subset of memory
1772  * @base: base of region to check
1773  * @size: size of region to check
1774  *
1775  * Check if the region [@base, @base + @size) is a subset of a memory block.
1776  *
1777  * Return:
1778  * 0 if false, non-zero if true
1779  */
1780 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1781 {
1782 	int idx = memblock_search(&memblock.memory, base);
1783 	phys_addr_t end = base + memblock_cap_size(base, &size);
1784 
1785 	if (idx == -1)
1786 		return false;
1787 	return (memblock.memory.regions[idx].base +
1788 		 memblock.memory.regions[idx].size) >= end;
1789 }
1790 
1791 /**
1792  * memblock_is_region_reserved - check if a region intersects reserved memory
1793  * @base: base of region to check
1794  * @size: size of region to check
1795  *
1796  * Check if the region [@base, @base + @size) intersects a reserved
1797  * memory block.
1798  *
1799  * Return:
1800  * True if they intersect, false if not.
1801  */
1802 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1803 {
1804 	memblock_cap_size(base, &size);
1805 	return memblock_overlaps_region(&memblock.reserved, base, size);
1806 }
1807 
1808 void __init_memblock memblock_trim_memory(phys_addr_t align)
1809 {
1810 	phys_addr_t start, end, orig_start, orig_end;
1811 	struct memblock_region *r;
1812 
1813 	for_each_memblock(memory, r) {
1814 		orig_start = r->base;
1815 		orig_end = r->base + r->size;
1816 		start = round_up(orig_start, align);
1817 		end = round_down(orig_end, align);
1818 
1819 		if (start == orig_start && end == orig_end)
1820 			continue;
1821 
1822 		if (start < end) {
1823 			r->base = start;
1824 			r->size = end - start;
1825 		} else {
1826 			memblock_remove_region(&memblock.memory,
1827 					       r - memblock.memory.regions);
1828 			r--;
1829 		}
1830 	}
1831 }
1832 
1833 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1834 {
1835 	memblock.current_limit = limit;
1836 }
1837 
1838 phys_addr_t __init_memblock memblock_get_current_limit(void)
1839 {
1840 	return memblock.current_limit;
1841 }
1842 
1843 static void __init_memblock memblock_dump(struct memblock_type *type)
1844 {
1845 	phys_addr_t base, end, size;
1846 	enum memblock_flags flags;
1847 	int idx;
1848 	struct memblock_region *rgn;
1849 
1850 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1851 
1852 	for_each_memblock_type(idx, type, rgn) {
1853 		char nid_buf[32] = "";
1854 
1855 		base = rgn->base;
1856 		size = rgn->size;
1857 		end = base + size - 1;
1858 		flags = rgn->flags;
1859 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1860 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1861 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1862 				 memblock_get_region_node(rgn));
1863 #endif
1864 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1865 			type->name, idx, &base, &end, &size, nid_buf, flags);
1866 	}
1867 }
1868 
1869 void __init_memblock __memblock_dump_all(void)
1870 {
1871 	pr_info("MEMBLOCK configuration:\n");
1872 	pr_info(" memory size = %pa reserved size = %pa\n",
1873 		&memblock.memory.total_size,
1874 		&memblock.reserved.total_size);
1875 
1876 	memblock_dump(&memblock.memory);
1877 	memblock_dump(&memblock.reserved);
1878 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1879 	memblock_dump(&memblock.physmem);
1880 #endif
1881 }
1882 
1883 void __init memblock_allow_resize(void)
1884 {
1885 	memblock_can_resize = 1;
1886 }
1887 
1888 static int __init early_memblock(char *p)
1889 {
1890 	if (p && strstr(p, "debug"))
1891 		memblock_debug = 1;
1892 	return 0;
1893 }
1894 early_param("memblock", early_memblock);
1895 
1896 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1897 {
1898 	int order;
1899 
1900 	while (start < end) {
1901 		order = min(MAX_ORDER - 1UL, __ffs(start));
1902 
1903 		while (start + (1UL << order) > end)
1904 			order--;
1905 
1906 		memblock_free_pages(pfn_to_page(start), start, order);
1907 
1908 		start += (1UL << order);
1909 	}
1910 }
1911 
1912 static unsigned long __init __free_memory_core(phys_addr_t start,
1913 				 phys_addr_t end)
1914 {
1915 	unsigned long start_pfn = PFN_UP(start);
1916 	unsigned long end_pfn = min_t(unsigned long,
1917 				      PFN_DOWN(end), max_low_pfn);
1918 
1919 	if (start_pfn >= end_pfn)
1920 		return 0;
1921 
1922 	__free_pages_memory(start_pfn, end_pfn);
1923 
1924 	return end_pfn - start_pfn;
1925 }
1926 
1927 static unsigned long __init free_low_memory_core_early(void)
1928 {
1929 	unsigned long count = 0;
1930 	phys_addr_t start, end;
1931 	u64 i;
1932 
1933 	memblock_clear_hotplug(0, -1);
1934 
1935 	for_each_reserved_mem_region(i, &start, &end)
1936 		reserve_bootmem_region(start, end);
1937 
1938 	/*
1939 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1940 	 *  because in some case like Node0 doesn't have RAM installed
1941 	 *  low ram will be on Node1
1942 	 */
1943 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1944 				NULL)
1945 		count += __free_memory_core(start, end);
1946 
1947 	return count;
1948 }
1949 
1950 static int reset_managed_pages_done __initdata;
1951 
1952 void reset_node_managed_pages(pg_data_t *pgdat)
1953 {
1954 	struct zone *z;
1955 
1956 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1957 		atomic_long_set(&z->managed_pages, 0);
1958 }
1959 
1960 void __init reset_all_zones_managed_pages(void)
1961 {
1962 	struct pglist_data *pgdat;
1963 
1964 	if (reset_managed_pages_done)
1965 		return;
1966 
1967 	for_each_online_pgdat(pgdat)
1968 		reset_node_managed_pages(pgdat);
1969 
1970 	reset_managed_pages_done = 1;
1971 }
1972 
1973 /**
1974  * memblock_free_all - release free pages to the buddy allocator
1975  *
1976  * Return: the number of pages actually released.
1977  */
1978 unsigned long __init memblock_free_all(void)
1979 {
1980 	unsigned long pages;
1981 
1982 	reset_all_zones_managed_pages();
1983 
1984 	pages = free_low_memory_core_early();
1985 	totalram_pages_add(pages);
1986 
1987 	return pages;
1988 }
1989 
1990 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1991 
1992 static int memblock_debug_show(struct seq_file *m, void *private)
1993 {
1994 	struct memblock_type *type = m->private;
1995 	struct memblock_region *reg;
1996 	int i;
1997 	phys_addr_t end;
1998 
1999 	for (i = 0; i < type->cnt; i++) {
2000 		reg = &type->regions[i];
2001 		end = reg->base + reg->size - 1;
2002 
2003 		seq_printf(m, "%4d: ", i);
2004 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2005 	}
2006 	return 0;
2007 }
2008 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2009 
2010 static int __init memblock_init_debugfs(void)
2011 {
2012 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2013 
2014 	debugfs_create_file("memory", 0444, root,
2015 			    &memblock.memory, &memblock_debug_fops);
2016 	debugfs_create_file("reserved", 0444, root,
2017 			    &memblock.reserved, &memblock_debug_fops);
2018 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2019 	debugfs_create_file("physmem", 0444, root,
2020 			    &memblock.physmem, &memblock_debug_fops);
2021 #endif
2022 
2023 	return 0;
2024 }
2025 __initcall(memblock_init_debugfs);
2026 
2027 #endif /* CONFIG_DEBUG_FS */
2028