1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NUMA 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ 166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ 174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 memblock_cap_size(base, &size); 186 187 for (i = 0; i < type->cnt; i++) 188 if (memblock_addrs_overlap(base, size, type->regions[i].base, 189 type->regions[i].size)) 190 break; 191 return i < type->cnt; 192 } 193 194 /** 195 * __memblock_find_range_bottom_up - find free area utility in bottom-up 196 * @start: start of candidate range 197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 198 * %MEMBLOCK_ALLOC_ACCESSIBLE 199 * @size: size of free area to find 200 * @align: alignment of free area to find 201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 202 * @flags: pick from blocks based on memory attributes 203 * 204 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 205 * 206 * Return: 207 * Found address on success, 0 on failure. 208 */ 209 static phys_addr_t __init_memblock 210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 211 phys_addr_t size, phys_addr_t align, int nid, 212 enum memblock_flags flags) 213 { 214 phys_addr_t this_start, this_end, cand; 215 u64 i; 216 217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 218 this_start = clamp(this_start, start, end); 219 this_end = clamp(this_end, start, end); 220 221 cand = round_up(this_start, align); 222 if (cand < this_end && this_end - cand >= size) 223 return cand; 224 } 225 226 return 0; 227 } 228 229 /** 230 * __memblock_find_range_top_down - find free area utility, in top-down 231 * @start: start of candidate range 232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 233 * %MEMBLOCK_ALLOC_ACCESSIBLE 234 * @size: size of free area to find 235 * @align: alignment of free area to find 236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 237 * @flags: pick from blocks based on memory attributes 238 * 239 * Utility called from memblock_find_in_range_node(), find free area top-down. 240 * 241 * Return: 242 * Found address on success, 0 on failure. 243 */ 244 static phys_addr_t __init_memblock 245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 246 phys_addr_t size, phys_addr_t align, int nid, 247 enum memblock_flags flags) 248 { 249 phys_addr_t this_start, this_end, cand; 250 u64 i; 251 252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 253 NULL) { 254 this_start = clamp(this_start, start, end); 255 this_end = clamp(this_end, start, end); 256 257 if (this_end < size) 258 continue; 259 260 cand = round_down(this_end - size, align); 261 if (cand >= this_start) 262 return cand; 263 } 264 265 return 0; 266 } 267 268 /** 269 * memblock_find_in_range_node - find free area in given range and node 270 * @size: size of free area to find 271 * @align: alignment of free area to find 272 * @start: start of candidate range 273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 274 * %MEMBLOCK_ALLOC_ACCESSIBLE 275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 276 * @flags: pick from blocks based on memory attributes 277 * 278 * Find @size free area aligned to @align in the specified range and node. 279 * 280 * Return: 281 * Found address on success, 0 on failure. 282 */ 283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 284 phys_addr_t align, phys_addr_t start, 285 phys_addr_t end, int nid, 286 enum memblock_flags flags) 287 { 288 /* pump up @end */ 289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 290 end == MEMBLOCK_ALLOC_KASAN) 291 end = memblock.current_limit; 292 293 /* avoid allocating the first page */ 294 start = max_t(phys_addr_t, start, PAGE_SIZE); 295 end = max(start, end); 296 297 if (memblock_bottom_up()) 298 return __memblock_find_range_bottom_up(start, end, size, align, 299 nid, flags); 300 else 301 return __memblock_find_range_top_down(start, end, size, align, 302 nid, flags); 303 } 304 305 /** 306 * memblock_find_in_range - find free area in given range 307 * @start: start of candidate range 308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 309 * %MEMBLOCK_ALLOC_ACCESSIBLE 310 * @size: size of free area to find 311 * @align: alignment of free area to find 312 * 313 * Find @size free area aligned to @align in the specified range. 314 * 315 * Return: 316 * Found address on success, 0 on failure. 317 */ 318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 319 phys_addr_t end, phys_addr_t size, 320 phys_addr_t align) 321 { 322 phys_addr_t ret; 323 enum memblock_flags flags = choose_memblock_flags(); 324 325 again: 326 ret = memblock_find_in_range_node(size, align, start, end, 327 NUMA_NO_NODE, flags); 328 329 if (!ret && (flags & MEMBLOCK_MIRROR)) { 330 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 331 &size); 332 flags &= ~MEMBLOCK_MIRROR; 333 goto again; 334 } 335 336 return ret; 337 } 338 339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 340 { 341 type->total_size -= type->regions[r].size; 342 memmove(&type->regions[r], &type->regions[r + 1], 343 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 344 type->cnt--; 345 346 /* Special case for empty arrays */ 347 if (type->cnt == 0) { 348 WARN_ON(type->total_size != 0); 349 type->cnt = 1; 350 type->regions[0].base = 0; 351 type->regions[0].size = 0; 352 type->regions[0].flags = 0; 353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 354 } 355 } 356 357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 358 /** 359 * memblock_discard - discard memory and reserved arrays if they were allocated 360 */ 361 void __init memblock_discard(void) 362 { 363 phys_addr_t addr, size; 364 365 if (memblock.reserved.regions != memblock_reserved_init_regions) { 366 addr = __pa(memblock.reserved.regions); 367 size = PAGE_ALIGN(sizeof(struct memblock_region) * 368 memblock.reserved.max); 369 __memblock_free_late(addr, size); 370 } 371 372 if (memblock.memory.regions != memblock_memory_init_regions) { 373 addr = __pa(memblock.memory.regions); 374 size = PAGE_ALIGN(sizeof(struct memblock_region) * 375 memblock.memory.max); 376 __memblock_free_late(addr, size); 377 } 378 379 memblock_memory = NULL; 380 } 381 #endif 382 383 /** 384 * memblock_double_array - double the size of the memblock regions array 385 * @type: memblock type of the regions array being doubled 386 * @new_area_start: starting address of memory range to avoid overlap with 387 * @new_area_size: size of memory range to avoid overlap with 388 * 389 * Double the size of the @type regions array. If memblock is being used to 390 * allocate memory for a new reserved regions array and there is a previously 391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 392 * waiting to be reserved, ensure the memory used by the new array does 393 * not overlap. 394 * 395 * Return: 396 * 0 on success, -1 on failure. 397 */ 398 static int __init_memblock memblock_double_array(struct memblock_type *type, 399 phys_addr_t new_area_start, 400 phys_addr_t new_area_size) 401 { 402 struct memblock_region *new_array, *old_array; 403 phys_addr_t old_alloc_size, new_alloc_size; 404 phys_addr_t old_size, new_size, addr, new_end; 405 int use_slab = slab_is_available(); 406 int *in_slab; 407 408 /* We don't allow resizing until we know about the reserved regions 409 * of memory that aren't suitable for allocation 410 */ 411 if (!memblock_can_resize) 412 return -1; 413 414 /* Calculate new doubled size */ 415 old_size = type->max * sizeof(struct memblock_region); 416 new_size = old_size << 1; 417 /* 418 * We need to allocated new one align to PAGE_SIZE, 419 * so we can free them completely later. 420 */ 421 old_alloc_size = PAGE_ALIGN(old_size); 422 new_alloc_size = PAGE_ALIGN(new_size); 423 424 /* Retrieve the slab flag */ 425 if (type == &memblock.memory) 426 in_slab = &memblock_memory_in_slab; 427 else 428 in_slab = &memblock_reserved_in_slab; 429 430 /* Try to find some space for it */ 431 if (use_slab) { 432 new_array = kmalloc(new_size, GFP_KERNEL); 433 addr = new_array ? __pa(new_array) : 0; 434 } else { 435 /* only exclude range when trying to double reserved.regions */ 436 if (type != &memblock.reserved) 437 new_area_start = new_area_size = 0; 438 439 addr = memblock_find_in_range(new_area_start + new_area_size, 440 memblock.current_limit, 441 new_alloc_size, PAGE_SIZE); 442 if (!addr && new_area_size) 443 addr = memblock_find_in_range(0, 444 min(new_area_start, memblock.current_limit), 445 new_alloc_size, PAGE_SIZE); 446 447 new_array = addr ? __va(addr) : NULL; 448 } 449 if (!addr) { 450 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 451 type->name, type->max, type->max * 2); 452 return -1; 453 } 454 455 new_end = addr + new_size - 1; 456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 457 type->name, type->max * 2, &addr, &new_end); 458 459 /* 460 * Found space, we now need to move the array over before we add the 461 * reserved region since it may be our reserved array itself that is 462 * full. 463 */ 464 memcpy(new_array, type->regions, old_size); 465 memset(new_array + type->max, 0, old_size); 466 old_array = type->regions; 467 type->regions = new_array; 468 type->max <<= 1; 469 470 /* Free old array. We needn't free it if the array is the static one */ 471 if (*in_slab) 472 kfree(old_array); 473 else if (old_array != memblock_memory_init_regions && 474 old_array != memblock_reserved_init_regions) 475 memblock_free_ptr(old_array, old_alloc_size); 476 477 /* 478 * Reserve the new array if that comes from the memblock. Otherwise, we 479 * needn't do it 480 */ 481 if (!use_slab) 482 BUG_ON(memblock_reserve(addr, new_alloc_size)); 483 484 /* Update slab flag */ 485 *in_slab = use_slab; 486 487 return 0; 488 } 489 490 /** 491 * memblock_merge_regions - merge neighboring compatible regions 492 * @type: memblock type to scan 493 * 494 * Scan @type and merge neighboring compatible regions. 495 */ 496 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 497 { 498 int i = 0; 499 500 /* cnt never goes below 1 */ 501 while (i < type->cnt - 1) { 502 struct memblock_region *this = &type->regions[i]; 503 struct memblock_region *next = &type->regions[i + 1]; 504 505 if (this->base + this->size != next->base || 506 memblock_get_region_node(this) != 507 memblock_get_region_node(next) || 508 this->flags != next->flags) { 509 BUG_ON(this->base + this->size > next->base); 510 i++; 511 continue; 512 } 513 514 this->size += next->size; 515 /* move forward from next + 1, index of which is i + 2 */ 516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 517 type->cnt--; 518 } 519 } 520 521 /** 522 * memblock_insert_region - insert new memblock region 523 * @type: memblock type to insert into 524 * @idx: index for the insertion point 525 * @base: base address of the new region 526 * @size: size of the new region 527 * @nid: node id of the new region 528 * @flags: flags of the new region 529 * 530 * Insert new memblock region [@base, @base + @size) into @type at @idx. 531 * @type must already have extra room to accommodate the new region. 532 */ 533 static void __init_memblock memblock_insert_region(struct memblock_type *type, 534 int idx, phys_addr_t base, 535 phys_addr_t size, 536 int nid, 537 enum memblock_flags flags) 538 { 539 struct memblock_region *rgn = &type->regions[idx]; 540 541 BUG_ON(type->cnt >= type->max); 542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 543 rgn->base = base; 544 rgn->size = size; 545 rgn->flags = flags; 546 memblock_set_region_node(rgn, nid); 547 type->cnt++; 548 type->total_size += size; 549 } 550 551 /** 552 * memblock_add_range - add new memblock region 553 * @type: memblock type to add new region into 554 * @base: base address of the new region 555 * @size: size of the new region 556 * @nid: nid of the new region 557 * @flags: flags of the new region 558 * 559 * Add new memblock region [@base, @base + @size) into @type. The new region 560 * is allowed to overlap with existing ones - overlaps don't affect already 561 * existing regions. @type is guaranteed to be minimal (all neighbouring 562 * compatible regions are merged) after the addition. 563 * 564 * Return: 565 * 0 on success, -errno on failure. 566 */ 567 static int __init_memblock memblock_add_range(struct memblock_type *type, 568 phys_addr_t base, phys_addr_t size, 569 int nid, enum memblock_flags flags) 570 { 571 bool insert = false; 572 phys_addr_t obase = base; 573 phys_addr_t end = base + memblock_cap_size(base, &size); 574 int idx, nr_new; 575 struct memblock_region *rgn; 576 577 if (!size) 578 return 0; 579 580 /* special case for empty array */ 581 if (type->regions[0].size == 0) { 582 WARN_ON(type->cnt != 1 || type->total_size); 583 type->regions[0].base = base; 584 type->regions[0].size = size; 585 type->regions[0].flags = flags; 586 memblock_set_region_node(&type->regions[0], nid); 587 type->total_size = size; 588 return 0; 589 } 590 repeat: 591 /* 592 * The following is executed twice. Once with %false @insert and 593 * then with %true. The first counts the number of regions needed 594 * to accommodate the new area. The second actually inserts them. 595 */ 596 base = obase; 597 nr_new = 0; 598 599 for_each_memblock_type(idx, type, rgn) { 600 phys_addr_t rbase = rgn->base; 601 phys_addr_t rend = rbase + rgn->size; 602 603 if (rbase >= end) 604 break; 605 if (rend <= base) 606 continue; 607 /* 608 * @rgn overlaps. If it separates the lower part of new 609 * area, insert that portion. 610 */ 611 if (rbase > base) { 612 #ifdef CONFIG_NUMA 613 WARN_ON(nid != memblock_get_region_node(rgn)); 614 #endif 615 WARN_ON(flags != rgn->flags); 616 nr_new++; 617 if (insert) 618 memblock_insert_region(type, idx++, base, 619 rbase - base, nid, 620 flags); 621 } 622 /* area below @rend is dealt with, forget about it */ 623 base = min(rend, end); 624 } 625 626 /* insert the remaining portion */ 627 if (base < end) { 628 nr_new++; 629 if (insert) 630 memblock_insert_region(type, idx, base, end - base, 631 nid, flags); 632 } 633 634 if (!nr_new) 635 return 0; 636 637 /* 638 * If this was the first round, resize array and repeat for actual 639 * insertions; otherwise, merge and return. 640 */ 641 if (!insert) { 642 while (type->cnt + nr_new > type->max) 643 if (memblock_double_array(type, obase, size) < 0) 644 return -ENOMEM; 645 insert = true; 646 goto repeat; 647 } else { 648 memblock_merge_regions(type); 649 return 0; 650 } 651 } 652 653 /** 654 * memblock_add_node - add new memblock region within a NUMA node 655 * @base: base address of the new region 656 * @size: size of the new region 657 * @nid: nid of the new region 658 * 659 * Add new memblock region [@base, @base + @size) to the "memory" 660 * type. See memblock_add_range() description for mode details 661 * 662 * Return: 663 * 0 on success, -errno on failure. 664 */ 665 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 666 int nid) 667 { 668 phys_addr_t end = base + size - 1; 669 670 memblock_dbg("%s: [%pa-%pa] nid=%d %pS\n", __func__, 671 &base, &end, nid, (void *)_RET_IP_); 672 673 return memblock_add_range(&memblock.memory, base, size, nid, 0); 674 } 675 676 /** 677 * memblock_add - add new memblock region 678 * @base: base address of the new region 679 * @size: size of the new region 680 * 681 * Add new memblock region [@base, @base + @size) to the "memory" 682 * type. See memblock_add_range() description for mode details 683 * 684 * Return: 685 * 0 on success, -errno on failure. 686 */ 687 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 688 { 689 phys_addr_t end = base + size - 1; 690 691 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 692 &base, &end, (void *)_RET_IP_); 693 694 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 695 } 696 697 /** 698 * memblock_isolate_range - isolate given range into disjoint memblocks 699 * @type: memblock type to isolate range for 700 * @base: base of range to isolate 701 * @size: size of range to isolate 702 * @start_rgn: out parameter for the start of isolated region 703 * @end_rgn: out parameter for the end of isolated region 704 * 705 * Walk @type and ensure that regions don't cross the boundaries defined by 706 * [@base, @base + @size). Crossing regions are split at the boundaries, 707 * which may create at most two more regions. The index of the first 708 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 709 * 710 * Return: 711 * 0 on success, -errno on failure. 712 */ 713 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 714 phys_addr_t base, phys_addr_t size, 715 int *start_rgn, int *end_rgn) 716 { 717 phys_addr_t end = base + memblock_cap_size(base, &size); 718 int idx; 719 struct memblock_region *rgn; 720 721 *start_rgn = *end_rgn = 0; 722 723 if (!size) 724 return 0; 725 726 /* we'll create at most two more regions */ 727 while (type->cnt + 2 > type->max) 728 if (memblock_double_array(type, base, size) < 0) 729 return -ENOMEM; 730 731 for_each_memblock_type(idx, type, rgn) { 732 phys_addr_t rbase = rgn->base; 733 phys_addr_t rend = rbase + rgn->size; 734 735 if (rbase >= end) 736 break; 737 if (rend <= base) 738 continue; 739 740 if (rbase < base) { 741 /* 742 * @rgn intersects from below. Split and continue 743 * to process the next region - the new top half. 744 */ 745 rgn->base = base; 746 rgn->size -= base - rbase; 747 type->total_size -= base - rbase; 748 memblock_insert_region(type, idx, rbase, base - rbase, 749 memblock_get_region_node(rgn), 750 rgn->flags); 751 } else if (rend > end) { 752 /* 753 * @rgn intersects from above. Split and redo the 754 * current region - the new bottom half. 755 */ 756 rgn->base = end; 757 rgn->size -= end - rbase; 758 type->total_size -= end - rbase; 759 memblock_insert_region(type, idx--, rbase, end - rbase, 760 memblock_get_region_node(rgn), 761 rgn->flags); 762 } else { 763 /* @rgn is fully contained, record it */ 764 if (!*end_rgn) 765 *start_rgn = idx; 766 *end_rgn = idx + 1; 767 } 768 } 769 770 return 0; 771 } 772 773 static int __init_memblock memblock_remove_range(struct memblock_type *type, 774 phys_addr_t base, phys_addr_t size) 775 { 776 int start_rgn, end_rgn; 777 int i, ret; 778 779 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 780 if (ret) 781 return ret; 782 783 for (i = end_rgn - 1; i >= start_rgn; i--) 784 memblock_remove_region(type, i); 785 return 0; 786 } 787 788 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 789 { 790 phys_addr_t end = base + size - 1; 791 792 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 793 &base, &end, (void *)_RET_IP_); 794 795 return memblock_remove_range(&memblock.memory, base, size); 796 } 797 798 /** 799 * memblock_free_ptr - free boot memory allocation 800 * @ptr: starting address of the boot memory allocation 801 * @size: size of the boot memory block in bytes 802 * 803 * Free boot memory block previously allocated by memblock_alloc_xx() API. 804 * The freeing memory will not be released to the buddy allocator. 805 */ 806 void __init_memblock memblock_free_ptr(void *ptr, size_t size) 807 { 808 if (ptr) 809 memblock_free(__pa(ptr), size); 810 } 811 812 /** 813 * memblock_free - free boot memory block 814 * @base: phys starting address of the boot memory block 815 * @size: size of the boot memory block in bytes 816 * 817 * Free boot memory block previously allocated by memblock_alloc_xx() API. 818 * The freeing memory will not be released to the buddy allocator. 819 */ 820 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 821 { 822 phys_addr_t end = base + size - 1; 823 824 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 825 &base, &end, (void *)_RET_IP_); 826 827 kmemleak_free_part_phys(base, size); 828 return memblock_remove_range(&memblock.reserved, base, size); 829 } 830 831 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 832 { 833 phys_addr_t end = base + size - 1; 834 835 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 836 &base, &end, (void *)_RET_IP_); 837 838 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 839 } 840 841 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 842 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 843 { 844 phys_addr_t end = base + size - 1; 845 846 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 847 &base, &end, (void *)_RET_IP_); 848 849 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 850 } 851 #endif 852 853 /** 854 * memblock_setclr_flag - set or clear flag for a memory region 855 * @base: base address of the region 856 * @size: size of the region 857 * @set: set or clear the flag 858 * @flag: the flag to update 859 * 860 * This function isolates region [@base, @base + @size), and sets/clears flag 861 * 862 * Return: 0 on success, -errno on failure. 863 */ 864 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 865 phys_addr_t size, int set, int flag) 866 { 867 struct memblock_type *type = &memblock.memory; 868 int i, ret, start_rgn, end_rgn; 869 870 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 871 if (ret) 872 return ret; 873 874 for (i = start_rgn; i < end_rgn; i++) { 875 struct memblock_region *r = &type->regions[i]; 876 877 if (set) 878 r->flags |= flag; 879 else 880 r->flags &= ~flag; 881 } 882 883 memblock_merge_regions(type); 884 return 0; 885 } 886 887 /** 888 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 889 * @base: the base phys addr of the region 890 * @size: the size of the region 891 * 892 * Return: 0 on success, -errno on failure. 893 */ 894 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 895 { 896 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 897 } 898 899 /** 900 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 901 * @base: the base phys addr of the region 902 * @size: the size of the region 903 * 904 * Return: 0 on success, -errno on failure. 905 */ 906 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 907 { 908 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 909 } 910 911 /** 912 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 913 * @base: the base phys addr of the region 914 * @size: the size of the region 915 * 916 * Return: 0 on success, -errno on failure. 917 */ 918 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 919 { 920 system_has_some_mirror = true; 921 922 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 923 } 924 925 /** 926 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 927 * @base: the base phys addr of the region 928 * @size: the size of the region 929 * 930 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the 931 * direct mapping of the physical memory. These regions will still be 932 * covered by the memory map. The struct page representing NOMAP memory 933 * frames in the memory map will be PageReserved() 934 * 935 * Return: 0 on success, -errno on failure. 936 */ 937 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 938 { 939 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 940 } 941 942 /** 943 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 944 * @base: the base phys addr of the region 945 * @size: the size of the region 946 * 947 * Return: 0 on success, -errno on failure. 948 */ 949 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 950 { 951 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 952 } 953 954 static bool should_skip_region(struct memblock_type *type, 955 struct memblock_region *m, 956 int nid, int flags) 957 { 958 int m_nid = memblock_get_region_node(m); 959 960 /* we never skip regions when iterating memblock.reserved or physmem */ 961 if (type != memblock_memory) 962 return false; 963 964 /* only memory regions are associated with nodes, check it */ 965 if (nid != NUMA_NO_NODE && nid != m_nid) 966 return true; 967 968 /* skip hotpluggable memory regions if needed */ 969 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 970 !(flags & MEMBLOCK_HOTPLUG)) 971 return true; 972 973 /* if we want mirror memory skip non-mirror memory regions */ 974 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 975 return true; 976 977 /* skip nomap memory unless we were asked for it explicitly */ 978 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 979 return true; 980 981 return false; 982 } 983 984 /** 985 * __next_mem_range - next function for for_each_free_mem_range() etc. 986 * @idx: pointer to u64 loop variable 987 * @nid: node selector, %NUMA_NO_NODE for all nodes 988 * @flags: pick from blocks based on memory attributes 989 * @type_a: pointer to memblock_type from where the range is taken 990 * @type_b: pointer to memblock_type which excludes memory from being taken 991 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 992 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 993 * @out_nid: ptr to int for nid of the range, can be %NULL 994 * 995 * Find the first area from *@idx which matches @nid, fill the out 996 * parameters, and update *@idx for the next iteration. The lower 32bit of 997 * *@idx contains index into type_a and the upper 32bit indexes the 998 * areas before each region in type_b. For example, if type_b regions 999 * look like the following, 1000 * 1001 * 0:[0-16), 1:[32-48), 2:[128-130) 1002 * 1003 * The upper 32bit indexes the following regions. 1004 * 1005 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 1006 * 1007 * As both region arrays are sorted, the function advances the two indices 1008 * in lockstep and returns each intersection. 1009 */ 1010 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 1011 struct memblock_type *type_a, 1012 struct memblock_type *type_b, phys_addr_t *out_start, 1013 phys_addr_t *out_end, int *out_nid) 1014 { 1015 int idx_a = *idx & 0xffffffff; 1016 int idx_b = *idx >> 32; 1017 1018 if (WARN_ONCE(nid == MAX_NUMNODES, 1019 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1020 nid = NUMA_NO_NODE; 1021 1022 for (; idx_a < type_a->cnt; idx_a++) { 1023 struct memblock_region *m = &type_a->regions[idx_a]; 1024 1025 phys_addr_t m_start = m->base; 1026 phys_addr_t m_end = m->base + m->size; 1027 int m_nid = memblock_get_region_node(m); 1028 1029 if (should_skip_region(type_a, m, nid, flags)) 1030 continue; 1031 1032 if (!type_b) { 1033 if (out_start) 1034 *out_start = m_start; 1035 if (out_end) 1036 *out_end = m_end; 1037 if (out_nid) 1038 *out_nid = m_nid; 1039 idx_a++; 1040 *idx = (u32)idx_a | (u64)idx_b << 32; 1041 return; 1042 } 1043 1044 /* scan areas before each reservation */ 1045 for (; idx_b < type_b->cnt + 1; idx_b++) { 1046 struct memblock_region *r; 1047 phys_addr_t r_start; 1048 phys_addr_t r_end; 1049 1050 r = &type_b->regions[idx_b]; 1051 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1052 r_end = idx_b < type_b->cnt ? 1053 r->base : PHYS_ADDR_MAX; 1054 1055 /* 1056 * if idx_b advanced past idx_a, 1057 * break out to advance idx_a 1058 */ 1059 if (r_start >= m_end) 1060 break; 1061 /* if the two regions intersect, we're done */ 1062 if (m_start < r_end) { 1063 if (out_start) 1064 *out_start = 1065 max(m_start, r_start); 1066 if (out_end) 1067 *out_end = min(m_end, r_end); 1068 if (out_nid) 1069 *out_nid = m_nid; 1070 /* 1071 * The region which ends first is 1072 * advanced for the next iteration. 1073 */ 1074 if (m_end <= r_end) 1075 idx_a++; 1076 else 1077 idx_b++; 1078 *idx = (u32)idx_a | (u64)idx_b << 32; 1079 return; 1080 } 1081 } 1082 } 1083 1084 /* signal end of iteration */ 1085 *idx = ULLONG_MAX; 1086 } 1087 1088 /** 1089 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1090 * 1091 * @idx: pointer to u64 loop variable 1092 * @nid: node selector, %NUMA_NO_NODE for all nodes 1093 * @flags: pick from blocks based on memory attributes 1094 * @type_a: pointer to memblock_type from where the range is taken 1095 * @type_b: pointer to memblock_type which excludes memory from being taken 1096 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1097 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1098 * @out_nid: ptr to int for nid of the range, can be %NULL 1099 * 1100 * Finds the next range from type_a which is not marked as unsuitable 1101 * in type_b. 1102 * 1103 * Reverse of __next_mem_range(). 1104 */ 1105 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1106 enum memblock_flags flags, 1107 struct memblock_type *type_a, 1108 struct memblock_type *type_b, 1109 phys_addr_t *out_start, 1110 phys_addr_t *out_end, int *out_nid) 1111 { 1112 int idx_a = *idx & 0xffffffff; 1113 int idx_b = *idx >> 32; 1114 1115 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1116 nid = NUMA_NO_NODE; 1117 1118 if (*idx == (u64)ULLONG_MAX) { 1119 idx_a = type_a->cnt - 1; 1120 if (type_b != NULL) 1121 idx_b = type_b->cnt; 1122 else 1123 idx_b = 0; 1124 } 1125 1126 for (; idx_a >= 0; idx_a--) { 1127 struct memblock_region *m = &type_a->regions[idx_a]; 1128 1129 phys_addr_t m_start = m->base; 1130 phys_addr_t m_end = m->base + m->size; 1131 int m_nid = memblock_get_region_node(m); 1132 1133 if (should_skip_region(type_a, m, nid, flags)) 1134 continue; 1135 1136 if (!type_b) { 1137 if (out_start) 1138 *out_start = m_start; 1139 if (out_end) 1140 *out_end = m_end; 1141 if (out_nid) 1142 *out_nid = m_nid; 1143 idx_a--; 1144 *idx = (u32)idx_a | (u64)idx_b << 32; 1145 return; 1146 } 1147 1148 /* scan areas before each reservation */ 1149 for (; idx_b >= 0; idx_b--) { 1150 struct memblock_region *r; 1151 phys_addr_t r_start; 1152 phys_addr_t r_end; 1153 1154 r = &type_b->regions[idx_b]; 1155 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1156 r_end = idx_b < type_b->cnt ? 1157 r->base : PHYS_ADDR_MAX; 1158 /* 1159 * if idx_b advanced past idx_a, 1160 * break out to advance idx_a 1161 */ 1162 1163 if (r_end <= m_start) 1164 break; 1165 /* if the two regions intersect, we're done */ 1166 if (m_end > r_start) { 1167 if (out_start) 1168 *out_start = max(m_start, r_start); 1169 if (out_end) 1170 *out_end = min(m_end, r_end); 1171 if (out_nid) 1172 *out_nid = m_nid; 1173 if (m_start >= r_start) 1174 idx_a--; 1175 else 1176 idx_b--; 1177 *idx = (u32)idx_a | (u64)idx_b << 32; 1178 return; 1179 } 1180 } 1181 } 1182 /* signal end of iteration */ 1183 *idx = ULLONG_MAX; 1184 } 1185 1186 /* 1187 * Common iterator interface used to define for_each_mem_pfn_range(). 1188 */ 1189 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1190 unsigned long *out_start_pfn, 1191 unsigned long *out_end_pfn, int *out_nid) 1192 { 1193 struct memblock_type *type = &memblock.memory; 1194 struct memblock_region *r; 1195 int r_nid; 1196 1197 while (++*idx < type->cnt) { 1198 r = &type->regions[*idx]; 1199 r_nid = memblock_get_region_node(r); 1200 1201 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1202 continue; 1203 if (nid == MAX_NUMNODES || nid == r_nid) 1204 break; 1205 } 1206 if (*idx >= type->cnt) { 1207 *idx = -1; 1208 return; 1209 } 1210 1211 if (out_start_pfn) 1212 *out_start_pfn = PFN_UP(r->base); 1213 if (out_end_pfn) 1214 *out_end_pfn = PFN_DOWN(r->base + r->size); 1215 if (out_nid) 1216 *out_nid = r_nid; 1217 } 1218 1219 /** 1220 * memblock_set_node - set node ID on memblock regions 1221 * @base: base of area to set node ID for 1222 * @size: size of area to set node ID for 1223 * @type: memblock type to set node ID for 1224 * @nid: node ID to set 1225 * 1226 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1227 * Regions which cross the area boundaries are split as necessary. 1228 * 1229 * Return: 1230 * 0 on success, -errno on failure. 1231 */ 1232 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1233 struct memblock_type *type, int nid) 1234 { 1235 #ifdef CONFIG_NUMA 1236 int start_rgn, end_rgn; 1237 int i, ret; 1238 1239 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1240 if (ret) 1241 return ret; 1242 1243 for (i = start_rgn; i < end_rgn; i++) 1244 memblock_set_region_node(&type->regions[i], nid); 1245 1246 memblock_merge_regions(type); 1247 #endif 1248 return 0; 1249 } 1250 1251 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1252 /** 1253 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1254 * 1255 * @idx: pointer to u64 loop variable 1256 * @zone: zone in which all of the memory blocks reside 1257 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1258 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1259 * 1260 * This function is meant to be a zone/pfn specific wrapper for the 1261 * for_each_mem_range type iterators. Specifically they are used in the 1262 * deferred memory init routines and as such we were duplicating much of 1263 * this logic throughout the code. So instead of having it in multiple 1264 * locations it seemed like it would make more sense to centralize this to 1265 * one new iterator that does everything they need. 1266 */ 1267 void __init_memblock 1268 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1269 unsigned long *out_spfn, unsigned long *out_epfn) 1270 { 1271 int zone_nid = zone_to_nid(zone); 1272 phys_addr_t spa, epa; 1273 int nid; 1274 1275 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1276 &memblock.memory, &memblock.reserved, 1277 &spa, &epa, &nid); 1278 1279 while (*idx != U64_MAX) { 1280 unsigned long epfn = PFN_DOWN(epa); 1281 unsigned long spfn = PFN_UP(spa); 1282 1283 /* 1284 * Verify the end is at least past the start of the zone and 1285 * that we have at least one PFN to initialize. 1286 */ 1287 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1288 /* if we went too far just stop searching */ 1289 if (zone_end_pfn(zone) <= spfn) { 1290 *idx = U64_MAX; 1291 break; 1292 } 1293 1294 if (out_spfn) 1295 *out_spfn = max(zone->zone_start_pfn, spfn); 1296 if (out_epfn) 1297 *out_epfn = min(zone_end_pfn(zone), epfn); 1298 1299 return; 1300 } 1301 1302 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1303 &memblock.memory, &memblock.reserved, 1304 &spa, &epa, &nid); 1305 } 1306 1307 /* signal end of iteration */ 1308 if (out_spfn) 1309 *out_spfn = ULONG_MAX; 1310 if (out_epfn) 1311 *out_epfn = 0; 1312 } 1313 1314 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1315 1316 /** 1317 * memblock_alloc_range_nid - allocate boot memory block 1318 * @size: size of memory block to be allocated in bytes 1319 * @align: alignment of the region and block's size 1320 * @start: the lower bound of the memory region to allocate (phys address) 1321 * @end: the upper bound of the memory region to allocate (phys address) 1322 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1323 * @exact_nid: control the allocation fall back to other nodes 1324 * 1325 * The allocation is performed from memory region limited by 1326 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1327 * 1328 * If the specified node can not hold the requested memory and @exact_nid 1329 * is false, the allocation falls back to any node in the system. 1330 * 1331 * For systems with memory mirroring, the allocation is attempted first 1332 * from the regions with mirroring enabled and then retried from any 1333 * memory region. 1334 * 1335 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1336 * allocated boot memory block, so that it is never reported as leaks. 1337 * 1338 * Return: 1339 * Physical address of allocated memory block on success, %0 on failure. 1340 */ 1341 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1342 phys_addr_t align, phys_addr_t start, 1343 phys_addr_t end, int nid, 1344 bool exact_nid) 1345 { 1346 enum memblock_flags flags = choose_memblock_flags(); 1347 phys_addr_t found; 1348 1349 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1350 nid = NUMA_NO_NODE; 1351 1352 if (!align) { 1353 /* Can't use WARNs this early in boot on powerpc */ 1354 dump_stack(); 1355 align = SMP_CACHE_BYTES; 1356 } 1357 1358 again: 1359 found = memblock_find_in_range_node(size, align, start, end, nid, 1360 flags); 1361 if (found && !memblock_reserve(found, size)) 1362 goto done; 1363 1364 if (nid != NUMA_NO_NODE && !exact_nid) { 1365 found = memblock_find_in_range_node(size, align, start, 1366 end, NUMA_NO_NODE, 1367 flags); 1368 if (found && !memblock_reserve(found, size)) 1369 goto done; 1370 } 1371 1372 if (flags & MEMBLOCK_MIRROR) { 1373 flags &= ~MEMBLOCK_MIRROR; 1374 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1375 &size); 1376 goto again; 1377 } 1378 1379 return 0; 1380 1381 done: 1382 /* Skip kmemleak for kasan_init() due to high volume. */ 1383 if (end != MEMBLOCK_ALLOC_KASAN) 1384 /* 1385 * The min_count is set to 0 so that memblock allocated 1386 * blocks are never reported as leaks. This is because many 1387 * of these blocks are only referred via the physical 1388 * address which is not looked up by kmemleak. 1389 */ 1390 kmemleak_alloc_phys(found, size, 0, 0); 1391 1392 return found; 1393 } 1394 1395 /** 1396 * memblock_phys_alloc_range - allocate a memory block inside specified range 1397 * @size: size of memory block to be allocated in bytes 1398 * @align: alignment of the region and block's size 1399 * @start: the lower bound of the memory region to allocate (physical address) 1400 * @end: the upper bound of the memory region to allocate (physical address) 1401 * 1402 * Allocate @size bytes in the between @start and @end. 1403 * 1404 * Return: physical address of the allocated memory block on success, 1405 * %0 on failure. 1406 */ 1407 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1408 phys_addr_t align, 1409 phys_addr_t start, 1410 phys_addr_t end) 1411 { 1412 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", 1413 __func__, (u64)size, (u64)align, &start, &end, 1414 (void *)_RET_IP_); 1415 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1416 false); 1417 } 1418 1419 /** 1420 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node 1421 * @size: size of memory block to be allocated in bytes 1422 * @align: alignment of the region and block's size 1423 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1424 * 1425 * Allocates memory block from the specified NUMA node. If the node 1426 * has no available memory, attempts to allocated from any node in the 1427 * system. 1428 * 1429 * Return: physical address of the allocated memory block on success, 1430 * %0 on failure. 1431 */ 1432 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1433 { 1434 return memblock_alloc_range_nid(size, align, 0, 1435 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1436 } 1437 1438 /** 1439 * memblock_alloc_internal - allocate boot memory block 1440 * @size: size of memory block to be allocated in bytes 1441 * @align: alignment of the region and block's size 1442 * @min_addr: the lower bound of the memory region to allocate (phys address) 1443 * @max_addr: the upper bound of the memory region to allocate (phys address) 1444 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1445 * @exact_nid: control the allocation fall back to other nodes 1446 * 1447 * Allocates memory block using memblock_alloc_range_nid() and 1448 * converts the returned physical address to virtual. 1449 * 1450 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1451 * will fall back to memory below @min_addr. Other constraints, such 1452 * as node and mirrored memory will be handled again in 1453 * memblock_alloc_range_nid(). 1454 * 1455 * Return: 1456 * Virtual address of allocated memory block on success, NULL on failure. 1457 */ 1458 static void * __init memblock_alloc_internal( 1459 phys_addr_t size, phys_addr_t align, 1460 phys_addr_t min_addr, phys_addr_t max_addr, 1461 int nid, bool exact_nid) 1462 { 1463 phys_addr_t alloc; 1464 1465 /* 1466 * Detect any accidental use of these APIs after slab is ready, as at 1467 * this moment memblock may be deinitialized already and its 1468 * internal data may be destroyed (after execution of memblock_free_all) 1469 */ 1470 if (WARN_ON_ONCE(slab_is_available())) 1471 return kzalloc_node(size, GFP_NOWAIT, nid); 1472 1473 if (max_addr > memblock.current_limit) 1474 max_addr = memblock.current_limit; 1475 1476 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1477 exact_nid); 1478 1479 /* retry allocation without lower limit */ 1480 if (!alloc && min_addr) 1481 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1482 exact_nid); 1483 1484 if (!alloc) 1485 return NULL; 1486 1487 return phys_to_virt(alloc); 1488 } 1489 1490 /** 1491 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1492 * without zeroing memory 1493 * @size: size of memory block to be allocated in bytes 1494 * @align: alignment of the region and block's size 1495 * @min_addr: the lower bound of the memory region from where the allocation 1496 * is preferred (phys address) 1497 * @max_addr: the upper bound of the memory region from where the allocation 1498 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1499 * allocate only from memory limited by memblock.current_limit value 1500 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1501 * 1502 * Public function, provides additional debug information (including caller 1503 * info), if enabled. Does not zero allocated memory. 1504 * 1505 * Return: 1506 * Virtual address of allocated memory block on success, NULL on failure. 1507 */ 1508 void * __init memblock_alloc_exact_nid_raw( 1509 phys_addr_t size, phys_addr_t align, 1510 phys_addr_t min_addr, phys_addr_t max_addr, 1511 int nid) 1512 { 1513 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1514 __func__, (u64)size, (u64)align, nid, &min_addr, 1515 &max_addr, (void *)_RET_IP_); 1516 1517 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1518 true); 1519 } 1520 1521 /** 1522 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1523 * memory and without panicking 1524 * @size: size of memory block to be allocated in bytes 1525 * @align: alignment of the region and block's size 1526 * @min_addr: the lower bound of the memory region from where the allocation 1527 * is preferred (phys address) 1528 * @max_addr: the upper bound of the memory region from where the allocation 1529 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1530 * allocate only from memory limited by memblock.current_limit value 1531 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1532 * 1533 * Public function, provides additional debug information (including caller 1534 * info), if enabled. Does not zero allocated memory, does not panic if request 1535 * cannot be satisfied. 1536 * 1537 * Return: 1538 * Virtual address of allocated memory block on success, NULL on failure. 1539 */ 1540 void * __init memblock_alloc_try_nid_raw( 1541 phys_addr_t size, phys_addr_t align, 1542 phys_addr_t min_addr, phys_addr_t max_addr, 1543 int nid) 1544 { 1545 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1546 __func__, (u64)size, (u64)align, nid, &min_addr, 1547 &max_addr, (void *)_RET_IP_); 1548 1549 return memblock_alloc_internal(size, align, min_addr, max_addr, nid, 1550 false); 1551 } 1552 1553 /** 1554 * memblock_alloc_try_nid - allocate boot memory block 1555 * @size: size of memory block to be allocated in bytes 1556 * @align: alignment of the region and block's size 1557 * @min_addr: the lower bound of the memory region from where the allocation 1558 * is preferred (phys address) 1559 * @max_addr: the upper bound of the memory region from where the allocation 1560 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1561 * allocate only from memory limited by memblock.current_limit value 1562 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1563 * 1564 * Public function, provides additional debug information (including caller 1565 * info), if enabled. This function zeroes the allocated memory. 1566 * 1567 * Return: 1568 * Virtual address of allocated memory block on success, NULL on failure. 1569 */ 1570 void * __init memblock_alloc_try_nid( 1571 phys_addr_t size, phys_addr_t align, 1572 phys_addr_t min_addr, phys_addr_t max_addr, 1573 int nid) 1574 { 1575 void *ptr; 1576 1577 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1578 __func__, (u64)size, (u64)align, nid, &min_addr, 1579 &max_addr, (void *)_RET_IP_); 1580 ptr = memblock_alloc_internal(size, align, 1581 min_addr, max_addr, nid, false); 1582 if (ptr) 1583 memset(ptr, 0, size); 1584 1585 return ptr; 1586 } 1587 1588 /** 1589 * __memblock_free_late - free pages directly to buddy allocator 1590 * @base: phys starting address of the boot memory block 1591 * @size: size of the boot memory block in bytes 1592 * 1593 * This is only useful when the memblock allocator has already been torn 1594 * down, but we are still initializing the system. Pages are released directly 1595 * to the buddy allocator. 1596 */ 1597 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1598 { 1599 phys_addr_t cursor, end; 1600 1601 end = base + size - 1; 1602 memblock_dbg("%s: [%pa-%pa] %pS\n", 1603 __func__, &base, &end, (void *)_RET_IP_); 1604 kmemleak_free_part_phys(base, size); 1605 cursor = PFN_UP(base); 1606 end = PFN_DOWN(base + size); 1607 1608 for (; cursor < end; cursor++) { 1609 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1610 totalram_pages_inc(); 1611 } 1612 } 1613 1614 /* 1615 * Remaining API functions 1616 */ 1617 1618 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1619 { 1620 return memblock.memory.total_size; 1621 } 1622 1623 phys_addr_t __init_memblock memblock_reserved_size(void) 1624 { 1625 return memblock.reserved.total_size; 1626 } 1627 1628 /* lowest address */ 1629 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1630 { 1631 return memblock.memory.regions[0].base; 1632 } 1633 1634 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1635 { 1636 int idx = memblock.memory.cnt - 1; 1637 1638 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1639 } 1640 1641 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1642 { 1643 phys_addr_t max_addr = PHYS_ADDR_MAX; 1644 struct memblock_region *r; 1645 1646 /* 1647 * translate the memory @limit size into the max address within one of 1648 * the memory memblock regions, if the @limit exceeds the total size 1649 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1650 */ 1651 for_each_mem_region(r) { 1652 if (limit <= r->size) { 1653 max_addr = r->base + limit; 1654 break; 1655 } 1656 limit -= r->size; 1657 } 1658 1659 return max_addr; 1660 } 1661 1662 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1663 { 1664 phys_addr_t max_addr; 1665 1666 if (!limit) 1667 return; 1668 1669 max_addr = __find_max_addr(limit); 1670 1671 /* @limit exceeds the total size of the memory, do nothing */ 1672 if (max_addr == PHYS_ADDR_MAX) 1673 return; 1674 1675 /* truncate both memory and reserved regions */ 1676 memblock_remove_range(&memblock.memory, max_addr, 1677 PHYS_ADDR_MAX); 1678 memblock_remove_range(&memblock.reserved, max_addr, 1679 PHYS_ADDR_MAX); 1680 } 1681 1682 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1683 { 1684 int start_rgn, end_rgn; 1685 int i, ret; 1686 1687 if (!size) 1688 return; 1689 1690 if (memblock.memory.cnt <= 1) { 1691 pr_warn("%s: No memory registered yet\n", __func__); 1692 return; 1693 } 1694 1695 ret = memblock_isolate_range(&memblock.memory, base, size, 1696 &start_rgn, &end_rgn); 1697 if (ret) 1698 return; 1699 1700 /* remove all the MAP regions */ 1701 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1702 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1703 memblock_remove_region(&memblock.memory, i); 1704 1705 for (i = start_rgn - 1; i >= 0; i--) 1706 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1707 memblock_remove_region(&memblock.memory, i); 1708 1709 /* truncate the reserved regions */ 1710 memblock_remove_range(&memblock.reserved, 0, base); 1711 memblock_remove_range(&memblock.reserved, 1712 base + size, PHYS_ADDR_MAX); 1713 } 1714 1715 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1716 { 1717 phys_addr_t max_addr; 1718 1719 if (!limit) 1720 return; 1721 1722 max_addr = __find_max_addr(limit); 1723 1724 /* @limit exceeds the total size of the memory, do nothing */ 1725 if (max_addr == PHYS_ADDR_MAX) 1726 return; 1727 1728 memblock_cap_memory_range(0, max_addr); 1729 } 1730 1731 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1732 { 1733 unsigned int left = 0, right = type->cnt; 1734 1735 do { 1736 unsigned int mid = (right + left) / 2; 1737 1738 if (addr < type->regions[mid].base) 1739 right = mid; 1740 else if (addr >= (type->regions[mid].base + 1741 type->regions[mid].size)) 1742 left = mid + 1; 1743 else 1744 return mid; 1745 } while (left < right); 1746 return -1; 1747 } 1748 1749 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1750 { 1751 return memblock_search(&memblock.reserved, addr) != -1; 1752 } 1753 1754 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1755 { 1756 return memblock_search(&memblock.memory, addr) != -1; 1757 } 1758 1759 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1760 { 1761 int i = memblock_search(&memblock.memory, addr); 1762 1763 if (i == -1) 1764 return false; 1765 return !memblock_is_nomap(&memblock.memory.regions[i]); 1766 } 1767 1768 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1769 unsigned long *start_pfn, unsigned long *end_pfn) 1770 { 1771 struct memblock_type *type = &memblock.memory; 1772 int mid = memblock_search(type, PFN_PHYS(pfn)); 1773 1774 if (mid == -1) 1775 return -1; 1776 1777 *start_pfn = PFN_DOWN(type->regions[mid].base); 1778 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1779 1780 return memblock_get_region_node(&type->regions[mid]); 1781 } 1782 1783 /** 1784 * memblock_is_region_memory - check if a region is a subset of memory 1785 * @base: base of region to check 1786 * @size: size of region to check 1787 * 1788 * Check if the region [@base, @base + @size) is a subset of a memory block. 1789 * 1790 * Return: 1791 * 0 if false, non-zero if true 1792 */ 1793 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1794 { 1795 int idx = memblock_search(&memblock.memory, base); 1796 phys_addr_t end = base + memblock_cap_size(base, &size); 1797 1798 if (idx == -1) 1799 return false; 1800 return (memblock.memory.regions[idx].base + 1801 memblock.memory.regions[idx].size) >= end; 1802 } 1803 1804 /** 1805 * memblock_is_region_reserved - check if a region intersects reserved memory 1806 * @base: base of region to check 1807 * @size: size of region to check 1808 * 1809 * Check if the region [@base, @base + @size) intersects a reserved 1810 * memory block. 1811 * 1812 * Return: 1813 * True if they intersect, false if not. 1814 */ 1815 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1816 { 1817 return memblock_overlaps_region(&memblock.reserved, base, size); 1818 } 1819 1820 void __init_memblock memblock_trim_memory(phys_addr_t align) 1821 { 1822 phys_addr_t start, end, orig_start, orig_end; 1823 struct memblock_region *r; 1824 1825 for_each_mem_region(r) { 1826 orig_start = r->base; 1827 orig_end = r->base + r->size; 1828 start = round_up(orig_start, align); 1829 end = round_down(orig_end, align); 1830 1831 if (start == orig_start && end == orig_end) 1832 continue; 1833 1834 if (start < end) { 1835 r->base = start; 1836 r->size = end - start; 1837 } else { 1838 memblock_remove_region(&memblock.memory, 1839 r - memblock.memory.regions); 1840 r--; 1841 } 1842 } 1843 } 1844 1845 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1846 { 1847 memblock.current_limit = limit; 1848 } 1849 1850 phys_addr_t __init_memblock memblock_get_current_limit(void) 1851 { 1852 return memblock.current_limit; 1853 } 1854 1855 static void __init_memblock memblock_dump(struct memblock_type *type) 1856 { 1857 phys_addr_t base, end, size; 1858 enum memblock_flags flags; 1859 int idx; 1860 struct memblock_region *rgn; 1861 1862 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1863 1864 for_each_memblock_type(idx, type, rgn) { 1865 char nid_buf[32] = ""; 1866 1867 base = rgn->base; 1868 size = rgn->size; 1869 end = base + size - 1; 1870 flags = rgn->flags; 1871 #ifdef CONFIG_NUMA 1872 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1873 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1874 memblock_get_region_node(rgn)); 1875 #endif 1876 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1877 type->name, idx, &base, &end, &size, nid_buf, flags); 1878 } 1879 } 1880 1881 static void __init_memblock __memblock_dump_all(void) 1882 { 1883 pr_info("MEMBLOCK configuration:\n"); 1884 pr_info(" memory size = %pa reserved size = %pa\n", 1885 &memblock.memory.total_size, 1886 &memblock.reserved.total_size); 1887 1888 memblock_dump(&memblock.memory); 1889 memblock_dump(&memblock.reserved); 1890 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1891 memblock_dump(&physmem); 1892 #endif 1893 } 1894 1895 void __init_memblock memblock_dump_all(void) 1896 { 1897 if (memblock_debug) 1898 __memblock_dump_all(); 1899 } 1900 1901 void __init memblock_allow_resize(void) 1902 { 1903 memblock_can_resize = 1; 1904 } 1905 1906 static int __init early_memblock(char *p) 1907 { 1908 if (p && strstr(p, "debug")) 1909 memblock_debug = 1; 1910 return 0; 1911 } 1912 early_param("memblock", early_memblock); 1913 1914 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) 1915 { 1916 struct page *start_pg, *end_pg; 1917 phys_addr_t pg, pgend; 1918 1919 /* 1920 * Convert start_pfn/end_pfn to a struct page pointer. 1921 */ 1922 start_pg = pfn_to_page(start_pfn - 1) + 1; 1923 end_pg = pfn_to_page(end_pfn - 1) + 1; 1924 1925 /* 1926 * Convert to physical addresses, and round start upwards and end 1927 * downwards. 1928 */ 1929 pg = PAGE_ALIGN(__pa(start_pg)); 1930 pgend = __pa(end_pg) & PAGE_MASK; 1931 1932 /* 1933 * If there are free pages between these, free the section of the 1934 * memmap array. 1935 */ 1936 if (pg < pgend) 1937 memblock_free(pg, pgend - pg); 1938 } 1939 1940 /* 1941 * The mem_map array can get very big. Free the unused area of the memory map. 1942 */ 1943 static void __init free_unused_memmap(void) 1944 { 1945 unsigned long start, end, prev_end = 0; 1946 int i; 1947 1948 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || 1949 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 1950 return; 1951 1952 /* 1953 * This relies on each bank being in address order. 1954 * The banks are sorted previously in bootmem_init(). 1955 */ 1956 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 1957 #ifdef CONFIG_SPARSEMEM 1958 /* 1959 * Take care not to free memmap entries that don't exist 1960 * due to SPARSEMEM sections which aren't present. 1961 */ 1962 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 1963 #endif 1964 /* 1965 * Align down here since many operations in VM subsystem 1966 * presume that there are no holes in the memory map inside 1967 * a pageblock 1968 */ 1969 start = round_down(start, pageblock_nr_pages); 1970 1971 /* 1972 * If we had a previous bank, and there is a space 1973 * between the current bank and the previous, free it. 1974 */ 1975 if (prev_end && prev_end < start) 1976 free_memmap(prev_end, start); 1977 1978 /* 1979 * Align up here since many operations in VM subsystem 1980 * presume that there are no holes in the memory map inside 1981 * a pageblock 1982 */ 1983 prev_end = ALIGN(end, pageblock_nr_pages); 1984 } 1985 1986 #ifdef CONFIG_SPARSEMEM 1987 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { 1988 prev_end = ALIGN(end, pageblock_nr_pages); 1989 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 1990 } 1991 #endif 1992 } 1993 1994 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1995 { 1996 int order; 1997 1998 while (start < end) { 1999 order = min(MAX_ORDER - 1UL, __ffs(start)); 2000 2001 while (start + (1UL << order) > end) 2002 order--; 2003 2004 memblock_free_pages(pfn_to_page(start), start, order); 2005 2006 start += (1UL << order); 2007 } 2008 } 2009 2010 static unsigned long __init __free_memory_core(phys_addr_t start, 2011 phys_addr_t end) 2012 { 2013 unsigned long start_pfn = PFN_UP(start); 2014 unsigned long end_pfn = min_t(unsigned long, 2015 PFN_DOWN(end), max_low_pfn); 2016 2017 if (start_pfn >= end_pfn) 2018 return 0; 2019 2020 __free_pages_memory(start_pfn, end_pfn); 2021 2022 return end_pfn - start_pfn; 2023 } 2024 2025 static void __init memmap_init_reserved_pages(void) 2026 { 2027 struct memblock_region *region; 2028 phys_addr_t start, end; 2029 u64 i; 2030 2031 /* initialize struct pages for the reserved regions */ 2032 for_each_reserved_mem_range(i, &start, &end) 2033 reserve_bootmem_region(start, end); 2034 2035 /* and also treat struct pages for the NOMAP regions as PageReserved */ 2036 for_each_mem_region(region) { 2037 if (memblock_is_nomap(region)) { 2038 start = region->base; 2039 end = start + region->size; 2040 reserve_bootmem_region(start, end); 2041 } 2042 } 2043 } 2044 2045 static unsigned long __init free_low_memory_core_early(void) 2046 { 2047 unsigned long count = 0; 2048 phys_addr_t start, end; 2049 u64 i; 2050 2051 memblock_clear_hotplug(0, -1); 2052 2053 memmap_init_reserved_pages(); 2054 2055 /* 2056 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 2057 * because in some case like Node0 doesn't have RAM installed 2058 * low ram will be on Node1 2059 */ 2060 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 2061 NULL) 2062 count += __free_memory_core(start, end); 2063 2064 return count; 2065 } 2066 2067 static int reset_managed_pages_done __initdata; 2068 2069 void reset_node_managed_pages(pg_data_t *pgdat) 2070 { 2071 struct zone *z; 2072 2073 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 2074 atomic_long_set(&z->managed_pages, 0); 2075 } 2076 2077 void __init reset_all_zones_managed_pages(void) 2078 { 2079 struct pglist_data *pgdat; 2080 2081 if (reset_managed_pages_done) 2082 return; 2083 2084 for_each_online_pgdat(pgdat) 2085 reset_node_managed_pages(pgdat); 2086 2087 reset_managed_pages_done = 1; 2088 } 2089 2090 /** 2091 * memblock_free_all - release free pages to the buddy allocator 2092 */ 2093 void __init memblock_free_all(void) 2094 { 2095 unsigned long pages; 2096 2097 free_unused_memmap(); 2098 reset_all_zones_managed_pages(); 2099 2100 pages = free_low_memory_core_early(); 2101 totalram_pages_add(pages); 2102 } 2103 2104 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 2105 2106 static int memblock_debug_show(struct seq_file *m, void *private) 2107 { 2108 struct memblock_type *type = m->private; 2109 struct memblock_region *reg; 2110 int i; 2111 phys_addr_t end; 2112 2113 for (i = 0; i < type->cnt; i++) { 2114 reg = &type->regions[i]; 2115 end = reg->base + reg->size - 1; 2116 2117 seq_printf(m, "%4d: ", i); 2118 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2119 } 2120 return 0; 2121 } 2122 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2123 2124 static int __init memblock_init_debugfs(void) 2125 { 2126 struct dentry *root = debugfs_create_dir("memblock", NULL); 2127 2128 debugfs_create_file("memory", 0444, root, 2129 &memblock.memory, &memblock_debug_fops); 2130 debugfs_create_file("reserved", 0444, root, 2131 &memblock.reserved, &memblock_debug_fops); 2132 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2133 debugfs_create_file("physmem", 0444, root, &physmem, 2134 &memblock_debug_fops); 2135 #endif 2136 2137 return 0; 2138 } 2139 __initcall(memblock_init_debugfs); 2140 2141 #endif /* CONFIG_DEBUG_FS */ 2142