xref: /openbmc/linux/mm/memblock.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 
24 #include <asm/sections.h>
25 #include <linux/io.h>
26 
27 #include "internal.h"
28 
29 /**
30  * DOC: memblock overview
31  *
32  * Memblock is a method of managing memory regions during the early
33  * boot period when the usual kernel memory allocators are not up and
34  * running.
35  *
36  * Memblock views the system memory as collections of contiguous
37  * regions. There are several types of these collections:
38  *
39  * * ``memory`` - describes the physical memory available to the
40  *   kernel; this may differ from the actual physical memory installed
41  *   in the system, for instance when the memory is restricted with
42  *   ``mem=`` command line parameter
43  * * ``reserved`` - describes the regions that were allocated
44  * * ``physmap`` - describes the actual physical memory regardless of
45  *   the possible restrictions; the ``physmap`` type is only available
46  *   on some architectures.
47  *
48  * Each region is represented by :c:type:`struct memblock_region` that
49  * defines the region extents, its attributes and NUMA node id on NUMA
50  * systems. Every memory type is described by the :c:type:`struct
51  * memblock_type` which contains an array of memory regions along with
52  * the allocator metadata. The memory types are nicely wrapped with
53  * :c:type:`struct memblock`. This structure is statically initialzed
54  * at build time. The region arrays for the "memory" and "reserved"
55  * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
56  * "physmap" type to %INIT_PHYSMEM_REGIONS.
57  * The :c:func:`memblock_allow_resize` enables automatic resizing of
58  * the region arrays during addition of new regions. This feature
59  * should be used with care so that memory allocated for the region
60  * array will not overlap with areas that should be reserved, for
61  * example initrd.
62  *
63  * The early architecture setup should tell memblock what the physical
64  * memory layout is by using :c:func:`memblock_add` or
65  * :c:func:`memblock_add_node` functions. The first function does not
66  * assign the region to a NUMA node and it is appropriate for UMA
67  * systems. Yet, it is possible to use it on NUMA systems as well and
68  * assign the region to a NUMA node later in the setup process using
69  * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
70  * performs such an assignment directly.
71  *
72  * Once memblock is setup the memory can be allocated using either
73  * memblock or bootmem APIs.
74  *
75  * As the system boot progresses, the architecture specific
76  * :c:func:`mem_init` function frees all the memory to the buddy page
77  * allocator.
78  *
79  * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
80  * memblock data structures will be discarded after the system
81  * initialization compltes.
82  */
83 
84 #ifndef CONFIG_NEED_MULTIPLE_NODES
85 struct pglist_data __refdata contig_page_data;
86 EXPORT_SYMBOL(contig_page_data);
87 #endif
88 
89 unsigned long max_low_pfn;
90 unsigned long min_low_pfn;
91 unsigned long max_pfn;
92 unsigned long long max_possible_pfn;
93 
94 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
95 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
96 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
97 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
98 #endif
99 
100 struct memblock memblock __initdata_memblock = {
101 	.memory.regions		= memblock_memory_init_regions,
102 	.memory.cnt		= 1,	/* empty dummy entry */
103 	.memory.max		= INIT_MEMBLOCK_REGIONS,
104 	.memory.name		= "memory",
105 
106 	.reserved.regions	= memblock_reserved_init_regions,
107 	.reserved.cnt		= 1,	/* empty dummy entry */
108 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
109 	.reserved.name		= "reserved",
110 
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 	.physmem.regions	= memblock_physmem_init_regions,
113 	.physmem.cnt		= 1,	/* empty dummy entry */
114 	.physmem.max		= INIT_PHYSMEM_REGIONS,
115 	.physmem.name		= "physmem",
116 #endif
117 
118 	.bottom_up		= false,
119 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
120 };
121 
122 int memblock_debug __initdata_memblock;
123 static bool system_has_some_mirror __initdata_memblock = false;
124 static int memblock_can_resize __initdata_memblock;
125 static int memblock_memory_in_slab __initdata_memblock = 0;
126 static int memblock_reserved_in_slab __initdata_memblock = 0;
127 
128 enum memblock_flags __init_memblock choose_memblock_flags(void)
129 {
130 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
131 }
132 
133 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
134 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
135 {
136 	return *size = min(*size, PHYS_ADDR_MAX - base);
137 }
138 
139 /*
140  * Address comparison utilities
141  */
142 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
143 				       phys_addr_t base2, phys_addr_t size2)
144 {
145 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
146 }
147 
148 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
149 					phys_addr_t base, phys_addr_t size)
150 {
151 	unsigned long i;
152 
153 	for (i = 0; i < type->cnt; i++)
154 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
155 					   type->regions[i].size))
156 			break;
157 	return i < type->cnt;
158 }
159 
160 /**
161  * __memblock_find_range_bottom_up - find free area utility in bottom-up
162  * @start: start of candidate range
163  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
164  *       %MEMBLOCK_ALLOC_ACCESSIBLE
165  * @size: size of free area to find
166  * @align: alignment of free area to find
167  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
168  * @flags: pick from blocks based on memory attributes
169  *
170  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
171  *
172  * Return:
173  * Found address on success, 0 on failure.
174  */
175 static phys_addr_t __init_memblock
176 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
177 				phys_addr_t size, phys_addr_t align, int nid,
178 				enum memblock_flags flags)
179 {
180 	phys_addr_t this_start, this_end, cand;
181 	u64 i;
182 
183 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
184 		this_start = clamp(this_start, start, end);
185 		this_end = clamp(this_end, start, end);
186 
187 		cand = round_up(this_start, align);
188 		if (cand < this_end && this_end - cand >= size)
189 			return cand;
190 	}
191 
192 	return 0;
193 }
194 
195 /**
196  * __memblock_find_range_top_down - find free area utility, in top-down
197  * @start: start of candidate range
198  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
199  *       %MEMBLOCK_ALLOC_ACCESSIBLE
200  * @size: size of free area to find
201  * @align: alignment of free area to find
202  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
203  * @flags: pick from blocks based on memory attributes
204  *
205  * Utility called from memblock_find_in_range_node(), find free area top-down.
206  *
207  * Return:
208  * Found address on success, 0 on failure.
209  */
210 static phys_addr_t __init_memblock
211 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
212 			       phys_addr_t size, phys_addr_t align, int nid,
213 			       enum memblock_flags flags)
214 {
215 	phys_addr_t this_start, this_end, cand;
216 	u64 i;
217 
218 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
219 					NULL) {
220 		this_start = clamp(this_start, start, end);
221 		this_end = clamp(this_end, start, end);
222 
223 		if (this_end < size)
224 			continue;
225 
226 		cand = round_down(this_end - size, align);
227 		if (cand >= this_start)
228 			return cand;
229 	}
230 
231 	return 0;
232 }
233 
234 /**
235  * memblock_find_in_range_node - find free area in given range and node
236  * @size: size of free area to find
237  * @align: alignment of free area to find
238  * @start: start of candidate range
239  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
240  *       %MEMBLOCK_ALLOC_ACCESSIBLE
241  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
242  * @flags: pick from blocks based on memory attributes
243  *
244  * Find @size free area aligned to @align in the specified range and node.
245  *
246  * When allocation direction is bottom-up, the @start should be greater
247  * than the end of the kernel image. Otherwise, it will be trimmed. The
248  * reason is that we want the bottom-up allocation just near the kernel
249  * image so it is highly likely that the allocated memory and the kernel
250  * will reside in the same node.
251  *
252  * If bottom-up allocation failed, will try to allocate memory top-down.
253  *
254  * Return:
255  * Found address on success, 0 on failure.
256  */
257 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
258 					phys_addr_t align, phys_addr_t start,
259 					phys_addr_t end, int nid,
260 					enum memblock_flags flags)
261 {
262 	phys_addr_t kernel_end, ret;
263 
264 	/* pump up @end */
265 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
266 		end = memblock.current_limit;
267 
268 	/* avoid allocating the first page */
269 	start = max_t(phys_addr_t, start, PAGE_SIZE);
270 	end = max(start, end);
271 	kernel_end = __pa_symbol(_end);
272 
273 	/*
274 	 * try bottom-up allocation only when bottom-up mode
275 	 * is set and @end is above the kernel image.
276 	 */
277 	if (memblock_bottom_up() && end > kernel_end) {
278 		phys_addr_t bottom_up_start;
279 
280 		/* make sure we will allocate above the kernel */
281 		bottom_up_start = max(start, kernel_end);
282 
283 		/* ok, try bottom-up allocation first */
284 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
285 						      size, align, nid, flags);
286 		if (ret)
287 			return ret;
288 
289 		/*
290 		 * we always limit bottom-up allocation above the kernel,
291 		 * but top-down allocation doesn't have the limit, so
292 		 * retrying top-down allocation may succeed when bottom-up
293 		 * allocation failed.
294 		 *
295 		 * bottom-up allocation is expected to be fail very rarely,
296 		 * so we use WARN_ONCE() here to see the stack trace if
297 		 * fail happens.
298 		 */
299 		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
300 			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
301 	}
302 
303 	return __memblock_find_range_top_down(start, end, size, align, nid,
304 					      flags);
305 }
306 
307 /**
308  * memblock_find_in_range - find free area in given range
309  * @start: start of candidate range
310  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
311  *       %MEMBLOCK_ALLOC_ACCESSIBLE
312  * @size: size of free area to find
313  * @align: alignment of free area to find
314  *
315  * Find @size free area aligned to @align in the specified range.
316  *
317  * Return:
318  * Found address on success, 0 on failure.
319  */
320 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
321 					phys_addr_t end, phys_addr_t size,
322 					phys_addr_t align)
323 {
324 	phys_addr_t ret;
325 	enum memblock_flags flags = choose_memblock_flags();
326 
327 again:
328 	ret = memblock_find_in_range_node(size, align, start, end,
329 					    NUMA_NO_NODE, flags);
330 
331 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
332 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
333 			&size);
334 		flags &= ~MEMBLOCK_MIRROR;
335 		goto again;
336 	}
337 
338 	return ret;
339 }
340 
341 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
342 {
343 	type->total_size -= type->regions[r].size;
344 	memmove(&type->regions[r], &type->regions[r + 1],
345 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
346 	type->cnt--;
347 
348 	/* Special case for empty arrays */
349 	if (type->cnt == 0) {
350 		WARN_ON(type->total_size != 0);
351 		type->cnt = 1;
352 		type->regions[0].base = 0;
353 		type->regions[0].size = 0;
354 		type->regions[0].flags = 0;
355 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
356 	}
357 }
358 
359 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
360 /**
361  * memblock_discard - discard memory and reserved arrays if they were allocated
362  */
363 void __init memblock_discard(void)
364 {
365 	phys_addr_t addr, size;
366 
367 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
368 		addr = __pa(memblock.reserved.regions);
369 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
370 				  memblock.reserved.max);
371 		__memblock_free_late(addr, size);
372 	}
373 
374 	if (memblock.memory.regions != memblock_memory_init_regions) {
375 		addr = __pa(memblock.memory.regions);
376 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
377 				  memblock.memory.max);
378 		__memblock_free_late(addr, size);
379 	}
380 }
381 #endif
382 
383 /**
384  * memblock_double_array - double the size of the memblock regions array
385  * @type: memblock type of the regions array being doubled
386  * @new_area_start: starting address of memory range to avoid overlap with
387  * @new_area_size: size of memory range to avoid overlap with
388  *
389  * Double the size of the @type regions array. If memblock is being used to
390  * allocate memory for a new reserved regions array and there is a previously
391  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
392  * waiting to be reserved, ensure the memory used by the new array does
393  * not overlap.
394  *
395  * Return:
396  * 0 on success, -1 on failure.
397  */
398 static int __init_memblock memblock_double_array(struct memblock_type *type,
399 						phys_addr_t new_area_start,
400 						phys_addr_t new_area_size)
401 {
402 	struct memblock_region *new_array, *old_array;
403 	phys_addr_t old_alloc_size, new_alloc_size;
404 	phys_addr_t old_size, new_size, addr, new_end;
405 	int use_slab = slab_is_available();
406 	int *in_slab;
407 
408 	/* We don't allow resizing until we know about the reserved regions
409 	 * of memory that aren't suitable for allocation
410 	 */
411 	if (!memblock_can_resize)
412 		return -1;
413 
414 	/* Calculate new doubled size */
415 	old_size = type->max * sizeof(struct memblock_region);
416 	new_size = old_size << 1;
417 	/*
418 	 * We need to allocated new one align to PAGE_SIZE,
419 	 *   so we can free them completely later.
420 	 */
421 	old_alloc_size = PAGE_ALIGN(old_size);
422 	new_alloc_size = PAGE_ALIGN(new_size);
423 
424 	/* Retrieve the slab flag */
425 	if (type == &memblock.memory)
426 		in_slab = &memblock_memory_in_slab;
427 	else
428 		in_slab = &memblock_reserved_in_slab;
429 
430 	/* Try to find some space for it.
431 	 *
432 	 * WARNING: We assume that either slab_is_available() and we use it or
433 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
434 	 * use when bootmem is currently active (unless bootmem itself is
435 	 * implemented on top of MEMBLOCK which isn't the case yet)
436 	 *
437 	 * This should however not be an issue for now, as we currently only
438 	 * call into MEMBLOCK while it's still active, or much later when slab
439 	 * is active for memory hotplug operations
440 	 */
441 	if (use_slab) {
442 		new_array = kmalloc(new_size, GFP_KERNEL);
443 		addr = new_array ? __pa(new_array) : 0;
444 	} else {
445 		/* only exclude range when trying to double reserved.regions */
446 		if (type != &memblock.reserved)
447 			new_area_start = new_area_size = 0;
448 
449 		addr = memblock_find_in_range(new_area_start + new_area_size,
450 						memblock.current_limit,
451 						new_alloc_size, PAGE_SIZE);
452 		if (!addr && new_area_size)
453 			addr = memblock_find_in_range(0,
454 				min(new_area_start, memblock.current_limit),
455 				new_alloc_size, PAGE_SIZE);
456 
457 		new_array = addr ? __va(addr) : NULL;
458 	}
459 	if (!addr) {
460 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
461 		       type->name, type->max, type->max * 2);
462 		return -1;
463 	}
464 
465 	new_end = addr + new_size - 1;
466 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
467 			type->name, type->max * 2, &addr, &new_end);
468 
469 	/*
470 	 * Found space, we now need to move the array over before we add the
471 	 * reserved region since it may be our reserved array itself that is
472 	 * full.
473 	 */
474 	memcpy(new_array, type->regions, old_size);
475 	memset(new_array + type->max, 0, old_size);
476 	old_array = type->regions;
477 	type->regions = new_array;
478 	type->max <<= 1;
479 
480 	/* Free old array. We needn't free it if the array is the static one */
481 	if (*in_slab)
482 		kfree(old_array);
483 	else if (old_array != memblock_memory_init_regions &&
484 		 old_array != memblock_reserved_init_regions)
485 		memblock_free(__pa(old_array), old_alloc_size);
486 
487 	/*
488 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
489 	 * needn't do it
490 	 */
491 	if (!use_slab)
492 		BUG_ON(memblock_reserve(addr, new_alloc_size));
493 
494 	/* Update slab flag */
495 	*in_slab = use_slab;
496 
497 	return 0;
498 }
499 
500 /**
501  * memblock_merge_regions - merge neighboring compatible regions
502  * @type: memblock type to scan
503  *
504  * Scan @type and merge neighboring compatible regions.
505  */
506 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
507 {
508 	int i = 0;
509 
510 	/* cnt never goes below 1 */
511 	while (i < type->cnt - 1) {
512 		struct memblock_region *this = &type->regions[i];
513 		struct memblock_region *next = &type->regions[i + 1];
514 
515 		if (this->base + this->size != next->base ||
516 		    memblock_get_region_node(this) !=
517 		    memblock_get_region_node(next) ||
518 		    this->flags != next->flags) {
519 			BUG_ON(this->base + this->size > next->base);
520 			i++;
521 			continue;
522 		}
523 
524 		this->size += next->size;
525 		/* move forward from next + 1, index of which is i + 2 */
526 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
527 		type->cnt--;
528 	}
529 }
530 
531 /**
532  * memblock_insert_region - insert new memblock region
533  * @type:	memblock type to insert into
534  * @idx:	index for the insertion point
535  * @base:	base address of the new region
536  * @size:	size of the new region
537  * @nid:	node id of the new region
538  * @flags:	flags of the new region
539  *
540  * Insert new memblock region [@base, @base + @size) into @type at @idx.
541  * @type must already have extra room to accommodate the new region.
542  */
543 static void __init_memblock memblock_insert_region(struct memblock_type *type,
544 						   int idx, phys_addr_t base,
545 						   phys_addr_t size,
546 						   int nid,
547 						   enum memblock_flags flags)
548 {
549 	struct memblock_region *rgn = &type->regions[idx];
550 
551 	BUG_ON(type->cnt >= type->max);
552 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
553 	rgn->base = base;
554 	rgn->size = size;
555 	rgn->flags = flags;
556 	memblock_set_region_node(rgn, nid);
557 	type->cnt++;
558 	type->total_size += size;
559 }
560 
561 /**
562  * memblock_add_range - add new memblock region
563  * @type: memblock type to add new region into
564  * @base: base address of the new region
565  * @size: size of the new region
566  * @nid: nid of the new region
567  * @flags: flags of the new region
568  *
569  * Add new memblock region [@base, @base + @size) into @type.  The new region
570  * is allowed to overlap with existing ones - overlaps don't affect already
571  * existing regions.  @type is guaranteed to be minimal (all neighbouring
572  * compatible regions are merged) after the addition.
573  *
574  * Return:
575  * 0 on success, -errno on failure.
576  */
577 int __init_memblock memblock_add_range(struct memblock_type *type,
578 				phys_addr_t base, phys_addr_t size,
579 				int nid, enum memblock_flags flags)
580 {
581 	bool insert = false;
582 	phys_addr_t obase = base;
583 	phys_addr_t end = base + memblock_cap_size(base, &size);
584 	int idx, nr_new;
585 	struct memblock_region *rgn;
586 
587 	if (!size)
588 		return 0;
589 
590 	/* special case for empty array */
591 	if (type->regions[0].size == 0) {
592 		WARN_ON(type->cnt != 1 || type->total_size);
593 		type->regions[0].base = base;
594 		type->regions[0].size = size;
595 		type->regions[0].flags = flags;
596 		memblock_set_region_node(&type->regions[0], nid);
597 		type->total_size = size;
598 		return 0;
599 	}
600 repeat:
601 	/*
602 	 * The following is executed twice.  Once with %false @insert and
603 	 * then with %true.  The first counts the number of regions needed
604 	 * to accommodate the new area.  The second actually inserts them.
605 	 */
606 	base = obase;
607 	nr_new = 0;
608 
609 	for_each_memblock_type(idx, type, rgn) {
610 		phys_addr_t rbase = rgn->base;
611 		phys_addr_t rend = rbase + rgn->size;
612 
613 		if (rbase >= end)
614 			break;
615 		if (rend <= base)
616 			continue;
617 		/*
618 		 * @rgn overlaps.  If it separates the lower part of new
619 		 * area, insert that portion.
620 		 */
621 		if (rbase > base) {
622 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
623 			WARN_ON(nid != memblock_get_region_node(rgn));
624 #endif
625 			WARN_ON(flags != rgn->flags);
626 			nr_new++;
627 			if (insert)
628 				memblock_insert_region(type, idx++, base,
629 						       rbase - base, nid,
630 						       flags);
631 		}
632 		/* area below @rend is dealt with, forget about it */
633 		base = min(rend, end);
634 	}
635 
636 	/* insert the remaining portion */
637 	if (base < end) {
638 		nr_new++;
639 		if (insert)
640 			memblock_insert_region(type, idx, base, end - base,
641 					       nid, flags);
642 	}
643 
644 	if (!nr_new)
645 		return 0;
646 
647 	/*
648 	 * If this was the first round, resize array and repeat for actual
649 	 * insertions; otherwise, merge and return.
650 	 */
651 	if (!insert) {
652 		while (type->cnt + nr_new > type->max)
653 			if (memblock_double_array(type, obase, size) < 0)
654 				return -ENOMEM;
655 		insert = true;
656 		goto repeat;
657 	} else {
658 		memblock_merge_regions(type);
659 		return 0;
660 	}
661 }
662 
663 /**
664  * memblock_add_node - add new memblock region within a NUMA node
665  * @base: base address of the new region
666  * @size: size of the new region
667  * @nid: nid of the new region
668  *
669  * Add new memblock region [@base, @base + @size) to the "memory"
670  * type. See memblock_add_range() description for mode details
671  *
672  * Return:
673  * 0 on success, -errno on failure.
674  */
675 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
676 				       int nid)
677 {
678 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
679 }
680 
681 /**
682  * memblock_add - add new memblock region
683  * @base: base address of the new region
684  * @size: size of the new region
685  *
686  * Add new memblock region [@base, @base + @size) to the "memory"
687  * type. See memblock_add_range() description for mode details
688  *
689  * Return:
690  * 0 on success, -errno on failure.
691  */
692 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
693 {
694 	phys_addr_t end = base + size - 1;
695 
696 	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
697 		     &base, &end, (void *)_RET_IP_);
698 
699 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
700 }
701 
702 /**
703  * memblock_isolate_range - isolate given range into disjoint memblocks
704  * @type: memblock type to isolate range for
705  * @base: base of range to isolate
706  * @size: size of range to isolate
707  * @start_rgn: out parameter for the start of isolated region
708  * @end_rgn: out parameter for the end of isolated region
709  *
710  * Walk @type and ensure that regions don't cross the boundaries defined by
711  * [@base, @base + @size).  Crossing regions are split at the boundaries,
712  * which may create at most two more regions.  The index of the first
713  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
714  *
715  * Return:
716  * 0 on success, -errno on failure.
717  */
718 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
719 					phys_addr_t base, phys_addr_t size,
720 					int *start_rgn, int *end_rgn)
721 {
722 	phys_addr_t end = base + memblock_cap_size(base, &size);
723 	int idx;
724 	struct memblock_region *rgn;
725 
726 	*start_rgn = *end_rgn = 0;
727 
728 	if (!size)
729 		return 0;
730 
731 	/* we'll create at most two more regions */
732 	while (type->cnt + 2 > type->max)
733 		if (memblock_double_array(type, base, size) < 0)
734 			return -ENOMEM;
735 
736 	for_each_memblock_type(idx, type, rgn) {
737 		phys_addr_t rbase = rgn->base;
738 		phys_addr_t rend = rbase + rgn->size;
739 
740 		if (rbase >= end)
741 			break;
742 		if (rend <= base)
743 			continue;
744 
745 		if (rbase < base) {
746 			/*
747 			 * @rgn intersects from below.  Split and continue
748 			 * to process the next region - the new top half.
749 			 */
750 			rgn->base = base;
751 			rgn->size -= base - rbase;
752 			type->total_size -= base - rbase;
753 			memblock_insert_region(type, idx, rbase, base - rbase,
754 					       memblock_get_region_node(rgn),
755 					       rgn->flags);
756 		} else if (rend > end) {
757 			/*
758 			 * @rgn intersects from above.  Split and redo the
759 			 * current region - the new bottom half.
760 			 */
761 			rgn->base = end;
762 			rgn->size -= end - rbase;
763 			type->total_size -= end - rbase;
764 			memblock_insert_region(type, idx--, rbase, end - rbase,
765 					       memblock_get_region_node(rgn),
766 					       rgn->flags);
767 		} else {
768 			/* @rgn is fully contained, record it */
769 			if (!*end_rgn)
770 				*start_rgn = idx;
771 			*end_rgn = idx + 1;
772 		}
773 	}
774 
775 	return 0;
776 }
777 
778 static int __init_memblock memblock_remove_range(struct memblock_type *type,
779 					  phys_addr_t base, phys_addr_t size)
780 {
781 	int start_rgn, end_rgn;
782 	int i, ret;
783 
784 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
785 	if (ret)
786 		return ret;
787 
788 	for (i = end_rgn - 1; i >= start_rgn; i--)
789 		memblock_remove_region(type, i);
790 	return 0;
791 }
792 
793 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
794 {
795 	phys_addr_t end = base + size - 1;
796 
797 	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
798 		     &base, &end, (void *)_RET_IP_);
799 
800 	return memblock_remove_range(&memblock.memory, base, size);
801 }
802 
803 
804 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
805 {
806 	phys_addr_t end = base + size - 1;
807 
808 	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
809 		     &base, &end, (void *)_RET_IP_);
810 
811 	kmemleak_free_part_phys(base, size);
812 	return memblock_remove_range(&memblock.reserved, base, size);
813 }
814 
815 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
816 {
817 	phys_addr_t end = base + size - 1;
818 
819 	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
820 		     &base, &end, (void *)_RET_IP_);
821 
822 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
823 }
824 
825 /**
826  * memblock_setclr_flag - set or clear flag for a memory region
827  * @base: base address of the region
828  * @size: size of the region
829  * @set: set or clear the flag
830  * @flag: the flag to udpate
831  *
832  * This function isolates region [@base, @base + @size), and sets/clears flag
833  *
834  * Return: 0 on success, -errno on failure.
835  */
836 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
837 				phys_addr_t size, int set, int flag)
838 {
839 	struct memblock_type *type = &memblock.memory;
840 	int i, ret, start_rgn, end_rgn;
841 
842 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
843 	if (ret)
844 		return ret;
845 
846 	for (i = start_rgn; i < end_rgn; i++)
847 		if (set)
848 			memblock_set_region_flags(&type->regions[i], flag);
849 		else
850 			memblock_clear_region_flags(&type->regions[i], flag);
851 
852 	memblock_merge_regions(type);
853 	return 0;
854 }
855 
856 /**
857  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
858  * @base: the base phys addr of the region
859  * @size: the size of the region
860  *
861  * Return: 0 on success, -errno on failure.
862  */
863 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
864 {
865 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
866 }
867 
868 /**
869  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
870  * @base: the base phys addr of the region
871  * @size: the size of the region
872  *
873  * Return: 0 on success, -errno on failure.
874  */
875 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
876 {
877 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
878 }
879 
880 /**
881  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
882  * @base: the base phys addr of the region
883  * @size: the size of the region
884  *
885  * Return: 0 on success, -errno on failure.
886  */
887 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
888 {
889 	system_has_some_mirror = true;
890 
891 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
892 }
893 
894 /**
895  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
896  * @base: the base phys addr of the region
897  * @size: the size of the region
898  *
899  * Return: 0 on success, -errno on failure.
900  */
901 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
902 {
903 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
904 }
905 
906 /**
907  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
908  * @base: the base phys addr of the region
909  * @size: the size of the region
910  *
911  * Return: 0 on success, -errno on failure.
912  */
913 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
914 {
915 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
916 }
917 
918 /**
919  * __next_reserved_mem_region - next function for for_each_reserved_region()
920  * @idx: pointer to u64 loop variable
921  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
922  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
923  *
924  * Iterate over all reserved memory regions.
925  */
926 void __init_memblock __next_reserved_mem_region(u64 *idx,
927 					   phys_addr_t *out_start,
928 					   phys_addr_t *out_end)
929 {
930 	struct memblock_type *type = &memblock.reserved;
931 
932 	if (*idx < type->cnt) {
933 		struct memblock_region *r = &type->regions[*idx];
934 		phys_addr_t base = r->base;
935 		phys_addr_t size = r->size;
936 
937 		if (out_start)
938 			*out_start = base;
939 		if (out_end)
940 			*out_end = base + size - 1;
941 
942 		*idx += 1;
943 		return;
944 	}
945 
946 	/* signal end of iteration */
947 	*idx = ULLONG_MAX;
948 }
949 
950 /**
951  * __next__mem_range - next function for for_each_free_mem_range() etc.
952  * @idx: pointer to u64 loop variable
953  * @nid: node selector, %NUMA_NO_NODE for all nodes
954  * @flags: pick from blocks based on memory attributes
955  * @type_a: pointer to memblock_type from where the range is taken
956  * @type_b: pointer to memblock_type which excludes memory from being taken
957  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
958  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
959  * @out_nid: ptr to int for nid of the range, can be %NULL
960  *
961  * Find the first area from *@idx which matches @nid, fill the out
962  * parameters, and update *@idx for the next iteration.  The lower 32bit of
963  * *@idx contains index into type_a and the upper 32bit indexes the
964  * areas before each region in type_b.	For example, if type_b regions
965  * look like the following,
966  *
967  *	0:[0-16), 1:[32-48), 2:[128-130)
968  *
969  * The upper 32bit indexes the following regions.
970  *
971  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
972  *
973  * As both region arrays are sorted, the function advances the two indices
974  * in lockstep and returns each intersection.
975  */
976 void __init_memblock __next_mem_range(u64 *idx, int nid,
977 				      enum memblock_flags flags,
978 				      struct memblock_type *type_a,
979 				      struct memblock_type *type_b,
980 				      phys_addr_t *out_start,
981 				      phys_addr_t *out_end, int *out_nid)
982 {
983 	int idx_a = *idx & 0xffffffff;
984 	int idx_b = *idx >> 32;
985 
986 	if (WARN_ONCE(nid == MAX_NUMNODES,
987 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
988 		nid = NUMA_NO_NODE;
989 
990 	for (; idx_a < type_a->cnt; idx_a++) {
991 		struct memblock_region *m = &type_a->regions[idx_a];
992 
993 		phys_addr_t m_start = m->base;
994 		phys_addr_t m_end = m->base + m->size;
995 		int	    m_nid = memblock_get_region_node(m);
996 
997 		/* only memory regions are associated with nodes, check it */
998 		if (nid != NUMA_NO_NODE && nid != m_nid)
999 			continue;
1000 
1001 		/* skip hotpluggable memory regions if needed */
1002 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1003 			continue;
1004 
1005 		/* if we want mirror memory skip non-mirror memory regions */
1006 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1007 			continue;
1008 
1009 		/* skip nomap memory unless we were asked for it explicitly */
1010 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1011 			continue;
1012 
1013 		if (!type_b) {
1014 			if (out_start)
1015 				*out_start = m_start;
1016 			if (out_end)
1017 				*out_end = m_end;
1018 			if (out_nid)
1019 				*out_nid = m_nid;
1020 			idx_a++;
1021 			*idx = (u32)idx_a | (u64)idx_b << 32;
1022 			return;
1023 		}
1024 
1025 		/* scan areas before each reservation */
1026 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1027 			struct memblock_region *r;
1028 			phys_addr_t r_start;
1029 			phys_addr_t r_end;
1030 
1031 			r = &type_b->regions[idx_b];
1032 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1033 			r_end = idx_b < type_b->cnt ?
1034 				r->base : PHYS_ADDR_MAX;
1035 
1036 			/*
1037 			 * if idx_b advanced past idx_a,
1038 			 * break out to advance idx_a
1039 			 */
1040 			if (r_start >= m_end)
1041 				break;
1042 			/* if the two regions intersect, we're done */
1043 			if (m_start < r_end) {
1044 				if (out_start)
1045 					*out_start =
1046 						max(m_start, r_start);
1047 				if (out_end)
1048 					*out_end = min(m_end, r_end);
1049 				if (out_nid)
1050 					*out_nid = m_nid;
1051 				/*
1052 				 * The region which ends first is
1053 				 * advanced for the next iteration.
1054 				 */
1055 				if (m_end <= r_end)
1056 					idx_a++;
1057 				else
1058 					idx_b++;
1059 				*idx = (u32)idx_a | (u64)idx_b << 32;
1060 				return;
1061 			}
1062 		}
1063 	}
1064 
1065 	/* signal end of iteration */
1066 	*idx = ULLONG_MAX;
1067 }
1068 
1069 /**
1070  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1071  *
1072  * @idx: pointer to u64 loop variable
1073  * @nid: node selector, %NUMA_NO_NODE for all nodes
1074  * @flags: pick from blocks based on memory attributes
1075  * @type_a: pointer to memblock_type from where the range is taken
1076  * @type_b: pointer to memblock_type which excludes memory from being taken
1077  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1078  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1079  * @out_nid: ptr to int for nid of the range, can be %NULL
1080  *
1081  * Finds the next range from type_a which is not marked as unsuitable
1082  * in type_b.
1083  *
1084  * Reverse of __next_mem_range().
1085  */
1086 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1087 					  enum memblock_flags flags,
1088 					  struct memblock_type *type_a,
1089 					  struct memblock_type *type_b,
1090 					  phys_addr_t *out_start,
1091 					  phys_addr_t *out_end, int *out_nid)
1092 {
1093 	int idx_a = *idx & 0xffffffff;
1094 	int idx_b = *idx >> 32;
1095 
1096 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1097 		nid = NUMA_NO_NODE;
1098 
1099 	if (*idx == (u64)ULLONG_MAX) {
1100 		idx_a = type_a->cnt - 1;
1101 		if (type_b != NULL)
1102 			idx_b = type_b->cnt;
1103 		else
1104 			idx_b = 0;
1105 	}
1106 
1107 	for (; idx_a >= 0; idx_a--) {
1108 		struct memblock_region *m = &type_a->regions[idx_a];
1109 
1110 		phys_addr_t m_start = m->base;
1111 		phys_addr_t m_end = m->base + m->size;
1112 		int m_nid = memblock_get_region_node(m);
1113 
1114 		/* only memory regions are associated with nodes, check it */
1115 		if (nid != NUMA_NO_NODE && nid != m_nid)
1116 			continue;
1117 
1118 		/* skip hotpluggable memory regions if needed */
1119 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1120 			continue;
1121 
1122 		/* if we want mirror memory skip non-mirror memory regions */
1123 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1124 			continue;
1125 
1126 		/* skip nomap memory unless we were asked for it explicitly */
1127 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1128 			continue;
1129 
1130 		if (!type_b) {
1131 			if (out_start)
1132 				*out_start = m_start;
1133 			if (out_end)
1134 				*out_end = m_end;
1135 			if (out_nid)
1136 				*out_nid = m_nid;
1137 			idx_a--;
1138 			*idx = (u32)idx_a | (u64)idx_b << 32;
1139 			return;
1140 		}
1141 
1142 		/* scan areas before each reservation */
1143 		for (; idx_b >= 0; idx_b--) {
1144 			struct memblock_region *r;
1145 			phys_addr_t r_start;
1146 			phys_addr_t r_end;
1147 
1148 			r = &type_b->regions[idx_b];
1149 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1150 			r_end = idx_b < type_b->cnt ?
1151 				r->base : PHYS_ADDR_MAX;
1152 			/*
1153 			 * if idx_b advanced past idx_a,
1154 			 * break out to advance idx_a
1155 			 */
1156 
1157 			if (r_end <= m_start)
1158 				break;
1159 			/* if the two regions intersect, we're done */
1160 			if (m_end > r_start) {
1161 				if (out_start)
1162 					*out_start = max(m_start, r_start);
1163 				if (out_end)
1164 					*out_end = min(m_end, r_end);
1165 				if (out_nid)
1166 					*out_nid = m_nid;
1167 				if (m_start >= r_start)
1168 					idx_a--;
1169 				else
1170 					idx_b--;
1171 				*idx = (u32)idx_a | (u64)idx_b << 32;
1172 				return;
1173 			}
1174 		}
1175 	}
1176 	/* signal end of iteration */
1177 	*idx = ULLONG_MAX;
1178 }
1179 
1180 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1181 /*
1182  * Common iterator interface used to define for_each_mem_pfn_range().
1183  */
1184 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1185 				unsigned long *out_start_pfn,
1186 				unsigned long *out_end_pfn, int *out_nid)
1187 {
1188 	struct memblock_type *type = &memblock.memory;
1189 	struct memblock_region *r;
1190 
1191 	while (++*idx < type->cnt) {
1192 		r = &type->regions[*idx];
1193 
1194 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1195 			continue;
1196 		if (nid == MAX_NUMNODES || nid == r->nid)
1197 			break;
1198 	}
1199 	if (*idx >= type->cnt) {
1200 		*idx = -1;
1201 		return;
1202 	}
1203 
1204 	if (out_start_pfn)
1205 		*out_start_pfn = PFN_UP(r->base);
1206 	if (out_end_pfn)
1207 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1208 	if (out_nid)
1209 		*out_nid = r->nid;
1210 }
1211 
1212 /**
1213  * memblock_set_node - set node ID on memblock regions
1214  * @base: base of area to set node ID for
1215  * @size: size of area to set node ID for
1216  * @type: memblock type to set node ID for
1217  * @nid: node ID to set
1218  *
1219  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1220  * Regions which cross the area boundaries are split as necessary.
1221  *
1222  * Return:
1223  * 0 on success, -errno on failure.
1224  */
1225 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1226 				      struct memblock_type *type, int nid)
1227 {
1228 	int start_rgn, end_rgn;
1229 	int i, ret;
1230 
1231 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1232 	if (ret)
1233 		return ret;
1234 
1235 	for (i = start_rgn; i < end_rgn; i++)
1236 		memblock_set_region_node(&type->regions[i], nid);
1237 
1238 	memblock_merge_regions(type);
1239 	return 0;
1240 }
1241 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1242 
1243 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1244 					phys_addr_t align, phys_addr_t start,
1245 					phys_addr_t end, int nid,
1246 					enum memblock_flags flags)
1247 {
1248 	phys_addr_t found;
1249 
1250 	if (!align) {
1251 		/* Can't use WARNs this early in boot on powerpc */
1252 		dump_stack();
1253 		align = SMP_CACHE_BYTES;
1254 	}
1255 
1256 	found = memblock_find_in_range_node(size, align, start, end, nid,
1257 					    flags);
1258 	if (found && !memblock_reserve(found, size)) {
1259 		/*
1260 		 * The min_count is set to 0 so that memblock allocations are
1261 		 * never reported as leaks.
1262 		 */
1263 		kmemleak_alloc_phys(found, size, 0, 0);
1264 		return found;
1265 	}
1266 	return 0;
1267 }
1268 
1269 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1270 					phys_addr_t start, phys_addr_t end,
1271 					enum memblock_flags flags)
1272 {
1273 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1274 					flags);
1275 }
1276 
1277 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1278 					phys_addr_t align, phys_addr_t max_addr,
1279 					int nid, enum memblock_flags flags)
1280 {
1281 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1282 }
1283 
1284 phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1285 {
1286 	enum memblock_flags flags = choose_memblock_flags();
1287 	phys_addr_t ret;
1288 
1289 again:
1290 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1291 				      nid, flags);
1292 
1293 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1294 		flags &= ~MEMBLOCK_MIRROR;
1295 		goto again;
1296 	}
1297 	return ret;
1298 }
1299 
1300 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1301 {
1302 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1303 				       MEMBLOCK_NONE);
1304 }
1305 
1306 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1307 {
1308 	phys_addr_t alloc;
1309 
1310 	alloc = __memblock_alloc_base(size, align, max_addr);
1311 
1312 	if (alloc == 0)
1313 		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1314 		      &size, &max_addr);
1315 
1316 	return alloc;
1317 }
1318 
1319 phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
1320 {
1321 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1322 }
1323 
1324 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1325 {
1326 	phys_addr_t res = memblock_phys_alloc_nid(size, align, nid);
1327 
1328 	if (res)
1329 		return res;
1330 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1331 }
1332 
1333 /**
1334  * memblock_alloc_internal - allocate boot memory block
1335  * @size: size of memory block to be allocated in bytes
1336  * @align: alignment of the region and block's size
1337  * @min_addr: the lower bound of the memory region to allocate (phys address)
1338  * @max_addr: the upper bound of the memory region to allocate (phys address)
1339  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1340  *
1341  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1342  * will fall back to memory below @min_addr. Also, allocation may fall back
1343  * to any node in the system if the specified node can not
1344  * hold the requested memory.
1345  *
1346  * The allocation is performed from memory region limited by
1347  * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1348  *
1349  * The phys address of allocated boot memory block is converted to virtual and
1350  * allocated memory is reset to 0.
1351  *
1352  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1353  * allocated boot memory block, so that it is never reported as leaks.
1354  *
1355  * Return:
1356  * Virtual address of allocated memory block on success, NULL on failure.
1357  */
1358 static void * __init memblock_alloc_internal(
1359 				phys_addr_t size, phys_addr_t align,
1360 				phys_addr_t min_addr, phys_addr_t max_addr,
1361 				int nid)
1362 {
1363 	phys_addr_t alloc;
1364 	void *ptr;
1365 	enum memblock_flags flags = choose_memblock_flags();
1366 
1367 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1368 		nid = NUMA_NO_NODE;
1369 
1370 	/*
1371 	 * Detect any accidental use of these APIs after slab is ready, as at
1372 	 * this moment memblock may be deinitialized already and its
1373 	 * internal data may be destroyed (after execution of memblock_free_all)
1374 	 */
1375 	if (WARN_ON_ONCE(slab_is_available()))
1376 		return kzalloc_node(size, GFP_NOWAIT, nid);
1377 
1378 	if (!align) {
1379 		dump_stack();
1380 		align = SMP_CACHE_BYTES;
1381 	}
1382 
1383 	if (max_addr > memblock.current_limit)
1384 		max_addr = memblock.current_limit;
1385 again:
1386 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1387 					    nid, flags);
1388 	if (alloc && !memblock_reserve(alloc, size))
1389 		goto done;
1390 
1391 	if (nid != NUMA_NO_NODE) {
1392 		alloc = memblock_find_in_range_node(size, align, min_addr,
1393 						    max_addr, NUMA_NO_NODE,
1394 						    flags);
1395 		if (alloc && !memblock_reserve(alloc, size))
1396 			goto done;
1397 	}
1398 
1399 	if (min_addr) {
1400 		min_addr = 0;
1401 		goto again;
1402 	}
1403 
1404 	if (flags & MEMBLOCK_MIRROR) {
1405 		flags &= ~MEMBLOCK_MIRROR;
1406 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1407 			&size);
1408 		goto again;
1409 	}
1410 
1411 	return NULL;
1412 done:
1413 	ptr = phys_to_virt(alloc);
1414 
1415 	/*
1416 	 * The min_count is set to 0 so that bootmem allocated blocks
1417 	 * are never reported as leaks. This is because many of these blocks
1418 	 * are only referred via the physical address which is not
1419 	 * looked up by kmemleak.
1420 	 */
1421 	kmemleak_alloc(ptr, size, 0, 0);
1422 
1423 	return ptr;
1424 }
1425 
1426 /**
1427  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1428  * memory and without panicking
1429  * @size: size of memory block to be allocated in bytes
1430  * @align: alignment of the region and block's size
1431  * @min_addr: the lower bound of the memory region from where the allocation
1432  *	  is preferred (phys address)
1433  * @max_addr: the upper bound of the memory region from where the allocation
1434  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1435  *	      allocate only from memory limited by memblock.current_limit value
1436  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1437  *
1438  * Public function, provides additional debug information (including caller
1439  * info), if enabled. Does not zero allocated memory, does not panic if request
1440  * cannot be satisfied.
1441  *
1442  * Return:
1443  * Virtual address of allocated memory block on success, NULL on failure.
1444  */
1445 void * __init memblock_alloc_try_nid_raw(
1446 			phys_addr_t size, phys_addr_t align,
1447 			phys_addr_t min_addr, phys_addr_t max_addr,
1448 			int nid)
1449 {
1450 	void *ptr;
1451 
1452 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1453 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1454 		     &max_addr, (void *)_RET_IP_);
1455 
1456 	ptr = memblock_alloc_internal(size, align,
1457 					   min_addr, max_addr, nid);
1458 	if (ptr && size > 0)
1459 		page_init_poison(ptr, size);
1460 
1461 	return ptr;
1462 }
1463 
1464 /**
1465  * memblock_alloc_try_nid_nopanic - allocate boot memory block
1466  * @size: size of memory block to be allocated in bytes
1467  * @align: alignment of the region and block's size
1468  * @min_addr: the lower bound of the memory region from where the allocation
1469  *	  is preferred (phys address)
1470  * @max_addr: the upper bound of the memory region from where the allocation
1471  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1472  *	      allocate only from memory limited by memblock.current_limit value
1473  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1474  *
1475  * Public function, provides additional debug information (including caller
1476  * info), if enabled. This function zeroes the allocated memory.
1477  *
1478  * Return:
1479  * Virtual address of allocated memory block on success, NULL on failure.
1480  */
1481 void * __init memblock_alloc_try_nid_nopanic(
1482 				phys_addr_t size, phys_addr_t align,
1483 				phys_addr_t min_addr, phys_addr_t max_addr,
1484 				int nid)
1485 {
1486 	void *ptr;
1487 
1488 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1489 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1490 		     &max_addr, (void *)_RET_IP_);
1491 
1492 	ptr = memblock_alloc_internal(size, align,
1493 					   min_addr, max_addr, nid);
1494 	if (ptr)
1495 		memset(ptr, 0, size);
1496 	return ptr;
1497 }
1498 
1499 /**
1500  * memblock_alloc_try_nid - allocate boot memory block with panicking
1501  * @size: size of memory block to be allocated in bytes
1502  * @align: alignment of the region and block's size
1503  * @min_addr: the lower bound of the memory region from where the allocation
1504  *	  is preferred (phys address)
1505  * @max_addr: the upper bound of the memory region from where the allocation
1506  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1507  *	      allocate only from memory limited by memblock.current_limit value
1508  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1509  *
1510  * Public panicking version of memblock_alloc_try_nid_nopanic()
1511  * which provides debug information (including caller info), if enabled,
1512  * and panics if the request can not be satisfied.
1513  *
1514  * Return:
1515  * Virtual address of allocated memory block on success, NULL on failure.
1516  */
1517 void * __init memblock_alloc_try_nid(
1518 			phys_addr_t size, phys_addr_t align,
1519 			phys_addr_t min_addr, phys_addr_t max_addr,
1520 			int nid)
1521 {
1522 	void *ptr;
1523 
1524 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1525 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1526 		     &max_addr, (void *)_RET_IP_);
1527 	ptr = memblock_alloc_internal(size, align,
1528 					   min_addr, max_addr, nid);
1529 	if (ptr) {
1530 		memset(ptr, 0, size);
1531 		return ptr;
1532 	}
1533 
1534 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1535 	      __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
1536 	return NULL;
1537 }
1538 
1539 /**
1540  * __memblock_free_early - free boot memory block
1541  * @base: phys starting address of the  boot memory block
1542  * @size: size of the boot memory block in bytes
1543  *
1544  * Free boot memory block previously allocated by memblock_alloc_xx() API.
1545  * The freeing memory will not be released to the buddy allocator.
1546  */
1547 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1548 {
1549 	phys_addr_t end = base + size - 1;
1550 
1551 	memblock_dbg("%s: [%pa-%pa] %pF\n",
1552 		     __func__, &base, &end, (void *)_RET_IP_);
1553 	kmemleak_free_part_phys(base, size);
1554 	memblock_remove_range(&memblock.reserved, base, size);
1555 }
1556 
1557 /**
1558  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1559  * @base: phys starting address of the  boot memory block
1560  * @size: size of the boot memory block in bytes
1561  *
1562  * This is only useful when the bootmem allocator has already been torn
1563  * down, but we are still initializing the system.  Pages are released directly
1564  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1565  */
1566 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1567 {
1568 	phys_addr_t cursor, end;
1569 
1570 	end = base + size - 1;
1571 	memblock_dbg("%s: [%pa-%pa] %pF\n",
1572 		     __func__, &base, &end, (void *)_RET_IP_);
1573 	kmemleak_free_part_phys(base, size);
1574 	cursor = PFN_UP(base);
1575 	end = PFN_DOWN(base + size);
1576 
1577 	for (; cursor < end; cursor++) {
1578 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1579 		totalram_pages++;
1580 	}
1581 }
1582 
1583 /*
1584  * Remaining API functions
1585  */
1586 
1587 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1588 {
1589 	return memblock.memory.total_size;
1590 }
1591 
1592 phys_addr_t __init_memblock memblock_reserved_size(void)
1593 {
1594 	return memblock.reserved.total_size;
1595 }
1596 
1597 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1598 {
1599 	unsigned long pages = 0;
1600 	struct memblock_region *r;
1601 	unsigned long start_pfn, end_pfn;
1602 
1603 	for_each_memblock(memory, r) {
1604 		start_pfn = memblock_region_memory_base_pfn(r);
1605 		end_pfn = memblock_region_memory_end_pfn(r);
1606 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1607 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1608 		pages += end_pfn - start_pfn;
1609 	}
1610 
1611 	return PFN_PHYS(pages);
1612 }
1613 
1614 /* lowest address */
1615 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1616 {
1617 	return memblock.memory.regions[0].base;
1618 }
1619 
1620 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1621 {
1622 	int idx = memblock.memory.cnt - 1;
1623 
1624 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1625 }
1626 
1627 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1628 {
1629 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1630 	struct memblock_region *r;
1631 
1632 	/*
1633 	 * translate the memory @limit size into the max address within one of
1634 	 * the memory memblock regions, if the @limit exceeds the total size
1635 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1636 	 */
1637 	for_each_memblock(memory, r) {
1638 		if (limit <= r->size) {
1639 			max_addr = r->base + limit;
1640 			break;
1641 		}
1642 		limit -= r->size;
1643 	}
1644 
1645 	return max_addr;
1646 }
1647 
1648 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1649 {
1650 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1651 
1652 	if (!limit)
1653 		return;
1654 
1655 	max_addr = __find_max_addr(limit);
1656 
1657 	/* @limit exceeds the total size of the memory, do nothing */
1658 	if (max_addr == PHYS_ADDR_MAX)
1659 		return;
1660 
1661 	/* truncate both memory and reserved regions */
1662 	memblock_remove_range(&memblock.memory, max_addr,
1663 			      PHYS_ADDR_MAX);
1664 	memblock_remove_range(&memblock.reserved, max_addr,
1665 			      PHYS_ADDR_MAX);
1666 }
1667 
1668 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1669 {
1670 	int start_rgn, end_rgn;
1671 	int i, ret;
1672 
1673 	if (!size)
1674 		return;
1675 
1676 	ret = memblock_isolate_range(&memblock.memory, base, size,
1677 						&start_rgn, &end_rgn);
1678 	if (ret)
1679 		return;
1680 
1681 	/* remove all the MAP regions */
1682 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1683 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1684 			memblock_remove_region(&memblock.memory, i);
1685 
1686 	for (i = start_rgn - 1; i >= 0; i--)
1687 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688 			memblock_remove_region(&memblock.memory, i);
1689 
1690 	/* truncate the reserved regions */
1691 	memblock_remove_range(&memblock.reserved, 0, base);
1692 	memblock_remove_range(&memblock.reserved,
1693 			base + size, PHYS_ADDR_MAX);
1694 }
1695 
1696 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1697 {
1698 	phys_addr_t max_addr;
1699 
1700 	if (!limit)
1701 		return;
1702 
1703 	max_addr = __find_max_addr(limit);
1704 
1705 	/* @limit exceeds the total size of the memory, do nothing */
1706 	if (max_addr == PHYS_ADDR_MAX)
1707 		return;
1708 
1709 	memblock_cap_memory_range(0, max_addr);
1710 }
1711 
1712 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1713 {
1714 	unsigned int left = 0, right = type->cnt;
1715 
1716 	do {
1717 		unsigned int mid = (right + left) / 2;
1718 
1719 		if (addr < type->regions[mid].base)
1720 			right = mid;
1721 		else if (addr >= (type->regions[mid].base +
1722 				  type->regions[mid].size))
1723 			left = mid + 1;
1724 		else
1725 			return mid;
1726 	} while (left < right);
1727 	return -1;
1728 }
1729 
1730 bool __init memblock_is_reserved(phys_addr_t addr)
1731 {
1732 	return memblock_search(&memblock.reserved, addr) != -1;
1733 }
1734 
1735 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1736 {
1737 	return memblock_search(&memblock.memory, addr) != -1;
1738 }
1739 
1740 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1741 {
1742 	int i = memblock_search(&memblock.memory, addr);
1743 
1744 	if (i == -1)
1745 		return false;
1746 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1747 }
1748 
1749 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1750 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1751 			 unsigned long *start_pfn, unsigned long *end_pfn)
1752 {
1753 	struct memblock_type *type = &memblock.memory;
1754 	int mid = memblock_search(type, PFN_PHYS(pfn));
1755 
1756 	if (mid == -1)
1757 		return -1;
1758 
1759 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1760 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1761 
1762 	return type->regions[mid].nid;
1763 }
1764 #endif
1765 
1766 /**
1767  * memblock_is_region_memory - check if a region is a subset of memory
1768  * @base: base of region to check
1769  * @size: size of region to check
1770  *
1771  * Check if the region [@base, @base + @size) is a subset of a memory block.
1772  *
1773  * Return:
1774  * 0 if false, non-zero if true
1775  */
1776 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1777 {
1778 	int idx = memblock_search(&memblock.memory, base);
1779 	phys_addr_t end = base + memblock_cap_size(base, &size);
1780 
1781 	if (idx == -1)
1782 		return false;
1783 	return (memblock.memory.regions[idx].base +
1784 		 memblock.memory.regions[idx].size) >= end;
1785 }
1786 
1787 /**
1788  * memblock_is_region_reserved - check if a region intersects reserved memory
1789  * @base: base of region to check
1790  * @size: size of region to check
1791  *
1792  * Check if the region [@base, @base + @size) intersects a reserved
1793  * memory block.
1794  *
1795  * Return:
1796  * True if they intersect, false if not.
1797  */
1798 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1799 {
1800 	memblock_cap_size(base, &size);
1801 	return memblock_overlaps_region(&memblock.reserved, base, size);
1802 }
1803 
1804 void __init_memblock memblock_trim_memory(phys_addr_t align)
1805 {
1806 	phys_addr_t start, end, orig_start, orig_end;
1807 	struct memblock_region *r;
1808 
1809 	for_each_memblock(memory, r) {
1810 		orig_start = r->base;
1811 		orig_end = r->base + r->size;
1812 		start = round_up(orig_start, align);
1813 		end = round_down(orig_end, align);
1814 
1815 		if (start == orig_start && end == orig_end)
1816 			continue;
1817 
1818 		if (start < end) {
1819 			r->base = start;
1820 			r->size = end - start;
1821 		} else {
1822 			memblock_remove_region(&memblock.memory,
1823 					       r - memblock.memory.regions);
1824 			r--;
1825 		}
1826 	}
1827 }
1828 
1829 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1830 {
1831 	memblock.current_limit = limit;
1832 }
1833 
1834 phys_addr_t __init_memblock memblock_get_current_limit(void)
1835 {
1836 	return memblock.current_limit;
1837 }
1838 
1839 static void __init_memblock memblock_dump(struct memblock_type *type)
1840 {
1841 	phys_addr_t base, end, size;
1842 	enum memblock_flags flags;
1843 	int idx;
1844 	struct memblock_region *rgn;
1845 
1846 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1847 
1848 	for_each_memblock_type(idx, type, rgn) {
1849 		char nid_buf[32] = "";
1850 
1851 		base = rgn->base;
1852 		size = rgn->size;
1853 		end = base + size - 1;
1854 		flags = rgn->flags;
1855 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1856 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1857 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1858 				 memblock_get_region_node(rgn));
1859 #endif
1860 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1861 			type->name, idx, &base, &end, &size, nid_buf, flags);
1862 	}
1863 }
1864 
1865 void __init_memblock __memblock_dump_all(void)
1866 {
1867 	pr_info("MEMBLOCK configuration:\n");
1868 	pr_info(" memory size = %pa reserved size = %pa\n",
1869 		&memblock.memory.total_size,
1870 		&memblock.reserved.total_size);
1871 
1872 	memblock_dump(&memblock.memory);
1873 	memblock_dump(&memblock.reserved);
1874 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1875 	memblock_dump(&memblock.physmem);
1876 #endif
1877 }
1878 
1879 void __init memblock_allow_resize(void)
1880 {
1881 	memblock_can_resize = 1;
1882 }
1883 
1884 static int __init early_memblock(char *p)
1885 {
1886 	if (p && strstr(p, "debug"))
1887 		memblock_debug = 1;
1888 	return 0;
1889 }
1890 early_param("memblock", early_memblock);
1891 
1892 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1893 {
1894 	int order;
1895 
1896 	while (start < end) {
1897 		order = min(MAX_ORDER - 1UL, __ffs(start));
1898 
1899 		while (start + (1UL << order) > end)
1900 			order--;
1901 
1902 		memblock_free_pages(pfn_to_page(start), start, order);
1903 
1904 		start += (1UL << order);
1905 	}
1906 }
1907 
1908 static unsigned long __init __free_memory_core(phys_addr_t start,
1909 				 phys_addr_t end)
1910 {
1911 	unsigned long start_pfn = PFN_UP(start);
1912 	unsigned long end_pfn = min_t(unsigned long,
1913 				      PFN_DOWN(end), max_low_pfn);
1914 
1915 	if (start_pfn >= end_pfn)
1916 		return 0;
1917 
1918 	__free_pages_memory(start_pfn, end_pfn);
1919 
1920 	return end_pfn - start_pfn;
1921 }
1922 
1923 static unsigned long __init free_low_memory_core_early(void)
1924 {
1925 	unsigned long count = 0;
1926 	phys_addr_t start, end;
1927 	u64 i;
1928 
1929 	memblock_clear_hotplug(0, -1);
1930 
1931 	for_each_reserved_mem_region(i, &start, &end)
1932 		reserve_bootmem_region(start, end);
1933 
1934 	/*
1935 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1936 	 *  because in some case like Node0 doesn't have RAM installed
1937 	 *  low ram will be on Node1
1938 	 */
1939 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1940 				NULL)
1941 		count += __free_memory_core(start, end);
1942 
1943 	return count;
1944 }
1945 
1946 static int reset_managed_pages_done __initdata;
1947 
1948 void reset_node_managed_pages(pg_data_t *pgdat)
1949 {
1950 	struct zone *z;
1951 
1952 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1953 		z->managed_pages = 0;
1954 }
1955 
1956 void __init reset_all_zones_managed_pages(void)
1957 {
1958 	struct pglist_data *pgdat;
1959 
1960 	if (reset_managed_pages_done)
1961 		return;
1962 
1963 	for_each_online_pgdat(pgdat)
1964 		reset_node_managed_pages(pgdat);
1965 
1966 	reset_managed_pages_done = 1;
1967 }
1968 
1969 /**
1970  * memblock_free_all - release free pages to the buddy allocator
1971  *
1972  * Return: the number of pages actually released.
1973  */
1974 unsigned long __init memblock_free_all(void)
1975 {
1976 	unsigned long pages;
1977 
1978 	reset_all_zones_managed_pages();
1979 
1980 	pages = free_low_memory_core_early();
1981 	totalram_pages += pages;
1982 
1983 	return pages;
1984 }
1985 
1986 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1987 
1988 static int memblock_debug_show(struct seq_file *m, void *private)
1989 {
1990 	struct memblock_type *type = m->private;
1991 	struct memblock_region *reg;
1992 	int i;
1993 	phys_addr_t end;
1994 
1995 	for (i = 0; i < type->cnt; i++) {
1996 		reg = &type->regions[i];
1997 		end = reg->base + reg->size - 1;
1998 
1999 		seq_printf(m, "%4d: ", i);
2000 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2001 	}
2002 	return 0;
2003 }
2004 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2005 
2006 static int __init memblock_init_debugfs(void)
2007 {
2008 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2009 	if (!root)
2010 		return -ENXIO;
2011 	debugfs_create_file("memory", 0444, root,
2012 			    &memblock.memory, &memblock_debug_fops);
2013 	debugfs_create_file("reserved", 0444, root,
2014 			    &memblock.reserved, &memblock_debug_fops);
2015 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2016 	debugfs_create_file("physmem", 0444, root,
2017 			    &memblock.physmem, &memblock_debug_fops);
2018 #endif
2019 
2020 	return 0;
2021 }
2022 __initcall(memblock_init_debugfs);
2023 
2024 #endif /* CONFIG_DEBUG_FS */
2025