xref: /openbmc/linux/mm/madvise.c (revision bbaf1ff0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 	case MADV_COLLAPSE:
63 		return 0;
64 	default:
65 		/* be safe, default to 1. list exceptions explicitly */
66 		return 1;
67 	}
68 }
69 
70 #ifdef CONFIG_ANON_VMA_NAME
71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 	struct anon_vma_name *anon_name;
74 	size_t count;
75 
76 	/* Add 1 for NUL terminator at the end of the anon_name->name */
77 	count = strlen(name) + 1;
78 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 	if (anon_name) {
80 		kref_init(&anon_name->kref);
81 		memcpy(anon_name->name, name, count);
82 	}
83 
84 	return anon_name;
85 }
86 
87 void anon_vma_name_free(struct kref *kref)
88 {
89 	struct anon_vma_name *anon_name =
90 			container_of(kref, struct anon_vma_name, kref);
91 	kfree(anon_name);
92 }
93 
94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 	mmap_assert_locked(vma->vm_mm);
97 
98 	return vma->anon_name;
99 }
100 
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103 				 struct anon_vma_name *anon_name)
104 {
105 	struct anon_vma_name *orig_name = anon_vma_name(vma);
106 
107 	if (!anon_name) {
108 		vma->anon_name = NULL;
109 		anon_vma_name_put(orig_name);
110 		return 0;
111 	}
112 
113 	if (anon_vma_name_eq(orig_name, anon_name))
114 		return 0;
115 
116 	vma->anon_name = anon_vma_name_reuse(anon_name);
117 	anon_vma_name_put(orig_name);
118 
119 	return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123 				 struct anon_vma_name *anon_name)
124 {
125 	if (anon_name)
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_lock held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138 			      struct vm_area_struct **prev, unsigned long start,
139 			      unsigned long end, unsigned long new_flags,
140 			      struct anon_vma_name *anon_name)
141 {
142 	struct mm_struct *mm = vma->vm_mm;
143 	int error;
144 	pgoff_t pgoff;
145 	VMA_ITERATOR(vmi, mm, start);
146 
147 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
148 		*prev = vma;
149 		return 0;
150 	}
151 
152 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
153 	*prev = vma_merge(&vmi, mm, *prev, start, end, new_flags,
154 			  vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
155 			  vma->vm_userfaultfd_ctx, anon_name);
156 	if (*prev) {
157 		vma = *prev;
158 		goto success;
159 	}
160 
161 	*prev = vma;
162 
163 	if (start != vma->vm_start) {
164 		error = split_vma(&vmi, vma, start, 1);
165 		if (error)
166 			return error;
167 	}
168 
169 	if (end != vma->vm_end) {
170 		error = split_vma(&vmi, vma, end, 0);
171 		if (error)
172 			return error;
173 	}
174 
175 success:
176 	/*
177 	 * vm_flags is protected by the mmap_lock held in write mode.
178 	 */
179 	vm_flags_reset(vma, new_flags);
180 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
181 		error = replace_anon_vma_name(vma, anon_name);
182 		if (error)
183 			return error;
184 	}
185 
186 	return 0;
187 }
188 
189 #ifdef CONFIG_SWAP
190 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
191 		unsigned long end, struct mm_walk *walk)
192 {
193 	struct vm_area_struct *vma = walk->private;
194 	struct swap_iocb *splug = NULL;
195 	pte_t *ptep = NULL;
196 	spinlock_t *ptl;
197 	unsigned long addr;
198 
199 	for (addr = start; addr < end; addr += PAGE_SIZE) {
200 		pte_t pte;
201 		swp_entry_t entry;
202 		struct page *page;
203 
204 		if (!ptep++) {
205 			ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
206 			if (!ptep)
207 				break;
208 		}
209 
210 		pte = ptep_get(ptep);
211 		if (!is_swap_pte(pte))
212 			continue;
213 		entry = pte_to_swp_entry(pte);
214 		if (unlikely(non_swap_entry(entry)))
215 			continue;
216 
217 		pte_unmap_unlock(ptep, ptl);
218 		ptep = NULL;
219 
220 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
221 					     vma, addr, false, &splug);
222 		if (page)
223 			put_page(page);
224 	}
225 
226 	if (ptep)
227 		pte_unmap_unlock(ptep, ptl);
228 	swap_read_unplug(splug);
229 	cond_resched();
230 
231 	return 0;
232 }
233 
234 static const struct mm_walk_ops swapin_walk_ops = {
235 	.pmd_entry		= swapin_walk_pmd_entry,
236 };
237 
238 static void shmem_swapin_range(struct vm_area_struct *vma,
239 		unsigned long start, unsigned long end,
240 		struct address_space *mapping)
241 {
242 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
243 	pgoff_t end_index = linear_page_index(vma, end) - 1;
244 	struct page *page;
245 	struct swap_iocb *splug = NULL;
246 
247 	rcu_read_lock();
248 	xas_for_each(&xas, page, end_index) {
249 		unsigned long addr;
250 		swp_entry_t entry;
251 
252 		if (!xa_is_value(page))
253 			continue;
254 		entry = radix_to_swp_entry(page);
255 		/* There might be swapin error entries in shmem mapping. */
256 		if (non_swap_entry(entry))
257 			continue;
258 
259 		addr = vma->vm_start +
260 			((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
261 		xas_pause(&xas);
262 		rcu_read_unlock();
263 
264 		page = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
265 					     vma, addr, false, &splug);
266 		if (page)
267 			put_page(page);
268 
269 		rcu_read_lock();
270 	}
271 	rcu_read_unlock();
272 	swap_read_unplug(splug);
273 }
274 #endif		/* CONFIG_SWAP */
275 
276 /*
277  * Schedule all required I/O operations.  Do not wait for completion.
278  */
279 static long madvise_willneed(struct vm_area_struct *vma,
280 			     struct vm_area_struct **prev,
281 			     unsigned long start, unsigned long end)
282 {
283 	struct mm_struct *mm = vma->vm_mm;
284 	struct file *file = vma->vm_file;
285 	loff_t offset;
286 
287 	*prev = vma;
288 #ifdef CONFIG_SWAP
289 	if (!file) {
290 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
291 		lru_add_drain(); /* Push any new pages onto the LRU now */
292 		return 0;
293 	}
294 
295 	if (shmem_mapping(file->f_mapping)) {
296 		shmem_swapin_range(vma, start, end, file->f_mapping);
297 		lru_add_drain(); /* Push any new pages onto the LRU now */
298 		return 0;
299 	}
300 #else
301 	if (!file)
302 		return -EBADF;
303 #endif
304 
305 	if (IS_DAX(file_inode(file))) {
306 		/* no bad return value, but ignore advice */
307 		return 0;
308 	}
309 
310 	/*
311 	 * Filesystem's fadvise may need to take various locks.  We need to
312 	 * explicitly grab a reference because the vma (and hence the
313 	 * vma's reference to the file) can go away as soon as we drop
314 	 * mmap_lock.
315 	 */
316 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
317 	get_file(file);
318 	offset = (loff_t)(start - vma->vm_start)
319 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
320 	mmap_read_unlock(mm);
321 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
322 	fput(file);
323 	mmap_read_lock(mm);
324 	return 0;
325 }
326 
327 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
328 {
329 	if (!vma->vm_file)
330 		return false;
331 	/*
332 	 * paging out pagecache only for non-anonymous mappings that correspond
333 	 * to the files the calling process could (if tried) open for writing;
334 	 * otherwise we'd be including shared non-exclusive mappings, which
335 	 * opens a side channel.
336 	 */
337 	return inode_owner_or_capable(&nop_mnt_idmap,
338 				      file_inode(vma->vm_file)) ||
339 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
340 }
341 
342 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
343 				unsigned long addr, unsigned long end,
344 				struct mm_walk *walk)
345 {
346 	struct madvise_walk_private *private = walk->private;
347 	struct mmu_gather *tlb = private->tlb;
348 	bool pageout = private->pageout;
349 	struct mm_struct *mm = tlb->mm;
350 	struct vm_area_struct *vma = walk->vma;
351 	pte_t *start_pte, *pte, ptent;
352 	spinlock_t *ptl;
353 	struct folio *folio = NULL;
354 	LIST_HEAD(folio_list);
355 	bool pageout_anon_only_filter;
356 
357 	if (fatal_signal_pending(current))
358 		return -EINTR;
359 
360 	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
361 					!can_do_file_pageout(vma);
362 
363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
364 	if (pmd_trans_huge(*pmd)) {
365 		pmd_t orig_pmd;
366 		unsigned long next = pmd_addr_end(addr, end);
367 
368 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
369 		ptl = pmd_trans_huge_lock(pmd, vma);
370 		if (!ptl)
371 			return 0;
372 
373 		orig_pmd = *pmd;
374 		if (is_huge_zero_pmd(orig_pmd))
375 			goto huge_unlock;
376 
377 		if (unlikely(!pmd_present(orig_pmd))) {
378 			VM_BUG_ON(thp_migration_supported() &&
379 					!is_pmd_migration_entry(orig_pmd));
380 			goto huge_unlock;
381 		}
382 
383 		folio = pfn_folio(pmd_pfn(orig_pmd));
384 
385 		/* Do not interfere with other mappings of this folio */
386 		if (folio_mapcount(folio) != 1)
387 			goto huge_unlock;
388 
389 		if (pageout_anon_only_filter && !folio_test_anon(folio))
390 			goto huge_unlock;
391 
392 		if (next - addr != HPAGE_PMD_SIZE) {
393 			int err;
394 
395 			folio_get(folio);
396 			spin_unlock(ptl);
397 			folio_lock(folio);
398 			err = split_folio(folio);
399 			folio_unlock(folio);
400 			folio_put(folio);
401 			if (!err)
402 				goto regular_folio;
403 			return 0;
404 		}
405 
406 		if (pmd_young(orig_pmd)) {
407 			pmdp_invalidate(vma, addr, pmd);
408 			orig_pmd = pmd_mkold(orig_pmd);
409 
410 			set_pmd_at(mm, addr, pmd, orig_pmd);
411 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
412 		}
413 
414 		folio_clear_referenced(folio);
415 		folio_test_clear_young(folio);
416 		if (pageout) {
417 			if (folio_isolate_lru(folio)) {
418 				if (folio_test_unevictable(folio))
419 					folio_putback_lru(folio);
420 				else
421 					list_add(&folio->lru, &folio_list);
422 			}
423 		} else
424 			folio_deactivate(folio);
425 huge_unlock:
426 		spin_unlock(ptl);
427 		if (pageout)
428 			reclaim_pages(&folio_list);
429 		return 0;
430 	}
431 
432 regular_folio:
433 #endif
434 	tlb_change_page_size(tlb, PAGE_SIZE);
435 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
436 	if (!start_pte)
437 		return 0;
438 	flush_tlb_batched_pending(mm);
439 	arch_enter_lazy_mmu_mode();
440 	for (; addr < end; pte++, addr += PAGE_SIZE) {
441 		ptent = ptep_get(pte);
442 
443 		if (pte_none(ptent))
444 			continue;
445 
446 		if (!pte_present(ptent))
447 			continue;
448 
449 		folio = vm_normal_folio(vma, addr, ptent);
450 		if (!folio || folio_is_zone_device(folio))
451 			continue;
452 
453 		/*
454 		 * Creating a THP page is expensive so split it only if we
455 		 * are sure it's worth. Split it if we are only owner.
456 		 */
457 		if (folio_test_large(folio)) {
458 			int err;
459 
460 			if (folio_mapcount(folio) != 1)
461 				break;
462 			if (pageout_anon_only_filter && !folio_test_anon(folio))
463 				break;
464 			if (!folio_trylock(folio))
465 				break;
466 			folio_get(folio);
467 			arch_leave_lazy_mmu_mode();
468 			pte_unmap_unlock(start_pte, ptl);
469 			start_pte = NULL;
470 			err = split_folio(folio);
471 			folio_unlock(folio);
472 			folio_put(folio);
473 			if (err)
474 				break;
475 			start_pte = pte =
476 				pte_offset_map_lock(mm, pmd, addr, &ptl);
477 			if (!start_pte)
478 				break;
479 			arch_enter_lazy_mmu_mode();
480 			pte--;
481 			addr -= PAGE_SIZE;
482 			continue;
483 		}
484 
485 		/*
486 		 * Do not interfere with other mappings of this folio and
487 		 * non-LRU folio.
488 		 */
489 		if (!folio_test_lru(folio) || folio_mapcount(folio) != 1)
490 			continue;
491 
492 		if (pageout_anon_only_filter && !folio_test_anon(folio))
493 			continue;
494 
495 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
496 
497 		if (pte_young(ptent)) {
498 			ptent = ptep_get_and_clear_full(mm, addr, pte,
499 							tlb->fullmm);
500 			ptent = pte_mkold(ptent);
501 			set_pte_at(mm, addr, pte, ptent);
502 			tlb_remove_tlb_entry(tlb, pte, addr);
503 		}
504 
505 		/*
506 		 * We are deactivating a folio for accelerating reclaiming.
507 		 * VM couldn't reclaim the folio unless we clear PG_young.
508 		 * As a side effect, it makes confuse idle-page tracking
509 		 * because they will miss recent referenced history.
510 		 */
511 		folio_clear_referenced(folio);
512 		folio_test_clear_young(folio);
513 		if (pageout) {
514 			if (folio_isolate_lru(folio)) {
515 				if (folio_test_unevictable(folio))
516 					folio_putback_lru(folio);
517 				else
518 					list_add(&folio->lru, &folio_list);
519 			}
520 		} else
521 			folio_deactivate(folio);
522 	}
523 
524 	if (start_pte) {
525 		arch_leave_lazy_mmu_mode();
526 		pte_unmap_unlock(start_pte, ptl);
527 	}
528 	if (pageout)
529 		reclaim_pages(&folio_list);
530 	cond_resched();
531 
532 	return 0;
533 }
534 
535 static const struct mm_walk_ops cold_walk_ops = {
536 	.pmd_entry = madvise_cold_or_pageout_pte_range,
537 };
538 
539 static void madvise_cold_page_range(struct mmu_gather *tlb,
540 			     struct vm_area_struct *vma,
541 			     unsigned long addr, unsigned long end)
542 {
543 	struct madvise_walk_private walk_private = {
544 		.pageout = false,
545 		.tlb = tlb,
546 	};
547 
548 	tlb_start_vma(tlb, vma);
549 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
550 	tlb_end_vma(tlb, vma);
551 }
552 
553 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
554 {
555 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
556 }
557 
558 static long madvise_cold(struct vm_area_struct *vma,
559 			struct vm_area_struct **prev,
560 			unsigned long start_addr, unsigned long end_addr)
561 {
562 	struct mm_struct *mm = vma->vm_mm;
563 	struct mmu_gather tlb;
564 
565 	*prev = vma;
566 	if (!can_madv_lru_vma(vma))
567 		return -EINVAL;
568 
569 	lru_add_drain();
570 	tlb_gather_mmu(&tlb, mm);
571 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
572 	tlb_finish_mmu(&tlb);
573 
574 	return 0;
575 }
576 
577 static void madvise_pageout_page_range(struct mmu_gather *tlb,
578 			     struct vm_area_struct *vma,
579 			     unsigned long addr, unsigned long end)
580 {
581 	struct madvise_walk_private walk_private = {
582 		.pageout = true,
583 		.tlb = tlb,
584 	};
585 
586 	tlb_start_vma(tlb, vma);
587 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
588 	tlb_end_vma(tlb, vma);
589 }
590 
591 static long madvise_pageout(struct vm_area_struct *vma,
592 			struct vm_area_struct **prev,
593 			unsigned long start_addr, unsigned long end_addr)
594 {
595 	struct mm_struct *mm = vma->vm_mm;
596 	struct mmu_gather tlb;
597 
598 	*prev = vma;
599 	if (!can_madv_lru_vma(vma))
600 		return -EINVAL;
601 
602 	/*
603 	 * If the VMA belongs to a private file mapping, there can be private
604 	 * dirty pages which can be paged out if even this process is neither
605 	 * owner nor write capable of the file. We allow private file mappings
606 	 * further to pageout dirty anon pages.
607 	 */
608 	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
609 				(vma->vm_flags & VM_MAYSHARE)))
610 		return 0;
611 
612 	lru_add_drain();
613 	tlb_gather_mmu(&tlb, mm);
614 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
615 	tlb_finish_mmu(&tlb);
616 
617 	return 0;
618 }
619 
620 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
621 				unsigned long end, struct mm_walk *walk)
622 
623 {
624 	struct mmu_gather *tlb = walk->private;
625 	struct mm_struct *mm = tlb->mm;
626 	struct vm_area_struct *vma = walk->vma;
627 	spinlock_t *ptl;
628 	pte_t *start_pte, *pte, ptent;
629 	struct folio *folio;
630 	int nr_swap = 0;
631 	unsigned long next;
632 
633 	next = pmd_addr_end(addr, end);
634 	if (pmd_trans_huge(*pmd))
635 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
636 			return 0;
637 
638 	tlb_change_page_size(tlb, PAGE_SIZE);
639 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
640 	if (!start_pte)
641 		return 0;
642 	flush_tlb_batched_pending(mm);
643 	arch_enter_lazy_mmu_mode();
644 	for (; addr != end; pte++, addr += PAGE_SIZE) {
645 		ptent = ptep_get(pte);
646 
647 		if (pte_none(ptent))
648 			continue;
649 		/*
650 		 * If the pte has swp_entry, just clear page table to
651 		 * prevent swap-in which is more expensive rather than
652 		 * (page allocation + zeroing).
653 		 */
654 		if (!pte_present(ptent)) {
655 			swp_entry_t entry;
656 
657 			entry = pte_to_swp_entry(ptent);
658 			if (!non_swap_entry(entry)) {
659 				nr_swap--;
660 				free_swap_and_cache(entry);
661 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
662 			} else if (is_hwpoison_entry(entry) ||
663 				   is_swapin_error_entry(entry)) {
664 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
665 			}
666 			continue;
667 		}
668 
669 		folio = vm_normal_folio(vma, addr, ptent);
670 		if (!folio || folio_is_zone_device(folio))
671 			continue;
672 
673 		/*
674 		 * If pmd isn't transhuge but the folio is large and
675 		 * is owned by only this process, split it and
676 		 * deactivate all pages.
677 		 */
678 		if (folio_test_large(folio)) {
679 			int err;
680 
681 			if (folio_mapcount(folio) != 1)
682 				break;
683 			if (!folio_trylock(folio))
684 				break;
685 			folio_get(folio);
686 			arch_leave_lazy_mmu_mode();
687 			pte_unmap_unlock(start_pte, ptl);
688 			start_pte = NULL;
689 			err = split_folio(folio);
690 			folio_unlock(folio);
691 			folio_put(folio);
692 			if (err)
693 				break;
694 			start_pte = pte =
695 				pte_offset_map_lock(mm, pmd, addr, &ptl);
696 			if (!start_pte)
697 				break;
698 			arch_enter_lazy_mmu_mode();
699 			pte--;
700 			addr -= PAGE_SIZE;
701 			continue;
702 		}
703 
704 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
705 			if (!folio_trylock(folio))
706 				continue;
707 			/*
708 			 * If folio is shared with others, we mustn't clear
709 			 * the folio's dirty flag.
710 			 */
711 			if (folio_mapcount(folio) != 1) {
712 				folio_unlock(folio);
713 				continue;
714 			}
715 
716 			if (folio_test_swapcache(folio) &&
717 			    !folio_free_swap(folio)) {
718 				folio_unlock(folio);
719 				continue;
720 			}
721 
722 			folio_clear_dirty(folio);
723 			folio_unlock(folio);
724 		}
725 
726 		if (pte_young(ptent) || pte_dirty(ptent)) {
727 			/*
728 			 * Some of architecture(ex, PPC) don't update TLB
729 			 * with set_pte_at and tlb_remove_tlb_entry so for
730 			 * the portability, remap the pte with old|clean
731 			 * after pte clearing.
732 			 */
733 			ptent = ptep_get_and_clear_full(mm, addr, pte,
734 							tlb->fullmm);
735 
736 			ptent = pte_mkold(ptent);
737 			ptent = pte_mkclean(ptent);
738 			set_pte_at(mm, addr, pte, ptent);
739 			tlb_remove_tlb_entry(tlb, pte, addr);
740 		}
741 		folio_mark_lazyfree(folio);
742 	}
743 
744 	if (nr_swap) {
745 		if (current->mm == mm)
746 			sync_mm_rss(mm);
747 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
748 	}
749 	if (start_pte) {
750 		arch_leave_lazy_mmu_mode();
751 		pte_unmap_unlock(start_pte, ptl);
752 	}
753 	cond_resched();
754 
755 	return 0;
756 }
757 
758 static const struct mm_walk_ops madvise_free_walk_ops = {
759 	.pmd_entry		= madvise_free_pte_range,
760 };
761 
762 static int madvise_free_single_vma(struct vm_area_struct *vma,
763 			unsigned long start_addr, unsigned long end_addr)
764 {
765 	struct mm_struct *mm = vma->vm_mm;
766 	struct mmu_notifier_range range;
767 	struct mmu_gather tlb;
768 
769 	/* MADV_FREE works for only anon vma at the moment */
770 	if (!vma_is_anonymous(vma))
771 		return -EINVAL;
772 
773 	range.start = max(vma->vm_start, start_addr);
774 	if (range.start >= vma->vm_end)
775 		return -EINVAL;
776 	range.end = min(vma->vm_end, end_addr);
777 	if (range.end <= vma->vm_start)
778 		return -EINVAL;
779 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
780 				range.start, range.end);
781 
782 	lru_add_drain();
783 	tlb_gather_mmu(&tlb, mm);
784 	update_hiwater_rss(mm);
785 
786 	mmu_notifier_invalidate_range_start(&range);
787 	tlb_start_vma(&tlb, vma);
788 	walk_page_range(vma->vm_mm, range.start, range.end,
789 			&madvise_free_walk_ops, &tlb);
790 	tlb_end_vma(&tlb, vma);
791 	mmu_notifier_invalidate_range_end(&range);
792 	tlb_finish_mmu(&tlb);
793 
794 	return 0;
795 }
796 
797 /*
798  * Application no longer needs these pages.  If the pages are dirty,
799  * it's OK to just throw them away.  The app will be more careful about
800  * data it wants to keep.  Be sure to free swap resources too.  The
801  * zap_page_range_single call sets things up for shrink_active_list to actually
802  * free these pages later if no one else has touched them in the meantime,
803  * although we could add these pages to a global reuse list for
804  * shrink_active_list to pick up before reclaiming other pages.
805  *
806  * NB: This interface discards data rather than pushes it out to swap,
807  * as some implementations do.  This has performance implications for
808  * applications like large transactional databases which want to discard
809  * pages in anonymous maps after committing to backing store the data
810  * that was kept in them.  There is no reason to write this data out to
811  * the swap area if the application is discarding it.
812  *
813  * An interface that causes the system to free clean pages and flush
814  * dirty pages is already available as msync(MS_INVALIDATE).
815  */
816 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
817 					unsigned long start, unsigned long end)
818 {
819 	zap_page_range_single(vma, start, end - start, NULL);
820 	return 0;
821 }
822 
823 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
824 					    unsigned long start,
825 					    unsigned long *end,
826 					    int behavior)
827 {
828 	if (!is_vm_hugetlb_page(vma)) {
829 		unsigned int forbidden = VM_PFNMAP;
830 
831 		if (behavior != MADV_DONTNEED_LOCKED)
832 			forbidden |= VM_LOCKED;
833 
834 		return !(vma->vm_flags & forbidden);
835 	}
836 
837 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
838 		return false;
839 	if (start & ~huge_page_mask(hstate_vma(vma)))
840 		return false;
841 
842 	/*
843 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
844 	 * boundaries, and may be unaware that this VMA uses huge pages.
845 	 * Avoid unexpected data loss by rounding down the number of
846 	 * huge pages freed.
847 	 */
848 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
849 
850 	return true;
851 }
852 
853 static long madvise_dontneed_free(struct vm_area_struct *vma,
854 				  struct vm_area_struct **prev,
855 				  unsigned long start, unsigned long end,
856 				  int behavior)
857 {
858 	struct mm_struct *mm = vma->vm_mm;
859 
860 	*prev = vma;
861 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
862 		return -EINVAL;
863 
864 	if (start == end)
865 		return 0;
866 
867 	if (!userfaultfd_remove(vma, start, end)) {
868 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
869 
870 		mmap_read_lock(mm);
871 		vma = vma_lookup(mm, start);
872 		if (!vma)
873 			return -ENOMEM;
874 		/*
875 		 * Potential end adjustment for hugetlb vma is OK as
876 		 * the check below keeps end within vma.
877 		 */
878 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
879 						     behavior))
880 			return -EINVAL;
881 		if (end > vma->vm_end) {
882 			/*
883 			 * Don't fail if end > vma->vm_end. If the old
884 			 * vma was split while the mmap_lock was
885 			 * released the effect of the concurrent
886 			 * operation may not cause madvise() to
887 			 * have an undefined result. There may be an
888 			 * adjacent next vma that we'll walk
889 			 * next. userfaultfd_remove() will generate an
890 			 * UFFD_EVENT_REMOVE repetition on the
891 			 * end-vma->vm_end range, but the manager can
892 			 * handle a repetition fine.
893 			 */
894 			end = vma->vm_end;
895 		}
896 		VM_WARN_ON(start >= end);
897 	}
898 
899 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
900 		return madvise_dontneed_single_vma(vma, start, end);
901 	else if (behavior == MADV_FREE)
902 		return madvise_free_single_vma(vma, start, end);
903 	else
904 		return -EINVAL;
905 }
906 
907 static long madvise_populate(struct vm_area_struct *vma,
908 			     struct vm_area_struct **prev,
909 			     unsigned long start, unsigned long end,
910 			     int behavior)
911 {
912 	const bool write = behavior == MADV_POPULATE_WRITE;
913 	struct mm_struct *mm = vma->vm_mm;
914 	unsigned long tmp_end;
915 	int locked = 1;
916 	long pages;
917 
918 	*prev = vma;
919 
920 	while (start < end) {
921 		/*
922 		 * We might have temporarily dropped the lock. For example,
923 		 * our VMA might have been split.
924 		 */
925 		if (!vma || start >= vma->vm_end) {
926 			vma = vma_lookup(mm, start);
927 			if (!vma)
928 				return -ENOMEM;
929 		}
930 
931 		tmp_end = min_t(unsigned long, end, vma->vm_end);
932 		/* Populate (prefault) page tables readable/writable. */
933 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
934 					       &locked);
935 		if (!locked) {
936 			mmap_read_lock(mm);
937 			locked = 1;
938 			*prev = NULL;
939 			vma = NULL;
940 		}
941 		if (pages < 0) {
942 			switch (pages) {
943 			case -EINTR:
944 				return -EINTR;
945 			case -EINVAL: /* Incompatible mappings / permissions. */
946 				return -EINVAL;
947 			case -EHWPOISON:
948 				return -EHWPOISON;
949 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
950 				return -EFAULT;
951 			default:
952 				pr_warn_once("%s: unhandled return value: %ld\n",
953 					     __func__, pages);
954 				fallthrough;
955 			case -ENOMEM:
956 				return -ENOMEM;
957 			}
958 		}
959 		start += pages * PAGE_SIZE;
960 	}
961 	return 0;
962 }
963 
964 /*
965  * Application wants to free up the pages and associated backing store.
966  * This is effectively punching a hole into the middle of a file.
967  */
968 static long madvise_remove(struct vm_area_struct *vma,
969 				struct vm_area_struct **prev,
970 				unsigned long start, unsigned long end)
971 {
972 	loff_t offset;
973 	int error;
974 	struct file *f;
975 	struct mm_struct *mm = vma->vm_mm;
976 
977 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
978 
979 	if (vma->vm_flags & VM_LOCKED)
980 		return -EINVAL;
981 
982 	f = vma->vm_file;
983 
984 	if (!f || !f->f_mapping || !f->f_mapping->host) {
985 			return -EINVAL;
986 	}
987 
988 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
989 		return -EACCES;
990 
991 	offset = (loff_t)(start - vma->vm_start)
992 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
993 
994 	/*
995 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
996 	 * explicitly grab a reference because the vma (and hence the
997 	 * vma's reference to the file) can go away as soon as we drop
998 	 * mmap_lock.
999 	 */
1000 	get_file(f);
1001 	if (userfaultfd_remove(vma, start, end)) {
1002 		/* mmap_lock was not released by userfaultfd_remove() */
1003 		mmap_read_unlock(mm);
1004 	}
1005 	error = vfs_fallocate(f,
1006 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1007 				offset, end - start);
1008 	fput(f);
1009 	mmap_read_lock(mm);
1010 	return error;
1011 }
1012 
1013 /*
1014  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1015  * will handle splitting a vm area into separate areas, each area with its own
1016  * behavior.
1017  */
1018 static int madvise_vma_behavior(struct vm_area_struct *vma,
1019 				struct vm_area_struct **prev,
1020 				unsigned long start, unsigned long end,
1021 				unsigned long behavior)
1022 {
1023 	int error;
1024 	struct anon_vma_name *anon_name;
1025 	unsigned long new_flags = vma->vm_flags;
1026 
1027 	switch (behavior) {
1028 	case MADV_REMOVE:
1029 		return madvise_remove(vma, prev, start, end);
1030 	case MADV_WILLNEED:
1031 		return madvise_willneed(vma, prev, start, end);
1032 	case MADV_COLD:
1033 		return madvise_cold(vma, prev, start, end);
1034 	case MADV_PAGEOUT:
1035 		return madvise_pageout(vma, prev, start, end);
1036 	case MADV_FREE:
1037 	case MADV_DONTNEED:
1038 	case MADV_DONTNEED_LOCKED:
1039 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1040 	case MADV_POPULATE_READ:
1041 	case MADV_POPULATE_WRITE:
1042 		return madvise_populate(vma, prev, start, end, behavior);
1043 	case MADV_NORMAL:
1044 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1045 		break;
1046 	case MADV_SEQUENTIAL:
1047 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1048 		break;
1049 	case MADV_RANDOM:
1050 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1051 		break;
1052 	case MADV_DONTFORK:
1053 		new_flags |= VM_DONTCOPY;
1054 		break;
1055 	case MADV_DOFORK:
1056 		if (vma->vm_flags & VM_IO)
1057 			return -EINVAL;
1058 		new_flags &= ~VM_DONTCOPY;
1059 		break;
1060 	case MADV_WIPEONFORK:
1061 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1062 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1063 			return -EINVAL;
1064 		new_flags |= VM_WIPEONFORK;
1065 		break;
1066 	case MADV_KEEPONFORK:
1067 		new_flags &= ~VM_WIPEONFORK;
1068 		break;
1069 	case MADV_DONTDUMP:
1070 		new_flags |= VM_DONTDUMP;
1071 		break;
1072 	case MADV_DODUMP:
1073 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1074 			return -EINVAL;
1075 		new_flags &= ~VM_DONTDUMP;
1076 		break;
1077 	case MADV_MERGEABLE:
1078 	case MADV_UNMERGEABLE:
1079 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1080 		if (error)
1081 			goto out;
1082 		break;
1083 	case MADV_HUGEPAGE:
1084 	case MADV_NOHUGEPAGE:
1085 		error = hugepage_madvise(vma, &new_flags, behavior);
1086 		if (error)
1087 			goto out;
1088 		break;
1089 	case MADV_COLLAPSE:
1090 		return madvise_collapse(vma, prev, start, end);
1091 	}
1092 
1093 	anon_name = anon_vma_name(vma);
1094 	anon_vma_name_get(anon_name);
1095 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1096 				   anon_name);
1097 	anon_vma_name_put(anon_name);
1098 
1099 out:
1100 	/*
1101 	 * madvise() returns EAGAIN if kernel resources, such as
1102 	 * slab, are temporarily unavailable.
1103 	 */
1104 	if (error == -ENOMEM)
1105 		error = -EAGAIN;
1106 	return error;
1107 }
1108 
1109 #ifdef CONFIG_MEMORY_FAILURE
1110 /*
1111  * Error injection support for memory error handling.
1112  */
1113 static int madvise_inject_error(int behavior,
1114 		unsigned long start, unsigned long end)
1115 {
1116 	unsigned long size;
1117 
1118 	if (!capable(CAP_SYS_ADMIN))
1119 		return -EPERM;
1120 
1121 
1122 	for (; start < end; start += size) {
1123 		unsigned long pfn;
1124 		struct page *page;
1125 		int ret;
1126 
1127 		ret = get_user_pages_fast(start, 1, 0, &page);
1128 		if (ret != 1)
1129 			return ret;
1130 		pfn = page_to_pfn(page);
1131 
1132 		/*
1133 		 * When soft offlining hugepages, after migrating the page
1134 		 * we dissolve it, therefore in the second loop "page" will
1135 		 * no longer be a compound page.
1136 		 */
1137 		size = page_size(compound_head(page));
1138 
1139 		if (behavior == MADV_SOFT_OFFLINE) {
1140 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1141 				 pfn, start);
1142 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1143 		} else {
1144 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1145 				 pfn, start);
1146 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1147 			if (ret == -EOPNOTSUPP)
1148 				ret = 0;
1149 		}
1150 
1151 		if (ret)
1152 			return ret;
1153 	}
1154 
1155 	return 0;
1156 }
1157 #endif
1158 
1159 static bool
1160 madvise_behavior_valid(int behavior)
1161 {
1162 	switch (behavior) {
1163 	case MADV_DOFORK:
1164 	case MADV_DONTFORK:
1165 	case MADV_NORMAL:
1166 	case MADV_SEQUENTIAL:
1167 	case MADV_RANDOM:
1168 	case MADV_REMOVE:
1169 	case MADV_WILLNEED:
1170 	case MADV_DONTNEED:
1171 	case MADV_DONTNEED_LOCKED:
1172 	case MADV_FREE:
1173 	case MADV_COLD:
1174 	case MADV_PAGEOUT:
1175 	case MADV_POPULATE_READ:
1176 	case MADV_POPULATE_WRITE:
1177 #ifdef CONFIG_KSM
1178 	case MADV_MERGEABLE:
1179 	case MADV_UNMERGEABLE:
1180 #endif
1181 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1182 	case MADV_HUGEPAGE:
1183 	case MADV_NOHUGEPAGE:
1184 	case MADV_COLLAPSE:
1185 #endif
1186 	case MADV_DONTDUMP:
1187 	case MADV_DODUMP:
1188 	case MADV_WIPEONFORK:
1189 	case MADV_KEEPONFORK:
1190 #ifdef CONFIG_MEMORY_FAILURE
1191 	case MADV_SOFT_OFFLINE:
1192 	case MADV_HWPOISON:
1193 #endif
1194 		return true;
1195 
1196 	default:
1197 		return false;
1198 	}
1199 }
1200 
1201 static bool process_madvise_behavior_valid(int behavior)
1202 {
1203 	switch (behavior) {
1204 	case MADV_COLD:
1205 	case MADV_PAGEOUT:
1206 	case MADV_WILLNEED:
1207 	case MADV_COLLAPSE:
1208 		return true;
1209 	default:
1210 		return false;
1211 	}
1212 }
1213 
1214 /*
1215  * Walk the vmas in range [start,end), and call the visit function on each one.
1216  * The visit function will get start and end parameters that cover the overlap
1217  * between the current vma and the original range.  Any unmapped regions in the
1218  * original range will result in this function returning -ENOMEM while still
1219  * calling the visit function on all of the existing vmas in the range.
1220  * Must be called with the mmap_lock held for reading or writing.
1221  */
1222 static
1223 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1224 		      unsigned long end, unsigned long arg,
1225 		      int (*visit)(struct vm_area_struct *vma,
1226 				   struct vm_area_struct **prev, unsigned long start,
1227 				   unsigned long end, unsigned long arg))
1228 {
1229 	struct vm_area_struct *vma;
1230 	struct vm_area_struct *prev;
1231 	unsigned long tmp;
1232 	int unmapped_error = 0;
1233 
1234 	/*
1235 	 * If the interval [start,end) covers some unmapped address
1236 	 * ranges, just ignore them, but return -ENOMEM at the end.
1237 	 * - different from the way of handling in mlock etc.
1238 	 */
1239 	vma = find_vma_prev(mm, start, &prev);
1240 	if (vma && start > vma->vm_start)
1241 		prev = vma;
1242 
1243 	for (;;) {
1244 		int error;
1245 
1246 		/* Still start < end. */
1247 		if (!vma)
1248 			return -ENOMEM;
1249 
1250 		/* Here start < (end|vma->vm_end). */
1251 		if (start < vma->vm_start) {
1252 			unmapped_error = -ENOMEM;
1253 			start = vma->vm_start;
1254 			if (start >= end)
1255 				break;
1256 		}
1257 
1258 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1259 		tmp = vma->vm_end;
1260 		if (end < tmp)
1261 			tmp = end;
1262 
1263 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1264 		error = visit(vma, &prev, start, tmp, arg);
1265 		if (error)
1266 			return error;
1267 		start = tmp;
1268 		if (prev && start < prev->vm_end)
1269 			start = prev->vm_end;
1270 		if (start >= end)
1271 			break;
1272 		if (prev)
1273 			vma = find_vma(mm, prev->vm_end);
1274 		else	/* madvise_remove dropped mmap_lock */
1275 			vma = find_vma(mm, start);
1276 	}
1277 
1278 	return unmapped_error;
1279 }
1280 
1281 #ifdef CONFIG_ANON_VMA_NAME
1282 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1283 				 struct vm_area_struct **prev,
1284 				 unsigned long start, unsigned long end,
1285 				 unsigned long anon_name)
1286 {
1287 	int error;
1288 
1289 	/* Only anonymous mappings can be named */
1290 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1291 		return -EBADF;
1292 
1293 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1294 				   (struct anon_vma_name *)anon_name);
1295 
1296 	/*
1297 	 * madvise() returns EAGAIN if kernel resources, such as
1298 	 * slab, are temporarily unavailable.
1299 	 */
1300 	if (error == -ENOMEM)
1301 		error = -EAGAIN;
1302 	return error;
1303 }
1304 
1305 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1306 			  unsigned long len_in, struct anon_vma_name *anon_name)
1307 {
1308 	unsigned long end;
1309 	unsigned long len;
1310 
1311 	if (start & ~PAGE_MASK)
1312 		return -EINVAL;
1313 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1314 
1315 	/* Check to see whether len was rounded up from small -ve to zero */
1316 	if (len_in && !len)
1317 		return -EINVAL;
1318 
1319 	end = start + len;
1320 	if (end < start)
1321 		return -EINVAL;
1322 
1323 	if (end == start)
1324 		return 0;
1325 
1326 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1327 				 madvise_vma_anon_name);
1328 }
1329 #endif /* CONFIG_ANON_VMA_NAME */
1330 /*
1331  * The madvise(2) system call.
1332  *
1333  * Applications can use madvise() to advise the kernel how it should
1334  * handle paging I/O in this VM area.  The idea is to help the kernel
1335  * use appropriate read-ahead and caching techniques.  The information
1336  * provided is advisory only, and can be safely disregarded by the
1337  * kernel without affecting the correct operation of the application.
1338  *
1339  * behavior values:
1340  *  MADV_NORMAL - the default behavior is to read clusters.  This
1341  *		results in some read-ahead and read-behind.
1342  *  MADV_RANDOM - the system should read the minimum amount of data
1343  *		on any access, since it is unlikely that the appli-
1344  *		cation will need more than what it asks for.
1345  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1346  *		once, so they can be aggressively read ahead, and
1347  *		can be freed soon after they are accessed.
1348  *  MADV_WILLNEED - the application is notifying the system to read
1349  *		some pages ahead.
1350  *  MADV_DONTNEED - the application is finished with the given range,
1351  *		so the kernel can free resources associated with it.
1352  *  MADV_FREE - the application marks pages in the given range as lazy free,
1353  *		where actual purges are postponed until memory pressure happens.
1354  *  MADV_REMOVE - the application wants to free up the given range of
1355  *		pages and associated backing store.
1356  *  MADV_DONTFORK - omit this area from child's address space when forking:
1357  *		typically, to avoid COWing pages pinned by get_user_pages().
1358  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1359  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1360  *              range after a fork.
1361  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1362  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1363  *		were corrupted by unrecoverable hardware memory failure.
1364  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1365  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1366  *		this area with pages of identical content from other such areas.
1367  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1368  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1369  *		huge pages in the future. Existing pages might be coalesced and
1370  *		new pages might be allocated as THP.
1371  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1372  *		transparent huge pages so the existing pages will not be
1373  *		coalesced into THP and new pages will not be allocated as THP.
1374  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1375  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1376  *		from being included in its core dump.
1377  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1378  *  MADV_COLD - the application is not expected to use this memory soon,
1379  *		deactivate pages in this range so that they can be reclaimed
1380  *		easily if memory pressure happens.
1381  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1382  *		page out the pages in this range immediately.
1383  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1384  *		triggering read faults if required
1385  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1386  *		triggering write faults if required
1387  *
1388  * return values:
1389  *  zero    - success
1390  *  -EINVAL - start + len < 0, start is not page-aligned,
1391  *		"behavior" is not a valid value, or application
1392  *		is attempting to release locked or shared pages,
1393  *		or the specified address range includes file, Huge TLB,
1394  *		MAP_SHARED or VMPFNMAP range.
1395  *  -ENOMEM - addresses in the specified range are not currently
1396  *		mapped, or are outside the AS of the process.
1397  *  -EIO    - an I/O error occurred while paging in data.
1398  *  -EBADF  - map exists, but area maps something that isn't a file.
1399  *  -EAGAIN - a kernel resource was temporarily unavailable.
1400  */
1401 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1402 {
1403 	unsigned long end;
1404 	int error;
1405 	int write;
1406 	size_t len;
1407 	struct blk_plug plug;
1408 
1409 	if (!madvise_behavior_valid(behavior))
1410 		return -EINVAL;
1411 
1412 	if (!PAGE_ALIGNED(start))
1413 		return -EINVAL;
1414 	len = PAGE_ALIGN(len_in);
1415 
1416 	/* Check to see whether len was rounded up from small -ve to zero */
1417 	if (len_in && !len)
1418 		return -EINVAL;
1419 
1420 	end = start + len;
1421 	if (end < start)
1422 		return -EINVAL;
1423 
1424 	if (end == start)
1425 		return 0;
1426 
1427 #ifdef CONFIG_MEMORY_FAILURE
1428 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1429 		return madvise_inject_error(behavior, start, start + len_in);
1430 #endif
1431 
1432 	write = madvise_need_mmap_write(behavior);
1433 	if (write) {
1434 		if (mmap_write_lock_killable(mm))
1435 			return -EINTR;
1436 	} else {
1437 		mmap_read_lock(mm);
1438 	}
1439 
1440 	start = untagged_addr_remote(mm, start);
1441 	end = start + len;
1442 
1443 	blk_start_plug(&plug);
1444 	error = madvise_walk_vmas(mm, start, end, behavior,
1445 			madvise_vma_behavior);
1446 	blk_finish_plug(&plug);
1447 	if (write)
1448 		mmap_write_unlock(mm);
1449 	else
1450 		mmap_read_unlock(mm);
1451 
1452 	return error;
1453 }
1454 
1455 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1456 {
1457 	return do_madvise(current->mm, start, len_in, behavior);
1458 }
1459 
1460 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1461 		size_t, vlen, int, behavior, unsigned int, flags)
1462 {
1463 	ssize_t ret;
1464 	struct iovec iovstack[UIO_FASTIOV];
1465 	struct iovec *iov = iovstack;
1466 	struct iov_iter iter;
1467 	struct task_struct *task;
1468 	struct mm_struct *mm;
1469 	size_t total_len;
1470 	unsigned int f_flags;
1471 
1472 	if (flags != 0) {
1473 		ret = -EINVAL;
1474 		goto out;
1475 	}
1476 
1477 	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1478 	if (ret < 0)
1479 		goto out;
1480 
1481 	task = pidfd_get_task(pidfd, &f_flags);
1482 	if (IS_ERR(task)) {
1483 		ret = PTR_ERR(task);
1484 		goto free_iov;
1485 	}
1486 
1487 	if (!process_madvise_behavior_valid(behavior)) {
1488 		ret = -EINVAL;
1489 		goto release_task;
1490 	}
1491 
1492 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1493 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1494 	if (IS_ERR_OR_NULL(mm)) {
1495 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1496 		goto release_task;
1497 	}
1498 
1499 	/*
1500 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1501 	 * only non-destructive hints are currently supported.
1502 	 */
1503 	if (!capable(CAP_SYS_NICE)) {
1504 		ret = -EPERM;
1505 		goto release_mm;
1506 	}
1507 
1508 	total_len = iov_iter_count(&iter);
1509 
1510 	while (iov_iter_count(&iter)) {
1511 		ret = do_madvise(mm, (unsigned long)iter_iov_addr(&iter),
1512 					iter_iov_len(&iter), behavior);
1513 		if (ret < 0)
1514 			break;
1515 		iov_iter_advance(&iter, iter_iov_len(&iter));
1516 	}
1517 
1518 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1519 
1520 release_mm:
1521 	mmput(mm);
1522 release_task:
1523 	put_task_struct(task);
1524 free_iov:
1525 	kfree(iov);
1526 out:
1527 	return ret;
1528 }
1529