xref: /openbmc/linux/mm/ksm.c (revision ff56535d)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hash.h>
37 #include <linux/freezer.h>
38 
39 #include <asm/tlbflush.h>
40 #include "internal.h"
41 
42 /*
43  * A few notes about the KSM scanning process,
44  * to make it easier to understand the data structures below:
45  *
46  * In order to reduce excessive scanning, KSM sorts the memory pages by their
47  * contents into a data structure that holds pointers to the pages' locations.
48  *
49  * Since the contents of the pages may change at any moment, KSM cannot just
50  * insert the pages into a normal sorted tree and expect it to find anything.
51  * Therefore KSM uses two data structures - the stable and the unstable tree.
52  *
53  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
54  * by their contents.  Because each such page is write-protected, searching on
55  * this tree is fully assured to be working (except when pages are unmapped),
56  * and therefore this tree is called the stable tree.
57  *
58  * In addition to the stable tree, KSM uses a second data structure called the
59  * unstable tree: this tree holds pointers to pages which have been found to
60  * be "unchanged for a period of time".  The unstable tree sorts these pages
61  * by their contents, but since they are not write-protected, KSM cannot rely
62  * upon the unstable tree to work correctly - the unstable tree is liable to
63  * be corrupted as its contents are modified, and so it is called unstable.
64  *
65  * KSM solves this problem by several techniques:
66  *
67  * 1) The unstable tree is flushed every time KSM completes scanning all
68  *    memory areas, and then the tree is rebuilt again from the beginning.
69  * 2) KSM will only insert into the unstable tree, pages whose hash value
70  *    has not changed since the previous scan of all memory areas.
71  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
72  *    colors of the nodes and not on their contents, assuring that even when
73  *    the tree gets "corrupted" it won't get out of balance, so scanning time
74  *    remains the same (also, searching and inserting nodes in an rbtree uses
75  *    the same algorithm, so we have no overhead when we flush and rebuild).
76  * 4) KSM never flushes the stable tree, which means that even if it were to
77  *    take 10 attempts to find a page in the unstable tree, once it is found,
78  *    it is secured in the stable tree.  (When we scan a new page, we first
79  *    compare it against the stable tree, and then against the unstable tree.)
80  */
81 
82 /**
83  * struct mm_slot - ksm information per mm that is being scanned
84  * @link: link to the mm_slots hash list
85  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
86  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
87  * @mm: the mm that this information is valid for
88  */
89 struct mm_slot {
90 	struct hlist_node link;
91 	struct list_head mm_list;
92 	struct rmap_item *rmap_list;
93 	struct mm_struct *mm;
94 };
95 
96 /**
97  * struct ksm_scan - cursor for scanning
98  * @mm_slot: the current mm_slot we are scanning
99  * @address: the next address inside that to be scanned
100  * @rmap_list: link to the next rmap to be scanned in the rmap_list
101  * @seqnr: count of completed full scans (needed when removing unstable node)
102  *
103  * There is only the one ksm_scan instance of this cursor structure.
104  */
105 struct ksm_scan {
106 	struct mm_slot *mm_slot;
107 	unsigned long address;
108 	struct rmap_item **rmap_list;
109 	unsigned long seqnr;
110 };
111 
112 /**
113  * struct stable_node - node of the stable rbtree
114  * @node: rb node of this ksm page in the stable tree
115  * @hlist: hlist head of rmap_items using this ksm page
116  * @kpfn: page frame number of this ksm page
117  */
118 struct stable_node {
119 	struct rb_node node;
120 	struct hlist_head hlist;
121 	unsigned long kpfn;
122 };
123 
124 /**
125  * struct rmap_item - reverse mapping item for virtual addresses
126  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
127  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
128  * @mm: the memory structure this rmap_item is pointing into
129  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
130  * @oldchecksum: previous checksum of the page at that virtual address
131  * @node: rb node of this rmap_item in the unstable tree
132  * @head: pointer to stable_node heading this list in the stable tree
133  * @hlist: link into hlist of rmap_items hanging off that stable_node
134  */
135 struct rmap_item {
136 	struct rmap_item *rmap_list;
137 	struct anon_vma *anon_vma;	/* when stable */
138 	struct mm_struct *mm;
139 	unsigned long address;		/* + low bits used for flags below */
140 	unsigned int oldchecksum;	/* when unstable */
141 	union {
142 		struct rb_node node;	/* when node of unstable tree */
143 		struct {		/* when listed from stable tree */
144 			struct stable_node *head;
145 			struct hlist_node hlist;
146 		};
147 	};
148 };
149 
150 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
151 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
152 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
153 
154 /* The stable and unstable tree heads */
155 static struct rb_root root_stable_tree = RB_ROOT;
156 static struct rb_root root_unstable_tree = RB_ROOT;
157 
158 #define MM_SLOTS_HASH_SHIFT 10
159 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
160 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
161 
162 static struct mm_slot ksm_mm_head = {
163 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
164 };
165 static struct ksm_scan ksm_scan = {
166 	.mm_slot = &ksm_mm_head,
167 };
168 
169 static struct kmem_cache *rmap_item_cache;
170 static struct kmem_cache *stable_node_cache;
171 static struct kmem_cache *mm_slot_cache;
172 
173 /* The number of nodes in the stable tree */
174 static unsigned long ksm_pages_shared;
175 
176 /* The number of page slots additionally sharing those nodes */
177 static unsigned long ksm_pages_sharing;
178 
179 /* The number of nodes in the unstable tree */
180 static unsigned long ksm_pages_unshared;
181 
182 /* The number of rmap_items in use: to calculate pages_volatile */
183 static unsigned long ksm_rmap_items;
184 
185 /* Number of pages ksmd should scan in one batch */
186 static unsigned int ksm_thread_pages_to_scan = 100;
187 
188 /* Milliseconds ksmd should sleep between batches */
189 static unsigned int ksm_thread_sleep_millisecs = 20;
190 
191 #define KSM_RUN_STOP	0
192 #define KSM_RUN_MERGE	1
193 #define KSM_RUN_UNMERGE	2
194 static unsigned int ksm_run = KSM_RUN_STOP;
195 
196 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
197 static DEFINE_MUTEX(ksm_thread_mutex);
198 static DEFINE_SPINLOCK(ksm_mmlist_lock);
199 
200 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
201 		sizeof(struct __struct), __alignof__(struct __struct),\
202 		(__flags), NULL)
203 
204 static int __init ksm_slab_init(void)
205 {
206 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
207 	if (!rmap_item_cache)
208 		goto out;
209 
210 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
211 	if (!stable_node_cache)
212 		goto out_free1;
213 
214 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
215 	if (!mm_slot_cache)
216 		goto out_free2;
217 
218 	return 0;
219 
220 out_free2:
221 	kmem_cache_destroy(stable_node_cache);
222 out_free1:
223 	kmem_cache_destroy(rmap_item_cache);
224 out:
225 	return -ENOMEM;
226 }
227 
228 static void __init ksm_slab_free(void)
229 {
230 	kmem_cache_destroy(mm_slot_cache);
231 	kmem_cache_destroy(stable_node_cache);
232 	kmem_cache_destroy(rmap_item_cache);
233 	mm_slot_cache = NULL;
234 }
235 
236 static inline struct rmap_item *alloc_rmap_item(void)
237 {
238 	struct rmap_item *rmap_item;
239 
240 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
241 	if (rmap_item)
242 		ksm_rmap_items++;
243 	return rmap_item;
244 }
245 
246 static inline void free_rmap_item(struct rmap_item *rmap_item)
247 {
248 	ksm_rmap_items--;
249 	rmap_item->mm = NULL;	/* debug safety */
250 	kmem_cache_free(rmap_item_cache, rmap_item);
251 }
252 
253 static inline struct stable_node *alloc_stable_node(void)
254 {
255 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
256 }
257 
258 static inline void free_stable_node(struct stable_node *stable_node)
259 {
260 	kmem_cache_free(stable_node_cache, stable_node);
261 }
262 
263 static inline struct mm_slot *alloc_mm_slot(void)
264 {
265 	if (!mm_slot_cache)	/* initialization failed */
266 		return NULL;
267 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
268 }
269 
270 static inline void free_mm_slot(struct mm_slot *mm_slot)
271 {
272 	kmem_cache_free(mm_slot_cache, mm_slot);
273 }
274 
275 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
276 {
277 	struct mm_slot *mm_slot;
278 	struct hlist_head *bucket;
279 	struct hlist_node *node;
280 
281 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
282 	hlist_for_each_entry(mm_slot, node, bucket, link) {
283 		if (mm == mm_slot->mm)
284 			return mm_slot;
285 	}
286 	return NULL;
287 }
288 
289 static void insert_to_mm_slots_hash(struct mm_struct *mm,
290 				    struct mm_slot *mm_slot)
291 {
292 	struct hlist_head *bucket;
293 
294 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
295 	mm_slot->mm = mm;
296 	hlist_add_head(&mm_slot->link, bucket);
297 }
298 
299 static inline int in_stable_tree(struct rmap_item *rmap_item)
300 {
301 	return rmap_item->address & STABLE_FLAG;
302 }
303 
304 /*
305  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
306  * page tables after it has passed through ksm_exit() - which, if necessary,
307  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
308  * a special flag: they can just back out as soon as mm_users goes to zero.
309  * ksm_test_exit() is used throughout to make this test for exit: in some
310  * places for correctness, in some places just to avoid unnecessary work.
311  */
312 static inline bool ksm_test_exit(struct mm_struct *mm)
313 {
314 	return atomic_read(&mm->mm_users) == 0;
315 }
316 
317 /*
318  * We use break_ksm to break COW on a ksm page: it's a stripped down
319  *
320  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
321  *		put_page(page);
322  *
323  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
324  * in case the application has unmapped and remapped mm,addr meanwhile.
325  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
326  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
327  */
328 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
329 {
330 	struct page *page;
331 	int ret = 0;
332 
333 	do {
334 		cond_resched();
335 		page = follow_page(vma, addr, FOLL_GET);
336 		if (IS_ERR_OR_NULL(page))
337 			break;
338 		if (PageKsm(page))
339 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
340 							FAULT_FLAG_WRITE);
341 		else
342 			ret = VM_FAULT_WRITE;
343 		put_page(page);
344 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
345 	/*
346 	 * We must loop because handle_mm_fault() may back out if there's
347 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
348 	 *
349 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
350 	 * COW has been broken, even if the vma does not permit VM_WRITE;
351 	 * but note that a concurrent fault might break PageKsm for us.
352 	 *
353 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
354 	 * backing file, which also invalidates anonymous pages: that's
355 	 * okay, that truncation will have unmapped the PageKsm for us.
356 	 *
357 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
358 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
359 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
360 	 * to user; and ksmd, having no mm, would never be chosen for that.
361 	 *
362 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
363 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
364 	 * even ksmd can fail in this way - though it's usually breaking ksm
365 	 * just to undo a merge it made a moment before, so unlikely to oom.
366 	 *
367 	 * That's a pity: we might therefore have more kernel pages allocated
368 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
369 	 * will retry to break_cow on each pass, so should recover the page
370 	 * in due course.  The important thing is to not let VM_MERGEABLE
371 	 * be cleared while any such pages might remain in the area.
372 	 */
373 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
374 }
375 
376 static void break_cow(struct rmap_item *rmap_item)
377 {
378 	struct mm_struct *mm = rmap_item->mm;
379 	unsigned long addr = rmap_item->address;
380 	struct vm_area_struct *vma;
381 
382 	/*
383 	 * It is not an accident that whenever we want to break COW
384 	 * to undo, we also need to drop a reference to the anon_vma.
385 	 */
386 	put_anon_vma(rmap_item->anon_vma);
387 
388 	down_read(&mm->mmap_sem);
389 	if (ksm_test_exit(mm))
390 		goto out;
391 	vma = find_vma(mm, addr);
392 	if (!vma || vma->vm_start > addr)
393 		goto out;
394 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
395 		goto out;
396 	break_ksm(vma, addr);
397 out:
398 	up_read(&mm->mmap_sem);
399 }
400 
401 static struct page *page_trans_compound_anon(struct page *page)
402 {
403 	if (PageTransCompound(page)) {
404 		struct page *head = compound_trans_head(page);
405 		/*
406 		 * head may actually be splitted and freed from under
407 		 * us but it's ok here.
408 		 */
409 		if (PageAnon(head))
410 			return head;
411 	}
412 	return NULL;
413 }
414 
415 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
416 {
417 	struct mm_struct *mm = rmap_item->mm;
418 	unsigned long addr = rmap_item->address;
419 	struct vm_area_struct *vma;
420 	struct page *page;
421 
422 	down_read(&mm->mmap_sem);
423 	if (ksm_test_exit(mm))
424 		goto out;
425 	vma = find_vma(mm, addr);
426 	if (!vma || vma->vm_start > addr)
427 		goto out;
428 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
429 		goto out;
430 
431 	page = follow_page(vma, addr, FOLL_GET);
432 	if (IS_ERR_OR_NULL(page))
433 		goto out;
434 	if (PageAnon(page) || page_trans_compound_anon(page)) {
435 		flush_anon_page(vma, page, addr);
436 		flush_dcache_page(page);
437 	} else {
438 		put_page(page);
439 out:		page = NULL;
440 	}
441 	up_read(&mm->mmap_sem);
442 	return page;
443 }
444 
445 static void remove_node_from_stable_tree(struct stable_node *stable_node)
446 {
447 	struct rmap_item *rmap_item;
448 	struct hlist_node *hlist;
449 
450 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
451 		if (rmap_item->hlist.next)
452 			ksm_pages_sharing--;
453 		else
454 			ksm_pages_shared--;
455 		put_anon_vma(rmap_item->anon_vma);
456 		rmap_item->address &= PAGE_MASK;
457 		cond_resched();
458 	}
459 
460 	rb_erase(&stable_node->node, &root_stable_tree);
461 	free_stable_node(stable_node);
462 }
463 
464 /*
465  * get_ksm_page: checks if the page indicated by the stable node
466  * is still its ksm page, despite having held no reference to it.
467  * In which case we can trust the content of the page, and it
468  * returns the gotten page; but if the page has now been zapped,
469  * remove the stale node from the stable tree and return NULL.
470  *
471  * You would expect the stable_node to hold a reference to the ksm page.
472  * But if it increments the page's count, swapping out has to wait for
473  * ksmd to come around again before it can free the page, which may take
474  * seconds or even minutes: much too unresponsive.  So instead we use a
475  * "keyhole reference": access to the ksm page from the stable node peeps
476  * out through its keyhole to see if that page still holds the right key,
477  * pointing back to this stable node.  This relies on freeing a PageAnon
478  * page to reset its page->mapping to NULL, and relies on no other use of
479  * a page to put something that might look like our key in page->mapping.
480  *
481  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
482  * but this is different - made simpler by ksm_thread_mutex being held, but
483  * interesting for assuming that no other use of the struct page could ever
484  * put our expected_mapping into page->mapping (or a field of the union which
485  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
486  * to keep the page_count protocol described with page_cache_get_speculative.
487  *
488  * Note: it is possible that get_ksm_page() will return NULL one moment,
489  * then page the next, if the page is in between page_freeze_refs() and
490  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
491  * is on its way to being freed; but it is an anomaly to bear in mind.
492  */
493 static struct page *get_ksm_page(struct stable_node *stable_node)
494 {
495 	struct page *page;
496 	void *expected_mapping;
497 
498 	page = pfn_to_page(stable_node->kpfn);
499 	expected_mapping = (void *)stable_node +
500 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
501 	rcu_read_lock();
502 	if (page->mapping != expected_mapping)
503 		goto stale;
504 	if (!get_page_unless_zero(page))
505 		goto stale;
506 	if (page->mapping != expected_mapping) {
507 		put_page(page);
508 		goto stale;
509 	}
510 	rcu_read_unlock();
511 	return page;
512 stale:
513 	rcu_read_unlock();
514 	remove_node_from_stable_tree(stable_node);
515 	return NULL;
516 }
517 
518 /*
519  * Removing rmap_item from stable or unstable tree.
520  * This function will clean the information from the stable/unstable tree.
521  */
522 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
523 {
524 	if (rmap_item->address & STABLE_FLAG) {
525 		struct stable_node *stable_node;
526 		struct page *page;
527 
528 		stable_node = rmap_item->head;
529 		page = get_ksm_page(stable_node);
530 		if (!page)
531 			goto out;
532 
533 		lock_page(page);
534 		hlist_del(&rmap_item->hlist);
535 		unlock_page(page);
536 		put_page(page);
537 
538 		if (stable_node->hlist.first)
539 			ksm_pages_sharing--;
540 		else
541 			ksm_pages_shared--;
542 
543 		put_anon_vma(rmap_item->anon_vma);
544 		rmap_item->address &= PAGE_MASK;
545 
546 	} else if (rmap_item->address & UNSTABLE_FLAG) {
547 		unsigned char age;
548 		/*
549 		 * Usually ksmd can and must skip the rb_erase, because
550 		 * root_unstable_tree was already reset to RB_ROOT.
551 		 * But be careful when an mm is exiting: do the rb_erase
552 		 * if this rmap_item was inserted by this scan, rather
553 		 * than left over from before.
554 		 */
555 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
556 		BUG_ON(age > 1);
557 		if (!age)
558 			rb_erase(&rmap_item->node, &root_unstable_tree);
559 
560 		ksm_pages_unshared--;
561 		rmap_item->address &= PAGE_MASK;
562 	}
563 out:
564 	cond_resched();		/* we're called from many long loops */
565 }
566 
567 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
568 				       struct rmap_item **rmap_list)
569 {
570 	while (*rmap_list) {
571 		struct rmap_item *rmap_item = *rmap_list;
572 		*rmap_list = rmap_item->rmap_list;
573 		remove_rmap_item_from_tree(rmap_item);
574 		free_rmap_item(rmap_item);
575 	}
576 }
577 
578 /*
579  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
580  * than check every pte of a given vma, the locking doesn't quite work for
581  * that - an rmap_item is assigned to the stable tree after inserting ksm
582  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
583  * rmap_items from parent to child at fork time (so as not to waste time
584  * if exit comes before the next scan reaches it).
585  *
586  * Similarly, although we'd like to remove rmap_items (so updating counts
587  * and freeing memory) when unmerging an area, it's easier to leave that
588  * to the next pass of ksmd - consider, for example, how ksmd might be
589  * in cmp_and_merge_page on one of the rmap_items we would be removing.
590  */
591 static int unmerge_ksm_pages(struct vm_area_struct *vma,
592 			     unsigned long start, unsigned long end)
593 {
594 	unsigned long addr;
595 	int err = 0;
596 
597 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
598 		if (ksm_test_exit(vma->vm_mm))
599 			break;
600 		if (signal_pending(current))
601 			err = -ERESTARTSYS;
602 		else
603 			err = break_ksm(vma, addr);
604 	}
605 	return err;
606 }
607 
608 #ifdef CONFIG_SYSFS
609 /*
610  * Only called through the sysfs control interface:
611  */
612 static int unmerge_and_remove_all_rmap_items(void)
613 {
614 	struct mm_slot *mm_slot;
615 	struct mm_struct *mm;
616 	struct vm_area_struct *vma;
617 	int err = 0;
618 
619 	spin_lock(&ksm_mmlist_lock);
620 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
621 						struct mm_slot, mm_list);
622 	spin_unlock(&ksm_mmlist_lock);
623 
624 	for (mm_slot = ksm_scan.mm_slot;
625 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
626 		mm = mm_slot->mm;
627 		down_read(&mm->mmap_sem);
628 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
629 			if (ksm_test_exit(mm))
630 				break;
631 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
632 				continue;
633 			err = unmerge_ksm_pages(vma,
634 						vma->vm_start, vma->vm_end);
635 			if (err)
636 				goto error;
637 		}
638 
639 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
640 
641 		spin_lock(&ksm_mmlist_lock);
642 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
643 						struct mm_slot, mm_list);
644 		if (ksm_test_exit(mm)) {
645 			hlist_del(&mm_slot->link);
646 			list_del(&mm_slot->mm_list);
647 			spin_unlock(&ksm_mmlist_lock);
648 
649 			free_mm_slot(mm_slot);
650 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
651 			up_read(&mm->mmap_sem);
652 			mmdrop(mm);
653 		} else {
654 			spin_unlock(&ksm_mmlist_lock);
655 			up_read(&mm->mmap_sem);
656 		}
657 	}
658 
659 	ksm_scan.seqnr = 0;
660 	return 0;
661 
662 error:
663 	up_read(&mm->mmap_sem);
664 	spin_lock(&ksm_mmlist_lock);
665 	ksm_scan.mm_slot = &ksm_mm_head;
666 	spin_unlock(&ksm_mmlist_lock);
667 	return err;
668 }
669 #endif /* CONFIG_SYSFS */
670 
671 static u32 calc_checksum(struct page *page)
672 {
673 	u32 checksum;
674 	void *addr = kmap_atomic(page, KM_USER0);
675 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
676 	kunmap_atomic(addr, KM_USER0);
677 	return checksum;
678 }
679 
680 static int memcmp_pages(struct page *page1, struct page *page2)
681 {
682 	char *addr1, *addr2;
683 	int ret;
684 
685 	addr1 = kmap_atomic(page1, KM_USER0);
686 	addr2 = kmap_atomic(page2, KM_USER1);
687 	ret = memcmp(addr1, addr2, PAGE_SIZE);
688 	kunmap_atomic(addr2, KM_USER1);
689 	kunmap_atomic(addr1, KM_USER0);
690 	return ret;
691 }
692 
693 static inline int pages_identical(struct page *page1, struct page *page2)
694 {
695 	return !memcmp_pages(page1, page2);
696 }
697 
698 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
699 			      pte_t *orig_pte)
700 {
701 	struct mm_struct *mm = vma->vm_mm;
702 	unsigned long addr;
703 	pte_t *ptep;
704 	spinlock_t *ptl;
705 	int swapped;
706 	int err = -EFAULT;
707 
708 	addr = page_address_in_vma(page, vma);
709 	if (addr == -EFAULT)
710 		goto out;
711 
712 	BUG_ON(PageTransCompound(page));
713 	ptep = page_check_address(page, mm, addr, &ptl, 0);
714 	if (!ptep)
715 		goto out;
716 
717 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
718 		pte_t entry;
719 
720 		swapped = PageSwapCache(page);
721 		flush_cache_page(vma, addr, page_to_pfn(page));
722 		/*
723 		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
724 		 * take any lock, therefore the check that we are going to make
725 		 * with the pagecount against the mapcount is racey and
726 		 * O_DIRECT can happen right after the check.
727 		 * So we clear the pte and flush the tlb before the check
728 		 * this assure us that no O_DIRECT can happen after the check
729 		 * or in the middle of the check.
730 		 */
731 		entry = ptep_clear_flush(vma, addr, ptep);
732 		/*
733 		 * Check that no O_DIRECT or similar I/O is in progress on the
734 		 * page
735 		 */
736 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
737 			set_pte_at(mm, addr, ptep, entry);
738 			goto out_unlock;
739 		}
740 		if (pte_dirty(entry))
741 			set_page_dirty(page);
742 		entry = pte_mkclean(pte_wrprotect(entry));
743 		set_pte_at_notify(mm, addr, ptep, entry);
744 	}
745 	*orig_pte = *ptep;
746 	err = 0;
747 
748 out_unlock:
749 	pte_unmap_unlock(ptep, ptl);
750 out:
751 	return err;
752 }
753 
754 /**
755  * replace_page - replace page in vma by new ksm page
756  * @vma:      vma that holds the pte pointing to page
757  * @page:     the page we are replacing by kpage
758  * @kpage:    the ksm page we replace page by
759  * @orig_pte: the original value of the pte
760  *
761  * Returns 0 on success, -EFAULT on failure.
762  */
763 static int replace_page(struct vm_area_struct *vma, struct page *page,
764 			struct page *kpage, pte_t orig_pte)
765 {
766 	struct mm_struct *mm = vma->vm_mm;
767 	pgd_t *pgd;
768 	pud_t *pud;
769 	pmd_t *pmd;
770 	pte_t *ptep;
771 	spinlock_t *ptl;
772 	unsigned long addr;
773 	int err = -EFAULT;
774 
775 	addr = page_address_in_vma(page, vma);
776 	if (addr == -EFAULT)
777 		goto out;
778 
779 	pgd = pgd_offset(mm, addr);
780 	if (!pgd_present(*pgd))
781 		goto out;
782 
783 	pud = pud_offset(pgd, addr);
784 	if (!pud_present(*pud))
785 		goto out;
786 
787 	pmd = pmd_offset(pud, addr);
788 	BUG_ON(pmd_trans_huge(*pmd));
789 	if (!pmd_present(*pmd))
790 		goto out;
791 
792 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
793 	if (!pte_same(*ptep, orig_pte)) {
794 		pte_unmap_unlock(ptep, ptl);
795 		goto out;
796 	}
797 
798 	get_page(kpage);
799 	page_add_anon_rmap(kpage, vma, addr);
800 
801 	flush_cache_page(vma, addr, pte_pfn(*ptep));
802 	ptep_clear_flush(vma, addr, ptep);
803 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
804 
805 	page_remove_rmap(page);
806 	if (!page_mapped(page))
807 		try_to_free_swap(page);
808 	put_page(page);
809 
810 	pte_unmap_unlock(ptep, ptl);
811 	err = 0;
812 out:
813 	return err;
814 }
815 
816 static int page_trans_compound_anon_split(struct page *page)
817 {
818 	int ret = 0;
819 	struct page *transhuge_head = page_trans_compound_anon(page);
820 	if (transhuge_head) {
821 		/* Get the reference on the head to split it. */
822 		if (get_page_unless_zero(transhuge_head)) {
823 			/*
824 			 * Recheck we got the reference while the head
825 			 * was still anonymous.
826 			 */
827 			if (PageAnon(transhuge_head))
828 				ret = split_huge_page(transhuge_head);
829 			else
830 				/*
831 				 * Retry later if split_huge_page run
832 				 * from under us.
833 				 */
834 				ret = 1;
835 			put_page(transhuge_head);
836 		} else
837 			/* Retry later if split_huge_page run from under us. */
838 			ret = 1;
839 	}
840 	return ret;
841 }
842 
843 /*
844  * try_to_merge_one_page - take two pages and merge them into one
845  * @vma: the vma that holds the pte pointing to page
846  * @page: the PageAnon page that we want to replace with kpage
847  * @kpage: the PageKsm page that we want to map instead of page,
848  *         or NULL the first time when we want to use page as kpage.
849  *
850  * This function returns 0 if the pages were merged, -EFAULT otherwise.
851  */
852 static int try_to_merge_one_page(struct vm_area_struct *vma,
853 				 struct page *page, struct page *kpage)
854 {
855 	pte_t orig_pte = __pte(0);
856 	int err = -EFAULT;
857 
858 	if (page == kpage)			/* ksm page forked */
859 		return 0;
860 
861 	if (!(vma->vm_flags & VM_MERGEABLE))
862 		goto out;
863 	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
864 		goto out;
865 	BUG_ON(PageTransCompound(page));
866 	if (!PageAnon(page))
867 		goto out;
868 
869 	/*
870 	 * We need the page lock to read a stable PageSwapCache in
871 	 * write_protect_page().  We use trylock_page() instead of
872 	 * lock_page() because we don't want to wait here - we
873 	 * prefer to continue scanning and merging different pages,
874 	 * then come back to this page when it is unlocked.
875 	 */
876 	if (!trylock_page(page))
877 		goto out;
878 	/*
879 	 * If this anonymous page is mapped only here, its pte may need
880 	 * to be write-protected.  If it's mapped elsewhere, all of its
881 	 * ptes are necessarily already write-protected.  But in either
882 	 * case, we need to lock and check page_count is not raised.
883 	 */
884 	if (write_protect_page(vma, page, &orig_pte) == 0) {
885 		if (!kpage) {
886 			/*
887 			 * While we hold page lock, upgrade page from
888 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
889 			 * stable_tree_insert() will update stable_node.
890 			 */
891 			set_page_stable_node(page, NULL);
892 			mark_page_accessed(page);
893 			err = 0;
894 		} else if (pages_identical(page, kpage))
895 			err = replace_page(vma, page, kpage, orig_pte);
896 	}
897 
898 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
899 		munlock_vma_page(page);
900 		if (!PageMlocked(kpage)) {
901 			unlock_page(page);
902 			lock_page(kpage);
903 			mlock_vma_page(kpage);
904 			page = kpage;		/* for final unlock */
905 		}
906 	}
907 
908 	unlock_page(page);
909 out:
910 	return err;
911 }
912 
913 /*
914  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
915  * but no new kernel page is allocated: kpage must already be a ksm page.
916  *
917  * This function returns 0 if the pages were merged, -EFAULT otherwise.
918  */
919 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
920 				      struct page *page, struct page *kpage)
921 {
922 	struct mm_struct *mm = rmap_item->mm;
923 	struct vm_area_struct *vma;
924 	int err = -EFAULT;
925 
926 	down_read(&mm->mmap_sem);
927 	if (ksm_test_exit(mm))
928 		goto out;
929 	vma = find_vma(mm, rmap_item->address);
930 	if (!vma || vma->vm_start > rmap_item->address)
931 		goto out;
932 
933 	err = try_to_merge_one_page(vma, page, kpage);
934 	if (err)
935 		goto out;
936 
937 	/* Must get reference to anon_vma while still holding mmap_sem */
938 	rmap_item->anon_vma = vma->anon_vma;
939 	get_anon_vma(vma->anon_vma);
940 out:
941 	up_read(&mm->mmap_sem);
942 	return err;
943 }
944 
945 /*
946  * try_to_merge_two_pages - take two identical pages and prepare them
947  * to be merged into one page.
948  *
949  * This function returns the kpage if we successfully merged two identical
950  * pages into one ksm page, NULL otherwise.
951  *
952  * Note that this function upgrades page to ksm page: if one of the pages
953  * is already a ksm page, try_to_merge_with_ksm_page should be used.
954  */
955 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
956 					   struct page *page,
957 					   struct rmap_item *tree_rmap_item,
958 					   struct page *tree_page)
959 {
960 	int err;
961 
962 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
963 	if (!err) {
964 		err = try_to_merge_with_ksm_page(tree_rmap_item,
965 							tree_page, page);
966 		/*
967 		 * If that fails, we have a ksm page with only one pte
968 		 * pointing to it: so break it.
969 		 */
970 		if (err)
971 			break_cow(rmap_item);
972 	}
973 	return err ? NULL : page;
974 }
975 
976 /*
977  * stable_tree_search - search for page inside the stable tree
978  *
979  * This function checks if there is a page inside the stable tree
980  * with identical content to the page that we are scanning right now.
981  *
982  * This function returns the stable tree node of identical content if found,
983  * NULL otherwise.
984  */
985 static struct page *stable_tree_search(struct page *page)
986 {
987 	struct rb_node *node = root_stable_tree.rb_node;
988 	struct stable_node *stable_node;
989 
990 	stable_node = page_stable_node(page);
991 	if (stable_node) {			/* ksm page forked */
992 		get_page(page);
993 		return page;
994 	}
995 
996 	while (node) {
997 		struct page *tree_page;
998 		int ret;
999 
1000 		cond_resched();
1001 		stable_node = rb_entry(node, struct stable_node, node);
1002 		tree_page = get_ksm_page(stable_node);
1003 		if (!tree_page)
1004 			return NULL;
1005 
1006 		ret = memcmp_pages(page, tree_page);
1007 
1008 		if (ret < 0) {
1009 			put_page(tree_page);
1010 			node = node->rb_left;
1011 		} else if (ret > 0) {
1012 			put_page(tree_page);
1013 			node = node->rb_right;
1014 		} else
1015 			return tree_page;
1016 	}
1017 
1018 	return NULL;
1019 }
1020 
1021 /*
1022  * stable_tree_insert - insert rmap_item pointing to new ksm page
1023  * into the stable tree.
1024  *
1025  * This function returns the stable tree node just allocated on success,
1026  * NULL otherwise.
1027  */
1028 static struct stable_node *stable_tree_insert(struct page *kpage)
1029 {
1030 	struct rb_node **new = &root_stable_tree.rb_node;
1031 	struct rb_node *parent = NULL;
1032 	struct stable_node *stable_node;
1033 
1034 	while (*new) {
1035 		struct page *tree_page;
1036 		int ret;
1037 
1038 		cond_resched();
1039 		stable_node = rb_entry(*new, struct stable_node, node);
1040 		tree_page = get_ksm_page(stable_node);
1041 		if (!tree_page)
1042 			return NULL;
1043 
1044 		ret = memcmp_pages(kpage, tree_page);
1045 		put_page(tree_page);
1046 
1047 		parent = *new;
1048 		if (ret < 0)
1049 			new = &parent->rb_left;
1050 		else if (ret > 0)
1051 			new = &parent->rb_right;
1052 		else {
1053 			/*
1054 			 * It is not a bug that stable_tree_search() didn't
1055 			 * find this node: because at that time our page was
1056 			 * not yet write-protected, so may have changed since.
1057 			 */
1058 			return NULL;
1059 		}
1060 	}
1061 
1062 	stable_node = alloc_stable_node();
1063 	if (!stable_node)
1064 		return NULL;
1065 
1066 	rb_link_node(&stable_node->node, parent, new);
1067 	rb_insert_color(&stable_node->node, &root_stable_tree);
1068 
1069 	INIT_HLIST_HEAD(&stable_node->hlist);
1070 
1071 	stable_node->kpfn = page_to_pfn(kpage);
1072 	set_page_stable_node(kpage, stable_node);
1073 
1074 	return stable_node;
1075 }
1076 
1077 /*
1078  * unstable_tree_search_insert - search for identical page,
1079  * else insert rmap_item into the unstable tree.
1080  *
1081  * This function searches for a page in the unstable tree identical to the
1082  * page currently being scanned; and if no identical page is found in the
1083  * tree, we insert rmap_item as a new object into the unstable tree.
1084  *
1085  * This function returns pointer to rmap_item found to be identical
1086  * to the currently scanned page, NULL otherwise.
1087  *
1088  * This function does both searching and inserting, because they share
1089  * the same walking algorithm in an rbtree.
1090  */
1091 static
1092 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1093 					      struct page *page,
1094 					      struct page **tree_pagep)
1095 
1096 {
1097 	struct rb_node **new = &root_unstable_tree.rb_node;
1098 	struct rb_node *parent = NULL;
1099 
1100 	while (*new) {
1101 		struct rmap_item *tree_rmap_item;
1102 		struct page *tree_page;
1103 		int ret;
1104 
1105 		cond_resched();
1106 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1107 		tree_page = get_mergeable_page(tree_rmap_item);
1108 		if (IS_ERR_OR_NULL(tree_page))
1109 			return NULL;
1110 
1111 		/*
1112 		 * Don't substitute a ksm page for a forked page.
1113 		 */
1114 		if (page == tree_page) {
1115 			put_page(tree_page);
1116 			return NULL;
1117 		}
1118 
1119 		ret = memcmp_pages(page, tree_page);
1120 
1121 		parent = *new;
1122 		if (ret < 0) {
1123 			put_page(tree_page);
1124 			new = &parent->rb_left;
1125 		} else if (ret > 0) {
1126 			put_page(tree_page);
1127 			new = &parent->rb_right;
1128 		} else {
1129 			*tree_pagep = tree_page;
1130 			return tree_rmap_item;
1131 		}
1132 	}
1133 
1134 	rmap_item->address |= UNSTABLE_FLAG;
1135 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1136 	rb_link_node(&rmap_item->node, parent, new);
1137 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1138 
1139 	ksm_pages_unshared++;
1140 	return NULL;
1141 }
1142 
1143 /*
1144  * stable_tree_append - add another rmap_item to the linked list of
1145  * rmap_items hanging off a given node of the stable tree, all sharing
1146  * the same ksm page.
1147  */
1148 static void stable_tree_append(struct rmap_item *rmap_item,
1149 			       struct stable_node *stable_node)
1150 {
1151 	rmap_item->head = stable_node;
1152 	rmap_item->address |= STABLE_FLAG;
1153 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1154 
1155 	if (rmap_item->hlist.next)
1156 		ksm_pages_sharing++;
1157 	else
1158 		ksm_pages_shared++;
1159 }
1160 
1161 /*
1162  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1163  * if not, compare checksum to previous and if it's the same, see if page can
1164  * be inserted into the unstable tree, or merged with a page already there and
1165  * both transferred to the stable tree.
1166  *
1167  * @page: the page that we are searching identical page to.
1168  * @rmap_item: the reverse mapping into the virtual address of this page
1169  */
1170 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1171 {
1172 	struct rmap_item *tree_rmap_item;
1173 	struct page *tree_page = NULL;
1174 	struct stable_node *stable_node;
1175 	struct page *kpage;
1176 	unsigned int checksum;
1177 	int err;
1178 
1179 	remove_rmap_item_from_tree(rmap_item);
1180 
1181 	/* We first start with searching the page inside the stable tree */
1182 	kpage = stable_tree_search(page);
1183 	if (kpage) {
1184 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1185 		if (!err) {
1186 			/*
1187 			 * The page was successfully merged:
1188 			 * add its rmap_item to the stable tree.
1189 			 */
1190 			lock_page(kpage);
1191 			stable_tree_append(rmap_item, page_stable_node(kpage));
1192 			unlock_page(kpage);
1193 		}
1194 		put_page(kpage);
1195 		return;
1196 	}
1197 
1198 	/*
1199 	 * If the hash value of the page has changed from the last time
1200 	 * we calculated it, this page is changing frequently: therefore we
1201 	 * don't want to insert it in the unstable tree, and we don't want
1202 	 * to waste our time searching for something identical to it there.
1203 	 */
1204 	checksum = calc_checksum(page);
1205 	if (rmap_item->oldchecksum != checksum) {
1206 		rmap_item->oldchecksum = checksum;
1207 		return;
1208 	}
1209 
1210 	tree_rmap_item =
1211 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1212 	if (tree_rmap_item) {
1213 		kpage = try_to_merge_two_pages(rmap_item, page,
1214 						tree_rmap_item, tree_page);
1215 		put_page(tree_page);
1216 		/*
1217 		 * As soon as we merge this page, we want to remove the
1218 		 * rmap_item of the page we have merged with from the unstable
1219 		 * tree, and insert it instead as new node in the stable tree.
1220 		 */
1221 		if (kpage) {
1222 			remove_rmap_item_from_tree(tree_rmap_item);
1223 
1224 			lock_page(kpage);
1225 			stable_node = stable_tree_insert(kpage);
1226 			if (stable_node) {
1227 				stable_tree_append(tree_rmap_item, stable_node);
1228 				stable_tree_append(rmap_item, stable_node);
1229 			}
1230 			unlock_page(kpage);
1231 
1232 			/*
1233 			 * If we fail to insert the page into the stable tree,
1234 			 * we will have 2 virtual addresses that are pointing
1235 			 * to a ksm page left outside the stable tree,
1236 			 * in which case we need to break_cow on both.
1237 			 */
1238 			if (!stable_node) {
1239 				break_cow(tree_rmap_item);
1240 				break_cow(rmap_item);
1241 			}
1242 		}
1243 	}
1244 }
1245 
1246 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1247 					    struct rmap_item **rmap_list,
1248 					    unsigned long addr)
1249 {
1250 	struct rmap_item *rmap_item;
1251 
1252 	while (*rmap_list) {
1253 		rmap_item = *rmap_list;
1254 		if ((rmap_item->address & PAGE_MASK) == addr)
1255 			return rmap_item;
1256 		if (rmap_item->address > addr)
1257 			break;
1258 		*rmap_list = rmap_item->rmap_list;
1259 		remove_rmap_item_from_tree(rmap_item);
1260 		free_rmap_item(rmap_item);
1261 	}
1262 
1263 	rmap_item = alloc_rmap_item();
1264 	if (rmap_item) {
1265 		/* It has already been zeroed */
1266 		rmap_item->mm = mm_slot->mm;
1267 		rmap_item->address = addr;
1268 		rmap_item->rmap_list = *rmap_list;
1269 		*rmap_list = rmap_item;
1270 	}
1271 	return rmap_item;
1272 }
1273 
1274 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1275 {
1276 	struct mm_struct *mm;
1277 	struct mm_slot *slot;
1278 	struct vm_area_struct *vma;
1279 	struct rmap_item *rmap_item;
1280 
1281 	if (list_empty(&ksm_mm_head.mm_list))
1282 		return NULL;
1283 
1284 	slot = ksm_scan.mm_slot;
1285 	if (slot == &ksm_mm_head) {
1286 		/*
1287 		 * A number of pages can hang around indefinitely on per-cpu
1288 		 * pagevecs, raised page count preventing write_protect_page
1289 		 * from merging them.  Though it doesn't really matter much,
1290 		 * it is puzzling to see some stuck in pages_volatile until
1291 		 * other activity jostles them out, and they also prevented
1292 		 * LTP's KSM test from succeeding deterministically; so drain
1293 		 * them here (here rather than on entry to ksm_do_scan(),
1294 		 * so we don't IPI too often when pages_to_scan is set low).
1295 		 */
1296 		lru_add_drain_all();
1297 
1298 		root_unstable_tree = RB_ROOT;
1299 
1300 		spin_lock(&ksm_mmlist_lock);
1301 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1302 		ksm_scan.mm_slot = slot;
1303 		spin_unlock(&ksm_mmlist_lock);
1304 next_mm:
1305 		ksm_scan.address = 0;
1306 		ksm_scan.rmap_list = &slot->rmap_list;
1307 	}
1308 
1309 	mm = slot->mm;
1310 	down_read(&mm->mmap_sem);
1311 	if (ksm_test_exit(mm))
1312 		vma = NULL;
1313 	else
1314 		vma = find_vma(mm, ksm_scan.address);
1315 
1316 	for (; vma; vma = vma->vm_next) {
1317 		if (!(vma->vm_flags & VM_MERGEABLE))
1318 			continue;
1319 		if (ksm_scan.address < vma->vm_start)
1320 			ksm_scan.address = vma->vm_start;
1321 		if (!vma->anon_vma)
1322 			ksm_scan.address = vma->vm_end;
1323 
1324 		while (ksm_scan.address < vma->vm_end) {
1325 			if (ksm_test_exit(mm))
1326 				break;
1327 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1328 			if (IS_ERR_OR_NULL(*page)) {
1329 				ksm_scan.address += PAGE_SIZE;
1330 				cond_resched();
1331 				continue;
1332 			}
1333 			if (PageAnon(*page) ||
1334 			    page_trans_compound_anon(*page)) {
1335 				flush_anon_page(vma, *page, ksm_scan.address);
1336 				flush_dcache_page(*page);
1337 				rmap_item = get_next_rmap_item(slot,
1338 					ksm_scan.rmap_list, ksm_scan.address);
1339 				if (rmap_item) {
1340 					ksm_scan.rmap_list =
1341 							&rmap_item->rmap_list;
1342 					ksm_scan.address += PAGE_SIZE;
1343 				} else
1344 					put_page(*page);
1345 				up_read(&mm->mmap_sem);
1346 				return rmap_item;
1347 			}
1348 			put_page(*page);
1349 			ksm_scan.address += PAGE_SIZE;
1350 			cond_resched();
1351 		}
1352 	}
1353 
1354 	if (ksm_test_exit(mm)) {
1355 		ksm_scan.address = 0;
1356 		ksm_scan.rmap_list = &slot->rmap_list;
1357 	}
1358 	/*
1359 	 * Nuke all the rmap_items that are above this current rmap:
1360 	 * because there were no VM_MERGEABLE vmas with such addresses.
1361 	 */
1362 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1363 
1364 	spin_lock(&ksm_mmlist_lock);
1365 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1366 						struct mm_slot, mm_list);
1367 	if (ksm_scan.address == 0) {
1368 		/*
1369 		 * We've completed a full scan of all vmas, holding mmap_sem
1370 		 * throughout, and found no VM_MERGEABLE: so do the same as
1371 		 * __ksm_exit does to remove this mm from all our lists now.
1372 		 * This applies either when cleaning up after __ksm_exit
1373 		 * (but beware: we can reach here even before __ksm_exit),
1374 		 * or when all VM_MERGEABLE areas have been unmapped (and
1375 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1376 		 */
1377 		hlist_del(&slot->link);
1378 		list_del(&slot->mm_list);
1379 		spin_unlock(&ksm_mmlist_lock);
1380 
1381 		free_mm_slot(slot);
1382 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1383 		up_read(&mm->mmap_sem);
1384 		mmdrop(mm);
1385 	} else {
1386 		spin_unlock(&ksm_mmlist_lock);
1387 		up_read(&mm->mmap_sem);
1388 	}
1389 
1390 	/* Repeat until we've completed scanning the whole list */
1391 	slot = ksm_scan.mm_slot;
1392 	if (slot != &ksm_mm_head)
1393 		goto next_mm;
1394 
1395 	ksm_scan.seqnr++;
1396 	return NULL;
1397 }
1398 
1399 /**
1400  * ksm_do_scan  - the ksm scanner main worker function.
1401  * @scan_npages - number of pages we want to scan before we return.
1402  */
1403 static void ksm_do_scan(unsigned int scan_npages)
1404 {
1405 	struct rmap_item *rmap_item;
1406 	struct page *uninitialized_var(page);
1407 
1408 	while (scan_npages-- && likely(!freezing(current))) {
1409 		cond_resched();
1410 		rmap_item = scan_get_next_rmap_item(&page);
1411 		if (!rmap_item)
1412 			return;
1413 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1414 			cmp_and_merge_page(page, rmap_item);
1415 		put_page(page);
1416 	}
1417 }
1418 
1419 static int ksmd_should_run(void)
1420 {
1421 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1422 }
1423 
1424 static int ksm_scan_thread(void *nothing)
1425 {
1426 	set_freezable();
1427 	set_user_nice(current, 5);
1428 
1429 	while (!kthread_should_stop()) {
1430 		mutex_lock(&ksm_thread_mutex);
1431 		if (ksmd_should_run())
1432 			ksm_do_scan(ksm_thread_pages_to_scan);
1433 		mutex_unlock(&ksm_thread_mutex);
1434 
1435 		try_to_freeze();
1436 
1437 		if (ksmd_should_run()) {
1438 			schedule_timeout_interruptible(
1439 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1440 		} else {
1441 			wait_event_freezable(ksm_thread_wait,
1442 				ksmd_should_run() || kthread_should_stop());
1443 		}
1444 	}
1445 	return 0;
1446 }
1447 
1448 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1449 		unsigned long end, int advice, unsigned long *vm_flags)
1450 {
1451 	struct mm_struct *mm = vma->vm_mm;
1452 	int err;
1453 
1454 	switch (advice) {
1455 	case MADV_MERGEABLE:
1456 		/*
1457 		 * Be somewhat over-protective for now!
1458 		 */
1459 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1460 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1461 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1462 				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1463 			return 0;		/* just ignore the advice */
1464 
1465 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1466 			err = __ksm_enter(mm);
1467 			if (err)
1468 				return err;
1469 		}
1470 
1471 		*vm_flags |= VM_MERGEABLE;
1472 		break;
1473 
1474 	case MADV_UNMERGEABLE:
1475 		if (!(*vm_flags & VM_MERGEABLE))
1476 			return 0;		/* just ignore the advice */
1477 
1478 		if (vma->anon_vma) {
1479 			err = unmerge_ksm_pages(vma, start, end);
1480 			if (err)
1481 				return err;
1482 		}
1483 
1484 		*vm_flags &= ~VM_MERGEABLE;
1485 		break;
1486 	}
1487 
1488 	return 0;
1489 }
1490 
1491 int __ksm_enter(struct mm_struct *mm)
1492 {
1493 	struct mm_slot *mm_slot;
1494 	int needs_wakeup;
1495 
1496 	mm_slot = alloc_mm_slot();
1497 	if (!mm_slot)
1498 		return -ENOMEM;
1499 
1500 	/* Check ksm_run too?  Would need tighter locking */
1501 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1502 
1503 	spin_lock(&ksm_mmlist_lock);
1504 	insert_to_mm_slots_hash(mm, mm_slot);
1505 	/*
1506 	 * Insert just behind the scanning cursor, to let the area settle
1507 	 * down a little; when fork is followed by immediate exec, we don't
1508 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1509 	 */
1510 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1511 	spin_unlock(&ksm_mmlist_lock);
1512 
1513 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1514 	atomic_inc(&mm->mm_count);
1515 
1516 	if (needs_wakeup)
1517 		wake_up_interruptible(&ksm_thread_wait);
1518 
1519 	return 0;
1520 }
1521 
1522 void __ksm_exit(struct mm_struct *mm)
1523 {
1524 	struct mm_slot *mm_slot;
1525 	int easy_to_free = 0;
1526 
1527 	/*
1528 	 * This process is exiting: if it's straightforward (as is the
1529 	 * case when ksmd was never running), free mm_slot immediately.
1530 	 * But if it's at the cursor or has rmap_items linked to it, use
1531 	 * mmap_sem to synchronize with any break_cows before pagetables
1532 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1533 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1534 	 */
1535 
1536 	spin_lock(&ksm_mmlist_lock);
1537 	mm_slot = get_mm_slot(mm);
1538 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1539 		if (!mm_slot->rmap_list) {
1540 			hlist_del(&mm_slot->link);
1541 			list_del(&mm_slot->mm_list);
1542 			easy_to_free = 1;
1543 		} else {
1544 			list_move(&mm_slot->mm_list,
1545 				  &ksm_scan.mm_slot->mm_list);
1546 		}
1547 	}
1548 	spin_unlock(&ksm_mmlist_lock);
1549 
1550 	if (easy_to_free) {
1551 		free_mm_slot(mm_slot);
1552 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1553 		mmdrop(mm);
1554 	} else if (mm_slot) {
1555 		down_write(&mm->mmap_sem);
1556 		up_write(&mm->mmap_sem);
1557 	}
1558 }
1559 
1560 struct page *ksm_does_need_to_copy(struct page *page,
1561 			struct vm_area_struct *vma, unsigned long address)
1562 {
1563 	struct page *new_page;
1564 
1565 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1566 	if (new_page) {
1567 		copy_user_highpage(new_page, page, address, vma);
1568 
1569 		SetPageDirty(new_page);
1570 		__SetPageUptodate(new_page);
1571 		SetPageSwapBacked(new_page);
1572 		__set_page_locked(new_page);
1573 
1574 		if (page_evictable(new_page, vma))
1575 			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1576 		else
1577 			add_page_to_unevictable_list(new_page);
1578 	}
1579 
1580 	return new_page;
1581 }
1582 
1583 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1584 			unsigned long *vm_flags)
1585 {
1586 	struct stable_node *stable_node;
1587 	struct rmap_item *rmap_item;
1588 	struct hlist_node *hlist;
1589 	unsigned int mapcount = page_mapcount(page);
1590 	int referenced = 0;
1591 	int search_new_forks = 0;
1592 
1593 	VM_BUG_ON(!PageKsm(page));
1594 	VM_BUG_ON(!PageLocked(page));
1595 
1596 	stable_node = page_stable_node(page);
1597 	if (!stable_node)
1598 		return 0;
1599 again:
1600 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1601 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1602 		struct anon_vma_chain *vmac;
1603 		struct vm_area_struct *vma;
1604 
1605 		anon_vma_lock(anon_vma);
1606 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1607 			vma = vmac->vma;
1608 			if (rmap_item->address < vma->vm_start ||
1609 			    rmap_item->address >= vma->vm_end)
1610 				continue;
1611 			/*
1612 			 * Initially we examine only the vma which covers this
1613 			 * rmap_item; but later, if there is still work to do,
1614 			 * we examine covering vmas in other mms: in case they
1615 			 * were forked from the original since ksmd passed.
1616 			 */
1617 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1618 				continue;
1619 
1620 			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1621 				continue;
1622 
1623 			referenced += page_referenced_one(page, vma,
1624 				rmap_item->address, &mapcount, vm_flags);
1625 			if (!search_new_forks || !mapcount)
1626 				break;
1627 		}
1628 		anon_vma_unlock(anon_vma);
1629 		if (!mapcount)
1630 			goto out;
1631 	}
1632 	if (!search_new_forks++)
1633 		goto again;
1634 out:
1635 	return referenced;
1636 }
1637 
1638 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1639 {
1640 	struct stable_node *stable_node;
1641 	struct hlist_node *hlist;
1642 	struct rmap_item *rmap_item;
1643 	int ret = SWAP_AGAIN;
1644 	int search_new_forks = 0;
1645 
1646 	VM_BUG_ON(!PageKsm(page));
1647 	VM_BUG_ON(!PageLocked(page));
1648 
1649 	stable_node = page_stable_node(page);
1650 	if (!stable_node)
1651 		return SWAP_FAIL;
1652 again:
1653 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1654 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1655 		struct anon_vma_chain *vmac;
1656 		struct vm_area_struct *vma;
1657 
1658 		anon_vma_lock(anon_vma);
1659 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1660 			vma = vmac->vma;
1661 			if (rmap_item->address < vma->vm_start ||
1662 			    rmap_item->address >= vma->vm_end)
1663 				continue;
1664 			/*
1665 			 * Initially we examine only the vma which covers this
1666 			 * rmap_item; but later, if there is still work to do,
1667 			 * we examine covering vmas in other mms: in case they
1668 			 * were forked from the original since ksmd passed.
1669 			 */
1670 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1671 				continue;
1672 
1673 			ret = try_to_unmap_one(page, vma,
1674 					rmap_item->address, flags);
1675 			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1676 				anon_vma_unlock(anon_vma);
1677 				goto out;
1678 			}
1679 		}
1680 		anon_vma_unlock(anon_vma);
1681 	}
1682 	if (!search_new_forks++)
1683 		goto again;
1684 out:
1685 	return ret;
1686 }
1687 
1688 #ifdef CONFIG_MIGRATION
1689 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1690 		  struct vm_area_struct *, unsigned long, void *), void *arg)
1691 {
1692 	struct stable_node *stable_node;
1693 	struct hlist_node *hlist;
1694 	struct rmap_item *rmap_item;
1695 	int ret = SWAP_AGAIN;
1696 	int search_new_forks = 0;
1697 
1698 	VM_BUG_ON(!PageKsm(page));
1699 	VM_BUG_ON(!PageLocked(page));
1700 
1701 	stable_node = page_stable_node(page);
1702 	if (!stable_node)
1703 		return ret;
1704 again:
1705 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1706 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1707 		struct anon_vma_chain *vmac;
1708 		struct vm_area_struct *vma;
1709 
1710 		anon_vma_lock(anon_vma);
1711 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1712 			vma = vmac->vma;
1713 			if (rmap_item->address < vma->vm_start ||
1714 			    rmap_item->address >= vma->vm_end)
1715 				continue;
1716 			/*
1717 			 * Initially we examine only the vma which covers this
1718 			 * rmap_item; but later, if there is still work to do,
1719 			 * we examine covering vmas in other mms: in case they
1720 			 * were forked from the original since ksmd passed.
1721 			 */
1722 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1723 				continue;
1724 
1725 			ret = rmap_one(page, vma, rmap_item->address, arg);
1726 			if (ret != SWAP_AGAIN) {
1727 				anon_vma_unlock(anon_vma);
1728 				goto out;
1729 			}
1730 		}
1731 		anon_vma_unlock(anon_vma);
1732 	}
1733 	if (!search_new_forks++)
1734 		goto again;
1735 out:
1736 	return ret;
1737 }
1738 
1739 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1740 {
1741 	struct stable_node *stable_node;
1742 
1743 	VM_BUG_ON(!PageLocked(oldpage));
1744 	VM_BUG_ON(!PageLocked(newpage));
1745 	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1746 
1747 	stable_node = page_stable_node(newpage);
1748 	if (stable_node) {
1749 		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1750 		stable_node->kpfn = page_to_pfn(newpage);
1751 	}
1752 }
1753 #endif /* CONFIG_MIGRATION */
1754 
1755 #ifdef CONFIG_MEMORY_HOTREMOVE
1756 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1757 						 unsigned long end_pfn)
1758 {
1759 	struct rb_node *node;
1760 
1761 	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1762 		struct stable_node *stable_node;
1763 
1764 		stable_node = rb_entry(node, struct stable_node, node);
1765 		if (stable_node->kpfn >= start_pfn &&
1766 		    stable_node->kpfn < end_pfn)
1767 			return stable_node;
1768 	}
1769 	return NULL;
1770 }
1771 
1772 static int ksm_memory_callback(struct notifier_block *self,
1773 			       unsigned long action, void *arg)
1774 {
1775 	struct memory_notify *mn = arg;
1776 	struct stable_node *stable_node;
1777 
1778 	switch (action) {
1779 	case MEM_GOING_OFFLINE:
1780 		/*
1781 		 * Keep it very simple for now: just lock out ksmd and
1782 		 * MADV_UNMERGEABLE while any memory is going offline.
1783 		 * mutex_lock_nested() is necessary because lockdep was alarmed
1784 		 * that here we take ksm_thread_mutex inside notifier chain
1785 		 * mutex, and later take notifier chain mutex inside
1786 		 * ksm_thread_mutex to unlock it.   But that's safe because both
1787 		 * are inside mem_hotplug_mutex.
1788 		 */
1789 		mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1790 		break;
1791 
1792 	case MEM_OFFLINE:
1793 		/*
1794 		 * Most of the work is done by page migration; but there might
1795 		 * be a few stable_nodes left over, still pointing to struct
1796 		 * pages which have been offlined: prune those from the tree.
1797 		 */
1798 		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1799 					mn->start_pfn + mn->nr_pages)) != NULL)
1800 			remove_node_from_stable_tree(stable_node);
1801 		/* fallthrough */
1802 
1803 	case MEM_CANCEL_OFFLINE:
1804 		mutex_unlock(&ksm_thread_mutex);
1805 		break;
1806 	}
1807 	return NOTIFY_OK;
1808 }
1809 #endif /* CONFIG_MEMORY_HOTREMOVE */
1810 
1811 #ifdef CONFIG_SYSFS
1812 /*
1813  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1814  */
1815 
1816 #define KSM_ATTR_RO(_name) \
1817 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1818 #define KSM_ATTR(_name) \
1819 	static struct kobj_attribute _name##_attr = \
1820 		__ATTR(_name, 0644, _name##_show, _name##_store)
1821 
1822 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1823 				    struct kobj_attribute *attr, char *buf)
1824 {
1825 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1826 }
1827 
1828 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1829 				     struct kobj_attribute *attr,
1830 				     const char *buf, size_t count)
1831 {
1832 	unsigned long msecs;
1833 	int err;
1834 
1835 	err = strict_strtoul(buf, 10, &msecs);
1836 	if (err || msecs > UINT_MAX)
1837 		return -EINVAL;
1838 
1839 	ksm_thread_sleep_millisecs = msecs;
1840 
1841 	return count;
1842 }
1843 KSM_ATTR(sleep_millisecs);
1844 
1845 static ssize_t pages_to_scan_show(struct kobject *kobj,
1846 				  struct kobj_attribute *attr, char *buf)
1847 {
1848 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1849 }
1850 
1851 static ssize_t pages_to_scan_store(struct kobject *kobj,
1852 				   struct kobj_attribute *attr,
1853 				   const char *buf, size_t count)
1854 {
1855 	int err;
1856 	unsigned long nr_pages;
1857 
1858 	err = strict_strtoul(buf, 10, &nr_pages);
1859 	if (err || nr_pages > UINT_MAX)
1860 		return -EINVAL;
1861 
1862 	ksm_thread_pages_to_scan = nr_pages;
1863 
1864 	return count;
1865 }
1866 KSM_ATTR(pages_to_scan);
1867 
1868 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1869 			char *buf)
1870 {
1871 	return sprintf(buf, "%u\n", ksm_run);
1872 }
1873 
1874 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1875 			 const char *buf, size_t count)
1876 {
1877 	int err;
1878 	unsigned long flags;
1879 
1880 	err = strict_strtoul(buf, 10, &flags);
1881 	if (err || flags > UINT_MAX)
1882 		return -EINVAL;
1883 	if (flags > KSM_RUN_UNMERGE)
1884 		return -EINVAL;
1885 
1886 	/*
1887 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1888 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1889 	 * breaking COW to free the pages_shared (but leaves mm_slots
1890 	 * on the list for when ksmd may be set running again).
1891 	 */
1892 
1893 	mutex_lock(&ksm_thread_mutex);
1894 	if (ksm_run != flags) {
1895 		ksm_run = flags;
1896 		if (flags & KSM_RUN_UNMERGE) {
1897 			current->flags |= PF_OOM_ORIGIN;
1898 			err = unmerge_and_remove_all_rmap_items();
1899 			current->flags &= ~PF_OOM_ORIGIN;
1900 			if (err) {
1901 				ksm_run = KSM_RUN_STOP;
1902 				count = err;
1903 			}
1904 		}
1905 	}
1906 	mutex_unlock(&ksm_thread_mutex);
1907 
1908 	if (flags & KSM_RUN_MERGE)
1909 		wake_up_interruptible(&ksm_thread_wait);
1910 
1911 	return count;
1912 }
1913 KSM_ATTR(run);
1914 
1915 static ssize_t pages_shared_show(struct kobject *kobj,
1916 				 struct kobj_attribute *attr, char *buf)
1917 {
1918 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1919 }
1920 KSM_ATTR_RO(pages_shared);
1921 
1922 static ssize_t pages_sharing_show(struct kobject *kobj,
1923 				  struct kobj_attribute *attr, char *buf)
1924 {
1925 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1926 }
1927 KSM_ATTR_RO(pages_sharing);
1928 
1929 static ssize_t pages_unshared_show(struct kobject *kobj,
1930 				   struct kobj_attribute *attr, char *buf)
1931 {
1932 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1933 }
1934 KSM_ATTR_RO(pages_unshared);
1935 
1936 static ssize_t pages_volatile_show(struct kobject *kobj,
1937 				   struct kobj_attribute *attr, char *buf)
1938 {
1939 	long ksm_pages_volatile;
1940 
1941 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1942 				- ksm_pages_sharing - ksm_pages_unshared;
1943 	/*
1944 	 * It was not worth any locking to calculate that statistic,
1945 	 * but it might therefore sometimes be negative: conceal that.
1946 	 */
1947 	if (ksm_pages_volatile < 0)
1948 		ksm_pages_volatile = 0;
1949 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1950 }
1951 KSM_ATTR_RO(pages_volatile);
1952 
1953 static ssize_t full_scans_show(struct kobject *kobj,
1954 			       struct kobj_attribute *attr, char *buf)
1955 {
1956 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1957 }
1958 KSM_ATTR_RO(full_scans);
1959 
1960 static struct attribute *ksm_attrs[] = {
1961 	&sleep_millisecs_attr.attr,
1962 	&pages_to_scan_attr.attr,
1963 	&run_attr.attr,
1964 	&pages_shared_attr.attr,
1965 	&pages_sharing_attr.attr,
1966 	&pages_unshared_attr.attr,
1967 	&pages_volatile_attr.attr,
1968 	&full_scans_attr.attr,
1969 	NULL,
1970 };
1971 
1972 static struct attribute_group ksm_attr_group = {
1973 	.attrs = ksm_attrs,
1974 	.name = "ksm",
1975 };
1976 #endif /* CONFIG_SYSFS */
1977 
1978 static int __init ksm_init(void)
1979 {
1980 	struct task_struct *ksm_thread;
1981 	int err;
1982 
1983 	err = ksm_slab_init();
1984 	if (err)
1985 		goto out;
1986 
1987 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1988 	if (IS_ERR(ksm_thread)) {
1989 		printk(KERN_ERR "ksm: creating kthread failed\n");
1990 		err = PTR_ERR(ksm_thread);
1991 		goto out_free;
1992 	}
1993 
1994 #ifdef CONFIG_SYSFS
1995 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1996 	if (err) {
1997 		printk(KERN_ERR "ksm: register sysfs failed\n");
1998 		kthread_stop(ksm_thread);
1999 		goto out_free;
2000 	}
2001 #else
2002 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2003 
2004 #endif /* CONFIG_SYSFS */
2005 
2006 #ifdef CONFIG_MEMORY_HOTREMOVE
2007 	/*
2008 	 * Choose a high priority since the callback takes ksm_thread_mutex:
2009 	 * later callbacks could only be taking locks which nest within that.
2010 	 */
2011 	hotplug_memory_notifier(ksm_memory_callback, 100);
2012 #endif
2013 	return 0;
2014 
2015 out_free:
2016 	ksm_slab_free();
2017 out:
2018 	return err;
2019 }
2020 module_init(ksm_init)
2021