xref: /openbmc/linux/mm/ksm.c (revision fe0a5788)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41 
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44 
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)		(x)
47 #define DO_NUMA(x)	do { (x); } while (0)
48 #else
49 #define NUMA(x)		(0)
50 #define DO_NUMA(x)	do { } while (0)
51 #endif
52 
53 /**
54  * DOC: Overview
55  *
56  * A few notes about the KSM scanning process,
57  * to make it easier to understand the data structures below:
58  *
59  * In order to reduce excessive scanning, KSM sorts the memory pages by their
60  * contents into a data structure that holds pointers to the pages' locations.
61  *
62  * Since the contents of the pages may change at any moment, KSM cannot just
63  * insert the pages into a normal sorted tree and expect it to find anything.
64  * Therefore KSM uses two data structures - the stable and the unstable tree.
65  *
66  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67  * by their contents.  Because each such page is write-protected, searching on
68  * this tree is fully assured to be working (except when pages are unmapped),
69  * and therefore this tree is called the stable tree.
70  *
71  * The stable tree node includes information required for reverse
72  * mapping from a KSM page to virtual addresses that map this page.
73  *
74  * In order to avoid large latencies of the rmap walks on KSM pages,
75  * KSM maintains two types of nodes in the stable tree:
76  *
77  * * the regular nodes that keep the reverse mapping structures in a
78  *   linked list
79  * * the "chains" that link nodes ("dups") that represent the same
80  *   write protected memory content, but each "dup" corresponds to a
81  *   different KSM page copy of that content
82  *
83  * Internally, the regular nodes, "dups" and "chains" are represented
84  * using the same struct stable_node structure.
85  *
86  * In addition to the stable tree, KSM uses a second data structure called the
87  * unstable tree: this tree holds pointers to pages which have been found to
88  * be "unchanged for a period of time".  The unstable tree sorts these pages
89  * by their contents, but since they are not write-protected, KSM cannot rely
90  * upon the unstable tree to work correctly - the unstable tree is liable to
91  * be corrupted as its contents are modified, and so it is called unstable.
92  *
93  * KSM solves this problem by several techniques:
94  *
95  * 1) The unstable tree is flushed every time KSM completes scanning all
96  *    memory areas, and then the tree is rebuilt again from the beginning.
97  * 2) KSM will only insert into the unstable tree, pages whose hash value
98  *    has not changed since the previous scan of all memory areas.
99  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100  *    colors of the nodes and not on their contents, assuring that even when
101  *    the tree gets "corrupted" it won't get out of balance, so scanning time
102  *    remains the same (also, searching and inserting nodes in an rbtree uses
103  *    the same algorithm, so we have no overhead when we flush and rebuild).
104  * 4) KSM never flushes the stable tree, which means that even if it were to
105  *    take 10 attempts to find a page in the unstable tree, once it is found,
106  *    it is secured in the stable tree.  (When we scan a new page, we first
107  *    compare it against the stable tree, and then against the unstable tree.)
108  *
109  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110  * stable trees and multiple unstable trees: one of each for each NUMA node.
111  */
112 
113 /**
114  * struct mm_slot - ksm information per mm that is being scanned
115  * @link: link to the mm_slots hash list
116  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118  * @mm: the mm that this information is valid for
119  */
120 struct mm_slot {
121 	struct hlist_node link;
122 	struct list_head mm_list;
123 	struct rmap_item *rmap_list;
124 	struct mm_struct *mm;
125 };
126 
127 /**
128  * struct ksm_scan - cursor for scanning
129  * @mm_slot: the current mm_slot we are scanning
130  * @address: the next address inside that to be scanned
131  * @rmap_list: link to the next rmap to be scanned in the rmap_list
132  * @seqnr: count of completed full scans (needed when removing unstable node)
133  *
134  * There is only the one ksm_scan instance of this cursor structure.
135  */
136 struct ksm_scan {
137 	struct mm_slot *mm_slot;
138 	unsigned long address;
139 	struct rmap_item **rmap_list;
140 	unsigned long seqnr;
141 };
142 
143 /**
144  * struct stable_node - node of the stable rbtree
145  * @node: rb node of this ksm page in the stable tree
146  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148  * @list: linked into migrate_nodes, pending placement in the proper node tree
149  * @hlist: hlist head of rmap_items using this ksm page
150  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151  * @chain_prune_time: time of the last full garbage collection
152  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154  */
155 struct stable_node {
156 	union {
157 		struct rb_node node;	/* when node of stable tree */
158 		struct {		/* when listed for migration */
159 			struct list_head *head;
160 			struct {
161 				struct hlist_node hlist_dup;
162 				struct list_head list;
163 			};
164 		};
165 	};
166 	struct hlist_head hlist;
167 	union {
168 		unsigned long kpfn;
169 		unsigned long chain_prune_time;
170 	};
171 	/*
172 	 * STABLE_NODE_CHAIN can be any negative number in
173 	 * rmap_hlist_len negative range, but better not -1 to be able
174 	 * to reliably detect underflows.
175 	 */
176 #define STABLE_NODE_CHAIN -1024
177 	int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 	int nid;
180 #endif
181 };
182 
183 /**
184  * struct rmap_item - reverse mapping item for virtual addresses
185  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187  * @nid: NUMA node id of unstable tree in which linked (may not match page)
188  * @mm: the memory structure this rmap_item is pointing into
189  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190  * @oldchecksum: previous checksum of the page at that virtual address
191  * @node: rb node of this rmap_item in the unstable tree
192  * @head: pointer to stable_node heading this list in the stable tree
193  * @hlist: link into hlist of rmap_items hanging off that stable_node
194  */
195 struct rmap_item {
196 	struct rmap_item *rmap_list;
197 	union {
198 		struct anon_vma *anon_vma;	/* when stable */
199 #ifdef CONFIG_NUMA
200 		int nid;		/* when node of unstable tree */
201 #endif
202 	};
203 	struct mm_struct *mm;
204 	unsigned long address;		/* + low bits used for flags below */
205 	unsigned int oldchecksum;	/* when unstable */
206 	union {
207 		struct rb_node node;	/* when node of unstable tree */
208 		struct {		/* when listed from stable tree */
209 			struct stable_node *head;
210 			struct hlist_node hlist;
211 		};
212 	};
213 };
214 
215 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
217 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
218 #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
219 				/* to mask all the flags */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct mm_slot ksm_mm_head = {
235 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247 
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250 
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253 
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256 
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259 
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262 
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static int ksm_stable_node_chains_prune_millisecs = 2000;
265 
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268 
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271 
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274 
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277 
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280 
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes	1U
287 #define ksm_nr_node_ids		1
288 #endif
289 
290 #define KSM_RUN_STOP	0
291 #define KSM_RUN_MERGE	1
292 #define KSM_RUN_UNMERGE	2
293 #define KSM_RUN_OFFLINE	4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296 
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301 
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303 		sizeof(struct __struct), __alignof__(struct __struct),\
304 		(__flags), NULL)
305 
306 static int __init ksm_slab_init(void)
307 {
308 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
309 	if (!rmap_item_cache)
310 		goto out;
311 
312 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
313 	if (!stable_node_cache)
314 		goto out_free1;
315 
316 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
317 	if (!mm_slot_cache)
318 		goto out_free2;
319 
320 	return 0;
321 
322 out_free2:
323 	kmem_cache_destroy(stable_node_cache);
324 out_free1:
325 	kmem_cache_destroy(rmap_item_cache);
326 out:
327 	return -ENOMEM;
328 }
329 
330 static void __init ksm_slab_free(void)
331 {
332 	kmem_cache_destroy(mm_slot_cache);
333 	kmem_cache_destroy(stable_node_cache);
334 	kmem_cache_destroy(rmap_item_cache);
335 	mm_slot_cache = NULL;
336 }
337 
338 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
339 {
340 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342 
343 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
344 {
345 	return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347 
348 static inline void stable_node_chain_add_dup(struct stable_node *dup,
349 					     struct stable_node *chain)
350 {
351 	VM_BUG_ON(is_stable_node_dup(dup));
352 	dup->head = STABLE_NODE_DUP_HEAD;
353 	VM_BUG_ON(!is_stable_node_chain(chain));
354 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 	ksm_stable_node_dups++;
356 }
357 
358 static inline void __stable_node_dup_del(struct stable_node *dup)
359 {
360 	VM_BUG_ON(!is_stable_node_dup(dup));
361 	hlist_del(&dup->hlist_dup);
362 	ksm_stable_node_dups--;
363 }
364 
365 static inline void stable_node_dup_del(struct stable_node *dup)
366 {
367 	VM_BUG_ON(is_stable_node_chain(dup));
368 	if (is_stable_node_dup(dup))
369 		__stable_node_dup_del(dup);
370 	else
371 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373 	dup->head = NULL;
374 #endif
375 }
376 
377 static inline struct rmap_item *alloc_rmap_item(void)
378 {
379 	struct rmap_item *rmap_item;
380 
381 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 						__GFP_NORETRY | __GFP_NOWARN);
383 	if (rmap_item)
384 		ksm_rmap_items++;
385 	return rmap_item;
386 }
387 
388 static inline void free_rmap_item(struct rmap_item *rmap_item)
389 {
390 	ksm_rmap_items--;
391 	rmap_item->mm = NULL;	/* debug safety */
392 	kmem_cache_free(rmap_item_cache, rmap_item);
393 }
394 
395 static inline struct stable_node *alloc_stable_node(void)
396 {
397 	/*
398 	 * The allocation can take too long with GFP_KERNEL when memory is under
399 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
400 	 * grants access to memory reserves, helping to avoid this problem.
401 	 */
402 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
403 }
404 
405 static inline void free_stable_node(struct stable_node *stable_node)
406 {
407 	VM_BUG_ON(stable_node->rmap_hlist_len &&
408 		  !is_stable_node_chain(stable_node));
409 	kmem_cache_free(stable_node_cache, stable_node);
410 }
411 
412 static inline struct mm_slot *alloc_mm_slot(void)
413 {
414 	if (!mm_slot_cache)	/* initialization failed */
415 		return NULL;
416 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
417 }
418 
419 static inline void free_mm_slot(struct mm_slot *mm_slot)
420 {
421 	kmem_cache_free(mm_slot_cache, mm_slot);
422 }
423 
424 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
425 {
426 	struct mm_slot *slot;
427 
428 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
429 		if (slot->mm == mm)
430 			return slot;
431 
432 	return NULL;
433 }
434 
435 static void insert_to_mm_slots_hash(struct mm_struct *mm,
436 				    struct mm_slot *mm_slot)
437 {
438 	mm_slot->mm = mm;
439 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
440 }
441 
442 /*
443  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444  * page tables after it has passed through ksm_exit() - which, if necessary,
445  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
446  * a special flag: they can just back out as soon as mm_users goes to zero.
447  * ksm_test_exit() is used throughout to make this test for exit: in some
448  * places for correctness, in some places just to avoid unnecessary work.
449  */
450 static inline bool ksm_test_exit(struct mm_struct *mm)
451 {
452 	return atomic_read(&mm->mm_users) == 0;
453 }
454 
455 /*
456  * We use break_ksm to break COW on a ksm page: it's a stripped down
457  *
458  *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
459  *		put_page(page);
460  *
461  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462  * in case the application has unmapped and remapped mm,addr meanwhile.
463  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
464  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
465  *
466  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467  * of the process that owns 'vma'.  We also do not want to enforce
468  * protection keys here anyway.
469  */
470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
471 {
472 	struct page *page;
473 	vm_fault_t ret = 0;
474 
475 	do {
476 		cond_resched();
477 		page = follow_page(vma, addr,
478 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
479 		if (IS_ERR_OR_NULL(page))
480 			break;
481 		if (PageKsm(page))
482 			ret = handle_mm_fault(vma, addr,
483 					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
484 					      NULL);
485 		else
486 			ret = VM_FAULT_WRITE;
487 		put_page(page);
488 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489 	/*
490 	 * We must loop because handle_mm_fault() may back out if there's
491 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 	 *
493 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 	 * COW has been broken, even if the vma does not permit VM_WRITE;
495 	 * but note that a concurrent fault might break PageKsm for us.
496 	 *
497 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 	 * backing file, which also invalidates anonymous pages: that's
499 	 * okay, that truncation will have unmapped the PageKsm for us.
500 	 *
501 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 	 * to user; and ksmd, having no mm, would never be chosen for that.
505 	 *
506 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 	 * even ksmd can fail in this way - though it's usually breaking ksm
509 	 * just to undo a merge it made a moment before, so unlikely to oom.
510 	 *
511 	 * That's a pity: we might therefore have more kernel pages allocated
512 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 	 * will retry to break_cow on each pass, so should recover the page
514 	 * in due course.  The important thing is to not let VM_MERGEABLE
515 	 * be cleared while any such pages might remain in the area.
516 	 */
517 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 }
519 
520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521 		unsigned long addr)
522 {
523 	struct vm_area_struct *vma;
524 	if (ksm_test_exit(mm))
525 		return NULL;
526 	vma = find_vma(mm, addr);
527 	if (!vma || vma->vm_start > addr)
528 		return NULL;
529 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530 		return NULL;
531 	return vma;
532 }
533 
534 static void break_cow(struct rmap_item *rmap_item)
535 {
536 	struct mm_struct *mm = rmap_item->mm;
537 	unsigned long addr = rmap_item->address;
538 	struct vm_area_struct *vma;
539 
540 	/*
541 	 * It is not an accident that whenever we want to break COW
542 	 * to undo, we also need to drop a reference to the anon_vma.
543 	 */
544 	put_anon_vma(rmap_item->anon_vma);
545 
546 	mmap_read_lock(mm);
547 	vma = find_mergeable_vma(mm, addr);
548 	if (vma)
549 		break_ksm(vma, addr);
550 	mmap_read_unlock(mm);
551 }
552 
553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554 {
555 	struct mm_struct *mm = rmap_item->mm;
556 	unsigned long addr = rmap_item->address;
557 	struct vm_area_struct *vma;
558 	struct page *page;
559 
560 	mmap_read_lock(mm);
561 	vma = find_mergeable_vma(mm, addr);
562 	if (!vma)
563 		goto out;
564 
565 	page = follow_page(vma, addr, FOLL_GET);
566 	if (IS_ERR_OR_NULL(page))
567 		goto out;
568 	if (PageAnon(page)) {
569 		flush_anon_page(vma, page, addr);
570 		flush_dcache_page(page);
571 	} else {
572 		put_page(page);
573 out:
574 		page = NULL;
575 	}
576 	mmap_read_unlock(mm);
577 	return page;
578 }
579 
580 /*
581  * This helper is used for getting right index into array of tree roots.
582  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584  * every node has its own stable and unstable tree.
585  */
586 static inline int get_kpfn_nid(unsigned long kpfn)
587 {
588 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
589 }
590 
591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592 						   struct rb_root *root)
593 {
594 	struct stable_node *chain = alloc_stable_node();
595 	VM_BUG_ON(is_stable_node_chain(dup));
596 	if (likely(chain)) {
597 		INIT_HLIST_HEAD(&chain->hlist);
598 		chain->chain_prune_time = jiffies;
599 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601 		chain->nid = NUMA_NO_NODE; /* debug */
602 #endif
603 		ksm_stable_node_chains++;
604 
605 		/*
606 		 * Put the stable node chain in the first dimension of
607 		 * the stable tree and at the same time remove the old
608 		 * stable node.
609 		 */
610 		rb_replace_node(&dup->node, &chain->node, root);
611 
612 		/*
613 		 * Move the old stable node to the second dimension
614 		 * queued in the hlist_dup. The invariant is that all
615 		 * dup stable_nodes in the chain->hlist point to pages
616 		 * that are write protected and have the exact same
617 		 * content.
618 		 */
619 		stable_node_chain_add_dup(dup, chain);
620 	}
621 	return chain;
622 }
623 
624 static inline void free_stable_node_chain(struct stable_node *chain,
625 					  struct rb_root *root)
626 {
627 	rb_erase(&chain->node, root);
628 	free_stable_node(chain);
629 	ksm_stable_node_chains--;
630 }
631 
632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
633 {
634 	struct rmap_item *rmap_item;
635 
636 	/* check it's not STABLE_NODE_CHAIN or negative */
637 	BUG_ON(stable_node->rmap_hlist_len < 0);
638 
639 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640 		if (rmap_item->hlist.next)
641 			ksm_pages_sharing--;
642 		else
643 			ksm_pages_shared--;
644 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 		stable_node->rmap_hlist_len--;
646 		put_anon_vma(rmap_item->anon_vma);
647 		rmap_item->address &= PAGE_MASK;
648 		cond_resched();
649 	}
650 
651 	/*
652 	 * We need the second aligned pointer of the migrate_nodes
653 	 * list_head to stay clear from the rb_parent_color union
654 	 * (aligned and different than any node) and also different
655 	 * from &migrate_nodes. This will verify that future list.h changes
656 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 	 */
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
662 
663 	if (stable_node->head == &migrate_nodes)
664 		list_del(&stable_node->list);
665 	else
666 		stable_node_dup_del(stable_node);
667 	free_stable_node(stable_node);
668 }
669 
670 enum get_ksm_page_flags {
671 	GET_KSM_PAGE_NOLOCK,
672 	GET_KSM_PAGE_LOCK,
673 	GET_KSM_PAGE_TRYLOCK
674 };
675 
676 /*
677  * get_ksm_page: checks if the page indicated by the stable node
678  * is still its ksm page, despite having held no reference to it.
679  * In which case we can trust the content of the page, and it
680  * returns the gotten page; but if the page has now been zapped,
681  * remove the stale node from the stable tree and return NULL.
682  * But beware, the stable node's page might be being migrated.
683  *
684  * You would expect the stable_node to hold a reference to the ksm page.
685  * But if it increments the page's count, swapping out has to wait for
686  * ksmd to come around again before it can free the page, which may take
687  * seconds or even minutes: much too unresponsive.  So instead we use a
688  * "keyhole reference": access to the ksm page from the stable node peeps
689  * out through its keyhole to see if that page still holds the right key,
690  * pointing back to this stable node.  This relies on freeing a PageAnon
691  * page to reset its page->mapping to NULL, and relies on no other use of
692  * a page to put something that might look like our key in page->mapping.
693  * is on its way to being freed; but it is an anomaly to bear in mind.
694  */
695 static struct page *get_ksm_page(struct stable_node *stable_node,
696 				 enum get_ksm_page_flags flags)
697 {
698 	struct page *page;
699 	void *expected_mapping;
700 	unsigned long kpfn;
701 
702 	expected_mapping = (void *)((unsigned long)stable_node |
703 					PAGE_MAPPING_KSM);
704 again:
705 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
706 	page = pfn_to_page(kpfn);
707 	if (READ_ONCE(page->mapping) != expected_mapping)
708 		goto stale;
709 
710 	/*
711 	 * We cannot do anything with the page while its refcount is 0.
712 	 * Usually 0 means free, or tail of a higher-order page: in which
713 	 * case this node is no longer referenced, and should be freed;
714 	 * however, it might mean that the page is under page_ref_freeze().
715 	 * The __remove_mapping() case is easy, again the node is now stale;
716 	 * the same is in reuse_ksm_page() case; but if page is swapcache
717 	 * in migrate_page_move_mapping(), it might still be our page,
718 	 * in which case it's essential to keep the node.
719 	 */
720 	while (!get_page_unless_zero(page)) {
721 		/*
722 		 * Another check for page->mapping != expected_mapping would
723 		 * work here too.  We have chosen the !PageSwapCache test to
724 		 * optimize the common case, when the page is or is about to
725 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
726 		 * in the ref_freeze section of __remove_mapping(); but Anon
727 		 * page->mapping reset to NULL later, in free_pages_prepare().
728 		 */
729 		if (!PageSwapCache(page))
730 			goto stale;
731 		cpu_relax();
732 	}
733 
734 	if (READ_ONCE(page->mapping) != expected_mapping) {
735 		put_page(page);
736 		goto stale;
737 	}
738 
739 	if (flags == GET_KSM_PAGE_TRYLOCK) {
740 		if (!trylock_page(page)) {
741 			put_page(page);
742 			return ERR_PTR(-EBUSY);
743 		}
744 	} else if (flags == GET_KSM_PAGE_LOCK)
745 		lock_page(page);
746 
747 	if (flags != GET_KSM_PAGE_NOLOCK) {
748 		if (READ_ONCE(page->mapping) != expected_mapping) {
749 			unlock_page(page);
750 			put_page(page);
751 			goto stale;
752 		}
753 	}
754 	return page;
755 
756 stale:
757 	/*
758 	 * We come here from above when page->mapping or !PageSwapCache
759 	 * suggests that the node is stale; but it might be under migration.
760 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
761 	 * before checking whether node->kpfn has been changed.
762 	 */
763 	smp_rmb();
764 	if (READ_ONCE(stable_node->kpfn) != kpfn)
765 		goto again;
766 	remove_node_from_stable_tree(stable_node);
767 	return NULL;
768 }
769 
770 /*
771  * Removing rmap_item from stable or unstable tree.
772  * This function will clean the information from the stable/unstable tree.
773  */
774 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
775 {
776 	if (rmap_item->address & STABLE_FLAG) {
777 		struct stable_node *stable_node;
778 		struct page *page;
779 
780 		stable_node = rmap_item->head;
781 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
782 		if (!page)
783 			goto out;
784 
785 		hlist_del(&rmap_item->hlist);
786 		unlock_page(page);
787 		put_page(page);
788 
789 		if (!hlist_empty(&stable_node->hlist))
790 			ksm_pages_sharing--;
791 		else
792 			ksm_pages_shared--;
793 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794 		stable_node->rmap_hlist_len--;
795 
796 		put_anon_vma(rmap_item->anon_vma);
797 		rmap_item->address &= PAGE_MASK;
798 
799 	} else if (rmap_item->address & UNSTABLE_FLAG) {
800 		unsigned char age;
801 		/*
802 		 * Usually ksmd can and must skip the rb_erase, because
803 		 * root_unstable_tree was already reset to RB_ROOT.
804 		 * But be careful when an mm is exiting: do the rb_erase
805 		 * if this rmap_item was inserted by this scan, rather
806 		 * than left over from before.
807 		 */
808 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
809 		BUG_ON(age > 1);
810 		if (!age)
811 			rb_erase(&rmap_item->node,
812 				 root_unstable_tree + NUMA(rmap_item->nid));
813 		ksm_pages_unshared--;
814 		rmap_item->address &= PAGE_MASK;
815 	}
816 out:
817 	cond_resched();		/* we're called from many long loops */
818 }
819 
820 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
821 				       struct rmap_item **rmap_list)
822 {
823 	while (*rmap_list) {
824 		struct rmap_item *rmap_item = *rmap_list;
825 		*rmap_list = rmap_item->rmap_list;
826 		remove_rmap_item_from_tree(rmap_item);
827 		free_rmap_item(rmap_item);
828 	}
829 }
830 
831 /*
832  * Though it's very tempting to unmerge rmap_items from stable tree rather
833  * than check every pte of a given vma, the locking doesn't quite work for
834  * that - an rmap_item is assigned to the stable tree after inserting ksm
835  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
836  * rmap_items from parent to child at fork time (so as not to waste time
837  * if exit comes before the next scan reaches it).
838  *
839  * Similarly, although we'd like to remove rmap_items (so updating counts
840  * and freeing memory) when unmerging an area, it's easier to leave that
841  * to the next pass of ksmd - consider, for example, how ksmd might be
842  * in cmp_and_merge_page on one of the rmap_items we would be removing.
843  */
844 static int unmerge_ksm_pages(struct vm_area_struct *vma,
845 			     unsigned long start, unsigned long end)
846 {
847 	unsigned long addr;
848 	int err = 0;
849 
850 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
851 		if (ksm_test_exit(vma->vm_mm))
852 			break;
853 		if (signal_pending(current))
854 			err = -ERESTARTSYS;
855 		else
856 			err = break_ksm(vma, addr);
857 	}
858 	return err;
859 }
860 
861 static inline struct stable_node *page_stable_node(struct page *page)
862 {
863 	return PageKsm(page) ? page_rmapping(page) : NULL;
864 }
865 
866 static inline void set_page_stable_node(struct page *page,
867 					struct stable_node *stable_node)
868 {
869 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
870 }
871 
872 #ifdef CONFIG_SYSFS
873 /*
874  * Only called through the sysfs control interface:
875  */
876 static int remove_stable_node(struct stable_node *stable_node)
877 {
878 	struct page *page;
879 	int err;
880 
881 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
882 	if (!page) {
883 		/*
884 		 * get_ksm_page did remove_node_from_stable_tree itself.
885 		 */
886 		return 0;
887 	}
888 
889 	/*
890 	 * Page could be still mapped if this races with __mmput() running in
891 	 * between ksm_exit() and exit_mmap(). Just refuse to let
892 	 * merge_across_nodes/max_page_sharing be switched.
893 	 */
894 	err = -EBUSY;
895 	if (!page_mapped(page)) {
896 		/*
897 		 * The stable node did not yet appear stale to get_ksm_page(),
898 		 * since that allows for an unmapped ksm page to be recognized
899 		 * right up until it is freed; but the node is safe to remove.
900 		 * This page might be in a pagevec waiting to be freed,
901 		 * or it might be PageSwapCache (perhaps under writeback),
902 		 * or it might have been removed from swapcache a moment ago.
903 		 */
904 		set_page_stable_node(page, NULL);
905 		remove_node_from_stable_tree(stable_node);
906 		err = 0;
907 	}
908 
909 	unlock_page(page);
910 	put_page(page);
911 	return err;
912 }
913 
914 static int remove_stable_node_chain(struct stable_node *stable_node,
915 				    struct rb_root *root)
916 {
917 	struct stable_node *dup;
918 	struct hlist_node *hlist_safe;
919 
920 	if (!is_stable_node_chain(stable_node)) {
921 		VM_BUG_ON(is_stable_node_dup(stable_node));
922 		if (remove_stable_node(stable_node))
923 			return true;
924 		else
925 			return false;
926 	}
927 
928 	hlist_for_each_entry_safe(dup, hlist_safe,
929 				  &stable_node->hlist, hlist_dup) {
930 		VM_BUG_ON(!is_stable_node_dup(dup));
931 		if (remove_stable_node(dup))
932 			return true;
933 	}
934 	BUG_ON(!hlist_empty(&stable_node->hlist));
935 	free_stable_node_chain(stable_node, root);
936 	return false;
937 }
938 
939 static int remove_all_stable_nodes(void)
940 {
941 	struct stable_node *stable_node, *next;
942 	int nid;
943 	int err = 0;
944 
945 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
946 		while (root_stable_tree[nid].rb_node) {
947 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
948 						struct stable_node, node);
949 			if (remove_stable_node_chain(stable_node,
950 						     root_stable_tree + nid)) {
951 				err = -EBUSY;
952 				break;	/* proceed to next nid */
953 			}
954 			cond_resched();
955 		}
956 	}
957 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
958 		if (remove_stable_node(stable_node))
959 			err = -EBUSY;
960 		cond_resched();
961 	}
962 	return err;
963 }
964 
965 static int unmerge_and_remove_all_rmap_items(void)
966 {
967 	struct mm_slot *mm_slot;
968 	struct mm_struct *mm;
969 	struct vm_area_struct *vma;
970 	int err = 0;
971 
972 	spin_lock(&ksm_mmlist_lock);
973 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
974 						struct mm_slot, mm_list);
975 	spin_unlock(&ksm_mmlist_lock);
976 
977 	for (mm_slot = ksm_scan.mm_slot;
978 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
979 		mm = mm_slot->mm;
980 		mmap_read_lock(mm);
981 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
982 			if (ksm_test_exit(mm))
983 				break;
984 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
985 				continue;
986 			err = unmerge_ksm_pages(vma,
987 						vma->vm_start, vma->vm_end);
988 			if (err)
989 				goto error;
990 		}
991 
992 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
993 		mmap_read_unlock(mm);
994 
995 		spin_lock(&ksm_mmlist_lock);
996 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
997 						struct mm_slot, mm_list);
998 		if (ksm_test_exit(mm)) {
999 			hash_del(&mm_slot->link);
1000 			list_del(&mm_slot->mm_list);
1001 			spin_unlock(&ksm_mmlist_lock);
1002 
1003 			free_mm_slot(mm_slot);
1004 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1005 			mmdrop(mm);
1006 		} else
1007 			spin_unlock(&ksm_mmlist_lock);
1008 	}
1009 
1010 	/* Clean up stable nodes, but don't worry if some are still busy */
1011 	remove_all_stable_nodes();
1012 	ksm_scan.seqnr = 0;
1013 	return 0;
1014 
1015 error:
1016 	mmap_read_unlock(mm);
1017 	spin_lock(&ksm_mmlist_lock);
1018 	ksm_scan.mm_slot = &ksm_mm_head;
1019 	spin_unlock(&ksm_mmlist_lock);
1020 	return err;
1021 }
1022 #endif /* CONFIG_SYSFS */
1023 
1024 static u32 calc_checksum(struct page *page)
1025 {
1026 	u32 checksum;
1027 	void *addr = kmap_atomic(page);
1028 	checksum = xxhash(addr, PAGE_SIZE, 0);
1029 	kunmap_atomic(addr);
1030 	return checksum;
1031 }
1032 
1033 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1034 			      pte_t *orig_pte)
1035 {
1036 	struct mm_struct *mm = vma->vm_mm;
1037 	struct page_vma_mapped_walk pvmw = {
1038 		.page = page,
1039 		.vma = vma,
1040 	};
1041 	int swapped;
1042 	int err = -EFAULT;
1043 	struct mmu_notifier_range range;
1044 
1045 	pvmw.address = page_address_in_vma(page, vma);
1046 	if (pvmw.address == -EFAULT)
1047 		goto out;
1048 
1049 	BUG_ON(PageTransCompound(page));
1050 
1051 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1052 				pvmw.address,
1053 				pvmw.address + PAGE_SIZE);
1054 	mmu_notifier_invalidate_range_start(&range);
1055 
1056 	if (!page_vma_mapped_walk(&pvmw))
1057 		goto out_mn;
1058 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1059 		goto out_unlock;
1060 
1061 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1062 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1063 						mm_tlb_flush_pending(mm)) {
1064 		pte_t entry;
1065 
1066 		swapped = PageSwapCache(page);
1067 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1068 		/*
1069 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1070 		 * take any lock, therefore the check that we are going to make
1071 		 * with the pagecount against the mapcount is racey and
1072 		 * O_DIRECT can happen right after the check.
1073 		 * So we clear the pte and flush the tlb before the check
1074 		 * this assure us that no O_DIRECT can happen after the check
1075 		 * or in the middle of the check.
1076 		 *
1077 		 * No need to notify as we are downgrading page table to read
1078 		 * only not changing it to point to a new page.
1079 		 *
1080 		 * See Documentation/vm/mmu_notifier.rst
1081 		 */
1082 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1083 		/*
1084 		 * Check that no O_DIRECT or similar I/O is in progress on the
1085 		 * page
1086 		 */
1087 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1088 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1089 			goto out_unlock;
1090 		}
1091 		if (pte_dirty(entry))
1092 			set_page_dirty(page);
1093 
1094 		if (pte_protnone(entry))
1095 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1096 		else
1097 			entry = pte_mkclean(pte_wrprotect(entry));
1098 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1099 	}
1100 	*orig_pte = *pvmw.pte;
1101 	err = 0;
1102 
1103 out_unlock:
1104 	page_vma_mapped_walk_done(&pvmw);
1105 out_mn:
1106 	mmu_notifier_invalidate_range_end(&range);
1107 out:
1108 	return err;
1109 }
1110 
1111 /**
1112  * replace_page - replace page in vma by new ksm page
1113  * @vma:      vma that holds the pte pointing to page
1114  * @page:     the page we are replacing by kpage
1115  * @kpage:    the ksm page we replace page by
1116  * @orig_pte: the original value of the pte
1117  *
1118  * Returns 0 on success, -EFAULT on failure.
1119  */
1120 static int replace_page(struct vm_area_struct *vma, struct page *page,
1121 			struct page *kpage, pte_t orig_pte)
1122 {
1123 	struct mm_struct *mm = vma->vm_mm;
1124 	pmd_t *pmd;
1125 	pte_t *ptep;
1126 	pte_t newpte;
1127 	spinlock_t *ptl;
1128 	unsigned long addr;
1129 	int err = -EFAULT;
1130 	struct mmu_notifier_range range;
1131 
1132 	addr = page_address_in_vma(page, vma);
1133 	if (addr == -EFAULT)
1134 		goto out;
1135 
1136 	pmd = mm_find_pmd(mm, addr);
1137 	if (!pmd)
1138 		goto out;
1139 
1140 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1141 				addr + PAGE_SIZE);
1142 	mmu_notifier_invalidate_range_start(&range);
1143 
1144 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1145 	if (!pte_same(*ptep, orig_pte)) {
1146 		pte_unmap_unlock(ptep, ptl);
1147 		goto out_mn;
1148 	}
1149 
1150 	/*
1151 	 * No need to check ksm_use_zero_pages here: we can only have a
1152 	 * zero_page here if ksm_use_zero_pages was enabled already.
1153 	 */
1154 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1155 		get_page(kpage);
1156 		page_add_anon_rmap(kpage, vma, addr, false);
1157 		newpte = mk_pte(kpage, vma->vm_page_prot);
1158 	} else {
1159 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1160 					       vma->vm_page_prot));
1161 		/*
1162 		 * We're replacing an anonymous page with a zero page, which is
1163 		 * not anonymous. We need to do proper accounting otherwise we
1164 		 * will get wrong values in /proc, and a BUG message in dmesg
1165 		 * when tearing down the mm.
1166 		 */
1167 		dec_mm_counter(mm, MM_ANONPAGES);
1168 	}
1169 
1170 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1171 	/*
1172 	 * No need to notify as we are replacing a read only page with another
1173 	 * read only page with the same content.
1174 	 *
1175 	 * See Documentation/vm/mmu_notifier.rst
1176 	 */
1177 	ptep_clear_flush(vma, addr, ptep);
1178 	set_pte_at_notify(mm, addr, ptep, newpte);
1179 
1180 	page_remove_rmap(page, false);
1181 	if (!page_mapped(page))
1182 		try_to_free_swap(page);
1183 	put_page(page);
1184 
1185 	pte_unmap_unlock(ptep, ptl);
1186 	err = 0;
1187 out_mn:
1188 	mmu_notifier_invalidate_range_end(&range);
1189 out:
1190 	return err;
1191 }
1192 
1193 /*
1194  * try_to_merge_one_page - take two pages and merge them into one
1195  * @vma: the vma that holds the pte pointing to page
1196  * @page: the PageAnon page that we want to replace with kpage
1197  * @kpage: the PageKsm page that we want to map instead of page,
1198  *         or NULL the first time when we want to use page as kpage.
1199  *
1200  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1201  */
1202 static int try_to_merge_one_page(struct vm_area_struct *vma,
1203 				 struct page *page, struct page *kpage)
1204 {
1205 	pte_t orig_pte = __pte(0);
1206 	int err = -EFAULT;
1207 
1208 	if (page == kpage)			/* ksm page forked */
1209 		return 0;
1210 
1211 	if (!PageAnon(page))
1212 		goto out;
1213 
1214 	/*
1215 	 * We need the page lock to read a stable PageSwapCache in
1216 	 * write_protect_page().  We use trylock_page() instead of
1217 	 * lock_page() because we don't want to wait here - we
1218 	 * prefer to continue scanning and merging different pages,
1219 	 * then come back to this page when it is unlocked.
1220 	 */
1221 	if (!trylock_page(page))
1222 		goto out;
1223 
1224 	if (PageTransCompound(page)) {
1225 		if (split_huge_page(page))
1226 			goto out_unlock;
1227 	}
1228 
1229 	/*
1230 	 * If this anonymous page is mapped only here, its pte may need
1231 	 * to be write-protected.  If it's mapped elsewhere, all of its
1232 	 * ptes are necessarily already write-protected.  But in either
1233 	 * case, we need to lock and check page_count is not raised.
1234 	 */
1235 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1236 		if (!kpage) {
1237 			/*
1238 			 * While we hold page lock, upgrade page from
1239 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1240 			 * stable_tree_insert() will update stable_node.
1241 			 */
1242 			set_page_stable_node(page, NULL);
1243 			mark_page_accessed(page);
1244 			/*
1245 			 * Page reclaim just frees a clean page with no dirty
1246 			 * ptes: make sure that the ksm page would be swapped.
1247 			 */
1248 			if (!PageDirty(page))
1249 				SetPageDirty(page);
1250 			err = 0;
1251 		} else if (pages_identical(page, kpage))
1252 			err = replace_page(vma, page, kpage, orig_pte);
1253 	}
1254 
1255 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1256 		munlock_vma_page(page);
1257 		if (!PageMlocked(kpage)) {
1258 			unlock_page(page);
1259 			lock_page(kpage);
1260 			mlock_vma_page(kpage);
1261 			page = kpage;		/* for final unlock */
1262 		}
1263 	}
1264 
1265 out_unlock:
1266 	unlock_page(page);
1267 out:
1268 	return err;
1269 }
1270 
1271 /*
1272  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1273  * but no new kernel page is allocated: kpage must already be a ksm page.
1274  *
1275  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1276  */
1277 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1278 				      struct page *page, struct page *kpage)
1279 {
1280 	struct mm_struct *mm = rmap_item->mm;
1281 	struct vm_area_struct *vma;
1282 	int err = -EFAULT;
1283 
1284 	mmap_read_lock(mm);
1285 	vma = find_mergeable_vma(mm, rmap_item->address);
1286 	if (!vma)
1287 		goto out;
1288 
1289 	err = try_to_merge_one_page(vma, page, kpage);
1290 	if (err)
1291 		goto out;
1292 
1293 	/* Unstable nid is in union with stable anon_vma: remove first */
1294 	remove_rmap_item_from_tree(rmap_item);
1295 
1296 	/* Must get reference to anon_vma while still holding mmap_lock */
1297 	rmap_item->anon_vma = vma->anon_vma;
1298 	get_anon_vma(vma->anon_vma);
1299 out:
1300 	mmap_read_unlock(mm);
1301 	return err;
1302 }
1303 
1304 /*
1305  * try_to_merge_two_pages - take two identical pages and prepare them
1306  * to be merged into one page.
1307  *
1308  * This function returns the kpage if we successfully merged two identical
1309  * pages into one ksm page, NULL otherwise.
1310  *
1311  * Note that this function upgrades page to ksm page: if one of the pages
1312  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1313  */
1314 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1315 					   struct page *page,
1316 					   struct rmap_item *tree_rmap_item,
1317 					   struct page *tree_page)
1318 {
1319 	int err;
1320 
1321 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1322 	if (!err) {
1323 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1324 							tree_page, page);
1325 		/*
1326 		 * If that fails, we have a ksm page with only one pte
1327 		 * pointing to it: so break it.
1328 		 */
1329 		if (err)
1330 			break_cow(rmap_item);
1331 	}
1332 	return err ? NULL : page;
1333 }
1334 
1335 static __always_inline
1336 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1337 {
1338 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1339 	/*
1340 	 * Check that at least one mapping still exists, otherwise
1341 	 * there's no much point to merge and share with this
1342 	 * stable_node, as the underlying tree_page of the other
1343 	 * sharer is going to be freed soon.
1344 	 */
1345 	return stable_node->rmap_hlist_len &&
1346 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1347 }
1348 
1349 static __always_inline
1350 bool is_page_sharing_candidate(struct stable_node *stable_node)
1351 {
1352 	return __is_page_sharing_candidate(stable_node, 0);
1353 }
1354 
1355 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1356 				    struct stable_node **_stable_node,
1357 				    struct rb_root *root,
1358 				    bool prune_stale_stable_nodes)
1359 {
1360 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1361 	struct hlist_node *hlist_safe;
1362 	struct page *_tree_page, *tree_page = NULL;
1363 	int nr = 0;
1364 	int found_rmap_hlist_len;
1365 
1366 	if (!prune_stale_stable_nodes ||
1367 	    time_before(jiffies, stable_node->chain_prune_time +
1368 			msecs_to_jiffies(
1369 				ksm_stable_node_chains_prune_millisecs)))
1370 		prune_stale_stable_nodes = false;
1371 	else
1372 		stable_node->chain_prune_time = jiffies;
1373 
1374 	hlist_for_each_entry_safe(dup, hlist_safe,
1375 				  &stable_node->hlist, hlist_dup) {
1376 		cond_resched();
1377 		/*
1378 		 * We must walk all stable_node_dup to prune the stale
1379 		 * stable nodes during lookup.
1380 		 *
1381 		 * get_ksm_page can drop the nodes from the
1382 		 * stable_node->hlist if they point to freed pages
1383 		 * (that's why we do a _safe walk). The "dup"
1384 		 * stable_node parameter itself will be freed from
1385 		 * under us if it returns NULL.
1386 		 */
1387 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1388 		if (!_tree_page)
1389 			continue;
1390 		nr += 1;
1391 		if (is_page_sharing_candidate(dup)) {
1392 			if (!found ||
1393 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1394 				if (found)
1395 					put_page(tree_page);
1396 				found = dup;
1397 				found_rmap_hlist_len = found->rmap_hlist_len;
1398 				tree_page = _tree_page;
1399 
1400 				/* skip put_page for found dup */
1401 				if (!prune_stale_stable_nodes)
1402 					break;
1403 				continue;
1404 			}
1405 		}
1406 		put_page(_tree_page);
1407 	}
1408 
1409 	if (found) {
1410 		/*
1411 		 * nr is counting all dups in the chain only if
1412 		 * prune_stale_stable_nodes is true, otherwise we may
1413 		 * break the loop at nr == 1 even if there are
1414 		 * multiple entries.
1415 		 */
1416 		if (prune_stale_stable_nodes && nr == 1) {
1417 			/*
1418 			 * If there's not just one entry it would
1419 			 * corrupt memory, better BUG_ON. In KSM
1420 			 * context with no lock held it's not even
1421 			 * fatal.
1422 			 */
1423 			BUG_ON(stable_node->hlist.first->next);
1424 
1425 			/*
1426 			 * There's just one entry and it is below the
1427 			 * deduplication limit so drop the chain.
1428 			 */
1429 			rb_replace_node(&stable_node->node, &found->node,
1430 					root);
1431 			free_stable_node(stable_node);
1432 			ksm_stable_node_chains--;
1433 			ksm_stable_node_dups--;
1434 			/*
1435 			 * NOTE: the caller depends on the stable_node
1436 			 * to be equal to stable_node_dup if the chain
1437 			 * was collapsed.
1438 			 */
1439 			*_stable_node = found;
1440 			/*
1441 			 * Just for robustneess as stable_node is
1442 			 * otherwise left as a stable pointer, the
1443 			 * compiler shall optimize it away at build
1444 			 * time.
1445 			 */
1446 			stable_node = NULL;
1447 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1448 			   __is_page_sharing_candidate(found, 1)) {
1449 			/*
1450 			 * If the found stable_node dup can accept one
1451 			 * more future merge (in addition to the one
1452 			 * that is underway) and is not at the head of
1453 			 * the chain, put it there so next search will
1454 			 * be quicker in the !prune_stale_stable_nodes
1455 			 * case.
1456 			 *
1457 			 * NOTE: it would be inaccurate to use nr > 1
1458 			 * instead of checking the hlist.first pointer
1459 			 * directly, because in the
1460 			 * prune_stale_stable_nodes case "nr" isn't
1461 			 * the position of the found dup in the chain,
1462 			 * but the total number of dups in the chain.
1463 			 */
1464 			hlist_del(&found->hlist_dup);
1465 			hlist_add_head(&found->hlist_dup,
1466 				       &stable_node->hlist);
1467 		}
1468 	}
1469 
1470 	*_stable_node_dup = found;
1471 	return tree_page;
1472 }
1473 
1474 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1475 					       struct rb_root *root)
1476 {
1477 	if (!is_stable_node_chain(stable_node))
1478 		return stable_node;
1479 	if (hlist_empty(&stable_node->hlist)) {
1480 		free_stable_node_chain(stable_node, root);
1481 		return NULL;
1482 	}
1483 	return hlist_entry(stable_node->hlist.first,
1484 			   typeof(*stable_node), hlist_dup);
1485 }
1486 
1487 /*
1488  * Like for get_ksm_page, this function can free the *_stable_node and
1489  * *_stable_node_dup if the returned tree_page is NULL.
1490  *
1491  * It can also free and overwrite *_stable_node with the found
1492  * stable_node_dup if the chain is collapsed (in which case
1493  * *_stable_node will be equal to *_stable_node_dup like if the chain
1494  * never existed). It's up to the caller to verify tree_page is not
1495  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1496  *
1497  * *_stable_node_dup is really a second output parameter of this
1498  * function and will be overwritten in all cases, the caller doesn't
1499  * need to initialize it.
1500  */
1501 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1502 					struct stable_node **_stable_node,
1503 					struct rb_root *root,
1504 					bool prune_stale_stable_nodes)
1505 {
1506 	struct stable_node *stable_node = *_stable_node;
1507 	if (!is_stable_node_chain(stable_node)) {
1508 		if (is_page_sharing_candidate(stable_node)) {
1509 			*_stable_node_dup = stable_node;
1510 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1511 		}
1512 		/*
1513 		 * _stable_node_dup set to NULL means the stable_node
1514 		 * reached the ksm_max_page_sharing limit.
1515 		 */
1516 		*_stable_node_dup = NULL;
1517 		return NULL;
1518 	}
1519 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1520 			       prune_stale_stable_nodes);
1521 }
1522 
1523 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1524 						struct stable_node **s_n,
1525 						struct rb_root *root)
1526 {
1527 	return __stable_node_chain(s_n_d, s_n, root, true);
1528 }
1529 
1530 static __always_inline struct page *chain(struct stable_node **s_n_d,
1531 					  struct stable_node *s_n,
1532 					  struct rb_root *root)
1533 {
1534 	struct stable_node *old_stable_node = s_n;
1535 	struct page *tree_page;
1536 
1537 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1538 	/* not pruning dups so s_n cannot have changed */
1539 	VM_BUG_ON(s_n != old_stable_node);
1540 	return tree_page;
1541 }
1542 
1543 /*
1544  * stable_tree_search - search for page inside the stable tree
1545  *
1546  * This function checks if there is a page inside the stable tree
1547  * with identical content to the page that we are scanning right now.
1548  *
1549  * This function returns the stable tree node of identical content if found,
1550  * NULL otherwise.
1551  */
1552 static struct page *stable_tree_search(struct page *page)
1553 {
1554 	int nid;
1555 	struct rb_root *root;
1556 	struct rb_node **new;
1557 	struct rb_node *parent;
1558 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1559 	struct stable_node *page_node;
1560 
1561 	page_node = page_stable_node(page);
1562 	if (page_node && page_node->head != &migrate_nodes) {
1563 		/* ksm page forked */
1564 		get_page(page);
1565 		return page;
1566 	}
1567 
1568 	nid = get_kpfn_nid(page_to_pfn(page));
1569 	root = root_stable_tree + nid;
1570 again:
1571 	new = &root->rb_node;
1572 	parent = NULL;
1573 
1574 	while (*new) {
1575 		struct page *tree_page;
1576 		int ret;
1577 
1578 		cond_resched();
1579 		stable_node = rb_entry(*new, struct stable_node, node);
1580 		stable_node_any = NULL;
1581 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1582 		/*
1583 		 * NOTE: stable_node may have been freed by
1584 		 * chain_prune() if the returned stable_node_dup is
1585 		 * not NULL. stable_node_dup may have been inserted in
1586 		 * the rbtree instead as a regular stable_node (in
1587 		 * order to collapse the stable_node chain if a single
1588 		 * stable_node dup was found in it). In such case the
1589 		 * stable_node is overwritten by the calleee to point
1590 		 * to the stable_node_dup that was collapsed in the
1591 		 * stable rbtree and stable_node will be equal to
1592 		 * stable_node_dup like if the chain never existed.
1593 		 */
1594 		if (!stable_node_dup) {
1595 			/*
1596 			 * Either all stable_node dups were full in
1597 			 * this stable_node chain, or this chain was
1598 			 * empty and should be rb_erased.
1599 			 */
1600 			stable_node_any = stable_node_dup_any(stable_node,
1601 							      root);
1602 			if (!stable_node_any) {
1603 				/* rb_erase just run */
1604 				goto again;
1605 			}
1606 			/*
1607 			 * Take any of the stable_node dups page of
1608 			 * this stable_node chain to let the tree walk
1609 			 * continue. All KSM pages belonging to the
1610 			 * stable_node dups in a stable_node chain
1611 			 * have the same content and they're
1612 			 * write protected at all times. Any will work
1613 			 * fine to continue the walk.
1614 			 */
1615 			tree_page = get_ksm_page(stable_node_any,
1616 						 GET_KSM_PAGE_NOLOCK);
1617 		}
1618 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1619 		if (!tree_page) {
1620 			/*
1621 			 * If we walked over a stale stable_node,
1622 			 * get_ksm_page() will call rb_erase() and it
1623 			 * may rebalance the tree from under us. So
1624 			 * restart the search from scratch. Returning
1625 			 * NULL would be safe too, but we'd generate
1626 			 * false negative insertions just because some
1627 			 * stable_node was stale.
1628 			 */
1629 			goto again;
1630 		}
1631 
1632 		ret = memcmp_pages(page, tree_page);
1633 		put_page(tree_page);
1634 
1635 		parent = *new;
1636 		if (ret < 0)
1637 			new = &parent->rb_left;
1638 		else if (ret > 0)
1639 			new = &parent->rb_right;
1640 		else {
1641 			if (page_node) {
1642 				VM_BUG_ON(page_node->head != &migrate_nodes);
1643 				/*
1644 				 * Test if the migrated page should be merged
1645 				 * into a stable node dup. If the mapcount is
1646 				 * 1 we can migrate it with another KSM page
1647 				 * without adding it to the chain.
1648 				 */
1649 				if (page_mapcount(page) > 1)
1650 					goto chain_append;
1651 			}
1652 
1653 			if (!stable_node_dup) {
1654 				/*
1655 				 * If the stable_node is a chain and
1656 				 * we got a payload match in memcmp
1657 				 * but we cannot merge the scanned
1658 				 * page in any of the existing
1659 				 * stable_node dups because they're
1660 				 * all full, we need to wait the
1661 				 * scanned page to find itself a match
1662 				 * in the unstable tree to create a
1663 				 * brand new KSM page to add later to
1664 				 * the dups of this stable_node.
1665 				 */
1666 				return NULL;
1667 			}
1668 
1669 			/*
1670 			 * Lock and unlock the stable_node's page (which
1671 			 * might already have been migrated) so that page
1672 			 * migration is sure to notice its raised count.
1673 			 * It would be more elegant to return stable_node
1674 			 * than kpage, but that involves more changes.
1675 			 */
1676 			tree_page = get_ksm_page(stable_node_dup,
1677 						 GET_KSM_PAGE_TRYLOCK);
1678 
1679 			if (PTR_ERR(tree_page) == -EBUSY)
1680 				return ERR_PTR(-EBUSY);
1681 
1682 			if (unlikely(!tree_page))
1683 				/*
1684 				 * The tree may have been rebalanced,
1685 				 * so re-evaluate parent and new.
1686 				 */
1687 				goto again;
1688 			unlock_page(tree_page);
1689 
1690 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1691 			    NUMA(stable_node_dup->nid)) {
1692 				put_page(tree_page);
1693 				goto replace;
1694 			}
1695 			return tree_page;
1696 		}
1697 	}
1698 
1699 	if (!page_node)
1700 		return NULL;
1701 
1702 	list_del(&page_node->list);
1703 	DO_NUMA(page_node->nid = nid);
1704 	rb_link_node(&page_node->node, parent, new);
1705 	rb_insert_color(&page_node->node, root);
1706 out:
1707 	if (is_page_sharing_candidate(page_node)) {
1708 		get_page(page);
1709 		return page;
1710 	} else
1711 		return NULL;
1712 
1713 replace:
1714 	/*
1715 	 * If stable_node was a chain and chain_prune collapsed it,
1716 	 * stable_node has been updated to be the new regular
1717 	 * stable_node. A collapse of the chain is indistinguishable
1718 	 * from the case there was no chain in the stable
1719 	 * rbtree. Otherwise stable_node is the chain and
1720 	 * stable_node_dup is the dup to replace.
1721 	 */
1722 	if (stable_node_dup == stable_node) {
1723 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1724 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1725 		/* there is no chain */
1726 		if (page_node) {
1727 			VM_BUG_ON(page_node->head != &migrate_nodes);
1728 			list_del(&page_node->list);
1729 			DO_NUMA(page_node->nid = nid);
1730 			rb_replace_node(&stable_node_dup->node,
1731 					&page_node->node,
1732 					root);
1733 			if (is_page_sharing_candidate(page_node))
1734 				get_page(page);
1735 			else
1736 				page = NULL;
1737 		} else {
1738 			rb_erase(&stable_node_dup->node, root);
1739 			page = NULL;
1740 		}
1741 	} else {
1742 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1743 		__stable_node_dup_del(stable_node_dup);
1744 		if (page_node) {
1745 			VM_BUG_ON(page_node->head != &migrate_nodes);
1746 			list_del(&page_node->list);
1747 			DO_NUMA(page_node->nid = nid);
1748 			stable_node_chain_add_dup(page_node, stable_node);
1749 			if (is_page_sharing_candidate(page_node))
1750 				get_page(page);
1751 			else
1752 				page = NULL;
1753 		} else {
1754 			page = NULL;
1755 		}
1756 	}
1757 	stable_node_dup->head = &migrate_nodes;
1758 	list_add(&stable_node_dup->list, stable_node_dup->head);
1759 	return page;
1760 
1761 chain_append:
1762 	/* stable_node_dup could be null if it reached the limit */
1763 	if (!stable_node_dup)
1764 		stable_node_dup = stable_node_any;
1765 	/*
1766 	 * If stable_node was a chain and chain_prune collapsed it,
1767 	 * stable_node has been updated to be the new regular
1768 	 * stable_node. A collapse of the chain is indistinguishable
1769 	 * from the case there was no chain in the stable
1770 	 * rbtree. Otherwise stable_node is the chain and
1771 	 * stable_node_dup is the dup to replace.
1772 	 */
1773 	if (stable_node_dup == stable_node) {
1774 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1775 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1776 		/* chain is missing so create it */
1777 		stable_node = alloc_stable_node_chain(stable_node_dup,
1778 						      root);
1779 		if (!stable_node)
1780 			return NULL;
1781 	}
1782 	/*
1783 	 * Add this stable_node dup that was
1784 	 * migrated to the stable_node chain
1785 	 * of the current nid for this page
1786 	 * content.
1787 	 */
1788 	VM_BUG_ON(!is_stable_node_chain(stable_node));
1789 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1790 	VM_BUG_ON(page_node->head != &migrate_nodes);
1791 	list_del(&page_node->list);
1792 	DO_NUMA(page_node->nid = nid);
1793 	stable_node_chain_add_dup(page_node, stable_node);
1794 	goto out;
1795 }
1796 
1797 /*
1798  * stable_tree_insert - insert stable tree node pointing to new ksm page
1799  * into the stable tree.
1800  *
1801  * This function returns the stable tree node just allocated on success,
1802  * NULL otherwise.
1803  */
1804 static struct stable_node *stable_tree_insert(struct page *kpage)
1805 {
1806 	int nid;
1807 	unsigned long kpfn;
1808 	struct rb_root *root;
1809 	struct rb_node **new;
1810 	struct rb_node *parent;
1811 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1812 	bool need_chain = false;
1813 
1814 	kpfn = page_to_pfn(kpage);
1815 	nid = get_kpfn_nid(kpfn);
1816 	root = root_stable_tree + nid;
1817 again:
1818 	parent = NULL;
1819 	new = &root->rb_node;
1820 
1821 	while (*new) {
1822 		struct page *tree_page;
1823 		int ret;
1824 
1825 		cond_resched();
1826 		stable_node = rb_entry(*new, struct stable_node, node);
1827 		stable_node_any = NULL;
1828 		tree_page = chain(&stable_node_dup, stable_node, root);
1829 		if (!stable_node_dup) {
1830 			/*
1831 			 * Either all stable_node dups were full in
1832 			 * this stable_node chain, or this chain was
1833 			 * empty and should be rb_erased.
1834 			 */
1835 			stable_node_any = stable_node_dup_any(stable_node,
1836 							      root);
1837 			if (!stable_node_any) {
1838 				/* rb_erase just run */
1839 				goto again;
1840 			}
1841 			/*
1842 			 * Take any of the stable_node dups page of
1843 			 * this stable_node chain to let the tree walk
1844 			 * continue. All KSM pages belonging to the
1845 			 * stable_node dups in a stable_node chain
1846 			 * have the same content and they're
1847 			 * write protected at all times. Any will work
1848 			 * fine to continue the walk.
1849 			 */
1850 			tree_page = get_ksm_page(stable_node_any,
1851 						 GET_KSM_PAGE_NOLOCK);
1852 		}
1853 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1854 		if (!tree_page) {
1855 			/*
1856 			 * If we walked over a stale stable_node,
1857 			 * get_ksm_page() will call rb_erase() and it
1858 			 * may rebalance the tree from under us. So
1859 			 * restart the search from scratch. Returning
1860 			 * NULL would be safe too, but we'd generate
1861 			 * false negative insertions just because some
1862 			 * stable_node was stale.
1863 			 */
1864 			goto again;
1865 		}
1866 
1867 		ret = memcmp_pages(kpage, tree_page);
1868 		put_page(tree_page);
1869 
1870 		parent = *new;
1871 		if (ret < 0)
1872 			new = &parent->rb_left;
1873 		else if (ret > 0)
1874 			new = &parent->rb_right;
1875 		else {
1876 			need_chain = true;
1877 			break;
1878 		}
1879 	}
1880 
1881 	stable_node_dup = alloc_stable_node();
1882 	if (!stable_node_dup)
1883 		return NULL;
1884 
1885 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1886 	stable_node_dup->kpfn = kpfn;
1887 	set_page_stable_node(kpage, stable_node_dup);
1888 	stable_node_dup->rmap_hlist_len = 0;
1889 	DO_NUMA(stable_node_dup->nid = nid);
1890 	if (!need_chain) {
1891 		rb_link_node(&stable_node_dup->node, parent, new);
1892 		rb_insert_color(&stable_node_dup->node, root);
1893 	} else {
1894 		if (!is_stable_node_chain(stable_node)) {
1895 			struct stable_node *orig = stable_node;
1896 			/* chain is missing so create it */
1897 			stable_node = alloc_stable_node_chain(orig, root);
1898 			if (!stable_node) {
1899 				free_stable_node(stable_node_dup);
1900 				return NULL;
1901 			}
1902 		}
1903 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1904 	}
1905 
1906 	return stable_node_dup;
1907 }
1908 
1909 /*
1910  * unstable_tree_search_insert - search for identical page,
1911  * else insert rmap_item into the unstable tree.
1912  *
1913  * This function searches for a page in the unstable tree identical to the
1914  * page currently being scanned; and if no identical page is found in the
1915  * tree, we insert rmap_item as a new object into the unstable tree.
1916  *
1917  * This function returns pointer to rmap_item found to be identical
1918  * to the currently scanned page, NULL otherwise.
1919  *
1920  * This function does both searching and inserting, because they share
1921  * the same walking algorithm in an rbtree.
1922  */
1923 static
1924 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1925 					      struct page *page,
1926 					      struct page **tree_pagep)
1927 {
1928 	struct rb_node **new;
1929 	struct rb_root *root;
1930 	struct rb_node *parent = NULL;
1931 	int nid;
1932 
1933 	nid = get_kpfn_nid(page_to_pfn(page));
1934 	root = root_unstable_tree + nid;
1935 	new = &root->rb_node;
1936 
1937 	while (*new) {
1938 		struct rmap_item *tree_rmap_item;
1939 		struct page *tree_page;
1940 		int ret;
1941 
1942 		cond_resched();
1943 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1944 		tree_page = get_mergeable_page(tree_rmap_item);
1945 		if (!tree_page)
1946 			return NULL;
1947 
1948 		/*
1949 		 * Don't substitute a ksm page for a forked page.
1950 		 */
1951 		if (page == tree_page) {
1952 			put_page(tree_page);
1953 			return NULL;
1954 		}
1955 
1956 		ret = memcmp_pages(page, tree_page);
1957 
1958 		parent = *new;
1959 		if (ret < 0) {
1960 			put_page(tree_page);
1961 			new = &parent->rb_left;
1962 		} else if (ret > 0) {
1963 			put_page(tree_page);
1964 			new = &parent->rb_right;
1965 		} else if (!ksm_merge_across_nodes &&
1966 			   page_to_nid(tree_page) != nid) {
1967 			/*
1968 			 * If tree_page has been migrated to another NUMA node,
1969 			 * it will be flushed out and put in the right unstable
1970 			 * tree next time: only merge with it when across_nodes.
1971 			 */
1972 			put_page(tree_page);
1973 			return NULL;
1974 		} else {
1975 			*tree_pagep = tree_page;
1976 			return tree_rmap_item;
1977 		}
1978 	}
1979 
1980 	rmap_item->address |= UNSTABLE_FLAG;
1981 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1982 	DO_NUMA(rmap_item->nid = nid);
1983 	rb_link_node(&rmap_item->node, parent, new);
1984 	rb_insert_color(&rmap_item->node, root);
1985 
1986 	ksm_pages_unshared++;
1987 	return NULL;
1988 }
1989 
1990 /*
1991  * stable_tree_append - add another rmap_item to the linked list of
1992  * rmap_items hanging off a given node of the stable tree, all sharing
1993  * the same ksm page.
1994  */
1995 static void stable_tree_append(struct rmap_item *rmap_item,
1996 			       struct stable_node *stable_node,
1997 			       bool max_page_sharing_bypass)
1998 {
1999 	/*
2000 	 * rmap won't find this mapping if we don't insert the
2001 	 * rmap_item in the right stable_node
2002 	 * duplicate. page_migration could break later if rmap breaks,
2003 	 * so we can as well crash here. We really need to check for
2004 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2005 	 * for other negative values as an underflow if detected here
2006 	 * for the first time (and not when decreasing rmap_hlist_len)
2007 	 * would be sign of memory corruption in the stable_node.
2008 	 */
2009 	BUG_ON(stable_node->rmap_hlist_len < 0);
2010 
2011 	stable_node->rmap_hlist_len++;
2012 	if (!max_page_sharing_bypass)
2013 		/* possibly non fatal but unexpected overflow, only warn */
2014 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2015 			     ksm_max_page_sharing);
2016 
2017 	rmap_item->head = stable_node;
2018 	rmap_item->address |= STABLE_FLAG;
2019 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2020 
2021 	if (rmap_item->hlist.next)
2022 		ksm_pages_sharing++;
2023 	else
2024 		ksm_pages_shared++;
2025 }
2026 
2027 /*
2028  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2029  * if not, compare checksum to previous and if it's the same, see if page can
2030  * be inserted into the unstable tree, or merged with a page already there and
2031  * both transferred to the stable tree.
2032  *
2033  * @page: the page that we are searching identical page to.
2034  * @rmap_item: the reverse mapping into the virtual address of this page
2035  */
2036 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2037 {
2038 	struct mm_struct *mm = rmap_item->mm;
2039 	struct rmap_item *tree_rmap_item;
2040 	struct page *tree_page = NULL;
2041 	struct stable_node *stable_node;
2042 	struct page *kpage;
2043 	unsigned int checksum;
2044 	int err;
2045 	bool max_page_sharing_bypass = false;
2046 
2047 	stable_node = page_stable_node(page);
2048 	if (stable_node) {
2049 		if (stable_node->head != &migrate_nodes &&
2050 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2051 		    NUMA(stable_node->nid)) {
2052 			stable_node_dup_del(stable_node);
2053 			stable_node->head = &migrate_nodes;
2054 			list_add(&stable_node->list, stable_node->head);
2055 		}
2056 		if (stable_node->head != &migrate_nodes &&
2057 		    rmap_item->head == stable_node)
2058 			return;
2059 		/*
2060 		 * If it's a KSM fork, allow it to go over the sharing limit
2061 		 * without warnings.
2062 		 */
2063 		if (!is_page_sharing_candidate(stable_node))
2064 			max_page_sharing_bypass = true;
2065 	}
2066 
2067 	/* We first start with searching the page inside the stable tree */
2068 	kpage = stable_tree_search(page);
2069 	if (kpage == page && rmap_item->head == stable_node) {
2070 		put_page(kpage);
2071 		return;
2072 	}
2073 
2074 	remove_rmap_item_from_tree(rmap_item);
2075 
2076 	if (kpage) {
2077 		if (PTR_ERR(kpage) == -EBUSY)
2078 			return;
2079 
2080 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2081 		if (!err) {
2082 			/*
2083 			 * The page was successfully merged:
2084 			 * add its rmap_item to the stable tree.
2085 			 */
2086 			lock_page(kpage);
2087 			stable_tree_append(rmap_item, page_stable_node(kpage),
2088 					   max_page_sharing_bypass);
2089 			unlock_page(kpage);
2090 		}
2091 		put_page(kpage);
2092 		return;
2093 	}
2094 
2095 	/*
2096 	 * If the hash value of the page has changed from the last time
2097 	 * we calculated it, this page is changing frequently: therefore we
2098 	 * don't want to insert it in the unstable tree, and we don't want
2099 	 * to waste our time searching for something identical to it there.
2100 	 */
2101 	checksum = calc_checksum(page);
2102 	if (rmap_item->oldchecksum != checksum) {
2103 		rmap_item->oldchecksum = checksum;
2104 		return;
2105 	}
2106 
2107 	/*
2108 	 * Same checksum as an empty page. We attempt to merge it with the
2109 	 * appropriate zero page if the user enabled this via sysfs.
2110 	 */
2111 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2112 		struct vm_area_struct *vma;
2113 
2114 		mmap_read_lock(mm);
2115 		vma = find_mergeable_vma(mm, rmap_item->address);
2116 		if (vma) {
2117 			err = try_to_merge_one_page(vma, page,
2118 					ZERO_PAGE(rmap_item->address));
2119 		} else {
2120 			/*
2121 			 * If the vma is out of date, we do not need to
2122 			 * continue.
2123 			 */
2124 			err = 0;
2125 		}
2126 		mmap_read_unlock(mm);
2127 		/*
2128 		 * In case of failure, the page was not really empty, so we
2129 		 * need to continue. Otherwise we're done.
2130 		 */
2131 		if (!err)
2132 			return;
2133 	}
2134 	tree_rmap_item =
2135 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2136 	if (tree_rmap_item) {
2137 		bool split;
2138 
2139 		kpage = try_to_merge_two_pages(rmap_item, page,
2140 						tree_rmap_item, tree_page);
2141 		/*
2142 		 * If both pages we tried to merge belong to the same compound
2143 		 * page, then we actually ended up increasing the reference
2144 		 * count of the same compound page twice, and split_huge_page
2145 		 * failed.
2146 		 * Here we set a flag if that happened, and we use it later to
2147 		 * try split_huge_page again. Since we call put_page right
2148 		 * afterwards, the reference count will be correct and
2149 		 * split_huge_page should succeed.
2150 		 */
2151 		split = PageTransCompound(page)
2152 			&& compound_head(page) == compound_head(tree_page);
2153 		put_page(tree_page);
2154 		if (kpage) {
2155 			/*
2156 			 * The pages were successfully merged: insert new
2157 			 * node in the stable tree and add both rmap_items.
2158 			 */
2159 			lock_page(kpage);
2160 			stable_node = stable_tree_insert(kpage);
2161 			if (stable_node) {
2162 				stable_tree_append(tree_rmap_item, stable_node,
2163 						   false);
2164 				stable_tree_append(rmap_item, stable_node,
2165 						   false);
2166 			}
2167 			unlock_page(kpage);
2168 
2169 			/*
2170 			 * If we fail to insert the page into the stable tree,
2171 			 * we will have 2 virtual addresses that are pointing
2172 			 * to a ksm page left outside the stable tree,
2173 			 * in which case we need to break_cow on both.
2174 			 */
2175 			if (!stable_node) {
2176 				break_cow(tree_rmap_item);
2177 				break_cow(rmap_item);
2178 			}
2179 		} else if (split) {
2180 			/*
2181 			 * We are here if we tried to merge two pages and
2182 			 * failed because they both belonged to the same
2183 			 * compound page. We will split the page now, but no
2184 			 * merging will take place.
2185 			 * We do not want to add the cost of a full lock; if
2186 			 * the page is locked, it is better to skip it and
2187 			 * perhaps try again later.
2188 			 */
2189 			if (!trylock_page(page))
2190 				return;
2191 			split_huge_page(page);
2192 			unlock_page(page);
2193 		}
2194 	}
2195 }
2196 
2197 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2198 					    struct rmap_item **rmap_list,
2199 					    unsigned long addr)
2200 {
2201 	struct rmap_item *rmap_item;
2202 
2203 	while (*rmap_list) {
2204 		rmap_item = *rmap_list;
2205 		if ((rmap_item->address & PAGE_MASK) == addr)
2206 			return rmap_item;
2207 		if (rmap_item->address > addr)
2208 			break;
2209 		*rmap_list = rmap_item->rmap_list;
2210 		remove_rmap_item_from_tree(rmap_item);
2211 		free_rmap_item(rmap_item);
2212 	}
2213 
2214 	rmap_item = alloc_rmap_item();
2215 	if (rmap_item) {
2216 		/* It has already been zeroed */
2217 		rmap_item->mm = mm_slot->mm;
2218 		rmap_item->address = addr;
2219 		rmap_item->rmap_list = *rmap_list;
2220 		*rmap_list = rmap_item;
2221 	}
2222 	return rmap_item;
2223 }
2224 
2225 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2226 {
2227 	struct mm_struct *mm;
2228 	struct mm_slot *slot;
2229 	struct vm_area_struct *vma;
2230 	struct rmap_item *rmap_item;
2231 	int nid;
2232 
2233 	if (list_empty(&ksm_mm_head.mm_list))
2234 		return NULL;
2235 
2236 	slot = ksm_scan.mm_slot;
2237 	if (slot == &ksm_mm_head) {
2238 		/*
2239 		 * A number of pages can hang around indefinitely on per-cpu
2240 		 * pagevecs, raised page count preventing write_protect_page
2241 		 * from merging them.  Though it doesn't really matter much,
2242 		 * it is puzzling to see some stuck in pages_volatile until
2243 		 * other activity jostles them out, and they also prevented
2244 		 * LTP's KSM test from succeeding deterministically; so drain
2245 		 * them here (here rather than on entry to ksm_do_scan(),
2246 		 * so we don't IPI too often when pages_to_scan is set low).
2247 		 */
2248 		lru_add_drain_all();
2249 
2250 		/*
2251 		 * Whereas stale stable_nodes on the stable_tree itself
2252 		 * get pruned in the regular course of stable_tree_search(),
2253 		 * those moved out to the migrate_nodes list can accumulate:
2254 		 * so prune them once before each full scan.
2255 		 */
2256 		if (!ksm_merge_across_nodes) {
2257 			struct stable_node *stable_node, *next;
2258 			struct page *page;
2259 
2260 			list_for_each_entry_safe(stable_node, next,
2261 						 &migrate_nodes, list) {
2262 				page = get_ksm_page(stable_node,
2263 						    GET_KSM_PAGE_NOLOCK);
2264 				if (page)
2265 					put_page(page);
2266 				cond_resched();
2267 			}
2268 		}
2269 
2270 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2271 			root_unstable_tree[nid] = RB_ROOT;
2272 
2273 		spin_lock(&ksm_mmlist_lock);
2274 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2275 		ksm_scan.mm_slot = slot;
2276 		spin_unlock(&ksm_mmlist_lock);
2277 		/*
2278 		 * Although we tested list_empty() above, a racing __ksm_exit
2279 		 * of the last mm on the list may have removed it since then.
2280 		 */
2281 		if (slot == &ksm_mm_head)
2282 			return NULL;
2283 next_mm:
2284 		ksm_scan.address = 0;
2285 		ksm_scan.rmap_list = &slot->rmap_list;
2286 	}
2287 
2288 	mm = slot->mm;
2289 	mmap_read_lock(mm);
2290 	if (ksm_test_exit(mm))
2291 		vma = NULL;
2292 	else
2293 		vma = find_vma(mm, ksm_scan.address);
2294 
2295 	for (; vma; vma = vma->vm_next) {
2296 		if (!(vma->vm_flags & VM_MERGEABLE))
2297 			continue;
2298 		if (ksm_scan.address < vma->vm_start)
2299 			ksm_scan.address = vma->vm_start;
2300 		if (!vma->anon_vma)
2301 			ksm_scan.address = vma->vm_end;
2302 
2303 		while (ksm_scan.address < vma->vm_end) {
2304 			if (ksm_test_exit(mm))
2305 				break;
2306 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2307 			if (IS_ERR_OR_NULL(*page)) {
2308 				ksm_scan.address += PAGE_SIZE;
2309 				cond_resched();
2310 				continue;
2311 			}
2312 			if (PageAnon(*page)) {
2313 				flush_anon_page(vma, *page, ksm_scan.address);
2314 				flush_dcache_page(*page);
2315 				rmap_item = get_next_rmap_item(slot,
2316 					ksm_scan.rmap_list, ksm_scan.address);
2317 				if (rmap_item) {
2318 					ksm_scan.rmap_list =
2319 							&rmap_item->rmap_list;
2320 					ksm_scan.address += PAGE_SIZE;
2321 				} else
2322 					put_page(*page);
2323 				mmap_read_unlock(mm);
2324 				return rmap_item;
2325 			}
2326 			put_page(*page);
2327 			ksm_scan.address += PAGE_SIZE;
2328 			cond_resched();
2329 		}
2330 	}
2331 
2332 	if (ksm_test_exit(mm)) {
2333 		ksm_scan.address = 0;
2334 		ksm_scan.rmap_list = &slot->rmap_list;
2335 	}
2336 	/*
2337 	 * Nuke all the rmap_items that are above this current rmap:
2338 	 * because there were no VM_MERGEABLE vmas with such addresses.
2339 	 */
2340 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2341 
2342 	spin_lock(&ksm_mmlist_lock);
2343 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2344 						struct mm_slot, mm_list);
2345 	if (ksm_scan.address == 0) {
2346 		/*
2347 		 * We've completed a full scan of all vmas, holding mmap_lock
2348 		 * throughout, and found no VM_MERGEABLE: so do the same as
2349 		 * __ksm_exit does to remove this mm from all our lists now.
2350 		 * This applies either when cleaning up after __ksm_exit
2351 		 * (but beware: we can reach here even before __ksm_exit),
2352 		 * or when all VM_MERGEABLE areas have been unmapped (and
2353 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2354 		 */
2355 		hash_del(&slot->link);
2356 		list_del(&slot->mm_list);
2357 		spin_unlock(&ksm_mmlist_lock);
2358 
2359 		free_mm_slot(slot);
2360 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2361 		mmap_read_unlock(mm);
2362 		mmdrop(mm);
2363 	} else {
2364 		mmap_read_unlock(mm);
2365 		/*
2366 		 * mmap_read_unlock(mm) first because after
2367 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2368 		 * already have been freed under us by __ksm_exit()
2369 		 * because the "mm_slot" is still hashed and
2370 		 * ksm_scan.mm_slot doesn't point to it anymore.
2371 		 */
2372 		spin_unlock(&ksm_mmlist_lock);
2373 	}
2374 
2375 	/* Repeat until we've completed scanning the whole list */
2376 	slot = ksm_scan.mm_slot;
2377 	if (slot != &ksm_mm_head)
2378 		goto next_mm;
2379 
2380 	ksm_scan.seqnr++;
2381 	return NULL;
2382 }
2383 
2384 /**
2385  * ksm_do_scan  - the ksm scanner main worker function.
2386  * @scan_npages:  number of pages we want to scan before we return.
2387  */
2388 static void ksm_do_scan(unsigned int scan_npages)
2389 {
2390 	struct rmap_item *rmap_item;
2391 	struct page *page;
2392 
2393 	while (scan_npages-- && likely(!freezing(current))) {
2394 		cond_resched();
2395 		rmap_item = scan_get_next_rmap_item(&page);
2396 		if (!rmap_item)
2397 			return;
2398 		cmp_and_merge_page(page, rmap_item);
2399 		put_page(page);
2400 	}
2401 }
2402 
2403 static int ksmd_should_run(void)
2404 {
2405 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2406 }
2407 
2408 static int ksm_scan_thread(void *nothing)
2409 {
2410 	unsigned int sleep_ms;
2411 
2412 	set_freezable();
2413 	set_user_nice(current, 5);
2414 
2415 	while (!kthread_should_stop()) {
2416 		mutex_lock(&ksm_thread_mutex);
2417 		wait_while_offlining();
2418 		if (ksmd_should_run())
2419 			ksm_do_scan(ksm_thread_pages_to_scan);
2420 		mutex_unlock(&ksm_thread_mutex);
2421 
2422 		try_to_freeze();
2423 
2424 		if (ksmd_should_run()) {
2425 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2426 			wait_event_interruptible_timeout(ksm_iter_wait,
2427 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2428 				msecs_to_jiffies(sleep_ms));
2429 		} else {
2430 			wait_event_freezable(ksm_thread_wait,
2431 				ksmd_should_run() || kthread_should_stop());
2432 		}
2433 	}
2434 	return 0;
2435 }
2436 
2437 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2438 		unsigned long end, int advice, unsigned long *vm_flags)
2439 {
2440 	struct mm_struct *mm = vma->vm_mm;
2441 	int err;
2442 
2443 	switch (advice) {
2444 	case MADV_MERGEABLE:
2445 		/*
2446 		 * Be somewhat over-protective for now!
2447 		 */
2448 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2449 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2450 				 VM_HUGETLB | VM_MIXEDMAP))
2451 			return 0;		/* just ignore the advice */
2452 
2453 		if (vma_is_dax(vma))
2454 			return 0;
2455 
2456 #ifdef VM_SAO
2457 		if (*vm_flags & VM_SAO)
2458 			return 0;
2459 #endif
2460 #ifdef VM_SPARC_ADI
2461 		if (*vm_flags & VM_SPARC_ADI)
2462 			return 0;
2463 #endif
2464 
2465 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2466 			err = __ksm_enter(mm);
2467 			if (err)
2468 				return err;
2469 		}
2470 
2471 		*vm_flags |= VM_MERGEABLE;
2472 		break;
2473 
2474 	case MADV_UNMERGEABLE:
2475 		if (!(*vm_flags & VM_MERGEABLE))
2476 			return 0;		/* just ignore the advice */
2477 
2478 		if (vma->anon_vma) {
2479 			err = unmerge_ksm_pages(vma, start, end);
2480 			if (err)
2481 				return err;
2482 		}
2483 
2484 		*vm_flags &= ~VM_MERGEABLE;
2485 		break;
2486 	}
2487 
2488 	return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(ksm_madvise);
2491 
2492 int __ksm_enter(struct mm_struct *mm)
2493 {
2494 	struct mm_slot *mm_slot;
2495 	int needs_wakeup;
2496 
2497 	mm_slot = alloc_mm_slot();
2498 	if (!mm_slot)
2499 		return -ENOMEM;
2500 
2501 	/* Check ksm_run too?  Would need tighter locking */
2502 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2503 
2504 	spin_lock(&ksm_mmlist_lock);
2505 	insert_to_mm_slots_hash(mm, mm_slot);
2506 	/*
2507 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2508 	 * insert just behind the scanning cursor, to let the area settle
2509 	 * down a little; when fork is followed by immediate exec, we don't
2510 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2511 	 *
2512 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2513 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2514 	 * missed: then we might as well insert at the end of the list.
2515 	 */
2516 	if (ksm_run & KSM_RUN_UNMERGE)
2517 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2518 	else
2519 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2520 	spin_unlock(&ksm_mmlist_lock);
2521 
2522 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2523 	mmgrab(mm);
2524 
2525 	if (needs_wakeup)
2526 		wake_up_interruptible(&ksm_thread_wait);
2527 
2528 	return 0;
2529 }
2530 
2531 void __ksm_exit(struct mm_struct *mm)
2532 {
2533 	struct mm_slot *mm_slot;
2534 	int easy_to_free = 0;
2535 
2536 	/*
2537 	 * This process is exiting: if it's straightforward (as is the
2538 	 * case when ksmd was never running), free mm_slot immediately.
2539 	 * But if it's at the cursor or has rmap_items linked to it, use
2540 	 * mmap_lock to synchronize with any break_cows before pagetables
2541 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2542 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2543 	 */
2544 
2545 	spin_lock(&ksm_mmlist_lock);
2546 	mm_slot = get_mm_slot(mm);
2547 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2548 		if (!mm_slot->rmap_list) {
2549 			hash_del(&mm_slot->link);
2550 			list_del(&mm_slot->mm_list);
2551 			easy_to_free = 1;
2552 		} else {
2553 			list_move(&mm_slot->mm_list,
2554 				  &ksm_scan.mm_slot->mm_list);
2555 		}
2556 	}
2557 	spin_unlock(&ksm_mmlist_lock);
2558 
2559 	if (easy_to_free) {
2560 		free_mm_slot(mm_slot);
2561 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2562 		mmdrop(mm);
2563 	} else if (mm_slot) {
2564 		mmap_write_lock(mm);
2565 		mmap_write_unlock(mm);
2566 	}
2567 }
2568 
2569 struct page *ksm_might_need_to_copy(struct page *page,
2570 			struct vm_area_struct *vma, unsigned long address)
2571 {
2572 	struct anon_vma *anon_vma = page_anon_vma(page);
2573 	struct page *new_page;
2574 
2575 	if (PageKsm(page)) {
2576 		if (page_stable_node(page) &&
2577 		    !(ksm_run & KSM_RUN_UNMERGE))
2578 			return page;	/* no need to copy it */
2579 	} else if (!anon_vma) {
2580 		return page;		/* no need to copy it */
2581 	} else if (anon_vma->root == vma->anon_vma->root &&
2582 		 page->index == linear_page_index(vma, address)) {
2583 		return page;		/* still no need to copy it */
2584 	}
2585 	if (!PageUptodate(page))
2586 		return page;		/* let do_swap_page report the error */
2587 
2588 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2589 	if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2590 		put_page(new_page);
2591 		new_page = NULL;
2592 	}
2593 	if (new_page) {
2594 		copy_user_highpage(new_page, page, address, vma);
2595 
2596 		SetPageDirty(new_page);
2597 		__SetPageUptodate(new_page);
2598 		__SetPageLocked(new_page);
2599 	}
2600 
2601 	return new_page;
2602 }
2603 
2604 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2605 {
2606 	struct stable_node *stable_node;
2607 	struct rmap_item *rmap_item;
2608 	int search_new_forks = 0;
2609 
2610 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2611 
2612 	/*
2613 	 * Rely on the page lock to protect against concurrent modifications
2614 	 * to that page's node of the stable tree.
2615 	 */
2616 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2617 
2618 	stable_node = page_stable_node(page);
2619 	if (!stable_node)
2620 		return;
2621 again:
2622 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2623 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2624 		struct anon_vma_chain *vmac;
2625 		struct vm_area_struct *vma;
2626 
2627 		cond_resched();
2628 		anon_vma_lock_read(anon_vma);
2629 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2630 					       0, ULONG_MAX) {
2631 			unsigned long addr;
2632 
2633 			cond_resched();
2634 			vma = vmac->vma;
2635 
2636 			/* Ignore the stable/unstable/sqnr flags */
2637 			addr = rmap_item->address & ~KSM_FLAG_MASK;
2638 
2639 			if (addr < vma->vm_start || addr >= vma->vm_end)
2640 				continue;
2641 			/*
2642 			 * Initially we examine only the vma which covers this
2643 			 * rmap_item; but later, if there is still work to do,
2644 			 * we examine covering vmas in other mms: in case they
2645 			 * were forked from the original since ksmd passed.
2646 			 */
2647 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2648 				continue;
2649 
2650 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2651 				continue;
2652 
2653 			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2654 				anon_vma_unlock_read(anon_vma);
2655 				return;
2656 			}
2657 			if (rwc->done && rwc->done(page)) {
2658 				anon_vma_unlock_read(anon_vma);
2659 				return;
2660 			}
2661 		}
2662 		anon_vma_unlock_read(anon_vma);
2663 	}
2664 	if (!search_new_forks++)
2665 		goto again;
2666 }
2667 
2668 #ifdef CONFIG_MIGRATION
2669 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2670 {
2671 	struct stable_node *stable_node;
2672 
2673 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2674 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2675 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2676 
2677 	stable_node = page_stable_node(newpage);
2678 	if (stable_node) {
2679 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2680 		stable_node->kpfn = page_to_pfn(newpage);
2681 		/*
2682 		 * newpage->mapping was set in advance; now we need smp_wmb()
2683 		 * to make sure that the new stable_node->kpfn is visible
2684 		 * to get_ksm_page() before it can see that oldpage->mapping
2685 		 * has gone stale (or that PageSwapCache has been cleared).
2686 		 */
2687 		smp_wmb();
2688 		set_page_stable_node(oldpage, NULL);
2689 	}
2690 }
2691 #endif /* CONFIG_MIGRATION */
2692 
2693 #ifdef CONFIG_MEMORY_HOTREMOVE
2694 static void wait_while_offlining(void)
2695 {
2696 	while (ksm_run & KSM_RUN_OFFLINE) {
2697 		mutex_unlock(&ksm_thread_mutex);
2698 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2699 			    TASK_UNINTERRUPTIBLE);
2700 		mutex_lock(&ksm_thread_mutex);
2701 	}
2702 }
2703 
2704 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2705 					 unsigned long start_pfn,
2706 					 unsigned long end_pfn)
2707 {
2708 	if (stable_node->kpfn >= start_pfn &&
2709 	    stable_node->kpfn < end_pfn) {
2710 		/*
2711 		 * Don't get_ksm_page, page has already gone:
2712 		 * which is why we keep kpfn instead of page*
2713 		 */
2714 		remove_node_from_stable_tree(stable_node);
2715 		return true;
2716 	}
2717 	return false;
2718 }
2719 
2720 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2721 					   unsigned long start_pfn,
2722 					   unsigned long end_pfn,
2723 					   struct rb_root *root)
2724 {
2725 	struct stable_node *dup;
2726 	struct hlist_node *hlist_safe;
2727 
2728 	if (!is_stable_node_chain(stable_node)) {
2729 		VM_BUG_ON(is_stable_node_dup(stable_node));
2730 		return stable_node_dup_remove_range(stable_node, start_pfn,
2731 						    end_pfn);
2732 	}
2733 
2734 	hlist_for_each_entry_safe(dup, hlist_safe,
2735 				  &stable_node->hlist, hlist_dup) {
2736 		VM_BUG_ON(!is_stable_node_dup(dup));
2737 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2738 	}
2739 	if (hlist_empty(&stable_node->hlist)) {
2740 		free_stable_node_chain(stable_node, root);
2741 		return true; /* notify caller that tree was rebalanced */
2742 	} else
2743 		return false;
2744 }
2745 
2746 static void ksm_check_stable_tree(unsigned long start_pfn,
2747 				  unsigned long end_pfn)
2748 {
2749 	struct stable_node *stable_node, *next;
2750 	struct rb_node *node;
2751 	int nid;
2752 
2753 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2754 		node = rb_first(root_stable_tree + nid);
2755 		while (node) {
2756 			stable_node = rb_entry(node, struct stable_node, node);
2757 			if (stable_node_chain_remove_range(stable_node,
2758 							   start_pfn, end_pfn,
2759 							   root_stable_tree +
2760 							   nid))
2761 				node = rb_first(root_stable_tree + nid);
2762 			else
2763 				node = rb_next(node);
2764 			cond_resched();
2765 		}
2766 	}
2767 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2768 		if (stable_node->kpfn >= start_pfn &&
2769 		    stable_node->kpfn < end_pfn)
2770 			remove_node_from_stable_tree(stable_node);
2771 		cond_resched();
2772 	}
2773 }
2774 
2775 static int ksm_memory_callback(struct notifier_block *self,
2776 			       unsigned long action, void *arg)
2777 {
2778 	struct memory_notify *mn = arg;
2779 
2780 	switch (action) {
2781 	case MEM_GOING_OFFLINE:
2782 		/*
2783 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2784 		 * and remove_all_stable_nodes() while memory is going offline:
2785 		 * it is unsafe for them to touch the stable tree at this time.
2786 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2787 		 * which do not need the ksm_thread_mutex are all safe.
2788 		 */
2789 		mutex_lock(&ksm_thread_mutex);
2790 		ksm_run |= KSM_RUN_OFFLINE;
2791 		mutex_unlock(&ksm_thread_mutex);
2792 		break;
2793 
2794 	case MEM_OFFLINE:
2795 		/*
2796 		 * Most of the work is done by page migration; but there might
2797 		 * be a few stable_nodes left over, still pointing to struct
2798 		 * pages which have been offlined: prune those from the tree,
2799 		 * otherwise get_ksm_page() might later try to access a
2800 		 * non-existent struct page.
2801 		 */
2802 		ksm_check_stable_tree(mn->start_pfn,
2803 				      mn->start_pfn + mn->nr_pages);
2804 		fallthrough;
2805 	case MEM_CANCEL_OFFLINE:
2806 		mutex_lock(&ksm_thread_mutex);
2807 		ksm_run &= ~KSM_RUN_OFFLINE;
2808 		mutex_unlock(&ksm_thread_mutex);
2809 
2810 		smp_mb();	/* wake_up_bit advises this */
2811 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2812 		break;
2813 	}
2814 	return NOTIFY_OK;
2815 }
2816 #else
2817 static void wait_while_offlining(void)
2818 {
2819 }
2820 #endif /* CONFIG_MEMORY_HOTREMOVE */
2821 
2822 #ifdef CONFIG_SYSFS
2823 /*
2824  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2825  */
2826 
2827 #define KSM_ATTR_RO(_name) \
2828 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2829 #define KSM_ATTR(_name) \
2830 	static struct kobj_attribute _name##_attr = \
2831 		__ATTR(_name, 0644, _name##_show, _name##_store)
2832 
2833 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2834 				    struct kobj_attribute *attr, char *buf)
2835 {
2836 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2837 }
2838 
2839 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2840 				     struct kobj_attribute *attr,
2841 				     const char *buf, size_t count)
2842 {
2843 	unsigned long msecs;
2844 	int err;
2845 
2846 	err = kstrtoul(buf, 10, &msecs);
2847 	if (err || msecs > UINT_MAX)
2848 		return -EINVAL;
2849 
2850 	ksm_thread_sleep_millisecs = msecs;
2851 	wake_up_interruptible(&ksm_iter_wait);
2852 
2853 	return count;
2854 }
2855 KSM_ATTR(sleep_millisecs);
2856 
2857 static ssize_t pages_to_scan_show(struct kobject *kobj,
2858 				  struct kobj_attribute *attr, char *buf)
2859 {
2860 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2861 }
2862 
2863 static ssize_t pages_to_scan_store(struct kobject *kobj,
2864 				   struct kobj_attribute *attr,
2865 				   const char *buf, size_t count)
2866 {
2867 	int err;
2868 	unsigned long nr_pages;
2869 
2870 	err = kstrtoul(buf, 10, &nr_pages);
2871 	if (err || nr_pages > UINT_MAX)
2872 		return -EINVAL;
2873 
2874 	ksm_thread_pages_to_scan = nr_pages;
2875 
2876 	return count;
2877 }
2878 KSM_ATTR(pages_to_scan);
2879 
2880 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2881 			char *buf)
2882 {
2883 	return sprintf(buf, "%lu\n", ksm_run);
2884 }
2885 
2886 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2887 			 const char *buf, size_t count)
2888 {
2889 	int err;
2890 	unsigned long flags;
2891 
2892 	err = kstrtoul(buf, 10, &flags);
2893 	if (err || flags > UINT_MAX)
2894 		return -EINVAL;
2895 	if (flags > KSM_RUN_UNMERGE)
2896 		return -EINVAL;
2897 
2898 	/*
2899 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2900 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2901 	 * breaking COW to free the pages_shared (but leaves mm_slots
2902 	 * on the list for when ksmd may be set running again).
2903 	 */
2904 
2905 	mutex_lock(&ksm_thread_mutex);
2906 	wait_while_offlining();
2907 	if (ksm_run != flags) {
2908 		ksm_run = flags;
2909 		if (flags & KSM_RUN_UNMERGE) {
2910 			set_current_oom_origin();
2911 			err = unmerge_and_remove_all_rmap_items();
2912 			clear_current_oom_origin();
2913 			if (err) {
2914 				ksm_run = KSM_RUN_STOP;
2915 				count = err;
2916 			}
2917 		}
2918 	}
2919 	mutex_unlock(&ksm_thread_mutex);
2920 
2921 	if (flags & KSM_RUN_MERGE)
2922 		wake_up_interruptible(&ksm_thread_wait);
2923 
2924 	return count;
2925 }
2926 KSM_ATTR(run);
2927 
2928 #ifdef CONFIG_NUMA
2929 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2930 				struct kobj_attribute *attr, char *buf)
2931 {
2932 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2933 }
2934 
2935 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2936 				   struct kobj_attribute *attr,
2937 				   const char *buf, size_t count)
2938 {
2939 	int err;
2940 	unsigned long knob;
2941 
2942 	err = kstrtoul(buf, 10, &knob);
2943 	if (err)
2944 		return err;
2945 	if (knob > 1)
2946 		return -EINVAL;
2947 
2948 	mutex_lock(&ksm_thread_mutex);
2949 	wait_while_offlining();
2950 	if (ksm_merge_across_nodes != knob) {
2951 		if (ksm_pages_shared || remove_all_stable_nodes())
2952 			err = -EBUSY;
2953 		else if (root_stable_tree == one_stable_tree) {
2954 			struct rb_root *buf;
2955 			/*
2956 			 * This is the first time that we switch away from the
2957 			 * default of merging across nodes: must now allocate
2958 			 * a buffer to hold as many roots as may be needed.
2959 			 * Allocate stable and unstable together:
2960 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2961 			 */
2962 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2963 				      GFP_KERNEL);
2964 			/* Let us assume that RB_ROOT is NULL is zero */
2965 			if (!buf)
2966 				err = -ENOMEM;
2967 			else {
2968 				root_stable_tree = buf;
2969 				root_unstable_tree = buf + nr_node_ids;
2970 				/* Stable tree is empty but not the unstable */
2971 				root_unstable_tree[0] = one_unstable_tree[0];
2972 			}
2973 		}
2974 		if (!err) {
2975 			ksm_merge_across_nodes = knob;
2976 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2977 		}
2978 	}
2979 	mutex_unlock(&ksm_thread_mutex);
2980 
2981 	return err ? err : count;
2982 }
2983 KSM_ATTR(merge_across_nodes);
2984 #endif
2985 
2986 static ssize_t use_zero_pages_show(struct kobject *kobj,
2987 				struct kobj_attribute *attr, char *buf)
2988 {
2989 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2990 }
2991 static ssize_t use_zero_pages_store(struct kobject *kobj,
2992 				   struct kobj_attribute *attr,
2993 				   const char *buf, size_t count)
2994 {
2995 	int err;
2996 	bool value;
2997 
2998 	err = kstrtobool(buf, &value);
2999 	if (err)
3000 		return -EINVAL;
3001 
3002 	ksm_use_zero_pages = value;
3003 
3004 	return count;
3005 }
3006 KSM_ATTR(use_zero_pages);
3007 
3008 static ssize_t max_page_sharing_show(struct kobject *kobj,
3009 				     struct kobj_attribute *attr, char *buf)
3010 {
3011 	return sprintf(buf, "%u\n", ksm_max_page_sharing);
3012 }
3013 
3014 static ssize_t max_page_sharing_store(struct kobject *kobj,
3015 				      struct kobj_attribute *attr,
3016 				      const char *buf, size_t count)
3017 {
3018 	int err;
3019 	int knob;
3020 
3021 	err = kstrtoint(buf, 10, &knob);
3022 	if (err)
3023 		return err;
3024 	/*
3025 	 * When a KSM page is created it is shared by 2 mappings. This
3026 	 * being a signed comparison, it implicitly verifies it's not
3027 	 * negative.
3028 	 */
3029 	if (knob < 2)
3030 		return -EINVAL;
3031 
3032 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3033 		return count;
3034 
3035 	mutex_lock(&ksm_thread_mutex);
3036 	wait_while_offlining();
3037 	if (ksm_max_page_sharing != knob) {
3038 		if (ksm_pages_shared || remove_all_stable_nodes())
3039 			err = -EBUSY;
3040 		else
3041 			ksm_max_page_sharing = knob;
3042 	}
3043 	mutex_unlock(&ksm_thread_mutex);
3044 
3045 	return err ? err : count;
3046 }
3047 KSM_ATTR(max_page_sharing);
3048 
3049 static ssize_t pages_shared_show(struct kobject *kobj,
3050 				 struct kobj_attribute *attr, char *buf)
3051 {
3052 	return sprintf(buf, "%lu\n", ksm_pages_shared);
3053 }
3054 KSM_ATTR_RO(pages_shared);
3055 
3056 static ssize_t pages_sharing_show(struct kobject *kobj,
3057 				  struct kobj_attribute *attr, char *buf)
3058 {
3059 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3060 }
3061 KSM_ATTR_RO(pages_sharing);
3062 
3063 static ssize_t pages_unshared_show(struct kobject *kobj,
3064 				   struct kobj_attribute *attr, char *buf)
3065 {
3066 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3067 }
3068 KSM_ATTR_RO(pages_unshared);
3069 
3070 static ssize_t pages_volatile_show(struct kobject *kobj,
3071 				   struct kobj_attribute *attr, char *buf)
3072 {
3073 	long ksm_pages_volatile;
3074 
3075 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3076 				- ksm_pages_sharing - ksm_pages_unshared;
3077 	/*
3078 	 * It was not worth any locking to calculate that statistic,
3079 	 * but it might therefore sometimes be negative: conceal that.
3080 	 */
3081 	if (ksm_pages_volatile < 0)
3082 		ksm_pages_volatile = 0;
3083 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3084 }
3085 KSM_ATTR_RO(pages_volatile);
3086 
3087 static ssize_t stable_node_dups_show(struct kobject *kobj,
3088 				     struct kobj_attribute *attr, char *buf)
3089 {
3090 	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3091 }
3092 KSM_ATTR_RO(stable_node_dups);
3093 
3094 static ssize_t stable_node_chains_show(struct kobject *kobj,
3095 				       struct kobj_attribute *attr, char *buf)
3096 {
3097 	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3098 }
3099 KSM_ATTR_RO(stable_node_chains);
3100 
3101 static ssize_t
3102 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3103 					struct kobj_attribute *attr,
3104 					char *buf)
3105 {
3106 	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3107 }
3108 
3109 static ssize_t
3110 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3111 					 struct kobj_attribute *attr,
3112 					 const char *buf, size_t count)
3113 {
3114 	unsigned long msecs;
3115 	int err;
3116 
3117 	err = kstrtoul(buf, 10, &msecs);
3118 	if (err || msecs > UINT_MAX)
3119 		return -EINVAL;
3120 
3121 	ksm_stable_node_chains_prune_millisecs = msecs;
3122 
3123 	return count;
3124 }
3125 KSM_ATTR(stable_node_chains_prune_millisecs);
3126 
3127 static ssize_t full_scans_show(struct kobject *kobj,
3128 			       struct kobj_attribute *attr, char *buf)
3129 {
3130 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3131 }
3132 KSM_ATTR_RO(full_scans);
3133 
3134 static struct attribute *ksm_attrs[] = {
3135 	&sleep_millisecs_attr.attr,
3136 	&pages_to_scan_attr.attr,
3137 	&run_attr.attr,
3138 	&pages_shared_attr.attr,
3139 	&pages_sharing_attr.attr,
3140 	&pages_unshared_attr.attr,
3141 	&pages_volatile_attr.attr,
3142 	&full_scans_attr.attr,
3143 #ifdef CONFIG_NUMA
3144 	&merge_across_nodes_attr.attr,
3145 #endif
3146 	&max_page_sharing_attr.attr,
3147 	&stable_node_chains_attr.attr,
3148 	&stable_node_dups_attr.attr,
3149 	&stable_node_chains_prune_millisecs_attr.attr,
3150 	&use_zero_pages_attr.attr,
3151 	NULL,
3152 };
3153 
3154 static const struct attribute_group ksm_attr_group = {
3155 	.attrs = ksm_attrs,
3156 	.name = "ksm",
3157 };
3158 #endif /* CONFIG_SYSFS */
3159 
3160 static int __init ksm_init(void)
3161 {
3162 	struct task_struct *ksm_thread;
3163 	int err;
3164 
3165 	/* The correct value depends on page size and endianness */
3166 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3167 	/* Default to false for backwards compatibility */
3168 	ksm_use_zero_pages = false;
3169 
3170 	err = ksm_slab_init();
3171 	if (err)
3172 		goto out;
3173 
3174 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3175 	if (IS_ERR(ksm_thread)) {
3176 		pr_err("ksm: creating kthread failed\n");
3177 		err = PTR_ERR(ksm_thread);
3178 		goto out_free;
3179 	}
3180 
3181 #ifdef CONFIG_SYSFS
3182 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3183 	if (err) {
3184 		pr_err("ksm: register sysfs failed\n");
3185 		kthread_stop(ksm_thread);
3186 		goto out_free;
3187 	}
3188 #else
3189 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3190 
3191 #endif /* CONFIG_SYSFS */
3192 
3193 #ifdef CONFIG_MEMORY_HOTREMOVE
3194 	/* There is no significance to this priority 100 */
3195 	hotplug_memory_notifier(ksm_memory_callback, 100);
3196 #endif
3197 	return 0;
3198 
3199 out_free:
3200 	ksm_slab_free();
3201 out:
3202 	return err;
3203 }
3204 subsys_initcall(ksm_init);
3205