1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/fs.h> 19 #include <linux/mman.h> 20 #include <linux/sched.h> 21 #include <linux/sched/mm.h> 22 #include <linux/sched/coredump.h> 23 #include <linux/rwsem.h> 24 #include <linux/pagemap.h> 25 #include <linux/rmap.h> 26 #include <linux/spinlock.h> 27 #include <linux/xxhash.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/wait.h> 31 #include <linux/slab.h> 32 #include <linux/rbtree.h> 33 #include <linux/memory.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/swap.h> 36 #include <linux/ksm.h> 37 #include <linux/hashtable.h> 38 #include <linux/freezer.h> 39 #include <linux/oom.h> 40 #include <linux/numa.h> 41 42 #include <asm/tlbflush.h> 43 #include "internal.h" 44 45 #ifdef CONFIG_NUMA 46 #define NUMA(x) (x) 47 #define DO_NUMA(x) do { (x); } while (0) 48 #else 49 #define NUMA(x) (0) 50 #define DO_NUMA(x) do { } while (0) 51 #endif 52 53 /** 54 * DOC: Overview 55 * 56 * A few notes about the KSM scanning process, 57 * to make it easier to understand the data structures below: 58 * 59 * In order to reduce excessive scanning, KSM sorts the memory pages by their 60 * contents into a data structure that holds pointers to the pages' locations. 61 * 62 * Since the contents of the pages may change at any moment, KSM cannot just 63 * insert the pages into a normal sorted tree and expect it to find anything. 64 * Therefore KSM uses two data structures - the stable and the unstable tree. 65 * 66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 67 * by their contents. Because each such page is write-protected, searching on 68 * this tree is fully assured to be working (except when pages are unmapped), 69 * and therefore this tree is called the stable tree. 70 * 71 * The stable tree node includes information required for reverse 72 * mapping from a KSM page to virtual addresses that map this page. 73 * 74 * In order to avoid large latencies of the rmap walks on KSM pages, 75 * KSM maintains two types of nodes in the stable tree: 76 * 77 * * the regular nodes that keep the reverse mapping structures in a 78 * linked list 79 * * the "chains" that link nodes ("dups") that represent the same 80 * write protected memory content, but each "dup" corresponds to a 81 * different KSM page copy of that content 82 * 83 * Internally, the regular nodes, "dups" and "chains" are represented 84 * using the same struct stable_node structure. 85 * 86 * In addition to the stable tree, KSM uses a second data structure called the 87 * unstable tree: this tree holds pointers to pages which have been found to 88 * be "unchanged for a period of time". The unstable tree sorts these pages 89 * by their contents, but since they are not write-protected, KSM cannot rely 90 * upon the unstable tree to work correctly - the unstable tree is liable to 91 * be corrupted as its contents are modified, and so it is called unstable. 92 * 93 * KSM solves this problem by several techniques: 94 * 95 * 1) The unstable tree is flushed every time KSM completes scanning all 96 * memory areas, and then the tree is rebuilt again from the beginning. 97 * 2) KSM will only insert into the unstable tree, pages whose hash value 98 * has not changed since the previous scan of all memory areas. 99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 100 * colors of the nodes and not on their contents, assuring that even when 101 * the tree gets "corrupted" it won't get out of balance, so scanning time 102 * remains the same (also, searching and inserting nodes in an rbtree uses 103 * the same algorithm, so we have no overhead when we flush and rebuild). 104 * 4) KSM never flushes the stable tree, which means that even if it were to 105 * take 10 attempts to find a page in the unstable tree, once it is found, 106 * it is secured in the stable tree. (When we scan a new page, we first 107 * compare it against the stable tree, and then against the unstable tree.) 108 * 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 110 * stable trees and multiple unstable trees: one of each for each NUMA node. 111 */ 112 113 /** 114 * struct mm_slot - ksm information per mm that is being scanned 115 * @link: link to the mm_slots hash list 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 118 * @mm: the mm that this information is valid for 119 */ 120 struct mm_slot { 121 struct hlist_node link; 122 struct list_head mm_list; 123 struct rmap_item *rmap_list; 124 struct mm_struct *mm; 125 }; 126 127 /** 128 * struct ksm_scan - cursor for scanning 129 * @mm_slot: the current mm_slot we are scanning 130 * @address: the next address inside that to be scanned 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list 132 * @seqnr: count of completed full scans (needed when removing unstable node) 133 * 134 * There is only the one ksm_scan instance of this cursor structure. 135 */ 136 struct ksm_scan { 137 struct mm_slot *mm_slot; 138 unsigned long address; 139 struct rmap_item **rmap_list; 140 unsigned long seqnr; 141 }; 142 143 /** 144 * struct stable_node - node of the stable rbtree 145 * @node: rb node of this ksm page in the stable tree 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 148 * @list: linked into migrate_nodes, pending placement in the proper node tree 149 * @hlist: hlist head of rmap_items using this ksm page 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 151 * @chain_prune_time: time of the last full garbage collection 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 154 */ 155 struct stable_node { 156 union { 157 struct rb_node node; /* when node of stable tree */ 158 struct { /* when listed for migration */ 159 struct list_head *head; 160 struct { 161 struct hlist_node hlist_dup; 162 struct list_head list; 163 }; 164 }; 165 }; 166 struct hlist_head hlist; 167 union { 168 unsigned long kpfn; 169 unsigned long chain_prune_time; 170 }; 171 /* 172 * STABLE_NODE_CHAIN can be any negative number in 173 * rmap_hlist_len negative range, but better not -1 to be able 174 * to reliably detect underflows. 175 */ 176 #define STABLE_NODE_CHAIN -1024 177 int rmap_hlist_len; 178 #ifdef CONFIG_NUMA 179 int nid; 180 #endif 181 }; 182 183 /** 184 * struct rmap_item - reverse mapping item for virtual addresses 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 187 * @nid: NUMA node id of unstable tree in which linked (may not match page) 188 * @mm: the memory structure this rmap_item is pointing into 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 190 * @oldchecksum: previous checksum of the page at that virtual address 191 * @node: rb node of this rmap_item in the unstable tree 192 * @head: pointer to stable_node heading this list in the stable tree 193 * @hlist: link into hlist of rmap_items hanging off that stable_node 194 */ 195 struct rmap_item { 196 struct rmap_item *rmap_list; 197 union { 198 struct anon_vma *anon_vma; /* when stable */ 199 #ifdef CONFIG_NUMA 200 int nid; /* when node of unstable tree */ 201 #endif 202 }; 203 struct mm_struct *mm; 204 unsigned long address; /* + low bits used for flags below */ 205 unsigned int oldchecksum; /* when unstable */ 206 union { 207 struct rb_node node; /* when node of unstable tree */ 208 struct { /* when listed from stable tree */ 209 struct stable_node *head; 210 struct hlist_node hlist; 211 }; 212 }; 213 }; 214 215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 218 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) 219 /* to mask all the flags */ 220 221 /* The stable and unstable tree heads */ 222 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 223 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 224 static struct rb_root *root_stable_tree = one_stable_tree; 225 static struct rb_root *root_unstable_tree = one_unstable_tree; 226 227 /* Recently migrated nodes of stable tree, pending proper placement */ 228 static LIST_HEAD(migrate_nodes); 229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 230 231 #define MM_SLOTS_HASH_BITS 10 232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 233 234 static struct mm_slot ksm_mm_head = { 235 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 236 }; 237 static struct ksm_scan ksm_scan = { 238 .mm_slot = &ksm_mm_head, 239 }; 240 241 static struct kmem_cache *rmap_item_cache; 242 static struct kmem_cache *stable_node_cache; 243 static struct kmem_cache *mm_slot_cache; 244 245 /* The number of nodes in the stable tree */ 246 static unsigned long ksm_pages_shared; 247 248 /* The number of page slots additionally sharing those nodes */ 249 static unsigned long ksm_pages_sharing; 250 251 /* The number of nodes in the unstable tree */ 252 static unsigned long ksm_pages_unshared; 253 254 /* The number of rmap_items in use: to calculate pages_volatile */ 255 static unsigned long ksm_rmap_items; 256 257 /* The number of stable_node chains */ 258 static unsigned long ksm_stable_node_chains; 259 260 /* The number of stable_node dups linked to the stable_node chains */ 261 static unsigned long ksm_stable_node_dups; 262 263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 264 static int ksm_stable_node_chains_prune_millisecs = 2000; 265 266 /* Maximum number of page slots sharing a stable node */ 267 static int ksm_max_page_sharing = 256; 268 269 /* Number of pages ksmd should scan in one batch */ 270 static unsigned int ksm_thread_pages_to_scan = 100; 271 272 /* Milliseconds ksmd should sleep between batches */ 273 static unsigned int ksm_thread_sleep_millisecs = 20; 274 275 /* Checksum of an empty (zeroed) page */ 276 static unsigned int zero_checksum __read_mostly; 277 278 /* Whether to merge empty (zeroed) pages with actual zero pages */ 279 static bool ksm_use_zero_pages __read_mostly; 280 281 #ifdef CONFIG_NUMA 282 /* Zeroed when merging across nodes is not allowed */ 283 static unsigned int ksm_merge_across_nodes = 1; 284 static int ksm_nr_node_ids = 1; 285 #else 286 #define ksm_merge_across_nodes 1U 287 #define ksm_nr_node_ids 1 288 #endif 289 290 #define KSM_RUN_STOP 0 291 #define KSM_RUN_MERGE 1 292 #define KSM_RUN_UNMERGE 2 293 #define KSM_RUN_OFFLINE 4 294 static unsigned long ksm_run = KSM_RUN_STOP; 295 static void wait_while_offlining(void); 296 297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 299 static DEFINE_MUTEX(ksm_thread_mutex); 300 static DEFINE_SPINLOCK(ksm_mmlist_lock); 301 302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 303 sizeof(struct __struct), __alignof__(struct __struct),\ 304 (__flags), NULL) 305 306 static int __init ksm_slab_init(void) 307 { 308 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 309 if (!rmap_item_cache) 310 goto out; 311 312 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 313 if (!stable_node_cache) 314 goto out_free1; 315 316 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 317 if (!mm_slot_cache) 318 goto out_free2; 319 320 return 0; 321 322 out_free2: 323 kmem_cache_destroy(stable_node_cache); 324 out_free1: 325 kmem_cache_destroy(rmap_item_cache); 326 out: 327 return -ENOMEM; 328 } 329 330 static void __init ksm_slab_free(void) 331 { 332 kmem_cache_destroy(mm_slot_cache); 333 kmem_cache_destroy(stable_node_cache); 334 kmem_cache_destroy(rmap_item_cache); 335 mm_slot_cache = NULL; 336 } 337 338 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 339 { 340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 341 } 342 343 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 344 { 345 return dup->head == STABLE_NODE_DUP_HEAD; 346 } 347 348 static inline void stable_node_chain_add_dup(struct stable_node *dup, 349 struct stable_node *chain) 350 { 351 VM_BUG_ON(is_stable_node_dup(dup)); 352 dup->head = STABLE_NODE_DUP_HEAD; 353 VM_BUG_ON(!is_stable_node_chain(chain)); 354 hlist_add_head(&dup->hlist_dup, &chain->hlist); 355 ksm_stable_node_dups++; 356 } 357 358 static inline void __stable_node_dup_del(struct stable_node *dup) 359 { 360 VM_BUG_ON(!is_stable_node_dup(dup)); 361 hlist_del(&dup->hlist_dup); 362 ksm_stable_node_dups--; 363 } 364 365 static inline void stable_node_dup_del(struct stable_node *dup) 366 { 367 VM_BUG_ON(is_stable_node_chain(dup)); 368 if (is_stable_node_dup(dup)) 369 __stable_node_dup_del(dup); 370 else 371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 372 #ifdef CONFIG_DEBUG_VM 373 dup->head = NULL; 374 #endif 375 } 376 377 static inline struct rmap_item *alloc_rmap_item(void) 378 { 379 struct rmap_item *rmap_item; 380 381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 382 __GFP_NORETRY | __GFP_NOWARN); 383 if (rmap_item) 384 ksm_rmap_items++; 385 return rmap_item; 386 } 387 388 static inline void free_rmap_item(struct rmap_item *rmap_item) 389 { 390 ksm_rmap_items--; 391 rmap_item->mm = NULL; /* debug safety */ 392 kmem_cache_free(rmap_item_cache, rmap_item); 393 } 394 395 static inline struct stable_node *alloc_stable_node(void) 396 { 397 /* 398 * The allocation can take too long with GFP_KERNEL when memory is under 399 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 400 * grants access to memory reserves, helping to avoid this problem. 401 */ 402 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 403 } 404 405 static inline void free_stable_node(struct stable_node *stable_node) 406 { 407 VM_BUG_ON(stable_node->rmap_hlist_len && 408 !is_stable_node_chain(stable_node)); 409 kmem_cache_free(stable_node_cache, stable_node); 410 } 411 412 static inline struct mm_slot *alloc_mm_slot(void) 413 { 414 if (!mm_slot_cache) /* initialization failed */ 415 return NULL; 416 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 417 } 418 419 static inline void free_mm_slot(struct mm_slot *mm_slot) 420 { 421 kmem_cache_free(mm_slot_cache, mm_slot); 422 } 423 424 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 425 { 426 struct mm_slot *slot; 427 428 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 429 if (slot->mm == mm) 430 return slot; 431 432 return NULL; 433 } 434 435 static void insert_to_mm_slots_hash(struct mm_struct *mm, 436 struct mm_slot *mm_slot) 437 { 438 mm_slot->mm = mm; 439 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 440 } 441 442 /* 443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 444 * page tables after it has passed through ksm_exit() - which, if necessary, 445 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 446 * a special flag: they can just back out as soon as mm_users goes to zero. 447 * ksm_test_exit() is used throughout to make this test for exit: in some 448 * places for correctness, in some places just to avoid unnecessary work. 449 */ 450 static inline bool ksm_test_exit(struct mm_struct *mm) 451 { 452 return atomic_read(&mm->mm_users) == 0; 453 } 454 455 /* 456 * We use break_ksm to break COW on a ksm page: it's a stripped down 457 * 458 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 459 * put_page(page); 460 * 461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 462 * in case the application has unmapped and remapped mm,addr meanwhile. 463 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 465 * 466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 467 * of the process that owns 'vma'. We also do not want to enforce 468 * protection keys here anyway. 469 */ 470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 471 { 472 struct page *page; 473 vm_fault_t ret = 0; 474 475 do { 476 cond_resched(); 477 page = follow_page(vma, addr, 478 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 479 if (IS_ERR_OR_NULL(page)) 480 break; 481 if (PageKsm(page)) 482 ret = handle_mm_fault(vma, addr, 483 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 484 NULL); 485 else 486 ret = VM_FAULT_WRITE; 487 put_page(page); 488 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 489 /* 490 * We must loop because handle_mm_fault() may back out if there's 491 * any difficulty e.g. if pte accessed bit gets updated concurrently. 492 * 493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 494 * COW has been broken, even if the vma does not permit VM_WRITE; 495 * but note that a concurrent fault might break PageKsm for us. 496 * 497 * VM_FAULT_SIGBUS could occur if we race with truncation of the 498 * backing file, which also invalidates anonymous pages: that's 499 * okay, that truncation will have unmapped the PageKsm for us. 500 * 501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 503 * current task has TIF_MEMDIE set, and will be OOM killed on return 504 * to user; and ksmd, having no mm, would never be chosen for that. 505 * 506 * But if the mm is in a limited mem_cgroup, then the fault may fail 507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 508 * even ksmd can fail in this way - though it's usually breaking ksm 509 * just to undo a merge it made a moment before, so unlikely to oom. 510 * 511 * That's a pity: we might therefore have more kernel pages allocated 512 * than we're counting as nodes in the stable tree; but ksm_do_scan 513 * will retry to break_cow on each pass, so should recover the page 514 * in due course. The important thing is to not let VM_MERGEABLE 515 * be cleared while any such pages might remain in the area. 516 */ 517 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 518 } 519 520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 521 unsigned long addr) 522 { 523 struct vm_area_struct *vma; 524 if (ksm_test_exit(mm)) 525 return NULL; 526 vma = find_vma(mm, addr); 527 if (!vma || vma->vm_start > addr) 528 return NULL; 529 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 530 return NULL; 531 return vma; 532 } 533 534 static void break_cow(struct rmap_item *rmap_item) 535 { 536 struct mm_struct *mm = rmap_item->mm; 537 unsigned long addr = rmap_item->address; 538 struct vm_area_struct *vma; 539 540 /* 541 * It is not an accident that whenever we want to break COW 542 * to undo, we also need to drop a reference to the anon_vma. 543 */ 544 put_anon_vma(rmap_item->anon_vma); 545 546 mmap_read_lock(mm); 547 vma = find_mergeable_vma(mm, addr); 548 if (vma) 549 break_ksm(vma, addr); 550 mmap_read_unlock(mm); 551 } 552 553 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 554 { 555 struct mm_struct *mm = rmap_item->mm; 556 unsigned long addr = rmap_item->address; 557 struct vm_area_struct *vma; 558 struct page *page; 559 560 mmap_read_lock(mm); 561 vma = find_mergeable_vma(mm, addr); 562 if (!vma) 563 goto out; 564 565 page = follow_page(vma, addr, FOLL_GET); 566 if (IS_ERR_OR_NULL(page)) 567 goto out; 568 if (PageAnon(page)) { 569 flush_anon_page(vma, page, addr); 570 flush_dcache_page(page); 571 } else { 572 put_page(page); 573 out: 574 page = NULL; 575 } 576 mmap_read_unlock(mm); 577 return page; 578 } 579 580 /* 581 * This helper is used for getting right index into array of tree roots. 582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 583 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 584 * every node has its own stable and unstable tree. 585 */ 586 static inline int get_kpfn_nid(unsigned long kpfn) 587 { 588 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 589 } 590 591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 592 struct rb_root *root) 593 { 594 struct stable_node *chain = alloc_stable_node(); 595 VM_BUG_ON(is_stable_node_chain(dup)); 596 if (likely(chain)) { 597 INIT_HLIST_HEAD(&chain->hlist); 598 chain->chain_prune_time = jiffies; 599 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 601 chain->nid = NUMA_NO_NODE; /* debug */ 602 #endif 603 ksm_stable_node_chains++; 604 605 /* 606 * Put the stable node chain in the first dimension of 607 * the stable tree and at the same time remove the old 608 * stable node. 609 */ 610 rb_replace_node(&dup->node, &chain->node, root); 611 612 /* 613 * Move the old stable node to the second dimension 614 * queued in the hlist_dup. The invariant is that all 615 * dup stable_nodes in the chain->hlist point to pages 616 * that are write protected and have the exact same 617 * content. 618 */ 619 stable_node_chain_add_dup(dup, chain); 620 } 621 return chain; 622 } 623 624 static inline void free_stable_node_chain(struct stable_node *chain, 625 struct rb_root *root) 626 { 627 rb_erase(&chain->node, root); 628 free_stable_node(chain); 629 ksm_stable_node_chains--; 630 } 631 632 static void remove_node_from_stable_tree(struct stable_node *stable_node) 633 { 634 struct rmap_item *rmap_item; 635 636 /* check it's not STABLE_NODE_CHAIN or negative */ 637 BUG_ON(stable_node->rmap_hlist_len < 0); 638 639 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 640 if (rmap_item->hlist.next) 641 ksm_pages_sharing--; 642 else 643 ksm_pages_shared--; 644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 645 stable_node->rmap_hlist_len--; 646 put_anon_vma(rmap_item->anon_vma); 647 rmap_item->address &= PAGE_MASK; 648 cond_resched(); 649 } 650 651 /* 652 * We need the second aligned pointer of the migrate_nodes 653 * list_head to stay clear from the rb_parent_color union 654 * (aligned and different than any node) and also different 655 * from &migrate_nodes. This will verify that future list.h changes 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 657 */ 658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 661 #endif 662 663 if (stable_node->head == &migrate_nodes) 664 list_del(&stable_node->list); 665 else 666 stable_node_dup_del(stable_node); 667 free_stable_node(stable_node); 668 } 669 670 enum get_ksm_page_flags { 671 GET_KSM_PAGE_NOLOCK, 672 GET_KSM_PAGE_LOCK, 673 GET_KSM_PAGE_TRYLOCK 674 }; 675 676 /* 677 * get_ksm_page: checks if the page indicated by the stable node 678 * is still its ksm page, despite having held no reference to it. 679 * In which case we can trust the content of the page, and it 680 * returns the gotten page; but if the page has now been zapped, 681 * remove the stale node from the stable tree and return NULL. 682 * But beware, the stable node's page might be being migrated. 683 * 684 * You would expect the stable_node to hold a reference to the ksm page. 685 * But if it increments the page's count, swapping out has to wait for 686 * ksmd to come around again before it can free the page, which may take 687 * seconds or even minutes: much too unresponsive. So instead we use a 688 * "keyhole reference": access to the ksm page from the stable node peeps 689 * out through its keyhole to see if that page still holds the right key, 690 * pointing back to this stable node. This relies on freeing a PageAnon 691 * page to reset its page->mapping to NULL, and relies on no other use of 692 * a page to put something that might look like our key in page->mapping. 693 * is on its way to being freed; but it is an anomaly to bear in mind. 694 */ 695 static struct page *get_ksm_page(struct stable_node *stable_node, 696 enum get_ksm_page_flags flags) 697 { 698 struct page *page; 699 void *expected_mapping; 700 unsigned long kpfn; 701 702 expected_mapping = (void *)((unsigned long)stable_node | 703 PAGE_MAPPING_KSM); 704 again: 705 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 706 page = pfn_to_page(kpfn); 707 if (READ_ONCE(page->mapping) != expected_mapping) 708 goto stale; 709 710 /* 711 * We cannot do anything with the page while its refcount is 0. 712 * Usually 0 means free, or tail of a higher-order page: in which 713 * case this node is no longer referenced, and should be freed; 714 * however, it might mean that the page is under page_ref_freeze(). 715 * The __remove_mapping() case is easy, again the node is now stale; 716 * the same is in reuse_ksm_page() case; but if page is swapcache 717 * in migrate_page_move_mapping(), it might still be our page, 718 * in which case it's essential to keep the node. 719 */ 720 while (!get_page_unless_zero(page)) { 721 /* 722 * Another check for page->mapping != expected_mapping would 723 * work here too. We have chosen the !PageSwapCache test to 724 * optimize the common case, when the page is or is about to 725 * be freed: PageSwapCache is cleared (under spin_lock_irq) 726 * in the ref_freeze section of __remove_mapping(); but Anon 727 * page->mapping reset to NULL later, in free_pages_prepare(). 728 */ 729 if (!PageSwapCache(page)) 730 goto stale; 731 cpu_relax(); 732 } 733 734 if (READ_ONCE(page->mapping) != expected_mapping) { 735 put_page(page); 736 goto stale; 737 } 738 739 if (flags == GET_KSM_PAGE_TRYLOCK) { 740 if (!trylock_page(page)) { 741 put_page(page); 742 return ERR_PTR(-EBUSY); 743 } 744 } else if (flags == GET_KSM_PAGE_LOCK) 745 lock_page(page); 746 747 if (flags != GET_KSM_PAGE_NOLOCK) { 748 if (READ_ONCE(page->mapping) != expected_mapping) { 749 unlock_page(page); 750 put_page(page); 751 goto stale; 752 } 753 } 754 return page; 755 756 stale: 757 /* 758 * We come here from above when page->mapping or !PageSwapCache 759 * suggests that the node is stale; but it might be under migration. 760 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 761 * before checking whether node->kpfn has been changed. 762 */ 763 smp_rmb(); 764 if (READ_ONCE(stable_node->kpfn) != kpfn) 765 goto again; 766 remove_node_from_stable_tree(stable_node); 767 return NULL; 768 } 769 770 /* 771 * Removing rmap_item from stable or unstable tree. 772 * This function will clean the information from the stable/unstable tree. 773 */ 774 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 775 { 776 if (rmap_item->address & STABLE_FLAG) { 777 struct stable_node *stable_node; 778 struct page *page; 779 780 stable_node = rmap_item->head; 781 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 782 if (!page) 783 goto out; 784 785 hlist_del(&rmap_item->hlist); 786 unlock_page(page); 787 put_page(page); 788 789 if (!hlist_empty(&stable_node->hlist)) 790 ksm_pages_sharing--; 791 else 792 ksm_pages_shared--; 793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 794 stable_node->rmap_hlist_len--; 795 796 put_anon_vma(rmap_item->anon_vma); 797 rmap_item->address &= PAGE_MASK; 798 799 } else if (rmap_item->address & UNSTABLE_FLAG) { 800 unsigned char age; 801 /* 802 * Usually ksmd can and must skip the rb_erase, because 803 * root_unstable_tree was already reset to RB_ROOT. 804 * But be careful when an mm is exiting: do the rb_erase 805 * if this rmap_item was inserted by this scan, rather 806 * than left over from before. 807 */ 808 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 809 BUG_ON(age > 1); 810 if (!age) 811 rb_erase(&rmap_item->node, 812 root_unstable_tree + NUMA(rmap_item->nid)); 813 ksm_pages_unshared--; 814 rmap_item->address &= PAGE_MASK; 815 } 816 out: 817 cond_resched(); /* we're called from many long loops */ 818 } 819 820 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 821 struct rmap_item **rmap_list) 822 { 823 while (*rmap_list) { 824 struct rmap_item *rmap_item = *rmap_list; 825 *rmap_list = rmap_item->rmap_list; 826 remove_rmap_item_from_tree(rmap_item); 827 free_rmap_item(rmap_item); 828 } 829 } 830 831 /* 832 * Though it's very tempting to unmerge rmap_items from stable tree rather 833 * than check every pte of a given vma, the locking doesn't quite work for 834 * that - an rmap_item is assigned to the stable tree after inserting ksm 835 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 836 * rmap_items from parent to child at fork time (so as not to waste time 837 * if exit comes before the next scan reaches it). 838 * 839 * Similarly, although we'd like to remove rmap_items (so updating counts 840 * and freeing memory) when unmerging an area, it's easier to leave that 841 * to the next pass of ksmd - consider, for example, how ksmd might be 842 * in cmp_and_merge_page on one of the rmap_items we would be removing. 843 */ 844 static int unmerge_ksm_pages(struct vm_area_struct *vma, 845 unsigned long start, unsigned long end) 846 { 847 unsigned long addr; 848 int err = 0; 849 850 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 851 if (ksm_test_exit(vma->vm_mm)) 852 break; 853 if (signal_pending(current)) 854 err = -ERESTARTSYS; 855 else 856 err = break_ksm(vma, addr); 857 } 858 return err; 859 } 860 861 static inline struct stable_node *page_stable_node(struct page *page) 862 { 863 return PageKsm(page) ? page_rmapping(page) : NULL; 864 } 865 866 static inline void set_page_stable_node(struct page *page, 867 struct stable_node *stable_node) 868 { 869 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 870 } 871 872 #ifdef CONFIG_SYSFS 873 /* 874 * Only called through the sysfs control interface: 875 */ 876 static int remove_stable_node(struct stable_node *stable_node) 877 { 878 struct page *page; 879 int err; 880 881 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 882 if (!page) { 883 /* 884 * get_ksm_page did remove_node_from_stable_tree itself. 885 */ 886 return 0; 887 } 888 889 /* 890 * Page could be still mapped if this races with __mmput() running in 891 * between ksm_exit() and exit_mmap(). Just refuse to let 892 * merge_across_nodes/max_page_sharing be switched. 893 */ 894 err = -EBUSY; 895 if (!page_mapped(page)) { 896 /* 897 * The stable node did not yet appear stale to get_ksm_page(), 898 * since that allows for an unmapped ksm page to be recognized 899 * right up until it is freed; but the node is safe to remove. 900 * This page might be in a pagevec waiting to be freed, 901 * or it might be PageSwapCache (perhaps under writeback), 902 * or it might have been removed from swapcache a moment ago. 903 */ 904 set_page_stable_node(page, NULL); 905 remove_node_from_stable_tree(stable_node); 906 err = 0; 907 } 908 909 unlock_page(page); 910 put_page(page); 911 return err; 912 } 913 914 static int remove_stable_node_chain(struct stable_node *stable_node, 915 struct rb_root *root) 916 { 917 struct stable_node *dup; 918 struct hlist_node *hlist_safe; 919 920 if (!is_stable_node_chain(stable_node)) { 921 VM_BUG_ON(is_stable_node_dup(stable_node)); 922 if (remove_stable_node(stable_node)) 923 return true; 924 else 925 return false; 926 } 927 928 hlist_for_each_entry_safe(dup, hlist_safe, 929 &stable_node->hlist, hlist_dup) { 930 VM_BUG_ON(!is_stable_node_dup(dup)); 931 if (remove_stable_node(dup)) 932 return true; 933 } 934 BUG_ON(!hlist_empty(&stable_node->hlist)); 935 free_stable_node_chain(stable_node, root); 936 return false; 937 } 938 939 static int remove_all_stable_nodes(void) 940 { 941 struct stable_node *stable_node, *next; 942 int nid; 943 int err = 0; 944 945 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 946 while (root_stable_tree[nid].rb_node) { 947 stable_node = rb_entry(root_stable_tree[nid].rb_node, 948 struct stable_node, node); 949 if (remove_stable_node_chain(stable_node, 950 root_stable_tree + nid)) { 951 err = -EBUSY; 952 break; /* proceed to next nid */ 953 } 954 cond_resched(); 955 } 956 } 957 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 958 if (remove_stable_node(stable_node)) 959 err = -EBUSY; 960 cond_resched(); 961 } 962 return err; 963 } 964 965 static int unmerge_and_remove_all_rmap_items(void) 966 { 967 struct mm_slot *mm_slot; 968 struct mm_struct *mm; 969 struct vm_area_struct *vma; 970 int err = 0; 971 972 spin_lock(&ksm_mmlist_lock); 973 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 974 struct mm_slot, mm_list); 975 spin_unlock(&ksm_mmlist_lock); 976 977 for (mm_slot = ksm_scan.mm_slot; 978 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 979 mm = mm_slot->mm; 980 mmap_read_lock(mm); 981 for (vma = mm->mmap; vma; vma = vma->vm_next) { 982 if (ksm_test_exit(mm)) 983 break; 984 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 985 continue; 986 err = unmerge_ksm_pages(vma, 987 vma->vm_start, vma->vm_end); 988 if (err) 989 goto error; 990 } 991 992 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 993 mmap_read_unlock(mm); 994 995 spin_lock(&ksm_mmlist_lock); 996 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 997 struct mm_slot, mm_list); 998 if (ksm_test_exit(mm)) { 999 hash_del(&mm_slot->link); 1000 list_del(&mm_slot->mm_list); 1001 spin_unlock(&ksm_mmlist_lock); 1002 1003 free_mm_slot(mm_slot); 1004 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1005 mmdrop(mm); 1006 } else 1007 spin_unlock(&ksm_mmlist_lock); 1008 } 1009 1010 /* Clean up stable nodes, but don't worry if some are still busy */ 1011 remove_all_stable_nodes(); 1012 ksm_scan.seqnr = 0; 1013 return 0; 1014 1015 error: 1016 mmap_read_unlock(mm); 1017 spin_lock(&ksm_mmlist_lock); 1018 ksm_scan.mm_slot = &ksm_mm_head; 1019 spin_unlock(&ksm_mmlist_lock); 1020 return err; 1021 } 1022 #endif /* CONFIG_SYSFS */ 1023 1024 static u32 calc_checksum(struct page *page) 1025 { 1026 u32 checksum; 1027 void *addr = kmap_atomic(page); 1028 checksum = xxhash(addr, PAGE_SIZE, 0); 1029 kunmap_atomic(addr); 1030 return checksum; 1031 } 1032 1033 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1034 pte_t *orig_pte) 1035 { 1036 struct mm_struct *mm = vma->vm_mm; 1037 struct page_vma_mapped_walk pvmw = { 1038 .page = page, 1039 .vma = vma, 1040 }; 1041 int swapped; 1042 int err = -EFAULT; 1043 struct mmu_notifier_range range; 1044 1045 pvmw.address = page_address_in_vma(page, vma); 1046 if (pvmw.address == -EFAULT) 1047 goto out; 1048 1049 BUG_ON(PageTransCompound(page)); 1050 1051 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1052 pvmw.address, 1053 pvmw.address + PAGE_SIZE); 1054 mmu_notifier_invalidate_range_start(&range); 1055 1056 if (!page_vma_mapped_walk(&pvmw)) 1057 goto out_mn; 1058 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1059 goto out_unlock; 1060 1061 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1062 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1063 mm_tlb_flush_pending(mm)) { 1064 pte_t entry; 1065 1066 swapped = PageSwapCache(page); 1067 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1068 /* 1069 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1070 * take any lock, therefore the check that we are going to make 1071 * with the pagecount against the mapcount is racey and 1072 * O_DIRECT can happen right after the check. 1073 * So we clear the pte and flush the tlb before the check 1074 * this assure us that no O_DIRECT can happen after the check 1075 * or in the middle of the check. 1076 * 1077 * No need to notify as we are downgrading page table to read 1078 * only not changing it to point to a new page. 1079 * 1080 * See Documentation/vm/mmu_notifier.rst 1081 */ 1082 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1083 /* 1084 * Check that no O_DIRECT or similar I/O is in progress on the 1085 * page 1086 */ 1087 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1088 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1089 goto out_unlock; 1090 } 1091 if (pte_dirty(entry)) 1092 set_page_dirty(page); 1093 1094 if (pte_protnone(entry)) 1095 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1096 else 1097 entry = pte_mkclean(pte_wrprotect(entry)); 1098 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1099 } 1100 *orig_pte = *pvmw.pte; 1101 err = 0; 1102 1103 out_unlock: 1104 page_vma_mapped_walk_done(&pvmw); 1105 out_mn: 1106 mmu_notifier_invalidate_range_end(&range); 1107 out: 1108 return err; 1109 } 1110 1111 /** 1112 * replace_page - replace page in vma by new ksm page 1113 * @vma: vma that holds the pte pointing to page 1114 * @page: the page we are replacing by kpage 1115 * @kpage: the ksm page we replace page by 1116 * @orig_pte: the original value of the pte 1117 * 1118 * Returns 0 on success, -EFAULT on failure. 1119 */ 1120 static int replace_page(struct vm_area_struct *vma, struct page *page, 1121 struct page *kpage, pte_t orig_pte) 1122 { 1123 struct mm_struct *mm = vma->vm_mm; 1124 pmd_t *pmd; 1125 pte_t *ptep; 1126 pte_t newpte; 1127 spinlock_t *ptl; 1128 unsigned long addr; 1129 int err = -EFAULT; 1130 struct mmu_notifier_range range; 1131 1132 addr = page_address_in_vma(page, vma); 1133 if (addr == -EFAULT) 1134 goto out; 1135 1136 pmd = mm_find_pmd(mm, addr); 1137 if (!pmd) 1138 goto out; 1139 1140 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1141 addr + PAGE_SIZE); 1142 mmu_notifier_invalidate_range_start(&range); 1143 1144 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1145 if (!pte_same(*ptep, orig_pte)) { 1146 pte_unmap_unlock(ptep, ptl); 1147 goto out_mn; 1148 } 1149 1150 /* 1151 * No need to check ksm_use_zero_pages here: we can only have a 1152 * zero_page here if ksm_use_zero_pages was enabled already. 1153 */ 1154 if (!is_zero_pfn(page_to_pfn(kpage))) { 1155 get_page(kpage); 1156 page_add_anon_rmap(kpage, vma, addr, false); 1157 newpte = mk_pte(kpage, vma->vm_page_prot); 1158 } else { 1159 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1160 vma->vm_page_prot)); 1161 /* 1162 * We're replacing an anonymous page with a zero page, which is 1163 * not anonymous. We need to do proper accounting otherwise we 1164 * will get wrong values in /proc, and a BUG message in dmesg 1165 * when tearing down the mm. 1166 */ 1167 dec_mm_counter(mm, MM_ANONPAGES); 1168 } 1169 1170 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1171 /* 1172 * No need to notify as we are replacing a read only page with another 1173 * read only page with the same content. 1174 * 1175 * See Documentation/vm/mmu_notifier.rst 1176 */ 1177 ptep_clear_flush(vma, addr, ptep); 1178 set_pte_at_notify(mm, addr, ptep, newpte); 1179 1180 page_remove_rmap(page, false); 1181 if (!page_mapped(page)) 1182 try_to_free_swap(page); 1183 put_page(page); 1184 1185 pte_unmap_unlock(ptep, ptl); 1186 err = 0; 1187 out_mn: 1188 mmu_notifier_invalidate_range_end(&range); 1189 out: 1190 return err; 1191 } 1192 1193 /* 1194 * try_to_merge_one_page - take two pages and merge them into one 1195 * @vma: the vma that holds the pte pointing to page 1196 * @page: the PageAnon page that we want to replace with kpage 1197 * @kpage: the PageKsm page that we want to map instead of page, 1198 * or NULL the first time when we want to use page as kpage. 1199 * 1200 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1201 */ 1202 static int try_to_merge_one_page(struct vm_area_struct *vma, 1203 struct page *page, struct page *kpage) 1204 { 1205 pte_t orig_pte = __pte(0); 1206 int err = -EFAULT; 1207 1208 if (page == kpage) /* ksm page forked */ 1209 return 0; 1210 1211 if (!PageAnon(page)) 1212 goto out; 1213 1214 /* 1215 * We need the page lock to read a stable PageSwapCache in 1216 * write_protect_page(). We use trylock_page() instead of 1217 * lock_page() because we don't want to wait here - we 1218 * prefer to continue scanning and merging different pages, 1219 * then come back to this page when it is unlocked. 1220 */ 1221 if (!trylock_page(page)) 1222 goto out; 1223 1224 if (PageTransCompound(page)) { 1225 if (split_huge_page(page)) 1226 goto out_unlock; 1227 } 1228 1229 /* 1230 * If this anonymous page is mapped only here, its pte may need 1231 * to be write-protected. If it's mapped elsewhere, all of its 1232 * ptes are necessarily already write-protected. But in either 1233 * case, we need to lock and check page_count is not raised. 1234 */ 1235 if (write_protect_page(vma, page, &orig_pte) == 0) { 1236 if (!kpage) { 1237 /* 1238 * While we hold page lock, upgrade page from 1239 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1240 * stable_tree_insert() will update stable_node. 1241 */ 1242 set_page_stable_node(page, NULL); 1243 mark_page_accessed(page); 1244 /* 1245 * Page reclaim just frees a clean page with no dirty 1246 * ptes: make sure that the ksm page would be swapped. 1247 */ 1248 if (!PageDirty(page)) 1249 SetPageDirty(page); 1250 err = 0; 1251 } else if (pages_identical(page, kpage)) 1252 err = replace_page(vma, page, kpage, orig_pte); 1253 } 1254 1255 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1256 munlock_vma_page(page); 1257 if (!PageMlocked(kpage)) { 1258 unlock_page(page); 1259 lock_page(kpage); 1260 mlock_vma_page(kpage); 1261 page = kpage; /* for final unlock */ 1262 } 1263 } 1264 1265 out_unlock: 1266 unlock_page(page); 1267 out: 1268 return err; 1269 } 1270 1271 /* 1272 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1273 * but no new kernel page is allocated: kpage must already be a ksm page. 1274 * 1275 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1276 */ 1277 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1278 struct page *page, struct page *kpage) 1279 { 1280 struct mm_struct *mm = rmap_item->mm; 1281 struct vm_area_struct *vma; 1282 int err = -EFAULT; 1283 1284 mmap_read_lock(mm); 1285 vma = find_mergeable_vma(mm, rmap_item->address); 1286 if (!vma) 1287 goto out; 1288 1289 err = try_to_merge_one_page(vma, page, kpage); 1290 if (err) 1291 goto out; 1292 1293 /* Unstable nid is in union with stable anon_vma: remove first */ 1294 remove_rmap_item_from_tree(rmap_item); 1295 1296 /* Must get reference to anon_vma while still holding mmap_lock */ 1297 rmap_item->anon_vma = vma->anon_vma; 1298 get_anon_vma(vma->anon_vma); 1299 out: 1300 mmap_read_unlock(mm); 1301 return err; 1302 } 1303 1304 /* 1305 * try_to_merge_two_pages - take two identical pages and prepare them 1306 * to be merged into one page. 1307 * 1308 * This function returns the kpage if we successfully merged two identical 1309 * pages into one ksm page, NULL otherwise. 1310 * 1311 * Note that this function upgrades page to ksm page: if one of the pages 1312 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1313 */ 1314 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1315 struct page *page, 1316 struct rmap_item *tree_rmap_item, 1317 struct page *tree_page) 1318 { 1319 int err; 1320 1321 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1322 if (!err) { 1323 err = try_to_merge_with_ksm_page(tree_rmap_item, 1324 tree_page, page); 1325 /* 1326 * If that fails, we have a ksm page with only one pte 1327 * pointing to it: so break it. 1328 */ 1329 if (err) 1330 break_cow(rmap_item); 1331 } 1332 return err ? NULL : page; 1333 } 1334 1335 static __always_inline 1336 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1337 { 1338 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1339 /* 1340 * Check that at least one mapping still exists, otherwise 1341 * there's no much point to merge and share with this 1342 * stable_node, as the underlying tree_page of the other 1343 * sharer is going to be freed soon. 1344 */ 1345 return stable_node->rmap_hlist_len && 1346 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1347 } 1348 1349 static __always_inline 1350 bool is_page_sharing_candidate(struct stable_node *stable_node) 1351 { 1352 return __is_page_sharing_candidate(stable_node, 0); 1353 } 1354 1355 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1356 struct stable_node **_stable_node, 1357 struct rb_root *root, 1358 bool prune_stale_stable_nodes) 1359 { 1360 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1361 struct hlist_node *hlist_safe; 1362 struct page *_tree_page, *tree_page = NULL; 1363 int nr = 0; 1364 int found_rmap_hlist_len; 1365 1366 if (!prune_stale_stable_nodes || 1367 time_before(jiffies, stable_node->chain_prune_time + 1368 msecs_to_jiffies( 1369 ksm_stable_node_chains_prune_millisecs))) 1370 prune_stale_stable_nodes = false; 1371 else 1372 stable_node->chain_prune_time = jiffies; 1373 1374 hlist_for_each_entry_safe(dup, hlist_safe, 1375 &stable_node->hlist, hlist_dup) { 1376 cond_resched(); 1377 /* 1378 * We must walk all stable_node_dup to prune the stale 1379 * stable nodes during lookup. 1380 * 1381 * get_ksm_page can drop the nodes from the 1382 * stable_node->hlist if they point to freed pages 1383 * (that's why we do a _safe walk). The "dup" 1384 * stable_node parameter itself will be freed from 1385 * under us if it returns NULL. 1386 */ 1387 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1388 if (!_tree_page) 1389 continue; 1390 nr += 1; 1391 if (is_page_sharing_candidate(dup)) { 1392 if (!found || 1393 dup->rmap_hlist_len > found_rmap_hlist_len) { 1394 if (found) 1395 put_page(tree_page); 1396 found = dup; 1397 found_rmap_hlist_len = found->rmap_hlist_len; 1398 tree_page = _tree_page; 1399 1400 /* skip put_page for found dup */ 1401 if (!prune_stale_stable_nodes) 1402 break; 1403 continue; 1404 } 1405 } 1406 put_page(_tree_page); 1407 } 1408 1409 if (found) { 1410 /* 1411 * nr is counting all dups in the chain only if 1412 * prune_stale_stable_nodes is true, otherwise we may 1413 * break the loop at nr == 1 even if there are 1414 * multiple entries. 1415 */ 1416 if (prune_stale_stable_nodes && nr == 1) { 1417 /* 1418 * If there's not just one entry it would 1419 * corrupt memory, better BUG_ON. In KSM 1420 * context with no lock held it's not even 1421 * fatal. 1422 */ 1423 BUG_ON(stable_node->hlist.first->next); 1424 1425 /* 1426 * There's just one entry and it is below the 1427 * deduplication limit so drop the chain. 1428 */ 1429 rb_replace_node(&stable_node->node, &found->node, 1430 root); 1431 free_stable_node(stable_node); 1432 ksm_stable_node_chains--; 1433 ksm_stable_node_dups--; 1434 /* 1435 * NOTE: the caller depends on the stable_node 1436 * to be equal to stable_node_dup if the chain 1437 * was collapsed. 1438 */ 1439 *_stable_node = found; 1440 /* 1441 * Just for robustneess as stable_node is 1442 * otherwise left as a stable pointer, the 1443 * compiler shall optimize it away at build 1444 * time. 1445 */ 1446 stable_node = NULL; 1447 } else if (stable_node->hlist.first != &found->hlist_dup && 1448 __is_page_sharing_candidate(found, 1)) { 1449 /* 1450 * If the found stable_node dup can accept one 1451 * more future merge (in addition to the one 1452 * that is underway) and is not at the head of 1453 * the chain, put it there so next search will 1454 * be quicker in the !prune_stale_stable_nodes 1455 * case. 1456 * 1457 * NOTE: it would be inaccurate to use nr > 1 1458 * instead of checking the hlist.first pointer 1459 * directly, because in the 1460 * prune_stale_stable_nodes case "nr" isn't 1461 * the position of the found dup in the chain, 1462 * but the total number of dups in the chain. 1463 */ 1464 hlist_del(&found->hlist_dup); 1465 hlist_add_head(&found->hlist_dup, 1466 &stable_node->hlist); 1467 } 1468 } 1469 1470 *_stable_node_dup = found; 1471 return tree_page; 1472 } 1473 1474 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1475 struct rb_root *root) 1476 { 1477 if (!is_stable_node_chain(stable_node)) 1478 return stable_node; 1479 if (hlist_empty(&stable_node->hlist)) { 1480 free_stable_node_chain(stable_node, root); 1481 return NULL; 1482 } 1483 return hlist_entry(stable_node->hlist.first, 1484 typeof(*stable_node), hlist_dup); 1485 } 1486 1487 /* 1488 * Like for get_ksm_page, this function can free the *_stable_node and 1489 * *_stable_node_dup if the returned tree_page is NULL. 1490 * 1491 * It can also free and overwrite *_stable_node with the found 1492 * stable_node_dup if the chain is collapsed (in which case 1493 * *_stable_node will be equal to *_stable_node_dup like if the chain 1494 * never existed). It's up to the caller to verify tree_page is not 1495 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1496 * 1497 * *_stable_node_dup is really a second output parameter of this 1498 * function and will be overwritten in all cases, the caller doesn't 1499 * need to initialize it. 1500 */ 1501 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1502 struct stable_node **_stable_node, 1503 struct rb_root *root, 1504 bool prune_stale_stable_nodes) 1505 { 1506 struct stable_node *stable_node = *_stable_node; 1507 if (!is_stable_node_chain(stable_node)) { 1508 if (is_page_sharing_candidate(stable_node)) { 1509 *_stable_node_dup = stable_node; 1510 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1511 } 1512 /* 1513 * _stable_node_dup set to NULL means the stable_node 1514 * reached the ksm_max_page_sharing limit. 1515 */ 1516 *_stable_node_dup = NULL; 1517 return NULL; 1518 } 1519 return stable_node_dup(_stable_node_dup, _stable_node, root, 1520 prune_stale_stable_nodes); 1521 } 1522 1523 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1524 struct stable_node **s_n, 1525 struct rb_root *root) 1526 { 1527 return __stable_node_chain(s_n_d, s_n, root, true); 1528 } 1529 1530 static __always_inline struct page *chain(struct stable_node **s_n_d, 1531 struct stable_node *s_n, 1532 struct rb_root *root) 1533 { 1534 struct stable_node *old_stable_node = s_n; 1535 struct page *tree_page; 1536 1537 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1538 /* not pruning dups so s_n cannot have changed */ 1539 VM_BUG_ON(s_n != old_stable_node); 1540 return tree_page; 1541 } 1542 1543 /* 1544 * stable_tree_search - search for page inside the stable tree 1545 * 1546 * This function checks if there is a page inside the stable tree 1547 * with identical content to the page that we are scanning right now. 1548 * 1549 * This function returns the stable tree node of identical content if found, 1550 * NULL otherwise. 1551 */ 1552 static struct page *stable_tree_search(struct page *page) 1553 { 1554 int nid; 1555 struct rb_root *root; 1556 struct rb_node **new; 1557 struct rb_node *parent; 1558 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1559 struct stable_node *page_node; 1560 1561 page_node = page_stable_node(page); 1562 if (page_node && page_node->head != &migrate_nodes) { 1563 /* ksm page forked */ 1564 get_page(page); 1565 return page; 1566 } 1567 1568 nid = get_kpfn_nid(page_to_pfn(page)); 1569 root = root_stable_tree + nid; 1570 again: 1571 new = &root->rb_node; 1572 parent = NULL; 1573 1574 while (*new) { 1575 struct page *tree_page; 1576 int ret; 1577 1578 cond_resched(); 1579 stable_node = rb_entry(*new, struct stable_node, node); 1580 stable_node_any = NULL; 1581 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1582 /* 1583 * NOTE: stable_node may have been freed by 1584 * chain_prune() if the returned stable_node_dup is 1585 * not NULL. stable_node_dup may have been inserted in 1586 * the rbtree instead as a regular stable_node (in 1587 * order to collapse the stable_node chain if a single 1588 * stable_node dup was found in it). In such case the 1589 * stable_node is overwritten by the calleee to point 1590 * to the stable_node_dup that was collapsed in the 1591 * stable rbtree and stable_node will be equal to 1592 * stable_node_dup like if the chain never existed. 1593 */ 1594 if (!stable_node_dup) { 1595 /* 1596 * Either all stable_node dups were full in 1597 * this stable_node chain, or this chain was 1598 * empty and should be rb_erased. 1599 */ 1600 stable_node_any = stable_node_dup_any(stable_node, 1601 root); 1602 if (!stable_node_any) { 1603 /* rb_erase just run */ 1604 goto again; 1605 } 1606 /* 1607 * Take any of the stable_node dups page of 1608 * this stable_node chain to let the tree walk 1609 * continue. All KSM pages belonging to the 1610 * stable_node dups in a stable_node chain 1611 * have the same content and they're 1612 * write protected at all times. Any will work 1613 * fine to continue the walk. 1614 */ 1615 tree_page = get_ksm_page(stable_node_any, 1616 GET_KSM_PAGE_NOLOCK); 1617 } 1618 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1619 if (!tree_page) { 1620 /* 1621 * If we walked over a stale stable_node, 1622 * get_ksm_page() will call rb_erase() and it 1623 * may rebalance the tree from under us. So 1624 * restart the search from scratch. Returning 1625 * NULL would be safe too, but we'd generate 1626 * false negative insertions just because some 1627 * stable_node was stale. 1628 */ 1629 goto again; 1630 } 1631 1632 ret = memcmp_pages(page, tree_page); 1633 put_page(tree_page); 1634 1635 parent = *new; 1636 if (ret < 0) 1637 new = &parent->rb_left; 1638 else if (ret > 0) 1639 new = &parent->rb_right; 1640 else { 1641 if (page_node) { 1642 VM_BUG_ON(page_node->head != &migrate_nodes); 1643 /* 1644 * Test if the migrated page should be merged 1645 * into a stable node dup. If the mapcount is 1646 * 1 we can migrate it with another KSM page 1647 * without adding it to the chain. 1648 */ 1649 if (page_mapcount(page) > 1) 1650 goto chain_append; 1651 } 1652 1653 if (!stable_node_dup) { 1654 /* 1655 * If the stable_node is a chain and 1656 * we got a payload match in memcmp 1657 * but we cannot merge the scanned 1658 * page in any of the existing 1659 * stable_node dups because they're 1660 * all full, we need to wait the 1661 * scanned page to find itself a match 1662 * in the unstable tree to create a 1663 * brand new KSM page to add later to 1664 * the dups of this stable_node. 1665 */ 1666 return NULL; 1667 } 1668 1669 /* 1670 * Lock and unlock the stable_node's page (which 1671 * might already have been migrated) so that page 1672 * migration is sure to notice its raised count. 1673 * It would be more elegant to return stable_node 1674 * than kpage, but that involves more changes. 1675 */ 1676 tree_page = get_ksm_page(stable_node_dup, 1677 GET_KSM_PAGE_TRYLOCK); 1678 1679 if (PTR_ERR(tree_page) == -EBUSY) 1680 return ERR_PTR(-EBUSY); 1681 1682 if (unlikely(!tree_page)) 1683 /* 1684 * The tree may have been rebalanced, 1685 * so re-evaluate parent and new. 1686 */ 1687 goto again; 1688 unlock_page(tree_page); 1689 1690 if (get_kpfn_nid(stable_node_dup->kpfn) != 1691 NUMA(stable_node_dup->nid)) { 1692 put_page(tree_page); 1693 goto replace; 1694 } 1695 return tree_page; 1696 } 1697 } 1698 1699 if (!page_node) 1700 return NULL; 1701 1702 list_del(&page_node->list); 1703 DO_NUMA(page_node->nid = nid); 1704 rb_link_node(&page_node->node, parent, new); 1705 rb_insert_color(&page_node->node, root); 1706 out: 1707 if (is_page_sharing_candidate(page_node)) { 1708 get_page(page); 1709 return page; 1710 } else 1711 return NULL; 1712 1713 replace: 1714 /* 1715 * If stable_node was a chain and chain_prune collapsed it, 1716 * stable_node has been updated to be the new regular 1717 * stable_node. A collapse of the chain is indistinguishable 1718 * from the case there was no chain in the stable 1719 * rbtree. Otherwise stable_node is the chain and 1720 * stable_node_dup is the dup to replace. 1721 */ 1722 if (stable_node_dup == stable_node) { 1723 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1724 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1725 /* there is no chain */ 1726 if (page_node) { 1727 VM_BUG_ON(page_node->head != &migrate_nodes); 1728 list_del(&page_node->list); 1729 DO_NUMA(page_node->nid = nid); 1730 rb_replace_node(&stable_node_dup->node, 1731 &page_node->node, 1732 root); 1733 if (is_page_sharing_candidate(page_node)) 1734 get_page(page); 1735 else 1736 page = NULL; 1737 } else { 1738 rb_erase(&stable_node_dup->node, root); 1739 page = NULL; 1740 } 1741 } else { 1742 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1743 __stable_node_dup_del(stable_node_dup); 1744 if (page_node) { 1745 VM_BUG_ON(page_node->head != &migrate_nodes); 1746 list_del(&page_node->list); 1747 DO_NUMA(page_node->nid = nid); 1748 stable_node_chain_add_dup(page_node, stable_node); 1749 if (is_page_sharing_candidate(page_node)) 1750 get_page(page); 1751 else 1752 page = NULL; 1753 } else { 1754 page = NULL; 1755 } 1756 } 1757 stable_node_dup->head = &migrate_nodes; 1758 list_add(&stable_node_dup->list, stable_node_dup->head); 1759 return page; 1760 1761 chain_append: 1762 /* stable_node_dup could be null if it reached the limit */ 1763 if (!stable_node_dup) 1764 stable_node_dup = stable_node_any; 1765 /* 1766 * If stable_node was a chain and chain_prune collapsed it, 1767 * stable_node has been updated to be the new regular 1768 * stable_node. A collapse of the chain is indistinguishable 1769 * from the case there was no chain in the stable 1770 * rbtree. Otherwise stable_node is the chain and 1771 * stable_node_dup is the dup to replace. 1772 */ 1773 if (stable_node_dup == stable_node) { 1774 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1775 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1776 /* chain is missing so create it */ 1777 stable_node = alloc_stable_node_chain(stable_node_dup, 1778 root); 1779 if (!stable_node) 1780 return NULL; 1781 } 1782 /* 1783 * Add this stable_node dup that was 1784 * migrated to the stable_node chain 1785 * of the current nid for this page 1786 * content. 1787 */ 1788 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1789 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1790 VM_BUG_ON(page_node->head != &migrate_nodes); 1791 list_del(&page_node->list); 1792 DO_NUMA(page_node->nid = nid); 1793 stable_node_chain_add_dup(page_node, stable_node); 1794 goto out; 1795 } 1796 1797 /* 1798 * stable_tree_insert - insert stable tree node pointing to new ksm page 1799 * into the stable tree. 1800 * 1801 * This function returns the stable tree node just allocated on success, 1802 * NULL otherwise. 1803 */ 1804 static struct stable_node *stable_tree_insert(struct page *kpage) 1805 { 1806 int nid; 1807 unsigned long kpfn; 1808 struct rb_root *root; 1809 struct rb_node **new; 1810 struct rb_node *parent; 1811 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1812 bool need_chain = false; 1813 1814 kpfn = page_to_pfn(kpage); 1815 nid = get_kpfn_nid(kpfn); 1816 root = root_stable_tree + nid; 1817 again: 1818 parent = NULL; 1819 new = &root->rb_node; 1820 1821 while (*new) { 1822 struct page *tree_page; 1823 int ret; 1824 1825 cond_resched(); 1826 stable_node = rb_entry(*new, struct stable_node, node); 1827 stable_node_any = NULL; 1828 tree_page = chain(&stable_node_dup, stable_node, root); 1829 if (!stable_node_dup) { 1830 /* 1831 * Either all stable_node dups were full in 1832 * this stable_node chain, or this chain was 1833 * empty and should be rb_erased. 1834 */ 1835 stable_node_any = stable_node_dup_any(stable_node, 1836 root); 1837 if (!stable_node_any) { 1838 /* rb_erase just run */ 1839 goto again; 1840 } 1841 /* 1842 * Take any of the stable_node dups page of 1843 * this stable_node chain to let the tree walk 1844 * continue. All KSM pages belonging to the 1845 * stable_node dups in a stable_node chain 1846 * have the same content and they're 1847 * write protected at all times. Any will work 1848 * fine to continue the walk. 1849 */ 1850 tree_page = get_ksm_page(stable_node_any, 1851 GET_KSM_PAGE_NOLOCK); 1852 } 1853 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1854 if (!tree_page) { 1855 /* 1856 * If we walked over a stale stable_node, 1857 * get_ksm_page() will call rb_erase() and it 1858 * may rebalance the tree from under us. So 1859 * restart the search from scratch. Returning 1860 * NULL would be safe too, but we'd generate 1861 * false negative insertions just because some 1862 * stable_node was stale. 1863 */ 1864 goto again; 1865 } 1866 1867 ret = memcmp_pages(kpage, tree_page); 1868 put_page(tree_page); 1869 1870 parent = *new; 1871 if (ret < 0) 1872 new = &parent->rb_left; 1873 else if (ret > 0) 1874 new = &parent->rb_right; 1875 else { 1876 need_chain = true; 1877 break; 1878 } 1879 } 1880 1881 stable_node_dup = alloc_stable_node(); 1882 if (!stable_node_dup) 1883 return NULL; 1884 1885 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1886 stable_node_dup->kpfn = kpfn; 1887 set_page_stable_node(kpage, stable_node_dup); 1888 stable_node_dup->rmap_hlist_len = 0; 1889 DO_NUMA(stable_node_dup->nid = nid); 1890 if (!need_chain) { 1891 rb_link_node(&stable_node_dup->node, parent, new); 1892 rb_insert_color(&stable_node_dup->node, root); 1893 } else { 1894 if (!is_stable_node_chain(stable_node)) { 1895 struct stable_node *orig = stable_node; 1896 /* chain is missing so create it */ 1897 stable_node = alloc_stable_node_chain(orig, root); 1898 if (!stable_node) { 1899 free_stable_node(stable_node_dup); 1900 return NULL; 1901 } 1902 } 1903 stable_node_chain_add_dup(stable_node_dup, stable_node); 1904 } 1905 1906 return stable_node_dup; 1907 } 1908 1909 /* 1910 * unstable_tree_search_insert - search for identical page, 1911 * else insert rmap_item into the unstable tree. 1912 * 1913 * This function searches for a page in the unstable tree identical to the 1914 * page currently being scanned; and if no identical page is found in the 1915 * tree, we insert rmap_item as a new object into the unstable tree. 1916 * 1917 * This function returns pointer to rmap_item found to be identical 1918 * to the currently scanned page, NULL otherwise. 1919 * 1920 * This function does both searching and inserting, because they share 1921 * the same walking algorithm in an rbtree. 1922 */ 1923 static 1924 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1925 struct page *page, 1926 struct page **tree_pagep) 1927 { 1928 struct rb_node **new; 1929 struct rb_root *root; 1930 struct rb_node *parent = NULL; 1931 int nid; 1932 1933 nid = get_kpfn_nid(page_to_pfn(page)); 1934 root = root_unstable_tree + nid; 1935 new = &root->rb_node; 1936 1937 while (*new) { 1938 struct rmap_item *tree_rmap_item; 1939 struct page *tree_page; 1940 int ret; 1941 1942 cond_resched(); 1943 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1944 tree_page = get_mergeable_page(tree_rmap_item); 1945 if (!tree_page) 1946 return NULL; 1947 1948 /* 1949 * Don't substitute a ksm page for a forked page. 1950 */ 1951 if (page == tree_page) { 1952 put_page(tree_page); 1953 return NULL; 1954 } 1955 1956 ret = memcmp_pages(page, tree_page); 1957 1958 parent = *new; 1959 if (ret < 0) { 1960 put_page(tree_page); 1961 new = &parent->rb_left; 1962 } else if (ret > 0) { 1963 put_page(tree_page); 1964 new = &parent->rb_right; 1965 } else if (!ksm_merge_across_nodes && 1966 page_to_nid(tree_page) != nid) { 1967 /* 1968 * If tree_page has been migrated to another NUMA node, 1969 * it will be flushed out and put in the right unstable 1970 * tree next time: only merge with it when across_nodes. 1971 */ 1972 put_page(tree_page); 1973 return NULL; 1974 } else { 1975 *tree_pagep = tree_page; 1976 return tree_rmap_item; 1977 } 1978 } 1979 1980 rmap_item->address |= UNSTABLE_FLAG; 1981 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1982 DO_NUMA(rmap_item->nid = nid); 1983 rb_link_node(&rmap_item->node, parent, new); 1984 rb_insert_color(&rmap_item->node, root); 1985 1986 ksm_pages_unshared++; 1987 return NULL; 1988 } 1989 1990 /* 1991 * stable_tree_append - add another rmap_item to the linked list of 1992 * rmap_items hanging off a given node of the stable tree, all sharing 1993 * the same ksm page. 1994 */ 1995 static void stable_tree_append(struct rmap_item *rmap_item, 1996 struct stable_node *stable_node, 1997 bool max_page_sharing_bypass) 1998 { 1999 /* 2000 * rmap won't find this mapping if we don't insert the 2001 * rmap_item in the right stable_node 2002 * duplicate. page_migration could break later if rmap breaks, 2003 * so we can as well crash here. We really need to check for 2004 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2005 * for other negative values as an underflow if detected here 2006 * for the first time (and not when decreasing rmap_hlist_len) 2007 * would be sign of memory corruption in the stable_node. 2008 */ 2009 BUG_ON(stable_node->rmap_hlist_len < 0); 2010 2011 stable_node->rmap_hlist_len++; 2012 if (!max_page_sharing_bypass) 2013 /* possibly non fatal but unexpected overflow, only warn */ 2014 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2015 ksm_max_page_sharing); 2016 2017 rmap_item->head = stable_node; 2018 rmap_item->address |= STABLE_FLAG; 2019 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2020 2021 if (rmap_item->hlist.next) 2022 ksm_pages_sharing++; 2023 else 2024 ksm_pages_shared++; 2025 } 2026 2027 /* 2028 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2029 * if not, compare checksum to previous and if it's the same, see if page can 2030 * be inserted into the unstable tree, or merged with a page already there and 2031 * both transferred to the stable tree. 2032 * 2033 * @page: the page that we are searching identical page to. 2034 * @rmap_item: the reverse mapping into the virtual address of this page 2035 */ 2036 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2037 { 2038 struct mm_struct *mm = rmap_item->mm; 2039 struct rmap_item *tree_rmap_item; 2040 struct page *tree_page = NULL; 2041 struct stable_node *stable_node; 2042 struct page *kpage; 2043 unsigned int checksum; 2044 int err; 2045 bool max_page_sharing_bypass = false; 2046 2047 stable_node = page_stable_node(page); 2048 if (stable_node) { 2049 if (stable_node->head != &migrate_nodes && 2050 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2051 NUMA(stable_node->nid)) { 2052 stable_node_dup_del(stable_node); 2053 stable_node->head = &migrate_nodes; 2054 list_add(&stable_node->list, stable_node->head); 2055 } 2056 if (stable_node->head != &migrate_nodes && 2057 rmap_item->head == stable_node) 2058 return; 2059 /* 2060 * If it's a KSM fork, allow it to go over the sharing limit 2061 * without warnings. 2062 */ 2063 if (!is_page_sharing_candidate(stable_node)) 2064 max_page_sharing_bypass = true; 2065 } 2066 2067 /* We first start with searching the page inside the stable tree */ 2068 kpage = stable_tree_search(page); 2069 if (kpage == page && rmap_item->head == stable_node) { 2070 put_page(kpage); 2071 return; 2072 } 2073 2074 remove_rmap_item_from_tree(rmap_item); 2075 2076 if (kpage) { 2077 if (PTR_ERR(kpage) == -EBUSY) 2078 return; 2079 2080 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2081 if (!err) { 2082 /* 2083 * The page was successfully merged: 2084 * add its rmap_item to the stable tree. 2085 */ 2086 lock_page(kpage); 2087 stable_tree_append(rmap_item, page_stable_node(kpage), 2088 max_page_sharing_bypass); 2089 unlock_page(kpage); 2090 } 2091 put_page(kpage); 2092 return; 2093 } 2094 2095 /* 2096 * If the hash value of the page has changed from the last time 2097 * we calculated it, this page is changing frequently: therefore we 2098 * don't want to insert it in the unstable tree, and we don't want 2099 * to waste our time searching for something identical to it there. 2100 */ 2101 checksum = calc_checksum(page); 2102 if (rmap_item->oldchecksum != checksum) { 2103 rmap_item->oldchecksum = checksum; 2104 return; 2105 } 2106 2107 /* 2108 * Same checksum as an empty page. We attempt to merge it with the 2109 * appropriate zero page if the user enabled this via sysfs. 2110 */ 2111 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2112 struct vm_area_struct *vma; 2113 2114 mmap_read_lock(mm); 2115 vma = find_mergeable_vma(mm, rmap_item->address); 2116 if (vma) { 2117 err = try_to_merge_one_page(vma, page, 2118 ZERO_PAGE(rmap_item->address)); 2119 } else { 2120 /* 2121 * If the vma is out of date, we do not need to 2122 * continue. 2123 */ 2124 err = 0; 2125 } 2126 mmap_read_unlock(mm); 2127 /* 2128 * In case of failure, the page was not really empty, so we 2129 * need to continue. Otherwise we're done. 2130 */ 2131 if (!err) 2132 return; 2133 } 2134 tree_rmap_item = 2135 unstable_tree_search_insert(rmap_item, page, &tree_page); 2136 if (tree_rmap_item) { 2137 bool split; 2138 2139 kpage = try_to_merge_two_pages(rmap_item, page, 2140 tree_rmap_item, tree_page); 2141 /* 2142 * If both pages we tried to merge belong to the same compound 2143 * page, then we actually ended up increasing the reference 2144 * count of the same compound page twice, and split_huge_page 2145 * failed. 2146 * Here we set a flag if that happened, and we use it later to 2147 * try split_huge_page again. Since we call put_page right 2148 * afterwards, the reference count will be correct and 2149 * split_huge_page should succeed. 2150 */ 2151 split = PageTransCompound(page) 2152 && compound_head(page) == compound_head(tree_page); 2153 put_page(tree_page); 2154 if (kpage) { 2155 /* 2156 * The pages were successfully merged: insert new 2157 * node in the stable tree and add both rmap_items. 2158 */ 2159 lock_page(kpage); 2160 stable_node = stable_tree_insert(kpage); 2161 if (stable_node) { 2162 stable_tree_append(tree_rmap_item, stable_node, 2163 false); 2164 stable_tree_append(rmap_item, stable_node, 2165 false); 2166 } 2167 unlock_page(kpage); 2168 2169 /* 2170 * If we fail to insert the page into the stable tree, 2171 * we will have 2 virtual addresses that are pointing 2172 * to a ksm page left outside the stable tree, 2173 * in which case we need to break_cow on both. 2174 */ 2175 if (!stable_node) { 2176 break_cow(tree_rmap_item); 2177 break_cow(rmap_item); 2178 } 2179 } else if (split) { 2180 /* 2181 * We are here if we tried to merge two pages and 2182 * failed because they both belonged to the same 2183 * compound page. We will split the page now, but no 2184 * merging will take place. 2185 * We do not want to add the cost of a full lock; if 2186 * the page is locked, it is better to skip it and 2187 * perhaps try again later. 2188 */ 2189 if (!trylock_page(page)) 2190 return; 2191 split_huge_page(page); 2192 unlock_page(page); 2193 } 2194 } 2195 } 2196 2197 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2198 struct rmap_item **rmap_list, 2199 unsigned long addr) 2200 { 2201 struct rmap_item *rmap_item; 2202 2203 while (*rmap_list) { 2204 rmap_item = *rmap_list; 2205 if ((rmap_item->address & PAGE_MASK) == addr) 2206 return rmap_item; 2207 if (rmap_item->address > addr) 2208 break; 2209 *rmap_list = rmap_item->rmap_list; 2210 remove_rmap_item_from_tree(rmap_item); 2211 free_rmap_item(rmap_item); 2212 } 2213 2214 rmap_item = alloc_rmap_item(); 2215 if (rmap_item) { 2216 /* It has already been zeroed */ 2217 rmap_item->mm = mm_slot->mm; 2218 rmap_item->address = addr; 2219 rmap_item->rmap_list = *rmap_list; 2220 *rmap_list = rmap_item; 2221 } 2222 return rmap_item; 2223 } 2224 2225 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2226 { 2227 struct mm_struct *mm; 2228 struct mm_slot *slot; 2229 struct vm_area_struct *vma; 2230 struct rmap_item *rmap_item; 2231 int nid; 2232 2233 if (list_empty(&ksm_mm_head.mm_list)) 2234 return NULL; 2235 2236 slot = ksm_scan.mm_slot; 2237 if (slot == &ksm_mm_head) { 2238 /* 2239 * A number of pages can hang around indefinitely on per-cpu 2240 * pagevecs, raised page count preventing write_protect_page 2241 * from merging them. Though it doesn't really matter much, 2242 * it is puzzling to see some stuck in pages_volatile until 2243 * other activity jostles them out, and they also prevented 2244 * LTP's KSM test from succeeding deterministically; so drain 2245 * them here (here rather than on entry to ksm_do_scan(), 2246 * so we don't IPI too often when pages_to_scan is set low). 2247 */ 2248 lru_add_drain_all(); 2249 2250 /* 2251 * Whereas stale stable_nodes on the stable_tree itself 2252 * get pruned in the regular course of stable_tree_search(), 2253 * those moved out to the migrate_nodes list can accumulate: 2254 * so prune them once before each full scan. 2255 */ 2256 if (!ksm_merge_across_nodes) { 2257 struct stable_node *stable_node, *next; 2258 struct page *page; 2259 2260 list_for_each_entry_safe(stable_node, next, 2261 &migrate_nodes, list) { 2262 page = get_ksm_page(stable_node, 2263 GET_KSM_PAGE_NOLOCK); 2264 if (page) 2265 put_page(page); 2266 cond_resched(); 2267 } 2268 } 2269 2270 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2271 root_unstable_tree[nid] = RB_ROOT; 2272 2273 spin_lock(&ksm_mmlist_lock); 2274 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2275 ksm_scan.mm_slot = slot; 2276 spin_unlock(&ksm_mmlist_lock); 2277 /* 2278 * Although we tested list_empty() above, a racing __ksm_exit 2279 * of the last mm on the list may have removed it since then. 2280 */ 2281 if (slot == &ksm_mm_head) 2282 return NULL; 2283 next_mm: 2284 ksm_scan.address = 0; 2285 ksm_scan.rmap_list = &slot->rmap_list; 2286 } 2287 2288 mm = slot->mm; 2289 mmap_read_lock(mm); 2290 if (ksm_test_exit(mm)) 2291 vma = NULL; 2292 else 2293 vma = find_vma(mm, ksm_scan.address); 2294 2295 for (; vma; vma = vma->vm_next) { 2296 if (!(vma->vm_flags & VM_MERGEABLE)) 2297 continue; 2298 if (ksm_scan.address < vma->vm_start) 2299 ksm_scan.address = vma->vm_start; 2300 if (!vma->anon_vma) 2301 ksm_scan.address = vma->vm_end; 2302 2303 while (ksm_scan.address < vma->vm_end) { 2304 if (ksm_test_exit(mm)) 2305 break; 2306 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2307 if (IS_ERR_OR_NULL(*page)) { 2308 ksm_scan.address += PAGE_SIZE; 2309 cond_resched(); 2310 continue; 2311 } 2312 if (PageAnon(*page)) { 2313 flush_anon_page(vma, *page, ksm_scan.address); 2314 flush_dcache_page(*page); 2315 rmap_item = get_next_rmap_item(slot, 2316 ksm_scan.rmap_list, ksm_scan.address); 2317 if (rmap_item) { 2318 ksm_scan.rmap_list = 2319 &rmap_item->rmap_list; 2320 ksm_scan.address += PAGE_SIZE; 2321 } else 2322 put_page(*page); 2323 mmap_read_unlock(mm); 2324 return rmap_item; 2325 } 2326 put_page(*page); 2327 ksm_scan.address += PAGE_SIZE; 2328 cond_resched(); 2329 } 2330 } 2331 2332 if (ksm_test_exit(mm)) { 2333 ksm_scan.address = 0; 2334 ksm_scan.rmap_list = &slot->rmap_list; 2335 } 2336 /* 2337 * Nuke all the rmap_items that are above this current rmap: 2338 * because there were no VM_MERGEABLE vmas with such addresses. 2339 */ 2340 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2341 2342 spin_lock(&ksm_mmlist_lock); 2343 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2344 struct mm_slot, mm_list); 2345 if (ksm_scan.address == 0) { 2346 /* 2347 * We've completed a full scan of all vmas, holding mmap_lock 2348 * throughout, and found no VM_MERGEABLE: so do the same as 2349 * __ksm_exit does to remove this mm from all our lists now. 2350 * This applies either when cleaning up after __ksm_exit 2351 * (but beware: we can reach here even before __ksm_exit), 2352 * or when all VM_MERGEABLE areas have been unmapped (and 2353 * mmap_lock then protects against race with MADV_MERGEABLE). 2354 */ 2355 hash_del(&slot->link); 2356 list_del(&slot->mm_list); 2357 spin_unlock(&ksm_mmlist_lock); 2358 2359 free_mm_slot(slot); 2360 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2361 mmap_read_unlock(mm); 2362 mmdrop(mm); 2363 } else { 2364 mmap_read_unlock(mm); 2365 /* 2366 * mmap_read_unlock(mm) first because after 2367 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2368 * already have been freed under us by __ksm_exit() 2369 * because the "mm_slot" is still hashed and 2370 * ksm_scan.mm_slot doesn't point to it anymore. 2371 */ 2372 spin_unlock(&ksm_mmlist_lock); 2373 } 2374 2375 /* Repeat until we've completed scanning the whole list */ 2376 slot = ksm_scan.mm_slot; 2377 if (slot != &ksm_mm_head) 2378 goto next_mm; 2379 2380 ksm_scan.seqnr++; 2381 return NULL; 2382 } 2383 2384 /** 2385 * ksm_do_scan - the ksm scanner main worker function. 2386 * @scan_npages: number of pages we want to scan before we return. 2387 */ 2388 static void ksm_do_scan(unsigned int scan_npages) 2389 { 2390 struct rmap_item *rmap_item; 2391 struct page *page; 2392 2393 while (scan_npages-- && likely(!freezing(current))) { 2394 cond_resched(); 2395 rmap_item = scan_get_next_rmap_item(&page); 2396 if (!rmap_item) 2397 return; 2398 cmp_and_merge_page(page, rmap_item); 2399 put_page(page); 2400 } 2401 } 2402 2403 static int ksmd_should_run(void) 2404 { 2405 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2406 } 2407 2408 static int ksm_scan_thread(void *nothing) 2409 { 2410 unsigned int sleep_ms; 2411 2412 set_freezable(); 2413 set_user_nice(current, 5); 2414 2415 while (!kthread_should_stop()) { 2416 mutex_lock(&ksm_thread_mutex); 2417 wait_while_offlining(); 2418 if (ksmd_should_run()) 2419 ksm_do_scan(ksm_thread_pages_to_scan); 2420 mutex_unlock(&ksm_thread_mutex); 2421 2422 try_to_freeze(); 2423 2424 if (ksmd_should_run()) { 2425 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2426 wait_event_interruptible_timeout(ksm_iter_wait, 2427 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2428 msecs_to_jiffies(sleep_ms)); 2429 } else { 2430 wait_event_freezable(ksm_thread_wait, 2431 ksmd_should_run() || kthread_should_stop()); 2432 } 2433 } 2434 return 0; 2435 } 2436 2437 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2438 unsigned long end, int advice, unsigned long *vm_flags) 2439 { 2440 struct mm_struct *mm = vma->vm_mm; 2441 int err; 2442 2443 switch (advice) { 2444 case MADV_MERGEABLE: 2445 /* 2446 * Be somewhat over-protective for now! 2447 */ 2448 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2449 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2450 VM_HUGETLB | VM_MIXEDMAP)) 2451 return 0; /* just ignore the advice */ 2452 2453 if (vma_is_dax(vma)) 2454 return 0; 2455 2456 #ifdef VM_SAO 2457 if (*vm_flags & VM_SAO) 2458 return 0; 2459 #endif 2460 #ifdef VM_SPARC_ADI 2461 if (*vm_flags & VM_SPARC_ADI) 2462 return 0; 2463 #endif 2464 2465 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2466 err = __ksm_enter(mm); 2467 if (err) 2468 return err; 2469 } 2470 2471 *vm_flags |= VM_MERGEABLE; 2472 break; 2473 2474 case MADV_UNMERGEABLE: 2475 if (!(*vm_flags & VM_MERGEABLE)) 2476 return 0; /* just ignore the advice */ 2477 2478 if (vma->anon_vma) { 2479 err = unmerge_ksm_pages(vma, start, end); 2480 if (err) 2481 return err; 2482 } 2483 2484 *vm_flags &= ~VM_MERGEABLE; 2485 break; 2486 } 2487 2488 return 0; 2489 } 2490 EXPORT_SYMBOL_GPL(ksm_madvise); 2491 2492 int __ksm_enter(struct mm_struct *mm) 2493 { 2494 struct mm_slot *mm_slot; 2495 int needs_wakeup; 2496 2497 mm_slot = alloc_mm_slot(); 2498 if (!mm_slot) 2499 return -ENOMEM; 2500 2501 /* Check ksm_run too? Would need tighter locking */ 2502 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2503 2504 spin_lock(&ksm_mmlist_lock); 2505 insert_to_mm_slots_hash(mm, mm_slot); 2506 /* 2507 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2508 * insert just behind the scanning cursor, to let the area settle 2509 * down a little; when fork is followed by immediate exec, we don't 2510 * want ksmd to waste time setting up and tearing down an rmap_list. 2511 * 2512 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2513 * scanning cursor, otherwise KSM pages in newly forked mms will be 2514 * missed: then we might as well insert at the end of the list. 2515 */ 2516 if (ksm_run & KSM_RUN_UNMERGE) 2517 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2518 else 2519 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2520 spin_unlock(&ksm_mmlist_lock); 2521 2522 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2523 mmgrab(mm); 2524 2525 if (needs_wakeup) 2526 wake_up_interruptible(&ksm_thread_wait); 2527 2528 return 0; 2529 } 2530 2531 void __ksm_exit(struct mm_struct *mm) 2532 { 2533 struct mm_slot *mm_slot; 2534 int easy_to_free = 0; 2535 2536 /* 2537 * This process is exiting: if it's straightforward (as is the 2538 * case when ksmd was never running), free mm_slot immediately. 2539 * But if it's at the cursor or has rmap_items linked to it, use 2540 * mmap_lock to synchronize with any break_cows before pagetables 2541 * are freed, and leave the mm_slot on the list for ksmd to free. 2542 * Beware: ksm may already have noticed it exiting and freed the slot. 2543 */ 2544 2545 spin_lock(&ksm_mmlist_lock); 2546 mm_slot = get_mm_slot(mm); 2547 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2548 if (!mm_slot->rmap_list) { 2549 hash_del(&mm_slot->link); 2550 list_del(&mm_slot->mm_list); 2551 easy_to_free = 1; 2552 } else { 2553 list_move(&mm_slot->mm_list, 2554 &ksm_scan.mm_slot->mm_list); 2555 } 2556 } 2557 spin_unlock(&ksm_mmlist_lock); 2558 2559 if (easy_to_free) { 2560 free_mm_slot(mm_slot); 2561 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2562 mmdrop(mm); 2563 } else if (mm_slot) { 2564 mmap_write_lock(mm); 2565 mmap_write_unlock(mm); 2566 } 2567 } 2568 2569 struct page *ksm_might_need_to_copy(struct page *page, 2570 struct vm_area_struct *vma, unsigned long address) 2571 { 2572 struct anon_vma *anon_vma = page_anon_vma(page); 2573 struct page *new_page; 2574 2575 if (PageKsm(page)) { 2576 if (page_stable_node(page) && 2577 !(ksm_run & KSM_RUN_UNMERGE)) 2578 return page; /* no need to copy it */ 2579 } else if (!anon_vma) { 2580 return page; /* no need to copy it */ 2581 } else if (anon_vma->root == vma->anon_vma->root && 2582 page->index == linear_page_index(vma, address)) { 2583 return page; /* still no need to copy it */ 2584 } 2585 if (!PageUptodate(page)) 2586 return page; /* let do_swap_page report the error */ 2587 2588 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2589 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) { 2590 put_page(new_page); 2591 new_page = NULL; 2592 } 2593 if (new_page) { 2594 copy_user_highpage(new_page, page, address, vma); 2595 2596 SetPageDirty(new_page); 2597 __SetPageUptodate(new_page); 2598 __SetPageLocked(new_page); 2599 } 2600 2601 return new_page; 2602 } 2603 2604 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2605 { 2606 struct stable_node *stable_node; 2607 struct rmap_item *rmap_item; 2608 int search_new_forks = 0; 2609 2610 VM_BUG_ON_PAGE(!PageKsm(page), page); 2611 2612 /* 2613 * Rely on the page lock to protect against concurrent modifications 2614 * to that page's node of the stable tree. 2615 */ 2616 VM_BUG_ON_PAGE(!PageLocked(page), page); 2617 2618 stable_node = page_stable_node(page); 2619 if (!stable_node) 2620 return; 2621 again: 2622 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2623 struct anon_vma *anon_vma = rmap_item->anon_vma; 2624 struct anon_vma_chain *vmac; 2625 struct vm_area_struct *vma; 2626 2627 cond_resched(); 2628 anon_vma_lock_read(anon_vma); 2629 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2630 0, ULONG_MAX) { 2631 unsigned long addr; 2632 2633 cond_resched(); 2634 vma = vmac->vma; 2635 2636 /* Ignore the stable/unstable/sqnr flags */ 2637 addr = rmap_item->address & ~KSM_FLAG_MASK; 2638 2639 if (addr < vma->vm_start || addr >= vma->vm_end) 2640 continue; 2641 /* 2642 * Initially we examine only the vma which covers this 2643 * rmap_item; but later, if there is still work to do, 2644 * we examine covering vmas in other mms: in case they 2645 * were forked from the original since ksmd passed. 2646 */ 2647 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2648 continue; 2649 2650 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2651 continue; 2652 2653 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2654 anon_vma_unlock_read(anon_vma); 2655 return; 2656 } 2657 if (rwc->done && rwc->done(page)) { 2658 anon_vma_unlock_read(anon_vma); 2659 return; 2660 } 2661 } 2662 anon_vma_unlock_read(anon_vma); 2663 } 2664 if (!search_new_forks++) 2665 goto again; 2666 } 2667 2668 #ifdef CONFIG_MIGRATION 2669 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2670 { 2671 struct stable_node *stable_node; 2672 2673 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2674 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2675 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2676 2677 stable_node = page_stable_node(newpage); 2678 if (stable_node) { 2679 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2680 stable_node->kpfn = page_to_pfn(newpage); 2681 /* 2682 * newpage->mapping was set in advance; now we need smp_wmb() 2683 * to make sure that the new stable_node->kpfn is visible 2684 * to get_ksm_page() before it can see that oldpage->mapping 2685 * has gone stale (or that PageSwapCache has been cleared). 2686 */ 2687 smp_wmb(); 2688 set_page_stable_node(oldpage, NULL); 2689 } 2690 } 2691 #endif /* CONFIG_MIGRATION */ 2692 2693 #ifdef CONFIG_MEMORY_HOTREMOVE 2694 static void wait_while_offlining(void) 2695 { 2696 while (ksm_run & KSM_RUN_OFFLINE) { 2697 mutex_unlock(&ksm_thread_mutex); 2698 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2699 TASK_UNINTERRUPTIBLE); 2700 mutex_lock(&ksm_thread_mutex); 2701 } 2702 } 2703 2704 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2705 unsigned long start_pfn, 2706 unsigned long end_pfn) 2707 { 2708 if (stable_node->kpfn >= start_pfn && 2709 stable_node->kpfn < end_pfn) { 2710 /* 2711 * Don't get_ksm_page, page has already gone: 2712 * which is why we keep kpfn instead of page* 2713 */ 2714 remove_node_from_stable_tree(stable_node); 2715 return true; 2716 } 2717 return false; 2718 } 2719 2720 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2721 unsigned long start_pfn, 2722 unsigned long end_pfn, 2723 struct rb_root *root) 2724 { 2725 struct stable_node *dup; 2726 struct hlist_node *hlist_safe; 2727 2728 if (!is_stable_node_chain(stable_node)) { 2729 VM_BUG_ON(is_stable_node_dup(stable_node)); 2730 return stable_node_dup_remove_range(stable_node, start_pfn, 2731 end_pfn); 2732 } 2733 2734 hlist_for_each_entry_safe(dup, hlist_safe, 2735 &stable_node->hlist, hlist_dup) { 2736 VM_BUG_ON(!is_stable_node_dup(dup)); 2737 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2738 } 2739 if (hlist_empty(&stable_node->hlist)) { 2740 free_stable_node_chain(stable_node, root); 2741 return true; /* notify caller that tree was rebalanced */ 2742 } else 2743 return false; 2744 } 2745 2746 static void ksm_check_stable_tree(unsigned long start_pfn, 2747 unsigned long end_pfn) 2748 { 2749 struct stable_node *stable_node, *next; 2750 struct rb_node *node; 2751 int nid; 2752 2753 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2754 node = rb_first(root_stable_tree + nid); 2755 while (node) { 2756 stable_node = rb_entry(node, struct stable_node, node); 2757 if (stable_node_chain_remove_range(stable_node, 2758 start_pfn, end_pfn, 2759 root_stable_tree + 2760 nid)) 2761 node = rb_first(root_stable_tree + nid); 2762 else 2763 node = rb_next(node); 2764 cond_resched(); 2765 } 2766 } 2767 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2768 if (stable_node->kpfn >= start_pfn && 2769 stable_node->kpfn < end_pfn) 2770 remove_node_from_stable_tree(stable_node); 2771 cond_resched(); 2772 } 2773 } 2774 2775 static int ksm_memory_callback(struct notifier_block *self, 2776 unsigned long action, void *arg) 2777 { 2778 struct memory_notify *mn = arg; 2779 2780 switch (action) { 2781 case MEM_GOING_OFFLINE: 2782 /* 2783 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2784 * and remove_all_stable_nodes() while memory is going offline: 2785 * it is unsafe for them to touch the stable tree at this time. 2786 * But unmerge_ksm_pages(), rmap lookups and other entry points 2787 * which do not need the ksm_thread_mutex are all safe. 2788 */ 2789 mutex_lock(&ksm_thread_mutex); 2790 ksm_run |= KSM_RUN_OFFLINE; 2791 mutex_unlock(&ksm_thread_mutex); 2792 break; 2793 2794 case MEM_OFFLINE: 2795 /* 2796 * Most of the work is done by page migration; but there might 2797 * be a few stable_nodes left over, still pointing to struct 2798 * pages which have been offlined: prune those from the tree, 2799 * otherwise get_ksm_page() might later try to access a 2800 * non-existent struct page. 2801 */ 2802 ksm_check_stable_tree(mn->start_pfn, 2803 mn->start_pfn + mn->nr_pages); 2804 fallthrough; 2805 case MEM_CANCEL_OFFLINE: 2806 mutex_lock(&ksm_thread_mutex); 2807 ksm_run &= ~KSM_RUN_OFFLINE; 2808 mutex_unlock(&ksm_thread_mutex); 2809 2810 smp_mb(); /* wake_up_bit advises this */ 2811 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2812 break; 2813 } 2814 return NOTIFY_OK; 2815 } 2816 #else 2817 static void wait_while_offlining(void) 2818 { 2819 } 2820 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2821 2822 #ifdef CONFIG_SYSFS 2823 /* 2824 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2825 */ 2826 2827 #define KSM_ATTR_RO(_name) \ 2828 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2829 #define KSM_ATTR(_name) \ 2830 static struct kobj_attribute _name##_attr = \ 2831 __ATTR(_name, 0644, _name##_show, _name##_store) 2832 2833 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2834 struct kobj_attribute *attr, char *buf) 2835 { 2836 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2837 } 2838 2839 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2840 struct kobj_attribute *attr, 2841 const char *buf, size_t count) 2842 { 2843 unsigned long msecs; 2844 int err; 2845 2846 err = kstrtoul(buf, 10, &msecs); 2847 if (err || msecs > UINT_MAX) 2848 return -EINVAL; 2849 2850 ksm_thread_sleep_millisecs = msecs; 2851 wake_up_interruptible(&ksm_iter_wait); 2852 2853 return count; 2854 } 2855 KSM_ATTR(sleep_millisecs); 2856 2857 static ssize_t pages_to_scan_show(struct kobject *kobj, 2858 struct kobj_attribute *attr, char *buf) 2859 { 2860 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2861 } 2862 2863 static ssize_t pages_to_scan_store(struct kobject *kobj, 2864 struct kobj_attribute *attr, 2865 const char *buf, size_t count) 2866 { 2867 int err; 2868 unsigned long nr_pages; 2869 2870 err = kstrtoul(buf, 10, &nr_pages); 2871 if (err || nr_pages > UINT_MAX) 2872 return -EINVAL; 2873 2874 ksm_thread_pages_to_scan = nr_pages; 2875 2876 return count; 2877 } 2878 KSM_ATTR(pages_to_scan); 2879 2880 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2881 char *buf) 2882 { 2883 return sprintf(buf, "%lu\n", ksm_run); 2884 } 2885 2886 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2887 const char *buf, size_t count) 2888 { 2889 int err; 2890 unsigned long flags; 2891 2892 err = kstrtoul(buf, 10, &flags); 2893 if (err || flags > UINT_MAX) 2894 return -EINVAL; 2895 if (flags > KSM_RUN_UNMERGE) 2896 return -EINVAL; 2897 2898 /* 2899 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2900 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2901 * breaking COW to free the pages_shared (but leaves mm_slots 2902 * on the list for when ksmd may be set running again). 2903 */ 2904 2905 mutex_lock(&ksm_thread_mutex); 2906 wait_while_offlining(); 2907 if (ksm_run != flags) { 2908 ksm_run = flags; 2909 if (flags & KSM_RUN_UNMERGE) { 2910 set_current_oom_origin(); 2911 err = unmerge_and_remove_all_rmap_items(); 2912 clear_current_oom_origin(); 2913 if (err) { 2914 ksm_run = KSM_RUN_STOP; 2915 count = err; 2916 } 2917 } 2918 } 2919 mutex_unlock(&ksm_thread_mutex); 2920 2921 if (flags & KSM_RUN_MERGE) 2922 wake_up_interruptible(&ksm_thread_wait); 2923 2924 return count; 2925 } 2926 KSM_ATTR(run); 2927 2928 #ifdef CONFIG_NUMA 2929 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2930 struct kobj_attribute *attr, char *buf) 2931 { 2932 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2933 } 2934 2935 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2936 struct kobj_attribute *attr, 2937 const char *buf, size_t count) 2938 { 2939 int err; 2940 unsigned long knob; 2941 2942 err = kstrtoul(buf, 10, &knob); 2943 if (err) 2944 return err; 2945 if (knob > 1) 2946 return -EINVAL; 2947 2948 mutex_lock(&ksm_thread_mutex); 2949 wait_while_offlining(); 2950 if (ksm_merge_across_nodes != knob) { 2951 if (ksm_pages_shared || remove_all_stable_nodes()) 2952 err = -EBUSY; 2953 else if (root_stable_tree == one_stable_tree) { 2954 struct rb_root *buf; 2955 /* 2956 * This is the first time that we switch away from the 2957 * default of merging across nodes: must now allocate 2958 * a buffer to hold as many roots as may be needed. 2959 * Allocate stable and unstable together: 2960 * MAXSMP NODES_SHIFT 10 will use 16kB. 2961 */ 2962 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2963 GFP_KERNEL); 2964 /* Let us assume that RB_ROOT is NULL is zero */ 2965 if (!buf) 2966 err = -ENOMEM; 2967 else { 2968 root_stable_tree = buf; 2969 root_unstable_tree = buf + nr_node_ids; 2970 /* Stable tree is empty but not the unstable */ 2971 root_unstable_tree[0] = one_unstable_tree[0]; 2972 } 2973 } 2974 if (!err) { 2975 ksm_merge_across_nodes = knob; 2976 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2977 } 2978 } 2979 mutex_unlock(&ksm_thread_mutex); 2980 2981 return err ? err : count; 2982 } 2983 KSM_ATTR(merge_across_nodes); 2984 #endif 2985 2986 static ssize_t use_zero_pages_show(struct kobject *kobj, 2987 struct kobj_attribute *attr, char *buf) 2988 { 2989 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2990 } 2991 static ssize_t use_zero_pages_store(struct kobject *kobj, 2992 struct kobj_attribute *attr, 2993 const char *buf, size_t count) 2994 { 2995 int err; 2996 bool value; 2997 2998 err = kstrtobool(buf, &value); 2999 if (err) 3000 return -EINVAL; 3001 3002 ksm_use_zero_pages = value; 3003 3004 return count; 3005 } 3006 KSM_ATTR(use_zero_pages); 3007 3008 static ssize_t max_page_sharing_show(struct kobject *kobj, 3009 struct kobj_attribute *attr, char *buf) 3010 { 3011 return sprintf(buf, "%u\n", ksm_max_page_sharing); 3012 } 3013 3014 static ssize_t max_page_sharing_store(struct kobject *kobj, 3015 struct kobj_attribute *attr, 3016 const char *buf, size_t count) 3017 { 3018 int err; 3019 int knob; 3020 3021 err = kstrtoint(buf, 10, &knob); 3022 if (err) 3023 return err; 3024 /* 3025 * When a KSM page is created it is shared by 2 mappings. This 3026 * being a signed comparison, it implicitly verifies it's not 3027 * negative. 3028 */ 3029 if (knob < 2) 3030 return -EINVAL; 3031 3032 if (READ_ONCE(ksm_max_page_sharing) == knob) 3033 return count; 3034 3035 mutex_lock(&ksm_thread_mutex); 3036 wait_while_offlining(); 3037 if (ksm_max_page_sharing != knob) { 3038 if (ksm_pages_shared || remove_all_stable_nodes()) 3039 err = -EBUSY; 3040 else 3041 ksm_max_page_sharing = knob; 3042 } 3043 mutex_unlock(&ksm_thread_mutex); 3044 3045 return err ? err : count; 3046 } 3047 KSM_ATTR(max_page_sharing); 3048 3049 static ssize_t pages_shared_show(struct kobject *kobj, 3050 struct kobj_attribute *attr, char *buf) 3051 { 3052 return sprintf(buf, "%lu\n", ksm_pages_shared); 3053 } 3054 KSM_ATTR_RO(pages_shared); 3055 3056 static ssize_t pages_sharing_show(struct kobject *kobj, 3057 struct kobj_attribute *attr, char *buf) 3058 { 3059 return sprintf(buf, "%lu\n", ksm_pages_sharing); 3060 } 3061 KSM_ATTR_RO(pages_sharing); 3062 3063 static ssize_t pages_unshared_show(struct kobject *kobj, 3064 struct kobj_attribute *attr, char *buf) 3065 { 3066 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3067 } 3068 KSM_ATTR_RO(pages_unshared); 3069 3070 static ssize_t pages_volatile_show(struct kobject *kobj, 3071 struct kobj_attribute *attr, char *buf) 3072 { 3073 long ksm_pages_volatile; 3074 3075 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3076 - ksm_pages_sharing - ksm_pages_unshared; 3077 /* 3078 * It was not worth any locking to calculate that statistic, 3079 * but it might therefore sometimes be negative: conceal that. 3080 */ 3081 if (ksm_pages_volatile < 0) 3082 ksm_pages_volatile = 0; 3083 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3084 } 3085 KSM_ATTR_RO(pages_volatile); 3086 3087 static ssize_t stable_node_dups_show(struct kobject *kobj, 3088 struct kobj_attribute *attr, char *buf) 3089 { 3090 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3091 } 3092 KSM_ATTR_RO(stable_node_dups); 3093 3094 static ssize_t stable_node_chains_show(struct kobject *kobj, 3095 struct kobj_attribute *attr, char *buf) 3096 { 3097 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3098 } 3099 KSM_ATTR_RO(stable_node_chains); 3100 3101 static ssize_t 3102 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3103 struct kobj_attribute *attr, 3104 char *buf) 3105 { 3106 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3107 } 3108 3109 static ssize_t 3110 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3111 struct kobj_attribute *attr, 3112 const char *buf, size_t count) 3113 { 3114 unsigned long msecs; 3115 int err; 3116 3117 err = kstrtoul(buf, 10, &msecs); 3118 if (err || msecs > UINT_MAX) 3119 return -EINVAL; 3120 3121 ksm_stable_node_chains_prune_millisecs = msecs; 3122 3123 return count; 3124 } 3125 KSM_ATTR(stable_node_chains_prune_millisecs); 3126 3127 static ssize_t full_scans_show(struct kobject *kobj, 3128 struct kobj_attribute *attr, char *buf) 3129 { 3130 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3131 } 3132 KSM_ATTR_RO(full_scans); 3133 3134 static struct attribute *ksm_attrs[] = { 3135 &sleep_millisecs_attr.attr, 3136 &pages_to_scan_attr.attr, 3137 &run_attr.attr, 3138 &pages_shared_attr.attr, 3139 &pages_sharing_attr.attr, 3140 &pages_unshared_attr.attr, 3141 &pages_volatile_attr.attr, 3142 &full_scans_attr.attr, 3143 #ifdef CONFIG_NUMA 3144 &merge_across_nodes_attr.attr, 3145 #endif 3146 &max_page_sharing_attr.attr, 3147 &stable_node_chains_attr.attr, 3148 &stable_node_dups_attr.attr, 3149 &stable_node_chains_prune_millisecs_attr.attr, 3150 &use_zero_pages_attr.attr, 3151 NULL, 3152 }; 3153 3154 static const struct attribute_group ksm_attr_group = { 3155 .attrs = ksm_attrs, 3156 .name = "ksm", 3157 }; 3158 #endif /* CONFIG_SYSFS */ 3159 3160 static int __init ksm_init(void) 3161 { 3162 struct task_struct *ksm_thread; 3163 int err; 3164 3165 /* The correct value depends on page size and endianness */ 3166 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3167 /* Default to false for backwards compatibility */ 3168 ksm_use_zero_pages = false; 3169 3170 err = ksm_slab_init(); 3171 if (err) 3172 goto out; 3173 3174 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3175 if (IS_ERR(ksm_thread)) { 3176 pr_err("ksm: creating kthread failed\n"); 3177 err = PTR_ERR(ksm_thread); 3178 goto out_free; 3179 } 3180 3181 #ifdef CONFIG_SYSFS 3182 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3183 if (err) { 3184 pr_err("ksm: register sysfs failed\n"); 3185 kthread_stop(ksm_thread); 3186 goto out_free; 3187 } 3188 #else 3189 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3190 3191 #endif /* CONFIG_SYSFS */ 3192 3193 #ifdef CONFIG_MEMORY_HOTREMOVE 3194 /* There is no significance to this priority 100 */ 3195 hotplug_memory_notifier(ksm_memory_callback, 100); 3196 #endif 3197 return 0; 3198 3199 out_free: 3200 ksm_slab_free(); 3201 out: 3202 return err; 3203 } 3204 subsys_initcall(ksm_init); 3205