1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/ksm.h> 50 51 #ifdef CONFIG_NUMA 52 #define NUMA(x) (x) 53 #define DO_NUMA(x) do { (x); } while (0) 54 #else 55 #define NUMA(x) (0) 56 #define DO_NUMA(x) do { } while (0) 57 #endif 58 59 /** 60 * DOC: Overview 61 * 62 * A few notes about the KSM scanning process, 63 * to make it easier to understand the data structures below: 64 * 65 * In order to reduce excessive scanning, KSM sorts the memory pages by their 66 * contents into a data structure that holds pointers to the pages' locations. 67 * 68 * Since the contents of the pages may change at any moment, KSM cannot just 69 * insert the pages into a normal sorted tree and expect it to find anything. 70 * Therefore KSM uses two data structures - the stable and the unstable tree. 71 * 72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 73 * by their contents. Because each such page is write-protected, searching on 74 * this tree is fully assured to be working (except when pages are unmapped), 75 * and therefore this tree is called the stable tree. 76 * 77 * The stable tree node includes information required for reverse 78 * mapping from a KSM page to virtual addresses that map this page. 79 * 80 * In order to avoid large latencies of the rmap walks on KSM pages, 81 * KSM maintains two types of nodes in the stable tree: 82 * 83 * * the regular nodes that keep the reverse mapping structures in a 84 * linked list 85 * * the "chains" that link nodes ("dups") that represent the same 86 * write protected memory content, but each "dup" corresponds to a 87 * different KSM page copy of that content 88 * 89 * Internally, the regular nodes, "dups" and "chains" are represented 90 * using the same struct ksm_stable_node structure. 91 * 92 * In addition to the stable tree, KSM uses a second data structure called the 93 * unstable tree: this tree holds pointers to pages which have been found to 94 * be "unchanged for a period of time". The unstable tree sorts these pages 95 * by their contents, but since they are not write-protected, KSM cannot rely 96 * upon the unstable tree to work correctly - the unstable tree is liable to 97 * be corrupted as its contents are modified, and so it is called unstable. 98 * 99 * KSM solves this problem by several techniques: 100 * 101 * 1) The unstable tree is flushed every time KSM completes scanning all 102 * memory areas, and then the tree is rebuilt again from the beginning. 103 * 2) KSM will only insert into the unstable tree, pages whose hash value 104 * has not changed since the previous scan of all memory areas. 105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 106 * colors of the nodes and not on their contents, assuring that even when 107 * the tree gets "corrupted" it won't get out of balance, so scanning time 108 * remains the same (also, searching and inserting nodes in an rbtree uses 109 * the same algorithm, so we have no overhead when we flush and rebuild). 110 * 4) KSM never flushes the stable tree, which means that even if it were to 111 * take 10 attempts to find a page in the unstable tree, once it is found, 112 * it is secured in the stable tree. (When we scan a new page, we first 113 * compare it against the stable tree, and then against the unstable tree.) 114 * 115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 116 * stable trees and multiple unstable trees: one of each for each NUMA node. 117 */ 118 119 /** 120 * struct ksm_mm_slot - ksm information per mm that is being scanned 121 * @slot: hash lookup from mm to mm_slot 122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 123 */ 124 struct ksm_mm_slot { 125 struct mm_slot slot; 126 struct ksm_rmap_item *rmap_list; 127 }; 128 129 /** 130 * struct ksm_scan - cursor for scanning 131 * @mm_slot: the current mm_slot we are scanning 132 * @address: the next address inside that to be scanned 133 * @rmap_list: link to the next rmap to be scanned in the rmap_list 134 * @seqnr: count of completed full scans (needed when removing unstable node) 135 * 136 * There is only the one ksm_scan instance of this cursor structure. 137 */ 138 struct ksm_scan { 139 struct ksm_mm_slot *mm_slot; 140 unsigned long address; 141 struct ksm_rmap_item **rmap_list; 142 unsigned long seqnr; 143 }; 144 145 /** 146 * struct ksm_stable_node - node of the stable rbtree 147 * @node: rb node of this ksm page in the stable tree 148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 150 * @list: linked into migrate_nodes, pending placement in the proper node tree 151 * @hlist: hlist head of rmap_items using this ksm page 152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 153 * @chain_prune_time: time of the last full garbage collection 154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 156 */ 157 struct ksm_stable_node { 158 union { 159 struct rb_node node; /* when node of stable tree */ 160 struct { /* when listed for migration */ 161 struct list_head *head; 162 struct { 163 struct hlist_node hlist_dup; 164 struct list_head list; 165 }; 166 }; 167 }; 168 struct hlist_head hlist; 169 union { 170 unsigned long kpfn; 171 unsigned long chain_prune_time; 172 }; 173 /* 174 * STABLE_NODE_CHAIN can be any negative number in 175 * rmap_hlist_len negative range, but better not -1 to be able 176 * to reliably detect underflows. 177 */ 178 #define STABLE_NODE_CHAIN -1024 179 int rmap_hlist_len; 180 #ifdef CONFIG_NUMA 181 int nid; 182 #endif 183 }; 184 185 /** 186 * struct ksm_rmap_item - reverse mapping item for virtual addresses 187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 189 * @nid: NUMA node id of unstable tree in which linked (may not match page) 190 * @mm: the memory structure this rmap_item is pointing into 191 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 192 * @oldchecksum: previous checksum of the page at that virtual address 193 * @node: rb node of this rmap_item in the unstable tree 194 * @head: pointer to stable_node heading this list in the stable tree 195 * @hlist: link into hlist of rmap_items hanging off that stable_node 196 */ 197 struct ksm_rmap_item { 198 struct ksm_rmap_item *rmap_list; 199 union { 200 struct anon_vma *anon_vma; /* when stable */ 201 #ifdef CONFIG_NUMA 202 int nid; /* when node of unstable tree */ 203 #endif 204 }; 205 struct mm_struct *mm; 206 unsigned long address; /* + low bits used for flags below */ 207 unsigned int oldchecksum; /* when unstable */ 208 union { 209 struct rb_node node; /* when node of unstable tree */ 210 struct { /* when listed from stable tree */ 211 struct ksm_stable_node *head; 212 struct hlist_node hlist; 213 }; 214 }; 215 }; 216 217 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 218 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 219 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 220 221 /* The stable and unstable tree heads */ 222 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 223 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 224 static struct rb_root *root_stable_tree = one_stable_tree; 225 static struct rb_root *root_unstable_tree = one_unstable_tree; 226 227 /* Recently migrated nodes of stable tree, pending proper placement */ 228 static LIST_HEAD(migrate_nodes); 229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 230 231 #define MM_SLOTS_HASH_BITS 10 232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 233 234 static struct ksm_mm_slot ksm_mm_head = { 235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 236 }; 237 static struct ksm_scan ksm_scan = { 238 .mm_slot = &ksm_mm_head, 239 }; 240 241 static struct kmem_cache *rmap_item_cache; 242 static struct kmem_cache *stable_node_cache; 243 static struct kmem_cache *mm_slot_cache; 244 245 /* The number of pages scanned */ 246 static unsigned long ksm_pages_scanned; 247 248 /* The number of nodes in the stable tree */ 249 static unsigned long ksm_pages_shared; 250 251 /* The number of page slots additionally sharing those nodes */ 252 static unsigned long ksm_pages_sharing; 253 254 /* The number of nodes in the unstable tree */ 255 static unsigned long ksm_pages_unshared; 256 257 /* The number of rmap_items in use: to calculate pages_volatile */ 258 static unsigned long ksm_rmap_items; 259 260 /* The number of stable_node chains */ 261 static unsigned long ksm_stable_node_chains; 262 263 /* The number of stable_node dups linked to the stable_node chains */ 264 static unsigned long ksm_stable_node_dups; 265 266 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 267 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 268 269 /* Maximum number of page slots sharing a stable node */ 270 static int ksm_max_page_sharing = 256; 271 272 /* Number of pages ksmd should scan in one batch */ 273 static unsigned int ksm_thread_pages_to_scan = 100; 274 275 /* Milliseconds ksmd should sleep between batches */ 276 static unsigned int ksm_thread_sleep_millisecs = 20; 277 278 /* Checksum of an empty (zeroed) page */ 279 static unsigned int zero_checksum __read_mostly; 280 281 /* Whether to merge empty (zeroed) pages with actual zero pages */ 282 static bool ksm_use_zero_pages __read_mostly; 283 284 /* The number of zero pages which is placed by KSM */ 285 unsigned long ksm_zero_pages; 286 287 #ifdef CONFIG_NUMA 288 /* Zeroed when merging across nodes is not allowed */ 289 static unsigned int ksm_merge_across_nodes = 1; 290 static int ksm_nr_node_ids = 1; 291 #else 292 #define ksm_merge_across_nodes 1U 293 #define ksm_nr_node_ids 1 294 #endif 295 296 #define KSM_RUN_STOP 0 297 #define KSM_RUN_MERGE 1 298 #define KSM_RUN_UNMERGE 2 299 #define KSM_RUN_OFFLINE 4 300 static unsigned long ksm_run = KSM_RUN_STOP; 301 static void wait_while_offlining(void); 302 303 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 304 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 305 static DEFINE_MUTEX(ksm_thread_mutex); 306 static DEFINE_SPINLOCK(ksm_mmlist_lock); 307 308 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 309 sizeof(struct __struct), __alignof__(struct __struct),\ 310 (__flags), NULL) 311 312 static int __init ksm_slab_init(void) 313 { 314 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 315 if (!rmap_item_cache) 316 goto out; 317 318 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 319 if (!stable_node_cache) 320 goto out_free1; 321 322 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 323 if (!mm_slot_cache) 324 goto out_free2; 325 326 return 0; 327 328 out_free2: 329 kmem_cache_destroy(stable_node_cache); 330 out_free1: 331 kmem_cache_destroy(rmap_item_cache); 332 out: 333 return -ENOMEM; 334 } 335 336 static void __init ksm_slab_free(void) 337 { 338 kmem_cache_destroy(mm_slot_cache); 339 kmem_cache_destroy(stable_node_cache); 340 kmem_cache_destroy(rmap_item_cache); 341 mm_slot_cache = NULL; 342 } 343 344 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 345 { 346 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 347 } 348 349 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 350 { 351 return dup->head == STABLE_NODE_DUP_HEAD; 352 } 353 354 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 355 struct ksm_stable_node *chain) 356 { 357 VM_BUG_ON(is_stable_node_dup(dup)); 358 dup->head = STABLE_NODE_DUP_HEAD; 359 VM_BUG_ON(!is_stable_node_chain(chain)); 360 hlist_add_head(&dup->hlist_dup, &chain->hlist); 361 ksm_stable_node_dups++; 362 } 363 364 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 365 { 366 VM_BUG_ON(!is_stable_node_dup(dup)); 367 hlist_del(&dup->hlist_dup); 368 ksm_stable_node_dups--; 369 } 370 371 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 372 { 373 VM_BUG_ON(is_stable_node_chain(dup)); 374 if (is_stable_node_dup(dup)) 375 __stable_node_dup_del(dup); 376 else 377 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 378 #ifdef CONFIG_DEBUG_VM 379 dup->head = NULL; 380 #endif 381 } 382 383 static inline struct ksm_rmap_item *alloc_rmap_item(void) 384 { 385 struct ksm_rmap_item *rmap_item; 386 387 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 388 __GFP_NORETRY | __GFP_NOWARN); 389 if (rmap_item) 390 ksm_rmap_items++; 391 return rmap_item; 392 } 393 394 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 395 { 396 ksm_rmap_items--; 397 rmap_item->mm->ksm_rmap_items--; 398 rmap_item->mm = NULL; /* debug safety */ 399 kmem_cache_free(rmap_item_cache, rmap_item); 400 } 401 402 static inline struct ksm_stable_node *alloc_stable_node(void) 403 { 404 /* 405 * The allocation can take too long with GFP_KERNEL when memory is under 406 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 407 * grants access to memory reserves, helping to avoid this problem. 408 */ 409 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 410 } 411 412 static inline void free_stable_node(struct ksm_stable_node *stable_node) 413 { 414 VM_BUG_ON(stable_node->rmap_hlist_len && 415 !is_stable_node_chain(stable_node)); 416 kmem_cache_free(stable_node_cache, stable_node); 417 } 418 419 /* 420 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 421 * page tables after it has passed through ksm_exit() - which, if necessary, 422 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 423 * a special flag: they can just back out as soon as mm_users goes to zero. 424 * ksm_test_exit() is used throughout to make this test for exit: in some 425 * places for correctness, in some places just to avoid unnecessary work. 426 */ 427 static inline bool ksm_test_exit(struct mm_struct *mm) 428 { 429 return atomic_read(&mm->mm_users) == 0; 430 } 431 432 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 433 struct mm_walk *walk) 434 { 435 struct page *page = NULL; 436 spinlock_t *ptl; 437 pte_t *pte; 438 pte_t ptent; 439 int ret; 440 441 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 442 if (!pte) 443 return 0; 444 ptent = ptep_get(pte); 445 if (pte_present(ptent)) { 446 page = vm_normal_page(walk->vma, addr, ptent); 447 } else if (!pte_none(ptent)) { 448 swp_entry_t entry = pte_to_swp_entry(ptent); 449 450 /* 451 * As KSM pages remain KSM pages until freed, no need to wait 452 * here for migration to end. 453 */ 454 if (is_migration_entry(entry)) 455 page = pfn_swap_entry_to_page(entry); 456 } 457 /* return 1 if the page is an normal ksm page or KSM-placed zero page */ 458 ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte); 459 pte_unmap_unlock(pte, ptl); 460 return ret; 461 } 462 463 static const struct mm_walk_ops break_ksm_ops = { 464 .pmd_entry = break_ksm_pmd_entry, 465 .walk_lock = PGWALK_RDLOCK, 466 }; 467 468 static const struct mm_walk_ops break_ksm_lock_vma_ops = { 469 .pmd_entry = break_ksm_pmd_entry, 470 .walk_lock = PGWALK_WRLOCK, 471 }; 472 473 /* 474 * We use break_ksm to break COW on a ksm page by triggering unsharing, 475 * such that the ksm page will get replaced by an exclusive anonymous page. 476 * 477 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 478 * in case the application has unmapped and remapped mm,addr meanwhile. 479 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 480 * mmap of /dev/mem, where we would not want to touch it. 481 * 482 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 483 * of the process that owns 'vma'. We also do not want to enforce 484 * protection keys here anyway. 485 */ 486 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) 487 { 488 vm_fault_t ret = 0; 489 const struct mm_walk_ops *ops = lock_vma ? 490 &break_ksm_lock_vma_ops : &break_ksm_ops; 491 492 do { 493 int ksm_page; 494 495 cond_resched(); 496 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL); 497 if (WARN_ON_ONCE(ksm_page < 0)) 498 return ksm_page; 499 if (!ksm_page) 500 return 0; 501 ret = handle_mm_fault(vma, addr, 502 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 503 NULL); 504 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 505 /* 506 * We must loop until we no longer find a KSM page because 507 * handle_mm_fault() may back out if there's any difficulty e.g. if 508 * pte accessed bit gets updated concurrently. 509 * 510 * VM_FAULT_SIGBUS could occur if we race with truncation of the 511 * backing file, which also invalidates anonymous pages: that's 512 * okay, that truncation will have unmapped the PageKsm for us. 513 * 514 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 515 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 516 * current task has TIF_MEMDIE set, and will be OOM killed on return 517 * to user; and ksmd, having no mm, would never be chosen for that. 518 * 519 * But if the mm is in a limited mem_cgroup, then the fault may fail 520 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 521 * even ksmd can fail in this way - though it's usually breaking ksm 522 * just to undo a merge it made a moment before, so unlikely to oom. 523 * 524 * That's a pity: we might therefore have more kernel pages allocated 525 * than we're counting as nodes in the stable tree; but ksm_do_scan 526 * will retry to break_cow on each pass, so should recover the page 527 * in due course. The important thing is to not let VM_MERGEABLE 528 * be cleared while any such pages might remain in the area. 529 */ 530 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 531 } 532 533 static bool vma_ksm_compatible(struct vm_area_struct *vma) 534 { 535 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | 536 VM_IO | VM_DONTEXPAND | VM_HUGETLB | 537 VM_MIXEDMAP)) 538 return false; /* just ignore the advice */ 539 540 if (vma_is_dax(vma)) 541 return false; 542 543 #ifdef VM_SAO 544 if (vma->vm_flags & VM_SAO) 545 return false; 546 #endif 547 #ifdef VM_SPARC_ADI 548 if (vma->vm_flags & VM_SPARC_ADI) 549 return false; 550 #endif 551 552 return true; 553 } 554 555 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 556 unsigned long addr) 557 { 558 struct vm_area_struct *vma; 559 if (ksm_test_exit(mm)) 560 return NULL; 561 vma = vma_lookup(mm, addr); 562 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 563 return NULL; 564 return vma; 565 } 566 567 static void break_cow(struct ksm_rmap_item *rmap_item) 568 { 569 struct mm_struct *mm = rmap_item->mm; 570 unsigned long addr = rmap_item->address; 571 struct vm_area_struct *vma; 572 573 /* 574 * It is not an accident that whenever we want to break COW 575 * to undo, we also need to drop a reference to the anon_vma. 576 */ 577 put_anon_vma(rmap_item->anon_vma); 578 579 mmap_read_lock(mm); 580 vma = find_mergeable_vma(mm, addr); 581 if (vma) 582 break_ksm(vma, addr, false); 583 mmap_read_unlock(mm); 584 } 585 586 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 587 { 588 struct mm_struct *mm = rmap_item->mm; 589 unsigned long addr = rmap_item->address; 590 struct vm_area_struct *vma; 591 struct page *page; 592 593 mmap_read_lock(mm); 594 vma = find_mergeable_vma(mm, addr); 595 if (!vma) 596 goto out; 597 598 page = follow_page(vma, addr, FOLL_GET); 599 if (IS_ERR_OR_NULL(page)) 600 goto out; 601 if (is_zone_device_page(page)) 602 goto out_putpage; 603 if (PageAnon(page)) { 604 flush_anon_page(vma, page, addr); 605 flush_dcache_page(page); 606 } else { 607 out_putpage: 608 put_page(page); 609 out: 610 page = NULL; 611 } 612 mmap_read_unlock(mm); 613 return page; 614 } 615 616 /* 617 * This helper is used for getting right index into array of tree roots. 618 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 619 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 620 * every node has its own stable and unstable tree. 621 */ 622 static inline int get_kpfn_nid(unsigned long kpfn) 623 { 624 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 625 } 626 627 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 628 struct rb_root *root) 629 { 630 struct ksm_stable_node *chain = alloc_stable_node(); 631 VM_BUG_ON(is_stable_node_chain(dup)); 632 if (likely(chain)) { 633 INIT_HLIST_HEAD(&chain->hlist); 634 chain->chain_prune_time = jiffies; 635 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 636 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 637 chain->nid = NUMA_NO_NODE; /* debug */ 638 #endif 639 ksm_stable_node_chains++; 640 641 /* 642 * Put the stable node chain in the first dimension of 643 * the stable tree and at the same time remove the old 644 * stable node. 645 */ 646 rb_replace_node(&dup->node, &chain->node, root); 647 648 /* 649 * Move the old stable node to the second dimension 650 * queued in the hlist_dup. The invariant is that all 651 * dup stable_nodes in the chain->hlist point to pages 652 * that are write protected and have the exact same 653 * content. 654 */ 655 stable_node_chain_add_dup(dup, chain); 656 } 657 return chain; 658 } 659 660 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 661 struct rb_root *root) 662 { 663 rb_erase(&chain->node, root); 664 free_stable_node(chain); 665 ksm_stable_node_chains--; 666 } 667 668 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 669 { 670 struct ksm_rmap_item *rmap_item; 671 672 /* check it's not STABLE_NODE_CHAIN or negative */ 673 BUG_ON(stable_node->rmap_hlist_len < 0); 674 675 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 676 if (rmap_item->hlist.next) { 677 ksm_pages_sharing--; 678 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 679 } else { 680 ksm_pages_shared--; 681 } 682 683 rmap_item->mm->ksm_merging_pages--; 684 685 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 686 stable_node->rmap_hlist_len--; 687 put_anon_vma(rmap_item->anon_vma); 688 rmap_item->address &= PAGE_MASK; 689 cond_resched(); 690 } 691 692 /* 693 * We need the second aligned pointer of the migrate_nodes 694 * list_head to stay clear from the rb_parent_color union 695 * (aligned and different than any node) and also different 696 * from &migrate_nodes. This will verify that future list.h changes 697 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 698 */ 699 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 700 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 701 702 trace_ksm_remove_ksm_page(stable_node->kpfn); 703 if (stable_node->head == &migrate_nodes) 704 list_del(&stable_node->list); 705 else 706 stable_node_dup_del(stable_node); 707 free_stable_node(stable_node); 708 } 709 710 enum get_ksm_page_flags { 711 GET_KSM_PAGE_NOLOCK, 712 GET_KSM_PAGE_LOCK, 713 GET_KSM_PAGE_TRYLOCK 714 }; 715 716 /* 717 * get_ksm_page: checks if the page indicated by the stable node 718 * is still its ksm page, despite having held no reference to it. 719 * In which case we can trust the content of the page, and it 720 * returns the gotten page; but if the page has now been zapped, 721 * remove the stale node from the stable tree and return NULL. 722 * But beware, the stable node's page might be being migrated. 723 * 724 * You would expect the stable_node to hold a reference to the ksm page. 725 * But if it increments the page's count, swapping out has to wait for 726 * ksmd to come around again before it can free the page, which may take 727 * seconds or even minutes: much too unresponsive. So instead we use a 728 * "keyhole reference": access to the ksm page from the stable node peeps 729 * out through its keyhole to see if that page still holds the right key, 730 * pointing back to this stable node. This relies on freeing a PageAnon 731 * page to reset its page->mapping to NULL, and relies on no other use of 732 * a page to put something that might look like our key in page->mapping. 733 * is on its way to being freed; but it is an anomaly to bear in mind. 734 */ 735 static struct page *get_ksm_page(struct ksm_stable_node *stable_node, 736 enum get_ksm_page_flags flags) 737 { 738 struct page *page; 739 void *expected_mapping; 740 unsigned long kpfn; 741 742 expected_mapping = (void *)((unsigned long)stable_node | 743 PAGE_MAPPING_KSM); 744 again: 745 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 746 page = pfn_to_page(kpfn); 747 if (READ_ONCE(page->mapping) != expected_mapping) 748 goto stale; 749 750 /* 751 * We cannot do anything with the page while its refcount is 0. 752 * Usually 0 means free, or tail of a higher-order page: in which 753 * case this node is no longer referenced, and should be freed; 754 * however, it might mean that the page is under page_ref_freeze(). 755 * The __remove_mapping() case is easy, again the node is now stale; 756 * the same is in reuse_ksm_page() case; but if page is swapcache 757 * in folio_migrate_mapping(), it might still be our page, 758 * in which case it's essential to keep the node. 759 */ 760 while (!get_page_unless_zero(page)) { 761 /* 762 * Another check for page->mapping != expected_mapping would 763 * work here too. We have chosen the !PageSwapCache test to 764 * optimize the common case, when the page is or is about to 765 * be freed: PageSwapCache is cleared (under spin_lock_irq) 766 * in the ref_freeze section of __remove_mapping(); but Anon 767 * page->mapping reset to NULL later, in free_pages_prepare(). 768 */ 769 if (!PageSwapCache(page)) 770 goto stale; 771 cpu_relax(); 772 } 773 774 if (READ_ONCE(page->mapping) != expected_mapping) { 775 put_page(page); 776 goto stale; 777 } 778 779 if (flags == GET_KSM_PAGE_TRYLOCK) { 780 if (!trylock_page(page)) { 781 put_page(page); 782 return ERR_PTR(-EBUSY); 783 } 784 } else if (flags == GET_KSM_PAGE_LOCK) 785 lock_page(page); 786 787 if (flags != GET_KSM_PAGE_NOLOCK) { 788 if (READ_ONCE(page->mapping) != expected_mapping) { 789 unlock_page(page); 790 put_page(page); 791 goto stale; 792 } 793 } 794 return page; 795 796 stale: 797 /* 798 * We come here from above when page->mapping or !PageSwapCache 799 * suggests that the node is stale; but it might be under migration. 800 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 801 * before checking whether node->kpfn has been changed. 802 */ 803 smp_rmb(); 804 if (READ_ONCE(stable_node->kpfn) != kpfn) 805 goto again; 806 remove_node_from_stable_tree(stable_node); 807 return NULL; 808 } 809 810 /* 811 * Removing rmap_item from stable or unstable tree. 812 * This function will clean the information from the stable/unstable tree. 813 */ 814 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 815 { 816 if (rmap_item->address & STABLE_FLAG) { 817 struct ksm_stable_node *stable_node; 818 struct page *page; 819 820 stable_node = rmap_item->head; 821 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 822 if (!page) 823 goto out; 824 825 hlist_del(&rmap_item->hlist); 826 unlock_page(page); 827 put_page(page); 828 829 if (!hlist_empty(&stable_node->hlist)) 830 ksm_pages_sharing--; 831 else 832 ksm_pages_shared--; 833 834 rmap_item->mm->ksm_merging_pages--; 835 836 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 837 stable_node->rmap_hlist_len--; 838 839 put_anon_vma(rmap_item->anon_vma); 840 rmap_item->head = NULL; 841 rmap_item->address &= PAGE_MASK; 842 843 } else if (rmap_item->address & UNSTABLE_FLAG) { 844 unsigned char age; 845 /* 846 * Usually ksmd can and must skip the rb_erase, because 847 * root_unstable_tree was already reset to RB_ROOT. 848 * But be careful when an mm is exiting: do the rb_erase 849 * if this rmap_item was inserted by this scan, rather 850 * than left over from before. 851 */ 852 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 853 BUG_ON(age > 1); 854 if (!age) 855 rb_erase(&rmap_item->node, 856 root_unstable_tree + NUMA(rmap_item->nid)); 857 ksm_pages_unshared--; 858 rmap_item->address &= PAGE_MASK; 859 } 860 out: 861 cond_resched(); /* we're called from many long loops */ 862 } 863 864 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 865 { 866 while (*rmap_list) { 867 struct ksm_rmap_item *rmap_item = *rmap_list; 868 *rmap_list = rmap_item->rmap_list; 869 remove_rmap_item_from_tree(rmap_item); 870 free_rmap_item(rmap_item); 871 } 872 } 873 874 /* 875 * Though it's very tempting to unmerge rmap_items from stable tree rather 876 * than check every pte of a given vma, the locking doesn't quite work for 877 * that - an rmap_item is assigned to the stable tree after inserting ksm 878 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 879 * rmap_items from parent to child at fork time (so as not to waste time 880 * if exit comes before the next scan reaches it). 881 * 882 * Similarly, although we'd like to remove rmap_items (so updating counts 883 * and freeing memory) when unmerging an area, it's easier to leave that 884 * to the next pass of ksmd - consider, for example, how ksmd might be 885 * in cmp_and_merge_page on one of the rmap_items we would be removing. 886 */ 887 static int unmerge_ksm_pages(struct vm_area_struct *vma, 888 unsigned long start, unsigned long end, bool lock_vma) 889 { 890 unsigned long addr; 891 int err = 0; 892 893 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 894 if (ksm_test_exit(vma->vm_mm)) 895 break; 896 if (signal_pending(current)) 897 err = -ERESTARTSYS; 898 else 899 err = break_ksm(vma, addr, lock_vma); 900 } 901 return err; 902 } 903 904 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 905 { 906 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 907 } 908 909 static inline struct ksm_stable_node *page_stable_node(struct page *page) 910 { 911 return folio_stable_node(page_folio(page)); 912 } 913 914 static inline void set_page_stable_node(struct page *page, 915 struct ksm_stable_node *stable_node) 916 { 917 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 918 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 919 } 920 921 #ifdef CONFIG_SYSFS 922 /* 923 * Only called through the sysfs control interface: 924 */ 925 static int remove_stable_node(struct ksm_stable_node *stable_node) 926 { 927 struct page *page; 928 int err; 929 930 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 931 if (!page) { 932 /* 933 * get_ksm_page did remove_node_from_stable_tree itself. 934 */ 935 return 0; 936 } 937 938 /* 939 * Page could be still mapped if this races with __mmput() running in 940 * between ksm_exit() and exit_mmap(). Just refuse to let 941 * merge_across_nodes/max_page_sharing be switched. 942 */ 943 err = -EBUSY; 944 if (!page_mapped(page)) { 945 /* 946 * The stable node did not yet appear stale to get_ksm_page(), 947 * since that allows for an unmapped ksm page to be recognized 948 * right up until it is freed; but the node is safe to remove. 949 * This page might be in an LRU cache waiting to be freed, 950 * or it might be PageSwapCache (perhaps under writeback), 951 * or it might have been removed from swapcache a moment ago. 952 */ 953 set_page_stable_node(page, NULL); 954 remove_node_from_stable_tree(stable_node); 955 err = 0; 956 } 957 958 unlock_page(page); 959 put_page(page); 960 return err; 961 } 962 963 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 964 struct rb_root *root) 965 { 966 struct ksm_stable_node *dup; 967 struct hlist_node *hlist_safe; 968 969 if (!is_stable_node_chain(stable_node)) { 970 VM_BUG_ON(is_stable_node_dup(stable_node)); 971 if (remove_stable_node(stable_node)) 972 return true; 973 else 974 return false; 975 } 976 977 hlist_for_each_entry_safe(dup, hlist_safe, 978 &stable_node->hlist, hlist_dup) { 979 VM_BUG_ON(!is_stable_node_dup(dup)); 980 if (remove_stable_node(dup)) 981 return true; 982 } 983 BUG_ON(!hlist_empty(&stable_node->hlist)); 984 free_stable_node_chain(stable_node, root); 985 return false; 986 } 987 988 static int remove_all_stable_nodes(void) 989 { 990 struct ksm_stable_node *stable_node, *next; 991 int nid; 992 int err = 0; 993 994 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 995 while (root_stable_tree[nid].rb_node) { 996 stable_node = rb_entry(root_stable_tree[nid].rb_node, 997 struct ksm_stable_node, node); 998 if (remove_stable_node_chain(stable_node, 999 root_stable_tree + nid)) { 1000 err = -EBUSY; 1001 break; /* proceed to next nid */ 1002 } 1003 cond_resched(); 1004 } 1005 } 1006 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 1007 if (remove_stable_node(stable_node)) 1008 err = -EBUSY; 1009 cond_resched(); 1010 } 1011 return err; 1012 } 1013 1014 static int unmerge_and_remove_all_rmap_items(void) 1015 { 1016 struct ksm_mm_slot *mm_slot; 1017 struct mm_slot *slot; 1018 struct mm_struct *mm; 1019 struct vm_area_struct *vma; 1020 int err = 0; 1021 1022 spin_lock(&ksm_mmlist_lock); 1023 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1024 struct mm_slot, mm_node); 1025 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1026 spin_unlock(&ksm_mmlist_lock); 1027 1028 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1029 mm_slot = ksm_scan.mm_slot) { 1030 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1031 1032 mm = mm_slot->slot.mm; 1033 mmap_read_lock(mm); 1034 1035 /* 1036 * Exit right away if mm is exiting to avoid lockdep issue in 1037 * the maple tree 1038 */ 1039 if (ksm_test_exit(mm)) 1040 goto mm_exiting; 1041 1042 for_each_vma(vmi, vma) { 1043 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1044 continue; 1045 err = unmerge_ksm_pages(vma, 1046 vma->vm_start, vma->vm_end, false); 1047 if (err) 1048 goto error; 1049 } 1050 1051 mm_exiting: 1052 remove_trailing_rmap_items(&mm_slot->rmap_list); 1053 mmap_read_unlock(mm); 1054 1055 spin_lock(&ksm_mmlist_lock); 1056 slot = list_entry(mm_slot->slot.mm_node.next, 1057 struct mm_slot, mm_node); 1058 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1059 if (ksm_test_exit(mm)) { 1060 hash_del(&mm_slot->slot.hash); 1061 list_del(&mm_slot->slot.mm_node); 1062 spin_unlock(&ksm_mmlist_lock); 1063 1064 mm_slot_free(mm_slot_cache, mm_slot); 1065 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1066 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1067 mmdrop(mm); 1068 } else 1069 spin_unlock(&ksm_mmlist_lock); 1070 } 1071 1072 /* Clean up stable nodes, but don't worry if some are still busy */ 1073 remove_all_stable_nodes(); 1074 ksm_scan.seqnr = 0; 1075 return 0; 1076 1077 error: 1078 mmap_read_unlock(mm); 1079 spin_lock(&ksm_mmlist_lock); 1080 ksm_scan.mm_slot = &ksm_mm_head; 1081 spin_unlock(&ksm_mmlist_lock); 1082 return err; 1083 } 1084 #endif /* CONFIG_SYSFS */ 1085 1086 static u32 calc_checksum(struct page *page) 1087 { 1088 u32 checksum; 1089 void *addr = kmap_atomic(page); 1090 checksum = xxhash(addr, PAGE_SIZE, 0); 1091 kunmap_atomic(addr); 1092 return checksum; 1093 } 1094 1095 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1096 pte_t *orig_pte) 1097 { 1098 struct mm_struct *mm = vma->vm_mm; 1099 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1100 int swapped; 1101 int err = -EFAULT; 1102 struct mmu_notifier_range range; 1103 bool anon_exclusive; 1104 pte_t entry; 1105 1106 pvmw.address = page_address_in_vma(page, vma); 1107 if (pvmw.address == -EFAULT) 1108 goto out; 1109 1110 BUG_ON(PageTransCompound(page)); 1111 1112 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1113 pvmw.address + PAGE_SIZE); 1114 mmu_notifier_invalidate_range_start(&range); 1115 1116 if (!page_vma_mapped_walk(&pvmw)) 1117 goto out_mn; 1118 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1119 goto out_unlock; 1120 1121 anon_exclusive = PageAnonExclusive(page); 1122 entry = ptep_get(pvmw.pte); 1123 if (pte_write(entry) || pte_dirty(entry) || 1124 anon_exclusive || mm_tlb_flush_pending(mm)) { 1125 swapped = PageSwapCache(page); 1126 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1127 /* 1128 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1129 * take any lock, therefore the check that we are going to make 1130 * with the pagecount against the mapcount is racy and 1131 * O_DIRECT can happen right after the check. 1132 * So we clear the pte and flush the tlb before the check 1133 * this assure us that no O_DIRECT can happen after the check 1134 * or in the middle of the check. 1135 * 1136 * No need to notify as we are downgrading page table to read 1137 * only not changing it to point to a new page. 1138 * 1139 * See Documentation/mm/mmu_notifier.rst 1140 */ 1141 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1142 /* 1143 * Check that no O_DIRECT or similar I/O is in progress on the 1144 * page 1145 */ 1146 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1147 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1148 goto out_unlock; 1149 } 1150 1151 /* See page_try_share_anon_rmap(): clear PTE first. */ 1152 if (anon_exclusive && page_try_share_anon_rmap(page)) { 1153 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1154 goto out_unlock; 1155 } 1156 1157 if (pte_dirty(entry)) 1158 set_page_dirty(page); 1159 entry = pte_mkclean(entry); 1160 1161 if (pte_write(entry)) 1162 entry = pte_wrprotect(entry); 1163 1164 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1165 } 1166 *orig_pte = entry; 1167 err = 0; 1168 1169 out_unlock: 1170 page_vma_mapped_walk_done(&pvmw); 1171 out_mn: 1172 mmu_notifier_invalidate_range_end(&range); 1173 out: 1174 return err; 1175 } 1176 1177 /** 1178 * replace_page - replace page in vma by new ksm page 1179 * @vma: vma that holds the pte pointing to page 1180 * @page: the page we are replacing by kpage 1181 * @kpage: the ksm page we replace page by 1182 * @orig_pte: the original value of the pte 1183 * 1184 * Returns 0 on success, -EFAULT on failure. 1185 */ 1186 static int replace_page(struct vm_area_struct *vma, struct page *page, 1187 struct page *kpage, pte_t orig_pte) 1188 { 1189 struct mm_struct *mm = vma->vm_mm; 1190 struct folio *folio; 1191 pmd_t *pmd; 1192 pmd_t pmde; 1193 pte_t *ptep; 1194 pte_t newpte; 1195 spinlock_t *ptl; 1196 unsigned long addr; 1197 int err = -EFAULT; 1198 struct mmu_notifier_range range; 1199 1200 addr = page_address_in_vma(page, vma); 1201 if (addr == -EFAULT) 1202 goto out; 1203 1204 pmd = mm_find_pmd(mm, addr); 1205 if (!pmd) 1206 goto out; 1207 /* 1208 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1209 * without holding anon_vma lock for write. So when looking for a 1210 * genuine pmde (in which to find pte), test present and !THP together. 1211 */ 1212 pmde = pmdp_get_lockless(pmd); 1213 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1214 goto out; 1215 1216 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1217 addr + PAGE_SIZE); 1218 mmu_notifier_invalidate_range_start(&range); 1219 1220 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1221 if (!ptep) 1222 goto out_mn; 1223 if (!pte_same(ptep_get(ptep), orig_pte)) { 1224 pte_unmap_unlock(ptep, ptl); 1225 goto out_mn; 1226 } 1227 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1228 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); 1229 1230 /* 1231 * No need to check ksm_use_zero_pages here: we can only have a 1232 * zero_page here if ksm_use_zero_pages was enabled already. 1233 */ 1234 if (!is_zero_pfn(page_to_pfn(kpage))) { 1235 get_page(kpage); 1236 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); 1237 newpte = mk_pte(kpage, vma->vm_page_prot); 1238 } else { 1239 /* 1240 * Use pte_mkdirty to mark the zero page mapped by KSM, and then 1241 * we can easily track all KSM-placed zero pages by checking if 1242 * the dirty bit in zero page's PTE is set. 1243 */ 1244 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); 1245 ksm_zero_pages++; 1246 mm->ksm_zero_pages++; 1247 /* 1248 * We're replacing an anonymous page with a zero page, which is 1249 * not anonymous. We need to do proper accounting otherwise we 1250 * will get wrong values in /proc, and a BUG message in dmesg 1251 * when tearing down the mm. 1252 */ 1253 dec_mm_counter(mm, MM_ANONPAGES); 1254 } 1255 1256 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1257 /* 1258 * No need to notify as we are replacing a read only page with another 1259 * read only page with the same content. 1260 * 1261 * See Documentation/mm/mmu_notifier.rst 1262 */ 1263 ptep_clear_flush(vma, addr, ptep); 1264 set_pte_at_notify(mm, addr, ptep, newpte); 1265 1266 folio = page_folio(page); 1267 page_remove_rmap(page, vma, false); 1268 if (!folio_mapped(folio)) 1269 folio_free_swap(folio); 1270 folio_put(folio); 1271 1272 pte_unmap_unlock(ptep, ptl); 1273 err = 0; 1274 out_mn: 1275 mmu_notifier_invalidate_range_end(&range); 1276 out: 1277 return err; 1278 } 1279 1280 /* 1281 * try_to_merge_one_page - take two pages and merge them into one 1282 * @vma: the vma that holds the pte pointing to page 1283 * @page: the PageAnon page that we want to replace with kpage 1284 * @kpage: the PageKsm page that we want to map instead of page, 1285 * or NULL the first time when we want to use page as kpage. 1286 * 1287 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1288 */ 1289 static int try_to_merge_one_page(struct vm_area_struct *vma, 1290 struct page *page, struct page *kpage) 1291 { 1292 pte_t orig_pte = __pte(0); 1293 int err = -EFAULT; 1294 1295 if (page == kpage) /* ksm page forked */ 1296 return 0; 1297 1298 if (!PageAnon(page)) 1299 goto out; 1300 1301 /* 1302 * We need the page lock to read a stable PageSwapCache in 1303 * write_protect_page(). We use trylock_page() instead of 1304 * lock_page() because we don't want to wait here - we 1305 * prefer to continue scanning and merging different pages, 1306 * then come back to this page when it is unlocked. 1307 */ 1308 if (!trylock_page(page)) 1309 goto out; 1310 1311 if (PageTransCompound(page)) { 1312 if (split_huge_page(page)) 1313 goto out_unlock; 1314 } 1315 1316 /* 1317 * If this anonymous page is mapped only here, its pte may need 1318 * to be write-protected. If it's mapped elsewhere, all of its 1319 * ptes are necessarily already write-protected. But in either 1320 * case, we need to lock and check page_count is not raised. 1321 */ 1322 if (write_protect_page(vma, page, &orig_pte) == 0) { 1323 if (!kpage) { 1324 /* 1325 * While we hold page lock, upgrade page from 1326 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1327 * stable_tree_insert() will update stable_node. 1328 */ 1329 set_page_stable_node(page, NULL); 1330 mark_page_accessed(page); 1331 /* 1332 * Page reclaim just frees a clean page with no dirty 1333 * ptes: make sure that the ksm page would be swapped. 1334 */ 1335 if (!PageDirty(page)) 1336 SetPageDirty(page); 1337 err = 0; 1338 } else if (pages_identical(page, kpage)) 1339 err = replace_page(vma, page, kpage, orig_pte); 1340 } 1341 1342 out_unlock: 1343 unlock_page(page); 1344 out: 1345 return err; 1346 } 1347 1348 /* 1349 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1350 * but no new kernel page is allocated: kpage must already be a ksm page. 1351 * 1352 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1353 */ 1354 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1355 struct page *page, struct page *kpage) 1356 { 1357 struct mm_struct *mm = rmap_item->mm; 1358 struct vm_area_struct *vma; 1359 int err = -EFAULT; 1360 1361 mmap_read_lock(mm); 1362 vma = find_mergeable_vma(mm, rmap_item->address); 1363 if (!vma) 1364 goto out; 1365 1366 err = try_to_merge_one_page(vma, page, kpage); 1367 if (err) 1368 goto out; 1369 1370 /* Unstable nid is in union with stable anon_vma: remove first */ 1371 remove_rmap_item_from_tree(rmap_item); 1372 1373 /* Must get reference to anon_vma while still holding mmap_lock */ 1374 rmap_item->anon_vma = vma->anon_vma; 1375 get_anon_vma(vma->anon_vma); 1376 out: 1377 mmap_read_unlock(mm); 1378 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1379 rmap_item, mm, err); 1380 return err; 1381 } 1382 1383 /* 1384 * try_to_merge_two_pages - take two identical pages and prepare them 1385 * to be merged into one page. 1386 * 1387 * This function returns the kpage if we successfully merged two identical 1388 * pages into one ksm page, NULL otherwise. 1389 * 1390 * Note that this function upgrades page to ksm page: if one of the pages 1391 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1392 */ 1393 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1394 struct page *page, 1395 struct ksm_rmap_item *tree_rmap_item, 1396 struct page *tree_page) 1397 { 1398 int err; 1399 1400 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1401 if (!err) { 1402 err = try_to_merge_with_ksm_page(tree_rmap_item, 1403 tree_page, page); 1404 /* 1405 * If that fails, we have a ksm page with only one pte 1406 * pointing to it: so break it. 1407 */ 1408 if (err) 1409 break_cow(rmap_item); 1410 } 1411 return err ? NULL : page; 1412 } 1413 1414 static __always_inline 1415 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1416 { 1417 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1418 /* 1419 * Check that at least one mapping still exists, otherwise 1420 * there's no much point to merge and share with this 1421 * stable_node, as the underlying tree_page of the other 1422 * sharer is going to be freed soon. 1423 */ 1424 return stable_node->rmap_hlist_len && 1425 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1426 } 1427 1428 static __always_inline 1429 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1430 { 1431 return __is_page_sharing_candidate(stable_node, 0); 1432 } 1433 1434 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1435 struct ksm_stable_node **_stable_node, 1436 struct rb_root *root, 1437 bool prune_stale_stable_nodes) 1438 { 1439 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1440 struct hlist_node *hlist_safe; 1441 struct page *_tree_page, *tree_page = NULL; 1442 int nr = 0; 1443 int found_rmap_hlist_len; 1444 1445 if (!prune_stale_stable_nodes || 1446 time_before(jiffies, stable_node->chain_prune_time + 1447 msecs_to_jiffies( 1448 ksm_stable_node_chains_prune_millisecs))) 1449 prune_stale_stable_nodes = false; 1450 else 1451 stable_node->chain_prune_time = jiffies; 1452 1453 hlist_for_each_entry_safe(dup, hlist_safe, 1454 &stable_node->hlist, hlist_dup) { 1455 cond_resched(); 1456 /* 1457 * We must walk all stable_node_dup to prune the stale 1458 * stable nodes during lookup. 1459 * 1460 * get_ksm_page can drop the nodes from the 1461 * stable_node->hlist if they point to freed pages 1462 * (that's why we do a _safe walk). The "dup" 1463 * stable_node parameter itself will be freed from 1464 * under us if it returns NULL. 1465 */ 1466 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1467 if (!_tree_page) 1468 continue; 1469 nr += 1; 1470 if (is_page_sharing_candidate(dup)) { 1471 if (!found || 1472 dup->rmap_hlist_len > found_rmap_hlist_len) { 1473 if (found) 1474 put_page(tree_page); 1475 found = dup; 1476 found_rmap_hlist_len = found->rmap_hlist_len; 1477 tree_page = _tree_page; 1478 1479 /* skip put_page for found dup */ 1480 if (!prune_stale_stable_nodes) 1481 break; 1482 continue; 1483 } 1484 } 1485 put_page(_tree_page); 1486 } 1487 1488 if (found) { 1489 /* 1490 * nr is counting all dups in the chain only if 1491 * prune_stale_stable_nodes is true, otherwise we may 1492 * break the loop at nr == 1 even if there are 1493 * multiple entries. 1494 */ 1495 if (prune_stale_stable_nodes && nr == 1) { 1496 /* 1497 * If there's not just one entry it would 1498 * corrupt memory, better BUG_ON. In KSM 1499 * context with no lock held it's not even 1500 * fatal. 1501 */ 1502 BUG_ON(stable_node->hlist.first->next); 1503 1504 /* 1505 * There's just one entry and it is below the 1506 * deduplication limit so drop the chain. 1507 */ 1508 rb_replace_node(&stable_node->node, &found->node, 1509 root); 1510 free_stable_node(stable_node); 1511 ksm_stable_node_chains--; 1512 ksm_stable_node_dups--; 1513 /* 1514 * NOTE: the caller depends on the stable_node 1515 * to be equal to stable_node_dup if the chain 1516 * was collapsed. 1517 */ 1518 *_stable_node = found; 1519 /* 1520 * Just for robustness, as stable_node is 1521 * otherwise left as a stable pointer, the 1522 * compiler shall optimize it away at build 1523 * time. 1524 */ 1525 stable_node = NULL; 1526 } else if (stable_node->hlist.first != &found->hlist_dup && 1527 __is_page_sharing_candidate(found, 1)) { 1528 /* 1529 * If the found stable_node dup can accept one 1530 * more future merge (in addition to the one 1531 * that is underway) and is not at the head of 1532 * the chain, put it there so next search will 1533 * be quicker in the !prune_stale_stable_nodes 1534 * case. 1535 * 1536 * NOTE: it would be inaccurate to use nr > 1 1537 * instead of checking the hlist.first pointer 1538 * directly, because in the 1539 * prune_stale_stable_nodes case "nr" isn't 1540 * the position of the found dup in the chain, 1541 * but the total number of dups in the chain. 1542 */ 1543 hlist_del(&found->hlist_dup); 1544 hlist_add_head(&found->hlist_dup, 1545 &stable_node->hlist); 1546 } 1547 } 1548 1549 *_stable_node_dup = found; 1550 return tree_page; 1551 } 1552 1553 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1554 struct rb_root *root) 1555 { 1556 if (!is_stable_node_chain(stable_node)) 1557 return stable_node; 1558 if (hlist_empty(&stable_node->hlist)) { 1559 free_stable_node_chain(stable_node, root); 1560 return NULL; 1561 } 1562 return hlist_entry(stable_node->hlist.first, 1563 typeof(*stable_node), hlist_dup); 1564 } 1565 1566 /* 1567 * Like for get_ksm_page, this function can free the *_stable_node and 1568 * *_stable_node_dup if the returned tree_page is NULL. 1569 * 1570 * It can also free and overwrite *_stable_node with the found 1571 * stable_node_dup if the chain is collapsed (in which case 1572 * *_stable_node will be equal to *_stable_node_dup like if the chain 1573 * never existed). It's up to the caller to verify tree_page is not 1574 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1575 * 1576 * *_stable_node_dup is really a second output parameter of this 1577 * function and will be overwritten in all cases, the caller doesn't 1578 * need to initialize it. 1579 */ 1580 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1581 struct ksm_stable_node **_stable_node, 1582 struct rb_root *root, 1583 bool prune_stale_stable_nodes) 1584 { 1585 struct ksm_stable_node *stable_node = *_stable_node; 1586 if (!is_stable_node_chain(stable_node)) { 1587 if (is_page_sharing_candidate(stable_node)) { 1588 *_stable_node_dup = stable_node; 1589 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1590 } 1591 /* 1592 * _stable_node_dup set to NULL means the stable_node 1593 * reached the ksm_max_page_sharing limit. 1594 */ 1595 *_stable_node_dup = NULL; 1596 return NULL; 1597 } 1598 return stable_node_dup(_stable_node_dup, _stable_node, root, 1599 prune_stale_stable_nodes); 1600 } 1601 1602 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, 1603 struct ksm_stable_node **s_n, 1604 struct rb_root *root) 1605 { 1606 return __stable_node_chain(s_n_d, s_n, root, true); 1607 } 1608 1609 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, 1610 struct ksm_stable_node *s_n, 1611 struct rb_root *root) 1612 { 1613 struct ksm_stable_node *old_stable_node = s_n; 1614 struct page *tree_page; 1615 1616 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1617 /* not pruning dups so s_n cannot have changed */ 1618 VM_BUG_ON(s_n != old_stable_node); 1619 return tree_page; 1620 } 1621 1622 /* 1623 * stable_tree_search - search for page inside the stable tree 1624 * 1625 * This function checks if there is a page inside the stable tree 1626 * with identical content to the page that we are scanning right now. 1627 * 1628 * This function returns the stable tree node of identical content if found, 1629 * NULL otherwise. 1630 */ 1631 static struct page *stable_tree_search(struct page *page) 1632 { 1633 int nid; 1634 struct rb_root *root; 1635 struct rb_node **new; 1636 struct rb_node *parent; 1637 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1638 struct ksm_stable_node *page_node; 1639 1640 page_node = page_stable_node(page); 1641 if (page_node && page_node->head != &migrate_nodes) { 1642 /* ksm page forked */ 1643 get_page(page); 1644 return page; 1645 } 1646 1647 nid = get_kpfn_nid(page_to_pfn(page)); 1648 root = root_stable_tree + nid; 1649 again: 1650 new = &root->rb_node; 1651 parent = NULL; 1652 1653 while (*new) { 1654 struct page *tree_page; 1655 int ret; 1656 1657 cond_resched(); 1658 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1659 stable_node_any = NULL; 1660 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1661 /* 1662 * NOTE: stable_node may have been freed by 1663 * chain_prune() if the returned stable_node_dup is 1664 * not NULL. stable_node_dup may have been inserted in 1665 * the rbtree instead as a regular stable_node (in 1666 * order to collapse the stable_node chain if a single 1667 * stable_node dup was found in it). In such case the 1668 * stable_node is overwritten by the callee to point 1669 * to the stable_node_dup that was collapsed in the 1670 * stable rbtree and stable_node will be equal to 1671 * stable_node_dup like if the chain never existed. 1672 */ 1673 if (!stable_node_dup) { 1674 /* 1675 * Either all stable_node dups were full in 1676 * this stable_node chain, or this chain was 1677 * empty and should be rb_erased. 1678 */ 1679 stable_node_any = stable_node_dup_any(stable_node, 1680 root); 1681 if (!stable_node_any) { 1682 /* rb_erase just run */ 1683 goto again; 1684 } 1685 /* 1686 * Take any of the stable_node dups page of 1687 * this stable_node chain to let the tree walk 1688 * continue. All KSM pages belonging to the 1689 * stable_node dups in a stable_node chain 1690 * have the same content and they're 1691 * write protected at all times. Any will work 1692 * fine to continue the walk. 1693 */ 1694 tree_page = get_ksm_page(stable_node_any, 1695 GET_KSM_PAGE_NOLOCK); 1696 } 1697 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1698 if (!tree_page) { 1699 /* 1700 * If we walked over a stale stable_node, 1701 * get_ksm_page() will call rb_erase() and it 1702 * may rebalance the tree from under us. So 1703 * restart the search from scratch. Returning 1704 * NULL would be safe too, but we'd generate 1705 * false negative insertions just because some 1706 * stable_node was stale. 1707 */ 1708 goto again; 1709 } 1710 1711 ret = memcmp_pages(page, tree_page); 1712 put_page(tree_page); 1713 1714 parent = *new; 1715 if (ret < 0) 1716 new = &parent->rb_left; 1717 else if (ret > 0) 1718 new = &parent->rb_right; 1719 else { 1720 if (page_node) { 1721 VM_BUG_ON(page_node->head != &migrate_nodes); 1722 /* 1723 * Test if the migrated page should be merged 1724 * into a stable node dup. If the mapcount is 1725 * 1 we can migrate it with another KSM page 1726 * without adding it to the chain. 1727 */ 1728 if (page_mapcount(page) > 1) 1729 goto chain_append; 1730 } 1731 1732 if (!stable_node_dup) { 1733 /* 1734 * If the stable_node is a chain and 1735 * we got a payload match in memcmp 1736 * but we cannot merge the scanned 1737 * page in any of the existing 1738 * stable_node dups because they're 1739 * all full, we need to wait the 1740 * scanned page to find itself a match 1741 * in the unstable tree to create a 1742 * brand new KSM page to add later to 1743 * the dups of this stable_node. 1744 */ 1745 return NULL; 1746 } 1747 1748 /* 1749 * Lock and unlock the stable_node's page (which 1750 * might already have been migrated) so that page 1751 * migration is sure to notice its raised count. 1752 * It would be more elegant to return stable_node 1753 * than kpage, but that involves more changes. 1754 */ 1755 tree_page = get_ksm_page(stable_node_dup, 1756 GET_KSM_PAGE_TRYLOCK); 1757 1758 if (PTR_ERR(tree_page) == -EBUSY) 1759 return ERR_PTR(-EBUSY); 1760 1761 if (unlikely(!tree_page)) 1762 /* 1763 * The tree may have been rebalanced, 1764 * so re-evaluate parent and new. 1765 */ 1766 goto again; 1767 unlock_page(tree_page); 1768 1769 if (get_kpfn_nid(stable_node_dup->kpfn) != 1770 NUMA(stable_node_dup->nid)) { 1771 put_page(tree_page); 1772 goto replace; 1773 } 1774 return tree_page; 1775 } 1776 } 1777 1778 if (!page_node) 1779 return NULL; 1780 1781 list_del(&page_node->list); 1782 DO_NUMA(page_node->nid = nid); 1783 rb_link_node(&page_node->node, parent, new); 1784 rb_insert_color(&page_node->node, root); 1785 out: 1786 if (is_page_sharing_candidate(page_node)) { 1787 get_page(page); 1788 return page; 1789 } else 1790 return NULL; 1791 1792 replace: 1793 /* 1794 * If stable_node was a chain and chain_prune collapsed it, 1795 * stable_node has been updated to be the new regular 1796 * stable_node. A collapse of the chain is indistinguishable 1797 * from the case there was no chain in the stable 1798 * rbtree. Otherwise stable_node is the chain and 1799 * stable_node_dup is the dup to replace. 1800 */ 1801 if (stable_node_dup == stable_node) { 1802 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1803 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1804 /* there is no chain */ 1805 if (page_node) { 1806 VM_BUG_ON(page_node->head != &migrate_nodes); 1807 list_del(&page_node->list); 1808 DO_NUMA(page_node->nid = nid); 1809 rb_replace_node(&stable_node_dup->node, 1810 &page_node->node, 1811 root); 1812 if (is_page_sharing_candidate(page_node)) 1813 get_page(page); 1814 else 1815 page = NULL; 1816 } else { 1817 rb_erase(&stable_node_dup->node, root); 1818 page = NULL; 1819 } 1820 } else { 1821 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1822 __stable_node_dup_del(stable_node_dup); 1823 if (page_node) { 1824 VM_BUG_ON(page_node->head != &migrate_nodes); 1825 list_del(&page_node->list); 1826 DO_NUMA(page_node->nid = nid); 1827 stable_node_chain_add_dup(page_node, stable_node); 1828 if (is_page_sharing_candidate(page_node)) 1829 get_page(page); 1830 else 1831 page = NULL; 1832 } else { 1833 page = NULL; 1834 } 1835 } 1836 stable_node_dup->head = &migrate_nodes; 1837 list_add(&stable_node_dup->list, stable_node_dup->head); 1838 return page; 1839 1840 chain_append: 1841 /* stable_node_dup could be null if it reached the limit */ 1842 if (!stable_node_dup) 1843 stable_node_dup = stable_node_any; 1844 /* 1845 * If stable_node was a chain and chain_prune collapsed it, 1846 * stable_node has been updated to be the new regular 1847 * stable_node. A collapse of the chain is indistinguishable 1848 * from the case there was no chain in the stable 1849 * rbtree. Otherwise stable_node is the chain and 1850 * stable_node_dup is the dup to replace. 1851 */ 1852 if (stable_node_dup == stable_node) { 1853 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1854 /* chain is missing so create it */ 1855 stable_node = alloc_stable_node_chain(stable_node_dup, 1856 root); 1857 if (!stable_node) 1858 return NULL; 1859 } 1860 /* 1861 * Add this stable_node dup that was 1862 * migrated to the stable_node chain 1863 * of the current nid for this page 1864 * content. 1865 */ 1866 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1867 VM_BUG_ON(page_node->head != &migrate_nodes); 1868 list_del(&page_node->list); 1869 DO_NUMA(page_node->nid = nid); 1870 stable_node_chain_add_dup(page_node, stable_node); 1871 goto out; 1872 } 1873 1874 /* 1875 * stable_tree_insert - insert stable tree node pointing to new ksm page 1876 * into the stable tree. 1877 * 1878 * This function returns the stable tree node just allocated on success, 1879 * NULL otherwise. 1880 */ 1881 static struct ksm_stable_node *stable_tree_insert(struct page *kpage) 1882 { 1883 int nid; 1884 unsigned long kpfn; 1885 struct rb_root *root; 1886 struct rb_node **new; 1887 struct rb_node *parent; 1888 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1889 bool need_chain = false; 1890 1891 kpfn = page_to_pfn(kpage); 1892 nid = get_kpfn_nid(kpfn); 1893 root = root_stable_tree + nid; 1894 again: 1895 parent = NULL; 1896 new = &root->rb_node; 1897 1898 while (*new) { 1899 struct page *tree_page; 1900 int ret; 1901 1902 cond_resched(); 1903 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1904 stable_node_any = NULL; 1905 tree_page = chain(&stable_node_dup, stable_node, root); 1906 if (!stable_node_dup) { 1907 /* 1908 * Either all stable_node dups were full in 1909 * this stable_node chain, or this chain was 1910 * empty and should be rb_erased. 1911 */ 1912 stable_node_any = stable_node_dup_any(stable_node, 1913 root); 1914 if (!stable_node_any) { 1915 /* rb_erase just run */ 1916 goto again; 1917 } 1918 /* 1919 * Take any of the stable_node dups page of 1920 * this stable_node chain to let the tree walk 1921 * continue. All KSM pages belonging to the 1922 * stable_node dups in a stable_node chain 1923 * have the same content and they're 1924 * write protected at all times. Any will work 1925 * fine to continue the walk. 1926 */ 1927 tree_page = get_ksm_page(stable_node_any, 1928 GET_KSM_PAGE_NOLOCK); 1929 } 1930 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1931 if (!tree_page) { 1932 /* 1933 * If we walked over a stale stable_node, 1934 * get_ksm_page() will call rb_erase() and it 1935 * may rebalance the tree from under us. So 1936 * restart the search from scratch. Returning 1937 * NULL would be safe too, but we'd generate 1938 * false negative insertions just because some 1939 * stable_node was stale. 1940 */ 1941 goto again; 1942 } 1943 1944 ret = memcmp_pages(kpage, tree_page); 1945 put_page(tree_page); 1946 1947 parent = *new; 1948 if (ret < 0) 1949 new = &parent->rb_left; 1950 else if (ret > 0) 1951 new = &parent->rb_right; 1952 else { 1953 need_chain = true; 1954 break; 1955 } 1956 } 1957 1958 stable_node_dup = alloc_stable_node(); 1959 if (!stable_node_dup) 1960 return NULL; 1961 1962 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1963 stable_node_dup->kpfn = kpfn; 1964 set_page_stable_node(kpage, stable_node_dup); 1965 stable_node_dup->rmap_hlist_len = 0; 1966 DO_NUMA(stable_node_dup->nid = nid); 1967 if (!need_chain) { 1968 rb_link_node(&stable_node_dup->node, parent, new); 1969 rb_insert_color(&stable_node_dup->node, root); 1970 } else { 1971 if (!is_stable_node_chain(stable_node)) { 1972 struct ksm_stable_node *orig = stable_node; 1973 /* chain is missing so create it */ 1974 stable_node = alloc_stable_node_chain(orig, root); 1975 if (!stable_node) { 1976 free_stable_node(stable_node_dup); 1977 return NULL; 1978 } 1979 } 1980 stable_node_chain_add_dup(stable_node_dup, stable_node); 1981 } 1982 1983 return stable_node_dup; 1984 } 1985 1986 /* 1987 * unstable_tree_search_insert - search for identical page, 1988 * else insert rmap_item into the unstable tree. 1989 * 1990 * This function searches for a page in the unstable tree identical to the 1991 * page currently being scanned; and if no identical page is found in the 1992 * tree, we insert rmap_item as a new object into the unstable tree. 1993 * 1994 * This function returns pointer to rmap_item found to be identical 1995 * to the currently scanned page, NULL otherwise. 1996 * 1997 * This function does both searching and inserting, because they share 1998 * the same walking algorithm in an rbtree. 1999 */ 2000 static 2001 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 2002 struct page *page, 2003 struct page **tree_pagep) 2004 { 2005 struct rb_node **new; 2006 struct rb_root *root; 2007 struct rb_node *parent = NULL; 2008 int nid; 2009 2010 nid = get_kpfn_nid(page_to_pfn(page)); 2011 root = root_unstable_tree + nid; 2012 new = &root->rb_node; 2013 2014 while (*new) { 2015 struct ksm_rmap_item *tree_rmap_item; 2016 struct page *tree_page; 2017 int ret; 2018 2019 cond_resched(); 2020 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2021 tree_page = get_mergeable_page(tree_rmap_item); 2022 if (!tree_page) 2023 return NULL; 2024 2025 /* 2026 * Don't substitute a ksm page for a forked page. 2027 */ 2028 if (page == tree_page) { 2029 put_page(tree_page); 2030 return NULL; 2031 } 2032 2033 ret = memcmp_pages(page, tree_page); 2034 2035 parent = *new; 2036 if (ret < 0) { 2037 put_page(tree_page); 2038 new = &parent->rb_left; 2039 } else if (ret > 0) { 2040 put_page(tree_page); 2041 new = &parent->rb_right; 2042 } else if (!ksm_merge_across_nodes && 2043 page_to_nid(tree_page) != nid) { 2044 /* 2045 * If tree_page has been migrated to another NUMA node, 2046 * it will be flushed out and put in the right unstable 2047 * tree next time: only merge with it when across_nodes. 2048 */ 2049 put_page(tree_page); 2050 return NULL; 2051 } else { 2052 *tree_pagep = tree_page; 2053 return tree_rmap_item; 2054 } 2055 } 2056 2057 rmap_item->address |= UNSTABLE_FLAG; 2058 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2059 DO_NUMA(rmap_item->nid = nid); 2060 rb_link_node(&rmap_item->node, parent, new); 2061 rb_insert_color(&rmap_item->node, root); 2062 2063 ksm_pages_unshared++; 2064 return NULL; 2065 } 2066 2067 /* 2068 * stable_tree_append - add another rmap_item to the linked list of 2069 * rmap_items hanging off a given node of the stable tree, all sharing 2070 * the same ksm page. 2071 */ 2072 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2073 struct ksm_stable_node *stable_node, 2074 bool max_page_sharing_bypass) 2075 { 2076 /* 2077 * rmap won't find this mapping if we don't insert the 2078 * rmap_item in the right stable_node 2079 * duplicate. page_migration could break later if rmap breaks, 2080 * so we can as well crash here. We really need to check for 2081 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2082 * for other negative values as an underflow if detected here 2083 * for the first time (and not when decreasing rmap_hlist_len) 2084 * would be sign of memory corruption in the stable_node. 2085 */ 2086 BUG_ON(stable_node->rmap_hlist_len < 0); 2087 2088 stable_node->rmap_hlist_len++; 2089 if (!max_page_sharing_bypass) 2090 /* possibly non fatal but unexpected overflow, only warn */ 2091 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2092 ksm_max_page_sharing); 2093 2094 rmap_item->head = stable_node; 2095 rmap_item->address |= STABLE_FLAG; 2096 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2097 2098 if (rmap_item->hlist.next) 2099 ksm_pages_sharing++; 2100 else 2101 ksm_pages_shared++; 2102 2103 rmap_item->mm->ksm_merging_pages++; 2104 } 2105 2106 /* 2107 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2108 * if not, compare checksum to previous and if it's the same, see if page can 2109 * be inserted into the unstable tree, or merged with a page already there and 2110 * both transferred to the stable tree. 2111 * 2112 * @page: the page that we are searching identical page to. 2113 * @rmap_item: the reverse mapping into the virtual address of this page 2114 */ 2115 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2116 { 2117 struct mm_struct *mm = rmap_item->mm; 2118 struct ksm_rmap_item *tree_rmap_item; 2119 struct page *tree_page = NULL; 2120 struct ksm_stable_node *stable_node; 2121 struct page *kpage; 2122 unsigned int checksum; 2123 int err; 2124 bool max_page_sharing_bypass = false; 2125 2126 stable_node = page_stable_node(page); 2127 if (stable_node) { 2128 if (stable_node->head != &migrate_nodes && 2129 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2130 NUMA(stable_node->nid)) { 2131 stable_node_dup_del(stable_node); 2132 stable_node->head = &migrate_nodes; 2133 list_add(&stable_node->list, stable_node->head); 2134 } 2135 if (stable_node->head != &migrate_nodes && 2136 rmap_item->head == stable_node) 2137 return; 2138 /* 2139 * If it's a KSM fork, allow it to go over the sharing limit 2140 * without warnings. 2141 */ 2142 if (!is_page_sharing_candidate(stable_node)) 2143 max_page_sharing_bypass = true; 2144 } 2145 2146 /* We first start with searching the page inside the stable tree */ 2147 kpage = stable_tree_search(page); 2148 if (kpage == page && rmap_item->head == stable_node) { 2149 put_page(kpage); 2150 return; 2151 } 2152 2153 remove_rmap_item_from_tree(rmap_item); 2154 2155 if (kpage) { 2156 if (PTR_ERR(kpage) == -EBUSY) 2157 return; 2158 2159 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2160 if (!err) { 2161 /* 2162 * The page was successfully merged: 2163 * add its rmap_item to the stable tree. 2164 */ 2165 lock_page(kpage); 2166 stable_tree_append(rmap_item, page_stable_node(kpage), 2167 max_page_sharing_bypass); 2168 unlock_page(kpage); 2169 } 2170 put_page(kpage); 2171 return; 2172 } 2173 2174 /* 2175 * If the hash value of the page has changed from the last time 2176 * we calculated it, this page is changing frequently: therefore we 2177 * don't want to insert it in the unstable tree, and we don't want 2178 * to waste our time searching for something identical to it there. 2179 */ 2180 checksum = calc_checksum(page); 2181 if (rmap_item->oldchecksum != checksum) { 2182 rmap_item->oldchecksum = checksum; 2183 return; 2184 } 2185 2186 /* 2187 * Same checksum as an empty page. We attempt to merge it with the 2188 * appropriate zero page if the user enabled this via sysfs. 2189 */ 2190 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2191 struct vm_area_struct *vma; 2192 2193 mmap_read_lock(mm); 2194 vma = find_mergeable_vma(mm, rmap_item->address); 2195 if (vma) { 2196 err = try_to_merge_one_page(vma, page, 2197 ZERO_PAGE(rmap_item->address)); 2198 trace_ksm_merge_one_page( 2199 page_to_pfn(ZERO_PAGE(rmap_item->address)), 2200 rmap_item, mm, err); 2201 } else { 2202 /* 2203 * If the vma is out of date, we do not need to 2204 * continue. 2205 */ 2206 err = 0; 2207 } 2208 mmap_read_unlock(mm); 2209 /* 2210 * In case of failure, the page was not really empty, so we 2211 * need to continue. Otherwise we're done. 2212 */ 2213 if (!err) 2214 return; 2215 } 2216 tree_rmap_item = 2217 unstable_tree_search_insert(rmap_item, page, &tree_page); 2218 if (tree_rmap_item) { 2219 bool split; 2220 2221 kpage = try_to_merge_two_pages(rmap_item, page, 2222 tree_rmap_item, tree_page); 2223 /* 2224 * If both pages we tried to merge belong to the same compound 2225 * page, then we actually ended up increasing the reference 2226 * count of the same compound page twice, and split_huge_page 2227 * failed. 2228 * Here we set a flag if that happened, and we use it later to 2229 * try split_huge_page again. Since we call put_page right 2230 * afterwards, the reference count will be correct and 2231 * split_huge_page should succeed. 2232 */ 2233 split = PageTransCompound(page) 2234 && compound_head(page) == compound_head(tree_page); 2235 put_page(tree_page); 2236 if (kpage) { 2237 /* 2238 * The pages were successfully merged: insert new 2239 * node in the stable tree and add both rmap_items. 2240 */ 2241 lock_page(kpage); 2242 stable_node = stable_tree_insert(kpage); 2243 if (stable_node) { 2244 stable_tree_append(tree_rmap_item, stable_node, 2245 false); 2246 stable_tree_append(rmap_item, stable_node, 2247 false); 2248 } 2249 unlock_page(kpage); 2250 2251 /* 2252 * If we fail to insert the page into the stable tree, 2253 * we will have 2 virtual addresses that are pointing 2254 * to a ksm page left outside the stable tree, 2255 * in which case we need to break_cow on both. 2256 */ 2257 if (!stable_node) { 2258 break_cow(tree_rmap_item); 2259 break_cow(rmap_item); 2260 } 2261 } else if (split) { 2262 /* 2263 * We are here if we tried to merge two pages and 2264 * failed because they both belonged to the same 2265 * compound page. We will split the page now, but no 2266 * merging will take place. 2267 * We do not want to add the cost of a full lock; if 2268 * the page is locked, it is better to skip it and 2269 * perhaps try again later. 2270 */ 2271 if (!trylock_page(page)) 2272 return; 2273 split_huge_page(page); 2274 unlock_page(page); 2275 } 2276 } 2277 } 2278 2279 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2280 struct ksm_rmap_item **rmap_list, 2281 unsigned long addr) 2282 { 2283 struct ksm_rmap_item *rmap_item; 2284 2285 while (*rmap_list) { 2286 rmap_item = *rmap_list; 2287 if ((rmap_item->address & PAGE_MASK) == addr) 2288 return rmap_item; 2289 if (rmap_item->address > addr) 2290 break; 2291 *rmap_list = rmap_item->rmap_list; 2292 remove_rmap_item_from_tree(rmap_item); 2293 free_rmap_item(rmap_item); 2294 } 2295 2296 rmap_item = alloc_rmap_item(); 2297 if (rmap_item) { 2298 /* It has already been zeroed */ 2299 rmap_item->mm = mm_slot->slot.mm; 2300 rmap_item->mm->ksm_rmap_items++; 2301 rmap_item->address = addr; 2302 rmap_item->rmap_list = *rmap_list; 2303 *rmap_list = rmap_item; 2304 } 2305 return rmap_item; 2306 } 2307 2308 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2309 { 2310 struct mm_struct *mm; 2311 struct ksm_mm_slot *mm_slot; 2312 struct mm_slot *slot; 2313 struct vm_area_struct *vma; 2314 struct ksm_rmap_item *rmap_item; 2315 struct vma_iterator vmi; 2316 int nid; 2317 2318 if (list_empty(&ksm_mm_head.slot.mm_node)) 2319 return NULL; 2320 2321 mm_slot = ksm_scan.mm_slot; 2322 if (mm_slot == &ksm_mm_head) { 2323 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2324 2325 /* 2326 * A number of pages can hang around indefinitely in per-cpu 2327 * LRU cache, raised page count preventing write_protect_page 2328 * from merging them. Though it doesn't really matter much, 2329 * it is puzzling to see some stuck in pages_volatile until 2330 * other activity jostles them out, and they also prevented 2331 * LTP's KSM test from succeeding deterministically; so drain 2332 * them here (here rather than on entry to ksm_do_scan(), 2333 * so we don't IPI too often when pages_to_scan is set low). 2334 */ 2335 lru_add_drain_all(); 2336 2337 /* 2338 * Whereas stale stable_nodes on the stable_tree itself 2339 * get pruned in the regular course of stable_tree_search(), 2340 * those moved out to the migrate_nodes list can accumulate: 2341 * so prune them once before each full scan. 2342 */ 2343 if (!ksm_merge_across_nodes) { 2344 struct ksm_stable_node *stable_node, *next; 2345 struct page *page; 2346 2347 list_for_each_entry_safe(stable_node, next, 2348 &migrate_nodes, list) { 2349 page = get_ksm_page(stable_node, 2350 GET_KSM_PAGE_NOLOCK); 2351 if (page) 2352 put_page(page); 2353 cond_resched(); 2354 } 2355 } 2356 2357 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2358 root_unstable_tree[nid] = RB_ROOT; 2359 2360 spin_lock(&ksm_mmlist_lock); 2361 slot = list_entry(mm_slot->slot.mm_node.next, 2362 struct mm_slot, mm_node); 2363 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2364 ksm_scan.mm_slot = mm_slot; 2365 spin_unlock(&ksm_mmlist_lock); 2366 /* 2367 * Although we tested list_empty() above, a racing __ksm_exit 2368 * of the last mm on the list may have removed it since then. 2369 */ 2370 if (mm_slot == &ksm_mm_head) 2371 return NULL; 2372 next_mm: 2373 ksm_scan.address = 0; 2374 ksm_scan.rmap_list = &mm_slot->rmap_list; 2375 } 2376 2377 slot = &mm_slot->slot; 2378 mm = slot->mm; 2379 vma_iter_init(&vmi, mm, ksm_scan.address); 2380 2381 mmap_read_lock(mm); 2382 if (ksm_test_exit(mm)) 2383 goto no_vmas; 2384 2385 for_each_vma(vmi, vma) { 2386 if (!(vma->vm_flags & VM_MERGEABLE)) 2387 continue; 2388 if (ksm_scan.address < vma->vm_start) 2389 ksm_scan.address = vma->vm_start; 2390 if (!vma->anon_vma) 2391 ksm_scan.address = vma->vm_end; 2392 2393 while (ksm_scan.address < vma->vm_end) { 2394 if (ksm_test_exit(mm)) 2395 break; 2396 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2397 if (IS_ERR_OR_NULL(*page)) { 2398 ksm_scan.address += PAGE_SIZE; 2399 cond_resched(); 2400 continue; 2401 } 2402 if (is_zone_device_page(*page)) 2403 goto next_page; 2404 if (PageAnon(*page)) { 2405 flush_anon_page(vma, *page, ksm_scan.address); 2406 flush_dcache_page(*page); 2407 rmap_item = get_next_rmap_item(mm_slot, 2408 ksm_scan.rmap_list, ksm_scan.address); 2409 if (rmap_item) { 2410 ksm_scan.rmap_list = 2411 &rmap_item->rmap_list; 2412 ksm_scan.address += PAGE_SIZE; 2413 } else 2414 put_page(*page); 2415 mmap_read_unlock(mm); 2416 return rmap_item; 2417 } 2418 next_page: 2419 put_page(*page); 2420 ksm_scan.address += PAGE_SIZE; 2421 cond_resched(); 2422 } 2423 } 2424 2425 if (ksm_test_exit(mm)) { 2426 no_vmas: 2427 ksm_scan.address = 0; 2428 ksm_scan.rmap_list = &mm_slot->rmap_list; 2429 } 2430 /* 2431 * Nuke all the rmap_items that are above this current rmap: 2432 * because there were no VM_MERGEABLE vmas with such addresses. 2433 */ 2434 remove_trailing_rmap_items(ksm_scan.rmap_list); 2435 2436 spin_lock(&ksm_mmlist_lock); 2437 slot = list_entry(mm_slot->slot.mm_node.next, 2438 struct mm_slot, mm_node); 2439 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2440 if (ksm_scan.address == 0) { 2441 /* 2442 * We've completed a full scan of all vmas, holding mmap_lock 2443 * throughout, and found no VM_MERGEABLE: so do the same as 2444 * __ksm_exit does to remove this mm from all our lists now. 2445 * This applies either when cleaning up after __ksm_exit 2446 * (but beware: we can reach here even before __ksm_exit), 2447 * or when all VM_MERGEABLE areas have been unmapped (and 2448 * mmap_lock then protects against race with MADV_MERGEABLE). 2449 */ 2450 hash_del(&mm_slot->slot.hash); 2451 list_del(&mm_slot->slot.mm_node); 2452 spin_unlock(&ksm_mmlist_lock); 2453 2454 mm_slot_free(mm_slot_cache, mm_slot); 2455 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2456 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2457 mmap_read_unlock(mm); 2458 mmdrop(mm); 2459 } else { 2460 mmap_read_unlock(mm); 2461 /* 2462 * mmap_read_unlock(mm) first because after 2463 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2464 * already have been freed under us by __ksm_exit() 2465 * because the "mm_slot" is still hashed and 2466 * ksm_scan.mm_slot doesn't point to it anymore. 2467 */ 2468 spin_unlock(&ksm_mmlist_lock); 2469 } 2470 2471 /* Repeat until we've completed scanning the whole list */ 2472 mm_slot = ksm_scan.mm_slot; 2473 if (mm_slot != &ksm_mm_head) 2474 goto next_mm; 2475 2476 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2477 ksm_scan.seqnr++; 2478 return NULL; 2479 } 2480 2481 /** 2482 * ksm_do_scan - the ksm scanner main worker function. 2483 * @scan_npages: number of pages we want to scan before we return. 2484 */ 2485 static void ksm_do_scan(unsigned int scan_npages) 2486 { 2487 struct ksm_rmap_item *rmap_item; 2488 struct page *page; 2489 unsigned int npages = scan_npages; 2490 2491 while (npages-- && likely(!freezing(current))) { 2492 cond_resched(); 2493 rmap_item = scan_get_next_rmap_item(&page); 2494 if (!rmap_item) 2495 return; 2496 cmp_and_merge_page(page, rmap_item); 2497 put_page(page); 2498 } 2499 2500 ksm_pages_scanned += scan_npages - npages; 2501 } 2502 2503 static int ksmd_should_run(void) 2504 { 2505 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2506 } 2507 2508 static int ksm_scan_thread(void *nothing) 2509 { 2510 unsigned int sleep_ms; 2511 2512 set_freezable(); 2513 set_user_nice(current, 5); 2514 2515 while (!kthread_should_stop()) { 2516 mutex_lock(&ksm_thread_mutex); 2517 wait_while_offlining(); 2518 if (ksmd_should_run()) 2519 ksm_do_scan(ksm_thread_pages_to_scan); 2520 mutex_unlock(&ksm_thread_mutex); 2521 2522 try_to_freeze(); 2523 2524 if (ksmd_should_run()) { 2525 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2526 wait_event_interruptible_timeout(ksm_iter_wait, 2527 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2528 msecs_to_jiffies(sleep_ms)); 2529 } else { 2530 wait_event_freezable(ksm_thread_wait, 2531 ksmd_should_run() || kthread_should_stop()); 2532 } 2533 } 2534 return 0; 2535 } 2536 2537 static void __ksm_add_vma(struct vm_area_struct *vma) 2538 { 2539 unsigned long vm_flags = vma->vm_flags; 2540 2541 if (vm_flags & VM_MERGEABLE) 2542 return; 2543 2544 if (vma_ksm_compatible(vma)) 2545 vm_flags_set(vma, VM_MERGEABLE); 2546 } 2547 2548 static int __ksm_del_vma(struct vm_area_struct *vma) 2549 { 2550 int err; 2551 2552 if (!(vma->vm_flags & VM_MERGEABLE)) 2553 return 0; 2554 2555 if (vma->anon_vma) { 2556 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); 2557 if (err) 2558 return err; 2559 } 2560 2561 vm_flags_clear(vma, VM_MERGEABLE); 2562 return 0; 2563 } 2564 /** 2565 * ksm_add_vma - Mark vma as mergeable if compatible 2566 * 2567 * @vma: Pointer to vma 2568 */ 2569 void ksm_add_vma(struct vm_area_struct *vma) 2570 { 2571 struct mm_struct *mm = vma->vm_mm; 2572 2573 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2574 __ksm_add_vma(vma); 2575 } 2576 2577 static void ksm_add_vmas(struct mm_struct *mm) 2578 { 2579 struct vm_area_struct *vma; 2580 2581 VMA_ITERATOR(vmi, mm, 0); 2582 for_each_vma(vmi, vma) 2583 __ksm_add_vma(vma); 2584 } 2585 2586 static int ksm_del_vmas(struct mm_struct *mm) 2587 { 2588 struct vm_area_struct *vma; 2589 int err; 2590 2591 VMA_ITERATOR(vmi, mm, 0); 2592 for_each_vma(vmi, vma) { 2593 err = __ksm_del_vma(vma); 2594 if (err) 2595 return err; 2596 } 2597 return 0; 2598 } 2599 2600 /** 2601 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2602 * compatible VMA's 2603 * 2604 * @mm: Pointer to mm 2605 * 2606 * Returns 0 on success, otherwise error code 2607 */ 2608 int ksm_enable_merge_any(struct mm_struct *mm) 2609 { 2610 int err; 2611 2612 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2613 return 0; 2614 2615 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2616 err = __ksm_enter(mm); 2617 if (err) 2618 return err; 2619 } 2620 2621 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2622 ksm_add_vmas(mm); 2623 2624 return 0; 2625 } 2626 2627 /** 2628 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2629 * previously enabled via ksm_enable_merge_any(). 2630 * 2631 * Disabling merging implies unmerging any merged pages, like setting 2632 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2633 * merging on all compatible VMA's remains enabled. 2634 * 2635 * @mm: Pointer to mm 2636 * 2637 * Returns 0 on success, otherwise error code 2638 */ 2639 int ksm_disable_merge_any(struct mm_struct *mm) 2640 { 2641 int err; 2642 2643 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2644 return 0; 2645 2646 err = ksm_del_vmas(mm); 2647 if (err) { 2648 ksm_add_vmas(mm); 2649 return err; 2650 } 2651 2652 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2653 return 0; 2654 } 2655 2656 int ksm_disable(struct mm_struct *mm) 2657 { 2658 mmap_assert_write_locked(mm); 2659 2660 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2661 return 0; 2662 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2663 return ksm_disable_merge_any(mm); 2664 return ksm_del_vmas(mm); 2665 } 2666 2667 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2668 unsigned long end, int advice, unsigned long *vm_flags) 2669 { 2670 struct mm_struct *mm = vma->vm_mm; 2671 int err; 2672 2673 switch (advice) { 2674 case MADV_MERGEABLE: 2675 if (vma->vm_flags & VM_MERGEABLE) 2676 return 0; 2677 if (!vma_ksm_compatible(vma)) 2678 return 0; 2679 2680 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2681 err = __ksm_enter(mm); 2682 if (err) 2683 return err; 2684 } 2685 2686 *vm_flags |= VM_MERGEABLE; 2687 break; 2688 2689 case MADV_UNMERGEABLE: 2690 if (!(*vm_flags & VM_MERGEABLE)) 2691 return 0; /* just ignore the advice */ 2692 2693 if (vma->anon_vma) { 2694 err = unmerge_ksm_pages(vma, start, end, true); 2695 if (err) 2696 return err; 2697 } 2698 2699 *vm_flags &= ~VM_MERGEABLE; 2700 break; 2701 } 2702 2703 return 0; 2704 } 2705 EXPORT_SYMBOL_GPL(ksm_madvise); 2706 2707 int __ksm_enter(struct mm_struct *mm) 2708 { 2709 struct ksm_mm_slot *mm_slot; 2710 struct mm_slot *slot; 2711 int needs_wakeup; 2712 2713 mm_slot = mm_slot_alloc(mm_slot_cache); 2714 if (!mm_slot) 2715 return -ENOMEM; 2716 2717 slot = &mm_slot->slot; 2718 2719 /* Check ksm_run too? Would need tighter locking */ 2720 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2721 2722 spin_lock(&ksm_mmlist_lock); 2723 mm_slot_insert(mm_slots_hash, mm, slot); 2724 /* 2725 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2726 * insert just behind the scanning cursor, to let the area settle 2727 * down a little; when fork is followed by immediate exec, we don't 2728 * want ksmd to waste time setting up and tearing down an rmap_list. 2729 * 2730 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2731 * scanning cursor, otherwise KSM pages in newly forked mms will be 2732 * missed: then we might as well insert at the end of the list. 2733 */ 2734 if (ksm_run & KSM_RUN_UNMERGE) 2735 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2736 else 2737 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2738 spin_unlock(&ksm_mmlist_lock); 2739 2740 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2741 mmgrab(mm); 2742 2743 if (needs_wakeup) 2744 wake_up_interruptible(&ksm_thread_wait); 2745 2746 trace_ksm_enter(mm); 2747 return 0; 2748 } 2749 2750 void __ksm_exit(struct mm_struct *mm) 2751 { 2752 struct ksm_mm_slot *mm_slot; 2753 struct mm_slot *slot; 2754 int easy_to_free = 0; 2755 2756 /* 2757 * This process is exiting: if it's straightforward (as is the 2758 * case when ksmd was never running), free mm_slot immediately. 2759 * But if it's at the cursor or has rmap_items linked to it, use 2760 * mmap_lock to synchronize with any break_cows before pagetables 2761 * are freed, and leave the mm_slot on the list for ksmd to free. 2762 * Beware: ksm may already have noticed it exiting and freed the slot. 2763 */ 2764 2765 spin_lock(&ksm_mmlist_lock); 2766 slot = mm_slot_lookup(mm_slots_hash, mm); 2767 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2768 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2769 if (!mm_slot->rmap_list) { 2770 hash_del(&slot->hash); 2771 list_del(&slot->mm_node); 2772 easy_to_free = 1; 2773 } else { 2774 list_move(&slot->mm_node, 2775 &ksm_scan.mm_slot->slot.mm_node); 2776 } 2777 } 2778 spin_unlock(&ksm_mmlist_lock); 2779 2780 if (easy_to_free) { 2781 mm_slot_free(mm_slot_cache, mm_slot); 2782 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2783 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2784 mmdrop(mm); 2785 } else if (mm_slot) { 2786 mmap_write_lock(mm); 2787 mmap_write_unlock(mm); 2788 } 2789 2790 trace_ksm_exit(mm); 2791 } 2792 2793 struct page *ksm_might_need_to_copy(struct page *page, 2794 struct vm_area_struct *vma, unsigned long address) 2795 { 2796 struct folio *folio = page_folio(page); 2797 struct anon_vma *anon_vma = folio_anon_vma(folio); 2798 struct page *new_page; 2799 2800 if (PageKsm(page)) { 2801 if (page_stable_node(page) && 2802 !(ksm_run & KSM_RUN_UNMERGE)) 2803 return page; /* no need to copy it */ 2804 } else if (!anon_vma) { 2805 return page; /* no need to copy it */ 2806 } else if (page->index == linear_page_index(vma, address) && 2807 anon_vma->root == vma->anon_vma->root) { 2808 return page; /* still no need to copy it */ 2809 } 2810 if (PageHWPoison(page)) 2811 return ERR_PTR(-EHWPOISON); 2812 if (!PageUptodate(page)) 2813 return page; /* let do_swap_page report the error */ 2814 2815 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2816 if (new_page && 2817 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2818 put_page(new_page); 2819 new_page = NULL; 2820 } 2821 if (new_page) { 2822 if (copy_mc_user_highpage(new_page, page, address, vma)) { 2823 put_page(new_page); 2824 memory_failure_queue(page_to_pfn(page), 0); 2825 return ERR_PTR(-EHWPOISON); 2826 } 2827 SetPageDirty(new_page); 2828 __SetPageUptodate(new_page); 2829 __SetPageLocked(new_page); 2830 #ifdef CONFIG_SWAP 2831 count_vm_event(KSM_SWPIN_COPY); 2832 #endif 2833 } 2834 2835 return new_page; 2836 } 2837 2838 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2839 { 2840 struct ksm_stable_node *stable_node; 2841 struct ksm_rmap_item *rmap_item; 2842 int search_new_forks = 0; 2843 2844 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2845 2846 /* 2847 * Rely on the page lock to protect against concurrent modifications 2848 * to that page's node of the stable tree. 2849 */ 2850 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2851 2852 stable_node = folio_stable_node(folio); 2853 if (!stable_node) 2854 return; 2855 again: 2856 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2857 struct anon_vma *anon_vma = rmap_item->anon_vma; 2858 struct anon_vma_chain *vmac; 2859 struct vm_area_struct *vma; 2860 2861 cond_resched(); 2862 if (!anon_vma_trylock_read(anon_vma)) { 2863 if (rwc->try_lock) { 2864 rwc->contended = true; 2865 return; 2866 } 2867 anon_vma_lock_read(anon_vma); 2868 } 2869 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2870 0, ULONG_MAX) { 2871 unsigned long addr; 2872 2873 cond_resched(); 2874 vma = vmac->vma; 2875 2876 /* Ignore the stable/unstable/sqnr flags */ 2877 addr = rmap_item->address & PAGE_MASK; 2878 2879 if (addr < vma->vm_start || addr >= vma->vm_end) 2880 continue; 2881 /* 2882 * Initially we examine only the vma which covers this 2883 * rmap_item; but later, if there is still work to do, 2884 * we examine covering vmas in other mms: in case they 2885 * were forked from the original since ksmd passed. 2886 */ 2887 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2888 continue; 2889 2890 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2891 continue; 2892 2893 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2894 anon_vma_unlock_read(anon_vma); 2895 return; 2896 } 2897 if (rwc->done && rwc->done(folio)) { 2898 anon_vma_unlock_read(anon_vma); 2899 return; 2900 } 2901 } 2902 anon_vma_unlock_read(anon_vma); 2903 } 2904 if (!search_new_forks++) 2905 goto again; 2906 } 2907 2908 #ifdef CONFIG_MEMORY_FAILURE 2909 /* 2910 * Collect processes when the error hit an ksm page. 2911 */ 2912 void collect_procs_ksm(struct page *page, struct list_head *to_kill, 2913 int force_early) 2914 { 2915 struct ksm_stable_node *stable_node; 2916 struct ksm_rmap_item *rmap_item; 2917 struct folio *folio = page_folio(page); 2918 struct vm_area_struct *vma; 2919 struct task_struct *tsk; 2920 2921 stable_node = folio_stable_node(folio); 2922 if (!stable_node) 2923 return; 2924 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2925 struct anon_vma *av = rmap_item->anon_vma; 2926 2927 anon_vma_lock_read(av); 2928 rcu_read_lock(); 2929 for_each_process(tsk) { 2930 struct anon_vma_chain *vmac; 2931 unsigned long addr; 2932 struct task_struct *t = 2933 task_early_kill(tsk, force_early); 2934 if (!t) 2935 continue; 2936 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 2937 ULONG_MAX) 2938 { 2939 vma = vmac->vma; 2940 if (vma->vm_mm == t->mm) { 2941 addr = rmap_item->address & PAGE_MASK; 2942 add_to_kill_ksm(t, page, vma, to_kill, 2943 addr); 2944 } 2945 } 2946 } 2947 rcu_read_unlock(); 2948 anon_vma_unlock_read(av); 2949 } 2950 } 2951 #endif 2952 2953 #ifdef CONFIG_MIGRATION 2954 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2955 { 2956 struct ksm_stable_node *stable_node; 2957 2958 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2959 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2960 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2961 2962 stable_node = folio_stable_node(folio); 2963 if (stable_node) { 2964 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2965 stable_node->kpfn = folio_pfn(newfolio); 2966 /* 2967 * newfolio->mapping was set in advance; now we need smp_wmb() 2968 * to make sure that the new stable_node->kpfn is visible 2969 * to get_ksm_page() before it can see that folio->mapping 2970 * has gone stale (or that folio_test_swapcache has been cleared). 2971 */ 2972 smp_wmb(); 2973 set_page_stable_node(&folio->page, NULL); 2974 } 2975 } 2976 #endif /* CONFIG_MIGRATION */ 2977 2978 #ifdef CONFIG_MEMORY_HOTREMOVE 2979 static void wait_while_offlining(void) 2980 { 2981 while (ksm_run & KSM_RUN_OFFLINE) { 2982 mutex_unlock(&ksm_thread_mutex); 2983 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2984 TASK_UNINTERRUPTIBLE); 2985 mutex_lock(&ksm_thread_mutex); 2986 } 2987 } 2988 2989 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 2990 unsigned long start_pfn, 2991 unsigned long end_pfn) 2992 { 2993 if (stable_node->kpfn >= start_pfn && 2994 stable_node->kpfn < end_pfn) { 2995 /* 2996 * Don't get_ksm_page, page has already gone: 2997 * which is why we keep kpfn instead of page* 2998 */ 2999 remove_node_from_stable_tree(stable_node); 3000 return true; 3001 } 3002 return false; 3003 } 3004 3005 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 3006 unsigned long start_pfn, 3007 unsigned long end_pfn, 3008 struct rb_root *root) 3009 { 3010 struct ksm_stable_node *dup; 3011 struct hlist_node *hlist_safe; 3012 3013 if (!is_stable_node_chain(stable_node)) { 3014 VM_BUG_ON(is_stable_node_dup(stable_node)); 3015 return stable_node_dup_remove_range(stable_node, start_pfn, 3016 end_pfn); 3017 } 3018 3019 hlist_for_each_entry_safe(dup, hlist_safe, 3020 &stable_node->hlist, hlist_dup) { 3021 VM_BUG_ON(!is_stable_node_dup(dup)); 3022 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 3023 } 3024 if (hlist_empty(&stable_node->hlist)) { 3025 free_stable_node_chain(stable_node, root); 3026 return true; /* notify caller that tree was rebalanced */ 3027 } else 3028 return false; 3029 } 3030 3031 static void ksm_check_stable_tree(unsigned long start_pfn, 3032 unsigned long end_pfn) 3033 { 3034 struct ksm_stable_node *stable_node, *next; 3035 struct rb_node *node; 3036 int nid; 3037 3038 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3039 node = rb_first(root_stable_tree + nid); 3040 while (node) { 3041 stable_node = rb_entry(node, struct ksm_stable_node, node); 3042 if (stable_node_chain_remove_range(stable_node, 3043 start_pfn, end_pfn, 3044 root_stable_tree + 3045 nid)) 3046 node = rb_first(root_stable_tree + nid); 3047 else 3048 node = rb_next(node); 3049 cond_resched(); 3050 } 3051 } 3052 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3053 if (stable_node->kpfn >= start_pfn && 3054 stable_node->kpfn < end_pfn) 3055 remove_node_from_stable_tree(stable_node); 3056 cond_resched(); 3057 } 3058 } 3059 3060 static int ksm_memory_callback(struct notifier_block *self, 3061 unsigned long action, void *arg) 3062 { 3063 struct memory_notify *mn = arg; 3064 3065 switch (action) { 3066 case MEM_GOING_OFFLINE: 3067 /* 3068 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3069 * and remove_all_stable_nodes() while memory is going offline: 3070 * it is unsafe for them to touch the stable tree at this time. 3071 * But unmerge_ksm_pages(), rmap lookups and other entry points 3072 * which do not need the ksm_thread_mutex are all safe. 3073 */ 3074 mutex_lock(&ksm_thread_mutex); 3075 ksm_run |= KSM_RUN_OFFLINE; 3076 mutex_unlock(&ksm_thread_mutex); 3077 break; 3078 3079 case MEM_OFFLINE: 3080 /* 3081 * Most of the work is done by page migration; but there might 3082 * be a few stable_nodes left over, still pointing to struct 3083 * pages which have been offlined: prune those from the tree, 3084 * otherwise get_ksm_page() might later try to access a 3085 * non-existent struct page. 3086 */ 3087 ksm_check_stable_tree(mn->start_pfn, 3088 mn->start_pfn + mn->nr_pages); 3089 fallthrough; 3090 case MEM_CANCEL_OFFLINE: 3091 mutex_lock(&ksm_thread_mutex); 3092 ksm_run &= ~KSM_RUN_OFFLINE; 3093 mutex_unlock(&ksm_thread_mutex); 3094 3095 smp_mb(); /* wake_up_bit advises this */ 3096 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3097 break; 3098 } 3099 return NOTIFY_OK; 3100 } 3101 #else 3102 static void wait_while_offlining(void) 3103 { 3104 } 3105 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3106 3107 #ifdef CONFIG_PROC_FS 3108 long ksm_process_profit(struct mm_struct *mm) 3109 { 3110 return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE - 3111 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3112 } 3113 #endif /* CONFIG_PROC_FS */ 3114 3115 #ifdef CONFIG_SYSFS 3116 /* 3117 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3118 */ 3119 3120 #define KSM_ATTR_RO(_name) \ 3121 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3122 #define KSM_ATTR(_name) \ 3123 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3124 3125 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3126 struct kobj_attribute *attr, char *buf) 3127 { 3128 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3129 } 3130 3131 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3132 struct kobj_attribute *attr, 3133 const char *buf, size_t count) 3134 { 3135 unsigned int msecs; 3136 int err; 3137 3138 err = kstrtouint(buf, 10, &msecs); 3139 if (err) 3140 return -EINVAL; 3141 3142 ksm_thread_sleep_millisecs = msecs; 3143 wake_up_interruptible(&ksm_iter_wait); 3144 3145 return count; 3146 } 3147 KSM_ATTR(sleep_millisecs); 3148 3149 static ssize_t pages_to_scan_show(struct kobject *kobj, 3150 struct kobj_attribute *attr, char *buf) 3151 { 3152 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3153 } 3154 3155 static ssize_t pages_to_scan_store(struct kobject *kobj, 3156 struct kobj_attribute *attr, 3157 const char *buf, size_t count) 3158 { 3159 unsigned int nr_pages; 3160 int err; 3161 3162 err = kstrtouint(buf, 10, &nr_pages); 3163 if (err) 3164 return -EINVAL; 3165 3166 ksm_thread_pages_to_scan = nr_pages; 3167 3168 return count; 3169 } 3170 KSM_ATTR(pages_to_scan); 3171 3172 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3173 char *buf) 3174 { 3175 return sysfs_emit(buf, "%lu\n", ksm_run); 3176 } 3177 3178 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3179 const char *buf, size_t count) 3180 { 3181 unsigned int flags; 3182 int err; 3183 3184 err = kstrtouint(buf, 10, &flags); 3185 if (err) 3186 return -EINVAL; 3187 if (flags > KSM_RUN_UNMERGE) 3188 return -EINVAL; 3189 3190 /* 3191 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3192 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3193 * breaking COW to free the pages_shared (but leaves mm_slots 3194 * on the list for when ksmd may be set running again). 3195 */ 3196 3197 mutex_lock(&ksm_thread_mutex); 3198 wait_while_offlining(); 3199 if (ksm_run != flags) { 3200 ksm_run = flags; 3201 if (flags & KSM_RUN_UNMERGE) { 3202 set_current_oom_origin(); 3203 err = unmerge_and_remove_all_rmap_items(); 3204 clear_current_oom_origin(); 3205 if (err) { 3206 ksm_run = KSM_RUN_STOP; 3207 count = err; 3208 } 3209 } 3210 } 3211 mutex_unlock(&ksm_thread_mutex); 3212 3213 if (flags & KSM_RUN_MERGE) 3214 wake_up_interruptible(&ksm_thread_wait); 3215 3216 return count; 3217 } 3218 KSM_ATTR(run); 3219 3220 #ifdef CONFIG_NUMA 3221 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3222 struct kobj_attribute *attr, char *buf) 3223 { 3224 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3225 } 3226 3227 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3228 struct kobj_attribute *attr, 3229 const char *buf, size_t count) 3230 { 3231 int err; 3232 unsigned long knob; 3233 3234 err = kstrtoul(buf, 10, &knob); 3235 if (err) 3236 return err; 3237 if (knob > 1) 3238 return -EINVAL; 3239 3240 mutex_lock(&ksm_thread_mutex); 3241 wait_while_offlining(); 3242 if (ksm_merge_across_nodes != knob) { 3243 if (ksm_pages_shared || remove_all_stable_nodes()) 3244 err = -EBUSY; 3245 else if (root_stable_tree == one_stable_tree) { 3246 struct rb_root *buf; 3247 /* 3248 * This is the first time that we switch away from the 3249 * default of merging across nodes: must now allocate 3250 * a buffer to hold as many roots as may be needed. 3251 * Allocate stable and unstable together: 3252 * MAXSMP NODES_SHIFT 10 will use 16kB. 3253 */ 3254 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3255 GFP_KERNEL); 3256 /* Let us assume that RB_ROOT is NULL is zero */ 3257 if (!buf) 3258 err = -ENOMEM; 3259 else { 3260 root_stable_tree = buf; 3261 root_unstable_tree = buf + nr_node_ids; 3262 /* Stable tree is empty but not the unstable */ 3263 root_unstable_tree[0] = one_unstable_tree[0]; 3264 } 3265 } 3266 if (!err) { 3267 ksm_merge_across_nodes = knob; 3268 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3269 } 3270 } 3271 mutex_unlock(&ksm_thread_mutex); 3272 3273 return err ? err : count; 3274 } 3275 KSM_ATTR(merge_across_nodes); 3276 #endif 3277 3278 static ssize_t use_zero_pages_show(struct kobject *kobj, 3279 struct kobj_attribute *attr, char *buf) 3280 { 3281 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3282 } 3283 static ssize_t use_zero_pages_store(struct kobject *kobj, 3284 struct kobj_attribute *attr, 3285 const char *buf, size_t count) 3286 { 3287 int err; 3288 bool value; 3289 3290 err = kstrtobool(buf, &value); 3291 if (err) 3292 return -EINVAL; 3293 3294 ksm_use_zero_pages = value; 3295 3296 return count; 3297 } 3298 KSM_ATTR(use_zero_pages); 3299 3300 static ssize_t max_page_sharing_show(struct kobject *kobj, 3301 struct kobj_attribute *attr, char *buf) 3302 { 3303 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3304 } 3305 3306 static ssize_t max_page_sharing_store(struct kobject *kobj, 3307 struct kobj_attribute *attr, 3308 const char *buf, size_t count) 3309 { 3310 int err; 3311 int knob; 3312 3313 err = kstrtoint(buf, 10, &knob); 3314 if (err) 3315 return err; 3316 /* 3317 * When a KSM page is created it is shared by 2 mappings. This 3318 * being a signed comparison, it implicitly verifies it's not 3319 * negative. 3320 */ 3321 if (knob < 2) 3322 return -EINVAL; 3323 3324 if (READ_ONCE(ksm_max_page_sharing) == knob) 3325 return count; 3326 3327 mutex_lock(&ksm_thread_mutex); 3328 wait_while_offlining(); 3329 if (ksm_max_page_sharing != knob) { 3330 if (ksm_pages_shared || remove_all_stable_nodes()) 3331 err = -EBUSY; 3332 else 3333 ksm_max_page_sharing = knob; 3334 } 3335 mutex_unlock(&ksm_thread_mutex); 3336 3337 return err ? err : count; 3338 } 3339 KSM_ATTR(max_page_sharing); 3340 3341 static ssize_t pages_scanned_show(struct kobject *kobj, 3342 struct kobj_attribute *attr, char *buf) 3343 { 3344 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); 3345 } 3346 KSM_ATTR_RO(pages_scanned); 3347 3348 static ssize_t pages_shared_show(struct kobject *kobj, 3349 struct kobj_attribute *attr, char *buf) 3350 { 3351 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3352 } 3353 KSM_ATTR_RO(pages_shared); 3354 3355 static ssize_t pages_sharing_show(struct kobject *kobj, 3356 struct kobj_attribute *attr, char *buf) 3357 { 3358 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3359 } 3360 KSM_ATTR_RO(pages_sharing); 3361 3362 static ssize_t pages_unshared_show(struct kobject *kobj, 3363 struct kobj_attribute *attr, char *buf) 3364 { 3365 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3366 } 3367 KSM_ATTR_RO(pages_unshared); 3368 3369 static ssize_t pages_volatile_show(struct kobject *kobj, 3370 struct kobj_attribute *attr, char *buf) 3371 { 3372 long ksm_pages_volatile; 3373 3374 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3375 - ksm_pages_sharing - ksm_pages_unshared; 3376 /* 3377 * It was not worth any locking to calculate that statistic, 3378 * but it might therefore sometimes be negative: conceal that. 3379 */ 3380 if (ksm_pages_volatile < 0) 3381 ksm_pages_volatile = 0; 3382 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3383 } 3384 KSM_ATTR_RO(pages_volatile); 3385 3386 static ssize_t ksm_zero_pages_show(struct kobject *kobj, 3387 struct kobj_attribute *attr, char *buf) 3388 { 3389 return sysfs_emit(buf, "%ld\n", ksm_zero_pages); 3390 } 3391 KSM_ATTR_RO(ksm_zero_pages); 3392 3393 static ssize_t general_profit_show(struct kobject *kobj, 3394 struct kobj_attribute *attr, char *buf) 3395 { 3396 long general_profit; 3397 3398 general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE - 3399 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3400 3401 return sysfs_emit(buf, "%ld\n", general_profit); 3402 } 3403 KSM_ATTR_RO(general_profit); 3404 3405 static ssize_t stable_node_dups_show(struct kobject *kobj, 3406 struct kobj_attribute *attr, char *buf) 3407 { 3408 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3409 } 3410 KSM_ATTR_RO(stable_node_dups); 3411 3412 static ssize_t stable_node_chains_show(struct kobject *kobj, 3413 struct kobj_attribute *attr, char *buf) 3414 { 3415 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3416 } 3417 KSM_ATTR_RO(stable_node_chains); 3418 3419 static ssize_t 3420 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3421 struct kobj_attribute *attr, 3422 char *buf) 3423 { 3424 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3425 } 3426 3427 static ssize_t 3428 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3429 struct kobj_attribute *attr, 3430 const char *buf, size_t count) 3431 { 3432 unsigned int msecs; 3433 int err; 3434 3435 err = kstrtouint(buf, 10, &msecs); 3436 if (err) 3437 return -EINVAL; 3438 3439 ksm_stable_node_chains_prune_millisecs = msecs; 3440 3441 return count; 3442 } 3443 KSM_ATTR(stable_node_chains_prune_millisecs); 3444 3445 static ssize_t full_scans_show(struct kobject *kobj, 3446 struct kobj_attribute *attr, char *buf) 3447 { 3448 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3449 } 3450 KSM_ATTR_RO(full_scans); 3451 3452 static struct attribute *ksm_attrs[] = { 3453 &sleep_millisecs_attr.attr, 3454 &pages_to_scan_attr.attr, 3455 &run_attr.attr, 3456 &pages_scanned_attr.attr, 3457 &pages_shared_attr.attr, 3458 &pages_sharing_attr.attr, 3459 &pages_unshared_attr.attr, 3460 &pages_volatile_attr.attr, 3461 &ksm_zero_pages_attr.attr, 3462 &full_scans_attr.attr, 3463 #ifdef CONFIG_NUMA 3464 &merge_across_nodes_attr.attr, 3465 #endif 3466 &max_page_sharing_attr.attr, 3467 &stable_node_chains_attr.attr, 3468 &stable_node_dups_attr.attr, 3469 &stable_node_chains_prune_millisecs_attr.attr, 3470 &use_zero_pages_attr.attr, 3471 &general_profit_attr.attr, 3472 NULL, 3473 }; 3474 3475 static const struct attribute_group ksm_attr_group = { 3476 .attrs = ksm_attrs, 3477 .name = "ksm", 3478 }; 3479 #endif /* CONFIG_SYSFS */ 3480 3481 static int __init ksm_init(void) 3482 { 3483 struct task_struct *ksm_thread; 3484 int err; 3485 3486 /* The correct value depends on page size and endianness */ 3487 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3488 /* Default to false for backwards compatibility */ 3489 ksm_use_zero_pages = false; 3490 3491 err = ksm_slab_init(); 3492 if (err) 3493 goto out; 3494 3495 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3496 if (IS_ERR(ksm_thread)) { 3497 pr_err("ksm: creating kthread failed\n"); 3498 err = PTR_ERR(ksm_thread); 3499 goto out_free; 3500 } 3501 3502 #ifdef CONFIG_SYSFS 3503 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3504 if (err) { 3505 pr_err("ksm: register sysfs failed\n"); 3506 kthread_stop(ksm_thread); 3507 goto out_free; 3508 } 3509 #else 3510 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3511 3512 #endif /* CONFIG_SYSFS */ 3513 3514 #ifdef CONFIG_MEMORY_HOTREMOVE 3515 /* There is no significance to this priority 100 */ 3516 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3517 #endif 3518 return 0; 3519 3520 out_free: 3521 ksm_slab_free(); 3522 out: 3523 return err; 3524 } 3525 subsys_initcall(ksm_init); 3526