xref: /openbmc/linux/mm/ksm.c (revision e6e8c6c2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)		(x)
48 #define DO_NUMA(x)	do { (x); } while (0)
49 #else
50 #define NUMA(x)		(0)
51 #define DO_NUMA(x)	do { } while (0)
52 #endif
53 
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same struct stable_node structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113 
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122 	struct hlist_node link;
123 	struct list_head mm_list;
124 	struct rmap_item *rmap_list;
125 	struct mm_struct *mm;
126 };
127 
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138 	struct mm_slot *mm_slot;
139 	unsigned long address;
140 	struct rmap_item **rmap_list;
141 	unsigned long seqnr;
142 };
143 
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157 	union {
158 		struct rb_node node;	/* when node of stable tree */
159 		struct {		/* when listed for migration */
160 			struct list_head *head;
161 			struct {
162 				struct hlist_node hlist_dup;
163 				struct list_head list;
164 			};
165 		};
166 	};
167 	struct hlist_head hlist;
168 	union {
169 		unsigned long kpfn;
170 		unsigned long chain_prune_time;
171 	};
172 	/*
173 	 * STABLE_NODE_CHAIN can be any negative number in
174 	 * rmap_hlist_len negative range, but better not -1 to be able
175 	 * to reliably detect underflows.
176 	 */
177 #define STABLE_NODE_CHAIN -1024
178 	int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180 	int nid;
181 #endif
182 };
183 
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197 	struct rmap_item *rmap_list;
198 	union {
199 		struct anon_vma *anon_vma;	/* when stable */
200 #ifdef CONFIG_NUMA
201 		int nid;		/* when node of unstable tree */
202 #endif
203 	};
204 	struct mm_struct *mm;
205 	unsigned long address;		/* + low bits used for flags below */
206 	unsigned int oldchecksum;	/* when unstable */
207 	union {
208 		struct rb_node node;	/* when node of unstable tree */
209 		struct {		/* when listed from stable tree */
210 			struct stable_node *head;
211 			struct hlist_node hlist;
212 		};
213 	};
214 };
215 
216 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
218 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
219 
220 /* The stable and unstable tree heads */
221 static struct rb_root one_stable_tree[1] = { RB_ROOT };
222 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223 static struct rb_root *root_stable_tree = one_stable_tree;
224 static struct rb_root *root_unstable_tree = one_unstable_tree;
225 
226 /* Recently migrated nodes of stable tree, pending proper placement */
227 static LIST_HEAD(migrate_nodes);
228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
229 
230 #define MM_SLOTS_HASH_BITS 10
231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
232 
233 static struct mm_slot ksm_mm_head = {
234 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235 };
236 static struct ksm_scan ksm_scan = {
237 	.mm_slot = &ksm_mm_head,
238 };
239 
240 static struct kmem_cache *rmap_item_cache;
241 static struct kmem_cache *stable_node_cache;
242 static struct kmem_cache *mm_slot_cache;
243 
244 /* The number of nodes in the stable tree */
245 static unsigned long ksm_pages_shared;
246 
247 /* The number of page slots additionally sharing those nodes */
248 static unsigned long ksm_pages_sharing;
249 
250 /* The number of nodes in the unstable tree */
251 static unsigned long ksm_pages_unshared;
252 
253 /* The number of rmap_items in use: to calculate pages_volatile */
254 static unsigned long ksm_rmap_items;
255 
256 /* The number of stable_node chains */
257 static unsigned long ksm_stable_node_chains;
258 
259 /* The number of stable_node dups linked to the stable_node chains */
260 static unsigned long ksm_stable_node_dups;
261 
262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
264 
265 /* Maximum number of page slots sharing a stable node */
266 static int ksm_max_page_sharing = 256;
267 
268 /* Number of pages ksmd should scan in one batch */
269 static unsigned int ksm_thread_pages_to_scan = 100;
270 
271 /* Milliseconds ksmd should sleep between batches */
272 static unsigned int ksm_thread_sleep_millisecs = 20;
273 
274 /* Checksum of an empty (zeroed) page */
275 static unsigned int zero_checksum __read_mostly;
276 
277 /* Whether to merge empty (zeroed) pages with actual zero pages */
278 static bool ksm_use_zero_pages __read_mostly;
279 
280 #ifdef CONFIG_NUMA
281 /* Zeroed when merging across nodes is not allowed */
282 static unsigned int ksm_merge_across_nodes = 1;
283 static int ksm_nr_node_ids = 1;
284 #else
285 #define ksm_merge_across_nodes	1U
286 #define ksm_nr_node_ids		1
287 #endif
288 
289 #define KSM_RUN_STOP	0
290 #define KSM_RUN_MERGE	1
291 #define KSM_RUN_UNMERGE	2
292 #define KSM_RUN_OFFLINE	4
293 static unsigned long ksm_run = KSM_RUN_STOP;
294 static void wait_while_offlining(void);
295 
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
298 static DEFINE_MUTEX(ksm_thread_mutex);
299 static DEFINE_SPINLOCK(ksm_mmlist_lock);
300 
301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302 		sizeof(struct __struct), __alignof__(struct __struct),\
303 		(__flags), NULL)
304 
305 static int __init ksm_slab_init(void)
306 {
307 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308 	if (!rmap_item_cache)
309 		goto out;
310 
311 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312 	if (!stable_node_cache)
313 		goto out_free1;
314 
315 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316 	if (!mm_slot_cache)
317 		goto out_free2;
318 
319 	return 0;
320 
321 out_free2:
322 	kmem_cache_destroy(stable_node_cache);
323 out_free1:
324 	kmem_cache_destroy(rmap_item_cache);
325 out:
326 	return -ENOMEM;
327 }
328 
329 static void __init ksm_slab_free(void)
330 {
331 	kmem_cache_destroy(mm_slot_cache);
332 	kmem_cache_destroy(stable_node_cache);
333 	kmem_cache_destroy(rmap_item_cache);
334 	mm_slot_cache = NULL;
335 }
336 
337 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338 {
339 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340 }
341 
342 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343 {
344 	return dup->head == STABLE_NODE_DUP_HEAD;
345 }
346 
347 static inline void stable_node_chain_add_dup(struct stable_node *dup,
348 					     struct stable_node *chain)
349 {
350 	VM_BUG_ON(is_stable_node_dup(dup));
351 	dup->head = STABLE_NODE_DUP_HEAD;
352 	VM_BUG_ON(!is_stable_node_chain(chain));
353 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
354 	ksm_stable_node_dups++;
355 }
356 
357 static inline void __stable_node_dup_del(struct stable_node *dup)
358 {
359 	VM_BUG_ON(!is_stable_node_dup(dup));
360 	hlist_del(&dup->hlist_dup);
361 	ksm_stable_node_dups--;
362 }
363 
364 static inline void stable_node_dup_del(struct stable_node *dup)
365 {
366 	VM_BUG_ON(is_stable_node_chain(dup));
367 	if (is_stable_node_dup(dup))
368 		__stable_node_dup_del(dup);
369 	else
370 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371 #ifdef CONFIG_DEBUG_VM
372 	dup->head = NULL;
373 #endif
374 }
375 
376 static inline struct rmap_item *alloc_rmap_item(void)
377 {
378 	struct rmap_item *rmap_item;
379 
380 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381 						__GFP_NORETRY | __GFP_NOWARN);
382 	if (rmap_item)
383 		ksm_rmap_items++;
384 	return rmap_item;
385 }
386 
387 static inline void free_rmap_item(struct rmap_item *rmap_item)
388 {
389 	ksm_rmap_items--;
390 	rmap_item->mm = NULL;	/* debug safety */
391 	kmem_cache_free(rmap_item_cache, rmap_item);
392 }
393 
394 static inline struct stable_node *alloc_stable_node(void)
395 {
396 	/*
397 	 * The allocation can take too long with GFP_KERNEL when memory is under
398 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
399 	 * grants access to memory reserves, helping to avoid this problem.
400 	 */
401 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
402 }
403 
404 static inline void free_stable_node(struct stable_node *stable_node)
405 {
406 	VM_BUG_ON(stable_node->rmap_hlist_len &&
407 		  !is_stable_node_chain(stable_node));
408 	kmem_cache_free(stable_node_cache, stable_node);
409 }
410 
411 static inline struct mm_slot *alloc_mm_slot(void)
412 {
413 	if (!mm_slot_cache)	/* initialization failed */
414 		return NULL;
415 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416 }
417 
418 static inline void free_mm_slot(struct mm_slot *mm_slot)
419 {
420 	kmem_cache_free(mm_slot_cache, mm_slot);
421 }
422 
423 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424 {
425 	struct mm_slot *slot;
426 
427 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
428 		if (slot->mm == mm)
429 			return slot;
430 
431 	return NULL;
432 }
433 
434 static void insert_to_mm_slots_hash(struct mm_struct *mm,
435 				    struct mm_slot *mm_slot)
436 {
437 	mm_slot->mm = mm;
438 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
439 }
440 
441 /*
442  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443  * page tables after it has passed through ksm_exit() - which, if necessary,
444  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
445  * a special flag: they can just back out as soon as mm_users goes to zero.
446  * ksm_test_exit() is used throughout to make this test for exit: in some
447  * places for correctness, in some places just to avoid unnecessary work.
448  */
449 static inline bool ksm_test_exit(struct mm_struct *mm)
450 {
451 	return atomic_read(&mm->mm_users) == 0;
452 }
453 
454 /*
455  * We use break_ksm to break COW on a ksm page: it's a stripped down
456  *
457  *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
458  *		put_page(page);
459  *
460  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461  * in case the application has unmapped and remapped mm,addr meanwhile.
462  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
463  * mmap of /dev/mem, where we would not want to touch it.
464  *
465  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466  * of the process that owns 'vma'.  We also do not want to enforce
467  * protection keys here anyway.
468  */
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
470 {
471 	struct page *page;
472 	vm_fault_t ret = 0;
473 
474 	do {
475 		cond_resched();
476 		page = follow_page(vma, addr,
477 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
478 		if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
479 			break;
480 		if (PageKsm(page))
481 			ret = handle_mm_fault(vma, addr,
482 					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483 					      NULL);
484 		else
485 			ret = VM_FAULT_WRITE;
486 		put_page(page);
487 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488 	/*
489 	 * We must loop because handle_mm_fault() may back out if there's
490 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491 	 *
492 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 	 * COW has been broken, even if the vma does not permit VM_WRITE;
494 	 * but note that a concurrent fault might break PageKsm for us.
495 	 *
496 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 	 * backing file, which also invalidates anonymous pages: that's
498 	 * okay, that truncation will have unmapped the PageKsm for us.
499 	 *
500 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 	 * to user; and ksmd, having no mm, would never be chosen for that.
504 	 *
505 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 	 * even ksmd can fail in this way - though it's usually breaking ksm
508 	 * just to undo a merge it made a moment before, so unlikely to oom.
509 	 *
510 	 * That's a pity: we might therefore have more kernel pages allocated
511 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 	 * will retry to break_cow on each pass, so should recover the page
513 	 * in due course.  The important thing is to not let VM_MERGEABLE
514 	 * be cleared while any such pages might remain in the area.
515 	 */
516 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518 
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520 		unsigned long addr)
521 {
522 	struct vm_area_struct *vma;
523 	if (ksm_test_exit(mm))
524 		return NULL;
525 	vma = vma_lookup(mm, addr);
526 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527 		return NULL;
528 	return vma;
529 }
530 
531 static void break_cow(struct rmap_item *rmap_item)
532 {
533 	struct mm_struct *mm = rmap_item->mm;
534 	unsigned long addr = rmap_item->address;
535 	struct vm_area_struct *vma;
536 
537 	/*
538 	 * It is not an accident that whenever we want to break COW
539 	 * to undo, we also need to drop a reference to the anon_vma.
540 	 */
541 	put_anon_vma(rmap_item->anon_vma);
542 
543 	mmap_read_lock(mm);
544 	vma = find_mergeable_vma(mm, addr);
545 	if (vma)
546 		break_ksm(vma, addr);
547 	mmap_read_unlock(mm);
548 }
549 
550 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551 {
552 	struct mm_struct *mm = rmap_item->mm;
553 	unsigned long addr = rmap_item->address;
554 	struct vm_area_struct *vma;
555 	struct page *page;
556 
557 	mmap_read_lock(mm);
558 	vma = find_mergeable_vma(mm, addr);
559 	if (!vma)
560 		goto out;
561 
562 	page = follow_page(vma, addr, FOLL_GET);
563 	if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
564 		goto out;
565 	if (PageAnon(page)) {
566 		flush_anon_page(vma, page, addr);
567 		flush_dcache_page(page);
568 	} else {
569 		put_page(page);
570 out:
571 		page = NULL;
572 	}
573 	mmap_read_unlock(mm);
574 	return page;
575 }
576 
577 /*
578  * This helper is used for getting right index into array of tree roots.
579  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581  * every node has its own stable and unstable tree.
582  */
583 static inline int get_kpfn_nid(unsigned long kpfn)
584 {
585 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
586 }
587 
588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 						   struct rb_root *root)
590 {
591 	struct stable_node *chain = alloc_stable_node();
592 	VM_BUG_ON(is_stable_node_chain(dup));
593 	if (likely(chain)) {
594 		INIT_HLIST_HEAD(&chain->hlist);
595 		chain->chain_prune_time = jiffies;
596 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598 		chain->nid = NUMA_NO_NODE; /* debug */
599 #endif
600 		ksm_stable_node_chains++;
601 
602 		/*
603 		 * Put the stable node chain in the first dimension of
604 		 * the stable tree and at the same time remove the old
605 		 * stable node.
606 		 */
607 		rb_replace_node(&dup->node, &chain->node, root);
608 
609 		/*
610 		 * Move the old stable node to the second dimension
611 		 * queued in the hlist_dup. The invariant is that all
612 		 * dup stable_nodes in the chain->hlist point to pages
613 		 * that are write protected and have the exact same
614 		 * content.
615 		 */
616 		stable_node_chain_add_dup(dup, chain);
617 	}
618 	return chain;
619 }
620 
621 static inline void free_stable_node_chain(struct stable_node *chain,
622 					  struct rb_root *root)
623 {
624 	rb_erase(&chain->node, root);
625 	free_stable_node(chain);
626 	ksm_stable_node_chains--;
627 }
628 
629 static void remove_node_from_stable_tree(struct stable_node *stable_node)
630 {
631 	struct rmap_item *rmap_item;
632 
633 	/* check it's not STABLE_NODE_CHAIN or negative */
634 	BUG_ON(stable_node->rmap_hlist_len < 0);
635 
636 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
637 		if (rmap_item->hlist.next)
638 			ksm_pages_sharing--;
639 		else
640 			ksm_pages_shared--;
641 
642 		rmap_item->mm->ksm_merging_pages--;
643 
644 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 		stable_node->rmap_hlist_len--;
646 		put_anon_vma(rmap_item->anon_vma);
647 		rmap_item->address &= PAGE_MASK;
648 		cond_resched();
649 	}
650 
651 	/*
652 	 * We need the second aligned pointer of the migrate_nodes
653 	 * list_head to stay clear from the rb_parent_color union
654 	 * (aligned and different than any node) and also different
655 	 * from &migrate_nodes. This will verify that future list.h changes
656 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 	 */
658 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660 
661 	if (stable_node->head == &migrate_nodes)
662 		list_del(&stable_node->list);
663 	else
664 		stable_node_dup_del(stable_node);
665 	free_stable_node(stable_node);
666 }
667 
668 enum get_ksm_page_flags {
669 	GET_KSM_PAGE_NOLOCK,
670 	GET_KSM_PAGE_LOCK,
671 	GET_KSM_PAGE_TRYLOCK
672 };
673 
674 /*
675  * get_ksm_page: checks if the page indicated by the stable node
676  * is still its ksm page, despite having held no reference to it.
677  * In which case we can trust the content of the page, and it
678  * returns the gotten page; but if the page has now been zapped,
679  * remove the stale node from the stable tree and return NULL.
680  * But beware, the stable node's page might be being migrated.
681  *
682  * You would expect the stable_node to hold a reference to the ksm page.
683  * But if it increments the page's count, swapping out has to wait for
684  * ksmd to come around again before it can free the page, which may take
685  * seconds or even minutes: much too unresponsive.  So instead we use a
686  * "keyhole reference": access to the ksm page from the stable node peeps
687  * out through its keyhole to see if that page still holds the right key,
688  * pointing back to this stable node.  This relies on freeing a PageAnon
689  * page to reset its page->mapping to NULL, and relies on no other use of
690  * a page to put something that might look like our key in page->mapping.
691  * is on its way to being freed; but it is an anomaly to bear in mind.
692  */
693 static struct page *get_ksm_page(struct stable_node *stable_node,
694 				 enum get_ksm_page_flags flags)
695 {
696 	struct page *page;
697 	void *expected_mapping;
698 	unsigned long kpfn;
699 
700 	expected_mapping = (void *)((unsigned long)stable_node |
701 					PAGE_MAPPING_KSM);
702 again:
703 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
704 	page = pfn_to_page(kpfn);
705 	if (READ_ONCE(page->mapping) != expected_mapping)
706 		goto stale;
707 
708 	/*
709 	 * We cannot do anything with the page while its refcount is 0.
710 	 * Usually 0 means free, or tail of a higher-order page: in which
711 	 * case this node is no longer referenced, and should be freed;
712 	 * however, it might mean that the page is under page_ref_freeze().
713 	 * The __remove_mapping() case is easy, again the node is now stale;
714 	 * the same is in reuse_ksm_page() case; but if page is swapcache
715 	 * in folio_migrate_mapping(), it might still be our page,
716 	 * in which case it's essential to keep the node.
717 	 */
718 	while (!get_page_unless_zero(page)) {
719 		/*
720 		 * Another check for page->mapping != expected_mapping would
721 		 * work here too.  We have chosen the !PageSwapCache test to
722 		 * optimize the common case, when the page is or is about to
723 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
724 		 * in the ref_freeze section of __remove_mapping(); but Anon
725 		 * page->mapping reset to NULL later, in free_pages_prepare().
726 		 */
727 		if (!PageSwapCache(page))
728 			goto stale;
729 		cpu_relax();
730 	}
731 
732 	if (READ_ONCE(page->mapping) != expected_mapping) {
733 		put_page(page);
734 		goto stale;
735 	}
736 
737 	if (flags == GET_KSM_PAGE_TRYLOCK) {
738 		if (!trylock_page(page)) {
739 			put_page(page);
740 			return ERR_PTR(-EBUSY);
741 		}
742 	} else if (flags == GET_KSM_PAGE_LOCK)
743 		lock_page(page);
744 
745 	if (flags != GET_KSM_PAGE_NOLOCK) {
746 		if (READ_ONCE(page->mapping) != expected_mapping) {
747 			unlock_page(page);
748 			put_page(page);
749 			goto stale;
750 		}
751 	}
752 	return page;
753 
754 stale:
755 	/*
756 	 * We come here from above when page->mapping or !PageSwapCache
757 	 * suggests that the node is stale; but it might be under migration.
758 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
759 	 * before checking whether node->kpfn has been changed.
760 	 */
761 	smp_rmb();
762 	if (READ_ONCE(stable_node->kpfn) != kpfn)
763 		goto again;
764 	remove_node_from_stable_tree(stable_node);
765 	return NULL;
766 }
767 
768 /*
769  * Removing rmap_item from stable or unstable tree.
770  * This function will clean the information from the stable/unstable tree.
771  */
772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773 {
774 	if (rmap_item->address & STABLE_FLAG) {
775 		struct stable_node *stable_node;
776 		struct page *page;
777 
778 		stable_node = rmap_item->head;
779 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
780 		if (!page)
781 			goto out;
782 
783 		hlist_del(&rmap_item->hlist);
784 		unlock_page(page);
785 		put_page(page);
786 
787 		if (!hlist_empty(&stable_node->hlist))
788 			ksm_pages_sharing--;
789 		else
790 			ksm_pages_shared--;
791 
792 		rmap_item->mm->ksm_merging_pages--;
793 
794 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
795 		stable_node->rmap_hlist_len--;
796 
797 		put_anon_vma(rmap_item->anon_vma);
798 		rmap_item->head = NULL;
799 		rmap_item->address &= PAGE_MASK;
800 
801 	} else if (rmap_item->address & UNSTABLE_FLAG) {
802 		unsigned char age;
803 		/*
804 		 * Usually ksmd can and must skip the rb_erase, because
805 		 * root_unstable_tree was already reset to RB_ROOT.
806 		 * But be careful when an mm is exiting: do the rb_erase
807 		 * if this rmap_item was inserted by this scan, rather
808 		 * than left over from before.
809 		 */
810 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
811 		BUG_ON(age > 1);
812 		if (!age)
813 			rb_erase(&rmap_item->node,
814 				 root_unstable_tree + NUMA(rmap_item->nid));
815 		ksm_pages_unshared--;
816 		rmap_item->address &= PAGE_MASK;
817 	}
818 out:
819 	cond_resched();		/* we're called from many long loops */
820 }
821 
822 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
823 {
824 	while (*rmap_list) {
825 		struct rmap_item *rmap_item = *rmap_list;
826 		*rmap_list = rmap_item->rmap_list;
827 		remove_rmap_item_from_tree(rmap_item);
828 		free_rmap_item(rmap_item);
829 	}
830 }
831 
832 /*
833  * Though it's very tempting to unmerge rmap_items from stable tree rather
834  * than check every pte of a given vma, the locking doesn't quite work for
835  * that - an rmap_item is assigned to the stable tree after inserting ksm
836  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
837  * rmap_items from parent to child at fork time (so as not to waste time
838  * if exit comes before the next scan reaches it).
839  *
840  * Similarly, although we'd like to remove rmap_items (so updating counts
841  * and freeing memory) when unmerging an area, it's easier to leave that
842  * to the next pass of ksmd - consider, for example, how ksmd might be
843  * in cmp_and_merge_page on one of the rmap_items we would be removing.
844  */
845 static int unmerge_ksm_pages(struct vm_area_struct *vma,
846 			     unsigned long start, unsigned long end)
847 {
848 	unsigned long addr;
849 	int err = 0;
850 
851 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
852 		if (ksm_test_exit(vma->vm_mm))
853 			break;
854 		if (signal_pending(current))
855 			err = -ERESTARTSYS;
856 		else
857 			err = break_ksm(vma, addr);
858 	}
859 	return err;
860 }
861 
862 static inline struct stable_node *folio_stable_node(struct folio *folio)
863 {
864 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
865 }
866 
867 static inline struct stable_node *page_stable_node(struct page *page)
868 {
869 	return folio_stable_node(page_folio(page));
870 }
871 
872 static inline void set_page_stable_node(struct page *page,
873 					struct stable_node *stable_node)
874 {
875 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
876 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
877 }
878 
879 #ifdef CONFIG_SYSFS
880 /*
881  * Only called through the sysfs control interface:
882  */
883 static int remove_stable_node(struct stable_node *stable_node)
884 {
885 	struct page *page;
886 	int err;
887 
888 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
889 	if (!page) {
890 		/*
891 		 * get_ksm_page did remove_node_from_stable_tree itself.
892 		 */
893 		return 0;
894 	}
895 
896 	/*
897 	 * Page could be still mapped if this races with __mmput() running in
898 	 * between ksm_exit() and exit_mmap(). Just refuse to let
899 	 * merge_across_nodes/max_page_sharing be switched.
900 	 */
901 	err = -EBUSY;
902 	if (!page_mapped(page)) {
903 		/*
904 		 * The stable node did not yet appear stale to get_ksm_page(),
905 		 * since that allows for an unmapped ksm page to be recognized
906 		 * right up until it is freed; but the node is safe to remove.
907 		 * This page might be in a pagevec waiting to be freed,
908 		 * or it might be PageSwapCache (perhaps under writeback),
909 		 * or it might have been removed from swapcache a moment ago.
910 		 */
911 		set_page_stable_node(page, NULL);
912 		remove_node_from_stable_tree(stable_node);
913 		err = 0;
914 	}
915 
916 	unlock_page(page);
917 	put_page(page);
918 	return err;
919 }
920 
921 static int remove_stable_node_chain(struct stable_node *stable_node,
922 				    struct rb_root *root)
923 {
924 	struct stable_node *dup;
925 	struct hlist_node *hlist_safe;
926 
927 	if (!is_stable_node_chain(stable_node)) {
928 		VM_BUG_ON(is_stable_node_dup(stable_node));
929 		if (remove_stable_node(stable_node))
930 			return true;
931 		else
932 			return false;
933 	}
934 
935 	hlist_for_each_entry_safe(dup, hlist_safe,
936 				  &stable_node->hlist, hlist_dup) {
937 		VM_BUG_ON(!is_stable_node_dup(dup));
938 		if (remove_stable_node(dup))
939 			return true;
940 	}
941 	BUG_ON(!hlist_empty(&stable_node->hlist));
942 	free_stable_node_chain(stable_node, root);
943 	return false;
944 }
945 
946 static int remove_all_stable_nodes(void)
947 {
948 	struct stable_node *stable_node, *next;
949 	int nid;
950 	int err = 0;
951 
952 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
953 		while (root_stable_tree[nid].rb_node) {
954 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
955 						struct stable_node, node);
956 			if (remove_stable_node_chain(stable_node,
957 						     root_stable_tree + nid)) {
958 				err = -EBUSY;
959 				break;	/* proceed to next nid */
960 			}
961 			cond_resched();
962 		}
963 	}
964 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
965 		if (remove_stable_node(stable_node))
966 			err = -EBUSY;
967 		cond_resched();
968 	}
969 	return err;
970 }
971 
972 static int unmerge_and_remove_all_rmap_items(void)
973 {
974 	struct mm_slot *mm_slot;
975 	struct mm_struct *mm;
976 	struct vm_area_struct *vma;
977 	int err = 0;
978 
979 	spin_lock(&ksm_mmlist_lock);
980 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
981 						struct mm_slot, mm_list);
982 	spin_unlock(&ksm_mmlist_lock);
983 
984 	for (mm_slot = ksm_scan.mm_slot;
985 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
986 		mm = mm_slot->mm;
987 		mmap_read_lock(mm);
988 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
989 			if (ksm_test_exit(mm))
990 				break;
991 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
992 				continue;
993 			err = unmerge_ksm_pages(vma,
994 						vma->vm_start, vma->vm_end);
995 			if (err)
996 				goto error;
997 		}
998 
999 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1000 		mmap_read_unlock(mm);
1001 
1002 		spin_lock(&ksm_mmlist_lock);
1003 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
1004 						struct mm_slot, mm_list);
1005 		if (ksm_test_exit(mm)) {
1006 			hash_del(&mm_slot->link);
1007 			list_del(&mm_slot->mm_list);
1008 			spin_unlock(&ksm_mmlist_lock);
1009 
1010 			free_mm_slot(mm_slot);
1011 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1012 			mmdrop(mm);
1013 		} else
1014 			spin_unlock(&ksm_mmlist_lock);
1015 	}
1016 
1017 	/* Clean up stable nodes, but don't worry if some are still busy */
1018 	remove_all_stable_nodes();
1019 	ksm_scan.seqnr = 0;
1020 	return 0;
1021 
1022 error:
1023 	mmap_read_unlock(mm);
1024 	spin_lock(&ksm_mmlist_lock);
1025 	ksm_scan.mm_slot = &ksm_mm_head;
1026 	spin_unlock(&ksm_mmlist_lock);
1027 	return err;
1028 }
1029 #endif /* CONFIG_SYSFS */
1030 
1031 static u32 calc_checksum(struct page *page)
1032 {
1033 	u32 checksum;
1034 	void *addr = kmap_atomic(page);
1035 	checksum = xxhash(addr, PAGE_SIZE, 0);
1036 	kunmap_atomic(addr);
1037 	return checksum;
1038 }
1039 
1040 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1041 			      pte_t *orig_pte)
1042 {
1043 	struct mm_struct *mm = vma->vm_mm;
1044 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1045 	int swapped;
1046 	int err = -EFAULT;
1047 	struct mmu_notifier_range range;
1048 	bool anon_exclusive;
1049 
1050 	pvmw.address = page_address_in_vma(page, vma);
1051 	if (pvmw.address == -EFAULT)
1052 		goto out;
1053 
1054 	BUG_ON(PageTransCompound(page));
1055 
1056 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1057 				pvmw.address,
1058 				pvmw.address + PAGE_SIZE);
1059 	mmu_notifier_invalidate_range_start(&range);
1060 
1061 	if (!page_vma_mapped_walk(&pvmw))
1062 		goto out_mn;
1063 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1064 		goto out_unlock;
1065 
1066 	anon_exclusive = PageAnonExclusive(page);
1067 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1068 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1069 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1070 		pte_t entry;
1071 
1072 		swapped = PageSwapCache(page);
1073 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1074 		/*
1075 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1076 		 * take any lock, therefore the check that we are going to make
1077 		 * with the pagecount against the mapcount is racy and
1078 		 * O_DIRECT can happen right after the check.
1079 		 * So we clear the pte and flush the tlb before the check
1080 		 * this assure us that no O_DIRECT can happen after the check
1081 		 * or in the middle of the check.
1082 		 *
1083 		 * No need to notify as we are downgrading page table to read
1084 		 * only not changing it to point to a new page.
1085 		 *
1086 		 * See Documentation/mm/mmu_notifier.rst
1087 		 */
1088 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1089 		/*
1090 		 * Check that no O_DIRECT or similar I/O is in progress on the
1091 		 * page
1092 		 */
1093 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1094 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1095 			goto out_unlock;
1096 		}
1097 
1098 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1099 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1100 			goto out_unlock;
1101 		}
1102 
1103 		if (pte_dirty(entry))
1104 			set_page_dirty(page);
1105 
1106 		if (pte_protnone(entry))
1107 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1108 		else
1109 			entry = pte_mkclean(pte_wrprotect(entry));
1110 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1111 	}
1112 	*orig_pte = *pvmw.pte;
1113 	err = 0;
1114 
1115 out_unlock:
1116 	page_vma_mapped_walk_done(&pvmw);
1117 out_mn:
1118 	mmu_notifier_invalidate_range_end(&range);
1119 out:
1120 	return err;
1121 }
1122 
1123 /**
1124  * replace_page - replace page in vma by new ksm page
1125  * @vma:      vma that holds the pte pointing to page
1126  * @page:     the page we are replacing by kpage
1127  * @kpage:    the ksm page we replace page by
1128  * @orig_pte: the original value of the pte
1129  *
1130  * Returns 0 on success, -EFAULT on failure.
1131  */
1132 static int replace_page(struct vm_area_struct *vma, struct page *page,
1133 			struct page *kpage, pte_t orig_pte)
1134 {
1135 	struct mm_struct *mm = vma->vm_mm;
1136 	pmd_t *pmd;
1137 	pte_t *ptep;
1138 	pte_t newpte;
1139 	spinlock_t *ptl;
1140 	unsigned long addr;
1141 	int err = -EFAULT;
1142 	struct mmu_notifier_range range;
1143 
1144 	addr = page_address_in_vma(page, vma);
1145 	if (addr == -EFAULT)
1146 		goto out;
1147 
1148 	pmd = mm_find_pmd(mm, addr);
1149 	if (!pmd)
1150 		goto out;
1151 
1152 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1153 				addr + PAGE_SIZE);
1154 	mmu_notifier_invalidate_range_start(&range);
1155 
1156 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1157 	if (!pte_same(*ptep, orig_pte)) {
1158 		pte_unmap_unlock(ptep, ptl);
1159 		goto out_mn;
1160 	}
1161 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1162 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1163 
1164 	/*
1165 	 * No need to check ksm_use_zero_pages here: we can only have a
1166 	 * zero_page here if ksm_use_zero_pages was enabled already.
1167 	 */
1168 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1169 		get_page(kpage);
1170 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1171 		newpte = mk_pte(kpage, vma->vm_page_prot);
1172 	} else {
1173 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1174 					       vma->vm_page_prot));
1175 		/*
1176 		 * We're replacing an anonymous page with a zero page, which is
1177 		 * not anonymous. We need to do proper accounting otherwise we
1178 		 * will get wrong values in /proc, and a BUG message in dmesg
1179 		 * when tearing down the mm.
1180 		 */
1181 		dec_mm_counter(mm, MM_ANONPAGES);
1182 	}
1183 
1184 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1185 	/*
1186 	 * No need to notify as we are replacing a read only page with another
1187 	 * read only page with the same content.
1188 	 *
1189 	 * See Documentation/mm/mmu_notifier.rst
1190 	 */
1191 	ptep_clear_flush(vma, addr, ptep);
1192 	set_pte_at_notify(mm, addr, ptep, newpte);
1193 
1194 	page_remove_rmap(page, vma, false);
1195 	if (!page_mapped(page))
1196 		try_to_free_swap(page);
1197 	put_page(page);
1198 
1199 	pte_unmap_unlock(ptep, ptl);
1200 	err = 0;
1201 out_mn:
1202 	mmu_notifier_invalidate_range_end(&range);
1203 out:
1204 	return err;
1205 }
1206 
1207 /*
1208  * try_to_merge_one_page - take two pages and merge them into one
1209  * @vma: the vma that holds the pte pointing to page
1210  * @page: the PageAnon page that we want to replace with kpage
1211  * @kpage: the PageKsm page that we want to map instead of page,
1212  *         or NULL the first time when we want to use page as kpage.
1213  *
1214  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1215  */
1216 static int try_to_merge_one_page(struct vm_area_struct *vma,
1217 				 struct page *page, struct page *kpage)
1218 {
1219 	pte_t orig_pte = __pte(0);
1220 	int err = -EFAULT;
1221 
1222 	if (page == kpage)			/* ksm page forked */
1223 		return 0;
1224 
1225 	if (!PageAnon(page))
1226 		goto out;
1227 
1228 	/*
1229 	 * We need the page lock to read a stable PageSwapCache in
1230 	 * write_protect_page().  We use trylock_page() instead of
1231 	 * lock_page() because we don't want to wait here - we
1232 	 * prefer to continue scanning and merging different pages,
1233 	 * then come back to this page when it is unlocked.
1234 	 */
1235 	if (!trylock_page(page))
1236 		goto out;
1237 
1238 	if (PageTransCompound(page)) {
1239 		if (split_huge_page(page))
1240 			goto out_unlock;
1241 	}
1242 
1243 	/*
1244 	 * If this anonymous page is mapped only here, its pte may need
1245 	 * to be write-protected.  If it's mapped elsewhere, all of its
1246 	 * ptes are necessarily already write-protected.  But in either
1247 	 * case, we need to lock and check page_count is not raised.
1248 	 */
1249 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1250 		if (!kpage) {
1251 			/*
1252 			 * While we hold page lock, upgrade page from
1253 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1254 			 * stable_tree_insert() will update stable_node.
1255 			 */
1256 			set_page_stable_node(page, NULL);
1257 			mark_page_accessed(page);
1258 			/*
1259 			 * Page reclaim just frees a clean page with no dirty
1260 			 * ptes: make sure that the ksm page would be swapped.
1261 			 */
1262 			if (!PageDirty(page))
1263 				SetPageDirty(page);
1264 			err = 0;
1265 		} else if (pages_identical(page, kpage))
1266 			err = replace_page(vma, page, kpage, orig_pte);
1267 	}
1268 
1269 out_unlock:
1270 	unlock_page(page);
1271 out:
1272 	return err;
1273 }
1274 
1275 /*
1276  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1277  * but no new kernel page is allocated: kpage must already be a ksm page.
1278  *
1279  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1280  */
1281 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1282 				      struct page *page, struct page *kpage)
1283 {
1284 	struct mm_struct *mm = rmap_item->mm;
1285 	struct vm_area_struct *vma;
1286 	int err = -EFAULT;
1287 
1288 	mmap_read_lock(mm);
1289 	vma = find_mergeable_vma(mm, rmap_item->address);
1290 	if (!vma)
1291 		goto out;
1292 
1293 	err = try_to_merge_one_page(vma, page, kpage);
1294 	if (err)
1295 		goto out;
1296 
1297 	/* Unstable nid is in union with stable anon_vma: remove first */
1298 	remove_rmap_item_from_tree(rmap_item);
1299 
1300 	/* Must get reference to anon_vma while still holding mmap_lock */
1301 	rmap_item->anon_vma = vma->anon_vma;
1302 	get_anon_vma(vma->anon_vma);
1303 out:
1304 	mmap_read_unlock(mm);
1305 	return err;
1306 }
1307 
1308 /*
1309  * try_to_merge_two_pages - take two identical pages and prepare them
1310  * to be merged into one page.
1311  *
1312  * This function returns the kpage if we successfully merged two identical
1313  * pages into one ksm page, NULL otherwise.
1314  *
1315  * Note that this function upgrades page to ksm page: if one of the pages
1316  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1317  */
1318 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1319 					   struct page *page,
1320 					   struct rmap_item *tree_rmap_item,
1321 					   struct page *tree_page)
1322 {
1323 	int err;
1324 
1325 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1326 	if (!err) {
1327 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1328 							tree_page, page);
1329 		/*
1330 		 * If that fails, we have a ksm page with only one pte
1331 		 * pointing to it: so break it.
1332 		 */
1333 		if (err)
1334 			break_cow(rmap_item);
1335 	}
1336 	return err ? NULL : page;
1337 }
1338 
1339 static __always_inline
1340 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1341 {
1342 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1343 	/*
1344 	 * Check that at least one mapping still exists, otherwise
1345 	 * there's no much point to merge and share with this
1346 	 * stable_node, as the underlying tree_page of the other
1347 	 * sharer is going to be freed soon.
1348 	 */
1349 	return stable_node->rmap_hlist_len &&
1350 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1351 }
1352 
1353 static __always_inline
1354 bool is_page_sharing_candidate(struct stable_node *stable_node)
1355 {
1356 	return __is_page_sharing_candidate(stable_node, 0);
1357 }
1358 
1359 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1360 				    struct stable_node **_stable_node,
1361 				    struct rb_root *root,
1362 				    bool prune_stale_stable_nodes)
1363 {
1364 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1365 	struct hlist_node *hlist_safe;
1366 	struct page *_tree_page, *tree_page = NULL;
1367 	int nr = 0;
1368 	int found_rmap_hlist_len;
1369 
1370 	if (!prune_stale_stable_nodes ||
1371 	    time_before(jiffies, stable_node->chain_prune_time +
1372 			msecs_to_jiffies(
1373 				ksm_stable_node_chains_prune_millisecs)))
1374 		prune_stale_stable_nodes = false;
1375 	else
1376 		stable_node->chain_prune_time = jiffies;
1377 
1378 	hlist_for_each_entry_safe(dup, hlist_safe,
1379 				  &stable_node->hlist, hlist_dup) {
1380 		cond_resched();
1381 		/*
1382 		 * We must walk all stable_node_dup to prune the stale
1383 		 * stable nodes during lookup.
1384 		 *
1385 		 * get_ksm_page can drop the nodes from the
1386 		 * stable_node->hlist if they point to freed pages
1387 		 * (that's why we do a _safe walk). The "dup"
1388 		 * stable_node parameter itself will be freed from
1389 		 * under us if it returns NULL.
1390 		 */
1391 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1392 		if (!_tree_page)
1393 			continue;
1394 		nr += 1;
1395 		if (is_page_sharing_candidate(dup)) {
1396 			if (!found ||
1397 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1398 				if (found)
1399 					put_page(tree_page);
1400 				found = dup;
1401 				found_rmap_hlist_len = found->rmap_hlist_len;
1402 				tree_page = _tree_page;
1403 
1404 				/* skip put_page for found dup */
1405 				if (!prune_stale_stable_nodes)
1406 					break;
1407 				continue;
1408 			}
1409 		}
1410 		put_page(_tree_page);
1411 	}
1412 
1413 	if (found) {
1414 		/*
1415 		 * nr is counting all dups in the chain only if
1416 		 * prune_stale_stable_nodes is true, otherwise we may
1417 		 * break the loop at nr == 1 even if there are
1418 		 * multiple entries.
1419 		 */
1420 		if (prune_stale_stable_nodes && nr == 1) {
1421 			/*
1422 			 * If there's not just one entry it would
1423 			 * corrupt memory, better BUG_ON. In KSM
1424 			 * context with no lock held it's not even
1425 			 * fatal.
1426 			 */
1427 			BUG_ON(stable_node->hlist.first->next);
1428 
1429 			/*
1430 			 * There's just one entry and it is below the
1431 			 * deduplication limit so drop the chain.
1432 			 */
1433 			rb_replace_node(&stable_node->node, &found->node,
1434 					root);
1435 			free_stable_node(stable_node);
1436 			ksm_stable_node_chains--;
1437 			ksm_stable_node_dups--;
1438 			/*
1439 			 * NOTE: the caller depends on the stable_node
1440 			 * to be equal to stable_node_dup if the chain
1441 			 * was collapsed.
1442 			 */
1443 			*_stable_node = found;
1444 			/*
1445 			 * Just for robustness, as stable_node is
1446 			 * otherwise left as a stable pointer, the
1447 			 * compiler shall optimize it away at build
1448 			 * time.
1449 			 */
1450 			stable_node = NULL;
1451 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1452 			   __is_page_sharing_candidate(found, 1)) {
1453 			/*
1454 			 * If the found stable_node dup can accept one
1455 			 * more future merge (in addition to the one
1456 			 * that is underway) and is not at the head of
1457 			 * the chain, put it there so next search will
1458 			 * be quicker in the !prune_stale_stable_nodes
1459 			 * case.
1460 			 *
1461 			 * NOTE: it would be inaccurate to use nr > 1
1462 			 * instead of checking the hlist.first pointer
1463 			 * directly, because in the
1464 			 * prune_stale_stable_nodes case "nr" isn't
1465 			 * the position of the found dup in the chain,
1466 			 * but the total number of dups in the chain.
1467 			 */
1468 			hlist_del(&found->hlist_dup);
1469 			hlist_add_head(&found->hlist_dup,
1470 				       &stable_node->hlist);
1471 		}
1472 	}
1473 
1474 	*_stable_node_dup = found;
1475 	return tree_page;
1476 }
1477 
1478 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1479 					       struct rb_root *root)
1480 {
1481 	if (!is_stable_node_chain(stable_node))
1482 		return stable_node;
1483 	if (hlist_empty(&stable_node->hlist)) {
1484 		free_stable_node_chain(stable_node, root);
1485 		return NULL;
1486 	}
1487 	return hlist_entry(stable_node->hlist.first,
1488 			   typeof(*stable_node), hlist_dup);
1489 }
1490 
1491 /*
1492  * Like for get_ksm_page, this function can free the *_stable_node and
1493  * *_stable_node_dup if the returned tree_page is NULL.
1494  *
1495  * It can also free and overwrite *_stable_node with the found
1496  * stable_node_dup if the chain is collapsed (in which case
1497  * *_stable_node will be equal to *_stable_node_dup like if the chain
1498  * never existed). It's up to the caller to verify tree_page is not
1499  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1500  *
1501  * *_stable_node_dup is really a second output parameter of this
1502  * function and will be overwritten in all cases, the caller doesn't
1503  * need to initialize it.
1504  */
1505 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1506 					struct stable_node **_stable_node,
1507 					struct rb_root *root,
1508 					bool prune_stale_stable_nodes)
1509 {
1510 	struct stable_node *stable_node = *_stable_node;
1511 	if (!is_stable_node_chain(stable_node)) {
1512 		if (is_page_sharing_candidate(stable_node)) {
1513 			*_stable_node_dup = stable_node;
1514 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1515 		}
1516 		/*
1517 		 * _stable_node_dup set to NULL means the stable_node
1518 		 * reached the ksm_max_page_sharing limit.
1519 		 */
1520 		*_stable_node_dup = NULL;
1521 		return NULL;
1522 	}
1523 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1524 			       prune_stale_stable_nodes);
1525 }
1526 
1527 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1528 						struct stable_node **s_n,
1529 						struct rb_root *root)
1530 {
1531 	return __stable_node_chain(s_n_d, s_n, root, true);
1532 }
1533 
1534 static __always_inline struct page *chain(struct stable_node **s_n_d,
1535 					  struct stable_node *s_n,
1536 					  struct rb_root *root)
1537 {
1538 	struct stable_node *old_stable_node = s_n;
1539 	struct page *tree_page;
1540 
1541 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1542 	/* not pruning dups so s_n cannot have changed */
1543 	VM_BUG_ON(s_n != old_stable_node);
1544 	return tree_page;
1545 }
1546 
1547 /*
1548  * stable_tree_search - search for page inside the stable tree
1549  *
1550  * This function checks if there is a page inside the stable tree
1551  * with identical content to the page that we are scanning right now.
1552  *
1553  * This function returns the stable tree node of identical content if found,
1554  * NULL otherwise.
1555  */
1556 static struct page *stable_tree_search(struct page *page)
1557 {
1558 	int nid;
1559 	struct rb_root *root;
1560 	struct rb_node **new;
1561 	struct rb_node *parent;
1562 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1563 	struct stable_node *page_node;
1564 
1565 	page_node = page_stable_node(page);
1566 	if (page_node && page_node->head != &migrate_nodes) {
1567 		/* ksm page forked */
1568 		get_page(page);
1569 		return page;
1570 	}
1571 
1572 	nid = get_kpfn_nid(page_to_pfn(page));
1573 	root = root_stable_tree + nid;
1574 again:
1575 	new = &root->rb_node;
1576 	parent = NULL;
1577 
1578 	while (*new) {
1579 		struct page *tree_page;
1580 		int ret;
1581 
1582 		cond_resched();
1583 		stable_node = rb_entry(*new, struct stable_node, node);
1584 		stable_node_any = NULL;
1585 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1586 		/*
1587 		 * NOTE: stable_node may have been freed by
1588 		 * chain_prune() if the returned stable_node_dup is
1589 		 * not NULL. stable_node_dup may have been inserted in
1590 		 * the rbtree instead as a regular stable_node (in
1591 		 * order to collapse the stable_node chain if a single
1592 		 * stable_node dup was found in it). In such case the
1593 		 * stable_node is overwritten by the callee to point
1594 		 * to the stable_node_dup that was collapsed in the
1595 		 * stable rbtree and stable_node will be equal to
1596 		 * stable_node_dup like if the chain never existed.
1597 		 */
1598 		if (!stable_node_dup) {
1599 			/*
1600 			 * Either all stable_node dups were full in
1601 			 * this stable_node chain, or this chain was
1602 			 * empty and should be rb_erased.
1603 			 */
1604 			stable_node_any = stable_node_dup_any(stable_node,
1605 							      root);
1606 			if (!stable_node_any) {
1607 				/* rb_erase just run */
1608 				goto again;
1609 			}
1610 			/*
1611 			 * Take any of the stable_node dups page of
1612 			 * this stable_node chain to let the tree walk
1613 			 * continue. All KSM pages belonging to the
1614 			 * stable_node dups in a stable_node chain
1615 			 * have the same content and they're
1616 			 * write protected at all times. Any will work
1617 			 * fine to continue the walk.
1618 			 */
1619 			tree_page = get_ksm_page(stable_node_any,
1620 						 GET_KSM_PAGE_NOLOCK);
1621 		}
1622 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1623 		if (!tree_page) {
1624 			/*
1625 			 * If we walked over a stale stable_node,
1626 			 * get_ksm_page() will call rb_erase() and it
1627 			 * may rebalance the tree from under us. So
1628 			 * restart the search from scratch. Returning
1629 			 * NULL would be safe too, but we'd generate
1630 			 * false negative insertions just because some
1631 			 * stable_node was stale.
1632 			 */
1633 			goto again;
1634 		}
1635 
1636 		ret = memcmp_pages(page, tree_page);
1637 		put_page(tree_page);
1638 
1639 		parent = *new;
1640 		if (ret < 0)
1641 			new = &parent->rb_left;
1642 		else if (ret > 0)
1643 			new = &parent->rb_right;
1644 		else {
1645 			if (page_node) {
1646 				VM_BUG_ON(page_node->head != &migrate_nodes);
1647 				/*
1648 				 * Test if the migrated page should be merged
1649 				 * into a stable node dup. If the mapcount is
1650 				 * 1 we can migrate it with another KSM page
1651 				 * without adding it to the chain.
1652 				 */
1653 				if (page_mapcount(page) > 1)
1654 					goto chain_append;
1655 			}
1656 
1657 			if (!stable_node_dup) {
1658 				/*
1659 				 * If the stable_node is a chain and
1660 				 * we got a payload match in memcmp
1661 				 * but we cannot merge the scanned
1662 				 * page in any of the existing
1663 				 * stable_node dups because they're
1664 				 * all full, we need to wait the
1665 				 * scanned page to find itself a match
1666 				 * in the unstable tree to create a
1667 				 * brand new KSM page to add later to
1668 				 * the dups of this stable_node.
1669 				 */
1670 				return NULL;
1671 			}
1672 
1673 			/*
1674 			 * Lock and unlock the stable_node's page (which
1675 			 * might already have been migrated) so that page
1676 			 * migration is sure to notice its raised count.
1677 			 * It would be more elegant to return stable_node
1678 			 * than kpage, but that involves more changes.
1679 			 */
1680 			tree_page = get_ksm_page(stable_node_dup,
1681 						 GET_KSM_PAGE_TRYLOCK);
1682 
1683 			if (PTR_ERR(tree_page) == -EBUSY)
1684 				return ERR_PTR(-EBUSY);
1685 
1686 			if (unlikely(!tree_page))
1687 				/*
1688 				 * The tree may have been rebalanced,
1689 				 * so re-evaluate parent and new.
1690 				 */
1691 				goto again;
1692 			unlock_page(tree_page);
1693 
1694 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1695 			    NUMA(stable_node_dup->nid)) {
1696 				put_page(tree_page);
1697 				goto replace;
1698 			}
1699 			return tree_page;
1700 		}
1701 	}
1702 
1703 	if (!page_node)
1704 		return NULL;
1705 
1706 	list_del(&page_node->list);
1707 	DO_NUMA(page_node->nid = nid);
1708 	rb_link_node(&page_node->node, parent, new);
1709 	rb_insert_color(&page_node->node, root);
1710 out:
1711 	if (is_page_sharing_candidate(page_node)) {
1712 		get_page(page);
1713 		return page;
1714 	} else
1715 		return NULL;
1716 
1717 replace:
1718 	/*
1719 	 * If stable_node was a chain and chain_prune collapsed it,
1720 	 * stable_node has been updated to be the new regular
1721 	 * stable_node. A collapse of the chain is indistinguishable
1722 	 * from the case there was no chain in the stable
1723 	 * rbtree. Otherwise stable_node is the chain and
1724 	 * stable_node_dup is the dup to replace.
1725 	 */
1726 	if (stable_node_dup == stable_node) {
1727 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1728 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1729 		/* there is no chain */
1730 		if (page_node) {
1731 			VM_BUG_ON(page_node->head != &migrate_nodes);
1732 			list_del(&page_node->list);
1733 			DO_NUMA(page_node->nid = nid);
1734 			rb_replace_node(&stable_node_dup->node,
1735 					&page_node->node,
1736 					root);
1737 			if (is_page_sharing_candidate(page_node))
1738 				get_page(page);
1739 			else
1740 				page = NULL;
1741 		} else {
1742 			rb_erase(&stable_node_dup->node, root);
1743 			page = NULL;
1744 		}
1745 	} else {
1746 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1747 		__stable_node_dup_del(stable_node_dup);
1748 		if (page_node) {
1749 			VM_BUG_ON(page_node->head != &migrate_nodes);
1750 			list_del(&page_node->list);
1751 			DO_NUMA(page_node->nid = nid);
1752 			stable_node_chain_add_dup(page_node, stable_node);
1753 			if (is_page_sharing_candidate(page_node))
1754 				get_page(page);
1755 			else
1756 				page = NULL;
1757 		} else {
1758 			page = NULL;
1759 		}
1760 	}
1761 	stable_node_dup->head = &migrate_nodes;
1762 	list_add(&stable_node_dup->list, stable_node_dup->head);
1763 	return page;
1764 
1765 chain_append:
1766 	/* stable_node_dup could be null if it reached the limit */
1767 	if (!stable_node_dup)
1768 		stable_node_dup = stable_node_any;
1769 	/*
1770 	 * If stable_node was a chain and chain_prune collapsed it,
1771 	 * stable_node has been updated to be the new regular
1772 	 * stable_node. A collapse of the chain is indistinguishable
1773 	 * from the case there was no chain in the stable
1774 	 * rbtree. Otherwise stable_node is the chain and
1775 	 * stable_node_dup is the dup to replace.
1776 	 */
1777 	if (stable_node_dup == stable_node) {
1778 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1779 		/* chain is missing so create it */
1780 		stable_node = alloc_stable_node_chain(stable_node_dup,
1781 						      root);
1782 		if (!stable_node)
1783 			return NULL;
1784 	}
1785 	/*
1786 	 * Add this stable_node dup that was
1787 	 * migrated to the stable_node chain
1788 	 * of the current nid for this page
1789 	 * content.
1790 	 */
1791 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1792 	VM_BUG_ON(page_node->head != &migrate_nodes);
1793 	list_del(&page_node->list);
1794 	DO_NUMA(page_node->nid = nid);
1795 	stable_node_chain_add_dup(page_node, stable_node);
1796 	goto out;
1797 }
1798 
1799 /*
1800  * stable_tree_insert - insert stable tree node pointing to new ksm page
1801  * into the stable tree.
1802  *
1803  * This function returns the stable tree node just allocated on success,
1804  * NULL otherwise.
1805  */
1806 static struct stable_node *stable_tree_insert(struct page *kpage)
1807 {
1808 	int nid;
1809 	unsigned long kpfn;
1810 	struct rb_root *root;
1811 	struct rb_node **new;
1812 	struct rb_node *parent;
1813 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1814 	bool need_chain = false;
1815 
1816 	kpfn = page_to_pfn(kpage);
1817 	nid = get_kpfn_nid(kpfn);
1818 	root = root_stable_tree + nid;
1819 again:
1820 	parent = NULL;
1821 	new = &root->rb_node;
1822 
1823 	while (*new) {
1824 		struct page *tree_page;
1825 		int ret;
1826 
1827 		cond_resched();
1828 		stable_node = rb_entry(*new, struct stable_node, node);
1829 		stable_node_any = NULL;
1830 		tree_page = chain(&stable_node_dup, stable_node, root);
1831 		if (!stable_node_dup) {
1832 			/*
1833 			 * Either all stable_node dups were full in
1834 			 * this stable_node chain, or this chain was
1835 			 * empty and should be rb_erased.
1836 			 */
1837 			stable_node_any = stable_node_dup_any(stable_node,
1838 							      root);
1839 			if (!stable_node_any) {
1840 				/* rb_erase just run */
1841 				goto again;
1842 			}
1843 			/*
1844 			 * Take any of the stable_node dups page of
1845 			 * this stable_node chain to let the tree walk
1846 			 * continue. All KSM pages belonging to the
1847 			 * stable_node dups in a stable_node chain
1848 			 * have the same content and they're
1849 			 * write protected at all times. Any will work
1850 			 * fine to continue the walk.
1851 			 */
1852 			tree_page = get_ksm_page(stable_node_any,
1853 						 GET_KSM_PAGE_NOLOCK);
1854 		}
1855 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1856 		if (!tree_page) {
1857 			/*
1858 			 * If we walked over a stale stable_node,
1859 			 * get_ksm_page() will call rb_erase() and it
1860 			 * may rebalance the tree from under us. So
1861 			 * restart the search from scratch. Returning
1862 			 * NULL would be safe too, but we'd generate
1863 			 * false negative insertions just because some
1864 			 * stable_node was stale.
1865 			 */
1866 			goto again;
1867 		}
1868 
1869 		ret = memcmp_pages(kpage, tree_page);
1870 		put_page(tree_page);
1871 
1872 		parent = *new;
1873 		if (ret < 0)
1874 			new = &parent->rb_left;
1875 		else if (ret > 0)
1876 			new = &parent->rb_right;
1877 		else {
1878 			need_chain = true;
1879 			break;
1880 		}
1881 	}
1882 
1883 	stable_node_dup = alloc_stable_node();
1884 	if (!stable_node_dup)
1885 		return NULL;
1886 
1887 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1888 	stable_node_dup->kpfn = kpfn;
1889 	set_page_stable_node(kpage, stable_node_dup);
1890 	stable_node_dup->rmap_hlist_len = 0;
1891 	DO_NUMA(stable_node_dup->nid = nid);
1892 	if (!need_chain) {
1893 		rb_link_node(&stable_node_dup->node, parent, new);
1894 		rb_insert_color(&stable_node_dup->node, root);
1895 	} else {
1896 		if (!is_stable_node_chain(stable_node)) {
1897 			struct stable_node *orig = stable_node;
1898 			/* chain is missing so create it */
1899 			stable_node = alloc_stable_node_chain(orig, root);
1900 			if (!stable_node) {
1901 				free_stable_node(stable_node_dup);
1902 				return NULL;
1903 			}
1904 		}
1905 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1906 	}
1907 
1908 	return stable_node_dup;
1909 }
1910 
1911 /*
1912  * unstable_tree_search_insert - search for identical page,
1913  * else insert rmap_item into the unstable tree.
1914  *
1915  * This function searches for a page in the unstable tree identical to the
1916  * page currently being scanned; and if no identical page is found in the
1917  * tree, we insert rmap_item as a new object into the unstable tree.
1918  *
1919  * This function returns pointer to rmap_item found to be identical
1920  * to the currently scanned page, NULL otherwise.
1921  *
1922  * This function does both searching and inserting, because they share
1923  * the same walking algorithm in an rbtree.
1924  */
1925 static
1926 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1927 					      struct page *page,
1928 					      struct page **tree_pagep)
1929 {
1930 	struct rb_node **new;
1931 	struct rb_root *root;
1932 	struct rb_node *parent = NULL;
1933 	int nid;
1934 
1935 	nid = get_kpfn_nid(page_to_pfn(page));
1936 	root = root_unstable_tree + nid;
1937 	new = &root->rb_node;
1938 
1939 	while (*new) {
1940 		struct rmap_item *tree_rmap_item;
1941 		struct page *tree_page;
1942 		int ret;
1943 
1944 		cond_resched();
1945 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1946 		tree_page = get_mergeable_page(tree_rmap_item);
1947 		if (!tree_page)
1948 			return NULL;
1949 
1950 		/*
1951 		 * Don't substitute a ksm page for a forked page.
1952 		 */
1953 		if (page == tree_page) {
1954 			put_page(tree_page);
1955 			return NULL;
1956 		}
1957 
1958 		ret = memcmp_pages(page, tree_page);
1959 
1960 		parent = *new;
1961 		if (ret < 0) {
1962 			put_page(tree_page);
1963 			new = &parent->rb_left;
1964 		} else if (ret > 0) {
1965 			put_page(tree_page);
1966 			new = &parent->rb_right;
1967 		} else if (!ksm_merge_across_nodes &&
1968 			   page_to_nid(tree_page) != nid) {
1969 			/*
1970 			 * If tree_page has been migrated to another NUMA node,
1971 			 * it will be flushed out and put in the right unstable
1972 			 * tree next time: only merge with it when across_nodes.
1973 			 */
1974 			put_page(tree_page);
1975 			return NULL;
1976 		} else {
1977 			*tree_pagep = tree_page;
1978 			return tree_rmap_item;
1979 		}
1980 	}
1981 
1982 	rmap_item->address |= UNSTABLE_FLAG;
1983 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1984 	DO_NUMA(rmap_item->nid = nid);
1985 	rb_link_node(&rmap_item->node, parent, new);
1986 	rb_insert_color(&rmap_item->node, root);
1987 
1988 	ksm_pages_unshared++;
1989 	return NULL;
1990 }
1991 
1992 /*
1993  * stable_tree_append - add another rmap_item to the linked list of
1994  * rmap_items hanging off a given node of the stable tree, all sharing
1995  * the same ksm page.
1996  */
1997 static void stable_tree_append(struct rmap_item *rmap_item,
1998 			       struct stable_node *stable_node,
1999 			       bool max_page_sharing_bypass)
2000 {
2001 	/*
2002 	 * rmap won't find this mapping if we don't insert the
2003 	 * rmap_item in the right stable_node
2004 	 * duplicate. page_migration could break later if rmap breaks,
2005 	 * so we can as well crash here. We really need to check for
2006 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2007 	 * for other negative values as an underflow if detected here
2008 	 * for the first time (and not when decreasing rmap_hlist_len)
2009 	 * would be sign of memory corruption in the stable_node.
2010 	 */
2011 	BUG_ON(stable_node->rmap_hlist_len < 0);
2012 
2013 	stable_node->rmap_hlist_len++;
2014 	if (!max_page_sharing_bypass)
2015 		/* possibly non fatal but unexpected overflow, only warn */
2016 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2017 			     ksm_max_page_sharing);
2018 
2019 	rmap_item->head = stable_node;
2020 	rmap_item->address |= STABLE_FLAG;
2021 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2022 
2023 	if (rmap_item->hlist.next)
2024 		ksm_pages_sharing++;
2025 	else
2026 		ksm_pages_shared++;
2027 
2028 	rmap_item->mm->ksm_merging_pages++;
2029 }
2030 
2031 /*
2032  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2033  * if not, compare checksum to previous and if it's the same, see if page can
2034  * be inserted into the unstable tree, or merged with a page already there and
2035  * both transferred to the stable tree.
2036  *
2037  * @page: the page that we are searching identical page to.
2038  * @rmap_item: the reverse mapping into the virtual address of this page
2039  */
2040 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2041 {
2042 	struct mm_struct *mm = rmap_item->mm;
2043 	struct rmap_item *tree_rmap_item;
2044 	struct page *tree_page = NULL;
2045 	struct stable_node *stable_node;
2046 	struct page *kpage;
2047 	unsigned int checksum;
2048 	int err;
2049 	bool max_page_sharing_bypass = false;
2050 
2051 	stable_node = page_stable_node(page);
2052 	if (stable_node) {
2053 		if (stable_node->head != &migrate_nodes &&
2054 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2055 		    NUMA(stable_node->nid)) {
2056 			stable_node_dup_del(stable_node);
2057 			stable_node->head = &migrate_nodes;
2058 			list_add(&stable_node->list, stable_node->head);
2059 		}
2060 		if (stable_node->head != &migrate_nodes &&
2061 		    rmap_item->head == stable_node)
2062 			return;
2063 		/*
2064 		 * If it's a KSM fork, allow it to go over the sharing limit
2065 		 * without warnings.
2066 		 */
2067 		if (!is_page_sharing_candidate(stable_node))
2068 			max_page_sharing_bypass = true;
2069 	}
2070 
2071 	/* We first start with searching the page inside the stable tree */
2072 	kpage = stable_tree_search(page);
2073 	if (kpage == page && rmap_item->head == stable_node) {
2074 		put_page(kpage);
2075 		return;
2076 	}
2077 
2078 	remove_rmap_item_from_tree(rmap_item);
2079 
2080 	if (kpage) {
2081 		if (PTR_ERR(kpage) == -EBUSY)
2082 			return;
2083 
2084 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2085 		if (!err) {
2086 			/*
2087 			 * The page was successfully merged:
2088 			 * add its rmap_item to the stable tree.
2089 			 */
2090 			lock_page(kpage);
2091 			stable_tree_append(rmap_item, page_stable_node(kpage),
2092 					   max_page_sharing_bypass);
2093 			unlock_page(kpage);
2094 		}
2095 		put_page(kpage);
2096 		return;
2097 	}
2098 
2099 	/*
2100 	 * If the hash value of the page has changed from the last time
2101 	 * we calculated it, this page is changing frequently: therefore we
2102 	 * don't want to insert it in the unstable tree, and we don't want
2103 	 * to waste our time searching for something identical to it there.
2104 	 */
2105 	checksum = calc_checksum(page);
2106 	if (rmap_item->oldchecksum != checksum) {
2107 		rmap_item->oldchecksum = checksum;
2108 		return;
2109 	}
2110 
2111 	/*
2112 	 * Same checksum as an empty page. We attempt to merge it with the
2113 	 * appropriate zero page if the user enabled this via sysfs.
2114 	 */
2115 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2116 		struct vm_area_struct *vma;
2117 
2118 		mmap_read_lock(mm);
2119 		vma = find_mergeable_vma(mm, rmap_item->address);
2120 		if (vma) {
2121 			err = try_to_merge_one_page(vma, page,
2122 					ZERO_PAGE(rmap_item->address));
2123 		} else {
2124 			/*
2125 			 * If the vma is out of date, we do not need to
2126 			 * continue.
2127 			 */
2128 			err = 0;
2129 		}
2130 		mmap_read_unlock(mm);
2131 		/*
2132 		 * In case of failure, the page was not really empty, so we
2133 		 * need to continue. Otherwise we're done.
2134 		 */
2135 		if (!err)
2136 			return;
2137 	}
2138 	tree_rmap_item =
2139 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2140 	if (tree_rmap_item) {
2141 		bool split;
2142 
2143 		kpage = try_to_merge_two_pages(rmap_item, page,
2144 						tree_rmap_item, tree_page);
2145 		/*
2146 		 * If both pages we tried to merge belong to the same compound
2147 		 * page, then we actually ended up increasing the reference
2148 		 * count of the same compound page twice, and split_huge_page
2149 		 * failed.
2150 		 * Here we set a flag if that happened, and we use it later to
2151 		 * try split_huge_page again. Since we call put_page right
2152 		 * afterwards, the reference count will be correct and
2153 		 * split_huge_page should succeed.
2154 		 */
2155 		split = PageTransCompound(page)
2156 			&& compound_head(page) == compound_head(tree_page);
2157 		put_page(tree_page);
2158 		if (kpage) {
2159 			/*
2160 			 * The pages were successfully merged: insert new
2161 			 * node in the stable tree and add both rmap_items.
2162 			 */
2163 			lock_page(kpage);
2164 			stable_node = stable_tree_insert(kpage);
2165 			if (stable_node) {
2166 				stable_tree_append(tree_rmap_item, stable_node,
2167 						   false);
2168 				stable_tree_append(rmap_item, stable_node,
2169 						   false);
2170 			}
2171 			unlock_page(kpage);
2172 
2173 			/*
2174 			 * If we fail to insert the page into the stable tree,
2175 			 * we will have 2 virtual addresses that are pointing
2176 			 * to a ksm page left outside the stable tree,
2177 			 * in which case we need to break_cow on both.
2178 			 */
2179 			if (!stable_node) {
2180 				break_cow(tree_rmap_item);
2181 				break_cow(rmap_item);
2182 			}
2183 		} else if (split) {
2184 			/*
2185 			 * We are here if we tried to merge two pages and
2186 			 * failed because they both belonged to the same
2187 			 * compound page. We will split the page now, but no
2188 			 * merging will take place.
2189 			 * We do not want to add the cost of a full lock; if
2190 			 * the page is locked, it is better to skip it and
2191 			 * perhaps try again later.
2192 			 */
2193 			if (!trylock_page(page))
2194 				return;
2195 			split_huge_page(page);
2196 			unlock_page(page);
2197 		}
2198 	}
2199 }
2200 
2201 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2202 					    struct rmap_item **rmap_list,
2203 					    unsigned long addr)
2204 {
2205 	struct rmap_item *rmap_item;
2206 
2207 	while (*rmap_list) {
2208 		rmap_item = *rmap_list;
2209 		if ((rmap_item->address & PAGE_MASK) == addr)
2210 			return rmap_item;
2211 		if (rmap_item->address > addr)
2212 			break;
2213 		*rmap_list = rmap_item->rmap_list;
2214 		remove_rmap_item_from_tree(rmap_item);
2215 		free_rmap_item(rmap_item);
2216 	}
2217 
2218 	rmap_item = alloc_rmap_item();
2219 	if (rmap_item) {
2220 		/* It has already been zeroed */
2221 		rmap_item->mm = mm_slot->mm;
2222 		rmap_item->address = addr;
2223 		rmap_item->rmap_list = *rmap_list;
2224 		*rmap_list = rmap_item;
2225 	}
2226 	return rmap_item;
2227 }
2228 
2229 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2230 {
2231 	struct mm_struct *mm;
2232 	struct mm_slot *slot;
2233 	struct vm_area_struct *vma;
2234 	struct rmap_item *rmap_item;
2235 	int nid;
2236 
2237 	if (list_empty(&ksm_mm_head.mm_list))
2238 		return NULL;
2239 
2240 	slot = ksm_scan.mm_slot;
2241 	if (slot == &ksm_mm_head) {
2242 		/*
2243 		 * A number of pages can hang around indefinitely on per-cpu
2244 		 * pagevecs, raised page count preventing write_protect_page
2245 		 * from merging them.  Though it doesn't really matter much,
2246 		 * it is puzzling to see some stuck in pages_volatile until
2247 		 * other activity jostles them out, and they also prevented
2248 		 * LTP's KSM test from succeeding deterministically; so drain
2249 		 * them here (here rather than on entry to ksm_do_scan(),
2250 		 * so we don't IPI too often when pages_to_scan is set low).
2251 		 */
2252 		lru_add_drain_all();
2253 
2254 		/*
2255 		 * Whereas stale stable_nodes on the stable_tree itself
2256 		 * get pruned in the regular course of stable_tree_search(),
2257 		 * those moved out to the migrate_nodes list can accumulate:
2258 		 * so prune them once before each full scan.
2259 		 */
2260 		if (!ksm_merge_across_nodes) {
2261 			struct stable_node *stable_node, *next;
2262 			struct page *page;
2263 
2264 			list_for_each_entry_safe(stable_node, next,
2265 						 &migrate_nodes, list) {
2266 				page = get_ksm_page(stable_node,
2267 						    GET_KSM_PAGE_NOLOCK);
2268 				if (page)
2269 					put_page(page);
2270 				cond_resched();
2271 			}
2272 		}
2273 
2274 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2275 			root_unstable_tree[nid] = RB_ROOT;
2276 
2277 		spin_lock(&ksm_mmlist_lock);
2278 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2279 		ksm_scan.mm_slot = slot;
2280 		spin_unlock(&ksm_mmlist_lock);
2281 		/*
2282 		 * Although we tested list_empty() above, a racing __ksm_exit
2283 		 * of the last mm on the list may have removed it since then.
2284 		 */
2285 		if (slot == &ksm_mm_head)
2286 			return NULL;
2287 next_mm:
2288 		ksm_scan.address = 0;
2289 		ksm_scan.rmap_list = &slot->rmap_list;
2290 	}
2291 
2292 	mm = slot->mm;
2293 	mmap_read_lock(mm);
2294 	if (ksm_test_exit(mm))
2295 		vma = NULL;
2296 	else
2297 		vma = find_vma(mm, ksm_scan.address);
2298 
2299 	for (; vma; vma = vma->vm_next) {
2300 		if (!(vma->vm_flags & VM_MERGEABLE))
2301 			continue;
2302 		if (ksm_scan.address < vma->vm_start)
2303 			ksm_scan.address = vma->vm_start;
2304 		if (!vma->anon_vma)
2305 			ksm_scan.address = vma->vm_end;
2306 
2307 		while (ksm_scan.address < vma->vm_end) {
2308 			if (ksm_test_exit(mm))
2309 				break;
2310 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2311 			if (IS_ERR_OR_NULL(*page) || is_zone_device_page(*page)) {
2312 				ksm_scan.address += PAGE_SIZE;
2313 				cond_resched();
2314 				continue;
2315 			}
2316 			if (PageAnon(*page)) {
2317 				flush_anon_page(vma, *page, ksm_scan.address);
2318 				flush_dcache_page(*page);
2319 				rmap_item = get_next_rmap_item(slot,
2320 					ksm_scan.rmap_list, ksm_scan.address);
2321 				if (rmap_item) {
2322 					ksm_scan.rmap_list =
2323 							&rmap_item->rmap_list;
2324 					ksm_scan.address += PAGE_SIZE;
2325 				} else
2326 					put_page(*page);
2327 				mmap_read_unlock(mm);
2328 				return rmap_item;
2329 			}
2330 			put_page(*page);
2331 			ksm_scan.address += PAGE_SIZE;
2332 			cond_resched();
2333 		}
2334 	}
2335 
2336 	if (ksm_test_exit(mm)) {
2337 		ksm_scan.address = 0;
2338 		ksm_scan.rmap_list = &slot->rmap_list;
2339 	}
2340 	/*
2341 	 * Nuke all the rmap_items that are above this current rmap:
2342 	 * because there were no VM_MERGEABLE vmas with such addresses.
2343 	 */
2344 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2345 
2346 	spin_lock(&ksm_mmlist_lock);
2347 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2348 						struct mm_slot, mm_list);
2349 	if (ksm_scan.address == 0) {
2350 		/*
2351 		 * We've completed a full scan of all vmas, holding mmap_lock
2352 		 * throughout, and found no VM_MERGEABLE: so do the same as
2353 		 * __ksm_exit does to remove this mm from all our lists now.
2354 		 * This applies either when cleaning up after __ksm_exit
2355 		 * (but beware: we can reach here even before __ksm_exit),
2356 		 * or when all VM_MERGEABLE areas have been unmapped (and
2357 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2358 		 */
2359 		hash_del(&slot->link);
2360 		list_del(&slot->mm_list);
2361 		spin_unlock(&ksm_mmlist_lock);
2362 
2363 		free_mm_slot(slot);
2364 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2365 		mmap_read_unlock(mm);
2366 		mmdrop(mm);
2367 	} else {
2368 		mmap_read_unlock(mm);
2369 		/*
2370 		 * mmap_read_unlock(mm) first because after
2371 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2372 		 * already have been freed under us by __ksm_exit()
2373 		 * because the "mm_slot" is still hashed and
2374 		 * ksm_scan.mm_slot doesn't point to it anymore.
2375 		 */
2376 		spin_unlock(&ksm_mmlist_lock);
2377 	}
2378 
2379 	/* Repeat until we've completed scanning the whole list */
2380 	slot = ksm_scan.mm_slot;
2381 	if (slot != &ksm_mm_head)
2382 		goto next_mm;
2383 
2384 	ksm_scan.seqnr++;
2385 	return NULL;
2386 }
2387 
2388 /**
2389  * ksm_do_scan  - the ksm scanner main worker function.
2390  * @scan_npages:  number of pages we want to scan before we return.
2391  */
2392 static void ksm_do_scan(unsigned int scan_npages)
2393 {
2394 	struct rmap_item *rmap_item;
2395 	struct page *page;
2396 
2397 	while (scan_npages-- && likely(!freezing(current))) {
2398 		cond_resched();
2399 		rmap_item = scan_get_next_rmap_item(&page);
2400 		if (!rmap_item)
2401 			return;
2402 		cmp_and_merge_page(page, rmap_item);
2403 		put_page(page);
2404 	}
2405 }
2406 
2407 static int ksmd_should_run(void)
2408 {
2409 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2410 }
2411 
2412 static int ksm_scan_thread(void *nothing)
2413 {
2414 	unsigned int sleep_ms;
2415 
2416 	set_freezable();
2417 	set_user_nice(current, 5);
2418 
2419 	while (!kthread_should_stop()) {
2420 		mutex_lock(&ksm_thread_mutex);
2421 		wait_while_offlining();
2422 		if (ksmd_should_run())
2423 			ksm_do_scan(ksm_thread_pages_to_scan);
2424 		mutex_unlock(&ksm_thread_mutex);
2425 
2426 		try_to_freeze();
2427 
2428 		if (ksmd_should_run()) {
2429 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2430 			wait_event_interruptible_timeout(ksm_iter_wait,
2431 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2432 				msecs_to_jiffies(sleep_ms));
2433 		} else {
2434 			wait_event_freezable(ksm_thread_wait,
2435 				ksmd_should_run() || kthread_should_stop());
2436 		}
2437 	}
2438 	return 0;
2439 }
2440 
2441 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2442 		unsigned long end, int advice, unsigned long *vm_flags)
2443 {
2444 	struct mm_struct *mm = vma->vm_mm;
2445 	int err;
2446 
2447 	switch (advice) {
2448 	case MADV_MERGEABLE:
2449 		/*
2450 		 * Be somewhat over-protective for now!
2451 		 */
2452 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2453 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2454 				 VM_HUGETLB | VM_MIXEDMAP))
2455 			return 0;		/* just ignore the advice */
2456 
2457 		if (vma_is_dax(vma))
2458 			return 0;
2459 
2460 #ifdef VM_SAO
2461 		if (*vm_flags & VM_SAO)
2462 			return 0;
2463 #endif
2464 #ifdef VM_SPARC_ADI
2465 		if (*vm_flags & VM_SPARC_ADI)
2466 			return 0;
2467 #endif
2468 
2469 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2470 			err = __ksm_enter(mm);
2471 			if (err)
2472 				return err;
2473 		}
2474 
2475 		*vm_flags |= VM_MERGEABLE;
2476 		break;
2477 
2478 	case MADV_UNMERGEABLE:
2479 		if (!(*vm_flags & VM_MERGEABLE))
2480 			return 0;		/* just ignore the advice */
2481 
2482 		if (vma->anon_vma) {
2483 			err = unmerge_ksm_pages(vma, start, end);
2484 			if (err)
2485 				return err;
2486 		}
2487 
2488 		*vm_flags &= ~VM_MERGEABLE;
2489 		break;
2490 	}
2491 
2492 	return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(ksm_madvise);
2495 
2496 int __ksm_enter(struct mm_struct *mm)
2497 {
2498 	struct mm_slot *mm_slot;
2499 	int needs_wakeup;
2500 
2501 	mm_slot = alloc_mm_slot();
2502 	if (!mm_slot)
2503 		return -ENOMEM;
2504 
2505 	/* Check ksm_run too?  Would need tighter locking */
2506 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2507 
2508 	spin_lock(&ksm_mmlist_lock);
2509 	insert_to_mm_slots_hash(mm, mm_slot);
2510 	/*
2511 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2512 	 * insert just behind the scanning cursor, to let the area settle
2513 	 * down a little; when fork is followed by immediate exec, we don't
2514 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2515 	 *
2516 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2517 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2518 	 * missed: then we might as well insert at the end of the list.
2519 	 */
2520 	if (ksm_run & KSM_RUN_UNMERGE)
2521 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2522 	else
2523 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2524 	spin_unlock(&ksm_mmlist_lock);
2525 
2526 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2527 	mmgrab(mm);
2528 
2529 	if (needs_wakeup)
2530 		wake_up_interruptible(&ksm_thread_wait);
2531 
2532 	return 0;
2533 }
2534 
2535 void __ksm_exit(struct mm_struct *mm)
2536 {
2537 	struct mm_slot *mm_slot;
2538 	int easy_to_free = 0;
2539 
2540 	/*
2541 	 * This process is exiting: if it's straightforward (as is the
2542 	 * case when ksmd was never running), free mm_slot immediately.
2543 	 * But if it's at the cursor or has rmap_items linked to it, use
2544 	 * mmap_lock to synchronize with any break_cows before pagetables
2545 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2546 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2547 	 */
2548 
2549 	spin_lock(&ksm_mmlist_lock);
2550 	mm_slot = get_mm_slot(mm);
2551 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2552 		if (!mm_slot->rmap_list) {
2553 			hash_del(&mm_slot->link);
2554 			list_del(&mm_slot->mm_list);
2555 			easy_to_free = 1;
2556 		} else {
2557 			list_move(&mm_slot->mm_list,
2558 				  &ksm_scan.mm_slot->mm_list);
2559 		}
2560 	}
2561 	spin_unlock(&ksm_mmlist_lock);
2562 
2563 	if (easy_to_free) {
2564 		free_mm_slot(mm_slot);
2565 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2566 		mmdrop(mm);
2567 	} else if (mm_slot) {
2568 		mmap_write_lock(mm);
2569 		mmap_write_unlock(mm);
2570 	}
2571 }
2572 
2573 struct page *ksm_might_need_to_copy(struct page *page,
2574 			struct vm_area_struct *vma, unsigned long address)
2575 {
2576 	struct folio *folio = page_folio(page);
2577 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2578 	struct page *new_page;
2579 
2580 	if (PageKsm(page)) {
2581 		if (page_stable_node(page) &&
2582 		    !(ksm_run & KSM_RUN_UNMERGE))
2583 			return page;	/* no need to copy it */
2584 	} else if (!anon_vma) {
2585 		return page;		/* no need to copy it */
2586 	} else if (page->index == linear_page_index(vma, address) &&
2587 			anon_vma->root == vma->anon_vma->root) {
2588 		return page;		/* still no need to copy it */
2589 	}
2590 	if (!PageUptodate(page))
2591 		return page;		/* let do_swap_page report the error */
2592 
2593 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2594 	if (new_page &&
2595 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2596 		put_page(new_page);
2597 		new_page = NULL;
2598 	}
2599 	if (new_page) {
2600 		copy_user_highpage(new_page, page, address, vma);
2601 
2602 		SetPageDirty(new_page);
2603 		__SetPageUptodate(new_page);
2604 		__SetPageLocked(new_page);
2605 #ifdef CONFIG_SWAP
2606 		count_vm_event(KSM_SWPIN_COPY);
2607 #endif
2608 	}
2609 
2610 	return new_page;
2611 }
2612 
2613 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2614 {
2615 	struct stable_node *stable_node;
2616 	struct rmap_item *rmap_item;
2617 	int search_new_forks = 0;
2618 
2619 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2620 
2621 	/*
2622 	 * Rely on the page lock to protect against concurrent modifications
2623 	 * to that page's node of the stable tree.
2624 	 */
2625 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2626 
2627 	stable_node = folio_stable_node(folio);
2628 	if (!stable_node)
2629 		return;
2630 again:
2631 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2632 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2633 		struct anon_vma_chain *vmac;
2634 		struct vm_area_struct *vma;
2635 
2636 		cond_resched();
2637 		if (!anon_vma_trylock_read(anon_vma)) {
2638 			if (rwc->try_lock) {
2639 				rwc->contended = true;
2640 				return;
2641 			}
2642 			anon_vma_lock_read(anon_vma);
2643 		}
2644 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2645 					       0, ULONG_MAX) {
2646 			unsigned long addr;
2647 
2648 			cond_resched();
2649 			vma = vmac->vma;
2650 
2651 			/* Ignore the stable/unstable/sqnr flags */
2652 			addr = rmap_item->address & PAGE_MASK;
2653 
2654 			if (addr < vma->vm_start || addr >= vma->vm_end)
2655 				continue;
2656 			/*
2657 			 * Initially we examine only the vma which covers this
2658 			 * rmap_item; but later, if there is still work to do,
2659 			 * we examine covering vmas in other mms: in case they
2660 			 * were forked from the original since ksmd passed.
2661 			 */
2662 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2663 				continue;
2664 
2665 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2666 				continue;
2667 
2668 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2669 				anon_vma_unlock_read(anon_vma);
2670 				return;
2671 			}
2672 			if (rwc->done && rwc->done(folio)) {
2673 				anon_vma_unlock_read(anon_vma);
2674 				return;
2675 			}
2676 		}
2677 		anon_vma_unlock_read(anon_vma);
2678 	}
2679 	if (!search_new_forks++)
2680 		goto again;
2681 }
2682 
2683 #ifdef CONFIG_MIGRATION
2684 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2685 {
2686 	struct stable_node *stable_node;
2687 
2688 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2689 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2690 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2691 
2692 	stable_node = folio_stable_node(folio);
2693 	if (stable_node) {
2694 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2695 		stable_node->kpfn = folio_pfn(newfolio);
2696 		/*
2697 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2698 		 * to make sure that the new stable_node->kpfn is visible
2699 		 * to get_ksm_page() before it can see that folio->mapping
2700 		 * has gone stale (or that folio_test_swapcache has been cleared).
2701 		 */
2702 		smp_wmb();
2703 		set_page_stable_node(&folio->page, NULL);
2704 	}
2705 }
2706 #endif /* CONFIG_MIGRATION */
2707 
2708 #ifdef CONFIG_MEMORY_HOTREMOVE
2709 static void wait_while_offlining(void)
2710 {
2711 	while (ksm_run & KSM_RUN_OFFLINE) {
2712 		mutex_unlock(&ksm_thread_mutex);
2713 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2714 			    TASK_UNINTERRUPTIBLE);
2715 		mutex_lock(&ksm_thread_mutex);
2716 	}
2717 }
2718 
2719 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2720 					 unsigned long start_pfn,
2721 					 unsigned long end_pfn)
2722 {
2723 	if (stable_node->kpfn >= start_pfn &&
2724 	    stable_node->kpfn < end_pfn) {
2725 		/*
2726 		 * Don't get_ksm_page, page has already gone:
2727 		 * which is why we keep kpfn instead of page*
2728 		 */
2729 		remove_node_from_stable_tree(stable_node);
2730 		return true;
2731 	}
2732 	return false;
2733 }
2734 
2735 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2736 					   unsigned long start_pfn,
2737 					   unsigned long end_pfn,
2738 					   struct rb_root *root)
2739 {
2740 	struct stable_node *dup;
2741 	struct hlist_node *hlist_safe;
2742 
2743 	if (!is_stable_node_chain(stable_node)) {
2744 		VM_BUG_ON(is_stable_node_dup(stable_node));
2745 		return stable_node_dup_remove_range(stable_node, start_pfn,
2746 						    end_pfn);
2747 	}
2748 
2749 	hlist_for_each_entry_safe(dup, hlist_safe,
2750 				  &stable_node->hlist, hlist_dup) {
2751 		VM_BUG_ON(!is_stable_node_dup(dup));
2752 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2753 	}
2754 	if (hlist_empty(&stable_node->hlist)) {
2755 		free_stable_node_chain(stable_node, root);
2756 		return true; /* notify caller that tree was rebalanced */
2757 	} else
2758 		return false;
2759 }
2760 
2761 static void ksm_check_stable_tree(unsigned long start_pfn,
2762 				  unsigned long end_pfn)
2763 {
2764 	struct stable_node *stable_node, *next;
2765 	struct rb_node *node;
2766 	int nid;
2767 
2768 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2769 		node = rb_first(root_stable_tree + nid);
2770 		while (node) {
2771 			stable_node = rb_entry(node, struct stable_node, node);
2772 			if (stable_node_chain_remove_range(stable_node,
2773 							   start_pfn, end_pfn,
2774 							   root_stable_tree +
2775 							   nid))
2776 				node = rb_first(root_stable_tree + nid);
2777 			else
2778 				node = rb_next(node);
2779 			cond_resched();
2780 		}
2781 	}
2782 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2783 		if (stable_node->kpfn >= start_pfn &&
2784 		    stable_node->kpfn < end_pfn)
2785 			remove_node_from_stable_tree(stable_node);
2786 		cond_resched();
2787 	}
2788 }
2789 
2790 static int ksm_memory_callback(struct notifier_block *self,
2791 			       unsigned long action, void *arg)
2792 {
2793 	struct memory_notify *mn = arg;
2794 
2795 	switch (action) {
2796 	case MEM_GOING_OFFLINE:
2797 		/*
2798 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2799 		 * and remove_all_stable_nodes() while memory is going offline:
2800 		 * it is unsafe for them to touch the stable tree at this time.
2801 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2802 		 * which do not need the ksm_thread_mutex are all safe.
2803 		 */
2804 		mutex_lock(&ksm_thread_mutex);
2805 		ksm_run |= KSM_RUN_OFFLINE;
2806 		mutex_unlock(&ksm_thread_mutex);
2807 		break;
2808 
2809 	case MEM_OFFLINE:
2810 		/*
2811 		 * Most of the work is done by page migration; but there might
2812 		 * be a few stable_nodes left over, still pointing to struct
2813 		 * pages which have been offlined: prune those from the tree,
2814 		 * otherwise get_ksm_page() might later try to access a
2815 		 * non-existent struct page.
2816 		 */
2817 		ksm_check_stable_tree(mn->start_pfn,
2818 				      mn->start_pfn + mn->nr_pages);
2819 		fallthrough;
2820 	case MEM_CANCEL_OFFLINE:
2821 		mutex_lock(&ksm_thread_mutex);
2822 		ksm_run &= ~KSM_RUN_OFFLINE;
2823 		mutex_unlock(&ksm_thread_mutex);
2824 
2825 		smp_mb();	/* wake_up_bit advises this */
2826 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2827 		break;
2828 	}
2829 	return NOTIFY_OK;
2830 }
2831 #else
2832 static void wait_while_offlining(void)
2833 {
2834 }
2835 #endif /* CONFIG_MEMORY_HOTREMOVE */
2836 
2837 #ifdef CONFIG_SYSFS
2838 /*
2839  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2840  */
2841 
2842 #define KSM_ATTR_RO(_name) \
2843 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2844 #define KSM_ATTR(_name) \
2845 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2846 
2847 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2848 				    struct kobj_attribute *attr, char *buf)
2849 {
2850 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2851 }
2852 
2853 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2854 				     struct kobj_attribute *attr,
2855 				     const char *buf, size_t count)
2856 {
2857 	unsigned int msecs;
2858 	int err;
2859 
2860 	err = kstrtouint(buf, 10, &msecs);
2861 	if (err)
2862 		return -EINVAL;
2863 
2864 	ksm_thread_sleep_millisecs = msecs;
2865 	wake_up_interruptible(&ksm_iter_wait);
2866 
2867 	return count;
2868 }
2869 KSM_ATTR(sleep_millisecs);
2870 
2871 static ssize_t pages_to_scan_show(struct kobject *kobj,
2872 				  struct kobj_attribute *attr, char *buf)
2873 {
2874 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2875 }
2876 
2877 static ssize_t pages_to_scan_store(struct kobject *kobj,
2878 				   struct kobj_attribute *attr,
2879 				   const char *buf, size_t count)
2880 {
2881 	unsigned int nr_pages;
2882 	int err;
2883 
2884 	err = kstrtouint(buf, 10, &nr_pages);
2885 	if (err)
2886 		return -EINVAL;
2887 
2888 	ksm_thread_pages_to_scan = nr_pages;
2889 
2890 	return count;
2891 }
2892 KSM_ATTR(pages_to_scan);
2893 
2894 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2895 			char *buf)
2896 {
2897 	return sysfs_emit(buf, "%lu\n", ksm_run);
2898 }
2899 
2900 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2901 			 const char *buf, size_t count)
2902 {
2903 	unsigned int flags;
2904 	int err;
2905 
2906 	err = kstrtouint(buf, 10, &flags);
2907 	if (err)
2908 		return -EINVAL;
2909 	if (flags > KSM_RUN_UNMERGE)
2910 		return -EINVAL;
2911 
2912 	/*
2913 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2914 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2915 	 * breaking COW to free the pages_shared (but leaves mm_slots
2916 	 * on the list for when ksmd may be set running again).
2917 	 */
2918 
2919 	mutex_lock(&ksm_thread_mutex);
2920 	wait_while_offlining();
2921 	if (ksm_run != flags) {
2922 		ksm_run = flags;
2923 		if (flags & KSM_RUN_UNMERGE) {
2924 			set_current_oom_origin();
2925 			err = unmerge_and_remove_all_rmap_items();
2926 			clear_current_oom_origin();
2927 			if (err) {
2928 				ksm_run = KSM_RUN_STOP;
2929 				count = err;
2930 			}
2931 		}
2932 	}
2933 	mutex_unlock(&ksm_thread_mutex);
2934 
2935 	if (flags & KSM_RUN_MERGE)
2936 		wake_up_interruptible(&ksm_thread_wait);
2937 
2938 	return count;
2939 }
2940 KSM_ATTR(run);
2941 
2942 #ifdef CONFIG_NUMA
2943 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2944 				       struct kobj_attribute *attr, char *buf)
2945 {
2946 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2947 }
2948 
2949 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2950 				   struct kobj_attribute *attr,
2951 				   const char *buf, size_t count)
2952 {
2953 	int err;
2954 	unsigned long knob;
2955 
2956 	err = kstrtoul(buf, 10, &knob);
2957 	if (err)
2958 		return err;
2959 	if (knob > 1)
2960 		return -EINVAL;
2961 
2962 	mutex_lock(&ksm_thread_mutex);
2963 	wait_while_offlining();
2964 	if (ksm_merge_across_nodes != knob) {
2965 		if (ksm_pages_shared || remove_all_stable_nodes())
2966 			err = -EBUSY;
2967 		else if (root_stable_tree == one_stable_tree) {
2968 			struct rb_root *buf;
2969 			/*
2970 			 * This is the first time that we switch away from the
2971 			 * default of merging across nodes: must now allocate
2972 			 * a buffer to hold as many roots as may be needed.
2973 			 * Allocate stable and unstable together:
2974 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2975 			 */
2976 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2977 				      GFP_KERNEL);
2978 			/* Let us assume that RB_ROOT is NULL is zero */
2979 			if (!buf)
2980 				err = -ENOMEM;
2981 			else {
2982 				root_stable_tree = buf;
2983 				root_unstable_tree = buf + nr_node_ids;
2984 				/* Stable tree is empty but not the unstable */
2985 				root_unstable_tree[0] = one_unstable_tree[0];
2986 			}
2987 		}
2988 		if (!err) {
2989 			ksm_merge_across_nodes = knob;
2990 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2991 		}
2992 	}
2993 	mutex_unlock(&ksm_thread_mutex);
2994 
2995 	return err ? err : count;
2996 }
2997 KSM_ATTR(merge_across_nodes);
2998 #endif
2999 
3000 static ssize_t use_zero_pages_show(struct kobject *kobj,
3001 				   struct kobj_attribute *attr, char *buf)
3002 {
3003 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3004 }
3005 static ssize_t use_zero_pages_store(struct kobject *kobj,
3006 				   struct kobj_attribute *attr,
3007 				   const char *buf, size_t count)
3008 {
3009 	int err;
3010 	bool value;
3011 
3012 	err = kstrtobool(buf, &value);
3013 	if (err)
3014 		return -EINVAL;
3015 
3016 	ksm_use_zero_pages = value;
3017 
3018 	return count;
3019 }
3020 KSM_ATTR(use_zero_pages);
3021 
3022 static ssize_t max_page_sharing_show(struct kobject *kobj,
3023 				     struct kobj_attribute *attr, char *buf)
3024 {
3025 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3026 }
3027 
3028 static ssize_t max_page_sharing_store(struct kobject *kobj,
3029 				      struct kobj_attribute *attr,
3030 				      const char *buf, size_t count)
3031 {
3032 	int err;
3033 	int knob;
3034 
3035 	err = kstrtoint(buf, 10, &knob);
3036 	if (err)
3037 		return err;
3038 	/*
3039 	 * When a KSM page is created it is shared by 2 mappings. This
3040 	 * being a signed comparison, it implicitly verifies it's not
3041 	 * negative.
3042 	 */
3043 	if (knob < 2)
3044 		return -EINVAL;
3045 
3046 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3047 		return count;
3048 
3049 	mutex_lock(&ksm_thread_mutex);
3050 	wait_while_offlining();
3051 	if (ksm_max_page_sharing != knob) {
3052 		if (ksm_pages_shared || remove_all_stable_nodes())
3053 			err = -EBUSY;
3054 		else
3055 			ksm_max_page_sharing = knob;
3056 	}
3057 	mutex_unlock(&ksm_thread_mutex);
3058 
3059 	return err ? err : count;
3060 }
3061 KSM_ATTR(max_page_sharing);
3062 
3063 static ssize_t pages_shared_show(struct kobject *kobj,
3064 				 struct kobj_attribute *attr, char *buf)
3065 {
3066 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3067 }
3068 KSM_ATTR_RO(pages_shared);
3069 
3070 static ssize_t pages_sharing_show(struct kobject *kobj,
3071 				  struct kobj_attribute *attr, char *buf)
3072 {
3073 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3074 }
3075 KSM_ATTR_RO(pages_sharing);
3076 
3077 static ssize_t pages_unshared_show(struct kobject *kobj,
3078 				   struct kobj_attribute *attr, char *buf)
3079 {
3080 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3081 }
3082 KSM_ATTR_RO(pages_unshared);
3083 
3084 static ssize_t pages_volatile_show(struct kobject *kobj,
3085 				   struct kobj_attribute *attr, char *buf)
3086 {
3087 	long ksm_pages_volatile;
3088 
3089 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3090 				- ksm_pages_sharing - ksm_pages_unshared;
3091 	/*
3092 	 * It was not worth any locking to calculate that statistic,
3093 	 * but it might therefore sometimes be negative: conceal that.
3094 	 */
3095 	if (ksm_pages_volatile < 0)
3096 		ksm_pages_volatile = 0;
3097 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3098 }
3099 KSM_ATTR_RO(pages_volatile);
3100 
3101 static ssize_t stable_node_dups_show(struct kobject *kobj,
3102 				     struct kobj_attribute *attr, char *buf)
3103 {
3104 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3105 }
3106 KSM_ATTR_RO(stable_node_dups);
3107 
3108 static ssize_t stable_node_chains_show(struct kobject *kobj,
3109 				       struct kobj_attribute *attr, char *buf)
3110 {
3111 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3112 }
3113 KSM_ATTR_RO(stable_node_chains);
3114 
3115 static ssize_t
3116 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3117 					struct kobj_attribute *attr,
3118 					char *buf)
3119 {
3120 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3121 }
3122 
3123 static ssize_t
3124 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3125 					 struct kobj_attribute *attr,
3126 					 const char *buf, size_t count)
3127 {
3128 	unsigned int msecs;
3129 	int err;
3130 
3131 	err = kstrtouint(buf, 10, &msecs);
3132 	if (err)
3133 		return -EINVAL;
3134 
3135 	ksm_stable_node_chains_prune_millisecs = msecs;
3136 
3137 	return count;
3138 }
3139 KSM_ATTR(stable_node_chains_prune_millisecs);
3140 
3141 static ssize_t full_scans_show(struct kobject *kobj,
3142 			       struct kobj_attribute *attr, char *buf)
3143 {
3144 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3145 }
3146 KSM_ATTR_RO(full_scans);
3147 
3148 static struct attribute *ksm_attrs[] = {
3149 	&sleep_millisecs_attr.attr,
3150 	&pages_to_scan_attr.attr,
3151 	&run_attr.attr,
3152 	&pages_shared_attr.attr,
3153 	&pages_sharing_attr.attr,
3154 	&pages_unshared_attr.attr,
3155 	&pages_volatile_attr.attr,
3156 	&full_scans_attr.attr,
3157 #ifdef CONFIG_NUMA
3158 	&merge_across_nodes_attr.attr,
3159 #endif
3160 	&max_page_sharing_attr.attr,
3161 	&stable_node_chains_attr.attr,
3162 	&stable_node_dups_attr.attr,
3163 	&stable_node_chains_prune_millisecs_attr.attr,
3164 	&use_zero_pages_attr.attr,
3165 	NULL,
3166 };
3167 
3168 static const struct attribute_group ksm_attr_group = {
3169 	.attrs = ksm_attrs,
3170 	.name = "ksm",
3171 };
3172 #endif /* CONFIG_SYSFS */
3173 
3174 static int __init ksm_init(void)
3175 {
3176 	struct task_struct *ksm_thread;
3177 	int err;
3178 
3179 	/* The correct value depends on page size and endianness */
3180 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3181 	/* Default to false for backwards compatibility */
3182 	ksm_use_zero_pages = false;
3183 
3184 	err = ksm_slab_init();
3185 	if (err)
3186 		goto out;
3187 
3188 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3189 	if (IS_ERR(ksm_thread)) {
3190 		pr_err("ksm: creating kthread failed\n");
3191 		err = PTR_ERR(ksm_thread);
3192 		goto out_free;
3193 	}
3194 
3195 #ifdef CONFIG_SYSFS
3196 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3197 	if (err) {
3198 		pr_err("ksm: register sysfs failed\n");
3199 		kthread_stop(ksm_thread);
3200 		goto out_free;
3201 	}
3202 #else
3203 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3204 
3205 #endif /* CONFIG_SYSFS */
3206 
3207 #ifdef CONFIG_MEMORY_HOTREMOVE
3208 	/* There is no significance to this priority 100 */
3209 	hotplug_memory_notifier(ksm_memory_callback, 100);
3210 #endif
3211 	return 0;
3212 
3213 out_free:
3214 	ksm_slab_free();
3215 out:
3216 	return err;
3217 }
3218 subsys_initcall(ksm_init);
3219