xref: /openbmc/linux/mm/ksm.c (revision e5c86679)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)		(x)
48 #define DO_NUMA(x)	do { (x); } while (0)
49 #else
50 #define NUMA(x)		(0)
51 #define DO_NUMA(x)	do { } while (0)
52 #endif
53 
54 /*
55  * A few notes about the KSM scanning process,
56  * to make it easier to understand the data structures below:
57  *
58  * In order to reduce excessive scanning, KSM sorts the memory pages by their
59  * contents into a data structure that holds pointers to the pages' locations.
60  *
61  * Since the contents of the pages may change at any moment, KSM cannot just
62  * insert the pages into a normal sorted tree and expect it to find anything.
63  * Therefore KSM uses two data structures - the stable and the unstable tree.
64  *
65  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66  * by their contents.  Because each such page is write-protected, searching on
67  * this tree is fully assured to be working (except when pages are unmapped),
68  * and therefore this tree is called the stable tree.
69  *
70  * In addition to the stable tree, KSM uses a second data structure called the
71  * unstable tree: this tree holds pointers to pages which have been found to
72  * be "unchanged for a period of time".  The unstable tree sorts these pages
73  * by their contents, but since they are not write-protected, KSM cannot rely
74  * upon the unstable tree to work correctly - the unstable tree is liable to
75  * be corrupted as its contents are modified, and so it is called unstable.
76  *
77  * KSM solves this problem by several techniques:
78  *
79  * 1) The unstable tree is flushed every time KSM completes scanning all
80  *    memory areas, and then the tree is rebuilt again from the beginning.
81  * 2) KSM will only insert into the unstable tree, pages whose hash value
82  *    has not changed since the previous scan of all memory areas.
83  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84  *    colors of the nodes and not on their contents, assuring that even when
85  *    the tree gets "corrupted" it won't get out of balance, so scanning time
86  *    remains the same (also, searching and inserting nodes in an rbtree uses
87  *    the same algorithm, so we have no overhead when we flush and rebuild).
88  * 4) KSM never flushes the stable tree, which means that even if it were to
89  *    take 10 attempts to find a page in the unstable tree, once it is found,
90  *    it is secured in the stable tree.  (When we scan a new page, we first
91  *    compare it against the stable tree, and then against the unstable tree.)
92  *
93  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94  * stable trees and multiple unstable trees: one of each for each NUMA node.
95  */
96 
97 /**
98  * struct mm_slot - ksm information per mm that is being scanned
99  * @link: link to the mm_slots hash list
100  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102  * @mm: the mm that this information is valid for
103  */
104 struct mm_slot {
105 	struct hlist_node link;
106 	struct list_head mm_list;
107 	struct rmap_item *rmap_list;
108 	struct mm_struct *mm;
109 };
110 
111 /**
112  * struct ksm_scan - cursor for scanning
113  * @mm_slot: the current mm_slot we are scanning
114  * @address: the next address inside that to be scanned
115  * @rmap_list: link to the next rmap to be scanned in the rmap_list
116  * @seqnr: count of completed full scans (needed when removing unstable node)
117  *
118  * There is only the one ksm_scan instance of this cursor structure.
119  */
120 struct ksm_scan {
121 	struct mm_slot *mm_slot;
122 	unsigned long address;
123 	struct rmap_item **rmap_list;
124 	unsigned long seqnr;
125 };
126 
127 /**
128  * struct stable_node - node of the stable rbtree
129  * @node: rb node of this ksm page in the stable tree
130  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131  * @list: linked into migrate_nodes, pending placement in the proper node tree
132  * @hlist: hlist head of rmap_items using this ksm page
133  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
134  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
135  */
136 struct stable_node {
137 	union {
138 		struct rb_node node;	/* when node of stable tree */
139 		struct {		/* when listed for migration */
140 			struct list_head *head;
141 			struct list_head list;
142 		};
143 	};
144 	struct hlist_head hlist;
145 	unsigned long kpfn;
146 #ifdef CONFIG_NUMA
147 	int nid;
148 #endif
149 };
150 
151 /**
152  * struct rmap_item - reverse mapping item for virtual addresses
153  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
154  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
155  * @nid: NUMA node id of unstable tree in which linked (may not match page)
156  * @mm: the memory structure this rmap_item is pointing into
157  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
158  * @oldchecksum: previous checksum of the page at that virtual address
159  * @node: rb node of this rmap_item in the unstable tree
160  * @head: pointer to stable_node heading this list in the stable tree
161  * @hlist: link into hlist of rmap_items hanging off that stable_node
162  */
163 struct rmap_item {
164 	struct rmap_item *rmap_list;
165 	union {
166 		struct anon_vma *anon_vma;	/* when stable */
167 #ifdef CONFIG_NUMA
168 		int nid;		/* when node of unstable tree */
169 #endif
170 	};
171 	struct mm_struct *mm;
172 	unsigned long address;		/* + low bits used for flags below */
173 	unsigned int oldchecksum;	/* when unstable */
174 	union {
175 		struct rb_node node;	/* when node of unstable tree */
176 		struct {		/* when listed from stable tree */
177 			struct stable_node *head;
178 			struct hlist_node hlist;
179 		};
180 	};
181 };
182 
183 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
184 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
185 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
186 
187 /* The stable and unstable tree heads */
188 static struct rb_root one_stable_tree[1] = { RB_ROOT };
189 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
190 static struct rb_root *root_stable_tree = one_stable_tree;
191 static struct rb_root *root_unstable_tree = one_unstable_tree;
192 
193 /* Recently migrated nodes of stable tree, pending proper placement */
194 static LIST_HEAD(migrate_nodes);
195 
196 #define MM_SLOTS_HASH_BITS 10
197 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
198 
199 static struct mm_slot ksm_mm_head = {
200 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
201 };
202 static struct ksm_scan ksm_scan = {
203 	.mm_slot = &ksm_mm_head,
204 };
205 
206 static struct kmem_cache *rmap_item_cache;
207 static struct kmem_cache *stable_node_cache;
208 static struct kmem_cache *mm_slot_cache;
209 
210 /* The number of nodes in the stable tree */
211 static unsigned long ksm_pages_shared;
212 
213 /* The number of page slots additionally sharing those nodes */
214 static unsigned long ksm_pages_sharing;
215 
216 /* The number of nodes in the unstable tree */
217 static unsigned long ksm_pages_unshared;
218 
219 /* The number of rmap_items in use: to calculate pages_volatile */
220 static unsigned long ksm_rmap_items;
221 
222 /* Number of pages ksmd should scan in one batch */
223 static unsigned int ksm_thread_pages_to_scan = 100;
224 
225 /* Milliseconds ksmd should sleep between batches */
226 static unsigned int ksm_thread_sleep_millisecs = 20;
227 
228 /* Checksum of an empty (zeroed) page */
229 static unsigned int zero_checksum __read_mostly;
230 
231 /* Whether to merge empty (zeroed) pages with actual zero pages */
232 static bool ksm_use_zero_pages __read_mostly;
233 
234 #ifdef CONFIG_NUMA
235 /* Zeroed when merging across nodes is not allowed */
236 static unsigned int ksm_merge_across_nodes = 1;
237 static int ksm_nr_node_ids = 1;
238 #else
239 #define ksm_merge_across_nodes	1U
240 #define ksm_nr_node_ids		1
241 #endif
242 
243 #define KSM_RUN_STOP	0
244 #define KSM_RUN_MERGE	1
245 #define KSM_RUN_UNMERGE	2
246 #define KSM_RUN_OFFLINE	4
247 static unsigned long ksm_run = KSM_RUN_STOP;
248 static void wait_while_offlining(void);
249 
250 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
251 static DEFINE_MUTEX(ksm_thread_mutex);
252 static DEFINE_SPINLOCK(ksm_mmlist_lock);
253 
254 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
255 		sizeof(struct __struct), __alignof__(struct __struct),\
256 		(__flags), NULL)
257 
258 static int __init ksm_slab_init(void)
259 {
260 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
261 	if (!rmap_item_cache)
262 		goto out;
263 
264 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
265 	if (!stable_node_cache)
266 		goto out_free1;
267 
268 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
269 	if (!mm_slot_cache)
270 		goto out_free2;
271 
272 	return 0;
273 
274 out_free2:
275 	kmem_cache_destroy(stable_node_cache);
276 out_free1:
277 	kmem_cache_destroy(rmap_item_cache);
278 out:
279 	return -ENOMEM;
280 }
281 
282 static void __init ksm_slab_free(void)
283 {
284 	kmem_cache_destroy(mm_slot_cache);
285 	kmem_cache_destroy(stable_node_cache);
286 	kmem_cache_destroy(rmap_item_cache);
287 	mm_slot_cache = NULL;
288 }
289 
290 static inline struct rmap_item *alloc_rmap_item(void)
291 {
292 	struct rmap_item *rmap_item;
293 
294 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
295 						__GFP_NORETRY | __GFP_NOWARN);
296 	if (rmap_item)
297 		ksm_rmap_items++;
298 	return rmap_item;
299 }
300 
301 static inline void free_rmap_item(struct rmap_item *rmap_item)
302 {
303 	ksm_rmap_items--;
304 	rmap_item->mm = NULL;	/* debug safety */
305 	kmem_cache_free(rmap_item_cache, rmap_item);
306 }
307 
308 static inline struct stable_node *alloc_stable_node(void)
309 {
310 	/*
311 	 * The allocation can take too long with GFP_KERNEL when memory is under
312 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
313 	 * grants access to memory reserves, helping to avoid this problem.
314 	 */
315 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
316 }
317 
318 static inline void free_stable_node(struct stable_node *stable_node)
319 {
320 	kmem_cache_free(stable_node_cache, stable_node);
321 }
322 
323 static inline struct mm_slot *alloc_mm_slot(void)
324 {
325 	if (!mm_slot_cache)	/* initialization failed */
326 		return NULL;
327 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
328 }
329 
330 static inline void free_mm_slot(struct mm_slot *mm_slot)
331 {
332 	kmem_cache_free(mm_slot_cache, mm_slot);
333 }
334 
335 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
336 {
337 	struct mm_slot *slot;
338 
339 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
340 		if (slot->mm == mm)
341 			return slot;
342 
343 	return NULL;
344 }
345 
346 static void insert_to_mm_slots_hash(struct mm_struct *mm,
347 				    struct mm_slot *mm_slot)
348 {
349 	mm_slot->mm = mm;
350 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
351 }
352 
353 /*
354  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
355  * page tables after it has passed through ksm_exit() - which, if necessary,
356  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
357  * a special flag: they can just back out as soon as mm_users goes to zero.
358  * ksm_test_exit() is used throughout to make this test for exit: in some
359  * places for correctness, in some places just to avoid unnecessary work.
360  */
361 static inline bool ksm_test_exit(struct mm_struct *mm)
362 {
363 	return atomic_read(&mm->mm_users) == 0;
364 }
365 
366 /*
367  * We use break_ksm to break COW on a ksm page: it's a stripped down
368  *
369  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
370  *		put_page(page);
371  *
372  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
373  * in case the application has unmapped and remapped mm,addr meanwhile.
374  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
375  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
376  *
377  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
378  * of the process that owns 'vma'.  We also do not want to enforce
379  * protection keys here anyway.
380  */
381 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
382 {
383 	struct page *page;
384 	int ret = 0;
385 
386 	do {
387 		cond_resched();
388 		page = follow_page(vma, addr,
389 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
390 		if (IS_ERR_OR_NULL(page))
391 			break;
392 		if (PageKsm(page))
393 			ret = handle_mm_fault(vma, addr,
394 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
395 		else
396 			ret = VM_FAULT_WRITE;
397 		put_page(page);
398 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
399 	/*
400 	 * We must loop because handle_mm_fault() may back out if there's
401 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
402 	 *
403 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
404 	 * COW has been broken, even if the vma does not permit VM_WRITE;
405 	 * but note that a concurrent fault might break PageKsm for us.
406 	 *
407 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
408 	 * backing file, which also invalidates anonymous pages: that's
409 	 * okay, that truncation will have unmapped the PageKsm for us.
410 	 *
411 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
412 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
413 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
414 	 * to user; and ksmd, having no mm, would never be chosen for that.
415 	 *
416 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
417 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
418 	 * even ksmd can fail in this way - though it's usually breaking ksm
419 	 * just to undo a merge it made a moment before, so unlikely to oom.
420 	 *
421 	 * That's a pity: we might therefore have more kernel pages allocated
422 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
423 	 * will retry to break_cow on each pass, so should recover the page
424 	 * in due course.  The important thing is to not let VM_MERGEABLE
425 	 * be cleared while any such pages might remain in the area.
426 	 */
427 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
428 }
429 
430 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
431 		unsigned long addr)
432 {
433 	struct vm_area_struct *vma;
434 	if (ksm_test_exit(mm))
435 		return NULL;
436 	vma = find_vma(mm, addr);
437 	if (!vma || vma->vm_start > addr)
438 		return NULL;
439 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
440 		return NULL;
441 	return vma;
442 }
443 
444 static void break_cow(struct rmap_item *rmap_item)
445 {
446 	struct mm_struct *mm = rmap_item->mm;
447 	unsigned long addr = rmap_item->address;
448 	struct vm_area_struct *vma;
449 
450 	/*
451 	 * It is not an accident that whenever we want to break COW
452 	 * to undo, we also need to drop a reference to the anon_vma.
453 	 */
454 	put_anon_vma(rmap_item->anon_vma);
455 
456 	down_read(&mm->mmap_sem);
457 	vma = find_mergeable_vma(mm, addr);
458 	if (vma)
459 		break_ksm(vma, addr);
460 	up_read(&mm->mmap_sem);
461 }
462 
463 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
464 {
465 	struct mm_struct *mm = rmap_item->mm;
466 	unsigned long addr = rmap_item->address;
467 	struct vm_area_struct *vma;
468 	struct page *page;
469 
470 	down_read(&mm->mmap_sem);
471 	vma = find_mergeable_vma(mm, addr);
472 	if (!vma)
473 		goto out;
474 
475 	page = follow_page(vma, addr, FOLL_GET);
476 	if (IS_ERR_OR_NULL(page))
477 		goto out;
478 	if (PageAnon(page)) {
479 		flush_anon_page(vma, page, addr);
480 		flush_dcache_page(page);
481 	} else {
482 		put_page(page);
483 out:
484 		page = NULL;
485 	}
486 	up_read(&mm->mmap_sem);
487 	return page;
488 }
489 
490 /*
491  * This helper is used for getting right index into array of tree roots.
492  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
493  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
494  * every node has its own stable and unstable tree.
495  */
496 static inline int get_kpfn_nid(unsigned long kpfn)
497 {
498 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
499 }
500 
501 static void remove_node_from_stable_tree(struct stable_node *stable_node)
502 {
503 	struct rmap_item *rmap_item;
504 
505 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
506 		if (rmap_item->hlist.next)
507 			ksm_pages_sharing--;
508 		else
509 			ksm_pages_shared--;
510 		put_anon_vma(rmap_item->anon_vma);
511 		rmap_item->address &= PAGE_MASK;
512 		cond_resched();
513 	}
514 
515 	if (stable_node->head == &migrate_nodes)
516 		list_del(&stable_node->list);
517 	else
518 		rb_erase(&stable_node->node,
519 			 root_stable_tree + NUMA(stable_node->nid));
520 	free_stable_node(stable_node);
521 }
522 
523 /*
524  * get_ksm_page: checks if the page indicated by the stable node
525  * is still its ksm page, despite having held no reference to it.
526  * In which case we can trust the content of the page, and it
527  * returns the gotten page; but if the page has now been zapped,
528  * remove the stale node from the stable tree and return NULL.
529  * But beware, the stable node's page might be being migrated.
530  *
531  * You would expect the stable_node to hold a reference to the ksm page.
532  * But if it increments the page's count, swapping out has to wait for
533  * ksmd to come around again before it can free the page, which may take
534  * seconds or even minutes: much too unresponsive.  So instead we use a
535  * "keyhole reference": access to the ksm page from the stable node peeps
536  * out through its keyhole to see if that page still holds the right key,
537  * pointing back to this stable node.  This relies on freeing a PageAnon
538  * page to reset its page->mapping to NULL, and relies on no other use of
539  * a page to put something that might look like our key in page->mapping.
540  * is on its way to being freed; but it is an anomaly to bear in mind.
541  */
542 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
543 {
544 	struct page *page;
545 	void *expected_mapping;
546 	unsigned long kpfn;
547 
548 	expected_mapping = (void *)((unsigned long)stable_node |
549 					PAGE_MAPPING_KSM);
550 again:
551 	kpfn = READ_ONCE(stable_node->kpfn);
552 	page = pfn_to_page(kpfn);
553 
554 	/*
555 	 * page is computed from kpfn, so on most architectures reading
556 	 * page->mapping is naturally ordered after reading node->kpfn,
557 	 * but on Alpha we need to be more careful.
558 	 */
559 	smp_read_barrier_depends();
560 	if (READ_ONCE(page->mapping) != expected_mapping)
561 		goto stale;
562 
563 	/*
564 	 * We cannot do anything with the page while its refcount is 0.
565 	 * Usually 0 means free, or tail of a higher-order page: in which
566 	 * case this node is no longer referenced, and should be freed;
567 	 * however, it might mean that the page is under page_freeze_refs().
568 	 * The __remove_mapping() case is easy, again the node is now stale;
569 	 * but if page is swapcache in migrate_page_move_mapping(), it might
570 	 * still be our page, in which case it's essential to keep the node.
571 	 */
572 	while (!get_page_unless_zero(page)) {
573 		/*
574 		 * Another check for page->mapping != expected_mapping would
575 		 * work here too.  We have chosen the !PageSwapCache test to
576 		 * optimize the common case, when the page is or is about to
577 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
578 		 * in the freeze_refs section of __remove_mapping(); but Anon
579 		 * page->mapping reset to NULL later, in free_pages_prepare().
580 		 */
581 		if (!PageSwapCache(page))
582 			goto stale;
583 		cpu_relax();
584 	}
585 
586 	if (READ_ONCE(page->mapping) != expected_mapping) {
587 		put_page(page);
588 		goto stale;
589 	}
590 
591 	if (lock_it) {
592 		lock_page(page);
593 		if (READ_ONCE(page->mapping) != expected_mapping) {
594 			unlock_page(page);
595 			put_page(page);
596 			goto stale;
597 		}
598 	}
599 	return page;
600 
601 stale:
602 	/*
603 	 * We come here from above when page->mapping or !PageSwapCache
604 	 * suggests that the node is stale; but it might be under migration.
605 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
606 	 * before checking whether node->kpfn has been changed.
607 	 */
608 	smp_rmb();
609 	if (READ_ONCE(stable_node->kpfn) != kpfn)
610 		goto again;
611 	remove_node_from_stable_tree(stable_node);
612 	return NULL;
613 }
614 
615 /*
616  * Removing rmap_item from stable or unstable tree.
617  * This function will clean the information from the stable/unstable tree.
618  */
619 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
620 {
621 	if (rmap_item->address & STABLE_FLAG) {
622 		struct stable_node *stable_node;
623 		struct page *page;
624 
625 		stable_node = rmap_item->head;
626 		page = get_ksm_page(stable_node, true);
627 		if (!page)
628 			goto out;
629 
630 		hlist_del(&rmap_item->hlist);
631 		unlock_page(page);
632 		put_page(page);
633 
634 		if (!hlist_empty(&stable_node->hlist))
635 			ksm_pages_sharing--;
636 		else
637 			ksm_pages_shared--;
638 
639 		put_anon_vma(rmap_item->anon_vma);
640 		rmap_item->address &= PAGE_MASK;
641 
642 	} else if (rmap_item->address & UNSTABLE_FLAG) {
643 		unsigned char age;
644 		/*
645 		 * Usually ksmd can and must skip the rb_erase, because
646 		 * root_unstable_tree was already reset to RB_ROOT.
647 		 * But be careful when an mm is exiting: do the rb_erase
648 		 * if this rmap_item was inserted by this scan, rather
649 		 * than left over from before.
650 		 */
651 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
652 		BUG_ON(age > 1);
653 		if (!age)
654 			rb_erase(&rmap_item->node,
655 				 root_unstable_tree + NUMA(rmap_item->nid));
656 		ksm_pages_unshared--;
657 		rmap_item->address &= PAGE_MASK;
658 	}
659 out:
660 	cond_resched();		/* we're called from many long loops */
661 }
662 
663 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
664 				       struct rmap_item **rmap_list)
665 {
666 	while (*rmap_list) {
667 		struct rmap_item *rmap_item = *rmap_list;
668 		*rmap_list = rmap_item->rmap_list;
669 		remove_rmap_item_from_tree(rmap_item);
670 		free_rmap_item(rmap_item);
671 	}
672 }
673 
674 /*
675  * Though it's very tempting to unmerge rmap_items from stable tree rather
676  * than check every pte of a given vma, the locking doesn't quite work for
677  * that - an rmap_item is assigned to the stable tree after inserting ksm
678  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
679  * rmap_items from parent to child at fork time (so as not to waste time
680  * if exit comes before the next scan reaches it).
681  *
682  * Similarly, although we'd like to remove rmap_items (so updating counts
683  * and freeing memory) when unmerging an area, it's easier to leave that
684  * to the next pass of ksmd - consider, for example, how ksmd might be
685  * in cmp_and_merge_page on one of the rmap_items we would be removing.
686  */
687 static int unmerge_ksm_pages(struct vm_area_struct *vma,
688 			     unsigned long start, unsigned long end)
689 {
690 	unsigned long addr;
691 	int err = 0;
692 
693 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
694 		if (ksm_test_exit(vma->vm_mm))
695 			break;
696 		if (signal_pending(current))
697 			err = -ERESTARTSYS;
698 		else
699 			err = break_ksm(vma, addr);
700 	}
701 	return err;
702 }
703 
704 #ifdef CONFIG_SYSFS
705 /*
706  * Only called through the sysfs control interface:
707  */
708 static int remove_stable_node(struct stable_node *stable_node)
709 {
710 	struct page *page;
711 	int err;
712 
713 	page = get_ksm_page(stable_node, true);
714 	if (!page) {
715 		/*
716 		 * get_ksm_page did remove_node_from_stable_tree itself.
717 		 */
718 		return 0;
719 	}
720 
721 	if (WARN_ON_ONCE(page_mapped(page))) {
722 		/*
723 		 * This should not happen: but if it does, just refuse to let
724 		 * merge_across_nodes be switched - there is no need to panic.
725 		 */
726 		err = -EBUSY;
727 	} else {
728 		/*
729 		 * The stable node did not yet appear stale to get_ksm_page(),
730 		 * since that allows for an unmapped ksm page to be recognized
731 		 * right up until it is freed; but the node is safe to remove.
732 		 * This page might be in a pagevec waiting to be freed,
733 		 * or it might be PageSwapCache (perhaps under writeback),
734 		 * or it might have been removed from swapcache a moment ago.
735 		 */
736 		set_page_stable_node(page, NULL);
737 		remove_node_from_stable_tree(stable_node);
738 		err = 0;
739 	}
740 
741 	unlock_page(page);
742 	put_page(page);
743 	return err;
744 }
745 
746 static int remove_all_stable_nodes(void)
747 {
748 	struct stable_node *stable_node, *next;
749 	int nid;
750 	int err = 0;
751 
752 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
753 		while (root_stable_tree[nid].rb_node) {
754 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
755 						struct stable_node, node);
756 			if (remove_stable_node(stable_node)) {
757 				err = -EBUSY;
758 				break;	/* proceed to next nid */
759 			}
760 			cond_resched();
761 		}
762 	}
763 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
764 		if (remove_stable_node(stable_node))
765 			err = -EBUSY;
766 		cond_resched();
767 	}
768 	return err;
769 }
770 
771 static int unmerge_and_remove_all_rmap_items(void)
772 {
773 	struct mm_slot *mm_slot;
774 	struct mm_struct *mm;
775 	struct vm_area_struct *vma;
776 	int err = 0;
777 
778 	spin_lock(&ksm_mmlist_lock);
779 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
780 						struct mm_slot, mm_list);
781 	spin_unlock(&ksm_mmlist_lock);
782 
783 	for (mm_slot = ksm_scan.mm_slot;
784 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
785 		mm = mm_slot->mm;
786 		down_read(&mm->mmap_sem);
787 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
788 			if (ksm_test_exit(mm))
789 				break;
790 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
791 				continue;
792 			err = unmerge_ksm_pages(vma,
793 						vma->vm_start, vma->vm_end);
794 			if (err)
795 				goto error;
796 		}
797 
798 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
799 		up_read(&mm->mmap_sem);
800 
801 		spin_lock(&ksm_mmlist_lock);
802 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
803 						struct mm_slot, mm_list);
804 		if (ksm_test_exit(mm)) {
805 			hash_del(&mm_slot->link);
806 			list_del(&mm_slot->mm_list);
807 			spin_unlock(&ksm_mmlist_lock);
808 
809 			free_mm_slot(mm_slot);
810 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
811 			mmdrop(mm);
812 		} else
813 			spin_unlock(&ksm_mmlist_lock);
814 	}
815 
816 	/* Clean up stable nodes, but don't worry if some are still busy */
817 	remove_all_stable_nodes();
818 	ksm_scan.seqnr = 0;
819 	return 0;
820 
821 error:
822 	up_read(&mm->mmap_sem);
823 	spin_lock(&ksm_mmlist_lock);
824 	ksm_scan.mm_slot = &ksm_mm_head;
825 	spin_unlock(&ksm_mmlist_lock);
826 	return err;
827 }
828 #endif /* CONFIG_SYSFS */
829 
830 static u32 calc_checksum(struct page *page)
831 {
832 	u32 checksum;
833 	void *addr = kmap_atomic(page);
834 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
835 	kunmap_atomic(addr);
836 	return checksum;
837 }
838 
839 static int memcmp_pages(struct page *page1, struct page *page2)
840 {
841 	char *addr1, *addr2;
842 	int ret;
843 
844 	addr1 = kmap_atomic(page1);
845 	addr2 = kmap_atomic(page2);
846 	ret = memcmp(addr1, addr2, PAGE_SIZE);
847 	kunmap_atomic(addr2);
848 	kunmap_atomic(addr1);
849 	return ret;
850 }
851 
852 static inline int pages_identical(struct page *page1, struct page *page2)
853 {
854 	return !memcmp_pages(page1, page2);
855 }
856 
857 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
858 			      pte_t *orig_pte)
859 {
860 	struct mm_struct *mm = vma->vm_mm;
861 	struct page_vma_mapped_walk pvmw = {
862 		.page = page,
863 		.vma = vma,
864 	};
865 	int swapped;
866 	int err = -EFAULT;
867 	unsigned long mmun_start;	/* For mmu_notifiers */
868 	unsigned long mmun_end;		/* For mmu_notifiers */
869 
870 	pvmw.address = page_address_in_vma(page, vma);
871 	if (pvmw.address == -EFAULT)
872 		goto out;
873 
874 	BUG_ON(PageTransCompound(page));
875 
876 	mmun_start = pvmw.address;
877 	mmun_end   = pvmw.address + PAGE_SIZE;
878 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
879 
880 	if (!page_vma_mapped_walk(&pvmw))
881 		goto out_mn;
882 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
883 		goto out_unlock;
884 
885 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
886 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
887 		pte_t entry;
888 
889 		swapped = PageSwapCache(page);
890 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
891 		/*
892 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
893 		 * take any lock, therefore the check that we are going to make
894 		 * with the pagecount against the mapcount is racey and
895 		 * O_DIRECT can happen right after the check.
896 		 * So we clear the pte and flush the tlb before the check
897 		 * this assure us that no O_DIRECT can happen after the check
898 		 * or in the middle of the check.
899 		 */
900 		entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
901 		/*
902 		 * Check that no O_DIRECT or similar I/O is in progress on the
903 		 * page
904 		 */
905 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
906 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
907 			goto out_unlock;
908 		}
909 		if (pte_dirty(entry))
910 			set_page_dirty(page);
911 
912 		if (pte_protnone(entry))
913 			entry = pte_mkclean(pte_clear_savedwrite(entry));
914 		else
915 			entry = pte_mkclean(pte_wrprotect(entry));
916 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
917 	}
918 	*orig_pte = *pvmw.pte;
919 	err = 0;
920 
921 out_unlock:
922 	page_vma_mapped_walk_done(&pvmw);
923 out_mn:
924 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
925 out:
926 	return err;
927 }
928 
929 /**
930  * replace_page - replace page in vma by new ksm page
931  * @vma:      vma that holds the pte pointing to page
932  * @page:     the page we are replacing by kpage
933  * @kpage:    the ksm page we replace page by
934  * @orig_pte: the original value of the pte
935  *
936  * Returns 0 on success, -EFAULT on failure.
937  */
938 static int replace_page(struct vm_area_struct *vma, struct page *page,
939 			struct page *kpage, pte_t orig_pte)
940 {
941 	struct mm_struct *mm = vma->vm_mm;
942 	pmd_t *pmd;
943 	pte_t *ptep;
944 	pte_t newpte;
945 	spinlock_t *ptl;
946 	unsigned long addr;
947 	int err = -EFAULT;
948 	unsigned long mmun_start;	/* For mmu_notifiers */
949 	unsigned long mmun_end;		/* For mmu_notifiers */
950 
951 	addr = page_address_in_vma(page, vma);
952 	if (addr == -EFAULT)
953 		goto out;
954 
955 	pmd = mm_find_pmd(mm, addr);
956 	if (!pmd)
957 		goto out;
958 
959 	mmun_start = addr;
960 	mmun_end   = addr + PAGE_SIZE;
961 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
962 
963 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
964 	if (!pte_same(*ptep, orig_pte)) {
965 		pte_unmap_unlock(ptep, ptl);
966 		goto out_mn;
967 	}
968 
969 	/*
970 	 * No need to check ksm_use_zero_pages here: we can only have a
971 	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
972 	 */
973 	if (!is_zero_pfn(page_to_pfn(kpage))) {
974 		get_page(kpage);
975 		page_add_anon_rmap(kpage, vma, addr, false);
976 		newpte = mk_pte(kpage, vma->vm_page_prot);
977 	} else {
978 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
979 					       vma->vm_page_prot));
980 	}
981 
982 	flush_cache_page(vma, addr, pte_pfn(*ptep));
983 	ptep_clear_flush_notify(vma, addr, ptep);
984 	set_pte_at_notify(mm, addr, ptep, newpte);
985 
986 	page_remove_rmap(page, false);
987 	if (!page_mapped(page))
988 		try_to_free_swap(page);
989 	put_page(page);
990 
991 	pte_unmap_unlock(ptep, ptl);
992 	err = 0;
993 out_mn:
994 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
995 out:
996 	return err;
997 }
998 
999 /*
1000  * try_to_merge_one_page - take two pages and merge them into one
1001  * @vma: the vma that holds the pte pointing to page
1002  * @page: the PageAnon page that we want to replace with kpage
1003  * @kpage: the PageKsm page that we want to map instead of page,
1004  *         or NULL the first time when we want to use page as kpage.
1005  *
1006  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1007  */
1008 static int try_to_merge_one_page(struct vm_area_struct *vma,
1009 				 struct page *page, struct page *kpage)
1010 {
1011 	pte_t orig_pte = __pte(0);
1012 	int err = -EFAULT;
1013 
1014 	if (page == kpage)			/* ksm page forked */
1015 		return 0;
1016 
1017 	if (!PageAnon(page))
1018 		goto out;
1019 
1020 	/*
1021 	 * We need the page lock to read a stable PageSwapCache in
1022 	 * write_protect_page().  We use trylock_page() instead of
1023 	 * lock_page() because we don't want to wait here - we
1024 	 * prefer to continue scanning and merging different pages,
1025 	 * then come back to this page when it is unlocked.
1026 	 */
1027 	if (!trylock_page(page))
1028 		goto out;
1029 
1030 	if (PageTransCompound(page)) {
1031 		err = split_huge_page(page);
1032 		if (err)
1033 			goto out_unlock;
1034 	}
1035 
1036 	/*
1037 	 * If this anonymous page is mapped only here, its pte may need
1038 	 * to be write-protected.  If it's mapped elsewhere, all of its
1039 	 * ptes are necessarily already write-protected.  But in either
1040 	 * case, we need to lock and check page_count is not raised.
1041 	 */
1042 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1043 		if (!kpage) {
1044 			/*
1045 			 * While we hold page lock, upgrade page from
1046 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1047 			 * stable_tree_insert() will update stable_node.
1048 			 */
1049 			set_page_stable_node(page, NULL);
1050 			mark_page_accessed(page);
1051 			/*
1052 			 * Page reclaim just frees a clean page with no dirty
1053 			 * ptes: make sure that the ksm page would be swapped.
1054 			 */
1055 			if (!PageDirty(page))
1056 				SetPageDirty(page);
1057 			err = 0;
1058 		} else if (pages_identical(page, kpage))
1059 			err = replace_page(vma, page, kpage, orig_pte);
1060 	}
1061 
1062 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1063 		munlock_vma_page(page);
1064 		if (!PageMlocked(kpage)) {
1065 			unlock_page(page);
1066 			lock_page(kpage);
1067 			mlock_vma_page(kpage);
1068 			page = kpage;		/* for final unlock */
1069 		}
1070 	}
1071 
1072 out_unlock:
1073 	unlock_page(page);
1074 out:
1075 	return err;
1076 }
1077 
1078 /*
1079  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1080  * but no new kernel page is allocated: kpage must already be a ksm page.
1081  *
1082  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1083  */
1084 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1085 				      struct page *page, struct page *kpage)
1086 {
1087 	struct mm_struct *mm = rmap_item->mm;
1088 	struct vm_area_struct *vma;
1089 	int err = -EFAULT;
1090 
1091 	down_read(&mm->mmap_sem);
1092 	vma = find_mergeable_vma(mm, rmap_item->address);
1093 	if (!vma)
1094 		goto out;
1095 
1096 	err = try_to_merge_one_page(vma, page, kpage);
1097 	if (err)
1098 		goto out;
1099 
1100 	/* Unstable nid is in union with stable anon_vma: remove first */
1101 	remove_rmap_item_from_tree(rmap_item);
1102 
1103 	/* Must get reference to anon_vma while still holding mmap_sem */
1104 	rmap_item->anon_vma = vma->anon_vma;
1105 	get_anon_vma(vma->anon_vma);
1106 out:
1107 	up_read(&mm->mmap_sem);
1108 	return err;
1109 }
1110 
1111 /*
1112  * try_to_merge_two_pages - take two identical pages and prepare them
1113  * to be merged into one page.
1114  *
1115  * This function returns the kpage if we successfully merged two identical
1116  * pages into one ksm page, NULL otherwise.
1117  *
1118  * Note that this function upgrades page to ksm page: if one of the pages
1119  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1120  */
1121 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1122 					   struct page *page,
1123 					   struct rmap_item *tree_rmap_item,
1124 					   struct page *tree_page)
1125 {
1126 	int err;
1127 
1128 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1129 	if (!err) {
1130 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1131 							tree_page, page);
1132 		/*
1133 		 * If that fails, we have a ksm page with only one pte
1134 		 * pointing to it: so break it.
1135 		 */
1136 		if (err)
1137 			break_cow(rmap_item);
1138 	}
1139 	return err ? NULL : page;
1140 }
1141 
1142 /*
1143  * stable_tree_search - search for page inside the stable tree
1144  *
1145  * This function checks if there is a page inside the stable tree
1146  * with identical content to the page that we are scanning right now.
1147  *
1148  * This function returns the stable tree node of identical content if found,
1149  * NULL otherwise.
1150  */
1151 static struct page *stable_tree_search(struct page *page)
1152 {
1153 	int nid;
1154 	struct rb_root *root;
1155 	struct rb_node **new;
1156 	struct rb_node *parent;
1157 	struct stable_node *stable_node;
1158 	struct stable_node *page_node;
1159 
1160 	page_node = page_stable_node(page);
1161 	if (page_node && page_node->head != &migrate_nodes) {
1162 		/* ksm page forked */
1163 		get_page(page);
1164 		return page;
1165 	}
1166 
1167 	nid = get_kpfn_nid(page_to_pfn(page));
1168 	root = root_stable_tree + nid;
1169 again:
1170 	new = &root->rb_node;
1171 	parent = NULL;
1172 
1173 	while (*new) {
1174 		struct page *tree_page;
1175 		int ret;
1176 
1177 		cond_resched();
1178 		stable_node = rb_entry(*new, struct stable_node, node);
1179 		tree_page = get_ksm_page(stable_node, false);
1180 		if (!tree_page) {
1181 			/*
1182 			 * If we walked over a stale stable_node,
1183 			 * get_ksm_page() will call rb_erase() and it
1184 			 * may rebalance the tree from under us. So
1185 			 * restart the search from scratch. Returning
1186 			 * NULL would be safe too, but we'd generate
1187 			 * false negative insertions just because some
1188 			 * stable_node was stale.
1189 			 */
1190 			goto again;
1191 		}
1192 
1193 		ret = memcmp_pages(page, tree_page);
1194 		put_page(tree_page);
1195 
1196 		parent = *new;
1197 		if (ret < 0)
1198 			new = &parent->rb_left;
1199 		else if (ret > 0)
1200 			new = &parent->rb_right;
1201 		else {
1202 			/*
1203 			 * Lock and unlock the stable_node's page (which
1204 			 * might already have been migrated) so that page
1205 			 * migration is sure to notice its raised count.
1206 			 * It would be more elegant to return stable_node
1207 			 * than kpage, but that involves more changes.
1208 			 */
1209 			tree_page = get_ksm_page(stable_node, true);
1210 			if (tree_page) {
1211 				unlock_page(tree_page);
1212 				if (get_kpfn_nid(stable_node->kpfn) !=
1213 						NUMA(stable_node->nid)) {
1214 					put_page(tree_page);
1215 					goto replace;
1216 				}
1217 				return tree_page;
1218 			}
1219 			/*
1220 			 * There is now a place for page_node, but the tree may
1221 			 * have been rebalanced, so re-evaluate parent and new.
1222 			 */
1223 			if (page_node)
1224 				goto again;
1225 			return NULL;
1226 		}
1227 	}
1228 
1229 	if (!page_node)
1230 		return NULL;
1231 
1232 	list_del(&page_node->list);
1233 	DO_NUMA(page_node->nid = nid);
1234 	rb_link_node(&page_node->node, parent, new);
1235 	rb_insert_color(&page_node->node, root);
1236 	get_page(page);
1237 	return page;
1238 
1239 replace:
1240 	if (page_node) {
1241 		list_del(&page_node->list);
1242 		DO_NUMA(page_node->nid = nid);
1243 		rb_replace_node(&stable_node->node, &page_node->node, root);
1244 		get_page(page);
1245 	} else {
1246 		rb_erase(&stable_node->node, root);
1247 		page = NULL;
1248 	}
1249 	stable_node->head = &migrate_nodes;
1250 	list_add(&stable_node->list, stable_node->head);
1251 	return page;
1252 }
1253 
1254 /*
1255  * stable_tree_insert - insert stable tree node pointing to new ksm page
1256  * into the stable tree.
1257  *
1258  * This function returns the stable tree node just allocated on success,
1259  * NULL otherwise.
1260  */
1261 static struct stable_node *stable_tree_insert(struct page *kpage)
1262 {
1263 	int nid;
1264 	unsigned long kpfn;
1265 	struct rb_root *root;
1266 	struct rb_node **new;
1267 	struct rb_node *parent;
1268 	struct stable_node *stable_node;
1269 
1270 	kpfn = page_to_pfn(kpage);
1271 	nid = get_kpfn_nid(kpfn);
1272 	root = root_stable_tree + nid;
1273 again:
1274 	parent = NULL;
1275 	new = &root->rb_node;
1276 
1277 	while (*new) {
1278 		struct page *tree_page;
1279 		int ret;
1280 
1281 		cond_resched();
1282 		stable_node = rb_entry(*new, struct stable_node, node);
1283 		tree_page = get_ksm_page(stable_node, false);
1284 		if (!tree_page) {
1285 			/*
1286 			 * If we walked over a stale stable_node,
1287 			 * get_ksm_page() will call rb_erase() and it
1288 			 * may rebalance the tree from under us. So
1289 			 * restart the search from scratch. Returning
1290 			 * NULL would be safe too, but we'd generate
1291 			 * false negative insertions just because some
1292 			 * stable_node was stale.
1293 			 */
1294 			goto again;
1295 		}
1296 
1297 		ret = memcmp_pages(kpage, tree_page);
1298 		put_page(tree_page);
1299 
1300 		parent = *new;
1301 		if (ret < 0)
1302 			new = &parent->rb_left;
1303 		else if (ret > 0)
1304 			new = &parent->rb_right;
1305 		else {
1306 			/*
1307 			 * It is not a bug that stable_tree_search() didn't
1308 			 * find this node: because at that time our page was
1309 			 * not yet write-protected, so may have changed since.
1310 			 */
1311 			return NULL;
1312 		}
1313 	}
1314 
1315 	stable_node = alloc_stable_node();
1316 	if (!stable_node)
1317 		return NULL;
1318 
1319 	INIT_HLIST_HEAD(&stable_node->hlist);
1320 	stable_node->kpfn = kpfn;
1321 	set_page_stable_node(kpage, stable_node);
1322 	DO_NUMA(stable_node->nid = nid);
1323 	rb_link_node(&stable_node->node, parent, new);
1324 	rb_insert_color(&stable_node->node, root);
1325 
1326 	return stable_node;
1327 }
1328 
1329 /*
1330  * unstable_tree_search_insert - search for identical page,
1331  * else insert rmap_item into the unstable tree.
1332  *
1333  * This function searches for a page in the unstable tree identical to the
1334  * page currently being scanned; and if no identical page is found in the
1335  * tree, we insert rmap_item as a new object into the unstable tree.
1336  *
1337  * This function returns pointer to rmap_item found to be identical
1338  * to the currently scanned page, NULL otherwise.
1339  *
1340  * This function does both searching and inserting, because they share
1341  * the same walking algorithm in an rbtree.
1342  */
1343 static
1344 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1345 					      struct page *page,
1346 					      struct page **tree_pagep)
1347 {
1348 	struct rb_node **new;
1349 	struct rb_root *root;
1350 	struct rb_node *parent = NULL;
1351 	int nid;
1352 
1353 	nid = get_kpfn_nid(page_to_pfn(page));
1354 	root = root_unstable_tree + nid;
1355 	new = &root->rb_node;
1356 
1357 	while (*new) {
1358 		struct rmap_item *tree_rmap_item;
1359 		struct page *tree_page;
1360 		int ret;
1361 
1362 		cond_resched();
1363 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1364 		tree_page = get_mergeable_page(tree_rmap_item);
1365 		if (!tree_page)
1366 			return NULL;
1367 
1368 		/*
1369 		 * Don't substitute a ksm page for a forked page.
1370 		 */
1371 		if (page == tree_page) {
1372 			put_page(tree_page);
1373 			return NULL;
1374 		}
1375 
1376 		ret = memcmp_pages(page, tree_page);
1377 
1378 		parent = *new;
1379 		if (ret < 0) {
1380 			put_page(tree_page);
1381 			new = &parent->rb_left;
1382 		} else if (ret > 0) {
1383 			put_page(tree_page);
1384 			new = &parent->rb_right;
1385 		} else if (!ksm_merge_across_nodes &&
1386 			   page_to_nid(tree_page) != nid) {
1387 			/*
1388 			 * If tree_page has been migrated to another NUMA node,
1389 			 * it will be flushed out and put in the right unstable
1390 			 * tree next time: only merge with it when across_nodes.
1391 			 */
1392 			put_page(tree_page);
1393 			return NULL;
1394 		} else {
1395 			*tree_pagep = tree_page;
1396 			return tree_rmap_item;
1397 		}
1398 	}
1399 
1400 	rmap_item->address |= UNSTABLE_FLAG;
1401 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1402 	DO_NUMA(rmap_item->nid = nid);
1403 	rb_link_node(&rmap_item->node, parent, new);
1404 	rb_insert_color(&rmap_item->node, root);
1405 
1406 	ksm_pages_unshared++;
1407 	return NULL;
1408 }
1409 
1410 /*
1411  * stable_tree_append - add another rmap_item to the linked list of
1412  * rmap_items hanging off a given node of the stable tree, all sharing
1413  * the same ksm page.
1414  */
1415 static void stable_tree_append(struct rmap_item *rmap_item,
1416 			       struct stable_node *stable_node)
1417 {
1418 	rmap_item->head = stable_node;
1419 	rmap_item->address |= STABLE_FLAG;
1420 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1421 
1422 	if (rmap_item->hlist.next)
1423 		ksm_pages_sharing++;
1424 	else
1425 		ksm_pages_shared++;
1426 }
1427 
1428 /*
1429  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1430  * if not, compare checksum to previous and if it's the same, see if page can
1431  * be inserted into the unstable tree, or merged with a page already there and
1432  * both transferred to the stable tree.
1433  *
1434  * @page: the page that we are searching identical page to.
1435  * @rmap_item: the reverse mapping into the virtual address of this page
1436  */
1437 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1438 {
1439 	struct rmap_item *tree_rmap_item;
1440 	struct page *tree_page = NULL;
1441 	struct stable_node *stable_node;
1442 	struct page *kpage;
1443 	unsigned int checksum;
1444 	int err;
1445 
1446 	stable_node = page_stable_node(page);
1447 	if (stable_node) {
1448 		if (stable_node->head != &migrate_nodes &&
1449 		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1450 			rb_erase(&stable_node->node,
1451 				 root_stable_tree + NUMA(stable_node->nid));
1452 			stable_node->head = &migrate_nodes;
1453 			list_add(&stable_node->list, stable_node->head);
1454 		}
1455 		if (stable_node->head != &migrate_nodes &&
1456 		    rmap_item->head == stable_node)
1457 			return;
1458 	}
1459 
1460 	/* We first start with searching the page inside the stable tree */
1461 	kpage = stable_tree_search(page);
1462 	if (kpage == page && rmap_item->head == stable_node) {
1463 		put_page(kpage);
1464 		return;
1465 	}
1466 
1467 	remove_rmap_item_from_tree(rmap_item);
1468 
1469 	if (kpage) {
1470 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1471 		if (!err) {
1472 			/*
1473 			 * The page was successfully merged:
1474 			 * add its rmap_item to the stable tree.
1475 			 */
1476 			lock_page(kpage);
1477 			stable_tree_append(rmap_item, page_stable_node(kpage));
1478 			unlock_page(kpage);
1479 		}
1480 		put_page(kpage);
1481 		return;
1482 	}
1483 
1484 	/*
1485 	 * If the hash value of the page has changed from the last time
1486 	 * we calculated it, this page is changing frequently: therefore we
1487 	 * don't want to insert it in the unstable tree, and we don't want
1488 	 * to waste our time searching for something identical to it there.
1489 	 */
1490 	checksum = calc_checksum(page);
1491 	if (rmap_item->oldchecksum != checksum) {
1492 		rmap_item->oldchecksum = checksum;
1493 		return;
1494 	}
1495 
1496 	/*
1497 	 * Same checksum as an empty page. We attempt to merge it with the
1498 	 * appropriate zero page if the user enabled this via sysfs.
1499 	 */
1500 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1501 		struct vm_area_struct *vma;
1502 
1503 		vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1504 		err = try_to_merge_one_page(vma, page,
1505 					    ZERO_PAGE(rmap_item->address));
1506 		/*
1507 		 * In case of failure, the page was not really empty, so we
1508 		 * need to continue. Otherwise we're done.
1509 		 */
1510 		if (!err)
1511 			return;
1512 	}
1513 	tree_rmap_item =
1514 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1515 	if (tree_rmap_item) {
1516 		kpage = try_to_merge_two_pages(rmap_item, page,
1517 						tree_rmap_item, tree_page);
1518 		put_page(tree_page);
1519 		if (kpage) {
1520 			/*
1521 			 * The pages were successfully merged: insert new
1522 			 * node in the stable tree and add both rmap_items.
1523 			 */
1524 			lock_page(kpage);
1525 			stable_node = stable_tree_insert(kpage);
1526 			if (stable_node) {
1527 				stable_tree_append(tree_rmap_item, stable_node);
1528 				stable_tree_append(rmap_item, stable_node);
1529 			}
1530 			unlock_page(kpage);
1531 
1532 			/*
1533 			 * If we fail to insert the page into the stable tree,
1534 			 * we will have 2 virtual addresses that are pointing
1535 			 * to a ksm page left outside the stable tree,
1536 			 * in which case we need to break_cow on both.
1537 			 */
1538 			if (!stable_node) {
1539 				break_cow(tree_rmap_item);
1540 				break_cow(rmap_item);
1541 			}
1542 		}
1543 	}
1544 }
1545 
1546 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1547 					    struct rmap_item **rmap_list,
1548 					    unsigned long addr)
1549 {
1550 	struct rmap_item *rmap_item;
1551 
1552 	while (*rmap_list) {
1553 		rmap_item = *rmap_list;
1554 		if ((rmap_item->address & PAGE_MASK) == addr)
1555 			return rmap_item;
1556 		if (rmap_item->address > addr)
1557 			break;
1558 		*rmap_list = rmap_item->rmap_list;
1559 		remove_rmap_item_from_tree(rmap_item);
1560 		free_rmap_item(rmap_item);
1561 	}
1562 
1563 	rmap_item = alloc_rmap_item();
1564 	if (rmap_item) {
1565 		/* It has already been zeroed */
1566 		rmap_item->mm = mm_slot->mm;
1567 		rmap_item->address = addr;
1568 		rmap_item->rmap_list = *rmap_list;
1569 		*rmap_list = rmap_item;
1570 	}
1571 	return rmap_item;
1572 }
1573 
1574 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1575 {
1576 	struct mm_struct *mm;
1577 	struct mm_slot *slot;
1578 	struct vm_area_struct *vma;
1579 	struct rmap_item *rmap_item;
1580 	int nid;
1581 
1582 	if (list_empty(&ksm_mm_head.mm_list))
1583 		return NULL;
1584 
1585 	slot = ksm_scan.mm_slot;
1586 	if (slot == &ksm_mm_head) {
1587 		/*
1588 		 * A number of pages can hang around indefinitely on per-cpu
1589 		 * pagevecs, raised page count preventing write_protect_page
1590 		 * from merging them.  Though it doesn't really matter much,
1591 		 * it is puzzling to see some stuck in pages_volatile until
1592 		 * other activity jostles them out, and they also prevented
1593 		 * LTP's KSM test from succeeding deterministically; so drain
1594 		 * them here (here rather than on entry to ksm_do_scan(),
1595 		 * so we don't IPI too often when pages_to_scan is set low).
1596 		 */
1597 		lru_add_drain_all();
1598 
1599 		/*
1600 		 * Whereas stale stable_nodes on the stable_tree itself
1601 		 * get pruned in the regular course of stable_tree_search(),
1602 		 * those moved out to the migrate_nodes list can accumulate:
1603 		 * so prune them once before each full scan.
1604 		 */
1605 		if (!ksm_merge_across_nodes) {
1606 			struct stable_node *stable_node, *next;
1607 			struct page *page;
1608 
1609 			list_for_each_entry_safe(stable_node, next,
1610 						 &migrate_nodes, list) {
1611 				page = get_ksm_page(stable_node, false);
1612 				if (page)
1613 					put_page(page);
1614 				cond_resched();
1615 			}
1616 		}
1617 
1618 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1619 			root_unstable_tree[nid] = RB_ROOT;
1620 
1621 		spin_lock(&ksm_mmlist_lock);
1622 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1623 		ksm_scan.mm_slot = slot;
1624 		spin_unlock(&ksm_mmlist_lock);
1625 		/*
1626 		 * Although we tested list_empty() above, a racing __ksm_exit
1627 		 * of the last mm on the list may have removed it since then.
1628 		 */
1629 		if (slot == &ksm_mm_head)
1630 			return NULL;
1631 next_mm:
1632 		ksm_scan.address = 0;
1633 		ksm_scan.rmap_list = &slot->rmap_list;
1634 	}
1635 
1636 	mm = slot->mm;
1637 	down_read(&mm->mmap_sem);
1638 	if (ksm_test_exit(mm))
1639 		vma = NULL;
1640 	else
1641 		vma = find_vma(mm, ksm_scan.address);
1642 
1643 	for (; vma; vma = vma->vm_next) {
1644 		if (!(vma->vm_flags & VM_MERGEABLE))
1645 			continue;
1646 		if (ksm_scan.address < vma->vm_start)
1647 			ksm_scan.address = vma->vm_start;
1648 		if (!vma->anon_vma)
1649 			ksm_scan.address = vma->vm_end;
1650 
1651 		while (ksm_scan.address < vma->vm_end) {
1652 			if (ksm_test_exit(mm))
1653 				break;
1654 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1655 			if (IS_ERR_OR_NULL(*page)) {
1656 				ksm_scan.address += PAGE_SIZE;
1657 				cond_resched();
1658 				continue;
1659 			}
1660 			if (PageAnon(*page)) {
1661 				flush_anon_page(vma, *page, ksm_scan.address);
1662 				flush_dcache_page(*page);
1663 				rmap_item = get_next_rmap_item(slot,
1664 					ksm_scan.rmap_list, ksm_scan.address);
1665 				if (rmap_item) {
1666 					ksm_scan.rmap_list =
1667 							&rmap_item->rmap_list;
1668 					ksm_scan.address += PAGE_SIZE;
1669 				} else
1670 					put_page(*page);
1671 				up_read(&mm->mmap_sem);
1672 				return rmap_item;
1673 			}
1674 			put_page(*page);
1675 			ksm_scan.address += PAGE_SIZE;
1676 			cond_resched();
1677 		}
1678 	}
1679 
1680 	if (ksm_test_exit(mm)) {
1681 		ksm_scan.address = 0;
1682 		ksm_scan.rmap_list = &slot->rmap_list;
1683 	}
1684 	/*
1685 	 * Nuke all the rmap_items that are above this current rmap:
1686 	 * because there were no VM_MERGEABLE vmas with such addresses.
1687 	 */
1688 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1689 
1690 	spin_lock(&ksm_mmlist_lock);
1691 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1692 						struct mm_slot, mm_list);
1693 	if (ksm_scan.address == 0) {
1694 		/*
1695 		 * We've completed a full scan of all vmas, holding mmap_sem
1696 		 * throughout, and found no VM_MERGEABLE: so do the same as
1697 		 * __ksm_exit does to remove this mm from all our lists now.
1698 		 * This applies either when cleaning up after __ksm_exit
1699 		 * (but beware: we can reach here even before __ksm_exit),
1700 		 * or when all VM_MERGEABLE areas have been unmapped (and
1701 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1702 		 */
1703 		hash_del(&slot->link);
1704 		list_del(&slot->mm_list);
1705 		spin_unlock(&ksm_mmlist_lock);
1706 
1707 		free_mm_slot(slot);
1708 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1709 		up_read(&mm->mmap_sem);
1710 		mmdrop(mm);
1711 	} else {
1712 		up_read(&mm->mmap_sem);
1713 		/*
1714 		 * up_read(&mm->mmap_sem) first because after
1715 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1716 		 * already have been freed under us by __ksm_exit()
1717 		 * because the "mm_slot" is still hashed and
1718 		 * ksm_scan.mm_slot doesn't point to it anymore.
1719 		 */
1720 		spin_unlock(&ksm_mmlist_lock);
1721 	}
1722 
1723 	/* Repeat until we've completed scanning the whole list */
1724 	slot = ksm_scan.mm_slot;
1725 	if (slot != &ksm_mm_head)
1726 		goto next_mm;
1727 
1728 	ksm_scan.seqnr++;
1729 	return NULL;
1730 }
1731 
1732 /**
1733  * ksm_do_scan  - the ksm scanner main worker function.
1734  * @scan_npages - number of pages we want to scan before we return.
1735  */
1736 static void ksm_do_scan(unsigned int scan_npages)
1737 {
1738 	struct rmap_item *rmap_item;
1739 	struct page *uninitialized_var(page);
1740 
1741 	while (scan_npages-- && likely(!freezing(current))) {
1742 		cond_resched();
1743 		rmap_item = scan_get_next_rmap_item(&page);
1744 		if (!rmap_item)
1745 			return;
1746 		cmp_and_merge_page(page, rmap_item);
1747 		put_page(page);
1748 	}
1749 }
1750 
1751 static int ksmd_should_run(void)
1752 {
1753 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1754 }
1755 
1756 static int ksm_scan_thread(void *nothing)
1757 {
1758 	set_freezable();
1759 	set_user_nice(current, 5);
1760 
1761 	while (!kthread_should_stop()) {
1762 		mutex_lock(&ksm_thread_mutex);
1763 		wait_while_offlining();
1764 		if (ksmd_should_run())
1765 			ksm_do_scan(ksm_thread_pages_to_scan);
1766 		mutex_unlock(&ksm_thread_mutex);
1767 
1768 		try_to_freeze();
1769 
1770 		if (ksmd_should_run()) {
1771 			schedule_timeout_interruptible(
1772 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1773 		} else {
1774 			wait_event_freezable(ksm_thread_wait,
1775 				ksmd_should_run() || kthread_should_stop());
1776 		}
1777 	}
1778 	return 0;
1779 }
1780 
1781 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1782 		unsigned long end, int advice, unsigned long *vm_flags)
1783 {
1784 	struct mm_struct *mm = vma->vm_mm;
1785 	int err;
1786 
1787 	switch (advice) {
1788 	case MADV_MERGEABLE:
1789 		/*
1790 		 * Be somewhat over-protective for now!
1791 		 */
1792 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1793 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1794 				 VM_HUGETLB | VM_MIXEDMAP))
1795 			return 0;		/* just ignore the advice */
1796 
1797 #ifdef VM_SAO
1798 		if (*vm_flags & VM_SAO)
1799 			return 0;
1800 #endif
1801 
1802 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1803 			err = __ksm_enter(mm);
1804 			if (err)
1805 				return err;
1806 		}
1807 
1808 		*vm_flags |= VM_MERGEABLE;
1809 		break;
1810 
1811 	case MADV_UNMERGEABLE:
1812 		if (!(*vm_flags & VM_MERGEABLE))
1813 			return 0;		/* just ignore the advice */
1814 
1815 		if (vma->anon_vma) {
1816 			err = unmerge_ksm_pages(vma, start, end);
1817 			if (err)
1818 				return err;
1819 		}
1820 
1821 		*vm_flags &= ~VM_MERGEABLE;
1822 		break;
1823 	}
1824 
1825 	return 0;
1826 }
1827 
1828 int __ksm_enter(struct mm_struct *mm)
1829 {
1830 	struct mm_slot *mm_slot;
1831 	int needs_wakeup;
1832 
1833 	mm_slot = alloc_mm_slot();
1834 	if (!mm_slot)
1835 		return -ENOMEM;
1836 
1837 	/* Check ksm_run too?  Would need tighter locking */
1838 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1839 
1840 	spin_lock(&ksm_mmlist_lock);
1841 	insert_to_mm_slots_hash(mm, mm_slot);
1842 	/*
1843 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1844 	 * insert just behind the scanning cursor, to let the area settle
1845 	 * down a little; when fork is followed by immediate exec, we don't
1846 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1847 	 *
1848 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1849 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1850 	 * missed: then we might as well insert at the end of the list.
1851 	 */
1852 	if (ksm_run & KSM_RUN_UNMERGE)
1853 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1854 	else
1855 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1856 	spin_unlock(&ksm_mmlist_lock);
1857 
1858 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1859 	mmgrab(mm);
1860 
1861 	if (needs_wakeup)
1862 		wake_up_interruptible(&ksm_thread_wait);
1863 
1864 	return 0;
1865 }
1866 
1867 void __ksm_exit(struct mm_struct *mm)
1868 {
1869 	struct mm_slot *mm_slot;
1870 	int easy_to_free = 0;
1871 
1872 	/*
1873 	 * This process is exiting: if it's straightforward (as is the
1874 	 * case when ksmd was never running), free mm_slot immediately.
1875 	 * But if it's at the cursor or has rmap_items linked to it, use
1876 	 * mmap_sem to synchronize with any break_cows before pagetables
1877 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1878 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1879 	 */
1880 
1881 	spin_lock(&ksm_mmlist_lock);
1882 	mm_slot = get_mm_slot(mm);
1883 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1884 		if (!mm_slot->rmap_list) {
1885 			hash_del(&mm_slot->link);
1886 			list_del(&mm_slot->mm_list);
1887 			easy_to_free = 1;
1888 		} else {
1889 			list_move(&mm_slot->mm_list,
1890 				  &ksm_scan.mm_slot->mm_list);
1891 		}
1892 	}
1893 	spin_unlock(&ksm_mmlist_lock);
1894 
1895 	if (easy_to_free) {
1896 		free_mm_slot(mm_slot);
1897 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1898 		mmdrop(mm);
1899 	} else if (mm_slot) {
1900 		down_write(&mm->mmap_sem);
1901 		up_write(&mm->mmap_sem);
1902 	}
1903 }
1904 
1905 struct page *ksm_might_need_to_copy(struct page *page,
1906 			struct vm_area_struct *vma, unsigned long address)
1907 {
1908 	struct anon_vma *anon_vma = page_anon_vma(page);
1909 	struct page *new_page;
1910 
1911 	if (PageKsm(page)) {
1912 		if (page_stable_node(page) &&
1913 		    !(ksm_run & KSM_RUN_UNMERGE))
1914 			return page;	/* no need to copy it */
1915 	} else if (!anon_vma) {
1916 		return page;		/* no need to copy it */
1917 	} else if (anon_vma->root == vma->anon_vma->root &&
1918 		 page->index == linear_page_index(vma, address)) {
1919 		return page;		/* still no need to copy it */
1920 	}
1921 	if (!PageUptodate(page))
1922 		return page;		/* let do_swap_page report the error */
1923 
1924 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1925 	if (new_page) {
1926 		copy_user_highpage(new_page, page, address, vma);
1927 
1928 		SetPageDirty(new_page);
1929 		__SetPageUptodate(new_page);
1930 		__SetPageLocked(new_page);
1931 	}
1932 
1933 	return new_page;
1934 }
1935 
1936 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1937 {
1938 	struct stable_node *stable_node;
1939 	struct rmap_item *rmap_item;
1940 	int ret = SWAP_AGAIN;
1941 	int search_new_forks = 0;
1942 
1943 	VM_BUG_ON_PAGE(!PageKsm(page), page);
1944 
1945 	/*
1946 	 * Rely on the page lock to protect against concurrent modifications
1947 	 * to that page's node of the stable tree.
1948 	 */
1949 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1950 
1951 	stable_node = page_stable_node(page);
1952 	if (!stable_node)
1953 		return ret;
1954 again:
1955 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1956 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1957 		struct anon_vma_chain *vmac;
1958 		struct vm_area_struct *vma;
1959 
1960 		cond_resched();
1961 		anon_vma_lock_read(anon_vma);
1962 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1963 					       0, ULONG_MAX) {
1964 			cond_resched();
1965 			vma = vmac->vma;
1966 			if (rmap_item->address < vma->vm_start ||
1967 			    rmap_item->address >= vma->vm_end)
1968 				continue;
1969 			/*
1970 			 * Initially we examine only the vma which covers this
1971 			 * rmap_item; but later, if there is still work to do,
1972 			 * we examine covering vmas in other mms: in case they
1973 			 * were forked from the original since ksmd passed.
1974 			 */
1975 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1976 				continue;
1977 
1978 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1979 				continue;
1980 
1981 			ret = rwc->rmap_one(page, vma,
1982 					rmap_item->address, rwc->arg);
1983 			if (ret != SWAP_AGAIN) {
1984 				anon_vma_unlock_read(anon_vma);
1985 				goto out;
1986 			}
1987 			if (rwc->done && rwc->done(page)) {
1988 				anon_vma_unlock_read(anon_vma);
1989 				goto out;
1990 			}
1991 		}
1992 		anon_vma_unlock_read(anon_vma);
1993 	}
1994 	if (!search_new_forks++)
1995 		goto again;
1996 out:
1997 	return ret;
1998 }
1999 
2000 #ifdef CONFIG_MIGRATION
2001 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2002 {
2003 	struct stable_node *stable_node;
2004 
2005 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2006 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2007 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2008 
2009 	stable_node = page_stable_node(newpage);
2010 	if (stable_node) {
2011 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2012 		stable_node->kpfn = page_to_pfn(newpage);
2013 		/*
2014 		 * newpage->mapping was set in advance; now we need smp_wmb()
2015 		 * to make sure that the new stable_node->kpfn is visible
2016 		 * to get_ksm_page() before it can see that oldpage->mapping
2017 		 * has gone stale (or that PageSwapCache has been cleared).
2018 		 */
2019 		smp_wmb();
2020 		set_page_stable_node(oldpage, NULL);
2021 	}
2022 }
2023 #endif /* CONFIG_MIGRATION */
2024 
2025 #ifdef CONFIG_MEMORY_HOTREMOVE
2026 static void wait_while_offlining(void)
2027 {
2028 	while (ksm_run & KSM_RUN_OFFLINE) {
2029 		mutex_unlock(&ksm_thread_mutex);
2030 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2031 			    TASK_UNINTERRUPTIBLE);
2032 		mutex_lock(&ksm_thread_mutex);
2033 	}
2034 }
2035 
2036 static void ksm_check_stable_tree(unsigned long start_pfn,
2037 				  unsigned long end_pfn)
2038 {
2039 	struct stable_node *stable_node, *next;
2040 	struct rb_node *node;
2041 	int nid;
2042 
2043 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2044 		node = rb_first(root_stable_tree + nid);
2045 		while (node) {
2046 			stable_node = rb_entry(node, struct stable_node, node);
2047 			if (stable_node->kpfn >= start_pfn &&
2048 			    stable_node->kpfn < end_pfn) {
2049 				/*
2050 				 * Don't get_ksm_page, page has already gone:
2051 				 * which is why we keep kpfn instead of page*
2052 				 */
2053 				remove_node_from_stable_tree(stable_node);
2054 				node = rb_first(root_stable_tree + nid);
2055 			} else
2056 				node = rb_next(node);
2057 			cond_resched();
2058 		}
2059 	}
2060 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2061 		if (stable_node->kpfn >= start_pfn &&
2062 		    stable_node->kpfn < end_pfn)
2063 			remove_node_from_stable_tree(stable_node);
2064 		cond_resched();
2065 	}
2066 }
2067 
2068 static int ksm_memory_callback(struct notifier_block *self,
2069 			       unsigned long action, void *arg)
2070 {
2071 	struct memory_notify *mn = arg;
2072 
2073 	switch (action) {
2074 	case MEM_GOING_OFFLINE:
2075 		/*
2076 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2077 		 * and remove_all_stable_nodes() while memory is going offline:
2078 		 * it is unsafe for them to touch the stable tree at this time.
2079 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2080 		 * which do not need the ksm_thread_mutex are all safe.
2081 		 */
2082 		mutex_lock(&ksm_thread_mutex);
2083 		ksm_run |= KSM_RUN_OFFLINE;
2084 		mutex_unlock(&ksm_thread_mutex);
2085 		break;
2086 
2087 	case MEM_OFFLINE:
2088 		/*
2089 		 * Most of the work is done by page migration; but there might
2090 		 * be a few stable_nodes left over, still pointing to struct
2091 		 * pages which have been offlined: prune those from the tree,
2092 		 * otherwise get_ksm_page() might later try to access a
2093 		 * non-existent struct page.
2094 		 */
2095 		ksm_check_stable_tree(mn->start_pfn,
2096 				      mn->start_pfn + mn->nr_pages);
2097 		/* fallthrough */
2098 
2099 	case MEM_CANCEL_OFFLINE:
2100 		mutex_lock(&ksm_thread_mutex);
2101 		ksm_run &= ~KSM_RUN_OFFLINE;
2102 		mutex_unlock(&ksm_thread_mutex);
2103 
2104 		smp_mb();	/* wake_up_bit advises this */
2105 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2106 		break;
2107 	}
2108 	return NOTIFY_OK;
2109 }
2110 #else
2111 static void wait_while_offlining(void)
2112 {
2113 }
2114 #endif /* CONFIG_MEMORY_HOTREMOVE */
2115 
2116 #ifdef CONFIG_SYSFS
2117 /*
2118  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2119  */
2120 
2121 #define KSM_ATTR_RO(_name) \
2122 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2123 #define KSM_ATTR(_name) \
2124 	static struct kobj_attribute _name##_attr = \
2125 		__ATTR(_name, 0644, _name##_show, _name##_store)
2126 
2127 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2128 				    struct kobj_attribute *attr, char *buf)
2129 {
2130 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2131 }
2132 
2133 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2134 				     struct kobj_attribute *attr,
2135 				     const char *buf, size_t count)
2136 {
2137 	unsigned long msecs;
2138 	int err;
2139 
2140 	err = kstrtoul(buf, 10, &msecs);
2141 	if (err || msecs > UINT_MAX)
2142 		return -EINVAL;
2143 
2144 	ksm_thread_sleep_millisecs = msecs;
2145 
2146 	return count;
2147 }
2148 KSM_ATTR(sleep_millisecs);
2149 
2150 static ssize_t pages_to_scan_show(struct kobject *kobj,
2151 				  struct kobj_attribute *attr, char *buf)
2152 {
2153 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2154 }
2155 
2156 static ssize_t pages_to_scan_store(struct kobject *kobj,
2157 				   struct kobj_attribute *attr,
2158 				   const char *buf, size_t count)
2159 {
2160 	int err;
2161 	unsigned long nr_pages;
2162 
2163 	err = kstrtoul(buf, 10, &nr_pages);
2164 	if (err || nr_pages > UINT_MAX)
2165 		return -EINVAL;
2166 
2167 	ksm_thread_pages_to_scan = nr_pages;
2168 
2169 	return count;
2170 }
2171 KSM_ATTR(pages_to_scan);
2172 
2173 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2174 			char *buf)
2175 {
2176 	return sprintf(buf, "%lu\n", ksm_run);
2177 }
2178 
2179 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2180 			 const char *buf, size_t count)
2181 {
2182 	int err;
2183 	unsigned long flags;
2184 
2185 	err = kstrtoul(buf, 10, &flags);
2186 	if (err || flags > UINT_MAX)
2187 		return -EINVAL;
2188 	if (flags > KSM_RUN_UNMERGE)
2189 		return -EINVAL;
2190 
2191 	/*
2192 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2193 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2194 	 * breaking COW to free the pages_shared (but leaves mm_slots
2195 	 * on the list for when ksmd may be set running again).
2196 	 */
2197 
2198 	mutex_lock(&ksm_thread_mutex);
2199 	wait_while_offlining();
2200 	if (ksm_run != flags) {
2201 		ksm_run = flags;
2202 		if (flags & KSM_RUN_UNMERGE) {
2203 			set_current_oom_origin();
2204 			err = unmerge_and_remove_all_rmap_items();
2205 			clear_current_oom_origin();
2206 			if (err) {
2207 				ksm_run = KSM_RUN_STOP;
2208 				count = err;
2209 			}
2210 		}
2211 	}
2212 	mutex_unlock(&ksm_thread_mutex);
2213 
2214 	if (flags & KSM_RUN_MERGE)
2215 		wake_up_interruptible(&ksm_thread_wait);
2216 
2217 	return count;
2218 }
2219 KSM_ATTR(run);
2220 
2221 #ifdef CONFIG_NUMA
2222 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2223 				struct kobj_attribute *attr, char *buf)
2224 {
2225 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2226 }
2227 
2228 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2229 				   struct kobj_attribute *attr,
2230 				   const char *buf, size_t count)
2231 {
2232 	int err;
2233 	unsigned long knob;
2234 
2235 	err = kstrtoul(buf, 10, &knob);
2236 	if (err)
2237 		return err;
2238 	if (knob > 1)
2239 		return -EINVAL;
2240 
2241 	mutex_lock(&ksm_thread_mutex);
2242 	wait_while_offlining();
2243 	if (ksm_merge_across_nodes != knob) {
2244 		if (ksm_pages_shared || remove_all_stable_nodes())
2245 			err = -EBUSY;
2246 		else if (root_stable_tree == one_stable_tree) {
2247 			struct rb_root *buf;
2248 			/*
2249 			 * This is the first time that we switch away from the
2250 			 * default of merging across nodes: must now allocate
2251 			 * a buffer to hold as many roots as may be needed.
2252 			 * Allocate stable and unstable together:
2253 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2254 			 */
2255 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2256 				      GFP_KERNEL);
2257 			/* Let us assume that RB_ROOT is NULL is zero */
2258 			if (!buf)
2259 				err = -ENOMEM;
2260 			else {
2261 				root_stable_tree = buf;
2262 				root_unstable_tree = buf + nr_node_ids;
2263 				/* Stable tree is empty but not the unstable */
2264 				root_unstable_tree[0] = one_unstable_tree[0];
2265 			}
2266 		}
2267 		if (!err) {
2268 			ksm_merge_across_nodes = knob;
2269 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2270 		}
2271 	}
2272 	mutex_unlock(&ksm_thread_mutex);
2273 
2274 	return err ? err : count;
2275 }
2276 KSM_ATTR(merge_across_nodes);
2277 #endif
2278 
2279 static ssize_t use_zero_pages_show(struct kobject *kobj,
2280 				struct kobj_attribute *attr, char *buf)
2281 {
2282 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2283 }
2284 static ssize_t use_zero_pages_store(struct kobject *kobj,
2285 				   struct kobj_attribute *attr,
2286 				   const char *buf, size_t count)
2287 {
2288 	int err;
2289 	bool value;
2290 
2291 	err = kstrtobool(buf, &value);
2292 	if (err)
2293 		return -EINVAL;
2294 
2295 	ksm_use_zero_pages = value;
2296 
2297 	return count;
2298 }
2299 KSM_ATTR(use_zero_pages);
2300 
2301 static ssize_t pages_shared_show(struct kobject *kobj,
2302 				 struct kobj_attribute *attr, char *buf)
2303 {
2304 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2305 }
2306 KSM_ATTR_RO(pages_shared);
2307 
2308 static ssize_t pages_sharing_show(struct kobject *kobj,
2309 				  struct kobj_attribute *attr, char *buf)
2310 {
2311 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2312 }
2313 KSM_ATTR_RO(pages_sharing);
2314 
2315 static ssize_t pages_unshared_show(struct kobject *kobj,
2316 				   struct kobj_attribute *attr, char *buf)
2317 {
2318 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2319 }
2320 KSM_ATTR_RO(pages_unshared);
2321 
2322 static ssize_t pages_volatile_show(struct kobject *kobj,
2323 				   struct kobj_attribute *attr, char *buf)
2324 {
2325 	long ksm_pages_volatile;
2326 
2327 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2328 				- ksm_pages_sharing - ksm_pages_unshared;
2329 	/*
2330 	 * It was not worth any locking to calculate that statistic,
2331 	 * but it might therefore sometimes be negative: conceal that.
2332 	 */
2333 	if (ksm_pages_volatile < 0)
2334 		ksm_pages_volatile = 0;
2335 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2336 }
2337 KSM_ATTR_RO(pages_volatile);
2338 
2339 static ssize_t full_scans_show(struct kobject *kobj,
2340 			       struct kobj_attribute *attr, char *buf)
2341 {
2342 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2343 }
2344 KSM_ATTR_RO(full_scans);
2345 
2346 static struct attribute *ksm_attrs[] = {
2347 	&sleep_millisecs_attr.attr,
2348 	&pages_to_scan_attr.attr,
2349 	&run_attr.attr,
2350 	&pages_shared_attr.attr,
2351 	&pages_sharing_attr.attr,
2352 	&pages_unshared_attr.attr,
2353 	&pages_volatile_attr.attr,
2354 	&full_scans_attr.attr,
2355 #ifdef CONFIG_NUMA
2356 	&merge_across_nodes_attr.attr,
2357 #endif
2358 	&use_zero_pages_attr.attr,
2359 	NULL,
2360 };
2361 
2362 static struct attribute_group ksm_attr_group = {
2363 	.attrs = ksm_attrs,
2364 	.name = "ksm",
2365 };
2366 #endif /* CONFIG_SYSFS */
2367 
2368 static int __init ksm_init(void)
2369 {
2370 	struct task_struct *ksm_thread;
2371 	int err;
2372 
2373 	/* The correct value depends on page size and endianness */
2374 	zero_checksum = calc_checksum(ZERO_PAGE(0));
2375 	/* Default to false for backwards compatibility */
2376 	ksm_use_zero_pages = false;
2377 
2378 	err = ksm_slab_init();
2379 	if (err)
2380 		goto out;
2381 
2382 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2383 	if (IS_ERR(ksm_thread)) {
2384 		pr_err("ksm: creating kthread failed\n");
2385 		err = PTR_ERR(ksm_thread);
2386 		goto out_free;
2387 	}
2388 
2389 #ifdef CONFIG_SYSFS
2390 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2391 	if (err) {
2392 		pr_err("ksm: register sysfs failed\n");
2393 		kthread_stop(ksm_thread);
2394 		goto out_free;
2395 	}
2396 #else
2397 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2398 
2399 #endif /* CONFIG_SYSFS */
2400 
2401 #ifdef CONFIG_MEMORY_HOTREMOVE
2402 	/* There is no significance to this priority 100 */
2403 	hotplug_memory_notifier(ksm_memory_callback, 100);
2404 #endif
2405 	return 0;
2406 
2407 out_free:
2408 	ksm_slab_free();
2409 out:
2410 	return err;
2411 }
2412 subsys_initcall(ksm_init);
2413