1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/jhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /* 55 * A few notes about the KSM scanning process, 56 * to make it easier to understand the data structures below: 57 * 58 * In order to reduce excessive scanning, KSM sorts the memory pages by their 59 * contents into a data structure that holds pointers to the pages' locations. 60 * 61 * Since the contents of the pages may change at any moment, KSM cannot just 62 * insert the pages into a normal sorted tree and expect it to find anything. 63 * Therefore KSM uses two data structures - the stable and the unstable tree. 64 * 65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 66 * by their contents. Because each such page is write-protected, searching on 67 * this tree is fully assured to be working (except when pages are unmapped), 68 * and therefore this tree is called the stable tree. 69 * 70 * In addition to the stable tree, KSM uses a second data structure called the 71 * unstable tree: this tree holds pointers to pages which have been found to 72 * be "unchanged for a period of time". The unstable tree sorts these pages 73 * by their contents, but since they are not write-protected, KSM cannot rely 74 * upon the unstable tree to work correctly - the unstable tree is liable to 75 * be corrupted as its contents are modified, and so it is called unstable. 76 * 77 * KSM solves this problem by several techniques: 78 * 79 * 1) The unstable tree is flushed every time KSM completes scanning all 80 * memory areas, and then the tree is rebuilt again from the beginning. 81 * 2) KSM will only insert into the unstable tree, pages whose hash value 82 * has not changed since the previous scan of all memory areas. 83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 84 * colors of the nodes and not on their contents, assuring that even when 85 * the tree gets "corrupted" it won't get out of balance, so scanning time 86 * remains the same (also, searching and inserting nodes in an rbtree uses 87 * the same algorithm, so we have no overhead when we flush and rebuild). 88 * 4) KSM never flushes the stable tree, which means that even if it were to 89 * take 10 attempts to find a page in the unstable tree, once it is found, 90 * it is secured in the stable tree. (When we scan a new page, we first 91 * compare it against the stable tree, and then against the unstable tree.) 92 * 93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 94 * stable trees and multiple unstable trees: one of each for each NUMA node. 95 */ 96 97 /** 98 * struct mm_slot - ksm information per mm that is being scanned 99 * @link: link to the mm_slots hash list 100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 102 * @mm: the mm that this information is valid for 103 */ 104 struct mm_slot { 105 struct hlist_node link; 106 struct list_head mm_list; 107 struct rmap_item *rmap_list; 108 struct mm_struct *mm; 109 }; 110 111 /** 112 * struct ksm_scan - cursor for scanning 113 * @mm_slot: the current mm_slot we are scanning 114 * @address: the next address inside that to be scanned 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list 116 * @seqnr: count of completed full scans (needed when removing unstable node) 117 * 118 * There is only the one ksm_scan instance of this cursor structure. 119 */ 120 struct ksm_scan { 121 struct mm_slot *mm_slot; 122 unsigned long address; 123 struct rmap_item **rmap_list; 124 unsigned long seqnr; 125 }; 126 127 /** 128 * struct stable_node - node of the stable rbtree 129 * @node: rb node of this ksm page in the stable tree 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 132 * @list: linked into migrate_nodes, pending placement in the proper node tree 133 * @hlist: hlist head of rmap_items using this ksm page 134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 135 * @chain_prune_time: time of the last full garbage collection 136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 138 */ 139 struct stable_node { 140 union { 141 struct rb_node node; /* when node of stable tree */ 142 struct { /* when listed for migration */ 143 struct list_head *head; 144 struct { 145 struct hlist_node hlist_dup; 146 struct list_head list; 147 }; 148 }; 149 }; 150 struct hlist_head hlist; 151 union { 152 unsigned long kpfn; 153 unsigned long chain_prune_time; 154 }; 155 /* 156 * STABLE_NODE_CHAIN can be any negative number in 157 * rmap_hlist_len negative range, but better not -1 to be able 158 * to reliably detect underflows. 159 */ 160 #define STABLE_NODE_CHAIN -1024 161 int rmap_hlist_len; 162 #ifdef CONFIG_NUMA 163 int nid; 164 #endif 165 }; 166 167 /** 168 * struct rmap_item - reverse mapping item for virtual addresses 169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 171 * @nid: NUMA node id of unstable tree in which linked (may not match page) 172 * @mm: the memory structure this rmap_item is pointing into 173 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 174 * @oldchecksum: previous checksum of the page at that virtual address 175 * @node: rb node of this rmap_item in the unstable tree 176 * @head: pointer to stable_node heading this list in the stable tree 177 * @hlist: link into hlist of rmap_items hanging off that stable_node 178 */ 179 struct rmap_item { 180 struct rmap_item *rmap_list; 181 union { 182 struct anon_vma *anon_vma; /* when stable */ 183 #ifdef CONFIG_NUMA 184 int nid; /* when node of unstable tree */ 185 #endif 186 }; 187 struct mm_struct *mm; 188 unsigned long address; /* + low bits used for flags below */ 189 unsigned int oldchecksum; /* when unstable */ 190 union { 191 struct rb_node node; /* when node of unstable tree */ 192 struct { /* when listed from stable tree */ 193 struct stable_node *head; 194 struct hlist_node hlist; 195 }; 196 }; 197 }; 198 199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 202 203 /* The stable and unstable tree heads */ 204 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 205 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 206 static struct rb_root *root_stable_tree = one_stable_tree; 207 static struct rb_root *root_unstable_tree = one_unstable_tree; 208 209 /* Recently migrated nodes of stable tree, pending proper placement */ 210 static LIST_HEAD(migrate_nodes); 211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 212 213 #define MM_SLOTS_HASH_BITS 10 214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 215 216 static struct mm_slot ksm_mm_head = { 217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 218 }; 219 static struct ksm_scan ksm_scan = { 220 .mm_slot = &ksm_mm_head, 221 }; 222 223 static struct kmem_cache *rmap_item_cache; 224 static struct kmem_cache *stable_node_cache; 225 static struct kmem_cache *mm_slot_cache; 226 227 /* The number of nodes in the stable tree */ 228 static unsigned long ksm_pages_shared; 229 230 /* The number of page slots additionally sharing those nodes */ 231 static unsigned long ksm_pages_sharing; 232 233 /* The number of nodes in the unstable tree */ 234 static unsigned long ksm_pages_unshared; 235 236 /* The number of rmap_items in use: to calculate pages_volatile */ 237 static unsigned long ksm_rmap_items; 238 239 /* The number of stable_node chains */ 240 static unsigned long ksm_stable_node_chains; 241 242 /* The number of stable_node dups linked to the stable_node chains */ 243 static unsigned long ksm_stable_node_dups; 244 245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 246 static int ksm_stable_node_chains_prune_millisecs = 2000; 247 248 /* Maximum number of page slots sharing a stable node */ 249 static int ksm_max_page_sharing = 256; 250 251 /* Number of pages ksmd should scan in one batch */ 252 static unsigned int ksm_thread_pages_to_scan = 100; 253 254 /* Milliseconds ksmd should sleep between batches */ 255 static unsigned int ksm_thread_sleep_millisecs = 20; 256 257 /* Checksum of an empty (zeroed) page */ 258 static unsigned int zero_checksum __read_mostly; 259 260 /* Whether to merge empty (zeroed) pages with actual zero pages */ 261 static bool ksm_use_zero_pages __read_mostly; 262 263 #ifdef CONFIG_NUMA 264 /* Zeroed when merging across nodes is not allowed */ 265 static unsigned int ksm_merge_across_nodes = 1; 266 static int ksm_nr_node_ids = 1; 267 #else 268 #define ksm_merge_across_nodes 1U 269 #define ksm_nr_node_ids 1 270 #endif 271 272 #define KSM_RUN_STOP 0 273 #define KSM_RUN_MERGE 1 274 #define KSM_RUN_UNMERGE 2 275 #define KSM_RUN_OFFLINE 4 276 static unsigned long ksm_run = KSM_RUN_STOP; 277 static void wait_while_offlining(void); 278 279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 280 static DEFINE_MUTEX(ksm_thread_mutex); 281 static DEFINE_SPINLOCK(ksm_mmlist_lock); 282 283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 284 sizeof(struct __struct), __alignof__(struct __struct),\ 285 (__flags), NULL) 286 287 static int __init ksm_slab_init(void) 288 { 289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 290 if (!rmap_item_cache) 291 goto out; 292 293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 294 if (!stable_node_cache) 295 goto out_free1; 296 297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 298 if (!mm_slot_cache) 299 goto out_free2; 300 301 return 0; 302 303 out_free2: 304 kmem_cache_destroy(stable_node_cache); 305 out_free1: 306 kmem_cache_destroy(rmap_item_cache); 307 out: 308 return -ENOMEM; 309 } 310 311 static void __init ksm_slab_free(void) 312 { 313 kmem_cache_destroy(mm_slot_cache); 314 kmem_cache_destroy(stable_node_cache); 315 kmem_cache_destroy(rmap_item_cache); 316 mm_slot_cache = NULL; 317 } 318 319 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 320 { 321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 322 } 323 324 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 325 { 326 return dup->head == STABLE_NODE_DUP_HEAD; 327 } 328 329 static inline void stable_node_chain_add_dup(struct stable_node *dup, 330 struct stable_node *chain) 331 { 332 VM_BUG_ON(is_stable_node_dup(dup)); 333 dup->head = STABLE_NODE_DUP_HEAD; 334 VM_BUG_ON(!is_stable_node_chain(chain)); 335 hlist_add_head(&dup->hlist_dup, &chain->hlist); 336 ksm_stable_node_dups++; 337 } 338 339 static inline void __stable_node_dup_del(struct stable_node *dup) 340 { 341 VM_BUG_ON(!is_stable_node_dup(dup)); 342 hlist_del(&dup->hlist_dup); 343 ksm_stable_node_dups--; 344 } 345 346 static inline void stable_node_dup_del(struct stable_node *dup) 347 { 348 VM_BUG_ON(is_stable_node_chain(dup)); 349 if (is_stable_node_dup(dup)) 350 __stable_node_dup_del(dup); 351 else 352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 353 #ifdef CONFIG_DEBUG_VM 354 dup->head = NULL; 355 #endif 356 } 357 358 static inline struct rmap_item *alloc_rmap_item(void) 359 { 360 struct rmap_item *rmap_item; 361 362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 363 __GFP_NORETRY | __GFP_NOWARN); 364 if (rmap_item) 365 ksm_rmap_items++; 366 return rmap_item; 367 } 368 369 static inline void free_rmap_item(struct rmap_item *rmap_item) 370 { 371 ksm_rmap_items--; 372 rmap_item->mm = NULL; /* debug safety */ 373 kmem_cache_free(rmap_item_cache, rmap_item); 374 } 375 376 static inline struct stable_node *alloc_stable_node(void) 377 { 378 /* 379 * The allocation can take too long with GFP_KERNEL when memory is under 380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 381 * grants access to memory reserves, helping to avoid this problem. 382 */ 383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 384 } 385 386 static inline void free_stable_node(struct stable_node *stable_node) 387 { 388 VM_BUG_ON(stable_node->rmap_hlist_len && 389 !is_stable_node_chain(stable_node)); 390 kmem_cache_free(stable_node_cache, stable_node); 391 } 392 393 static inline struct mm_slot *alloc_mm_slot(void) 394 { 395 if (!mm_slot_cache) /* initialization failed */ 396 return NULL; 397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 398 } 399 400 static inline void free_mm_slot(struct mm_slot *mm_slot) 401 { 402 kmem_cache_free(mm_slot_cache, mm_slot); 403 } 404 405 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 406 { 407 struct mm_slot *slot; 408 409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 410 if (slot->mm == mm) 411 return slot; 412 413 return NULL; 414 } 415 416 static void insert_to_mm_slots_hash(struct mm_struct *mm, 417 struct mm_slot *mm_slot) 418 { 419 mm_slot->mm = mm; 420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 421 } 422 423 /* 424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 425 * page tables after it has passed through ksm_exit() - which, if necessary, 426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 427 * a special flag: they can just back out as soon as mm_users goes to zero. 428 * ksm_test_exit() is used throughout to make this test for exit: in some 429 * places for correctness, in some places just to avoid unnecessary work. 430 */ 431 static inline bool ksm_test_exit(struct mm_struct *mm) 432 { 433 return atomic_read(&mm->mm_users) == 0; 434 } 435 436 /* 437 * We use break_ksm to break COW on a ksm page: it's a stripped down 438 * 439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 440 * put_page(page); 441 * 442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 443 * in case the application has unmapped and remapped mm,addr meanwhile. 444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 446 * 447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 448 * of the process that owns 'vma'. We also do not want to enforce 449 * protection keys here anyway. 450 */ 451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 452 { 453 struct page *page; 454 int ret = 0; 455 456 do { 457 cond_resched(); 458 page = follow_page(vma, addr, 459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 460 if (IS_ERR_OR_NULL(page)) 461 break; 462 if (PageKsm(page)) 463 ret = handle_mm_fault(vma, addr, 464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 465 else 466 ret = VM_FAULT_WRITE; 467 put_page(page); 468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 469 /* 470 * We must loop because handle_mm_fault() may back out if there's 471 * any difficulty e.g. if pte accessed bit gets updated concurrently. 472 * 473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 474 * COW has been broken, even if the vma does not permit VM_WRITE; 475 * but note that a concurrent fault might break PageKsm for us. 476 * 477 * VM_FAULT_SIGBUS could occur if we race with truncation of the 478 * backing file, which also invalidates anonymous pages: that's 479 * okay, that truncation will have unmapped the PageKsm for us. 480 * 481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 483 * current task has TIF_MEMDIE set, and will be OOM killed on return 484 * to user; and ksmd, having no mm, would never be chosen for that. 485 * 486 * But if the mm is in a limited mem_cgroup, then the fault may fail 487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 488 * even ksmd can fail in this way - though it's usually breaking ksm 489 * just to undo a merge it made a moment before, so unlikely to oom. 490 * 491 * That's a pity: we might therefore have more kernel pages allocated 492 * than we're counting as nodes in the stable tree; but ksm_do_scan 493 * will retry to break_cow on each pass, so should recover the page 494 * in due course. The important thing is to not let VM_MERGEABLE 495 * be cleared while any such pages might remain in the area. 496 */ 497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 498 } 499 500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 501 unsigned long addr) 502 { 503 struct vm_area_struct *vma; 504 if (ksm_test_exit(mm)) 505 return NULL; 506 vma = find_vma(mm, addr); 507 if (!vma || vma->vm_start > addr) 508 return NULL; 509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 510 return NULL; 511 return vma; 512 } 513 514 static void break_cow(struct rmap_item *rmap_item) 515 { 516 struct mm_struct *mm = rmap_item->mm; 517 unsigned long addr = rmap_item->address; 518 struct vm_area_struct *vma; 519 520 /* 521 * It is not an accident that whenever we want to break COW 522 * to undo, we also need to drop a reference to the anon_vma. 523 */ 524 put_anon_vma(rmap_item->anon_vma); 525 526 down_read(&mm->mmap_sem); 527 vma = find_mergeable_vma(mm, addr); 528 if (vma) 529 break_ksm(vma, addr); 530 up_read(&mm->mmap_sem); 531 } 532 533 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 534 { 535 struct mm_struct *mm = rmap_item->mm; 536 unsigned long addr = rmap_item->address; 537 struct vm_area_struct *vma; 538 struct page *page; 539 540 down_read(&mm->mmap_sem); 541 vma = find_mergeable_vma(mm, addr); 542 if (!vma) 543 goto out; 544 545 page = follow_page(vma, addr, FOLL_GET); 546 if (IS_ERR_OR_NULL(page)) 547 goto out; 548 if (PageAnon(page)) { 549 flush_anon_page(vma, page, addr); 550 flush_dcache_page(page); 551 } else { 552 put_page(page); 553 out: 554 page = NULL; 555 } 556 up_read(&mm->mmap_sem); 557 return page; 558 } 559 560 /* 561 * This helper is used for getting right index into array of tree roots. 562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 563 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 564 * every node has its own stable and unstable tree. 565 */ 566 static inline int get_kpfn_nid(unsigned long kpfn) 567 { 568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 569 } 570 571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 572 struct rb_root *root) 573 { 574 struct stable_node *chain = alloc_stable_node(); 575 VM_BUG_ON(is_stable_node_chain(dup)); 576 if (likely(chain)) { 577 INIT_HLIST_HEAD(&chain->hlist); 578 chain->chain_prune_time = jiffies; 579 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 581 chain->nid = -1; /* debug */ 582 #endif 583 ksm_stable_node_chains++; 584 585 /* 586 * Put the stable node chain in the first dimension of 587 * the stable tree and at the same time remove the old 588 * stable node. 589 */ 590 rb_replace_node(&dup->node, &chain->node, root); 591 592 /* 593 * Move the old stable node to the second dimension 594 * queued in the hlist_dup. The invariant is that all 595 * dup stable_nodes in the chain->hlist point to pages 596 * that are wrprotected and have the exact same 597 * content. 598 */ 599 stable_node_chain_add_dup(dup, chain); 600 } 601 return chain; 602 } 603 604 static inline void free_stable_node_chain(struct stable_node *chain, 605 struct rb_root *root) 606 { 607 rb_erase(&chain->node, root); 608 free_stable_node(chain); 609 ksm_stable_node_chains--; 610 } 611 612 static void remove_node_from_stable_tree(struct stable_node *stable_node) 613 { 614 struct rmap_item *rmap_item; 615 616 /* check it's not STABLE_NODE_CHAIN or negative */ 617 BUG_ON(stable_node->rmap_hlist_len < 0); 618 619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 620 if (rmap_item->hlist.next) 621 ksm_pages_sharing--; 622 else 623 ksm_pages_shared--; 624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 625 stable_node->rmap_hlist_len--; 626 put_anon_vma(rmap_item->anon_vma); 627 rmap_item->address &= PAGE_MASK; 628 cond_resched(); 629 } 630 631 /* 632 * We need the second aligned pointer of the migrate_nodes 633 * list_head to stay clear from the rb_parent_color union 634 * (aligned and different than any node) and also different 635 * from &migrate_nodes. This will verify that future list.h changes 636 * don't break STABLE_NODE_DUP_HEAD. 637 */ 638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */ 639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 641 #endif 642 643 if (stable_node->head == &migrate_nodes) 644 list_del(&stable_node->list); 645 else 646 stable_node_dup_del(stable_node); 647 free_stable_node(stable_node); 648 } 649 650 /* 651 * get_ksm_page: checks if the page indicated by the stable node 652 * is still its ksm page, despite having held no reference to it. 653 * In which case we can trust the content of the page, and it 654 * returns the gotten page; but if the page has now been zapped, 655 * remove the stale node from the stable tree and return NULL. 656 * But beware, the stable node's page might be being migrated. 657 * 658 * You would expect the stable_node to hold a reference to the ksm page. 659 * But if it increments the page's count, swapping out has to wait for 660 * ksmd to come around again before it can free the page, which may take 661 * seconds or even minutes: much too unresponsive. So instead we use a 662 * "keyhole reference": access to the ksm page from the stable node peeps 663 * out through its keyhole to see if that page still holds the right key, 664 * pointing back to this stable node. This relies on freeing a PageAnon 665 * page to reset its page->mapping to NULL, and relies on no other use of 666 * a page to put something that might look like our key in page->mapping. 667 * is on its way to being freed; but it is an anomaly to bear in mind. 668 */ 669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 670 { 671 struct page *page; 672 void *expected_mapping; 673 unsigned long kpfn; 674 675 expected_mapping = (void *)((unsigned long)stable_node | 676 PAGE_MAPPING_KSM); 677 again: 678 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 679 page = pfn_to_page(kpfn); 680 if (READ_ONCE(page->mapping) != expected_mapping) 681 goto stale; 682 683 /* 684 * We cannot do anything with the page while its refcount is 0. 685 * Usually 0 means free, or tail of a higher-order page: in which 686 * case this node is no longer referenced, and should be freed; 687 * however, it might mean that the page is under page_freeze_refs(). 688 * The __remove_mapping() case is easy, again the node is now stale; 689 * but if page is swapcache in migrate_page_move_mapping(), it might 690 * still be our page, in which case it's essential to keep the node. 691 */ 692 while (!get_page_unless_zero(page)) { 693 /* 694 * Another check for page->mapping != expected_mapping would 695 * work here too. We have chosen the !PageSwapCache test to 696 * optimize the common case, when the page is or is about to 697 * be freed: PageSwapCache is cleared (under spin_lock_irq) 698 * in the freeze_refs section of __remove_mapping(); but Anon 699 * page->mapping reset to NULL later, in free_pages_prepare(). 700 */ 701 if (!PageSwapCache(page)) 702 goto stale; 703 cpu_relax(); 704 } 705 706 if (READ_ONCE(page->mapping) != expected_mapping) { 707 put_page(page); 708 goto stale; 709 } 710 711 if (lock_it) { 712 lock_page(page); 713 if (READ_ONCE(page->mapping) != expected_mapping) { 714 unlock_page(page); 715 put_page(page); 716 goto stale; 717 } 718 } 719 return page; 720 721 stale: 722 /* 723 * We come here from above when page->mapping or !PageSwapCache 724 * suggests that the node is stale; but it might be under migration. 725 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 726 * before checking whether node->kpfn has been changed. 727 */ 728 smp_rmb(); 729 if (READ_ONCE(stable_node->kpfn) != kpfn) 730 goto again; 731 remove_node_from_stable_tree(stable_node); 732 return NULL; 733 } 734 735 /* 736 * Removing rmap_item from stable or unstable tree. 737 * This function will clean the information from the stable/unstable tree. 738 */ 739 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 740 { 741 if (rmap_item->address & STABLE_FLAG) { 742 struct stable_node *stable_node; 743 struct page *page; 744 745 stable_node = rmap_item->head; 746 page = get_ksm_page(stable_node, true); 747 if (!page) 748 goto out; 749 750 hlist_del(&rmap_item->hlist); 751 unlock_page(page); 752 put_page(page); 753 754 if (!hlist_empty(&stable_node->hlist)) 755 ksm_pages_sharing--; 756 else 757 ksm_pages_shared--; 758 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 759 stable_node->rmap_hlist_len--; 760 761 put_anon_vma(rmap_item->anon_vma); 762 rmap_item->address &= PAGE_MASK; 763 764 } else if (rmap_item->address & UNSTABLE_FLAG) { 765 unsigned char age; 766 /* 767 * Usually ksmd can and must skip the rb_erase, because 768 * root_unstable_tree was already reset to RB_ROOT. 769 * But be careful when an mm is exiting: do the rb_erase 770 * if this rmap_item was inserted by this scan, rather 771 * than left over from before. 772 */ 773 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 774 BUG_ON(age > 1); 775 if (!age) 776 rb_erase(&rmap_item->node, 777 root_unstable_tree + NUMA(rmap_item->nid)); 778 ksm_pages_unshared--; 779 rmap_item->address &= PAGE_MASK; 780 } 781 out: 782 cond_resched(); /* we're called from many long loops */ 783 } 784 785 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 786 struct rmap_item **rmap_list) 787 { 788 while (*rmap_list) { 789 struct rmap_item *rmap_item = *rmap_list; 790 *rmap_list = rmap_item->rmap_list; 791 remove_rmap_item_from_tree(rmap_item); 792 free_rmap_item(rmap_item); 793 } 794 } 795 796 /* 797 * Though it's very tempting to unmerge rmap_items from stable tree rather 798 * than check every pte of a given vma, the locking doesn't quite work for 799 * that - an rmap_item is assigned to the stable tree after inserting ksm 800 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 801 * rmap_items from parent to child at fork time (so as not to waste time 802 * if exit comes before the next scan reaches it). 803 * 804 * Similarly, although we'd like to remove rmap_items (so updating counts 805 * and freeing memory) when unmerging an area, it's easier to leave that 806 * to the next pass of ksmd - consider, for example, how ksmd might be 807 * in cmp_and_merge_page on one of the rmap_items we would be removing. 808 */ 809 static int unmerge_ksm_pages(struct vm_area_struct *vma, 810 unsigned long start, unsigned long end) 811 { 812 unsigned long addr; 813 int err = 0; 814 815 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 816 if (ksm_test_exit(vma->vm_mm)) 817 break; 818 if (signal_pending(current)) 819 err = -ERESTARTSYS; 820 else 821 err = break_ksm(vma, addr); 822 } 823 return err; 824 } 825 826 #ifdef CONFIG_SYSFS 827 /* 828 * Only called through the sysfs control interface: 829 */ 830 static int remove_stable_node(struct stable_node *stable_node) 831 { 832 struct page *page; 833 int err; 834 835 page = get_ksm_page(stable_node, true); 836 if (!page) { 837 /* 838 * get_ksm_page did remove_node_from_stable_tree itself. 839 */ 840 return 0; 841 } 842 843 if (WARN_ON_ONCE(page_mapped(page))) { 844 /* 845 * This should not happen: but if it does, just refuse to let 846 * merge_across_nodes be switched - there is no need to panic. 847 */ 848 err = -EBUSY; 849 } else { 850 /* 851 * The stable node did not yet appear stale to get_ksm_page(), 852 * since that allows for an unmapped ksm page to be recognized 853 * right up until it is freed; but the node is safe to remove. 854 * This page might be in a pagevec waiting to be freed, 855 * or it might be PageSwapCache (perhaps under writeback), 856 * or it might have been removed from swapcache a moment ago. 857 */ 858 set_page_stable_node(page, NULL); 859 remove_node_from_stable_tree(stable_node); 860 err = 0; 861 } 862 863 unlock_page(page); 864 put_page(page); 865 return err; 866 } 867 868 static int remove_stable_node_chain(struct stable_node *stable_node, 869 struct rb_root *root) 870 { 871 struct stable_node *dup; 872 struct hlist_node *hlist_safe; 873 874 if (!is_stable_node_chain(stable_node)) { 875 VM_BUG_ON(is_stable_node_dup(stable_node)); 876 if (remove_stable_node(stable_node)) 877 return true; 878 else 879 return false; 880 } 881 882 hlist_for_each_entry_safe(dup, hlist_safe, 883 &stable_node->hlist, hlist_dup) { 884 VM_BUG_ON(!is_stable_node_dup(dup)); 885 if (remove_stable_node(dup)) 886 return true; 887 } 888 BUG_ON(!hlist_empty(&stable_node->hlist)); 889 free_stable_node_chain(stable_node, root); 890 return false; 891 } 892 893 static int remove_all_stable_nodes(void) 894 { 895 struct stable_node *stable_node, *next; 896 int nid; 897 int err = 0; 898 899 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 900 while (root_stable_tree[nid].rb_node) { 901 stable_node = rb_entry(root_stable_tree[nid].rb_node, 902 struct stable_node, node); 903 if (remove_stable_node_chain(stable_node, 904 root_stable_tree + nid)) { 905 err = -EBUSY; 906 break; /* proceed to next nid */ 907 } 908 cond_resched(); 909 } 910 } 911 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 912 if (remove_stable_node(stable_node)) 913 err = -EBUSY; 914 cond_resched(); 915 } 916 return err; 917 } 918 919 static int unmerge_and_remove_all_rmap_items(void) 920 { 921 struct mm_slot *mm_slot; 922 struct mm_struct *mm; 923 struct vm_area_struct *vma; 924 int err = 0; 925 926 spin_lock(&ksm_mmlist_lock); 927 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 928 struct mm_slot, mm_list); 929 spin_unlock(&ksm_mmlist_lock); 930 931 for (mm_slot = ksm_scan.mm_slot; 932 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 933 mm = mm_slot->mm; 934 down_read(&mm->mmap_sem); 935 for (vma = mm->mmap; vma; vma = vma->vm_next) { 936 if (ksm_test_exit(mm)) 937 break; 938 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 939 continue; 940 err = unmerge_ksm_pages(vma, 941 vma->vm_start, vma->vm_end); 942 if (err) 943 goto error; 944 } 945 946 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 947 up_read(&mm->mmap_sem); 948 949 spin_lock(&ksm_mmlist_lock); 950 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 951 struct mm_slot, mm_list); 952 if (ksm_test_exit(mm)) { 953 hash_del(&mm_slot->link); 954 list_del(&mm_slot->mm_list); 955 spin_unlock(&ksm_mmlist_lock); 956 957 free_mm_slot(mm_slot); 958 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 959 mmdrop(mm); 960 } else 961 spin_unlock(&ksm_mmlist_lock); 962 } 963 964 /* Clean up stable nodes, but don't worry if some are still busy */ 965 remove_all_stable_nodes(); 966 ksm_scan.seqnr = 0; 967 return 0; 968 969 error: 970 up_read(&mm->mmap_sem); 971 spin_lock(&ksm_mmlist_lock); 972 ksm_scan.mm_slot = &ksm_mm_head; 973 spin_unlock(&ksm_mmlist_lock); 974 return err; 975 } 976 #endif /* CONFIG_SYSFS */ 977 978 static u32 calc_checksum(struct page *page) 979 { 980 u32 checksum; 981 void *addr = kmap_atomic(page); 982 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 983 kunmap_atomic(addr); 984 return checksum; 985 } 986 987 static int memcmp_pages(struct page *page1, struct page *page2) 988 { 989 char *addr1, *addr2; 990 int ret; 991 992 addr1 = kmap_atomic(page1); 993 addr2 = kmap_atomic(page2); 994 ret = memcmp(addr1, addr2, PAGE_SIZE); 995 kunmap_atomic(addr2); 996 kunmap_atomic(addr1); 997 return ret; 998 } 999 1000 static inline int pages_identical(struct page *page1, struct page *page2) 1001 { 1002 return !memcmp_pages(page1, page2); 1003 } 1004 1005 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1006 pte_t *orig_pte) 1007 { 1008 struct mm_struct *mm = vma->vm_mm; 1009 struct page_vma_mapped_walk pvmw = { 1010 .page = page, 1011 .vma = vma, 1012 }; 1013 int swapped; 1014 int err = -EFAULT; 1015 unsigned long mmun_start; /* For mmu_notifiers */ 1016 unsigned long mmun_end; /* For mmu_notifiers */ 1017 1018 pvmw.address = page_address_in_vma(page, vma); 1019 if (pvmw.address == -EFAULT) 1020 goto out; 1021 1022 BUG_ON(PageTransCompound(page)); 1023 1024 mmun_start = pvmw.address; 1025 mmun_end = pvmw.address + PAGE_SIZE; 1026 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1027 1028 if (!page_vma_mapped_walk(&pvmw)) 1029 goto out_mn; 1030 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1031 goto out_unlock; 1032 1033 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1034 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1035 mm_tlb_flush_pending(mm)) { 1036 pte_t entry; 1037 1038 swapped = PageSwapCache(page); 1039 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1040 /* 1041 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1042 * take any lock, therefore the check that we are going to make 1043 * with the pagecount against the mapcount is racey and 1044 * O_DIRECT can happen right after the check. 1045 * So we clear the pte and flush the tlb before the check 1046 * this assure us that no O_DIRECT can happen after the check 1047 * or in the middle of the check. 1048 * 1049 * No need to notify as we are downgrading page table to read 1050 * only not changing it to point to a new page. 1051 * 1052 * See Documentation/vm/mmu_notifier.txt 1053 */ 1054 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1055 /* 1056 * Check that no O_DIRECT or similar I/O is in progress on the 1057 * page 1058 */ 1059 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1060 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1061 goto out_unlock; 1062 } 1063 if (pte_dirty(entry)) 1064 set_page_dirty(page); 1065 1066 if (pte_protnone(entry)) 1067 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1068 else 1069 entry = pte_mkclean(pte_wrprotect(entry)); 1070 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1071 } 1072 *orig_pte = *pvmw.pte; 1073 err = 0; 1074 1075 out_unlock: 1076 page_vma_mapped_walk_done(&pvmw); 1077 out_mn: 1078 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1079 out: 1080 return err; 1081 } 1082 1083 /** 1084 * replace_page - replace page in vma by new ksm page 1085 * @vma: vma that holds the pte pointing to page 1086 * @page: the page we are replacing by kpage 1087 * @kpage: the ksm page we replace page by 1088 * @orig_pte: the original value of the pte 1089 * 1090 * Returns 0 on success, -EFAULT on failure. 1091 */ 1092 static int replace_page(struct vm_area_struct *vma, struct page *page, 1093 struct page *kpage, pte_t orig_pte) 1094 { 1095 struct mm_struct *mm = vma->vm_mm; 1096 pmd_t *pmd; 1097 pte_t *ptep; 1098 pte_t newpte; 1099 spinlock_t *ptl; 1100 unsigned long addr; 1101 int err = -EFAULT; 1102 unsigned long mmun_start; /* For mmu_notifiers */ 1103 unsigned long mmun_end; /* For mmu_notifiers */ 1104 1105 addr = page_address_in_vma(page, vma); 1106 if (addr == -EFAULT) 1107 goto out; 1108 1109 pmd = mm_find_pmd(mm, addr); 1110 if (!pmd) 1111 goto out; 1112 1113 mmun_start = addr; 1114 mmun_end = addr + PAGE_SIZE; 1115 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1116 1117 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1118 if (!pte_same(*ptep, orig_pte)) { 1119 pte_unmap_unlock(ptep, ptl); 1120 goto out_mn; 1121 } 1122 1123 /* 1124 * No need to check ksm_use_zero_pages here: we can only have a 1125 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1126 */ 1127 if (!is_zero_pfn(page_to_pfn(kpage))) { 1128 get_page(kpage); 1129 page_add_anon_rmap(kpage, vma, addr, false); 1130 newpte = mk_pte(kpage, vma->vm_page_prot); 1131 } else { 1132 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1133 vma->vm_page_prot)); 1134 } 1135 1136 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1137 /* 1138 * No need to notify as we are replacing a read only page with another 1139 * read only page with the same content. 1140 * 1141 * See Documentation/vm/mmu_notifier.txt 1142 */ 1143 ptep_clear_flush(vma, addr, ptep); 1144 set_pte_at_notify(mm, addr, ptep, newpte); 1145 1146 page_remove_rmap(page, false); 1147 if (!page_mapped(page)) 1148 try_to_free_swap(page); 1149 put_page(page); 1150 1151 pte_unmap_unlock(ptep, ptl); 1152 err = 0; 1153 out_mn: 1154 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1155 out: 1156 return err; 1157 } 1158 1159 /* 1160 * try_to_merge_one_page - take two pages and merge them into one 1161 * @vma: the vma that holds the pte pointing to page 1162 * @page: the PageAnon page that we want to replace with kpage 1163 * @kpage: the PageKsm page that we want to map instead of page, 1164 * or NULL the first time when we want to use page as kpage. 1165 * 1166 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1167 */ 1168 static int try_to_merge_one_page(struct vm_area_struct *vma, 1169 struct page *page, struct page *kpage) 1170 { 1171 pte_t orig_pte = __pte(0); 1172 int err = -EFAULT; 1173 1174 if (page == kpage) /* ksm page forked */ 1175 return 0; 1176 1177 if (!PageAnon(page)) 1178 goto out; 1179 1180 /* 1181 * We need the page lock to read a stable PageSwapCache in 1182 * write_protect_page(). We use trylock_page() instead of 1183 * lock_page() because we don't want to wait here - we 1184 * prefer to continue scanning and merging different pages, 1185 * then come back to this page when it is unlocked. 1186 */ 1187 if (!trylock_page(page)) 1188 goto out; 1189 1190 if (PageTransCompound(page)) { 1191 if (split_huge_page(page)) 1192 goto out_unlock; 1193 } 1194 1195 /* 1196 * If this anonymous page is mapped only here, its pte may need 1197 * to be write-protected. If it's mapped elsewhere, all of its 1198 * ptes are necessarily already write-protected. But in either 1199 * case, we need to lock and check page_count is not raised. 1200 */ 1201 if (write_protect_page(vma, page, &orig_pte) == 0) { 1202 if (!kpage) { 1203 /* 1204 * While we hold page lock, upgrade page from 1205 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1206 * stable_tree_insert() will update stable_node. 1207 */ 1208 set_page_stable_node(page, NULL); 1209 mark_page_accessed(page); 1210 /* 1211 * Page reclaim just frees a clean page with no dirty 1212 * ptes: make sure that the ksm page would be swapped. 1213 */ 1214 if (!PageDirty(page)) 1215 SetPageDirty(page); 1216 err = 0; 1217 } else if (pages_identical(page, kpage)) 1218 err = replace_page(vma, page, kpage, orig_pte); 1219 } 1220 1221 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1222 munlock_vma_page(page); 1223 if (!PageMlocked(kpage)) { 1224 unlock_page(page); 1225 lock_page(kpage); 1226 mlock_vma_page(kpage); 1227 page = kpage; /* for final unlock */ 1228 } 1229 } 1230 1231 out_unlock: 1232 unlock_page(page); 1233 out: 1234 return err; 1235 } 1236 1237 /* 1238 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1239 * but no new kernel page is allocated: kpage must already be a ksm page. 1240 * 1241 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1242 */ 1243 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1244 struct page *page, struct page *kpage) 1245 { 1246 struct mm_struct *mm = rmap_item->mm; 1247 struct vm_area_struct *vma; 1248 int err = -EFAULT; 1249 1250 down_read(&mm->mmap_sem); 1251 vma = find_mergeable_vma(mm, rmap_item->address); 1252 if (!vma) 1253 goto out; 1254 1255 err = try_to_merge_one_page(vma, page, kpage); 1256 if (err) 1257 goto out; 1258 1259 /* Unstable nid is in union with stable anon_vma: remove first */ 1260 remove_rmap_item_from_tree(rmap_item); 1261 1262 /* Must get reference to anon_vma while still holding mmap_sem */ 1263 rmap_item->anon_vma = vma->anon_vma; 1264 get_anon_vma(vma->anon_vma); 1265 out: 1266 up_read(&mm->mmap_sem); 1267 return err; 1268 } 1269 1270 /* 1271 * try_to_merge_two_pages - take two identical pages and prepare them 1272 * to be merged into one page. 1273 * 1274 * This function returns the kpage if we successfully merged two identical 1275 * pages into one ksm page, NULL otherwise. 1276 * 1277 * Note that this function upgrades page to ksm page: if one of the pages 1278 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1279 */ 1280 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1281 struct page *page, 1282 struct rmap_item *tree_rmap_item, 1283 struct page *tree_page) 1284 { 1285 int err; 1286 1287 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1288 if (!err) { 1289 err = try_to_merge_with_ksm_page(tree_rmap_item, 1290 tree_page, page); 1291 /* 1292 * If that fails, we have a ksm page with only one pte 1293 * pointing to it: so break it. 1294 */ 1295 if (err) 1296 break_cow(rmap_item); 1297 } 1298 return err ? NULL : page; 1299 } 1300 1301 static __always_inline 1302 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1303 { 1304 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1305 /* 1306 * Check that at least one mapping still exists, otherwise 1307 * there's no much point to merge and share with this 1308 * stable_node, as the underlying tree_page of the other 1309 * sharer is going to be freed soon. 1310 */ 1311 return stable_node->rmap_hlist_len && 1312 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1313 } 1314 1315 static __always_inline 1316 bool is_page_sharing_candidate(struct stable_node *stable_node) 1317 { 1318 return __is_page_sharing_candidate(stable_node, 0); 1319 } 1320 1321 struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1322 struct stable_node **_stable_node, 1323 struct rb_root *root, 1324 bool prune_stale_stable_nodes) 1325 { 1326 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1327 struct hlist_node *hlist_safe; 1328 struct page *_tree_page, *tree_page = NULL; 1329 int nr = 0; 1330 int found_rmap_hlist_len; 1331 1332 if (!prune_stale_stable_nodes || 1333 time_before(jiffies, stable_node->chain_prune_time + 1334 msecs_to_jiffies( 1335 ksm_stable_node_chains_prune_millisecs))) 1336 prune_stale_stable_nodes = false; 1337 else 1338 stable_node->chain_prune_time = jiffies; 1339 1340 hlist_for_each_entry_safe(dup, hlist_safe, 1341 &stable_node->hlist, hlist_dup) { 1342 cond_resched(); 1343 /* 1344 * We must walk all stable_node_dup to prune the stale 1345 * stable nodes during lookup. 1346 * 1347 * get_ksm_page can drop the nodes from the 1348 * stable_node->hlist if they point to freed pages 1349 * (that's why we do a _safe walk). The "dup" 1350 * stable_node parameter itself will be freed from 1351 * under us if it returns NULL. 1352 */ 1353 _tree_page = get_ksm_page(dup, false); 1354 if (!_tree_page) 1355 continue; 1356 nr += 1; 1357 if (is_page_sharing_candidate(dup)) { 1358 if (!found || 1359 dup->rmap_hlist_len > found_rmap_hlist_len) { 1360 if (found) 1361 put_page(tree_page); 1362 found = dup; 1363 found_rmap_hlist_len = found->rmap_hlist_len; 1364 tree_page = _tree_page; 1365 1366 /* skip put_page for found dup */ 1367 if (!prune_stale_stable_nodes) 1368 break; 1369 continue; 1370 } 1371 } 1372 put_page(_tree_page); 1373 } 1374 1375 if (found) { 1376 /* 1377 * nr is counting all dups in the chain only if 1378 * prune_stale_stable_nodes is true, otherwise we may 1379 * break the loop at nr == 1 even if there are 1380 * multiple entries. 1381 */ 1382 if (prune_stale_stable_nodes && nr == 1) { 1383 /* 1384 * If there's not just one entry it would 1385 * corrupt memory, better BUG_ON. In KSM 1386 * context with no lock held it's not even 1387 * fatal. 1388 */ 1389 BUG_ON(stable_node->hlist.first->next); 1390 1391 /* 1392 * There's just one entry and it is below the 1393 * deduplication limit so drop the chain. 1394 */ 1395 rb_replace_node(&stable_node->node, &found->node, 1396 root); 1397 free_stable_node(stable_node); 1398 ksm_stable_node_chains--; 1399 ksm_stable_node_dups--; 1400 /* 1401 * NOTE: the caller depends on the stable_node 1402 * to be equal to stable_node_dup if the chain 1403 * was collapsed. 1404 */ 1405 *_stable_node = found; 1406 /* 1407 * Just for robustneess as stable_node is 1408 * otherwise left as a stable pointer, the 1409 * compiler shall optimize it away at build 1410 * time. 1411 */ 1412 stable_node = NULL; 1413 } else if (stable_node->hlist.first != &found->hlist_dup && 1414 __is_page_sharing_candidate(found, 1)) { 1415 /* 1416 * If the found stable_node dup can accept one 1417 * more future merge (in addition to the one 1418 * that is underway) and is not at the head of 1419 * the chain, put it there so next search will 1420 * be quicker in the !prune_stale_stable_nodes 1421 * case. 1422 * 1423 * NOTE: it would be inaccurate to use nr > 1 1424 * instead of checking the hlist.first pointer 1425 * directly, because in the 1426 * prune_stale_stable_nodes case "nr" isn't 1427 * the position of the found dup in the chain, 1428 * but the total number of dups in the chain. 1429 */ 1430 hlist_del(&found->hlist_dup); 1431 hlist_add_head(&found->hlist_dup, 1432 &stable_node->hlist); 1433 } 1434 } 1435 1436 *_stable_node_dup = found; 1437 return tree_page; 1438 } 1439 1440 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1441 struct rb_root *root) 1442 { 1443 if (!is_stable_node_chain(stable_node)) 1444 return stable_node; 1445 if (hlist_empty(&stable_node->hlist)) { 1446 free_stable_node_chain(stable_node, root); 1447 return NULL; 1448 } 1449 return hlist_entry(stable_node->hlist.first, 1450 typeof(*stable_node), hlist_dup); 1451 } 1452 1453 /* 1454 * Like for get_ksm_page, this function can free the *_stable_node and 1455 * *_stable_node_dup if the returned tree_page is NULL. 1456 * 1457 * It can also free and overwrite *_stable_node with the found 1458 * stable_node_dup if the chain is collapsed (in which case 1459 * *_stable_node will be equal to *_stable_node_dup like if the chain 1460 * never existed). It's up to the caller to verify tree_page is not 1461 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1462 * 1463 * *_stable_node_dup is really a second output parameter of this 1464 * function and will be overwritten in all cases, the caller doesn't 1465 * need to initialize it. 1466 */ 1467 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1468 struct stable_node **_stable_node, 1469 struct rb_root *root, 1470 bool prune_stale_stable_nodes) 1471 { 1472 struct stable_node *stable_node = *_stable_node; 1473 if (!is_stable_node_chain(stable_node)) { 1474 if (is_page_sharing_candidate(stable_node)) { 1475 *_stable_node_dup = stable_node; 1476 return get_ksm_page(stable_node, false); 1477 } 1478 /* 1479 * _stable_node_dup set to NULL means the stable_node 1480 * reached the ksm_max_page_sharing limit. 1481 */ 1482 *_stable_node_dup = NULL; 1483 return NULL; 1484 } 1485 return stable_node_dup(_stable_node_dup, _stable_node, root, 1486 prune_stale_stable_nodes); 1487 } 1488 1489 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1490 struct stable_node **s_n, 1491 struct rb_root *root) 1492 { 1493 return __stable_node_chain(s_n_d, s_n, root, true); 1494 } 1495 1496 static __always_inline struct page *chain(struct stable_node **s_n_d, 1497 struct stable_node *s_n, 1498 struct rb_root *root) 1499 { 1500 struct stable_node *old_stable_node = s_n; 1501 struct page *tree_page; 1502 1503 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1504 /* not pruning dups so s_n cannot have changed */ 1505 VM_BUG_ON(s_n != old_stable_node); 1506 return tree_page; 1507 } 1508 1509 /* 1510 * stable_tree_search - search for page inside the stable tree 1511 * 1512 * This function checks if there is a page inside the stable tree 1513 * with identical content to the page that we are scanning right now. 1514 * 1515 * This function returns the stable tree node of identical content if found, 1516 * NULL otherwise. 1517 */ 1518 static struct page *stable_tree_search(struct page *page) 1519 { 1520 int nid; 1521 struct rb_root *root; 1522 struct rb_node **new; 1523 struct rb_node *parent; 1524 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1525 struct stable_node *page_node; 1526 1527 page_node = page_stable_node(page); 1528 if (page_node && page_node->head != &migrate_nodes) { 1529 /* ksm page forked */ 1530 get_page(page); 1531 return page; 1532 } 1533 1534 nid = get_kpfn_nid(page_to_pfn(page)); 1535 root = root_stable_tree + nid; 1536 again: 1537 new = &root->rb_node; 1538 parent = NULL; 1539 1540 while (*new) { 1541 struct page *tree_page; 1542 int ret; 1543 1544 cond_resched(); 1545 stable_node = rb_entry(*new, struct stable_node, node); 1546 stable_node_any = NULL; 1547 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1548 /* 1549 * NOTE: stable_node may have been freed by 1550 * chain_prune() if the returned stable_node_dup is 1551 * not NULL. stable_node_dup may have been inserted in 1552 * the rbtree instead as a regular stable_node (in 1553 * order to collapse the stable_node chain if a single 1554 * stable_node dup was found in it). In such case the 1555 * stable_node is overwritten by the calleee to point 1556 * to the stable_node_dup that was collapsed in the 1557 * stable rbtree and stable_node will be equal to 1558 * stable_node_dup like if the chain never existed. 1559 */ 1560 if (!stable_node_dup) { 1561 /* 1562 * Either all stable_node dups were full in 1563 * this stable_node chain, or this chain was 1564 * empty and should be rb_erased. 1565 */ 1566 stable_node_any = stable_node_dup_any(stable_node, 1567 root); 1568 if (!stable_node_any) { 1569 /* rb_erase just run */ 1570 goto again; 1571 } 1572 /* 1573 * Take any of the stable_node dups page of 1574 * this stable_node chain to let the tree walk 1575 * continue. All KSM pages belonging to the 1576 * stable_node dups in a stable_node chain 1577 * have the same content and they're 1578 * wrprotected at all times. Any will work 1579 * fine to continue the walk. 1580 */ 1581 tree_page = get_ksm_page(stable_node_any, false); 1582 } 1583 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1584 if (!tree_page) { 1585 /* 1586 * If we walked over a stale stable_node, 1587 * get_ksm_page() will call rb_erase() and it 1588 * may rebalance the tree from under us. So 1589 * restart the search from scratch. Returning 1590 * NULL would be safe too, but we'd generate 1591 * false negative insertions just because some 1592 * stable_node was stale. 1593 */ 1594 goto again; 1595 } 1596 1597 ret = memcmp_pages(page, tree_page); 1598 put_page(tree_page); 1599 1600 parent = *new; 1601 if (ret < 0) 1602 new = &parent->rb_left; 1603 else if (ret > 0) 1604 new = &parent->rb_right; 1605 else { 1606 if (page_node) { 1607 VM_BUG_ON(page_node->head != &migrate_nodes); 1608 /* 1609 * Test if the migrated page should be merged 1610 * into a stable node dup. If the mapcount is 1611 * 1 we can migrate it with another KSM page 1612 * without adding it to the chain. 1613 */ 1614 if (page_mapcount(page) > 1) 1615 goto chain_append; 1616 } 1617 1618 if (!stable_node_dup) { 1619 /* 1620 * If the stable_node is a chain and 1621 * we got a payload match in memcmp 1622 * but we cannot merge the scanned 1623 * page in any of the existing 1624 * stable_node dups because they're 1625 * all full, we need to wait the 1626 * scanned page to find itself a match 1627 * in the unstable tree to create a 1628 * brand new KSM page to add later to 1629 * the dups of this stable_node. 1630 */ 1631 return NULL; 1632 } 1633 1634 /* 1635 * Lock and unlock the stable_node's page (which 1636 * might already have been migrated) so that page 1637 * migration is sure to notice its raised count. 1638 * It would be more elegant to return stable_node 1639 * than kpage, but that involves more changes. 1640 */ 1641 tree_page = get_ksm_page(stable_node_dup, true); 1642 if (unlikely(!tree_page)) 1643 /* 1644 * The tree may have been rebalanced, 1645 * so re-evaluate parent and new. 1646 */ 1647 goto again; 1648 unlock_page(tree_page); 1649 1650 if (get_kpfn_nid(stable_node_dup->kpfn) != 1651 NUMA(stable_node_dup->nid)) { 1652 put_page(tree_page); 1653 goto replace; 1654 } 1655 return tree_page; 1656 } 1657 } 1658 1659 if (!page_node) 1660 return NULL; 1661 1662 list_del(&page_node->list); 1663 DO_NUMA(page_node->nid = nid); 1664 rb_link_node(&page_node->node, parent, new); 1665 rb_insert_color(&page_node->node, root); 1666 out: 1667 if (is_page_sharing_candidate(page_node)) { 1668 get_page(page); 1669 return page; 1670 } else 1671 return NULL; 1672 1673 replace: 1674 /* 1675 * If stable_node was a chain and chain_prune collapsed it, 1676 * stable_node has been updated to be the new regular 1677 * stable_node. A collapse of the chain is indistinguishable 1678 * from the case there was no chain in the stable 1679 * rbtree. Otherwise stable_node is the chain and 1680 * stable_node_dup is the dup to replace. 1681 */ 1682 if (stable_node_dup == stable_node) { 1683 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1684 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1685 /* there is no chain */ 1686 if (page_node) { 1687 VM_BUG_ON(page_node->head != &migrate_nodes); 1688 list_del(&page_node->list); 1689 DO_NUMA(page_node->nid = nid); 1690 rb_replace_node(&stable_node_dup->node, 1691 &page_node->node, 1692 root); 1693 if (is_page_sharing_candidate(page_node)) 1694 get_page(page); 1695 else 1696 page = NULL; 1697 } else { 1698 rb_erase(&stable_node_dup->node, root); 1699 page = NULL; 1700 } 1701 } else { 1702 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1703 __stable_node_dup_del(stable_node_dup); 1704 if (page_node) { 1705 VM_BUG_ON(page_node->head != &migrate_nodes); 1706 list_del(&page_node->list); 1707 DO_NUMA(page_node->nid = nid); 1708 stable_node_chain_add_dup(page_node, stable_node); 1709 if (is_page_sharing_candidate(page_node)) 1710 get_page(page); 1711 else 1712 page = NULL; 1713 } else { 1714 page = NULL; 1715 } 1716 } 1717 stable_node_dup->head = &migrate_nodes; 1718 list_add(&stable_node_dup->list, stable_node_dup->head); 1719 return page; 1720 1721 chain_append: 1722 /* stable_node_dup could be null if it reached the limit */ 1723 if (!stable_node_dup) 1724 stable_node_dup = stable_node_any; 1725 /* 1726 * If stable_node was a chain and chain_prune collapsed it, 1727 * stable_node has been updated to be the new regular 1728 * stable_node. A collapse of the chain is indistinguishable 1729 * from the case there was no chain in the stable 1730 * rbtree. Otherwise stable_node is the chain and 1731 * stable_node_dup is the dup to replace. 1732 */ 1733 if (stable_node_dup == stable_node) { 1734 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1735 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1736 /* chain is missing so create it */ 1737 stable_node = alloc_stable_node_chain(stable_node_dup, 1738 root); 1739 if (!stable_node) 1740 return NULL; 1741 } 1742 /* 1743 * Add this stable_node dup that was 1744 * migrated to the stable_node chain 1745 * of the current nid for this page 1746 * content. 1747 */ 1748 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1749 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1750 VM_BUG_ON(page_node->head != &migrate_nodes); 1751 list_del(&page_node->list); 1752 DO_NUMA(page_node->nid = nid); 1753 stable_node_chain_add_dup(page_node, stable_node); 1754 goto out; 1755 } 1756 1757 /* 1758 * stable_tree_insert - insert stable tree node pointing to new ksm page 1759 * into the stable tree. 1760 * 1761 * This function returns the stable tree node just allocated on success, 1762 * NULL otherwise. 1763 */ 1764 static struct stable_node *stable_tree_insert(struct page *kpage) 1765 { 1766 int nid; 1767 unsigned long kpfn; 1768 struct rb_root *root; 1769 struct rb_node **new; 1770 struct rb_node *parent; 1771 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1772 bool need_chain = false; 1773 1774 kpfn = page_to_pfn(kpage); 1775 nid = get_kpfn_nid(kpfn); 1776 root = root_stable_tree + nid; 1777 again: 1778 parent = NULL; 1779 new = &root->rb_node; 1780 1781 while (*new) { 1782 struct page *tree_page; 1783 int ret; 1784 1785 cond_resched(); 1786 stable_node = rb_entry(*new, struct stable_node, node); 1787 stable_node_any = NULL; 1788 tree_page = chain(&stable_node_dup, stable_node, root); 1789 if (!stable_node_dup) { 1790 /* 1791 * Either all stable_node dups were full in 1792 * this stable_node chain, or this chain was 1793 * empty and should be rb_erased. 1794 */ 1795 stable_node_any = stable_node_dup_any(stable_node, 1796 root); 1797 if (!stable_node_any) { 1798 /* rb_erase just run */ 1799 goto again; 1800 } 1801 /* 1802 * Take any of the stable_node dups page of 1803 * this stable_node chain to let the tree walk 1804 * continue. All KSM pages belonging to the 1805 * stable_node dups in a stable_node chain 1806 * have the same content and they're 1807 * wrprotected at all times. Any will work 1808 * fine to continue the walk. 1809 */ 1810 tree_page = get_ksm_page(stable_node_any, false); 1811 } 1812 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1813 if (!tree_page) { 1814 /* 1815 * If we walked over a stale stable_node, 1816 * get_ksm_page() will call rb_erase() and it 1817 * may rebalance the tree from under us. So 1818 * restart the search from scratch. Returning 1819 * NULL would be safe too, but we'd generate 1820 * false negative insertions just because some 1821 * stable_node was stale. 1822 */ 1823 goto again; 1824 } 1825 1826 ret = memcmp_pages(kpage, tree_page); 1827 put_page(tree_page); 1828 1829 parent = *new; 1830 if (ret < 0) 1831 new = &parent->rb_left; 1832 else if (ret > 0) 1833 new = &parent->rb_right; 1834 else { 1835 need_chain = true; 1836 break; 1837 } 1838 } 1839 1840 stable_node_dup = alloc_stable_node(); 1841 if (!stable_node_dup) 1842 return NULL; 1843 1844 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1845 stable_node_dup->kpfn = kpfn; 1846 set_page_stable_node(kpage, stable_node_dup); 1847 stable_node_dup->rmap_hlist_len = 0; 1848 DO_NUMA(stable_node_dup->nid = nid); 1849 if (!need_chain) { 1850 rb_link_node(&stable_node_dup->node, parent, new); 1851 rb_insert_color(&stable_node_dup->node, root); 1852 } else { 1853 if (!is_stable_node_chain(stable_node)) { 1854 struct stable_node *orig = stable_node; 1855 /* chain is missing so create it */ 1856 stable_node = alloc_stable_node_chain(orig, root); 1857 if (!stable_node) { 1858 free_stable_node(stable_node_dup); 1859 return NULL; 1860 } 1861 } 1862 stable_node_chain_add_dup(stable_node_dup, stable_node); 1863 } 1864 1865 return stable_node_dup; 1866 } 1867 1868 /* 1869 * unstable_tree_search_insert - search for identical page, 1870 * else insert rmap_item into the unstable tree. 1871 * 1872 * This function searches for a page in the unstable tree identical to the 1873 * page currently being scanned; and if no identical page is found in the 1874 * tree, we insert rmap_item as a new object into the unstable tree. 1875 * 1876 * This function returns pointer to rmap_item found to be identical 1877 * to the currently scanned page, NULL otherwise. 1878 * 1879 * This function does both searching and inserting, because they share 1880 * the same walking algorithm in an rbtree. 1881 */ 1882 static 1883 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1884 struct page *page, 1885 struct page **tree_pagep) 1886 { 1887 struct rb_node **new; 1888 struct rb_root *root; 1889 struct rb_node *parent = NULL; 1890 int nid; 1891 1892 nid = get_kpfn_nid(page_to_pfn(page)); 1893 root = root_unstable_tree + nid; 1894 new = &root->rb_node; 1895 1896 while (*new) { 1897 struct rmap_item *tree_rmap_item; 1898 struct page *tree_page; 1899 int ret; 1900 1901 cond_resched(); 1902 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1903 tree_page = get_mergeable_page(tree_rmap_item); 1904 if (!tree_page) 1905 return NULL; 1906 1907 /* 1908 * Don't substitute a ksm page for a forked page. 1909 */ 1910 if (page == tree_page) { 1911 put_page(tree_page); 1912 return NULL; 1913 } 1914 1915 ret = memcmp_pages(page, tree_page); 1916 1917 parent = *new; 1918 if (ret < 0) { 1919 put_page(tree_page); 1920 new = &parent->rb_left; 1921 } else if (ret > 0) { 1922 put_page(tree_page); 1923 new = &parent->rb_right; 1924 } else if (!ksm_merge_across_nodes && 1925 page_to_nid(tree_page) != nid) { 1926 /* 1927 * If tree_page has been migrated to another NUMA node, 1928 * it will be flushed out and put in the right unstable 1929 * tree next time: only merge with it when across_nodes. 1930 */ 1931 put_page(tree_page); 1932 return NULL; 1933 } else { 1934 *tree_pagep = tree_page; 1935 return tree_rmap_item; 1936 } 1937 } 1938 1939 rmap_item->address |= UNSTABLE_FLAG; 1940 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1941 DO_NUMA(rmap_item->nid = nid); 1942 rb_link_node(&rmap_item->node, parent, new); 1943 rb_insert_color(&rmap_item->node, root); 1944 1945 ksm_pages_unshared++; 1946 return NULL; 1947 } 1948 1949 /* 1950 * stable_tree_append - add another rmap_item to the linked list of 1951 * rmap_items hanging off a given node of the stable tree, all sharing 1952 * the same ksm page. 1953 */ 1954 static void stable_tree_append(struct rmap_item *rmap_item, 1955 struct stable_node *stable_node, 1956 bool max_page_sharing_bypass) 1957 { 1958 /* 1959 * rmap won't find this mapping if we don't insert the 1960 * rmap_item in the right stable_node 1961 * duplicate. page_migration could break later if rmap breaks, 1962 * so we can as well crash here. We really need to check for 1963 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1964 * for other negative values as an undeflow if detected here 1965 * for the first time (and not when decreasing rmap_hlist_len) 1966 * would be sign of memory corruption in the stable_node. 1967 */ 1968 BUG_ON(stable_node->rmap_hlist_len < 0); 1969 1970 stable_node->rmap_hlist_len++; 1971 if (!max_page_sharing_bypass) 1972 /* possibly non fatal but unexpected overflow, only warn */ 1973 WARN_ON_ONCE(stable_node->rmap_hlist_len > 1974 ksm_max_page_sharing); 1975 1976 rmap_item->head = stable_node; 1977 rmap_item->address |= STABLE_FLAG; 1978 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1979 1980 if (rmap_item->hlist.next) 1981 ksm_pages_sharing++; 1982 else 1983 ksm_pages_shared++; 1984 } 1985 1986 /* 1987 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1988 * if not, compare checksum to previous and if it's the same, see if page can 1989 * be inserted into the unstable tree, or merged with a page already there and 1990 * both transferred to the stable tree. 1991 * 1992 * @page: the page that we are searching identical page to. 1993 * @rmap_item: the reverse mapping into the virtual address of this page 1994 */ 1995 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1996 { 1997 struct mm_struct *mm = rmap_item->mm; 1998 struct rmap_item *tree_rmap_item; 1999 struct page *tree_page = NULL; 2000 struct stable_node *stable_node; 2001 struct page *kpage; 2002 unsigned int checksum; 2003 int err; 2004 bool max_page_sharing_bypass = false; 2005 2006 stable_node = page_stable_node(page); 2007 if (stable_node) { 2008 if (stable_node->head != &migrate_nodes && 2009 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2010 NUMA(stable_node->nid)) { 2011 stable_node_dup_del(stable_node); 2012 stable_node->head = &migrate_nodes; 2013 list_add(&stable_node->list, stable_node->head); 2014 } 2015 if (stable_node->head != &migrate_nodes && 2016 rmap_item->head == stable_node) 2017 return; 2018 /* 2019 * If it's a KSM fork, allow it to go over the sharing limit 2020 * without warnings. 2021 */ 2022 if (!is_page_sharing_candidate(stable_node)) 2023 max_page_sharing_bypass = true; 2024 } 2025 2026 /* We first start with searching the page inside the stable tree */ 2027 kpage = stable_tree_search(page); 2028 if (kpage == page && rmap_item->head == stable_node) { 2029 put_page(kpage); 2030 return; 2031 } 2032 2033 remove_rmap_item_from_tree(rmap_item); 2034 2035 if (kpage) { 2036 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2037 if (!err) { 2038 /* 2039 * The page was successfully merged: 2040 * add its rmap_item to the stable tree. 2041 */ 2042 lock_page(kpage); 2043 stable_tree_append(rmap_item, page_stable_node(kpage), 2044 max_page_sharing_bypass); 2045 unlock_page(kpage); 2046 } 2047 put_page(kpage); 2048 return; 2049 } 2050 2051 /* 2052 * If the hash value of the page has changed from the last time 2053 * we calculated it, this page is changing frequently: therefore we 2054 * don't want to insert it in the unstable tree, and we don't want 2055 * to waste our time searching for something identical to it there. 2056 */ 2057 checksum = calc_checksum(page); 2058 if (rmap_item->oldchecksum != checksum) { 2059 rmap_item->oldchecksum = checksum; 2060 return; 2061 } 2062 2063 /* 2064 * Same checksum as an empty page. We attempt to merge it with the 2065 * appropriate zero page if the user enabled this via sysfs. 2066 */ 2067 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2068 struct vm_area_struct *vma; 2069 2070 down_read(&mm->mmap_sem); 2071 vma = find_mergeable_vma(mm, rmap_item->address); 2072 err = try_to_merge_one_page(vma, page, 2073 ZERO_PAGE(rmap_item->address)); 2074 up_read(&mm->mmap_sem); 2075 /* 2076 * In case of failure, the page was not really empty, so we 2077 * need to continue. Otherwise we're done. 2078 */ 2079 if (!err) 2080 return; 2081 } 2082 tree_rmap_item = 2083 unstable_tree_search_insert(rmap_item, page, &tree_page); 2084 if (tree_rmap_item) { 2085 kpage = try_to_merge_two_pages(rmap_item, page, 2086 tree_rmap_item, tree_page); 2087 put_page(tree_page); 2088 if (kpage) { 2089 /* 2090 * The pages were successfully merged: insert new 2091 * node in the stable tree and add both rmap_items. 2092 */ 2093 lock_page(kpage); 2094 stable_node = stable_tree_insert(kpage); 2095 if (stable_node) { 2096 stable_tree_append(tree_rmap_item, stable_node, 2097 false); 2098 stable_tree_append(rmap_item, stable_node, 2099 false); 2100 } 2101 unlock_page(kpage); 2102 2103 /* 2104 * If we fail to insert the page into the stable tree, 2105 * we will have 2 virtual addresses that are pointing 2106 * to a ksm page left outside the stable tree, 2107 * in which case we need to break_cow on both. 2108 */ 2109 if (!stable_node) { 2110 break_cow(tree_rmap_item); 2111 break_cow(rmap_item); 2112 } 2113 } 2114 } 2115 } 2116 2117 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2118 struct rmap_item **rmap_list, 2119 unsigned long addr) 2120 { 2121 struct rmap_item *rmap_item; 2122 2123 while (*rmap_list) { 2124 rmap_item = *rmap_list; 2125 if ((rmap_item->address & PAGE_MASK) == addr) 2126 return rmap_item; 2127 if (rmap_item->address > addr) 2128 break; 2129 *rmap_list = rmap_item->rmap_list; 2130 remove_rmap_item_from_tree(rmap_item); 2131 free_rmap_item(rmap_item); 2132 } 2133 2134 rmap_item = alloc_rmap_item(); 2135 if (rmap_item) { 2136 /* It has already been zeroed */ 2137 rmap_item->mm = mm_slot->mm; 2138 rmap_item->address = addr; 2139 rmap_item->rmap_list = *rmap_list; 2140 *rmap_list = rmap_item; 2141 } 2142 return rmap_item; 2143 } 2144 2145 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2146 { 2147 struct mm_struct *mm; 2148 struct mm_slot *slot; 2149 struct vm_area_struct *vma; 2150 struct rmap_item *rmap_item; 2151 int nid; 2152 2153 if (list_empty(&ksm_mm_head.mm_list)) 2154 return NULL; 2155 2156 slot = ksm_scan.mm_slot; 2157 if (slot == &ksm_mm_head) { 2158 /* 2159 * A number of pages can hang around indefinitely on per-cpu 2160 * pagevecs, raised page count preventing write_protect_page 2161 * from merging them. Though it doesn't really matter much, 2162 * it is puzzling to see some stuck in pages_volatile until 2163 * other activity jostles them out, and they also prevented 2164 * LTP's KSM test from succeeding deterministically; so drain 2165 * them here (here rather than on entry to ksm_do_scan(), 2166 * so we don't IPI too often when pages_to_scan is set low). 2167 */ 2168 lru_add_drain_all(); 2169 2170 /* 2171 * Whereas stale stable_nodes on the stable_tree itself 2172 * get pruned in the regular course of stable_tree_search(), 2173 * those moved out to the migrate_nodes list can accumulate: 2174 * so prune them once before each full scan. 2175 */ 2176 if (!ksm_merge_across_nodes) { 2177 struct stable_node *stable_node, *next; 2178 struct page *page; 2179 2180 list_for_each_entry_safe(stable_node, next, 2181 &migrate_nodes, list) { 2182 page = get_ksm_page(stable_node, false); 2183 if (page) 2184 put_page(page); 2185 cond_resched(); 2186 } 2187 } 2188 2189 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2190 root_unstable_tree[nid] = RB_ROOT; 2191 2192 spin_lock(&ksm_mmlist_lock); 2193 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2194 ksm_scan.mm_slot = slot; 2195 spin_unlock(&ksm_mmlist_lock); 2196 /* 2197 * Although we tested list_empty() above, a racing __ksm_exit 2198 * of the last mm on the list may have removed it since then. 2199 */ 2200 if (slot == &ksm_mm_head) 2201 return NULL; 2202 next_mm: 2203 ksm_scan.address = 0; 2204 ksm_scan.rmap_list = &slot->rmap_list; 2205 } 2206 2207 mm = slot->mm; 2208 down_read(&mm->mmap_sem); 2209 if (ksm_test_exit(mm)) 2210 vma = NULL; 2211 else 2212 vma = find_vma(mm, ksm_scan.address); 2213 2214 for (; vma; vma = vma->vm_next) { 2215 if (!(vma->vm_flags & VM_MERGEABLE)) 2216 continue; 2217 if (ksm_scan.address < vma->vm_start) 2218 ksm_scan.address = vma->vm_start; 2219 if (!vma->anon_vma) 2220 ksm_scan.address = vma->vm_end; 2221 2222 while (ksm_scan.address < vma->vm_end) { 2223 if (ksm_test_exit(mm)) 2224 break; 2225 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2226 if (IS_ERR_OR_NULL(*page)) { 2227 ksm_scan.address += PAGE_SIZE; 2228 cond_resched(); 2229 continue; 2230 } 2231 if (PageAnon(*page)) { 2232 flush_anon_page(vma, *page, ksm_scan.address); 2233 flush_dcache_page(*page); 2234 rmap_item = get_next_rmap_item(slot, 2235 ksm_scan.rmap_list, ksm_scan.address); 2236 if (rmap_item) { 2237 ksm_scan.rmap_list = 2238 &rmap_item->rmap_list; 2239 ksm_scan.address += PAGE_SIZE; 2240 } else 2241 put_page(*page); 2242 up_read(&mm->mmap_sem); 2243 return rmap_item; 2244 } 2245 put_page(*page); 2246 ksm_scan.address += PAGE_SIZE; 2247 cond_resched(); 2248 } 2249 } 2250 2251 if (ksm_test_exit(mm)) { 2252 ksm_scan.address = 0; 2253 ksm_scan.rmap_list = &slot->rmap_list; 2254 } 2255 /* 2256 * Nuke all the rmap_items that are above this current rmap: 2257 * because there were no VM_MERGEABLE vmas with such addresses. 2258 */ 2259 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2260 2261 spin_lock(&ksm_mmlist_lock); 2262 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2263 struct mm_slot, mm_list); 2264 if (ksm_scan.address == 0) { 2265 /* 2266 * We've completed a full scan of all vmas, holding mmap_sem 2267 * throughout, and found no VM_MERGEABLE: so do the same as 2268 * __ksm_exit does to remove this mm from all our lists now. 2269 * This applies either when cleaning up after __ksm_exit 2270 * (but beware: we can reach here even before __ksm_exit), 2271 * or when all VM_MERGEABLE areas have been unmapped (and 2272 * mmap_sem then protects against race with MADV_MERGEABLE). 2273 */ 2274 hash_del(&slot->link); 2275 list_del(&slot->mm_list); 2276 spin_unlock(&ksm_mmlist_lock); 2277 2278 free_mm_slot(slot); 2279 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2280 up_read(&mm->mmap_sem); 2281 mmdrop(mm); 2282 } else { 2283 up_read(&mm->mmap_sem); 2284 /* 2285 * up_read(&mm->mmap_sem) first because after 2286 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2287 * already have been freed under us by __ksm_exit() 2288 * because the "mm_slot" is still hashed and 2289 * ksm_scan.mm_slot doesn't point to it anymore. 2290 */ 2291 spin_unlock(&ksm_mmlist_lock); 2292 } 2293 2294 /* Repeat until we've completed scanning the whole list */ 2295 slot = ksm_scan.mm_slot; 2296 if (slot != &ksm_mm_head) 2297 goto next_mm; 2298 2299 ksm_scan.seqnr++; 2300 return NULL; 2301 } 2302 2303 /** 2304 * ksm_do_scan - the ksm scanner main worker function. 2305 * @scan_npages: number of pages we want to scan before we return. 2306 */ 2307 static void ksm_do_scan(unsigned int scan_npages) 2308 { 2309 struct rmap_item *rmap_item; 2310 struct page *uninitialized_var(page); 2311 2312 while (scan_npages-- && likely(!freezing(current))) { 2313 cond_resched(); 2314 rmap_item = scan_get_next_rmap_item(&page); 2315 if (!rmap_item) 2316 return; 2317 cmp_and_merge_page(page, rmap_item); 2318 put_page(page); 2319 } 2320 } 2321 2322 static int ksmd_should_run(void) 2323 { 2324 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2325 } 2326 2327 static int ksm_scan_thread(void *nothing) 2328 { 2329 set_freezable(); 2330 set_user_nice(current, 5); 2331 2332 while (!kthread_should_stop()) { 2333 mutex_lock(&ksm_thread_mutex); 2334 wait_while_offlining(); 2335 if (ksmd_should_run()) 2336 ksm_do_scan(ksm_thread_pages_to_scan); 2337 mutex_unlock(&ksm_thread_mutex); 2338 2339 try_to_freeze(); 2340 2341 if (ksmd_should_run()) { 2342 schedule_timeout_interruptible( 2343 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 2344 } else { 2345 wait_event_freezable(ksm_thread_wait, 2346 ksmd_should_run() || kthread_should_stop()); 2347 } 2348 } 2349 return 0; 2350 } 2351 2352 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2353 unsigned long end, int advice, unsigned long *vm_flags) 2354 { 2355 struct mm_struct *mm = vma->vm_mm; 2356 int err; 2357 2358 switch (advice) { 2359 case MADV_MERGEABLE: 2360 /* 2361 * Be somewhat over-protective for now! 2362 */ 2363 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2364 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2365 VM_HUGETLB | VM_MIXEDMAP)) 2366 return 0; /* just ignore the advice */ 2367 2368 #ifdef VM_SAO 2369 if (*vm_flags & VM_SAO) 2370 return 0; 2371 #endif 2372 2373 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2374 err = __ksm_enter(mm); 2375 if (err) 2376 return err; 2377 } 2378 2379 *vm_flags |= VM_MERGEABLE; 2380 break; 2381 2382 case MADV_UNMERGEABLE: 2383 if (!(*vm_flags & VM_MERGEABLE)) 2384 return 0; /* just ignore the advice */ 2385 2386 if (vma->anon_vma) { 2387 err = unmerge_ksm_pages(vma, start, end); 2388 if (err) 2389 return err; 2390 } 2391 2392 *vm_flags &= ~VM_MERGEABLE; 2393 break; 2394 } 2395 2396 return 0; 2397 } 2398 2399 int __ksm_enter(struct mm_struct *mm) 2400 { 2401 struct mm_slot *mm_slot; 2402 int needs_wakeup; 2403 2404 mm_slot = alloc_mm_slot(); 2405 if (!mm_slot) 2406 return -ENOMEM; 2407 2408 /* Check ksm_run too? Would need tighter locking */ 2409 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2410 2411 spin_lock(&ksm_mmlist_lock); 2412 insert_to_mm_slots_hash(mm, mm_slot); 2413 /* 2414 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2415 * insert just behind the scanning cursor, to let the area settle 2416 * down a little; when fork is followed by immediate exec, we don't 2417 * want ksmd to waste time setting up and tearing down an rmap_list. 2418 * 2419 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2420 * scanning cursor, otherwise KSM pages in newly forked mms will be 2421 * missed: then we might as well insert at the end of the list. 2422 */ 2423 if (ksm_run & KSM_RUN_UNMERGE) 2424 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2425 else 2426 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2427 spin_unlock(&ksm_mmlist_lock); 2428 2429 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2430 mmgrab(mm); 2431 2432 if (needs_wakeup) 2433 wake_up_interruptible(&ksm_thread_wait); 2434 2435 return 0; 2436 } 2437 2438 void __ksm_exit(struct mm_struct *mm) 2439 { 2440 struct mm_slot *mm_slot; 2441 int easy_to_free = 0; 2442 2443 /* 2444 * This process is exiting: if it's straightforward (as is the 2445 * case when ksmd was never running), free mm_slot immediately. 2446 * But if it's at the cursor or has rmap_items linked to it, use 2447 * mmap_sem to synchronize with any break_cows before pagetables 2448 * are freed, and leave the mm_slot on the list for ksmd to free. 2449 * Beware: ksm may already have noticed it exiting and freed the slot. 2450 */ 2451 2452 spin_lock(&ksm_mmlist_lock); 2453 mm_slot = get_mm_slot(mm); 2454 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2455 if (!mm_slot->rmap_list) { 2456 hash_del(&mm_slot->link); 2457 list_del(&mm_slot->mm_list); 2458 easy_to_free = 1; 2459 } else { 2460 list_move(&mm_slot->mm_list, 2461 &ksm_scan.mm_slot->mm_list); 2462 } 2463 } 2464 spin_unlock(&ksm_mmlist_lock); 2465 2466 if (easy_to_free) { 2467 free_mm_slot(mm_slot); 2468 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2469 mmdrop(mm); 2470 } else if (mm_slot) { 2471 down_write(&mm->mmap_sem); 2472 up_write(&mm->mmap_sem); 2473 } 2474 } 2475 2476 struct page *ksm_might_need_to_copy(struct page *page, 2477 struct vm_area_struct *vma, unsigned long address) 2478 { 2479 struct anon_vma *anon_vma = page_anon_vma(page); 2480 struct page *new_page; 2481 2482 if (PageKsm(page)) { 2483 if (page_stable_node(page) && 2484 !(ksm_run & KSM_RUN_UNMERGE)) 2485 return page; /* no need to copy it */ 2486 } else if (!anon_vma) { 2487 return page; /* no need to copy it */ 2488 } else if (anon_vma->root == vma->anon_vma->root && 2489 page->index == linear_page_index(vma, address)) { 2490 return page; /* still no need to copy it */ 2491 } 2492 if (!PageUptodate(page)) 2493 return page; /* let do_swap_page report the error */ 2494 2495 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2496 if (new_page) { 2497 copy_user_highpage(new_page, page, address, vma); 2498 2499 SetPageDirty(new_page); 2500 __SetPageUptodate(new_page); 2501 __SetPageLocked(new_page); 2502 } 2503 2504 return new_page; 2505 } 2506 2507 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2508 { 2509 struct stable_node *stable_node; 2510 struct rmap_item *rmap_item; 2511 int search_new_forks = 0; 2512 2513 VM_BUG_ON_PAGE(!PageKsm(page), page); 2514 2515 /* 2516 * Rely on the page lock to protect against concurrent modifications 2517 * to that page's node of the stable tree. 2518 */ 2519 VM_BUG_ON_PAGE(!PageLocked(page), page); 2520 2521 stable_node = page_stable_node(page); 2522 if (!stable_node) 2523 return; 2524 again: 2525 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2526 struct anon_vma *anon_vma = rmap_item->anon_vma; 2527 struct anon_vma_chain *vmac; 2528 struct vm_area_struct *vma; 2529 2530 cond_resched(); 2531 anon_vma_lock_read(anon_vma); 2532 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2533 0, ULONG_MAX) { 2534 cond_resched(); 2535 vma = vmac->vma; 2536 if (rmap_item->address < vma->vm_start || 2537 rmap_item->address >= vma->vm_end) 2538 continue; 2539 /* 2540 * Initially we examine only the vma which covers this 2541 * rmap_item; but later, if there is still work to do, 2542 * we examine covering vmas in other mms: in case they 2543 * were forked from the original since ksmd passed. 2544 */ 2545 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2546 continue; 2547 2548 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2549 continue; 2550 2551 if (!rwc->rmap_one(page, vma, 2552 rmap_item->address, rwc->arg)) { 2553 anon_vma_unlock_read(anon_vma); 2554 return; 2555 } 2556 if (rwc->done && rwc->done(page)) { 2557 anon_vma_unlock_read(anon_vma); 2558 return; 2559 } 2560 } 2561 anon_vma_unlock_read(anon_vma); 2562 } 2563 if (!search_new_forks++) 2564 goto again; 2565 } 2566 2567 #ifdef CONFIG_MIGRATION 2568 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2569 { 2570 struct stable_node *stable_node; 2571 2572 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2573 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2574 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2575 2576 stable_node = page_stable_node(newpage); 2577 if (stable_node) { 2578 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2579 stable_node->kpfn = page_to_pfn(newpage); 2580 /* 2581 * newpage->mapping was set in advance; now we need smp_wmb() 2582 * to make sure that the new stable_node->kpfn is visible 2583 * to get_ksm_page() before it can see that oldpage->mapping 2584 * has gone stale (or that PageSwapCache has been cleared). 2585 */ 2586 smp_wmb(); 2587 set_page_stable_node(oldpage, NULL); 2588 } 2589 } 2590 #endif /* CONFIG_MIGRATION */ 2591 2592 #ifdef CONFIG_MEMORY_HOTREMOVE 2593 static void wait_while_offlining(void) 2594 { 2595 while (ksm_run & KSM_RUN_OFFLINE) { 2596 mutex_unlock(&ksm_thread_mutex); 2597 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2598 TASK_UNINTERRUPTIBLE); 2599 mutex_lock(&ksm_thread_mutex); 2600 } 2601 } 2602 2603 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2604 unsigned long start_pfn, 2605 unsigned long end_pfn) 2606 { 2607 if (stable_node->kpfn >= start_pfn && 2608 stable_node->kpfn < end_pfn) { 2609 /* 2610 * Don't get_ksm_page, page has already gone: 2611 * which is why we keep kpfn instead of page* 2612 */ 2613 remove_node_from_stable_tree(stable_node); 2614 return true; 2615 } 2616 return false; 2617 } 2618 2619 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2620 unsigned long start_pfn, 2621 unsigned long end_pfn, 2622 struct rb_root *root) 2623 { 2624 struct stable_node *dup; 2625 struct hlist_node *hlist_safe; 2626 2627 if (!is_stable_node_chain(stable_node)) { 2628 VM_BUG_ON(is_stable_node_dup(stable_node)); 2629 return stable_node_dup_remove_range(stable_node, start_pfn, 2630 end_pfn); 2631 } 2632 2633 hlist_for_each_entry_safe(dup, hlist_safe, 2634 &stable_node->hlist, hlist_dup) { 2635 VM_BUG_ON(!is_stable_node_dup(dup)); 2636 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2637 } 2638 if (hlist_empty(&stable_node->hlist)) { 2639 free_stable_node_chain(stable_node, root); 2640 return true; /* notify caller that tree was rebalanced */ 2641 } else 2642 return false; 2643 } 2644 2645 static void ksm_check_stable_tree(unsigned long start_pfn, 2646 unsigned long end_pfn) 2647 { 2648 struct stable_node *stable_node, *next; 2649 struct rb_node *node; 2650 int nid; 2651 2652 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2653 node = rb_first(root_stable_tree + nid); 2654 while (node) { 2655 stable_node = rb_entry(node, struct stable_node, node); 2656 if (stable_node_chain_remove_range(stable_node, 2657 start_pfn, end_pfn, 2658 root_stable_tree + 2659 nid)) 2660 node = rb_first(root_stable_tree + nid); 2661 else 2662 node = rb_next(node); 2663 cond_resched(); 2664 } 2665 } 2666 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2667 if (stable_node->kpfn >= start_pfn && 2668 stable_node->kpfn < end_pfn) 2669 remove_node_from_stable_tree(stable_node); 2670 cond_resched(); 2671 } 2672 } 2673 2674 static int ksm_memory_callback(struct notifier_block *self, 2675 unsigned long action, void *arg) 2676 { 2677 struct memory_notify *mn = arg; 2678 2679 switch (action) { 2680 case MEM_GOING_OFFLINE: 2681 /* 2682 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2683 * and remove_all_stable_nodes() while memory is going offline: 2684 * it is unsafe for them to touch the stable tree at this time. 2685 * But unmerge_ksm_pages(), rmap lookups and other entry points 2686 * which do not need the ksm_thread_mutex are all safe. 2687 */ 2688 mutex_lock(&ksm_thread_mutex); 2689 ksm_run |= KSM_RUN_OFFLINE; 2690 mutex_unlock(&ksm_thread_mutex); 2691 break; 2692 2693 case MEM_OFFLINE: 2694 /* 2695 * Most of the work is done by page migration; but there might 2696 * be a few stable_nodes left over, still pointing to struct 2697 * pages which have been offlined: prune those from the tree, 2698 * otherwise get_ksm_page() might later try to access a 2699 * non-existent struct page. 2700 */ 2701 ksm_check_stable_tree(mn->start_pfn, 2702 mn->start_pfn + mn->nr_pages); 2703 /* fallthrough */ 2704 2705 case MEM_CANCEL_OFFLINE: 2706 mutex_lock(&ksm_thread_mutex); 2707 ksm_run &= ~KSM_RUN_OFFLINE; 2708 mutex_unlock(&ksm_thread_mutex); 2709 2710 smp_mb(); /* wake_up_bit advises this */ 2711 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2712 break; 2713 } 2714 return NOTIFY_OK; 2715 } 2716 #else 2717 static void wait_while_offlining(void) 2718 { 2719 } 2720 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2721 2722 #ifdef CONFIG_SYSFS 2723 /* 2724 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2725 */ 2726 2727 #define KSM_ATTR_RO(_name) \ 2728 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2729 #define KSM_ATTR(_name) \ 2730 static struct kobj_attribute _name##_attr = \ 2731 __ATTR(_name, 0644, _name##_show, _name##_store) 2732 2733 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2734 struct kobj_attribute *attr, char *buf) 2735 { 2736 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2737 } 2738 2739 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2740 struct kobj_attribute *attr, 2741 const char *buf, size_t count) 2742 { 2743 unsigned long msecs; 2744 int err; 2745 2746 err = kstrtoul(buf, 10, &msecs); 2747 if (err || msecs > UINT_MAX) 2748 return -EINVAL; 2749 2750 ksm_thread_sleep_millisecs = msecs; 2751 2752 return count; 2753 } 2754 KSM_ATTR(sleep_millisecs); 2755 2756 static ssize_t pages_to_scan_show(struct kobject *kobj, 2757 struct kobj_attribute *attr, char *buf) 2758 { 2759 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2760 } 2761 2762 static ssize_t pages_to_scan_store(struct kobject *kobj, 2763 struct kobj_attribute *attr, 2764 const char *buf, size_t count) 2765 { 2766 int err; 2767 unsigned long nr_pages; 2768 2769 err = kstrtoul(buf, 10, &nr_pages); 2770 if (err || nr_pages > UINT_MAX) 2771 return -EINVAL; 2772 2773 ksm_thread_pages_to_scan = nr_pages; 2774 2775 return count; 2776 } 2777 KSM_ATTR(pages_to_scan); 2778 2779 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2780 char *buf) 2781 { 2782 return sprintf(buf, "%lu\n", ksm_run); 2783 } 2784 2785 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2786 const char *buf, size_t count) 2787 { 2788 int err; 2789 unsigned long flags; 2790 2791 err = kstrtoul(buf, 10, &flags); 2792 if (err || flags > UINT_MAX) 2793 return -EINVAL; 2794 if (flags > KSM_RUN_UNMERGE) 2795 return -EINVAL; 2796 2797 /* 2798 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2799 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2800 * breaking COW to free the pages_shared (but leaves mm_slots 2801 * on the list for when ksmd may be set running again). 2802 */ 2803 2804 mutex_lock(&ksm_thread_mutex); 2805 wait_while_offlining(); 2806 if (ksm_run != flags) { 2807 ksm_run = flags; 2808 if (flags & KSM_RUN_UNMERGE) { 2809 set_current_oom_origin(); 2810 err = unmerge_and_remove_all_rmap_items(); 2811 clear_current_oom_origin(); 2812 if (err) { 2813 ksm_run = KSM_RUN_STOP; 2814 count = err; 2815 } 2816 } 2817 } 2818 mutex_unlock(&ksm_thread_mutex); 2819 2820 if (flags & KSM_RUN_MERGE) 2821 wake_up_interruptible(&ksm_thread_wait); 2822 2823 return count; 2824 } 2825 KSM_ATTR(run); 2826 2827 #ifdef CONFIG_NUMA 2828 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2829 struct kobj_attribute *attr, char *buf) 2830 { 2831 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2832 } 2833 2834 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2835 struct kobj_attribute *attr, 2836 const char *buf, size_t count) 2837 { 2838 int err; 2839 unsigned long knob; 2840 2841 err = kstrtoul(buf, 10, &knob); 2842 if (err) 2843 return err; 2844 if (knob > 1) 2845 return -EINVAL; 2846 2847 mutex_lock(&ksm_thread_mutex); 2848 wait_while_offlining(); 2849 if (ksm_merge_across_nodes != knob) { 2850 if (ksm_pages_shared || remove_all_stable_nodes()) 2851 err = -EBUSY; 2852 else if (root_stable_tree == one_stable_tree) { 2853 struct rb_root *buf; 2854 /* 2855 * This is the first time that we switch away from the 2856 * default of merging across nodes: must now allocate 2857 * a buffer to hold as many roots as may be needed. 2858 * Allocate stable and unstable together: 2859 * MAXSMP NODES_SHIFT 10 will use 16kB. 2860 */ 2861 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2862 GFP_KERNEL); 2863 /* Let us assume that RB_ROOT is NULL is zero */ 2864 if (!buf) 2865 err = -ENOMEM; 2866 else { 2867 root_stable_tree = buf; 2868 root_unstable_tree = buf + nr_node_ids; 2869 /* Stable tree is empty but not the unstable */ 2870 root_unstable_tree[0] = one_unstable_tree[0]; 2871 } 2872 } 2873 if (!err) { 2874 ksm_merge_across_nodes = knob; 2875 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2876 } 2877 } 2878 mutex_unlock(&ksm_thread_mutex); 2879 2880 return err ? err : count; 2881 } 2882 KSM_ATTR(merge_across_nodes); 2883 #endif 2884 2885 static ssize_t use_zero_pages_show(struct kobject *kobj, 2886 struct kobj_attribute *attr, char *buf) 2887 { 2888 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2889 } 2890 static ssize_t use_zero_pages_store(struct kobject *kobj, 2891 struct kobj_attribute *attr, 2892 const char *buf, size_t count) 2893 { 2894 int err; 2895 bool value; 2896 2897 err = kstrtobool(buf, &value); 2898 if (err) 2899 return -EINVAL; 2900 2901 ksm_use_zero_pages = value; 2902 2903 return count; 2904 } 2905 KSM_ATTR(use_zero_pages); 2906 2907 static ssize_t max_page_sharing_show(struct kobject *kobj, 2908 struct kobj_attribute *attr, char *buf) 2909 { 2910 return sprintf(buf, "%u\n", ksm_max_page_sharing); 2911 } 2912 2913 static ssize_t max_page_sharing_store(struct kobject *kobj, 2914 struct kobj_attribute *attr, 2915 const char *buf, size_t count) 2916 { 2917 int err; 2918 int knob; 2919 2920 err = kstrtoint(buf, 10, &knob); 2921 if (err) 2922 return err; 2923 /* 2924 * When a KSM page is created it is shared by 2 mappings. This 2925 * being a signed comparison, it implicitly verifies it's not 2926 * negative. 2927 */ 2928 if (knob < 2) 2929 return -EINVAL; 2930 2931 if (READ_ONCE(ksm_max_page_sharing) == knob) 2932 return count; 2933 2934 mutex_lock(&ksm_thread_mutex); 2935 wait_while_offlining(); 2936 if (ksm_max_page_sharing != knob) { 2937 if (ksm_pages_shared || remove_all_stable_nodes()) 2938 err = -EBUSY; 2939 else 2940 ksm_max_page_sharing = knob; 2941 } 2942 mutex_unlock(&ksm_thread_mutex); 2943 2944 return err ? err : count; 2945 } 2946 KSM_ATTR(max_page_sharing); 2947 2948 static ssize_t pages_shared_show(struct kobject *kobj, 2949 struct kobj_attribute *attr, char *buf) 2950 { 2951 return sprintf(buf, "%lu\n", ksm_pages_shared); 2952 } 2953 KSM_ATTR_RO(pages_shared); 2954 2955 static ssize_t pages_sharing_show(struct kobject *kobj, 2956 struct kobj_attribute *attr, char *buf) 2957 { 2958 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2959 } 2960 KSM_ATTR_RO(pages_sharing); 2961 2962 static ssize_t pages_unshared_show(struct kobject *kobj, 2963 struct kobj_attribute *attr, char *buf) 2964 { 2965 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2966 } 2967 KSM_ATTR_RO(pages_unshared); 2968 2969 static ssize_t pages_volatile_show(struct kobject *kobj, 2970 struct kobj_attribute *attr, char *buf) 2971 { 2972 long ksm_pages_volatile; 2973 2974 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2975 - ksm_pages_sharing - ksm_pages_unshared; 2976 /* 2977 * It was not worth any locking to calculate that statistic, 2978 * but it might therefore sometimes be negative: conceal that. 2979 */ 2980 if (ksm_pages_volatile < 0) 2981 ksm_pages_volatile = 0; 2982 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2983 } 2984 KSM_ATTR_RO(pages_volatile); 2985 2986 static ssize_t stable_node_dups_show(struct kobject *kobj, 2987 struct kobj_attribute *attr, char *buf) 2988 { 2989 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 2990 } 2991 KSM_ATTR_RO(stable_node_dups); 2992 2993 static ssize_t stable_node_chains_show(struct kobject *kobj, 2994 struct kobj_attribute *attr, char *buf) 2995 { 2996 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 2997 } 2998 KSM_ATTR_RO(stable_node_chains); 2999 3000 static ssize_t 3001 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3002 struct kobj_attribute *attr, 3003 char *buf) 3004 { 3005 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3006 } 3007 3008 static ssize_t 3009 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3010 struct kobj_attribute *attr, 3011 const char *buf, size_t count) 3012 { 3013 unsigned long msecs; 3014 int err; 3015 3016 err = kstrtoul(buf, 10, &msecs); 3017 if (err || msecs > UINT_MAX) 3018 return -EINVAL; 3019 3020 ksm_stable_node_chains_prune_millisecs = msecs; 3021 3022 return count; 3023 } 3024 KSM_ATTR(stable_node_chains_prune_millisecs); 3025 3026 static ssize_t full_scans_show(struct kobject *kobj, 3027 struct kobj_attribute *attr, char *buf) 3028 { 3029 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3030 } 3031 KSM_ATTR_RO(full_scans); 3032 3033 static struct attribute *ksm_attrs[] = { 3034 &sleep_millisecs_attr.attr, 3035 &pages_to_scan_attr.attr, 3036 &run_attr.attr, 3037 &pages_shared_attr.attr, 3038 &pages_sharing_attr.attr, 3039 &pages_unshared_attr.attr, 3040 &pages_volatile_attr.attr, 3041 &full_scans_attr.attr, 3042 #ifdef CONFIG_NUMA 3043 &merge_across_nodes_attr.attr, 3044 #endif 3045 &max_page_sharing_attr.attr, 3046 &stable_node_chains_attr.attr, 3047 &stable_node_dups_attr.attr, 3048 &stable_node_chains_prune_millisecs_attr.attr, 3049 &use_zero_pages_attr.attr, 3050 NULL, 3051 }; 3052 3053 static const struct attribute_group ksm_attr_group = { 3054 .attrs = ksm_attrs, 3055 .name = "ksm", 3056 }; 3057 #endif /* CONFIG_SYSFS */ 3058 3059 static int __init ksm_init(void) 3060 { 3061 struct task_struct *ksm_thread; 3062 int err; 3063 3064 /* The correct value depends on page size and endianness */ 3065 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3066 /* Default to false for backwards compatibility */ 3067 ksm_use_zero_pages = false; 3068 3069 err = ksm_slab_init(); 3070 if (err) 3071 goto out; 3072 3073 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3074 if (IS_ERR(ksm_thread)) { 3075 pr_err("ksm: creating kthread failed\n"); 3076 err = PTR_ERR(ksm_thread); 3077 goto out_free; 3078 } 3079 3080 #ifdef CONFIG_SYSFS 3081 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3082 if (err) { 3083 pr_err("ksm: register sysfs failed\n"); 3084 kthread_stop(ksm_thread); 3085 goto out_free; 3086 } 3087 #else 3088 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3089 3090 #endif /* CONFIG_SYSFS */ 3091 3092 #ifdef CONFIG_MEMORY_HOTREMOVE 3093 /* There is no significance to this priority 100 */ 3094 hotplug_memory_notifier(ksm_memory_callback, 100); 3095 #endif 3096 return 0; 3097 3098 out_free: 3099 ksm_slab_free(); 3100 out: 3101 return err; 3102 } 3103 subsys_initcall(ksm_init); 3104