1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/jhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /* 55 * A few notes about the KSM scanning process, 56 * to make it easier to understand the data structures below: 57 * 58 * In order to reduce excessive scanning, KSM sorts the memory pages by their 59 * contents into a data structure that holds pointers to the pages' locations. 60 * 61 * Since the contents of the pages may change at any moment, KSM cannot just 62 * insert the pages into a normal sorted tree and expect it to find anything. 63 * Therefore KSM uses two data structures - the stable and the unstable tree. 64 * 65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 66 * by their contents. Because each such page is write-protected, searching on 67 * this tree is fully assured to be working (except when pages are unmapped), 68 * and therefore this tree is called the stable tree. 69 * 70 * In addition to the stable tree, KSM uses a second data structure called the 71 * unstable tree: this tree holds pointers to pages which have been found to 72 * be "unchanged for a period of time". The unstable tree sorts these pages 73 * by their contents, but since they are not write-protected, KSM cannot rely 74 * upon the unstable tree to work correctly - the unstable tree is liable to 75 * be corrupted as its contents are modified, and so it is called unstable. 76 * 77 * KSM solves this problem by several techniques: 78 * 79 * 1) The unstable tree is flushed every time KSM completes scanning all 80 * memory areas, and then the tree is rebuilt again from the beginning. 81 * 2) KSM will only insert into the unstable tree, pages whose hash value 82 * has not changed since the previous scan of all memory areas. 83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 84 * colors of the nodes and not on their contents, assuring that even when 85 * the tree gets "corrupted" it won't get out of balance, so scanning time 86 * remains the same (also, searching and inserting nodes in an rbtree uses 87 * the same algorithm, so we have no overhead when we flush and rebuild). 88 * 4) KSM never flushes the stable tree, which means that even if it were to 89 * take 10 attempts to find a page in the unstable tree, once it is found, 90 * it is secured in the stable tree. (When we scan a new page, we first 91 * compare it against the stable tree, and then against the unstable tree.) 92 * 93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 94 * stable trees and multiple unstable trees: one of each for each NUMA node. 95 */ 96 97 /** 98 * struct mm_slot - ksm information per mm that is being scanned 99 * @link: link to the mm_slots hash list 100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 102 * @mm: the mm that this information is valid for 103 */ 104 struct mm_slot { 105 struct hlist_node link; 106 struct list_head mm_list; 107 struct rmap_item *rmap_list; 108 struct mm_struct *mm; 109 }; 110 111 /** 112 * struct ksm_scan - cursor for scanning 113 * @mm_slot: the current mm_slot we are scanning 114 * @address: the next address inside that to be scanned 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list 116 * @seqnr: count of completed full scans (needed when removing unstable node) 117 * 118 * There is only the one ksm_scan instance of this cursor structure. 119 */ 120 struct ksm_scan { 121 struct mm_slot *mm_slot; 122 unsigned long address; 123 struct rmap_item **rmap_list; 124 unsigned long seqnr; 125 }; 126 127 /** 128 * struct stable_node - node of the stable rbtree 129 * @node: rb node of this ksm page in the stable tree 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 132 * @list: linked into migrate_nodes, pending placement in the proper node tree 133 * @hlist: hlist head of rmap_items using this ksm page 134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 135 * @chain_prune_time: time of the last full garbage collection 136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 138 */ 139 struct stable_node { 140 union { 141 struct rb_node node; /* when node of stable tree */ 142 struct { /* when listed for migration */ 143 struct list_head *head; 144 struct { 145 struct hlist_node hlist_dup; 146 struct list_head list; 147 }; 148 }; 149 }; 150 struct hlist_head hlist; 151 union { 152 unsigned long kpfn; 153 unsigned long chain_prune_time; 154 }; 155 /* 156 * STABLE_NODE_CHAIN can be any negative number in 157 * rmap_hlist_len negative range, but better not -1 to be able 158 * to reliably detect underflows. 159 */ 160 #define STABLE_NODE_CHAIN -1024 161 int rmap_hlist_len; 162 #ifdef CONFIG_NUMA 163 int nid; 164 #endif 165 }; 166 167 /** 168 * struct rmap_item - reverse mapping item for virtual addresses 169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 171 * @nid: NUMA node id of unstable tree in which linked (may not match page) 172 * @mm: the memory structure this rmap_item is pointing into 173 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 174 * @oldchecksum: previous checksum of the page at that virtual address 175 * @node: rb node of this rmap_item in the unstable tree 176 * @head: pointer to stable_node heading this list in the stable tree 177 * @hlist: link into hlist of rmap_items hanging off that stable_node 178 */ 179 struct rmap_item { 180 struct rmap_item *rmap_list; 181 union { 182 struct anon_vma *anon_vma; /* when stable */ 183 #ifdef CONFIG_NUMA 184 int nid; /* when node of unstable tree */ 185 #endif 186 }; 187 struct mm_struct *mm; 188 unsigned long address; /* + low bits used for flags below */ 189 unsigned int oldchecksum; /* when unstable */ 190 union { 191 struct rb_node node; /* when node of unstable tree */ 192 struct { /* when listed from stable tree */ 193 struct stable_node *head; 194 struct hlist_node hlist; 195 }; 196 }; 197 }; 198 199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 202 203 /* The stable and unstable tree heads */ 204 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 205 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 206 static struct rb_root *root_stable_tree = one_stable_tree; 207 static struct rb_root *root_unstable_tree = one_unstable_tree; 208 209 /* Recently migrated nodes of stable tree, pending proper placement */ 210 static LIST_HEAD(migrate_nodes); 211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 212 213 #define MM_SLOTS_HASH_BITS 10 214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 215 216 static struct mm_slot ksm_mm_head = { 217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 218 }; 219 static struct ksm_scan ksm_scan = { 220 .mm_slot = &ksm_mm_head, 221 }; 222 223 static struct kmem_cache *rmap_item_cache; 224 static struct kmem_cache *stable_node_cache; 225 static struct kmem_cache *mm_slot_cache; 226 227 /* The number of nodes in the stable tree */ 228 static unsigned long ksm_pages_shared; 229 230 /* The number of page slots additionally sharing those nodes */ 231 static unsigned long ksm_pages_sharing; 232 233 /* The number of nodes in the unstable tree */ 234 static unsigned long ksm_pages_unshared; 235 236 /* The number of rmap_items in use: to calculate pages_volatile */ 237 static unsigned long ksm_rmap_items; 238 239 /* The number of stable_node chains */ 240 static unsigned long ksm_stable_node_chains; 241 242 /* The number of stable_node dups linked to the stable_node chains */ 243 static unsigned long ksm_stable_node_dups; 244 245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 246 static int ksm_stable_node_chains_prune_millisecs = 2000; 247 248 /* Maximum number of page slots sharing a stable node */ 249 static int ksm_max_page_sharing = 256; 250 251 /* Number of pages ksmd should scan in one batch */ 252 static unsigned int ksm_thread_pages_to_scan = 100; 253 254 /* Milliseconds ksmd should sleep between batches */ 255 static unsigned int ksm_thread_sleep_millisecs = 20; 256 257 /* Checksum of an empty (zeroed) page */ 258 static unsigned int zero_checksum __read_mostly; 259 260 /* Whether to merge empty (zeroed) pages with actual zero pages */ 261 static bool ksm_use_zero_pages __read_mostly; 262 263 #ifdef CONFIG_NUMA 264 /* Zeroed when merging across nodes is not allowed */ 265 static unsigned int ksm_merge_across_nodes = 1; 266 static int ksm_nr_node_ids = 1; 267 #else 268 #define ksm_merge_across_nodes 1U 269 #define ksm_nr_node_ids 1 270 #endif 271 272 #define KSM_RUN_STOP 0 273 #define KSM_RUN_MERGE 1 274 #define KSM_RUN_UNMERGE 2 275 #define KSM_RUN_OFFLINE 4 276 static unsigned long ksm_run = KSM_RUN_STOP; 277 static void wait_while_offlining(void); 278 279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 280 static DEFINE_MUTEX(ksm_thread_mutex); 281 static DEFINE_SPINLOCK(ksm_mmlist_lock); 282 283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 284 sizeof(struct __struct), __alignof__(struct __struct),\ 285 (__flags), NULL) 286 287 static int __init ksm_slab_init(void) 288 { 289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 290 if (!rmap_item_cache) 291 goto out; 292 293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 294 if (!stable_node_cache) 295 goto out_free1; 296 297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 298 if (!mm_slot_cache) 299 goto out_free2; 300 301 return 0; 302 303 out_free2: 304 kmem_cache_destroy(stable_node_cache); 305 out_free1: 306 kmem_cache_destroy(rmap_item_cache); 307 out: 308 return -ENOMEM; 309 } 310 311 static void __init ksm_slab_free(void) 312 { 313 kmem_cache_destroy(mm_slot_cache); 314 kmem_cache_destroy(stable_node_cache); 315 kmem_cache_destroy(rmap_item_cache); 316 mm_slot_cache = NULL; 317 } 318 319 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 320 { 321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 322 } 323 324 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 325 { 326 return dup->head == STABLE_NODE_DUP_HEAD; 327 } 328 329 static inline void stable_node_chain_add_dup(struct stable_node *dup, 330 struct stable_node *chain) 331 { 332 VM_BUG_ON(is_stable_node_dup(dup)); 333 dup->head = STABLE_NODE_DUP_HEAD; 334 VM_BUG_ON(!is_stable_node_chain(chain)); 335 hlist_add_head(&dup->hlist_dup, &chain->hlist); 336 ksm_stable_node_dups++; 337 } 338 339 static inline void __stable_node_dup_del(struct stable_node *dup) 340 { 341 VM_BUG_ON(!is_stable_node_dup(dup)); 342 hlist_del(&dup->hlist_dup); 343 ksm_stable_node_dups--; 344 } 345 346 static inline void stable_node_dup_del(struct stable_node *dup) 347 { 348 VM_BUG_ON(is_stable_node_chain(dup)); 349 if (is_stable_node_dup(dup)) 350 __stable_node_dup_del(dup); 351 else 352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 353 #ifdef CONFIG_DEBUG_VM 354 dup->head = NULL; 355 #endif 356 } 357 358 static inline struct rmap_item *alloc_rmap_item(void) 359 { 360 struct rmap_item *rmap_item; 361 362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 363 __GFP_NORETRY | __GFP_NOWARN); 364 if (rmap_item) 365 ksm_rmap_items++; 366 return rmap_item; 367 } 368 369 static inline void free_rmap_item(struct rmap_item *rmap_item) 370 { 371 ksm_rmap_items--; 372 rmap_item->mm = NULL; /* debug safety */ 373 kmem_cache_free(rmap_item_cache, rmap_item); 374 } 375 376 static inline struct stable_node *alloc_stable_node(void) 377 { 378 /* 379 * The allocation can take too long with GFP_KERNEL when memory is under 380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 381 * grants access to memory reserves, helping to avoid this problem. 382 */ 383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 384 } 385 386 static inline void free_stable_node(struct stable_node *stable_node) 387 { 388 VM_BUG_ON(stable_node->rmap_hlist_len && 389 !is_stable_node_chain(stable_node)); 390 kmem_cache_free(stable_node_cache, stable_node); 391 } 392 393 static inline struct mm_slot *alloc_mm_slot(void) 394 { 395 if (!mm_slot_cache) /* initialization failed */ 396 return NULL; 397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 398 } 399 400 static inline void free_mm_slot(struct mm_slot *mm_slot) 401 { 402 kmem_cache_free(mm_slot_cache, mm_slot); 403 } 404 405 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 406 { 407 struct mm_slot *slot; 408 409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 410 if (slot->mm == mm) 411 return slot; 412 413 return NULL; 414 } 415 416 static void insert_to_mm_slots_hash(struct mm_struct *mm, 417 struct mm_slot *mm_slot) 418 { 419 mm_slot->mm = mm; 420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 421 } 422 423 /* 424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 425 * page tables after it has passed through ksm_exit() - which, if necessary, 426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 427 * a special flag: they can just back out as soon as mm_users goes to zero. 428 * ksm_test_exit() is used throughout to make this test for exit: in some 429 * places for correctness, in some places just to avoid unnecessary work. 430 */ 431 static inline bool ksm_test_exit(struct mm_struct *mm) 432 { 433 return atomic_read(&mm->mm_users) == 0; 434 } 435 436 /* 437 * We use break_ksm to break COW on a ksm page: it's a stripped down 438 * 439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 440 * put_page(page); 441 * 442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 443 * in case the application has unmapped and remapped mm,addr meanwhile. 444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 446 * 447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 448 * of the process that owns 'vma'. We also do not want to enforce 449 * protection keys here anyway. 450 */ 451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 452 { 453 struct page *page; 454 int ret = 0; 455 456 do { 457 cond_resched(); 458 page = follow_page(vma, addr, 459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 460 if (IS_ERR_OR_NULL(page)) 461 break; 462 if (PageKsm(page)) 463 ret = handle_mm_fault(vma, addr, 464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 465 else 466 ret = VM_FAULT_WRITE; 467 put_page(page); 468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 469 /* 470 * We must loop because handle_mm_fault() may back out if there's 471 * any difficulty e.g. if pte accessed bit gets updated concurrently. 472 * 473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 474 * COW has been broken, even if the vma does not permit VM_WRITE; 475 * but note that a concurrent fault might break PageKsm for us. 476 * 477 * VM_FAULT_SIGBUS could occur if we race with truncation of the 478 * backing file, which also invalidates anonymous pages: that's 479 * okay, that truncation will have unmapped the PageKsm for us. 480 * 481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 483 * current task has TIF_MEMDIE set, and will be OOM killed on return 484 * to user; and ksmd, having no mm, would never be chosen for that. 485 * 486 * But if the mm is in a limited mem_cgroup, then the fault may fail 487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 488 * even ksmd can fail in this way - though it's usually breaking ksm 489 * just to undo a merge it made a moment before, so unlikely to oom. 490 * 491 * That's a pity: we might therefore have more kernel pages allocated 492 * than we're counting as nodes in the stable tree; but ksm_do_scan 493 * will retry to break_cow on each pass, so should recover the page 494 * in due course. The important thing is to not let VM_MERGEABLE 495 * be cleared while any such pages might remain in the area. 496 */ 497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 498 } 499 500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 501 unsigned long addr) 502 { 503 struct vm_area_struct *vma; 504 if (ksm_test_exit(mm)) 505 return NULL; 506 vma = find_vma(mm, addr); 507 if (!vma || vma->vm_start > addr) 508 return NULL; 509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 510 return NULL; 511 return vma; 512 } 513 514 static void break_cow(struct rmap_item *rmap_item) 515 { 516 struct mm_struct *mm = rmap_item->mm; 517 unsigned long addr = rmap_item->address; 518 struct vm_area_struct *vma; 519 520 /* 521 * It is not an accident that whenever we want to break COW 522 * to undo, we also need to drop a reference to the anon_vma. 523 */ 524 put_anon_vma(rmap_item->anon_vma); 525 526 down_read(&mm->mmap_sem); 527 vma = find_mergeable_vma(mm, addr); 528 if (vma) 529 break_ksm(vma, addr); 530 up_read(&mm->mmap_sem); 531 } 532 533 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 534 { 535 struct mm_struct *mm = rmap_item->mm; 536 unsigned long addr = rmap_item->address; 537 struct vm_area_struct *vma; 538 struct page *page; 539 540 down_read(&mm->mmap_sem); 541 vma = find_mergeable_vma(mm, addr); 542 if (!vma) 543 goto out; 544 545 page = follow_page(vma, addr, FOLL_GET); 546 if (IS_ERR_OR_NULL(page)) 547 goto out; 548 if (PageAnon(page)) { 549 flush_anon_page(vma, page, addr); 550 flush_dcache_page(page); 551 } else { 552 put_page(page); 553 out: 554 page = NULL; 555 } 556 up_read(&mm->mmap_sem); 557 return page; 558 } 559 560 /* 561 * This helper is used for getting right index into array of tree roots. 562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 563 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 564 * every node has its own stable and unstable tree. 565 */ 566 static inline int get_kpfn_nid(unsigned long kpfn) 567 { 568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 569 } 570 571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 572 struct rb_root *root) 573 { 574 struct stable_node *chain = alloc_stable_node(); 575 VM_BUG_ON(is_stable_node_chain(dup)); 576 if (likely(chain)) { 577 INIT_HLIST_HEAD(&chain->hlist); 578 chain->chain_prune_time = jiffies; 579 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 581 chain->nid = -1; /* debug */ 582 #endif 583 ksm_stable_node_chains++; 584 585 /* 586 * Put the stable node chain in the first dimension of 587 * the stable tree and at the same time remove the old 588 * stable node. 589 */ 590 rb_replace_node(&dup->node, &chain->node, root); 591 592 /* 593 * Move the old stable node to the second dimension 594 * queued in the hlist_dup. The invariant is that all 595 * dup stable_nodes in the chain->hlist point to pages 596 * that are wrprotected and have the exact same 597 * content. 598 */ 599 stable_node_chain_add_dup(dup, chain); 600 } 601 return chain; 602 } 603 604 static inline void free_stable_node_chain(struct stable_node *chain, 605 struct rb_root *root) 606 { 607 rb_erase(&chain->node, root); 608 free_stable_node(chain); 609 ksm_stable_node_chains--; 610 } 611 612 static void remove_node_from_stable_tree(struct stable_node *stable_node) 613 { 614 struct rmap_item *rmap_item; 615 616 /* check it's not STABLE_NODE_CHAIN or negative */ 617 BUG_ON(stable_node->rmap_hlist_len < 0); 618 619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 620 if (rmap_item->hlist.next) 621 ksm_pages_sharing--; 622 else 623 ksm_pages_shared--; 624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 625 stable_node->rmap_hlist_len--; 626 put_anon_vma(rmap_item->anon_vma); 627 rmap_item->address &= PAGE_MASK; 628 cond_resched(); 629 } 630 631 /* 632 * We need the second aligned pointer of the migrate_nodes 633 * list_head to stay clear from the rb_parent_color union 634 * (aligned and different than any node) and also different 635 * from &migrate_nodes. This will verify that future list.h changes 636 * don't break STABLE_NODE_DUP_HEAD. 637 */ 638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */ 639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 641 #endif 642 643 if (stable_node->head == &migrate_nodes) 644 list_del(&stable_node->list); 645 else 646 stable_node_dup_del(stable_node); 647 free_stable_node(stable_node); 648 } 649 650 /* 651 * get_ksm_page: checks if the page indicated by the stable node 652 * is still its ksm page, despite having held no reference to it. 653 * In which case we can trust the content of the page, and it 654 * returns the gotten page; but if the page has now been zapped, 655 * remove the stale node from the stable tree and return NULL. 656 * But beware, the stable node's page might be being migrated. 657 * 658 * You would expect the stable_node to hold a reference to the ksm page. 659 * But if it increments the page's count, swapping out has to wait for 660 * ksmd to come around again before it can free the page, which may take 661 * seconds or even minutes: much too unresponsive. So instead we use a 662 * "keyhole reference": access to the ksm page from the stable node peeps 663 * out through its keyhole to see if that page still holds the right key, 664 * pointing back to this stable node. This relies on freeing a PageAnon 665 * page to reset its page->mapping to NULL, and relies on no other use of 666 * a page to put something that might look like our key in page->mapping. 667 * is on its way to being freed; but it is an anomaly to bear in mind. 668 */ 669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 670 { 671 struct page *page; 672 void *expected_mapping; 673 unsigned long kpfn; 674 675 expected_mapping = (void *)((unsigned long)stable_node | 676 PAGE_MAPPING_KSM); 677 again: 678 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 679 page = pfn_to_page(kpfn); 680 if (READ_ONCE(page->mapping) != expected_mapping) 681 goto stale; 682 683 /* 684 * We cannot do anything with the page while its refcount is 0. 685 * Usually 0 means free, or tail of a higher-order page: in which 686 * case this node is no longer referenced, and should be freed; 687 * however, it might mean that the page is under page_freeze_refs(). 688 * The __remove_mapping() case is easy, again the node is now stale; 689 * but if page is swapcache in migrate_page_move_mapping(), it might 690 * still be our page, in which case it's essential to keep the node. 691 */ 692 while (!get_page_unless_zero(page)) { 693 /* 694 * Another check for page->mapping != expected_mapping would 695 * work here too. We have chosen the !PageSwapCache test to 696 * optimize the common case, when the page is or is about to 697 * be freed: PageSwapCache is cleared (under spin_lock_irq) 698 * in the freeze_refs section of __remove_mapping(); but Anon 699 * page->mapping reset to NULL later, in free_pages_prepare(). 700 */ 701 if (!PageSwapCache(page)) 702 goto stale; 703 cpu_relax(); 704 } 705 706 if (READ_ONCE(page->mapping) != expected_mapping) { 707 put_page(page); 708 goto stale; 709 } 710 711 if (lock_it) { 712 lock_page(page); 713 if (READ_ONCE(page->mapping) != expected_mapping) { 714 unlock_page(page); 715 put_page(page); 716 goto stale; 717 } 718 } 719 return page; 720 721 stale: 722 /* 723 * We come here from above when page->mapping or !PageSwapCache 724 * suggests that the node is stale; but it might be under migration. 725 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 726 * before checking whether node->kpfn has been changed. 727 */ 728 smp_rmb(); 729 if (READ_ONCE(stable_node->kpfn) != kpfn) 730 goto again; 731 remove_node_from_stable_tree(stable_node); 732 return NULL; 733 } 734 735 /* 736 * Removing rmap_item from stable or unstable tree. 737 * This function will clean the information from the stable/unstable tree. 738 */ 739 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 740 { 741 if (rmap_item->address & STABLE_FLAG) { 742 struct stable_node *stable_node; 743 struct page *page; 744 745 stable_node = rmap_item->head; 746 page = get_ksm_page(stable_node, true); 747 if (!page) 748 goto out; 749 750 hlist_del(&rmap_item->hlist); 751 unlock_page(page); 752 put_page(page); 753 754 if (!hlist_empty(&stable_node->hlist)) 755 ksm_pages_sharing--; 756 else 757 ksm_pages_shared--; 758 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 759 stable_node->rmap_hlist_len--; 760 761 put_anon_vma(rmap_item->anon_vma); 762 rmap_item->address &= PAGE_MASK; 763 764 } else if (rmap_item->address & UNSTABLE_FLAG) { 765 unsigned char age; 766 /* 767 * Usually ksmd can and must skip the rb_erase, because 768 * root_unstable_tree was already reset to RB_ROOT. 769 * But be careful when an mm is exiting: do the rb_erase 770 * if this rmap_item was inserted by this scan, rather 771 * than left over from before. 772 */ 773 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 774 BUG_ON(age > 1); 775 if (!age) 776 rb_erase(&rmap_item->node, 777 root_unstable_tree + NUMA(rmap_item->nid)); 778 ksm_pages_unshared--; 779 rmap_item->address &= PAGE_MASK; 780 } 781 out: 782 cond_resched(); /* we're called from many long loops */ 783 } 784 785 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 786 struct rmap_item **rmap_list) 787 { 788 while (*rmap_list) { 789 struct rmap_item *rmap_item = *rmap_list; 790 *rmap_list = rmap_item->rmap_list; 791 remove_rmap_item_from_tree(rmap_item); 792 free_rmap_item(rmap_item); 793 } 794 } 795 796 /* 797 * Though it's very tempting to unmerge rmap_items from stable tree rather 798 * than check every pte of a given vma, the locking doesn't quite work for 799 * that - an rmap_item is assigned to the stable tree after inserting ksm 800 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 801 * rmap_items from parent to child at fork time (so as not to waste time 802 * if exit comes before the next scan reaches it). 803 * 804 * Similarly, although we'd like to remove rmap_items (so updating counts 805 * and freeing memory) when unmerging an area, it's easier to leave that 806 * to the next pass of ksmd - consider, for example, how ksmd might be 807 * in cmp_and_merge_page on one of the rmap_items we would be removing. 808 */ 809 static int unmerge_ksm_pages(struct vm_area_struct *vma, 810 unsigned long start, unsigned long end) 811 { 812 unsigned long addr; 813 int err = 0; 814 815 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 816 if (ksm_test_exit(vma->vm_mm)) 817 break; 818 if (signal_pending(current)) 819 err = -ERESTARTSYS; 820 else 821 err = break_ksm(vma, addr); 822 } 823 return err; 824 } 825 826 #ifdef CONFIG_SYSFS 827 /* 828 * Only called through the sysfs control interface: 829 */ 830 static int remove_stable_node(struct stable_node *stable_node) 831 { 832 struct page *page; 833 int err; 834 835 page = get_ksm_page(stable_node, true); 836 if (!page) { 837 /* 838 * get_ksm_page did remove_node_from_stable_tree itself. 839 */ 840 return 0; 841 } 842 843 if (WARN_ON_ONCE(page_mapped(page))) { 844 /* 845 * This should not happen: but if it does, just refuse to let 846 * merge_across_nodes be switched - there is no need to panic. 847 */ 848 err = -EBUSY; 849 } else { 850 /* 851 * The stable node did not yet appear stale to get_ksm_page(), 852 * since that allows for an unmapped ksm page to be recognized 853 * right up until it is freed; but the node is safe to remove. 854 * This page might be in a pagevec waiting to be freed, 855 * or it might be PageSwapCache (perhaps under writeback), 856 * or it might have been removed from swapcache a moment ago. 857 */ 858 set_page_stable_node(page, NULL); 859 remove_node_from_stable_tree(stable_node); 860 err = 0; 861 } 862 863 unlock_page(page); 864 put_page(page); 865 return err; 866 } 867 868 static int remove_stable_node_chain(struct stable_node *stable_node, 869 struct rb_root *root) 870 { 871 struct stable_node *dup; 872 struct hlist_node *hlist_safe; 873 874 if (!is_stable_node_chain(stable_node)) { 875 VM_BUG_ON(is_stable_node_dup(stable_node)); 876 if (remove_stable_node(stable_node)) 877 return true; 878 else 879 return false; 880 } 881 882 hlist_for_each_entry_safe(dup, hlist_safe, 883 &stable_node->hlist, hlist_dup) { 884 VM_BUG_ON(!is_stable_node_dup(dup)); 885 if (remove_stable_node(dup)) 886 return true; 887 } 888 BUG_ON(!hlist_empty(&stable_node->hlist)); 889 free_stable_node_chain(stable_node, root); 890 return false; 891 } 892 893 static int remove_all_stable_nodes(void) 894 { 895 struct stable_node *stable_node, *next; 896 int nid; 897 int err = 0; 898 899 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 900 while (root_stable_tree[nid].rb_node) { 901 stable_node = rb_entry(root_stable_tree[nid].rb_node, 902 struct stable_node, node); 903 if (remove_stable_node_chain(stable_node, 904 root_stable_tree + nid)) { 905 err = -EBUSY; 906 break; /* proceed to next nid */ 907 } 908 cond_resched(); 909 } 910 } 911 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 912 if (remove_stable_node(stable_node)) 913 err = -EBUSY; 914 cond_resched(); 915 } 916 return err; 917 } 918 919 static int unmerge_and_remove_all_rmap_items(void) 920 { 921 struct mm_slot *mm_slot; 922 struct mm_struct *mm; 923 struct vm_area_struct *vma; 924 int err = 0; 925 926 spin_lock(&ksm_mmlist_lock); 927 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 928 struct mm_slot, mm_list); 929 spin_unlock(&ksm_mmlist_lock); 930 931 for (mm_slot = ksm_scan.mm_slot; 932 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 933 mm = mm_slot->mm; 934 down_read(&mm->mmap_sem); 935 for (vma = mm->mmap; vma; vma = vma->vm_next) { 936 if (ksm_test_exit(mm)) 937 break; 938 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 939 continue; 940 err = unmerge_ksm_pages(vma, 941 vma->vm_start, vma->vm_end); 942 if (err) 943 goto error; 944 } 945 946 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 947 up_read(&mm->mmap_sem); 948 949 spin_lock(&ksm_mmlist_lock); 950 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 951 struct mm_slot, mm_list); 952 if (ksm_test_exit(mm)) { 953 hash_del(&mm_slot->link); 954 list_del(&mm_slot->mm_list); 955 spin_unlock(&ksm_mmlist_lock); 956 957 free_mm_slot(mm_slot); 958 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 959 mmdrop(mm); 960 } else 961 spin_unlock(&ksm_mmlist_lock); 962 } 963 964 /* Clean up stable nodes, but don't worry if some are still busy */ 965 remove_all_stable_nodes(); 966 ksm_scan.seqnr = 0; 967 return 0; 968 969 error: 970 up_read(&mm->mmap_sem); 971 spin_lock(&ksm_mmlist_lock); 972 ksm_scan.mm_slot = &ksm_mm_head; 973 spin_unlock(&ksm_mmlist_lock); 974 return err; 975 } 976 #endif /* CONFIG_SYSFS */ 977 978 static u32 calc_checksum(struct page *page) 979 { 980 u32 checksum; 981 void *addr = kmap_atomic(page); 982 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 983 kunmap_atomic(addr); 984 return checksum; 985 } 986 987 static int memcmp_pages(struct page *page1, struct page *page2) 988 { 989 char *addr1, *addr2; 990 int ret; 991 992 addr1 = kmap_atomic(page1); 993 addr2 = kmap_atomic(page2); 994 ret = memcmp(addr1, addr2, PAGE_SIZE); 995 kunmap_atomic(addr2); 996 kunmap_atomic(addr1); 997 return ret; 998 } 999 1000 static inline int pages_identical(struct page *page1, struct page *page2) 1001 { 1002 return !memcmp_pages(page1, page2); 1003 } 1004 1005 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1006 pte_t *orig_pte) 1007 { 1008 struct mm_struct *mm = vma->vm_mm; 1009 struct page_vma_mapped_walk pvmw = { 1010 .page = page, 1011 .vma = vma, 1012 }; 1013 int swapped; 1014 int err = -EFAULT; 1015 unsigned long mmun_start; /* For mmu_notifiers */ 1016 unsigned long mmun_end; /* For mmu_notifiers */ 1017 1018 pvmw.address = page_address_in_vma(page, vma); 1019 if (pvmw.address == -EFAULT) 1020 goto out; 1021 1022 BUG_ON(PageTransCompound(page)); 1023 1024 mmun_start = pvmw.address; 1025 mmun_end = pvmw.address + PAGE_SIZE; 1026 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1027 1028 if (!page_vma_mapped_walk(&pvmw)) 1029 goto out_mn; 1030 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1031 goto out_unlock; 1032 1033 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1034 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1035 mm_tlb_flush_pending(mm)) { 1036 pte_t entry; 1037 1038 swapped = PageSwapCache(page); 1039 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1040 /* 1041 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1042 * take any lock, therefore the check that we are going to make 1043 * with the pagecount against the mapcount is racey and 1044 * O_DIRECT can happen right after the check. 1045 * So we clear the pte and flush the tlb before the check 1046 * this assure us that no O_DIRECT can happen after the check 1047 * or in the middle of the check. 1048 * 1049 * No need to notify as we are downgrading page table to read 1050 * only not changing it to point to a new page. 1051 * 1052 * See Documentation/vm/mmu_notifier.txt 1053 */ 1054 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1055 /* 1056 * Check that no O_DIRECT or similar I/O is in progress on the 1057 * page 1058 */ 1059 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1060 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1061 goto out_unlock; 1062 } 1063 if (pte_dirty(entry)) 1064 set_page_dirty(page); 1065 1066 if (pte_protnone(entry)) 1067 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1068 else 1069 entry = pte_mkclean(pte_wrprotect(entry)); 1070 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1071 } 1072 *orig_pte = *pvmw.pte; 1073 err = 0; 1074 1075 out_unlock: 1076 page_vma_mapped_walk_done(&pvmw); 1077 out_mn: 1078 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1079 out: 1080 return err; 1081 } 1082 1083 /** 1084 * replace_page - replace page in vma by new ksm page 1085 * @vma: vma that holds the pte pointing to page 1086 * @page: the page we are replacing by kpage 1087 * @kpage: the ksm page we replace page by 1088 * @orig_pte: the original value of the pte 1089 * 1090 * Returns 0 on success, -EFAULT on failure. 1091 */ 1092 static int replace_page(struct vm_area_struct *vma, struct page *page, 1093 struct page *kpage, pte_t orig_pte) 1094 { 1095 struct mm_struct *mm = vma->vm_mm; 1096 pmd_t *pmd; 1097 pte_t *ptep; 1098 pte_t newpte; 1099 spinlock_t *ptl; 1100 unsigned long addr; 1101 int err = -EFAULT; 1102 unsigned long mmun_start; /* For mmu_notifiers */ 1103 unsigned long mmun_end; /* For mmu_notifiers */ 1104 1105 addr = page_address_in_vma(page, vma); 1106 if (addr == -EFAULT) 1107 goto out; 1108 1109 pmd = mm_find_pmd(mm, addr); 1110 if (!pmd) 1111 goto out; 1112 1113 mmun_start = addr; 1114 mmun_end = addr + PAGE_SIZE; 1115 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1116 1117 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1118 if (!pte_same(*ptep, orig_pte)) { 1119 pte_unmap_unlock(ptep, ptl); 1120 goto out_mn; 1121 } 1122 1123 /* 1124 * No need to check ksm_use_zero_pages here: we can only have a 1125 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1126 */ 1127 if (!is_zero_pfn(page_to_pfn(kpage))) { 1128 get_page(kpage); 1129 page_add_anon_rmap(kpage, vma, addr, false); 1130 newpte = mk_pte(kpage, vma->vm_page_prot); 1131 } else { 1132 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1133 vma->vm_page_prot)); 1134 /* 1135 * We're replacing an anonymous page with a zero page, which is 1136 * not anonymous. We need to do proper accounting otherwise we 1137 * will get wrong values in /proc, and a BUG message in dmesg 1138 * when tearing down the mm. 1139 */ 1140 dec_mm_counter(mm, MM_ANONPAGES); 1141 } 1142 1143 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1144 /* 1145 * No need to notify as we are replacing a read only page with another 1146 * read only page with the same content. 1147 * 1148 * See Documentation/vm/mmu_notifier.txt 1149 */ 1150 ptep_clear_flush(vma, addr, ptep); 1151 set_pte_at_notify(mm, addr, ptep, newpte); 1152 1153 page_remove_rmap(page, false); 1154 if (!page_mapped(page)) 1155 try_to_free_swap(page); 1156 put_page(page); 1157 1158 pte_unmap_unlock(ptep, ptl); 1159 err = 0; 1160 out_mn: 1161 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1162 out: 1163 return err; 1164 } 1165 1166 /* 1167 * try_to_merge_one_page - take two pages and merge them into one 1168 * @vma: the vma that holds the pte pointing to page 1169 * @page: the PageAnon page that we want to replace with kpage 1170 * @kpage: the PageKsm page that we want to map instead of page, 1171 * or NULL the first time when we want to use page as kpage. 1172 * 1173 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1174 */ 1175 static int try_to_merge_one_page(struct vm_area_struct *vma, 1176 struct page *page, struct page *kpage) 1177 { 1178 pte_t orig_pte = __pte(0); 1179 int err = -EFAULT; 1180 1181 if (page == kpage) /* ksm page forked */ 1182 return 0; 1183 1184 if (!PageAnon(page)) 1185 goto out; 1186 1187 /* 1188 * We need the page lock to read a stable PageSwapCache in 1189 * write_protect_page(). We use trylock_page() instead of 1190 * lock_page() because we don't want to wait here - we 1191 * prefer to continue scanning and merging different pages, 1192 * then come back to this page when it is unlocked. 1193 */ 1194 if (!trylock_page(page)) 1195 goto out; 1196 1197 if (PageTransCompound(page)) { 1198 if (split_huge_page(page)) 1199 goto out_unlock; 1200 } 1201 1202 /* 1203 * If this anonymous page is mapped only here, its pte may need 1204 * to be write-protected. If it's mapped elsewhere, all of its 1205 * ptes are necessarily already write-protected. But in either 1206 * case, we need to lock and check page_count is not raised. 1207 */ 1208 if (write_protect_page(vma, page, &orig_pte) == 0) { 1209 if (!kpage) { 1210 /* 1211 * While we hold page lock, upgrade page from 1212 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1213 * stable_tree_insert() will update stable_node. 1214 */ 1215 set_page_stable_node(page, NULL); 1216 mark_page_accessed(page); 1217 /* 1218 * Page reclaim just frees a clean page with no dirty 1219 * ptes: make sure that the ksm page would be swapped. 1220 */ 1221 if (!PageDirty(page)) 1222 SetPageDirty(page); 1223 err = 0; 1224 } else if (pages_identical(page, kpage)) 1225 err = replace_page(vma, page, kpage, orig_pte); 1226 } 1227 1228 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1229 munlock_vma_page(page); 1230 if (!PageMlocked(kpage)) { 1231 unlock_page(page); 1232 lock_page(kpage); 1233 mlock_vma_page(kpage); 1234 page = kpage; /* for final unlock */ 1235 } 1236 } 1237 1238 out_unlock: 1239 unlock_page(page); 1240 out: 1241 return err; 1242 } 1243 1244 /* 1245 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1246 * but no new kernel page is allocated: kpage must already be a ksm page. 1247 * 1248 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1249 */ 1250 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1251 struct page *page, struct page *kpage) 1252 { 1253 struct mm_struct *mm = rmap_item->mm; 1254 struct vm_area_struct *vma; 1255 int err = -EFAULT; 1256 1257 down_read(&mm->mmap_sem); 1258 vma = find_mergeable_vma(mm, rmap_item->address); 1259 if (!vma) 1260 goto out; 1261 1262 err = try_to_merge_one_page(vma, page, kpage); 1263 if (err) 1264 goto out; 1265 1266 /* Unstable nid is in union with stable anon_vma: remove first */ 1267 remove_rmap_item_from_tree(rmap_item); 1268 1269 /* Must get reference to anon_vma while still holding mmap_sem */ 1270 rmap_item->anon_vma = vma->anon_vma; 1271 get_anon_vma(vma->anon_vma); 1272 out: 1273 up_read(&mm->mmap_sem); 1274 return err; 1275 } 1276 1277 /* 1278 * try_to_merge_two_pages - take two identical pages and prepare them 1279 * to be merged into one page. 1280 * 1281 * This function returns the kpage if we successfully merged two identical 1282 * pages into one ksm page, NULL otherwise. 1283 * 1284 * Note that this function upgrades page to ksm page: if one of the pages 1285 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1286 */ 1287 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1288 struct page *page, 1289 struct rmap_item *tree_rmap_item, 1290 struct page *tree_page) 1291 { 1292 int err; 1293 1294 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1295 if (!err) { 1296 err = try_to_merge_with_ksm_page(tree_rmap_item, 1297 tree_page, page); 1298 /* 1299 * If that fails, we have a ksm page with only one pte 1300 * pointing to it: so break it. 1301 */ 1302 if (err) 1303 break_cow(rmap_item); 1304 } 1305 return err ? NULL : page; 1306 } 1307 1308 static __always_inline 1309 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1310 { 1311 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1312 /* 1313 * Check that at least one mapping still exists, otherwise 1314 * there's no much point to merge and share with this 1315 * stable_node, as the underlying tree_page of the other 1316 * sharer is going to be freed soon. 1317 */ 1318 return stable_node->rmap_hlist_len && 1319 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1320 } 1321 1322 static __always_inline 1323 bool is_page_sharing_candidate(struct stable_node *stable_node) 1324 { 1325 return __is_page_sharing_candidate(stable_node, 0); 1326 } 1327 1328 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1329 struct stable_node **_stable_node, 1330 struct rb_root *root, 1331 bool prune_stale_stable_nodes) 1332 { 1333 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1334 struct hlist_node *hlist_safe; 1335 struct page *_tree_page, *tree_page = NULL; 1336 int nr = 0; 1337 int found_rmap_hlist_len; 1338 1339 if (!prune_stale_stable_nodes || 1340 time_before(jiffies, stable_node->chain_prune_time + 1341 msecs_to_jiffies( 1342 ksm_stable_node_chains_prune_millisecs))) 1343 prune_stale_stable_nodes = false; 1344 else 1345 stable_node->chain_prune_time = jiffies; 1346 1347 hlist_for_each_entry_safe(dup, hlist_safe, 1348 &stable_node->hlist, hlist_dup) { 1349 cond_resched(); 1350 /* 1351 * We must walk all stable_node_dup to prune the stale 1352 * stable nodes during lookup. 1353 * 1354 * get_ksm_page can drop the nodes from the 1355 * stable_node->hlist if they point to freed pages 1356 * (that's why we do a _safe walk). The "dup" 1357 * stable_node parameter itself will be freed from 1358 * under us if it returns NULL. 1359 */ 1360 _tree_page = get_ksm_page(dup, false); 1361 if (!_tree_page) 1362 continue; 1363 nr += 1; 1364 if (is_page_sharing_candidate(dup)) { 1365 if (!found || 1366 dup->rmap_hlist_len > found_rmap_hlist_len) { 1367 if (found) 1368 put_page(tree_page); 1369 found = dup; 1370 found_rmap_hlist_len = found->rmap_hlist_len; 1371 tree_page = _tree_page; 1372 1373 /* skip put_page for found dup */ 1374 if (!prune_stale_stable_nodes) 1375 break; 1376 continue; 1377 } 1378 } 1379 put_page(_tree_page); 1380 } 1381 1382 if (found) { 1383 /* 1384 * nr is counting all dups in the chain only if 1385 * prune_stale_stable_nodes is true, otherwise we may 1386 * break the loop at nr == 1 even if there are 1387 * multiple entries. 1388 */ 1389 if (prune_stale_stable_nodes && nr == 1) { 1390 /* 1391 * If there's not just one entry it would 1392 * corrupt memory, better BUG_ON. In KSM 1393 * context with no lock held it's not even 1394 * fatal. 1395 */ 1396 BUG_ON(stable_node->hlist.first->next); 1397 1398 /* 1399 * There's just one entry and it is below the 1400 * deduplication limit so drop the chain. 1401 */ 1402 rb_replace_node(&stable_node->node, &found->node, 1403 root); 1404 free_stable_node(stable_node); 1405 ksm_stable_node_chains--; 1406 ksm_stable_node_dups--; 1407 /* 1408 * NOTE: the caller depends on the stable_node 1409 * to be equal to stable_node_dup if the chain 1410 * was collapsed. 1411 */ 1412 *_stable_node = found; 1413 /* 1414 * Just for robustneess as stable_node is 1415 * otherwise left as a stable pointer, the 1416 * compiler shall optimize it away at build 1417 * time. 1418 */ 1419 stable_node = NULL; 1420 } else if (stable_node->hlist.first != &found->hlist_dup && 1421 __is_page_sharing_candidate(found, 1)) { 1422 /* 1423 * If the found stable_node dup can accept one 1424 * more future merge (in addition to the one 1425 * that is underway) and is not at the head of 1426 * the chain, put it there so next search will 1427 * be quicker in the !prune_stale_stable_nodes 1428 * case. 1429 * 1430 * NOTE: it would be inaccurate to use nr > 1 1431 * instead of checking the hlist.first pointer 1432 * directly, because in the 1433 * prune_stale_stable_nodes case "nr" isn't 1434 * the position of the found dup in the chain, 1435 * but the total number of dups in the chain. 1436 */ 1437 hlist_del(&found->hlist_dup); 1438 hlist_add_head(&found->hlist_dup, 1439 &stable_node->hlist); 1440 } 1441 } 1442 1443 *_stable_node_dup = found; 1444 return tree_page; 1445 } 1446 1447 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1448 struct rb_root *root) 1449 { 1450 if (!is_stable_node_chain(stable_node)) 1451 return stable_node; 1452 if (hlist_empty(&stable_node->hlist)) { 1453 free_stable_node_chain(stable_node, root); 1454 return NULL; 1455 } 1456 return hlist_entry(stable_node->hlist.first, 1457 typeof(*stable_node), hlist_dup); 1458 } 1459 1460 /* 1461 * Like for get_ksm_page, this function can free the *_stable_node and 1462 * *_stable_node_dup if the returned tree_page is NULL. 1463 * 1464 * It can also free and overwrite *_stable_node with the found 1465 * stable_node_dup if the chain is collapsed (in which case 1466 * *_stable_node will be equal to *_stable_node_dup like if the chain 1467 * never existed). It's up to the caller to verify tree_page is not 1468 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1469 * 1470 * *_stable_node_dup is really a second output parameter of this 1471 * function and will be overwritten in all cases, the caller doesn't 1472 * need to initialize it. 1473 */ 1474 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1475 struct stable_node **_stable_node, 1476 struct rb_root *root, 1477 bool prune_stale_stable_nodes) 1478 { 1479 struct stable_node *stable_node = *_stable_node; 1480 if (!is_stable_node_chain(stable_node)) { 1481 if (is_page_sharing_candidate(stable_node)) { 1482 *_stable_node_dup = stable_node; 1483 return get_ksm_page(stable_node, false); 1484 } 1485 /* 1486 * _stable_node_dup set to NULL means the stable_node 1487 * reached the ksm_max_page_sharing limit. 1488 */ 1489 *_stable_node_dup = NULL; 1490 return NULL; 1491 } 1492 return stable_node_dup(_stable_node_dup, _stable_node, root, 1493 prune_stale_stable_nodes); 1494 } 1495 1496 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1497 struct stable_node **s_n, 1498 struct rb_root *root) 1499 { 1500 return __stable_node_chain(s_n_d, s_n, root, true); 1501 } 1502 1503 static __always_inline struct page *chain(struct stable_node **s_n_d, 1504 struct stable_node *s_n, 1505 struct rb_root *root) 1506 { 1507 struct stable_node *old_stable_node = s_n; 1508 struct page *tree_page; 1509 1510 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1511 /* not pruning dups so s_n cannot have changed */ 1512 VM_BUG_ON(s_n != old_stable_node); 1513 return tree_page; 1514 } 1515 1516 /* 1517 * stable_tree_search - search for page inside the stable tree 1518 * 1519 * This function checks if there is a page inside the stable tree 1520 * with identical content to the page that we are scanning right now. 1521 * 1522 * This function returns the stable tree node of identical content if found, 1523 * NULL otherwise. 1524 */ 1525 static struct page *stable_tree_search(struct page *page) 1526 { 1527 int nid; 1528 struct rb_root *root; 1529 struct rb_node **new; 1530 struct rb_node *parent; 1531 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1532 struct stable_node *page_node; 1533 1534 page_node = page_stable_node(page); 1535 if (page_node && page_node->head != &migrate_nodes) { 1536 /* ksm page forked */ 1537 get_page(page); 1538 return page; 1539 } 1540 1541 nid = get_kpfn_nid(page_to_pfn(page)); 1542 root = root_stable_tree + nid; 1543 again: 1544 new = &root->rb_node; 1545 parent = NULL; 1546 1547 while (*new) { 1548 struct page *tree_page; 1549 int ret; 1550 1551 cond_resched(); 1552 stable_node = rb_entry(*new, struct stable_node, node); 1553 stable_node_any = NULL; 1554 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1555 /* 1556 * NOTE: stable_node may have been freed by 1557 * chain_prune() if the returned stable_node_dup is 1558 * not NULL. stable_node_dup may have been inserted in 1559 * the rbtree instead as a regular stable_node (in 1560 * order to collapse the stable_node chain if a single 1561 * stable_node dup was found in it). In such case the 1562 * stable_node is overwritten by the calleee to point 1563 * to the stable_node_dup that was collapsed in the 1564 * stable rbtree and stable_node will be equal to 1565 * stable_node_dup like if the chain never existed. 1566 */ 1567 if (!stable_node_dup) { 1568 /* 1569 * Either all stable_node dups were full in 1570 * this stable_node chain, or this chain was 1571 * empty and should be rb_erased. 1572 */ 1573 stable_node_any = stable_node_dup_any(stable_node, 1574 root); 1575 if (!stable_node_any) { 1576 /* rb_erase just run */ 1577 goto again; 1578 } 1579 /* 1580 * Take any of the stable_node dups page of 1581 * this stable_node chain to let the tree walk 1582 * continue. All KSM pages belonging to the 1583 * stable_node dups in a stable_node chain 1584 * have the same content and they're 1585 * wrprotected at all times. Any will work 1586 * fine to continue the walk. 1587 */ 1588 tree_page = get_ksm_page(stable_node_any, false); 1589 } 1590 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1591 if (!tree_page) { 1592 /* 1593 * If we walked over a stale stable_node, 1594 * get_ksm_page() will call rb_erase() and it 1595 * may rebalance the tree from under us. So 1596 * restart the search from scratch. Returning 1597 * NULL would be safe too, but we'd generate 1598 * false negative insertions just because some 1599 * stable_node was stale. 1600 */ 1601 goto again; 1602 } 1603 1604 ret = memcmp_pages(page, tree_page); 1605 put_page(tree_page); 1606 1607 parent = *new; 1608 if (ret < 0) 1609 new = &parent->rb_left; 1610 else if (ret > 0) 1611 new = &parent->rb_right; 1612 else { 1613 if (page_node) { 1614 VM_BUG_ON(page_node->head != &migrate_nodes); 1615 /* 1616 * Test if the migrated page should be merged 1617 * into a stable node dup. If the mapcount is 1618 * 1 we can migrate it with another KSM page 1619 * without adding it to the chain. 1620 */ 1621 if (page_mapcount(page) > 1) 1622 goto chain_append; 1623 } 1624 1625 if (!stable_node_dup) { 1626 /* 1627 * If the stable_node is a chain and 1628 * we got a payload match in memcmp 1629 * but we cannot merge the scanned 1630 * page in any of the existing 1631 * stable_node dups because they're 1632 * all full, we need to wait the 1633 * scanned page to find itself a match 1634 * in the unstable tree to create a 1635 * brand new KSM page to add later to 1636 * the dups of this stable_node. 1637 */ 1638 return NULL; 1639 } 1640 1641 /* 1642 * Lock and unlock the stable_node's page (which 1643 * might already have been migrated) so that page 1644 * migration is sure to notice its raised count. 1645 * It would be more elegant to return stable_node 1646 * than kpage, but that involves more changes. 1647 */ 1648 tree_page = get_ksm_page(stable_node_dup, true); 1649 if (unlikely(!tree_page)) 1650 /* 1651 * The tree may have been rebalanced, 1652 * so re-evaluate parent and new. 1653 */ 1654 goto again; 1655 unlock_page(tree_page); 1656 1657 if (get_kpfn_nid(stable_node_dup->kpfn) != 1658 NUMA(stable_node_dup->nid)) { 1659 put_page(tree_page); 1660 goto replace; 1661 } 1662 return tree_page; 1663 } 1664 } 1665 1666 if (!page_node) 1667 return NULL; 1668 1669 list_del(&page_node->list); 1670 DO_NUMA(page_node->nid = nid); 1671 rb_link_node(&page_node->node, parent, new); 1672 rb_insert_color(&page_node->node, root); 1673 out: 1674 if (is_page_sharing_candidate(page_node)) { 1675 get_page(page); 1676 return page; 1677 } else 1678 return NULL; 1679 1680 replace: 1681 /* 1682 * If stable_node was a chain and chain_prune collapsed it, 1683 * stable_node has been updated to be the new regular 1684 * stable_node. A collapse of the chain is indistinguishable 1685 * from the case there was no chain in the stable 1686 * rbtree. Otherwise stable_node is the chain and 1687 * stable_node_dup is the dup to replace. 1688 */ 1689 if (stable_node_dup == stable_node) { 1690 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1691 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1692 /* there is no chain */ 1693 if (page_node) { 1694 VM_BUG_ON(page_node->head != &migrate_nodes); 1695 list_del(&page_node->list); 1696 DO_NUMA(page_node->nid = nid); 1697 rb_replace_node(&stable_node_dup->node, 1698 &page_node->node, 1699 root); 1700 if (is_page_sharing_candidate(page_node)) 1701 get_page(page); 1702 else 1703 page = NULL; 1704 } else { 1705 rb_erase(&stable_node_dup->node, root); 1706 page = NULL; 1707 } 1708 } else { 1709 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1710 __stable_node_dup_del(stable_node_dup); 1711 if (page_node) { 1712 VM_BUG_ON(page_node->head != &migrate_nodes); 1713 list_del(&page_node->list); 1714 DO_NUMA(page_node->nid = nid); 1715 stable_node_chain_add_dup(page_node, stable_node); 1716 if (is_page_sharing_candidate(page_node)) 1717 get_page(page); 1718 else 1719 page = NULL; 1720 } else { 1721 page = NULL; 1722 } 1723 } 1724 stable_node_dup->head = &migrate_nodes; 1725 list_add(&stable_node_dup->list, stable_node_dup->head); 1726 return page; 1727 1728 chain_append: 1729 /* stable_node_dup could be null if it reached the limit */ 1730 if (!stable_node_dup) 1731 stable_node_dup = stable_node_any; 1732 /* 1733 * If stable_node was a chain and chain_prune collapsed it, 1734 * stable_node has been updated to be the new regular 1735 * stable_node. A collapse of the chain is indistinguishable 1736 * from the case there was no chain in the stable 1737 * rbtree. Otherwise stable_node is the chain and 1738 * stable_node_dup is the dup to replace. 1739 */ 1740 if (stable_node_dup == stable_node) { 1741 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1742 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1743 /* chain is missing so create it */ 1744 stable_node = alloc_stable_node_chain(stable_node_dup, 1745 root); 1746 if (!stable_node) 1747 return NULL; 1748 } 1749 /* 1750 * Add this stable_node dup that was 1751 * migrated to the stable_node chain 1752 * of the current nid for this page 1753 * content. 1754 */ 1755 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1756 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1757 VM_BUG_ON(page_node->head != &migrate_nodes); 1758 list_del(&page_node->list); 1759 DO_NUMA(page_node->nid = nid); 1760 stable_node_chain_add_dup(page_node, stable_node); 1761 goto out; 1762 } 1763 1764 /* 1765 * stable_tree_insert - insert stable tree node pointing to new ksm page 1766 * into the stable tree. 1767 * 1768 * This function returns the stable tree node just allocated on success, 1769 * NULL otherwise. 1770 */ 1771 static struct stable_node *stable_tree_insert(struct page *kpage) 1772 { 1773 int nid; 1774 unsigned long kpfn; 1775 struct rb_root *root; 1776 struct rb_node **new; 1777 struct rb_node *parent; 1778 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1779 bool need_chain = false; 1780 1781 kpfn = page_to_pfn(kpage); 1782 nid = get_kpfn_nid(kpfn); 1783 root = root_stable_tree + nid; 1784 again: 1785 parent = NULL; 1786 new = &root->rb_node; 1787 1788 while (*new) { 1789 struct page *tree_page; 1790 int ret; 1791 1792 cond_resched(); 1793 stable_node = rb_entry(*new, struct stable_node, node); 1794 stable_node_any = NULL; 1795 tree_page = chain(&stable_node_dup, stable_node, root); 1796 if (!stable_node_dup) { 1797 /* 1798 * Either all stable_node dups were full in 1799 * this stable_node chain, or this chain was 1800 * empty and should be rb_erased. 1801 */ 1802 stable_node_any = stable_node_dup_any(stable_node, 1803 root); 1804 if (!stable_node_any) { 1805 /* rb_erase just run */ 1806 goto again; 1807 } 1808 /* 1809 * Take any of the stable_node dups page of 1810 * this stable_node chain to let the tree walk 1811 * continue. All KSM pages belonging to the 1812 * stable_node dups in a stable_node chain 1813 * have the same content and they're 1814 * wrprotected at all times. Any will work 1815 * fine to continue the walk. 1816 */ 1817 tree_page = get_ksm_page(stable_node_any, false); 1818 } 1819 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1820 if (!tree_page) { 1821 /* 1822 * If we walked over a stale stable_node, 1823 * get_ksm_page() will call rb_erase() and it 1824 * may rebalance the tree from under us. So 1825 * restart the search from scratch. Returning 1826 * NULL would be safe too, but we'd generate 1827 * false negative insertions just because some 1828 * stable_node was stale. 1829 */ 1830 goto again; 1831 } 1832 1833 ret = memcmp_pages(kpage, tree_page); 1834 put_page(tree_page); 1835 1836 parent = *new; 1837 if (ret < 0) 1838 new = &parent->rb_left; 1839 else if (ret > 0) 1840 new = &parent->rb_right; 1841 else { 1842 need_chain = true; 1843 break; 1844 } 1845 } 1846 1847 stable_node_dup = alloc_stable_node(); 1848 if (!stable_node_dup) 1849 return NULL; 1850 1851 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1852 stable_node_dup->kpfn = kpfn; 1853 set_page_stable_node(kpage, stable_node_dup); 1854 stable_node_dup->rmap_hlist_len = 0; 1855 DO_NUMA(stable_node_dup->nid = nid); 1856 if (!need_chain) { 1857 rb_link_node(&stable_node_dup->node, parent, new); 1858 rb_insert_color(&stable_node_dup->node, root); 1859 } else { 1860 if (!is_stable_node_chain(stable_node)) { 1861 struct stable_node *orig = stable_node; 1862 /* chain is missing so create it */ 1863 stable_node = alloc_stable_node_chain(orig, root); 1864 if (!stable_node) { 1865 free_stable_node(stable_node_dup); 1866 return NULL; 1867 } 1868 } 1869 stable_node_chain_add_dup(stable_node_dup, stable_node); 1870 } 1871 1872 return stable_node_dup; 1873 } 1874 1875 /* 1876 * unstable_tree_search_insert - search for identical page, 1877 * else insert rmap_item into the unstable tree. 1878 * 1879 * This function searches for a page in the unstable tree identical to the 1880 * page currently being scanned; and if no identical page is found in the 1881 * tree, we insert rmap_item as a new object into the unstable tree. 1882 * 1883 * This function returns pointer to rmap_item found to be identical 1884 * to the currently scanned page, NULL otherwise. 1885 * 1886 * This function does both searching and inserting, because they share 1887 * the same walking algorithm in an rbtree. 1888 */ 1889 static 1890 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1891 struct page *page, 1892 struct page **tree_pagep) 1893 { 1894 struct rb_node **new; 1895 struct rb_root *root; 1896 struct rb_node *parent = NULL; 1897 int nid; 1898 1899 nid = get_kpfn_nid(page_to_pfn(page)); 1900 root = root_unstable_tree + nid; 1901 new = &root->rb_node; 1902 1903 while (*new) { 1904 struct rmap_item *tree_rmap_item; 1905 struct page *tree_page; 1906 int ret; 1907 1908 cond_resched(); 1909 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1910 tree_page = get_mergeable_page(tree_rmap_item); 1911 if (!tree_page) 1912 return NULL; 1913 1914 /* 1915 * Don't substitute a ksm page for a forked page. 1916 */ 1917 if (page == tree_page) { 1918 put_page(tree_page); 1919 return NULL; 1920 } 1921 1922 ret = memcmp_pages(page, tree_page); 1923 1924 parent = *new; 1925 if (ret < 0) { 1926 put_page(tree_page); 1927 new = &parent->rb_left; 1928 } else if (ret > 0) { 1929 put_page(tree_page); 1930 new = &parent->rb_right; 1931 } else if (!ksm_merge_across_nodes && 1932 page_to_nid(tree_page) != nid) { 1933 /* 1934 * If tree_page has been migrated to another NUMA node, 1935 * it will be flushed out and put in the right unstable 1936 * tree next time: only merge with it when across_nodes. 1937 */ 1938 put_page(tree_page); 1939 return NULL; 1940 } else { 1941 *tree_pagep = tree_page; 1942 return tree_rmap_item; 1943 } 1944 } 1945 1946 rmap_item->address |= UNSTABLE_FLAG; 1947 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1948 DO_NUMA(rmap_item->nid = nid); 1949 rb_link_node(&rmap_item->node, parent, new); 1950 rb_insert_color(&rmap_item->node, root); 1951 1952 ksm_pages_unshared++; 1953 return NULL; 1954 } 1955 1956 /* 1957 * stable_tree_append - add another rmap_item to the linked list of 1958 * rmap_items hanging off a given node of the stable tree, all sharing 1959 * the same ksm page. 1960 */ 1961 static void stable_tree_append(struct rmap_item *rmap_item, 1962 struct stable_node *stable_node, 1963 bool max_page_sharing_bypass) 1964 { 1965 /* 1966 * rmap won't find this mapping if we don't insert the 1967 * rmap_item in the right stable_node 1968 * duplicate. page_migration could break later if rmap breaks, 1969 * so we can as well crash here. We really need to check for 1970 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1971 * for other negative values as an undeflow if detected here 1972 * for the first time (and not when decreasing rmap_hlist_len) 1973 * would be sign of memory corruption in the stable_node. 1974 */ 1975 BUG_ON(stable_node->rmap_hlist_len < 0); 1976 1977 stable_node->rmap_hlist_len++; 1978 if (!max_page_sharing_bypass) 1979 /* possibly non fatal but unexpected overflow, only warn */ 1980 WARN_ON_ONCE(stable_node->rmap_hlist_len > 1981 ksm_max_page_sharing); 1982 1983 rmap_item->head = stable_node; 1984 rmap_item->address |= STABLE_FLAG; 1985 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1986 1987 if (rmap_item->hlist.next) 1988 ksm_pages_sharing++; 1989 else 1990 ksm_pages_shared++; 1991 } 1992 1993 /* 1994 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1995 * if not, compare checksum to previous and if it's the same, see if page can 1996 * be inserted into the unstable tree, or merged with a page already there and 1997 * both transferred to the stable tree. 1998 * 1999 * @page: the page that we are searching identical page to. 2000 * @rmap_item: the reverse mapping into the virtual address of this page 2001 */ 2002 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2003 { 2004 struct mm_struct *mm = rmap_item->mm; 2005 struct rmap_item *tree_rmap_item; 2006 struct page *tree_page = NULL; 2007 struct stable_node *stable_node; 2008 struct page *kpage; 2009 unsigned int checksum; 2010 int err; 2011 bool max_page_sharing_bypass = false; 2012 2013 stable_node = page_stable_node(page); 2014 if (stable_node) { 2015 if (stable_node->head != &migrate_nodes && 2016 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2017 NUMA(stable_node->nid)) { 2018 stable_node_dup_del(stable_node); 2019 stable_node->head = &migrate_nodes; 2020 list_add(&stable_node->list, stable_node->head); 2021 } 2022 if (stable_node->head != &migrate_nodes && 2023 rmap_item->head == stable_node) 2024 return; 2025 /* 2026 * If it's a KSM fork, allow it to go over the sharing limit 2027 * without warnings. 2028 */ 2029 if (!is_page_sharing_candidate(stable_node)) 2030 max_page_sharing_bypass = true; 2031 } 2032 2033 /* We first start with searching the page inside the stable tree */ 2034 kpage = stable_tree_search(page); 2035 if (kpage == page && rmap_item->head == stable_node) { 2036 put_page(kpage); 2037 return; 2038 } 2039 2040 remove_rmap_item_from_tree(rmap_item); 2041 2042 if (kpage) { 2043 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2044 if (!err) { 2045 /* 2046 * The page was successfully merged: 2047 * add its rmap_item to the stable tree. 2048 */ 2049 lock_page(kpage); 2050 stable_tree_append(rmap_item, page_stable_node(kpage), 2051 max_page_sharing_bypass); 2052 unlock_page(kpage); 2053 } 2054 put_page(kpage); 2055 return; 2056 } 2057 2058 /* 2059 * If the hash value of the page has changed from the last time 2060 * we calculated it, this page is changing frequently: therefore we 2061 * don't want to insert it in the unstable tree, and we don't want 2062 * to waste our time searching for something identical to it there. 2063 */ 2064 checksum = calc_checksum(page); 2065 if (rmap_item->oldchecksum != checksum) { 2066 rmap_item->oldchecksum = checksum; 2067 return; 2068 } 2069 2070 /* 2071 * Same checksum as an empty page. We attempt to merge it with the 2072 * appropriate zero page if the user enabled this via sysfs. 2073 */ 2074 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2075 struct vm_area_struct *vma; 2076 2077 down_read(&mm->mmap_sem); 2078 vma = find_mergeable_vma(mm, rmap_item->address); 2079 err = try_to_merge_one_page(vma, page, 2080 ZERO_PAGE(rmap_item->address)); 2081 up_read(&mm->mmap_sem); 2082 /* 2083 * In case of failure, the page was not really empty, so we 2084 * need to continue. Otherwise we're done. 2085 */ 2086 if (!err) 2087 return; 2088 } 2089 tree_rmap_item = 2090 unstable_tree_search_insert(rmap_item, page, &tree_page); 2091 if (tree_rmap_item) { 2092 bool split; 2093 2094 kpage = try_to_merge_two_pages(rmap_item, page, 2095 tree_rmap_item, tree_page); 2096 /* 2097 * If both pages we tried to merge belong to the same compound 2098 * page, then we actually ended up increasing the reference 2099 * count of the same compound page twice, and split_huge_page 2100 * failed. 2101 * Here we set a flag if that happened, and we use it later to 2102 * try split_huge_page again. Since we call put_page right 2103 * afterwards, the reference count will be correct and 2104 * split_huge_page should succeed. 2105 */ 2106 split = PageTransCompound(page) 2107 && compound_head(page) == compound_head(tree_page); 2108 put_page(tree_page); 2109 if (kpage) { 2110 /* 2111 * The pages were successfully merged: insert new 2112 * node in the stable tree and add both rmap_items. 2113 */ 2114 lock_page(kpage); 2115 stable_node = stable_tree_insert(kpage); 2116 if (stable_node) { 2117 stable_tree_append(tree_rmap_item, stable_node, 2118 false); 2119 stable_tree_append(rmap_item, stable_node, 2120 false); 2121 } 2122 unlock_page(kpage); 2123 2124 /* 2125 * If we fail to insert the page into the stable tree, 2126 * we will have 2 virtual addresses that are pointing 2127 * to a ksm page left outside the stable tree, 2128 * in which case we need to break_cow on both. 2129 */ 2130 if (!stable_node) { 2131 break_cow(tree_rmap_item); 2132 break_cow(rmap_item); 2133 } 2134 } else if (split) { 2135 /* 2136 * We are here if we tried to merge two pages and 2137 * failed because they both belonged to the same 2138 * compound page. We will split the page now, but no 2139 * merging will take place. 2140 * We do not want to add the cost of a full lock; if 2141 * the page is locked, it is better to skip it and 2142 * perhaps try again later. 2143 */ 2144 if (!trylock_page(page)) 2145 return; 2146 split_huge_page(page); 2147 unlock_page(page); 2148 } 2149 } 2150 } 2151 2152 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2153 struct rmap_item **rmap_list, 2154 unsigned long addr) 2155 { 2156 struct rmap_item *rmap_item; 2157 2158 while (*rmap_list) { 2159 rmap_item = *rmap_list; 2160 if ((rmap_item->address & PAGE_MASK) == addr) 2161 return rmap_item; 2162 if (rmap_item->address > addr) 2163 break; 2164 *rmap_list = rmap_item->rmap_list; 2165 remove_rmap_item_from_tree(rmap_item); 2166 free_rmap_item(rmap_item); 2167 } 2168 2169 rmap_item = alloc_rmap_item(); 2170 if (rmap_item) { 2171 /* It has already been zeroed */ 2172 rmap_item->mm = mm_slot->mm; 2173 rmap_item->address = addr; 2174 rmap_item->rmap_list = *rmap_list; 2175 *rmap_list = rmap_item; 2176 } 2177 return rmap_item; 2178 } 2179 2180 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2181 { 2182 struct mm_struct *mm; 2183 struct mm_slot *slot; 2184 struct vm_area_struct *vma; 2185 struct rmap_item *rmap_item; 2186 int nid; 2187 2188 if (list_empty(&ksm_mm_head.mm_list)) 2189 return NULL; 2190 2191 slot = ksm_scan.mm_slot; 2192 if (slot == &ksm_mm_head) { 2193 /* 2194 * A number of pages can hang around indefinitely on per-cpu 2195 * pagevecs, raised page count preventing write_protect_page 2196 * from merging them. Though it doesn't really matter much, 2197 * it is puzzling to see some stuck in pages_volatile until 2198 * other activity jostles them out, and they also prevented 2199 * LTP's KSM test from succeeding deterministically; so drain 2200 * them here (here rather than on entry to ksm_do_scan(), 2201 * so we don't IPI too often when pages_to_scan is set low). 2202 */ 2203 lru_add_drain_all(); 2204 2205 /* 2206 * Whereas stale stable_nodes on the stable_tree itself 2207 * get pruned in the regular course of stable_tree_search(), 2208 * those moved out to the migrate_nodes list can accumulate: 2209 * so prune them once before each full scan. 2210 */ 2211 if (!ksm_merge_across_nodes) { 2212 struct stable_node *stable_node, *next; 2213 struct page *page; 2214 2215 list_for_each_entry_safe(stable_node, next, 2216 &migrate_nodes, list) { 2217 page = get_ksm_page(stable_node, false); 2218 if (page) 2219 put_page(page); 2220 cond_resched(); 2221 } 2222 } 2223 2224 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2225 root_unstable_tree[nid] = RB_ROOT; 2226 2227 spin_lock(&ksm_mmlist_lock); 2228 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2229 ksm_scan.mm_slot = slot; 2230 spin_unlock(&ksm_mmlist_lock); 2231 /* 2232 * Although we tested list_empty() above, a racing __ksm_exit 2233 * of the last mm on the list may have removed it since then. 2234 */ 2235 if (slot == &ksm_mm_head) 2236 return NULL; 2237 next_mm: 2238 ksm_scan.address = 0; 2239 ksm_scan.rmap_list = &slot->rmap_list; 2240 } 2241 2242 mm = slot->mm; 2243 down_read(&mm->mmap_sem); 2244 if (ksm_test_exit(mm)) 2245 vma = NULL; 2246 else 2247 vma = find_vma(mm, ksm_scan.address); 2248 2249 for (; vma; vma = vma->vm_next) { 2250 if (!(vma->vm_flags & VM_MERGEABLE)) 2251 continue; 2252 if (ksm_scan.address < vma->vm_start) 2253 ksm_scan.address = vma->vm_start; 2254 if (!vma->anon_vma) 2255 ksm_scan.address = vma->vm_end; 2256 2257 while (ksm_scan.address < vma->vm_end) { 2258 if (ksm_test_exit(mm)) 2259 break; 2260 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2261 if (IS_ERR_OR_NULL(*page)) { 2262 ksm_scan.address += PAGE_SIZE; 2263 cond_resched(); 2264 continue; 2265 } 2266 if (PageAnon(*page)) { 2267 flush_anon_page(vma, *page, ksm_scan.address); 2268 flush_dcache_page(*page); 2269 rmap_item = get_next_rmap_item(slot, 2270 ksm_scan.rmap_list, ksm_scan.address); 2271 if (rmap_item) { 2272 ksm_scan.rmap_list = 2273 &rmap_item->rmap_list; 2274 ksm_scan.address += PAGE_SIZE; 2275 } else 2276 put_page(*page); 2277 up_read(&mm->mmap_sem); 2278 return rmap_item; 2279 } 2280 put_page(*page); 2281 ksm_scan.address += PAGE_SIZE; 2282 cond_resched(); 2283 } 2284 } 2285 2286 if (ksm_test_exit(mm)) { 2287 ksm_scan.address = 0; 2288 ksm_scan.rmap_list = &slot->rmap_list; 2289 } 2290 /* 2291 * Nuke all the rmap_items that are above this current rmap: 2292 * because there were no VM_MERGEABLE vmas with such addresses. 2293 */ 2294 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2295 2296 spin_lock(&ksm_mmlist_lock); 2297 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2298 struct mm_slot, mm_list); 2299 if (ksm_scan.address == 0) { 2300 /* 2301 * We've completed a full scan of all vmas, holding mmap_sem 2302 * throughout, and found no VM_MERGEABLE: so do the same as 2303 * __ksm_exit does to remove this mm from all our lists now. 2304 * This applies either when cleaning up after __ksm_exit 2305 * (but beware: we can reach here even before __ksm_exit), 2306 * or when all VM_MERGEABLE areas have been unmapped (and 2307 * mmap_sem then protects against race with MADV_MERGEABLE). 2308 */ 2309 hash_del(&slot->link); 2310 list_del(&slot->mm_list); 2311 spin_unlock(&ksm_mmlist_lock); 2312 2313 free_mm_slot(slot); 2314 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2315 up_read(&mm->mmap_sem); 2316 mmdrop(mm); 2317 } else { 2318 up_read(&mm->mmap_sem); 2319 /* 2320 * up_read(&mm->mmap_sem) first because after 2321 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2322 * already have been freed under us by __ksm_exit() 2323 * because the "mm_slot" is still hashed and 2324 * ksm_scan.mm_slot doesn't point to it anymore. 2325 */ 2326 spin_unlock(&ksm_mmlist_lock); 2327 } 2328 2329 /* Repeat until we've completed scanning the whole list */ 2330 slot = ksm_scan.mm_slot; 2331 if (slot != &ksm_mm_head) 2332 goto next_mm; 2333 2334 ksm_scan.seqnr++; 2335 return NULL; 2336 } 2337 2338 /** 2339 * ksm_do_scan - the ksm scanner main worker function. 2340 * @scan_npages: number of pages we want to scan before we return. 2341 */ 2342 static void ksm_do_scan(unsigned int scan_npages) 2343 { 2344 struct rmap_item *rmap_item; 2345 struct page *uninitialized_var(page); 2346 2347 while (scan_npages-- && likely(!freezing(current))) { 2348 cond_resched(); 2349 rmap_item = scan_get_next_rmap_item(&page); 2350 if (!rmap_item) 2351 return; 2352 cmp_and_merge_page(page, rmap_item); 2353 put_page(page); 2354 } 2355 } 2356 2357 static int ksmd_should_run(void) 2358 { 2359 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2360 } 2361 2362 static int ksm_scan_thread(void *nothing) 2363 { 2364 set_freezable(); 2365 set_user_nice(current, 5); 2366 2367 while (!kthread_should_stop()) { 2368 mutex_lock(&ksm_thread_mutex); 2369 wait_while_offlining(); 2370 if (ksmd_should_run()) 2371 ksm_do_scan(ksm_thread_pages_to_scan); 2372 mutex_unlock(&ksm_thread_mutex); 2373 2374 try_to_freeze(); 2375 2376 if (ksmd_should_run()) { 2377 schedule_timeout_interruptible( 2378 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 2379 } else { 2380 wait_event_freezable(ksm_thread_wait, 2381 ksmd_should_run() || kthread_should_stop()); 2382 } 2383 } 2384 return 0; 2385 } 2386 2387 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2388 unsigned long end, int advice, unsigned long *vm_flags) 2389 { 2390 struct mm_struct *mm = vma->vm_mm; 2391 int err; 2392 2393 switch (advice) { 2394 case MADV_MERGEABLE: 2395 /* 2396 * Be somewhat over-protective for now! 2397 */ 2398 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2399 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2400 VM_HUGETLB | VM_MIXEDMAP)) 2401 return 0; /* just ignore the advice */ 2402 2403 #ifdef VM_SAO 2404 if (*vm_flags & VM_SAO) 2405 return 0; 2406 #endif 2407 #ifdef VM_SPARC_ADI 2408 if (*vm_flags & VM_SPARC_ADI) 2409 return 0; 2410 #endif 2411 2412 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2413 err = __ksm_enter(mm); 2414 if (err) 2415 return err; 2416 } 2417 2418 *vm_flags |= VM_MERGEABLE; 2419 break; 2420 2421 case MADV_UNMERGEABLE: 2422 if (!(*vm_flags & VM_MERGEABLE)) 2423 return 0; /* just ignore the advice */ 2424 2425 if (vma->anon_vma) { 2426 err = unmerge_ksm_pages(vma, start, end); 2427 if (err) 2428 return err; 2429 } 2430 2431 *vm_flags &= ~VM_MERGEABLE; 2432 break; 2433 } 2434 2435 return 0; 2436 } 2437 2438 int __ksm_enter(struct mm_struct *mm) 2439 { 2440 struct mm_slot *mm_slot; 2441 int needs_wakeup; 2442 2443 mm_slot = alloc_mm_slot(); 2444 if (!mm_slot) 2445 return -ENOMEM; 2446 2447 /* Check ksm_run too? Would need tighter locking */ 2448 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2449 2450 spin_lock(&ksm_mmlist_lock); 2451 insert_to_mm_slots_hash(mm, mm_slot); 2452 /* 2453 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2454 * insert just behind the scanning cursor, to let the area settle 2455 * down a little; when fork is followed by immediate exec, we don't 2456 * want ksmd to waste time setting up and tearing down an rmap_list. 2457 * 2458 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2459 * scanning cursor, otherwise KSM pages in newly forked mms will be 2460 * missed: then we might as well insert at the end of the list. 2461 */ 2462 if (ksm_run & KSM_RUN_UNMERGE) 2463 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2464 else 2465 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2466 spin_unlock(&ksm_mmlist_lock); 2467 2468 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2469 mmgrab(mm); 2470 2471 if (needs_wakeup) 2472 wake_up_interruptible(&ksm_thread_wait); 2473 2474 return 0; 2475 } 2476 2477 void __ksm_exit(struct mm_struct *mm) 2478 { 2479 struct mm_slot *mm_slot; 2480 int easy_to_free = 0; 2481 2482 /* 2483 * This process is exiting: if it's straightforward (as is the 2484 * case when ksmd was never running), free mm_slot immediately. 2485 * But if it's at the cursor or has rmap_items linked to it, use 2486 * mmap_sem to synchronize with any break_cows before pagetables 2487 * are freed, and leave the mm_slot on the list for ksmd to free. 2488 * Beware: ksm may already have noticed it exiting and freed the slot. 2489 */ 2490 2491 spin_lock(&ksm_mmlist_lock); 2492 mm_slot = get_mm_slot(mm); 2493 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2494 if (!mm_slot->rmap_list) { 2495 hash_del(&mm_slot->link); 2496 list_del(&mm_slot->mm_list); 2497 easy_to_free = 1; 2498 } else { 2499 list_move(&mm_slot->mm_list, 2500 &ksm_scan.mm_slot->mm_list); 2501 } 2502 } 2503 spin_unlock(&ksm_mmlist_lock); 2504 2505 if (easy_to_free) { 2506 free_mm_slot(mm_slot); 2507 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2508 mmdrop(mm); 2509 } else if (mm_slot) { 2510 down_write(&mm->mmap_sem); 2511 up_write(&mm->mmap_sem); 2512 } 2513 } 2514 2515 struct page *ksm_might_need_to_copy(struct page *page, 2516 struct vm_area_struct *vma, unsigned long address) 2517 { 2518 struct anon_vma *anon_vma = page_anon_vma(page); 2519 struct page *new_page; 2520 2521 if (PageKsm(page)) { 2522 if (page_stable_node(page) && 2523 !(ksm_run & KSM_RUN_UNMERGE)) 2524 return page; /* no need to copy it */ 2525 } else if (!anon_vma) { 2526 return page; /* no need to copy it */ 2527 } else if (anon_vma->root == vma->anon_vma->root && 2528 page->index == linear_page_index(vma, address)) { 2529 return page; /* still no need to copy it */ 2530 } 2531 if (!PageUptodate(page)) 2532 return page; /* let do_swap_page report the error */ 2533 2534 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2535 if (new_page) { 2536 copy_user_highpage(new_page, page, address, vma); 2537 2538 SetPageDirty(new_page); 2539 __SetPageUptodate(new_page); 2540 __SetPageLocked(new_page); 2541 } 2542 2543 return new_page; 2544 } 2545 2546 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2547 { 2548 struct stable_node *stable_node; 2549 struct rmap_item *rmap_item; 2550 int search_new_forks = 0; 2551 2552 VM_BUG_ON_PAGE(!PageKsm(page), page); 2553 2554 /* 2555 * Rely on the page lock to protect against concurrent modifications 2556 * to that page's node of the stable tree. 2557 */ 2558 VM_BUG_ON_PAGE(!PageLocked(page), page); 2559 2560 stable_node = page_stable_node(page); 2561 if (!stable_node) 2562 return; 2563 again: 2564 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2565 struct anon_vma *anon_vma = rmap_item->anon_vma; 2566 struct anon_vma_chain *vmac; 2567 struct vm_area_struct *vma; 2568 2569 cond_resched(); 2570 anon_vma_lock_read(anon_vma); 2571 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2572 0, ULONG_MAX) { 2573 cond_resched(); 2574 vma = vmac->vma; 2575 if (rmap_item->address < vma->vm_start || 2576 rmap_item->address >= vma->vm_end) 2577 continue; 2578 /* 2579 * Initially we examine only the vma which covers this 2580 * rmap_item; but later, if there is still work to do, 2581 * we examine covering vmas in other mms: in case they 2582 * were forked from the original since ksmd passed. 2583 */ 2584 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2585 continue; 2586 2587 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2588 continue; 2589 2590 if (!rwc->rmap_one(page, vma, 2591 rmap_item->address, rwc->arg)) { 2592 anon_vma_unlock_read(anon_vma); 2593 return; 2594 } 2595 if (rwc->done && rwc->done(page)) { 2596 anon_vma_unlock_read(anon_vma); 2597 return; 2598 } 2599 } 2600 anon_vma_unlock_read(anon_vma); 2601 } 2602 if (!search_new_forks++) 2603 goto again; 2604 } 2605 2606 #ifdef CONFIG_MIGRATION 2607 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2608 { 2609 struct stable_node *stable_node; 2610 2611 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2612 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2613 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2614 2615 stable_node = page_stable_node(newpage); 2616 if (stable_node) { 2617 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2618 stable_node->kpfn = page_to_pfn(newpage); 2619 /* 2620 * newpage->mapping was set in advance; now we need smp_wmb() 2621 * to make sure that the new stable_node->kpfn is visible 2622 * to get_ksm_page() before it can see that oldpage->mapping 2623 * has gone stale (or that PageSwapCache has been cleared). 2624 */ 2625 smp_wmb(); 2626 set_page_stable_node(oldpage, NULL); 2627 } 2628 } 2629 #endif /* CONFIG_MIGRATION */ 2630 2631 #ifdef CONFIG_MEMORY_HOTREMOVE 2632 static void wait_while_offlining(void) 2633 { 2634 while (ksm_run & KSM_RUN_OFFLINE) { 2635 mutex_unlock(&ksm_thread_mutex); 2636 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2637 TASK_UNINTERRUPTIBLE); 2638 mutex_lock(&ksm_thread_mutex); 2639 } 2640 } 2641 2642 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2643 unsigned long start_pfn, 2644 unsigned long end_pfn) 2645 { 2646 if (stable_node->kpfn >= start_pfn && 2647 stable_node->kpfn < end_pfn) { 2648 /* 2649 * Don't get_ksm_page, page has already gone: 2650 * which is why we keep kpfn instead of page* 2651 */ 2652 remove_node_from_stable_tree(stable_node); 2653 return true; 2654 } 2655 return false; 2656 } 2657 2658 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2659 unsigned long start_pfn, 2660 unsigned long end_pfn, 2661 struct rb_root *root) 2662 { 2663 struct stable_node *dup; 2664 struct hlist_node *hlist_safe; 2665 2666 if (!is_stable_node_chain(stable_node)) { 2667 VM_BUG_ON(is_stable_node_dup(stable_node)); 2668 return stable_node_dup_remove_range(stable_node, start_pfn, 2669 end_pfn); 2670 } 2671 2672 hlist_for_each_entry_safe(dup, hlist_safe, 2673 &stable_node->hlist, hlist_dup) { 2674 VM_BUG_ON(!is_stable_node_dup(dup)); 2675 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2676 } 2677 if (hlist_empty(&stable_node->hlist)) { 2678 free_stable_node_chain(stable_node, root); 2679 return true; /* notify caller that tree was rebalanced */ 2680 } else 2681 return false; 2682 } 2683 2684 static void ksm_check_stable_tree(unsigned long start_pfn, 2685 unsigned long end_pfn) 2686 { 2687 struct stable_node *stable_node, *next; 2688 struct rb_node *node; 2689 int nid; 2690 2691 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2692 node = rb_first(root_stable_tree + nid); 2693 while (node) { 2694 stable_node = rb_entry(node, struct stable_node, node); 2695 if (stable_node_chain_remove_range(stable_node, 2696 start_pfn, end_pfn, 2697 root_stable_tree + 2698 nid)) 2699 node = rb_first(root_stable_tree + nid); 2700 else 2701 node = rb_next(node); 2702 cond_resched(); 2703 } 2704 } 2705 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2706 if (stable_node->kpfn >= start_pfn && 2707 stable_node->kpfn < end_pfn) 2708 remove_node_from_stable_tree(stable_node); 2709 cond_resched(); 2710 } 2711 } 2712 2713 static int ksm_memory_callback(struct notifier_block *self, 2714 unsigned long action, void *arg) 2715 { 2716 struct memory_notify *mn = arg; 2717 2718 switch (action) { 2719 case MEM_GOING_OFFLINE: 2720 /* 2721 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2722 * and remove_all_stable_nodes() while memory is going offline: 2723 * it is unsafe for them to touch the stable tree at this time. 2724 * But unmerge_ksm_pages(), rmap lookups and other entry points 2725 * which do not need the ksm_thread_mutex are all safe. 2726 */ 2727 mutex_lock(&ksm_thread_mutex); 2728 ksm_run |= KSM_RUN_OFFLINE; 2729 mutex_unlock(&ksm_thread_mutex); 2730 break; 2731 2732 case MEM_OFFLINE: 2733 /* 2734 * Most of the work is done by page migration; but there might 2735 * be a few stable_nodes left over, still pointing to struct 2736 * pages which have been offlined: prune those from the tree, 2737 * otherwise get_ksm_page() might later try to access a 2738 * non-existent struct page. 2739 */ 2740 ksm_check_stable_tree(mn->start_pfn, 2741 mn->start_pfn + mn->nr_pages); 2742 /* fallthrough */ 2743 2744 case MEM_CANCEL_OFFLINE: 2745 mutex_lock(&ksm_thread_mutex); 2746 ksm_run &= ~KSM_RUN_OFFLINE; 2747 mutex_unlock(&ksm_thread_mutex); 2748 2749 smp_mb(); /* wake_up_bit advises this */ 2750 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2751 break; 2752 } 2753 return NOTIFY_OK; 2754 } 2755 #else 2756 static void wait_while_offlining(void) 2757 { 2758 } 2759 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2760 2761 #ifdef CONFIG_SYSFS 2762 /* 2763 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2764 */ 2765 2766 #define KSM_ATTR_RO(_name) \ 2767 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2768 #define KSM_ATTR(_name) \ 2769 static struct kobj_attribute _name##_attr = \ 2770 __ATTR(_name, 0644, _name##_show, _name##_store) 2771 2772 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2773 struct kobj_attribute *attr, char *buf) 2774 { 2775 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2776 } 2777 2778 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2779 struct kobj_attribute *attr, 2780 const char *buf, size_t count) 2781 { 2782 unsigned long msecs; 2783 int err; 2784 2785 err = kstrtoul(buf, 10, &msecs); 2786 if (err || msecs > UINT_MAX) 2787 return -EINVAL; 2788 2789 ksm_thread_sleep_millisecs = msecs; 2790 2791 return count; 2792 } 2793 KSM_ATTR(sleep_millisecs); 2794 2795 static ssize_t pages_to_scan_show(struct kobject *kobj, 2796 struct kobj_attribute *attr, char *buf) 2797 { 2798 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2799 } 2800 2801 static ssize_t pages_to_scan_store(struct kobject *kobj, 2802 struct kobj_attribute *attr, 2803 const char *buf, size_t count) 2804 { 2805 int err; 2806 unsigned long nr_pages; 2807 2808 err = kstrtoul(buf, 10, &nr_pages); 2809 if (err || nr_pages > UINT_MAX) 2810 return -EINVAL; 2811 2812 ksm_thread_pages_to_scan = nr_pages; 2813 2814 return count; 2815 } 2816 KSM_ATTR(pages_to_scan); 2817 2818 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2819 char *buf) 2820 { 2821 return sprintf(buf, "%lu\n", ksm_run); 2822 } 2823 2824 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2825 const char *buf, size_t count) 2826 { 2827 int err; 2828 unsigned long flags; 2829 2830 err = kstrtoul(buf, 10, &flags); 2831 if (err || flags > UINT_MAX) 2832 return -EINVAL; 2833 if (flags > KSM_RUN_UNMERGE) 2834 return -EINVAL; 2835 2836 /* 2837 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2838 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2839 * breaking COW to free the pages_shared (but leaves mm_slots 2840 * on the list for when ksmd may be set running again). 2841 */ 2842 2843 mutex_lock(&ksm_thread_mutex); 2844 wait_while_offlining(); 2845 if (ksm_run != flags) { 2846 ksm_run = flags; 2847 if (flags & KSM_RUN_UNMERGE) { 2848 set_current_oom_origin(); 2849 err = unmerge_and_remove_all_rmap_items(); 2850 clear_current_oom_origin(); 2851 if (err) { 2852 ksm_run = KSM_RUN_STOP; 2853 count = err; 2854 } 2855 } 2856 } 2857 mutex_unlock(&ksm_thread_mutex); 2858 2859 if (flags & KSM_RUN_MERGE) 2860 wake_up_interruptible(&ksm_thread_wait); 2861 2862 return count; 2863 } 2864 KSM_ATTR(run); 2865 2866 #ifdef CONFIG_NUMA 2867 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2868 struct kobj_attribute *attr, char *buf) 2869 { 2870 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2871 } 2872 2873 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2874 struct kobj_attribute *attr, 2875 const char *buf, size_t count) 2876 { 2877 int err; 2878 unsigned long knob; 2879 2880 err = kstrtoul(buf, 10, &knob); 2881 if (err) 2882 return err; 2883 if (knob > 1) 2884 return -EINVAL; 2885 2886 mutex_lock(&ksm_thread_mutex); 2887 wait_while_offlining(); 2888 if (ksm_merge_across_nodes != knob) { 2889 if (ksm_pages_shared || remove_all_stable_nodes()) 2890 err = -EBUSY; 2891 else if (root_stable_tree == one_stable_tree) { 2892 struct rb_root *buf; 2893 /* 2894 * This is the first time that we switch away from the 2895 * default of merging across nodes: must now allocate 2896 * a buffer to hold as many roots as may be needed. 2897 * Allocate stable and unstable together: 2898 * MAXSMP NODES_SHIFT 10 will use 16kB. 2899 */ 2900 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2901 GFP_KERNEL); 2902 /* Let us assume that RB_ROOT is NULL is zero */ 2903 if (!buf) 2904 err = -ENOMEM; 2905 else { 2906 root_stable_tree = buf; 2907 root_unstable_tree = buf + nr_node_ids; 2908 /* Stable tree is empty but not the unstable */ 2909 root_unstable_tree[0] = one_unstable_tree[0]; 2910 } 2911 } 2912 if (!err) { 2913 ksm_merge_across_nodes = knob; 2914 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2915 } 2916 } 2917 mutex_unlock(&ksm_thread_mutex); 2918 2919 return err ? err : count; 2920 } 2921 KSM_ATTR(merge_across_nodes); 2922 #endif 2923 2924 static ssize_t use_zero_pages_show(struct kobject *kobj, 2925 struct kobj_attribute *attr, char *buf) 2926 { 2927 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2928 } 2929 static ssize_t use_zero_pages_store(struct kobject *kobj, 2930 struct kobj_attribute *attr, 2931 const char *buf, size_t count) 2932 { 2933 int err; 2934 bool value; 2935 2936 err = kstrtobool(buf, &value); 2937 if (err) 2938 return -EINVAL; 2939 2940 ksm_use_zero_pages = value; 2941 2942 return count; 2943 } 2944 KSM_ATTR(use_zero_pages); 2945 2946 static ssize_t max_page_sharing_show(struct kobject *kobj, 2947 struct kobj_attribute *attr, char *buf) 2948 { 2949 return sprintf(buf, "%u\n", ksm_max_page_sharing); 2950 } 2951 2952 static ssize_t max_page_sharing_store(struct kobject *kobj, 2953 struct kobj_attribute *attr, 2954 const char *buf, size_t count) 2955 { 2956 int err; 2957 int knob; 2958 2959 err = kstrtoint(buf, 10, &knob); 2960 if (err) 2961 return err; 2962 /* 2963 * When a KSM page is created it is shared by 2 mappings. This 2964 * being a signed comparison, it implicitly verifies it's not 2965 * negative. 2966 */ 2967 if (knob < 2) 2968 return -EINVAL; 2969 2970 if (READ_ONCE(ksm_max_page_sharing) == knob) 2971 return count; 2972 2973 mutex_lock(&ksm_thread_mutex); 2974 wait_while_offlining(); 2975 if (ksm_max_page_sharing != knob) { 2976 if (ksm_pages_shared || remove_all_stable_nodes()) 2977 err = -EBUSY; 2978 else 2979 ksm_max_page_sharing = knob; 2980 } 2981 mutex_unlock(&ksm_thread_mutex); 2982 2983 return err ? err : count; 2984 } 2985 KSM_ATTR(max_page_sharing); 2986 2987 static ssize_t pages_shared_show(struct kobject *kobj, 2988 struct kobj_attribute *attr, char *buf) 2989 { 2990 return sprintf(buf, "%lu\n", ksm_pages_shared); 2991 } 2992 KSM_ATTR_RO(pages_shared); 2993 2994 static ssize_t pages_sharing_show(struct kobject *kobj, 2995 struct kobj_attribute *attr, char *buf) 2996 { 2997 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2998 } 2999 KSM_ATTR_RO(pages_sharing); 3000 3001 static ssize_t pages_unshared_show(struct kobject *kobj, 3002 struct kobj_attribute *attr, char *buf) 3003 { 3004 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3005 } 3006 KSM_ATTR_RO(pages_unshared); 3007 3008 static ssize_t pages_volatile_show(struct kobject *kobj, 3009 struct kobj_attribute *attr, char *buf) 3010 { 3011 long ksm_pages_volatile; 3012 3013 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3014 - ksm_pages_sharing - ksm_pages_unshared; 3015 /* 3016 * It was not worth any locking to calculate that statistic, 3017 * but it might therefore sometimes be negative: conceal that. 3018 */ 3019 if (ksm_pages_volatile < 0) 3020 ksm_pages_volatile = 0; 3021 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3022 } 3023 KSM_ATTR_RO(pages_volatile); 3024 3025 static ssize_t stable_node_dups_show(struct kobject *kobj, 3026 struct kobj_attribute *attr, char *buf) 3027 { 3028 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3029 } 3030 KSM_ATTR_RO(stable_node_dups); 3031 3032 static ssize_t stable_node_chains_show(struct kobject *kobj, 3033 struct kobj_attribute *attr, char *buf) 3034 { 3035 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3036 } 3037 KSM_ATTR_RO(stable_node_chains); 3038 3039 static ssize_t 3040 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3041 struct kobj_attribute *attr, 3042 char *buf) 3043 { 3044 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3045 } 3046 3047 static ssize_t 3048 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3049 struct kobj_attribute *attr, 3050 const char *buf, size_t count) 3051 { 3052 unsigned long msecs; 3053 int err; 3054 3055 err = kstrtoul(buf, 10, &msecs); 3056 if (err || msecs > UINT_MAX) 3057 return -EINVAL; 3058 3059 ksm_stable_node_chains_prune_millisecs = msecs; 3060 3061 return count; 3062 } 3063 KSM_ATTR(stable_node_chains_prune_millisecs); 3064 3065 static ssize_t full_scans_show(struct kobject *kobj, 3066 struct kobj_attribute *attr, char *buf) 3067 { 3068 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3069 } 3070 KSM_ATTR_RO(full_scans); 3071 3072 static struct attribute *ksm_attrs[] = { 3073 &sleep_millisecs_attr.attr, 3074 &pages_to_scan_attr.attr, 3075 &run_attr.attr, 3076 &pages_shared_attr.attr, 3077 &pages_sharing_attr.attr, 3078 &pages_unshared_attr.attr, 3079 &pages_volatile_attr.attr, 3080 &full_scans_attr.attr, 3081 #ifdef CONFIG_NUMA 3082 &merge_across_nodes_attr.attr, 3083 #endif 3084 &max_page_sharing_attr.attr, 3085 &stable_node_chains_attr.attr, 3086 &stable_node_dups_attr.attr, 3087 &stable_node_chains_prune_millisecs_attr.attr, 3088 &use_zero_pages_attr.attr, 3089 NULL, 3090 }; 3091 3092 static const struct attribute_group ksm_attr_group = { 3093 .attrs = ksm_attrs, 3094 .name = "ksm", 3095 }; 3096 #endif /* CONFIG_SYSFS */ 3097 3098 static int __init ksm_init(void) 3099 { 3100 struct task_struct *ksm_thread; 3101 int err; 3102 3103 /* The correct value depends on page size and endianness */ 3104 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3105 /* Default to false for backwards compatibility */ 3106 ksm_use_zero_pages = false; 3107 3108 err = ksm_slab_init(); 3109 if (err) 3110 goto out; 3111 3112 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3113 if (IS_ERR(ksm_thread)) { 3114 pr_err("ksm: creating kthread failed\n"); 3115 err = PTR_ERR(ksm_thread); 3116 goto out_free; 3117 } 3118 3119 #ifdef CONFIG_SYSFS 3120 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3121 if (err) { 3122 pr_err("ksm: register sysfs failed\n"); 3123 kthread_stop(ksm_thread); 3124 goto out_free; 3125 } 3126 #else 3127 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3128 3129 #endif /* CONFIG_SYSFS */ 3130 3131 #ifdef CONFIG_MEMORY_HOTREMOVE 3132 /* There is no significance to this priority 100 */ 3133 hotplug_memory_notifier(ksm_memory_callback, 100); 3134 #endif 3135 return 0; 3136 3137 out_free: 3138 ksm_slab_free(); 3139 out: 3140 return err; 3141 } 3142 subsys_initcall(ksm_init); 3143