xref: /openbmc/linux/mm/ksm.c (revision e2942062)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118 
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125 	struct mm_slot slot;
126 	struct ksm_rmap_item *rmap_list;
127 };
128 
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139 	struct ksm_mm_slot *mm_slot;
140 	unsigned long address;
141 	struct ksm_rmap_item **rmap_list;
142 	unsigned long seqnr;
143 };
144 
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158 	union {
159 		struct rb_node node;	/* when node of stable tree */
160 		struct {		/* when listed for migration */
161 			struct list_head *head;
162 			struct {
163 				struct hlist_node hlist_dup;
164 				struct list_head list;
165 			};
166 		};
167 	};
168 	struct hlist_head hlist;
169 	union {
170 		unsigned long kpfn;
171 		unsigned long chain_prune_time;
172 	};
173 	/*
174 	 * STABLE_NODE_CHAIN can be any negative number in
175 	 * rmap_hlist_len negative range, but better not -1 to be able
176 	 * to reliably detect underflows.
177 	 */
178 #define STABLE_NODE_CHAIN -1024
179 	int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181 	int nid;
182 #endif
183 };
184 
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198 	struct ksm_rmap_item *rmap_list;
199 	union {
200 		struct anon_vma *anon_vma;	/* when stable */
201 #ifdef CONFIG_NUMA
202 		int nid;		/* when node of unstable tree */
203 #endif
204 	};
205 	struct mm_struct *mm;
206 	unsigned long address;		/* + low bits used for flags below */
207 	unsigned int oldchecksum;	/* when unstable */
208 	union {
209 		struct rb_node node;	/* when node of unstable tree */
210 		struct {		/* when listed from stable tree */
211 			struct ksm_stable_node *head;
212 			struct hlist_node hlist;
213 		};
214 	};
215 };
216 
217 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
219 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct ksm_mm_slot ksm_mm_head = {
235 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247 
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250 
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253 
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256 
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259 
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262 
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265 
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268 
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271 
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274 
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277 
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280 
281 /* The number of zero pages which is placed by KSM */
282 unsigned long ksm_zero_pages;
283 
284 #ifdef CONFIG_NUMA
285 /* Zeroed when merging across nodes is not allowed */
286 static unsigned int ksm_merge_across_nodes = 1;
287 static int ksm_nr_node_ids = 1;
288 #else
289 #define ksm_merge_across_nodes	1U
290 #define ksm_nr_node_ids		1
291 #endif
292 
293 #define KSM_RUN_STOP	0
294 #define KSM_RUN_MERGE	1
295 #define KSM_RUN_UNMERGE	2
296 #define KSM_RUN_OFFLINE	4
297 static unsigned long ksm_run = KSM_RUN_STOP;
298 static void wait_while_offlining(void);
299 
300 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
301 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
302 static DEFINE_MUTEX(ksm_thread_mutex);
303 static DEFINE_SPINLOCK(ksm_mmlist_lock);
304 
305 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
306 		sizeof(struct __struct), __alignof__(struct __struct),\
307 		(__flags), NULL)
308 
309 static int __init ksm_slab_init(void)
310 {
311 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
312 	if (!rmap_item_cache)
313 		goto out;
314 
315 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
316 	if (!stable_node_cache)
317 		goto out_free1;
318 
319 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
320 	if (!mm_slot_cache)
321 		goto out_free2;
322 
323 	return 0;
324 
325 out_free2:
326 	kmem_cache_destroy(stable_node_cache);
327 out_free1:
328 	kmem_cache_destroy(rmap_item_cache);
329 out:
330 	return -ENOMEM;
331 }
332 
333 static void __init ksm_slab_free(void)
334 {
335 	kmem_cache_destroy(mm_slot_cache);
336 	kmem_cache_destroy(stable_node_cache);
337 	kmem_cache_destroy(rmap_item_cache);
338 	mm_slot_cache = NULL;
339 }
340 
341 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
342 {
343 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
344 }
345 
346 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
347 {
348 	return dup->head == STABLE_NODE_DUP_HEAD;
349 }
350 
351 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
352 					     struct ksm_stable_node *chain)
353 {
354 	VM_BUG_ON(is_stable_node_dup(dup));
355 	dup->head = STABLE_NODE_DUP_HEAD;
356 	VM_BUG_ON(!is_stable_node_chain(chain));
357 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
358 	ksm_stable_node_dups++;
359 }
360 
361 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
362 {
363 	VM_BUG_ON(!is_stable_node_dup(dup));
364 	hlist_del(&dup->hlist_dup);
365 	ksm_stable_node_dups--;
366 }
367 
368 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
369 {
370 	VM_BUG_ON(is_stable_node_chain(dup));
371 	if (is_stable_node_dup(dup))
372 		__stable_node_dup_del(dup);
373 	else
374 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
375 #ifdef CONFIG_DEBUG_VM
376 	dup->head = NULL;
377 #endif
378 }
379 
380 static inline struct ksm_rmap_item *alloc_rmap_item(void)
381 {
382 	struct ksm_rmap_item *rmap_item;
383 
384 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
385 						__GFP_NORETRY | __GFP_NOWARN);
386 	if (rmap_item)
387 		ksm_rmap_items++;
388 	return rmap_item;
389 }
390 
391 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
392 {
393 	ksm_rmap_items--;
394 	rmap_item->mm->ksm_rmap_items--;
395 	rmap_item->mm = NULL;	/* debug safety */
396 	kmem_cache_free(rmap_item_cache, rmap_item);
397 }
398 
399 static inline struct ksm_stable_node *alloc_stable_node(void)
400 {
401 	/*
402 	 * The allocation can take too long with GFP_KERNEL when memory is under
403 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
404 	 * grants access to memory reserves, helping to avoid this problem.
405 	 */
406 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
407 }
408 
409 static inline void free_stable_node(struct ksm_stable_node *stable_node)
410 {
411 	VM_BUG_ON(stable_node->rmap_hlist_len &&
412 		  !is_stable_node_chain(stable_node));
413 	kmem_cache_free(stable_node_cache, stable_node);
414 }
415 
416 /*
417  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
418  * page tables after it has passed through ksm_exit() - which, if necessary,
419  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
420  * a special flag: they can just back out as soon as mm_users goes to zero.
421  * ksm_test_exit() is used throughout to make this test for exit: in some
422  * places for correctness, in some places just to avoid unnecessary work.
423  */
424 static inline bool ksm_test_exit(struct mm_struct *mm)
425 {
426 	return atomic_read(&mm->mm_users) == 0;
427 }
428 
429 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
430 			struct mm_walk *walk)
431 {
432 	struct page *page = NULL;
433 	spinlock_t *ptl;
434 	pte_t *pte;
435 	pte_t ptent;
436 	int ret;
437 
438 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
439 	if (!pte)
440 		return 0;
441 	ptent = ptep_get(pte);
442 	if (pte_present(ptent)) {
443 		page = vm_normal_page(walk->vma, addr, ptent);
444 	} else if (!pte_none(ptent)) {
445 		swp_entry_t entry = pte_to_swp_entry(ptent);
446 
447 		/*
448 		 * As KSM pages remain KSM pages until freed, no need to wait
449 		 * here for migration to end.
450 		 */
451 		if (is_migration_entry(entry))
452 			page = pfn_swap_entry_to_page(entry);
453 	}
454 	/* return 1 if the page is an normal ksm page or KSM-placed zero page */
455 	ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte);
456 	pte_unmap_unlock(pte, ptl);
457 	return ret;
458 }
459 
460 static const struct mm_walk_ops break_ksm_ops = {
461 	.pmd_entry = break_ksm_pmd_entry,
462 };
463 
464 /*
465  * We use break_ksm to break COW on a ksm page by triggering unsharing,
466  * such that the ksm page will get replaced by an exclusive anonymous page.
467  *
468  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
469  * in case the application has unmapped and remapped mm,addr meanwhile.
470  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
471  * mmap of /dev/mem, where we would not want to touch it.
472  *
473  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
474  * of the process that owns 'vma'.  We also do not want to enforce
475  * protection keys here anyway.
476  */
477 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
478 {
479 	vm_fault_t ret = 0;
480 
481 	do {
482 		int ksm_page;
483 
484 		cond_resched();
485 		ksm_page = walk_page_range_vma(vma, addr, addr + 1,
486 					       &break_ksm_ops, NULL);
487 		if (WARN_ON_ONCE(ksm_page < 0))
488 			return ksm_page;
489 		if (!ksm_page)
490 			return 0;
491 		ret = handle_mm_fault(vma, addr,
492 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
493 				      NULL);
494 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
495 	/*
496 	 * We must loop until we no longer find a KSM page because
497 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
498 	 * pte accessed bit gets updated concurrently.
499 	 *
500 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
501 	 * backing file, which also invalidates anonymous pages: that's
502 	 * okay, that truncation will have unmapped the PageKsm for us.
503 	 *
504 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
505 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
506 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
507 	 * to user; and ksmd, having no mm, would never be chosen for that.
508 	 *
509 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
510 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
511 	 * even ksmd can fail in this way - though it's usually breaking ksm
512 	 * just to undo a merge it made a moment before, so unlikely to oom.
513 	 *
514 	 * That's a pity: we might therefore have more kernel pages allocated
515 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
516 	 * will retry to break_cow on each pass, so should recover the page
517 	 * in due course.  The important thing is to not let VM_MERGEABLE
518 	 * be cleared while any such pages might remain in the area.
519 	 */
520 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
521 }
522 
523 static bool vma_ksm_compatible(struct vm_area_struct *vma)
524 {
525 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
526 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
527 			     VM_MIXEDMAP))
528 		return false;		/* just ignore the advice */
529 
530 	if (vma_is_dax(vma))
531 		return false;
532 
533 #ifdef VM_SAO
534 	if (vma->vm_flags & VM_SAO)
535 		return false;
536 #endif
537 #ifdef VM_SPARC_ADI
538 	if (vma->vm_flags & VM_SPARC_ADI)
539 		return false;
540 #endif
541 
542 	return true;
543 }
544 
545 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
546 		unsigned long addr)
547 {
548 	struct vm_area_struct *vma;
549 	if (ksm_test_exit(mm))
550 		return NULL;
551 	vma = vma_lookup(mm, addr);
552 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
553 		return NULL;
554 	return vma;
555 }
556 
557 static void break_cow(struct ksm_rmap_item *rmap_item)
558 {
559 	struct mm_struct *mm = rmap_item->mm;
560 	unsigned long addr = rmap_item->address;
561 	struct vm_area_struct *vma;
562 
563 	/*
564 	 * It is not an accident that whenever we want to break COW
565 	 * to undo, we also need to drop a reference to the anon_vma.
566 	 */
567 	put_anon_vma(rmap_item->anon_vma);
568 
569 	mmap_read_lock(mm);
570 	vma = find_mergeable_vma(mm, addr);
571 	if (vma)
572 		break_ksm(vma, addr);
573 	mmap_read_unlock(mm);
574 }
575 
576 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
577 {
578 	struct mm_struct *mm = rmap_item->mm;
579 	unsigned long addr = rmap_item->address;
580 	struct vm_area_struct *vma;
581 	struct page *page;
582 
583 	mmap_read_lock(mm);
584 	vma = find_mergeable_vma(mm, addr);
585 	if (!vma)
586 		goto out;
587 
588 	page = follow_page(vma, addr, FOLL_GET);
589 	if (IS_ERR_OR_NULL(page))
590 		goto out;
591 	if (is_zone_device_page(page))
592 		goto out_putpage;
593 	if (PageAnon(page)) {
594 		flush_anon_page(vma, page, addr);
595 		flush_dcache_page(page);
596 	} else {
597 out_putpage:
598 		put_page(page);
599 out:
600 		page = NULL;
601 	}
602 	mmap_read_unlock(mm);
603 	return page;
604 }
605 
606 /*
607  * This helper is used for getting right index into array of tree roots.
608  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
609  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
610  * every node has its own stable and unstable tree.
611  */
612 static inline int get_kpfn_nid(unsigned long kpfn)
613 {
614 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
615 }
616 
617 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
618 						   struct rb_root *root)
619 {
620 	struct ksm_stable_node *chain = alloc_stable_node();
621 	VM_BUG_ON(is_stable_node_chain(dup));
622 	if (likely(chain)) {
623 		INIT_HLIST_HEAD(&chain->hlist);
624 		chain->chain_prune_time = jiffies;
625 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
626 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
627 		chain->nid = NUMA_NO_NODE; /* debug */
628 #endif
629 		ksm_stable_node_chains++;
630 
631 		/*
632 		 * Put the stable node chain in the first dimension of
633 		 * the stable tree and at the same time remove the old
634 		 * stable node.
635 		 */
636 		rb_replace_node(&dup->node, &chain->node, root);
637 
638 		/*
639 		 * Move the old stable node to the second dimension
640 		 * queued in the hlist_dup. The invariant is that all
641 		 * dup stable_nodes in the chain->hlist point to pages
642 		 * that are write protected and have the exact same
643 		 * content.
644 		 */
645 		stable_node_chain_add_dup(dup, chain);
646 	}
647 	return chain;
648 }
649 
650 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
651 					  struct rb_root *root)
652 {
653 	rb_erase(&chain->node, root);
654 	free_stable_node(chain);
655 	ksm_stable_node_chains--;
656 }
657 
658 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
659 {
660 	struct ksm_rmap_item *rmap_item;
661 
662 	/* check it's not STABLE_NODE_CHAIN or negative */
663 	BUG_ON(stable_node->rmap_hlist_len < 0);
664 
665 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
666 		if (rmap_item->hlist.next) {
667 			ksm_pages_sharing--;
668 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
669 		} else {
670 			ksm_pages_shared--;
671 		}
672 
673 		rmap_item->mm->ksm_merging_pages--;
674 
675 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
676 		stable_node->rmap_hlist_len--;
677 		put_anon_vma(rmap_item->anon_vma);
678 		rmap_item->address &= PAGE_MASK;
679 		cond_resched();
680 	}
681 
682 	/*
683 	 * We need the second aligned pointer of the migrate_nodes
684 	 * list_head to stay clear from the rb_parent_color union
685 	 * (aligned and different than any node) and also different
686 	 * from &migrate_nodes. This will verify that future list.h changes
687 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
688 	 */
689 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
690 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
691 
692 	trace_ksm_remove_ksm_page(stable_node->kpfn);
693 	if (stable_node->head == &migrate_nodes)
694 		list_del(&stable_node->list);
695 	else
696 		stable_node_dup_del(stable_node);
697 	free_stable_node(stable_node);
698 }
699 
700 enum get_ksm_page_flags {
701 	GET_KSM_PAGE_NOLOCK,
702 	GET_KSM_PAGE_LOCK,
703 	GET_KSM_PAGE_TRYLOCK
704 };
705 
706 /*
707  * get_ksm_page: checks if the page indicated by the stable node
708  * is still its ksm page, despite having held no reference to it.
709  * In which case we can trust the content of the page, and it
710  * returns the gotten page; but if the page has now been zapped,
711  * remove the stale node from the stable tree and return NULL.
712  * But beware, the stable node's page might be being migrated.
713  *
714  * You would expect the stable_node to hold a reference to the ksm page.
715  * But if it increments the page's count, swapping out has to wait for
716  * ksmd to come around again before it can free the page, which may take
717  * seconds or even minutes: much too unresponsive.  So instead we use a
718  * "keyhole reference": access to the ksm page from the stable node peeps
719  * out through its keyhole to see if that page still holds the right key,
720  * pointing back to this stable node.  This relies on freeing a PageAnon
721  * page to reset its page->mapping to NULL, and relies on no other use of
722  * a page to put something that might look like our key in page->mapping.
723  * is on its way to being freed; but it is an anomaly to bear in mind.
724  */
725 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
726 				 enum get_ksm_page_flags flags)
727 {
728 	struct page *page;
729 	void *expected_mapping;
730 	unsigned long kpfn;
731 
732 	expected_mapping = (void *)((unsigned long)stable_node |
733 					PAGE_MAPPING_KSM);
734 again:
735 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
736 	page = pfn_to_page(kpfn);
737 	if (READ_ONCE(page->mapping) != expected_mapping)
738 		goto stale;
739 
740 	/*
741 	 * We cannot do anything with the page while its refcount is 0.
742 	 * Usually 0 means free, or tail of a higher-order page: in which
743 	 * case this node is no longer referenced, and should be freed;
744 	 * however, it might mean that the page is under page_ref_freeze().
745 	 * The __remove_mapping() case is easy, again the node is now stale;
746 	 * the same is in reuse_ksm_page() case; but if page is swapcache
747 	 * in folio_migrate_mapping(), it might still be our page,
748 	 * in which case it's essential to keep the node.
749 	 */
750 	while (!get_page_unless_zero(page)) {
751 		/*
752 		 * Another check for page->mapping != expected_mapping would
753 		 * work here too.  We have chosen the !PageSwapCache test to
754 		 * optimize the common case, when the page is or is about to
755 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
756 		 * in the ref_freeze section of __remove_mapping(); but Anon
757 		 * page->mapping reset to NULL later, in free_pages_prepare().
758 		 */
759 		if (!PageSwapCache(page))
760 			goto stale;
761 		cpu_relax();
762 	}
763 
764 	if (READ_ONCE(page->mapping) != expected_mapping) {
765 		put_page(page);
766 		goto stale;
767 	}
768 
769 	if (flags == GET_KSM_PAGE_TRYLOCK) {
770 		if (!trylock_page(page)) {
771 			put_page(page);
772 			return ERR_PTR(-EBUSY);
773 		}
774 	} else if (flags == GET_KSM_PAGE_LOCK)
775 		lock_page(page);
776 
777 	if (flags != GET_KSM_PAGE_NOLOCK) {
778 		if (READ_ONCE(page->mapping) != expected_mapping) {
779 			unlock_page(page);
780 			put_page(page);
781 			goto stale;
782 		}
783 	}
784 	return page;
785 
786 stale:
787 	/*
788 	 * We come here from above when page->mapping or !PageSwapCache
789 	 * suggests that the node is stale; but it might be under migration.
790 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
791 	 * before checking whether node->kpfn has been changed.
792 	 */
793 	smp_rmb();
794 	if (READ_ONCE(stable_node->kpfn) != kpfn)
795 		goto again;
796 	remove_node_from_stable_tree(stable_node);
797 	return NULL;
798 }
799 
800 /*
801  * Removing rmap_item from stable or unstable tree.
802  * This function will clean the information from the stable/unstable tree.
803  */
804 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
805 {
806 	if (rmap_item->address & STABLE_FLAG) {
807 		struct ksm_stable_node *stable_node;
808 		struct page *page;
809 
810 		stable_node = rmap_item->head;
811 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
812 		if (!page)
813 			goto out;
814 
815 		hlist_del(&rmap_item->hlist);
816 		unlock_page(page);
817 		put_page(page);
818 
819 		if (!hlist_empty(&stable_node->hlist))
820 			ksm_pages_sharing--;
821 		else
822 			ksm_pages_shared--;
823 
824 		rmap_item->mm->ksm_merging_pages--;
825 
826 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
827 		stable_node->rmap_hlist_len--;
828 
829 		put_anon_vma(rmap_item->anon_vma);
830 		rmap_item->head = NULL;
831 		rmap_item->address &= PAGE_MASK;
832 
833 	} else if (rmap_item->address & UNSTABLE_FLAG) {
834 		unsigned char age;
835 		/*
836 		 * Usually ksmd can and must skip the rb_erase, because
837 		 * root_unstable_tree was already reset to RB_ROOT.
838 		 * But be careful when an mm is exiting: do the rb_erase
839 		 * if this rmap_item was inserted by this scan, rather
840 		 * than left over from before.
841 		 */
842 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
843 		BUG_ON(age > 1);
844 		if (!age)
845 			rb_erase(&rmap_item->node,
846 				 root_unstable_tree + NUMA(rmap_item->nid));
847 		ksm_pages_unshared--;
848 		rmap_item->address &= PAGE_MASK;
849 	}
850 out:
851 	cond_resched();		/* we're called from many long loops */
852 }
853 
854 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
855 {
856 	while (*rmap_list) {
857 		struct ksm_rmap_item *rmap_item = *rmap_list;
858 		*rmap_list = rmap_item->rmap_list;
859 		remove_rmap_item_from_tree(rmap_item);
860 		free_rmap_item(rmap_item);
861 	}
862 }
863 
864 /*
865  * Though it's very tempting to unmerge rmap_items from stable tree rather
866  * than check every pte of a given vma, the locking doesn't quite work for
867  * that - an rmap_item is assigned to the stable tree after inserting ksm
868  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
869  * rmap_items from parent to child at fork time (so as not to waste time
870  * if exit comes before the next scan reaches it).
871  *
872  * Similarly, although we'd like to remove rmap_items (so updating counts
873  * and freeing memory) when unmerging an area, it's easier to leave that
874  * to the next pass of ksmd - consider, for example, how ksmd might be
875  * in cmp_and_merge_page on one of the rmap_items we would be removing.
876  */
877 static int unmerge_ksm_pages(struct vm_area_struct *vma,
878 			     unsigned long start, unsigned long end)
879 {
880 	unsigned long addr;
881 	int err = 0;
882 
883 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
884 		if (ksm_test_exit(vma->vm_mm))
885 			break;
886 		if (signal_pending(current))
887 			err = -ERESTARTSYS;
888 		else
889 			err = break_ksm(vma, addr);
890 	}
891 	return err;
892 }
893 
894 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
895 {
896 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
897 }
898 
899 static inline struct ksm_stable_node *page_stable_node(struct page *page)
900 {
901 	return folio_stable_node(page_folio(page));
902 }
903 
904 static inline void set_page_stable_node(struct page *page,
905 					struct ksm_stable_node *stable_node)
906 {
907 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
908 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
909 }
910 
911 #ifdef CONFIG_SYSFS
912 /*
913  * Only called through the sysfs control interface:
914  */
915 static int remove_stable_node(struct ksm_stable_node *stable_node)
916 {
917 	struct page *page;
918 	int err;
919 
920 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
921 	if (!page) {
922 		/*
923 		 * get_ksm_page did remove_node_from_stable_tree itself.
924 		 */
925 		return 0;
926 	}
927 
928 	/*
929 	 * Page could be still mapped if this races with __mmput() running in
930 	 * between ksm_exit() and exit_mmap(). Just refuse to let
931 	 * merge_across_nodes/max_page_sharing be switched.
932 	 */
933 	err = -EBUSY;
934 	if (!page_mapped(page)) {
935 		/*
936 		 * The stable node did not yet appear stale to get_ksm_page(),
937 		 * since that allows for an unmapped ksm page to be recognized
938 		 * right up until it is freed; but the node is safe to remove.
939 		 * This page might be in an LRU cache waiting to be freed,
940 		 * or it might be PageSwapCache (perhaps under writeback),
941 		 * or it might have been removed from swapcache a moment ago.
942 		 */
943 		set_page_stable_node(page, NULL);
944 		remove_node_from_stable_tree(stable_node);
945 		err = 0;
946 	}
947 
948 	unlock_page(page);
949 	put_page(page);
950 	return err;
951 }
952 
953 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
954 				    struct rb_root *root)
955 {
956 	struct ksm_stable_node *dup;
957 	struct hlist_node *hlist_safe;
958 
959 	if (!is_stable_node_chain(stable_node)) {
960 		VM_BUG_ON(is_stable_node_dup(stable_node));
961 		if (remove_stable_node(stable_node))
962 			return true;
963 		else
964 			return false;
965 	}
966 
967 	hlist_for_each_entry_safe(dup, hlist_safe,
968 				  &stable_node->hlist, hlist_dup) {
969 		VM_BUG_ON(!is_stable_node_dup(dup));
970 		if (remove_stable_node(dup))
971 			return true;
972 	}
973 	BUG_ON(!hlist_empty(&stable_node->hlist));
974 	free_stable_node_chain(stable_node, root);
975 	return false;
976 }
977 
978 static int remove_all_stable_nodes(void)
979 {
980 	struct ksm_stable_node *stable_node, *next;
981 	int nid;
982 	int err = 0;
983 
984 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
985 		while (root_stable_tree[nid].rb_node) {
986 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
987 						struct ksm_stable_node, node);
988 			if (remove_stable_node_chain(stable_node,
989 						     root_stable_tree + nid)) {
990 				err = -EBUSY;
991 				break;	/* proceed to next nid */
992 			}
993 			cond_resched();
994 		}
995 	}
996 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
997 		if (remove_stable_node(stable_node))
998 			err = -EBUSY;
999 		cond_resched();
1000 	}
1001 	return err;
1002 }
1003 
1004 static int unmerge_and_remove_all_rmap_items(void)
1005 {
1006 	struct ksm_mm_slot *mm_slot;
1007 	struct mm_slot *slot;
1008 	struct mm_struct *mm;
1009 	struct vm_area_struct *vma;
1010 	int err = 0;
1011 
1012 	spin_lock(&ksm_mmlist_lock);
1013 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1014 			  struct mm_slot, mm_node);
1015 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1016 	spin_unlock(&ksm_mmlist_lock);
1017 
1018 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1019 	     mm_slot = ksm_scan.mm_slot) {
1020 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1021 
1022 		mm = mm_slot->slot.mm;
1023 		mmap_read_lock(mm);
1024 
1025 		/*
1026 		 * Exit right away if mm is exiting to avoid lockdep issue in
1027 		 * the maple tree
1028 		 */
1029 		if (ksm_test_exit(mm))
1030 			goto mm_exiting;
1031 
1032 		for_each_vma(vmi, vma) {
1033 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1034 				continue;
1035 			err = unmerge_ksm_pages(vma,
1036 						vma->vm_start, vma->vm_end);
1037 			if (err)
1038 				goto error;
1039 		}
1040 
1041 mm_exiting:
1042 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1043 		mmap_read_unlock(mm);
1044 
1045 		spin_lock(&ksm_mmlist_lock);
1046 		slot = list_entry(mm_slot->slot.mm_node.next,
1047 				  struct mm_slot, mm_node);
1048 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1049 		if (ksm_test_exit(mm)) {
1050 			hash_del(&mm_slot->slot.hash);
1051 			list_del(&mm_slot->slot.mm_node);
1052 			spin_unlock(&ksm_mmlist_lock);
1053 
1054 			mm_slot_free(mm_slot_cache, mm_slot);
1055 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1056 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1057 			mmdrop(mm);
1058 		} else
1059 			spin_unlock(&ksm_mmlist_lock);
1060 	}
1061 
1062 	/* Clean up stable nodes, but don't worry if some are still busy */
1063 	remove_all_stable_nodes();
1064 	ksm_scan.seqnr = 0;
1065 	return 0;
1066 
1067 error:
1068 	mmap_read_unlock(mm);
1069 	spin_lock(&ksm_mmlist_lock);
1070 	ksm_scan.mm_slot = &ksm_mm_head;
1071 	spin_unlock(&ksm_mmlist_lock);
1072 	return err;
1073 }
1074 #endif /* CONFIG_SYSFS */
1075 
1076 static u32 calc_checksum(struct page *page)
1077 {
1078 	u32 checksum;
1079 	void *addr = kmap_atomic(page);
1080 	checksum = xxhash(addr, PAGE_SIZE, 0);
1081 	kunmap_atomic(addr);
1082 	return checksum;
1083 }
1084 
1085 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1086 			      pte_t *orig_pte)
1087 {
1088 	struct mm_struct *mm = vma->vm_mm;
1089 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1090 	int swapped;
1091 	int err = -EFAULT;
1092 	struct mmu_notifier_range range;
1093 	bool anon_exclusive;
1094 	pte_t entry;
1095 
1096 	pvmw.address = page_address_in_vma(page, vma);
1097 	if (pvmw.address == -EFAULT)
1098 		goto out;
1099 
1100 	BUG_ON(PageTransCompound(page));
1101 
1102 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1103 				pvmw.address + PAGE_SIZE);
1104 	mmu_notifier_invalidate_range_start(&range);
1105 
1106 	if (!page_vma_mapped_walk(&pvmw))
1107 		goto out_mn;
1108 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1109 		goto out_unlock;
1110 
1111 	anon_exclusive = PageAnonExclusive(page);
1112 	entry = ptep_get(pvmw.pte);
1113 	if (pte_write(entry) || pte_dirty(entry) ||
1114 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1115 		swapped = PageSwapCache(page);
1116 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1117 		/*
1118 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1119 		 * take any lock, therefore the check that we are going to make
1120 		 * with the pagecount against the mapcount is racy and
1121 		 * O_DIRECT can happen right after the check.
1122 		 * So we clear the pte and flush the tlb before the check
1123 		 * this assure us that no O_DIRECT can happen after the check
1124 		 * or in the middle of the check.
1125 		 *
1126 		 * No need to notify as we are downgrading page table to read
1127 		 * only not changing it to point to a new page.
1128 		 *
1129 		 * See Documentation/mm/mmu_notifier.rst
1130 		 */
1131 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1132 		/*
1133 		 * Check that no O_DIRECT or similar I/O is in progress on the
1134 		 * page
1135 		 */
1136 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1137 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1138 			goto out_unlock;
1139 		}
1140 
1141 		/* See page_try_share_anon_rmap(): clear PTE first. */
1142 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1143 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1144 			goto out_unlock;
1145 		}
1146 
1147 		if (pte_dirty(entry))
1148 			set_page_dirty(page);
1149 		entry = pte_mkclean(entry);
1150 
1151 		if (pte_write(entry))
1152 			entry = pte_wrprotect(entry);
1153 
1154 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1155 	}
1156 	*orig_pte = entry;
1157 	err = 0;
1158 
1159 out_unlock:
1160 	page_vma_mapped_walk_done(&pvmw);
1161 out_mn:
1162 	mmu_notifier_invalidate_range_end(&range);
1163 out:
1164 	return err;
1165 }
1166 
1167 /**
1168  * replace_page - replace page in vma by new ksm page
1169  * @vma:      vma that holds the pte pointing to page
1170  * @page:     the page we are replacing by kpage
1171  * @kpage:    the ksm page we replace page by
1172  * @orig_pte: the original value of the pte
1173  *
1174  * Returns 0 on success, -EFAULT on failure.
1175  */
1176 static int replace_page(struct vm_area_struct *vma, struct page *page,
1177 			struct page *kpage, pte_t orig_pte)
1178 {
1179 	struct mm_struct *mm = vma->vm_mm;
1180 	struct folio *folio;
1181 	pmd_t *pmd;
1182 	pmd_t pmde;
1183 	pte_t *ptep;
1184 	pte_t newpte;
1185 	spinlock_t *ptl;
1186 	unsigned long addr;
1187 	int err = -EFAULT;
1188 	struct mmu_notifier_range range;
1189 
1190 	addr = page_address_in_vma(page, vma);
1191 	if (addr == -EFAULT)
1192 		goto out;
1193 
1194 	pmd = mm_find_pmd(mm, addr);
1195 	if (!pmd)
1196 		goto out;
1197 	/*
1198 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1199 	 * without holding anon_vma lock for write.  So when looking for a
1200 	 * genuine pmde (in which to find pte), test present and !THP together.
1201 	 */
1202 	pmde = pmdp_get_lockless(pmd);
1203 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1204 		goto out;
1205 
1206 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1207 				addr + PAGE_SIZE);
1208 	mmu_notifier_invalidate_range_start(&range);
1209 
1210 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1211 	if (!ptep)
1212 		goto out_mn;
1213 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1214 		pte_unmap_unlock(ptep, ptl);
1215 		goto out_mn;
1216 	}
1217 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1218 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1219 
1220 	/*
1221 	 * No need to check ksm_use_zero_pages here: we can only have a
1222 	 * zero_page here if ksm_use_zero_pages was enabled already.
1223 	 */
1224 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1225 		get_page(kpage);
1226 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1227 		newpte = mk_pte(kpage, vma->vm_page_prot);
1228 	} else {
1229 		/*
1230 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1231 		 * we can easily track all KSM-placed zero pages by checking if
1232 		 * the dirty bit in zero page's PTE is set.
1233 		 */
1234 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1235 		ksm_zero_pages++;
1236 		/*
1237 		 * We're replacing an anonymous page with a zero page, which is
1238 		 * not anonymous. We need to do proper accounting otherwise we
1239 		 * will get wrong values in /proc, and a BUG message in dmesg
1240 		 * when tearing down the mm.
1241 		 */
1242 		dec_mm_counter(mm, MM_ANONPAGES);
1243 	}
1244 
1245 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1246 	/*
1247 	 * No need to notify as we are replacing a read only page with another
1248 	 * read only page with the same content.
1249 	 *
1250 	 * See Documentation/mm/mmu_notifier.rst
1251 	 */
1252 	ptep_clear_flush(vma, addr, ptep);
1253 	set_pte_at_notify(mm, addr, ptep, newpte);
1254 
1255 	folio = page_folio(page);
1256 	page_remove_rmap(page, vma, false);
1257 	if (!folio_mapped(folio))
1258 		folio_free_swap(folio);
1259 	folio_put(folio);
1260 
1261 	pte_unmap_unlock(ptep, ptl);
1262 	err = 0;
1263 out_mn:
1264 	mmu_notifier_invalidate_range_end(&range);
1265 out:
1266 	return err;
1267 }
1268 
1269 /*
1270  * try_to_merge_one_page - take two pages and merge them into one
1271  * @vma: the vma that holds the pte pointing to page
1272  * @page: the PageAnon page that we want to replace with kpage
1273  * @kpage: the PageKsm page that we want to map instead of page,
1274  *         or NULL the first time when we want to use page as kpage.
1275  *
1276  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1277  */
1278 static int try_to_merge_one_page(struct vm_area_struct *vma,
1279 				 struct page *page, struct page *kpage)
1280 {
1281 	pte_t orig_pte = __pte(0);
1282 	int err = -EFAULT;
1283 
1284 	if (page == kpage)			/* ksm page forked */
1285 		return 0;
1286 
1287 	if (!PageAnon(page))
1288 		goto out;
1289 
1290 	/*
1291 	 * We need the page lock to read a stable PageSwapCache in
1292 	 * write_protect_page().  We use trylock_page() instead of
1293 	 * lock_page() because we don't want to wait here - we
1294 	 * prefer to continue scanning and merging different pages,
1295 	 * then come back to this page when it is unlocked.
1296 	 */
1297 	if (!trylock_page(page))
1298 		goto out;
1299 
1300 	if (PageTransCompound(page)) {
1301 		if (split_huge_page(page))
1302 			goto out_unlock;
1303 	}
1304 
1305 	/*
1306 	 * If this anonymous page is mapped only here, its pte may need
1307 	 * to be write-protected.  If it's mapped elsewhere, all of its
1308 	 * ptes are necessarily already write-protected.  But in either
1309 	 * case, we need to lock and check page_count is not raised.
1310 	 */
1311 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1312 		if (!kpage) {
1313 			/*
1314 			 * While we hold page lock, upgrade page from
1315 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1316 			 * stable_tree_insert() will update stable_node.
1317 			 */
1318 			set_page_stable_node(page, NULL);
1319 			mark_page_accessed(page);
1320 			/*
1321 			 * Page reclaim just frees a clean page with no dirty
1322 			 * ptes: make sure that the ksm page would be swapped.
1323 			 */
1324 			if (!PageDirty(page))
1325 				SetPageDirty(page);
1326 			err = 0;
1327 		} else if (pages_identical(page, kpage))
1328 			err = replace_page(vma, page, kpage, orig_pte);
1329 	}
1330 
1331 out_unlock:
1332 	unlock_page(page);
1333 out:
1334 	return err;
1335 }
1336 
1337 /*
1338  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1339  * but no new kernel page is allocated: kpage must already be a ksm page.
1340  *
1341  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1342  */
1343 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1344 				      struct page *page, struct page *kpage)
1345 {
1346 	struct mm_struct *mm = rmap_item->mm;
1347 	struct vm_area_struct *vma;
1348 	int err = -EFAULT;
1349 
1350 	mmap_read_lock(mm);
1351 	vma = find_mergeable_vma(mm, rmap_item->address);
1352 	if (!vma)
1353 		goto out;
1354 
1355 	err = try_to_merge_one_page(vma, page, kpage);
1356 	if (err)
1357 		goto out;
1358 
1359 	/* Unstable nid is in union with stable anon_vma: remove first */
1360 	remove_rmap_item_from_tree(rmap_item);
1361 
1362 	/* Must get reference to anon_vma while still holding mmap_lock */
1363 	rmap_item->anon_vma = vma->anon_vma;
1364 	get_anon_vma(vma->anon_vma);
1365 out:
1366 	mmap_read_unlock(mm);
1367 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1368 				rmap_item, mm, err);
1369 	return err;
1370 }
1371 
1372 /*
1373  * try_to_merge_two_pages - take two identical pages and prepare them
1374  * to be merged into one page.
1375  *
1376  * This function returns the kpage if we successfully merged two identical
1377  * pages into one ksm page, NULL otherwise.
1378  *
1379  * Note that this function upgrades page to ksm page: if one of the pages
1380  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1381  */
1382 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1383 					   struct page *page,
1384 					   struct ksm_rmap_item *tree_rmap_item,
1385 					   struct page *tree_page)
1386 {
1387 	int err;
1388 
1389 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1390 	if (!err) {
1391 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1392 							tree_page, page);
1393 		/*
1394 		 * If that fails, we have a ksm page with only one pte
1395 		 * pointing to it: so break it.
1396 		 */
1397 		if (err)
1398 			break_cow(rmap_item);
1399 	}
1400 	return err ? NULL : page;
1401 }
1402 
1403 static __always_inline
1404 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1405 {
1406 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1407 	/*
1408 	 * Check that at least one mapping still exists, otherwise
1409 	 * there's no much point to merge and share with this
1410 	 * stable_node, as the underlying tree_page of the other
1411 	 * sharer is going to be freed soon.
1412 	 */
1413 	return stable_node->rmap_hlist_len &&
1414 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1415 }
1416 
1417 static __always_inline
1418 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1419 {
1420 	return __is_page_sharing_candidate(stable_node, 0);
1421 }
1422 
1423 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1424 				    struct ksm_stable_node **_stable_node,
1425 				    struct rb_root *root,
1426 				    bool prune_stale_stable_nodes)
1427 {
1428 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1429 	struct hlist_node *hlist_safe;
1430 	struct page *_tree_page, *tree_page = NULL;
1431 	int nr = 0;
1432 	int found_rmap_hlist_len;
1433 
1434 	if (!prune_stale_stable_nodes ||
1435 	    time_before(jiffies, stable_node->chain_prune_time +
1436 			msecs_to_jiffies(
1437 				ksm_stable_node_chains_prune_millisecs)))
1438 		prune_stale_stable_nodes = false;
1439 	else
1440 		stable_node->chain_prune_time = jiffies;
1441 
1442 	hlist_for_each_entry_safe(dup, hlist_safe,
1443 				  &stable_node->hlist, hlist_dup) {
1444 		cond_resched();
1445 		/*
1446 		 * We must walk all stable_node_dup to prune the stale
1447 		 * stable nodes during lookup.
1448 		 *
1449 		 * get_ksm_page can drop the nodes from the
1450 		 * stable_node->hlist if they point to freed pages
1451 		 * (that's why we do a _safe walk). The "dup"
1452 		 * stable_node parameter itself will be freed from
1453 		 * under us if it returns NULL.
1454 		 */
1455 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1456 		if (!_tree_page)
1457 			continue;
1458 		nr += 1;
1459 		if (is_page_sharing_candidate(dup)) {
1460 			if (!found ||
1461 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1462 				if (found)
1463 					put_page(tree_page);
1464 				found = dup;
1465 				found_rmap_hlist_len = found->rmap_hlist_len;
1466 				tree_page = _tree_page;
1467 
1468 				/* skip put_page for found dup */
1469 				if (!prune_stale_stable_nodes)
1470 					break;
1471 				continue;
1472 			}
1473 		}
1474 		put_page(_tree_page);
1475 	}
1476 
1477 	if (found) {
1478 		/*
1479 		 * nr is counting all dups in the chain only if
1480 		 * prune_stale_stable_nodes is true, otherwise we may
1481 		 * break the loop at nr == 1 even if there are
1482 		 * multiple entries.
1483 		 */
1484 		if (prune_stale_stable_nodes && nr == 1) {
1485 			/*
1486 			 * If there's not just one entry it would
1487 			 * corrupt memory, better BUG_ON. In KSM
1488 			 * context with no lock held it's not even
1489 			 * fatal.
1490 			 */
1491 			BUG_ON(stable_node->hlist.first->next);
1492 
1493 			/*
1494 			 * There's just one entry and it is below the
1495 			 * deduplication limit so drop the chain.
1496 			 */
1497 			rb_replace_node(&stable_node->node, &found->node,
1498 					root);
1499 			free_stable_node(stable_node);
1500 			ksm_stable_node_chains--;
1501 			ksm_stable_node_dups--;
1502 			/*
1503 			 * NOTE: the caller depends on the stable_node
1504 			 * to be equal to stable_node_dup if the chain
1505 			 * was collapsed.
1506 			 */
1507 			*_stable_node = found;
1508 			/*
1509 			 * Just for robustness, as stable_node is
1510 			 * otherwise left as a stable pointer, the
1511 			 * compiler shall optimize it away at build
1512 			 * time.
1513 			 */
1514 			stable_node = NULL;
1515 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1516 			   __is_page_sharing_candidate(found, 1)) {
1517 			/*
1518 			 * If the found stable_node dup can accept one
1519 			 * more future merge (in addition to the one
1520 			 * that is underway) and is not at the head of
1521 			 * the chain, put it there so next search will
1522 			 * be quicker in the !prune_stale_stable_nodes
1523 			 * case.
1524 			 *
1525 			 * NOTE: it would be inaccurate to use nr > 1
1526 			 * instead of checking the hlist.first pointer
1527 			 * directly, because in the
1528 			 * prune_stale_stable_nodes case "nr" isn't
1529 			 * the position of the found dup in the chain,
1530 			 * but the total number of dups in the chain.
1531 			 */
1532 			hlist_del(&found->hlist_dup);
1533 			hlist_add_head(&found->hlist_dup,
1534 				       &stable_node->hlist);
1535 		}
1536 	}
1537 
1538 	*_stable_node_dup = found;
1539 	return tree_page;
1540 }
1541 
1542 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1543 					       struct rb_root *root)
1544 {
1545 	if (!is_stable_node_chain(stable_node))
1546 		return stable_node;
1547 	if (hlist_empty(&stable_node->hlist)) {
1548 		free_stable_node_chain(stable_node, root);
1549 		return NULL;
1550 	}
1551 	return hlist_entry(stable_node->hlist.first,
1552 			   typeof(*stable_node), hlist_dup);
1553 }
1554 
1555 /*
1556  * Like for get_ksm_page, this function can free the *_stable_node and
1557  * *_stable_node_dup if the returned tree_page is NULL.
1558  *
1559  * It can also free and overwrite *_stable_node with the found
1560  * stable_node_dup if the chain is collapsed (in which case
1561  * *_stable_node will be equal to *_stable_node_dup like if the chain
1562  * never existed). It's up to the caller to verify tree_page is not
1563  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1564  *
1565  * *_stable_node_dup is really a second output parameter of this
1566  * function and will be overwritten in all cases, the caller doesn't
1567  * need to initialize it.
1568  */
1569 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1570 					struct ksm_stable_node **_stable_node,
1571 					struct rb_root *root,
1572 					bool prune_stale_stable_nodes)
1573 {
1574 	struct ksm_stable_node *stable_node = *_stable_node;
1575 	if (!is_stable_node_chain(stable_node)) {
1576 		if (is_page_sharing_candidate(stable_node)) {
1577 			*_stable_node_dup = stable_node;
1578 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1579 		}
1580 		/*
1581 		 * _stable_node_dup set to NULL means the stable_node
1582 		 * reached the ksm_max_page_sharing limit.
1583 		 */
1584 		*_stable_node_dup = NULL;
1585 		return NULL;
1586 	}
1587 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1588 			       prune_stale_stable_nodes);
1589 }
1590 
1591 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1592 						struct ksm_stable_node **s_n,
1593 						struct rb_root *root)
1594 {
1595 	return __stable_node_chain(s_n_d, s_n, root, true);
1596 }
1597 
1598 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1599 					  struct ksm_stable_node *s_n,
1600 					  struct rb_root *root)
1601 {
1602 	struct ksm_stable_node *old_stable_node = s_n;
1603 	struct page *tree_page;
1604 
1605 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1606 	/* not pruning dups so s_n cannot have changed */
1607 	VM_BUG_ON(s_n != old_stable_node);
1608 	return tree_page;
1609 }
1610 
1611 /*
1612  * stable_tree_search - search for page inside the stable tree
1613  *
1614  * This function checks if there is a page inside the stable tree
1615  * with identical content to the page that we are scanning right now.
1616  *
1617  * This function returns the stable tree node of identical content if found,
1618  * NULL otherwise.
1619  */
1620 static struct page *stable_tree_search(struct page *page)
1621 {
1622 	int nid;
1623 	struct rb_root *root;
1624 	struct rb_node **new;
1625 	struct rb_node *parent;
1626 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1627 	struct ksm_stable_node *page_node;
1628 
1629 	page_node = page_stable_node(page);
1630 	if (page_node && page_node->head != &migrate_nodes) {
1631 		/* ksm page forked */
1632 		get_page(page);
1633 		return page;
1634 	}
1635 
1636 	nid = get_kpfn_nid(page_to_pfn(page));
1637 	root = root_stable_tree + nid;
1638 again:
1639 	new = &root->rb_node;
1640 	parent = NULL;
1641 
1642 	while (*new) {
1643 		struct page *tree_page;
1644 		int ret;
1645 
1646 		cond_resched();
1647 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1648 		stable_node_any = NULL;
1649 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1650 		/*
1651 		 * NOTE: stable_node may have been freed by
1652 		 * chain_prune() if the returned stable_node_dup is
1653 		 * not NULL. stable_node_dup may have been inserted in
1654 		 * the rbtree instead as a regular stable_node (in
1655 		 * order to collapse the stable_node chain if a single
1656 		 * stable_node dup was found in it). In such case the
1657 		 * stable_node is overwritten by the callee to point
1658 		 * to the stable_node_dup that was collapsed in the
1659 		 * stable rbtree and stable_node will be equal to
1660 		 * stable_node_dup like if the chain never existed.
1661 		 */
1662 		if (!stable_node_dup) {
1663 			/*
1664 			 * Either all stable_node dups were full in
1665 			 * this stable_node chain, or this chain was
1666 			 * empty and should be rb_erased.
1667 			 */
1668 			stable_node_any = stable_node_dup_any(stable_node,
1669 							      root);
1670 			if (!stable_node_any) {
1671 				/* rb_erase just run */
1672 				goto again;
1673 			}
1674 			/*
1675 			 * Take any of the stable_node dups page of
1676 			 * this stable_node chain to let the tree walk
1677 			 * continue. All KSM pages belonging to the
1678 			 * stable_node dups in a stable_node chain
1679 			 * have the same content and they're
1680 			 * write protected at all times. Any will work
1681 			 * fine to continue the walk.
1682 			 */
1683 			tree_page = get_ksm_page(stable_node_any,
1684 						 GET_KSM_PAGE_NOLOCK);
1685 		}
1686 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1687 		if (!tree_page) {
1688 			/*
1689 			 * If we walked over a stale stable_node,
1690 			 * get_ksm_page() will call rb_erase() and it
1691 			 * may rebalance the tree from under us. So
1692 			 * restart the search from scratch. Returning
1693 			 * NULL would be safe too, but we'd generate
1694 			 * false negative insertions just because some
1695 			 * stable_node was stale.
1696 			 */
1697 			goto again;
1698 		}
1699 
1700 		ret = memcmp_pages(page, tree_page);
1701 		put_page(tree_page);
1702 
1703 		parent = *new;
1704 		if (ret < 0)
1705 			new = &parent->rb_left;
1706 		else if (ret > 0)
1707 			new = &parent->rb_right;
1708 		else {
1709 			if (page_node) {
1710 				VM_BUG_ON(page_node->head != &migrate_nodes);
1711 				/*
1712 				 * Test if the migrated page should be merged
1713 				 * into a stable node dup. If the mapcount is
1714 				 * 1 we can migrate it with another KSM page
1715 				 * without adding it to the chain.
1716 				 */
1717 				if (page_mapcount(page) > 1)
1718 					goto chain_append;
1719 			}
1720 
1721 			if (!stable_node_dup) {
1722 				/*
1723 				 * If the stable_node is a chain and
1724 				 * we got a payload match in memcmp
1725 				 * but we cannot merge the scanned
1726 				 * page in any of the existing
1727 				 * stable_node dups because they're
1728 				 * all full, we need to wait the
1729 				 * scanned page to find itself a match
1730 				 * in the unstable tree to create a
1731 				 * brand new KSM page to add later to
1732 				 * the dups of this stable_node.
1733 				 */
1734 				return NULL;
1735 			}
1736 
1737 			/*
1738 			 * Lock and unlock the stable_node's page (which
1739 			 * might already have been migrated) so that page
1740 			 * migration is sure to notice its raised count.
1741 			 * It would be more elegant to return stable_node
1742 			 * than kpage, but that involves more changes.
1743 			 */
1744 			tree_page = get_ksm_page(stable_node_dup,
1745 						 GET_KSM_PAGE_TRYLOCK);
1746 
1747 			if (PTR_ERR(tree_page) == -EBUSY)
1748 				return ERR_PTR(-EBUSY);
1749 
1750 			if (unlikely(!tree_page))
1751 				/*
1752 				 * The tree may have been rebalanced,
1753 				 * so re-evaluate parent and new.
1754 				 */
1755 				goto again;
1756 			unlock_page(tree_page);
1757 
1758 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1759 			    NUMA(stable_node_dup->nid)) {
1760 				put_page(tree_page);
1761 				goto replace;
1762 			}
1763 			return tree_page;
1764 		}
1765 	}
1766 
1767 	if (!page_node)
1768 		return NULL;
1769 
1770 	list_del(&page_node->list);
1771 	DO_NUMA(page_node->nid = nid);
1772 	rb_link_node(&page_node->node, parent, new);
1773 	rb_insert_color(&page_node->node, root);
1774 out:
1775 	if (is_page_sharing_candidate(page_node)) {
1776 		get_page(page);
1777 		return page;
1778 	} else
1779 		return NULL;
1780 
1781 replace:
1782 	/*
1783 	 * If stable_node was a chain and chain_prune collapsed it,
1784 	 * stable_node has been updated to be the new regular
1785 	 * stable_node. A collapse of the chain is indistinguishable
1786 	 * from the case there was no chain in the stable
1787 	 * rbtree. Otherwise stable_node is the chain and
1788 	 * stable_node_dup is the dup to replace.
1789 	 */
1790 	if (stable_node_dup == stable_node) {
1791 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1792 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1793 		/* there is no chain */
1794 		if (page_node) {
1795 			VM_BUG_ON(page_node->head != &migrate_nodes);
1796 			list_del(&page_node->list);
1797 			DO_NUMA(page_node->nid = nid);
1798 			rb_replace_node(&stable_node_dup->node,
1799 					&page_node->node,
1800 					root);
1801 			if (is_page_sharing_candidate(page_node))
1802 				get_page(page);
1803 			else
1804 				page = NULL;
1805 		} else {
1806 			rb_erase(&stable_node_dup->node, root);
1807 			page = NULL;
1808 		}
1809 	} else {
1810 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1811 		__stable_node_dup_del(stable_node_dup);
1812 		if (page_node) {
1813 			VM_BUG_ON(page_node->head != &migrate_nodes);
1814 			list_del(&page_node->list);
1815 			DO_NUMA(page_node->nid = nid);
1816 			stable_node_chain_add_dup(page_node, stable_node);
1817 			if (is_page_sharing_candidate(page_node))
1818 				get_page(page);
1819 			else
1820 				page = NULL;
1821 		} else {
1822 			page = NULL;
1823 		}
1824 	}
1825 	stable_node_dup->head = &migrate_nodes;
1826 	list_add(&stable_node_dup->list, stable_node_dup->head);
1827 	return page;
1828 
1829 chain_append:
1830 	/* stable_node_dup could be null if it reached the limit */
1831 	if (!stable_node_dup)
1832 		stable_node_dup = stable_node_any;
1833 	/*
1834 	 * If stable_node was a chain and chain_prune collapsed it,
1835 	 * stable_node has been updated to be the new regular
1836 	 * stable_node. A collapse of the chain is indistinguishable
1837 	 * from the case there was no chain in the stable
1838 	 * rbtree. Otherwise stable_node is the chain and
1839 	 * stable_node_dup is the dup to replace.
1840 	 */
1841 	if (stable_node_dup == stable_node) {
1842 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1843 		/* chain is missing so create it */
1844 		stable_node = alloc_stable_node_chain(stable_node_dup,
1845 						      root);
1846 		if (!stable_node)
1847 			return NULL;
1848 	}
1849 	/*
1850 	 * Add this stable_node dup that was
1851 	 * migrated to the stable_node chain
1852 	 * of the current nid for this page
1853 	 * content.
1854 	 */
1855 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1856 	VM_BUG_ON(page_node->head != &migrate_nodes);
1857 	list_del(&page_node->list);
1858 	DO_NUMA(page_node->nid = nid);
1859 	stable_node_chain_add_dup(page_node, stable_node);
1860 	goto out;
1861 }
1862 
1863 /*
1864  * stable_tree_insert - insert stable tree node pointing to new ksm page
1865  * into the stable tree.
1866  *
1867  * This function returns the stable tree node just allocated on success,
1868  * NULL otherwise.
1869  */
1870 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1871 {
1872 	int nid;
1873 	unsigned long kpfn;
1874 	struct rb_root *root;
1875 	struct rb_node **new;
1876 	struct rb_node *parent;
1877 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1878 	bool need_chain = false;
1879 
1880 	kpfn = page_to_pfn(kpage);
1881 	nid = get_kpfn_nid(kpfn);
1882 	root = root_stable_tree + nid;
1883 again:
1884 	parent = NULL;
1885 	new = &root->rb_node;
1886 
1887 	while (*new) {
1888 		struct page *tree_page;
1889 		int ret;
1890 
1891 		cond_resched();
1892 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1893 		stable_node_any = NULL;
1894 		tree_page = chain(&stable_node_dup, stable_node, root);
1895 		if (!stable_node_dup) {
1896 			/*
1897 			 * Either all stable_node dups were full in
1898 			 * this stable_node chain, or this chain was
1899 			 * empty and should be rb_erased.
1900 			 */
1901 			stable_node_any = stable_node_dup_any(stable_node,
1902 							      root);
1903 			if (!stable_node_any) {
1904 				/* rb_erase just run */
1905 				goto again;
1906 			}
1907 			/*
1908 			 * Take any of the stable_node dups page of
1909 			 * this stable_node chain to let the tree walk
1910 			 * continue. All KSM pages belonging to the
1911 			 * stable_node dups in a stable_node chain
1912 			 * have the same content and they're
1913 			 * write protected at all times. Any will work
1914 			 * fine to continue the walk.
1915 			 */
1916 			tree_page = get_ksm_page(stable_node_any,
1917 						 GET_KSM_PAGE_NOLOCK);
1918 		}
1919 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1920 		if (!tree_page) {
1921 			/*
1922 			 * If we walked over a stale stable_node,
1923 			 * get_ksm_page() will call rb_erase() and it
1924 			 * may rebalance the tree from under us. So
1925 			 * restart the search from scratch. Returning
1926 			 * NULL would be safe too, but we'd generate
1927 			 * false negative insertions just because some
1928 			 * stable_node was stale.
1929 			 */
1930 			goto again;
1931 		}
1932 
1933 		ret = memcmp_pages(kpage, tree_page);
1934 		put_page(tree_page);
1935 
1936 		parent = *new;
1937 		if (ret < 0)
1938 			new = &parent->rb_left;
1939 		else if (ret > 0)
1940 			new = &parent->rb_right;
1941 		else {
1942 			need_chain = true;
1943 			break;
1944 		}
1945 	}
1946 
1947 	stable_node_dup = alloc_stable_node();
1948 	if (!stable_node_dup)
1949 		return NULL;
1950 
1951 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1952 	stable_node_dup->kpfn = kpfn;
1953 	set_page_stable_node(kpage, stable_node_dup);
1954 	stable_node_dup->rmap_hlist_len = 0;
1955 	DO_NUMA(stable_node_dup->nid = nid);
1956 	if (!need_chain) {
1957 		rb_link_node(&stable_node_dup->node, parent, new);
1958 		rb_insert_color(&stable_node_dup->node, root);
1959 	} else {
1960 		if (!is_stable_node_chain(stable_node)) {
1961 			struct ksm_stable_node *orig = stable_node;
1962 			/* chain is missing so create it */
1963 			stable_node = alloc_stable_node_chain(orig, root);
1964 			if (!stable_node) {
1965 				free_stable_node(stable_node_dup);
1966 				return NULL;
1967 			}
1968 		}
1969 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1970 	}
1971 
1972 	return stable_node_dup;
1973 }
1974 
1975 /*
1976  * unstable_tree_search_insert - search for identical page,
1977  * else insert rmap_item into the unstable tree.
1978  *
1979  * This function searches for a page in the unstable tree identical to the
1980  * page currently being scanned; and if no identical page is found in the
1981  * tree, we insert rmap_item as a new object into the unstable tree.
1982  *
1983  * This function returns pointer to rmap_item found to be identical
1984  * to the currently scanned page, NULL otherwise.
1985  *
1986  * This function does both searching and inserting, because they share
1987  * the same walking algorithm in an rbtree.
1988  */
1989 static
1990 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1991 					      struct page *page,
1992 					      struct page **tree_pagep)
1993 {
1994 	struct rb_node **new;
1995 	struct rb_root *root;
1996 	struct rb_node *parent = NULL;
1997 	int nid;
1998 
1999 	nid = get_kpfn_nid(page_to_pfn(page));
2000 	root = root_unstable_tree + nid;
2001 	new = &root->rb_node;
2002 
2003 	while (*new) {
2004 		struct ksm_rmap_item *tree_rmap_item;
2005 		struct page *tree_page;
2006 		int ret;
2007 
2008 		cond_resched();
2009 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2010 		tree_page = get_mergeable_page(tree_rmap_item);
2011 		if (!tree_page)
2012 			return NULL;
2013 
2014 		/*
2015 		 * Don't substitute a ksm page for a forked page.
2016 		 */
2017 		if (page == tree_page) {
2018 			put_page(tree_page);
2019 			return NULL;
2020 		}
2021 
2022 		ret = memcmp_pages(page, tree_page);
2023 
2024 		parent = *new;
2025 		if (ret < 0) {
2026 			put_page(tree_page);
2027 			new = &parent->rb_left;
2028 		} else if (ret > 0) {
2029 			put_page(tree_page);
2030 			new = &parent->rb_right;
2031 		} else if (!ksm_merge_across_nodes &&
2032 			   page_to_nid(tree_page) != nid) {
2033 			/*
2034 			 * If tree_page has been migrated to another NUMA node,
2035 			 * it will be flushed out and put in the right unstable
2036 			 * tree next time: only merge with it when across_nodes.
2037 			 */
2038 			put_page(tree_page);
2039 			return NULL;
2040 		} else {
2041 			*tree_pagep = tree_page;
2042 			return tree_rmap_item;
2043 		}
2044 	}
2045 
2046 	rmap_item->address |= UNSTABLE_FLAG;
2047 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2048 	DO_NUMA(rmap_item->nid = nid);
2049 	rb_link_node(&rmap_item->node, parent, new);
2050 	rb_insert_color(&rmap_item->node, root);
2051 
2052 	ksm_pages_unshared++;
2053 	return NULL;
2054 }
2055 
2056 /*
2057  * stable_tree_append - add another rmap_item to the linked list of
2058  * rmap_items hanging off a given node of the stable tree, all sharing
2059  * the same ksm page.
2060  */
2061 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2062 			       struct ksm_stable_node *stable_node,
2063 			       bool max_page_sharing_bypass)
2064 {
2065 	/*
2066 	 * rmap won't find this mapping if we don't insert the
2067 	 * rmap_item in the right stable_node
2068 	 * duplicate. page_migration could break later if rmap breaks,
2069 	 * so we can as well crash here. We really need to check for
2070 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2071 	 * for other negative values as an underflow if detected here
2072 	 * for the first time (and not when decreasing rmap_hlist_len)
2073 	 * would be sign of memory corruption in the stable_node.
2074 	 */
2075 	BUG_ON(stable_node->rmap_hlist_len < 0);
2076 
2077 	stable_node->rmap_hlist_len++;
2078 	if (!max_page_sharing_bypass)
2079 		/* possibly non fatal but unexpected overflow, only warn */
2080 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2081 			     ksm_max_page_sharing);
2082 
2083 	rmap_item->head = stable_node;
2084 	rmap_item->address |= STABLE_FLAG;
2085 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2086 
2087 	if (rmap_item->hlist.next)
2088 		ksm_pages_sharing++;
2089 	else
2090 		ksm_pages_shared++;
2091 
2092 	rmap_item->mm->ksm_merging_pages++;
2093 }
2094 
2095 /*
2096  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2097  * if not, compare checksum to previous and if it's the same, see if page can
2098  * be inserted into the unstable tree, or merged with a page already there and
2099  * both transferred to the stable tree.
2100  *
2101  * @page: the page that we are searching identical page to.
2102  * @rmap_item: the reverse mapping into the virtual address of this page
2103  */
2104 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2105 {
2106 	struct mm_struct *mm = rmap_item->mm;
2107 	struct ksm_rmap_item *tree_rmap_item;
2108 	struct page *tree_page = NULL;
2109 	struct ksm_stable_node *stable_node;
2110 	struct page *kpage;
2111 	unsigned int checksum;
2112 	int err;
2113 	bool max_page_sharing_bypass = false;
2114 
2115 	stable_node = page_stable_node(page);
2116 	if (stable_node) {
2117 		if (stable_node->head != &migrate_nodes &&
2118 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2119 		    NUMA(stable_node->nid)) {
2120 			stable_node_dup_del(stable_node);
2121 			stable_node->head = &migrate_nodes;
2122 			list_add(&stable_node->list, stable_node->head);
2123 		}
2124 		if (stable_node->head != &migrate_nodes &&
2125 		    rmap_item->head == stable_node)
2126 			return;
2127 		/*
2128 		 * If it's a KSM fork, allow it to go over the sharing limit
2129 		 * without warnings.
2130 		 */
2131 		if (!is_page_sharing_candidate(stable_node))
2132 			max_page_sharing_bypass = true;
2133 	}
2134 
2135 	/* We first start with searching the page inside the stable tree */
2136 	kpage = stable_tree_search(page);
2137 	if (kpage == page && rmap_item->head == stable_node) {
2138 		put_page(kpage);
2139 		return;
2140 	}
2141 
2142 	remove_rmap_item_from_tree(rmap_item);
2143 
2144 	if (kpage) {
2145 		if (PTR_ERR(kpage) == -EBUSY)
2146 			return;
2147 
2148 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2149 		if (!err) {
2150 			/*
2151 			 * The page was successfully merged:
2152 			 * add its rmap_item to the stable tree.
2153 			 */
2154 			lock_page(kpage);
2155 			stable_tree_append(rmap_item, page_stable_node(kpage),
2156 					   max_page_sharing_bypass);
2157 			unlock_page(kpage);
2158 		}
2159 		put_page(kpage);
2160 		return;
2161 	}
2162 
2163 	/*
2164 	 * If the hash value of the page has changed from the last time
2165 	 * we calculated it, this page is changing frequently: therefore we
2166 	 * don't want to insert it in the unstable tree, and we don't want
2167 	 * to waste our time searching for something identical to it there.
2168 	 */
2169 	checksum = calc_checksum(page);
2170 	if (rmap_item->oldchecksum != checksum) {
2171 		rmap_item->oldchecksum = checksum;
2172 		return;
2173 	}
2174 
2175 	/*
2176 	 * Same checksum as an empty page. We attempt to merge it with the
2177 	 * appropriate zero page if the user enabled this via sysfs.
2178 	 */
2179 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2180 		struct vm_area_struct *vma;
2181 
2182 		mmap_read_lock(mm);
2183 		vma = find_mergeable_vma(mm, rmap_item->address);
2184 		if (vma) {
2185 			err = try_to_merge_one_page(vma, page,
2186 					ZERO_PAGE(rmap_item->address));
2187 			trace_ksm_merge_one_page(
2188 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2189 				rmap_item, mm, err);
2190 		} else {
2191 			/*
2192 			 * If the vma is out of date, we do not need to
2193 			 * continue.
2194 			 */
2195 			err = 0;
2196 		}
2197 		mmap_read_unlock(mm);
2198 		/*
2199 		 * In case of failure, the page was not really empty, so we
2200 		 * need to continue. Otherwise we're done.
2201 		 */
2202 		if (!err)
2203 			return;
2204 	}
2205 	tree_rmap_item =
2206 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2207 	if (tree_rmap_item) {
2208 		bool split;
2209 
2210 		kpage = try_to_merge_two_pages(rmap_item, page,
2211 						tree_rmap_item, tree_page);
2212 		/*
2213 		 * If both pages we tried to merge belong to the same compound
2214 		 * page, then we actually ended up increasing the reference
2215 		 * count of the same compound page twice, and split_huge_page
2216 		 * failed.
2217 		 * Here we set a flag if that happened, and we use it later to
2218 		 * try split_huge_page again. Since we call put_page right
2219 		 * afterwards, the reference count will be correct and
2220 		 * split_huge_page should succeed.
2221 		 */
2222 		split = PageTransCompound(page)
2223 			&& compound_head(page) == compound_head(tree_page);
2224 		put_page(tree_page);
2225 		if (kpage) {
2226 			/*
2227 			 * The pages were successfully merged: insert new
2228 			 * node in the stable tree and add both rmap_items.
2229 			 */
2230 			lock_page(kpage);
2231 			stable_node = stable_tree_insert(kpage);
2232 			if (stable_node) {
2233 				stable_tree_append(tree_rmap_item, stable_node,
2234 						   false);
2235 				stable_tree_append(rmap_item, stable_node,
2236 						   false);
2237 			}
2238 			unlock_page(kpage);
2239 
2240 			/*
2241 			 * If we fail to insert the page into the stable tree,
2242 			 * we will have 2 virtual addresses that are pointing
2243 			 * to a ksm page left outside the stable tree,
2244 			 * in which case we need to break_cow on both.
2245 			 */
2246 			if (!stable_node) {
2247 				break_cow(tree_rmap_item);
2248 				break_cow(rmap_item);
2249 			}
2250 		} else if (split) {
2251 			/*
2252 			 * We are here if we tried to merge two pages and
2253 			 * failed because they both belonged to the same
2254 			 * compound page. We will split the page now, but no
2255 			 * merging will take place.
2256 			 * We do not want to add the cost of a full lock; if
2257 			 * the page is locked, it is better to skip it and
2258 			 * perhaps try again later.
2259 			 */
2260 			if (!trylock_page(page))
2261 				return;
2262 			split_huge_page(page);
2263 			unlock_page(page);
2264 		}
2265 	}
2266 }
2267 
2268 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2269 					    struct ksm_rmap_item **rmap_list,
2270 					    unsigned long addr)
2271 {
2272 	struct ksm_rmap_item *rmap_item;
2273 
2274 	while (*rmap_list) {
2275 		rmap_item = *rmap_list;
2276 		if ((rmap_item->address & PAGE_MASK) == addr)
2277 			return rmap_item;
2278 		if (rmap_item->address > addr)
2279 			break;
2280 		*rmap_list = rmap_item->rmap_list;
2281 		remove_rmap_item_from_tree(rmap_item);
2282 		free_rmap_item(rmap_item);
2283 	}
2284 
2285 	rmap_item = alloc_rmap_item();
2286 	if (rmap_item) {
2287 		/* It has already been zeroed */
2288 		rmap_item->mm = mm_slot->slot.mm;
2289 		rmap_item->mm->ksm_rmap_items++;
2290 		rmap_item->address = addr;
2291 		rmap_item->rmap_list = *rmap_list;
2292 		*rmap_list = rmap_item;
2293 	}
2294 	return rmap_item;
2295 }
2296 
2297 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2298 {
2299 	struct mm_struct *mm;
2300 	struct ksm_mm_slot *mm_slot;
2301 	struct mm_slot *slot;
2302 	struct vm_area_struct *vma;
2303 	struct ksm_rmap_item *rmap_item;
2304 	struct vma_iterator vmi;
2305 	int nid;
2306 
2307 	if (list_empty(&ksm_mm_head.slot.mm_node))
2308 		return NULL;
2309 
2310 	mm_slot = ksm_scan.mm_slot;
2311 	if (mm_slot == &ksm_mm_head) {
2312 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2313 
2314 		/*
2315 		 * A number of pages can hang around indefinitely in per-cpu
2316 		 * LRU cache, raised page count preventing write_protect_page
2317 		 * from merging them.  Though it doesn't really matter much,
2318 		 * it is puzzling to see some stuck in pages_volatile until
2319 		 * other activity jostles them out, and they also prevented
2320 		 * LTP's KSM test from succeeding deterministically; so drain
2321 		 * them here (here rather than on entry to ksm_do_scan(),
2322 		 * so we don't IPI too often when pages_to_scan is set low).
2323 		 */
2324 		lru_add_drain_all();
2325 
2326 		/*
2327 		 * Whereas stale stable_nodes on the stable_tree itself
2328 		 * get pruned in the regular course of stable_tree_search(),
2329 		 * those moved out to the migrate_nodes list can accumulate:
2330 		 * so prune them once before each full scan.
2331 		 */
2332 		if (!ksm_merge_across_nodes) {
2333 			struct ksm_stable_node *stable_node, *next;
2334 			struct page *page;
2335 
2336 			list_for_each_entry_safe(stable_node, next,
2337 						 &migrate_nodes, list) {
2338 				page = get_ksm_page(stable_node,
2339 						    GET_KSM_PAGE_NOLOCK);
2340 				if (page)
2341 					put_page(page);
2342 				cond_resched();
2343 			}
2344 		}
2345 
2346 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2347 			root_unstable_tree[nid] = RB_ROOT;
2348 
2349 		spin_lock(&ksm_mmlist_lock);
2350 		slot = list_entry(mm_slot->slot.mm_node.next,
2351 				  struct mm_slot, mm_node);
2352 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2353 		ksm_scan.mm_slot = mm_slot;
2354 		spin_unlock(&ksm_mmlist_lock);
2355 		/*
2356 		 * Although we tested list_empty() above, a racing __ksm_exit
2357 		 * of the last mm on the list may have removed it since then.
2358 		 */
2359 		if (mm_slot == &ksm_mm_head)
2360 			return NULL;
2361 next_mm:
2362 		ksm_scan.address = 0;
2363 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2364 	}
2365 
2366 	slot = &mm_slot->slot;
2367 	mm = slot->mm;
2368 	vma_iter_init(&vmi, mm, ksm_scan.address);
2369 
2370 	mmap_read_lock(mm);
2371 	if (ksm_test_exit(mm))
2372 		goto no_vmas;
2373 
2374 	for_each_vma(vmi, vma) {
2375 		if (!(vma->vm_flags & VM_MERGEABLE))
2376 			continue;
2377 		if (ksm_scan.address < vma->vm_start)
2378 			ksm_scan.address = vma->vm_start;
2379 		if (!vma->anon_vma)
2380 			ksm_scan.address = vma->vm_end;
2381 
2382 		while (ksm_scan.address < vma->vm_end) {
2383 			if (ksm_test_exit(mm))
2384 				break;
2385 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2386 			if (IS_ERR_OR_NULL(*page)) {
2387 				ksm_scan.address += PAGE_SIZE;
2388 				cond_resched();
2389 				continue;
2390 			}
2391 			if (is_zone_device_page(*page))
2392 				goto next_page;
2393 			if (PageAnon(*page)) {
2394 				flush_anon_page(vma, *page, ksm_scan.address);
2395 				flush_dcache_page(*page);
2396 				rmap_item = get_next_rmap_item(mm_slot,
2397 					ksm_scan.rmap_list, ksm_scan.address);
2398 				if (rmap_item) {
2399 					ksm_scan.rmap_list =
2400 							&rmap_item->rmap_list;
2401 					ksm_scan.address += PAGE_SIZE;
2402 				} else
2403 					put_page(*page);
2404 				mmap_read_unlock(mm);
2405 				return rmap_item;
2406 			}
2407 next_page:
2408 			put_page(*page);
2409 			ksm_scan.address += PAGE_SIZE;
2410 			cond_resched();
2411 		}
2412 	}
2413 
2414 	if (ksm_test_exit(mm)) {
2415 no_vmas:
2416 		ksm_scan.address = 0;
2417 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2418 	}
2419 	/*
2420 	 * Nuke all the rmap_items that are above this current rmap:
2421 	 * because there were no VM_MERGEABLE vmas with such addresses.
2422 	 */
2423 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2424 
2425 	spin_lock(&ksm_mmlist_lock);
2426 	slot = list_entry(mm_slot->slot.mm_node.next,
2427 			  struct mm_slot, mm_node);
2428 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2429 	if (ksm_scan.address == 0) {
2430 		/*
2431 		 * We've completed a full scan of all vmas, holding mmap_lock
2432 		 * throughout, and found no VM_MERGEABLE: so do the same as
2433 		 * __ksm_exit does to remove this mm from all our lists now.
2434 		 * This applies either when cleaning up after __ksm_exit
2435 		 * (but beware: we can reach here even before __ksm_exit),
2436 		 * or when all VM_MERGEABLE areas have been unmapped (and
2437 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2438 		 */
2439 		hash_del(&mm_slot->slot.hash);
2440 		list_del(&mm_slot->slot.mm_node);
2441 		spin_unlock(&ksm_mmlist_lock);
2442 
2443 		mm_slot_free(mm_slot_cache, mm_slot);
2444 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2445 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2446 		mmap_read_unlock(mm);
2447 		mmdrop(mm);
2448 	} else {
2449 		mmap_read_unlock(mm);
2450 		/*
2451 		 * mmap_read_unlock(mm) first because after
2452 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2453 		 * already have been freed under us by __ksm_exit()
2454 		 * because the "mm_slot" is still hashed and
2455 		 * ksm_scan.mm_slot doesn't point to it anymore.
2456 		 */
2457 		spin_unlock(&ksm_mmlist_lock);
2458 	}
2459 
2460 	/* Repeat until we've completed scanning the whole list */
2461 	mm_slot = ksm_scan.mm_slot;
2462 	if (mm_slot != &ksm_mm_head)
2463 		goto next_mm;
2464 
2465 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2466 	ksm_scan.seqnr++;
2467 	return NULL;
2468 }
2469 
2470 /**
2471  * ksm_do_scan  - the ksm scanner main worker function.
2472  * @scan_npages:  number of pages we want to scan before we return.
2473  */
2474 static void ksm_do_scan(unsigned int scan_npages)
2475 {
2476 	struct ksm_rmap_item *rmap_item;
2477 	struct page *page;
2478 
2479 	while (scan_npages-- && likely(!freezing(current))) {
2480 		cond_resched();
2481 		rmap_item = scan_get_next_rmap_item(&page);
2482 		if (!rmap_item)
2483 			return;
2484 		cmp_and_merge_page(page, rmap_item);
2485 		put_page(page);
2486 	}
2487 }
2488 
2489 static int ksmd_should_run(void)
2490 {
2491 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2492 }
2493 
2494 static int ksm_scan_thread(void *nothing)
2495 {
2496 	unsigned int sleep_ms;
2497 
2498 	set_freezable();
2499 	set_user_nice(current, 5);
2500 
2501 	while (!kthread_should_stop()) {
2502 		mutex_lock(&ksm_thread_mutex);
2503 		wait_while_offlining();
2504 		if (ksmd_should_run())
2505 			ksm_do_scan(ksm_thread_pages_to_scan);
2506 		mutex_unlock(&ksm_thread_mutex);
2507 
2508 		try_to_freeze();
2509 
2510 		if (ksmd_should_run()) {
2511 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2512 			wait_event_interruptible_timeout(ksm_iter_wait,
2513 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2514 				msecs_to_jiffies(sleep_ms));
2515 		} else {
2516 			wait_event_freezable(ksm_thread_wait,
2517 				ksmd_should_run() || kthread_should_stop());
2518 		}
2519 	}
2520 	return 0;
2521 }
2522 
2523 static void __ksm_add_vma(struct vm_area_struct *vma)
2524 {
2525 	unsigned long vm_flags = vma->vm_flags;
2526 
2527 	if (vm_flags & VM_MERGEABLE)
2528 		return;
2529 
2530 	if (vma_ksm_compatible(vma))
2531 		vm_flags_set(vma, VM_MERGEABLE);
2532 }
2533 
2534 static int __ksm_del_vma(struct vm_area_struct *vma)
2535 {
2536 	int err;
2537 
2538 	if (!(vma->vm_flags & VM_MERGEABLE))
2539 		return 0;
2540 
2541 	if (vma->anon_vma) {
2542 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2543 		if (err)
2544 			return err;
2545 	}
2546 
2547 	vm_flags_clear(vma, VM_MERGEABLE);
2548 	return 0;
2549 }
2550 /**
2551  * ksm_add_vma - Mark vma as mergeable if compatible
2552  *
2553  * @vma:  Pointer to vma
2554  */
2555 void ksm_add_vma(struct vm_area_struct *vma)
2556 {
2557 	struct mm_struct *mm = vma->vm_mm;
2558 
2559 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2560 		__ksm_add_vma(vma);
2561 }
2562 
2563 static void ksm_add_vmas(struct mm_struct *mm)
2564 {
2565 	struct vm_area_struct *vma;
2566 
2567 	VMA_ITERATOR(vmi, mm, 0);
2568 	for_each_vma(vmi, vma)
2569 		__ksm_add_vma(vma);
2570 }
2571 
2572 static int ksm_del_vmas(struct mm_struct *mm)
2573 {
2574 	struct vm_area_struct *vma;
2575 	int err;
2576 
2577 	VMA_ITERATOR(vmi, mm, 0);
2578 	for_each_vma(vmi, vma) {
2579 		err = __ksm_del_vma(vma);
2580 		if (err)
2581 			return err;
2582 	}
2583 	return 0;
2584 }
2585 
2586 /**
2587  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2588  *                        compatible VMA's
2589  *
2590  * @mm:  Pointer to mm
2591  *
2592  * Returns 0 on success, otherwise error code
2593  */
2594 int ksm_enable_merge_any(struct mm_struct *mm)
2595 {
2596 	int err;
2597 
2598 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2599 		return 0;
2600 
2601 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2602 		err = __ksm_enter(mm);
2603 		if (err)
2604 			return err;
2605 	}
2606 
2607 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2608 	ksm_add_vmas(mm);
2609 
2610 	return 0;
2611 }
2612 
2613 /**
2614  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2615  *			   previously enabled via ksm_enable_merge_any().
2616  *
2617  * Disabling merging implies unmerging any merged pages, like setting
2618  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2619  * merging on all compatible VMA's remains enabled.
2620  *
2621  * @mm: Pointer to mm
2622  *
2623  * Returns 0 on success, otherwise error code
2624  */
2625 int ksm_disable_merge_any(struct mm_struct *mm)
2626 {
2627 	int err;
2628 
2629 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2630 		return 0;
2631 
2632 	err = ksm_del_vmas(mm);
2633 	if (err) {
2634 		ksm_add_vmas(mm);
2635 		return err;
2636 	}
2637 
2638 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2639 	return 0;
2640 }
2641 
2642 int ksm_disable(struct mm_struct *mm)
2643 {
2644 	mmap_assert_write_locked(mm);
2645 
2646 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2647 		return 0;
2648 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2649 		return ksm_disable_merge_any(mm);
2650 	return ksm_del_vmas(mm);
2651 }
2652 
2653 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2654 		unsigned long end, int advice, unsigned long *vm_flags)
2655 {
2656 	struct mm_struct *mm = vma->vm_mm;
2657 	int err;
2658 
2659 	switch (advice) {
2660 	case MADV_MERGEABLE:
2661 		if (vma->vm_flags & VM_MERGEABLE)
2662 			return 0;
2663 		if (!vma_ksm_compatible(vma))
2664 			return 0;
2665 
2666 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2667 			err = __ksm_enter(mm);
2668 			if (err)
2669 				return err;
2670 		}
2671 
2672 		*vm_flags |= VM_MERGEABLE;
2673 		break;
2674 
2675 	case MADV_UNMERGEABLE:
2676 		if (!(*vm_flags & VM_MERGEABLE))
2677 			return 0;		/* just ignore the advice */
2678 
2679 		if (vma->anon_vma) {
2680 			err = unmerge_ksm_pages(vma, start, end);
2681 			if (err)
2682 				return err;
2683 		}
2684 
2685 		*vm_flags &= ~VM_MERGEABLE;
2686 		break;
2687 	}
2688 
2689 	return 0;
2690 }
2691 EXPORT_SYMBOL_GPL(ksm_madvise);
2692 
2693 int __ksm_enter(struct mm_struct *mm)
2694 {
2695 	struct ksm_mm_slot *mm_slot;
2696 	struct mm_slot *slot;
2697 	int needs_wakeup;
2698 
2699 	mm_slot = mm_slot_alloc(mm_slot_cache);
2700 	if (!mm_slot)
2701 		return -ENOMEM;
2702 
2703 	slot = &mm_slot->slot;
2704 
2705 	/* Check ksm_run too?  Would need tighter locking */
2706 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2707 
2708 	spin_lock(&ksm_mmlist_lock);
2709 	mm_slot_insert(mm_slots_hash, mm, slot);
2710 	/*
2711 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2712 	 * insert just behind the scanning cursor, to let the area settle
2713 	 * down a little; when fork is followed by immediate exec, we don't
2714 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2715 	 *
2716 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2717 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2718 	 * missed: then we might as well insert at the end of the list.
2719 	 */
2720 	if (ksm_run & KSM_RUN_UNMERGE)
2721 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2722 	else
2723 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2724 	spin_unlock(&ksm_mmlist_lock);
2725 
2726 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2727 	mmgrab(mm);
2728 
2729 	if (needs_wakeup)
2730 		wake_up_interruptible(&ksm_thread_wait);
2731 
2732 	trace_ksm_enter(mm);
2733 	return 0;
2734 }
2735 
2736 void __ksm_exit(struct mm_struct *mm)
2737 {
2738 	struct ksm_mm_slot *mm_slot;
2739 	struct mm_slot *slot;
2740 	int easy_to_free = 0;
2741 
2742 	/*
2743 	 * This process is exiting: if it's straightforward (as is the
2744 	 * case when ksmd was never running), free mm_slot immediately.
2745 	 * But if it's at the cursor or has rmap_items linked to it, use
2746 	 * mmap_lock to synchronize with any break_cows before pagetables
2747 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2748 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2749 	 */
2750 
2751 	spin_lock(&ksm_mmlist_lock);
2752 	slot = mm_slot_lookup(mm_slots_hash, mm);
2753 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2754 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2755 		if (!mm_slot->rmap_list) {
2756 			hash_del(&slot->hash);
2757 			list_del(&slot->mm_node);
2758 			easy_to_free = 1;
2759 		} else {
2760 			list_move(&slot->mm_node,
2761 				  &ksm_scan.mm_slot->slot.mm_node);
2762 		}
2763 	}
2764 	spin_unlock(&ksm_mmlist_lock);
2765 
2766 	if (easy_to_free) {
2767 		mm_slot_free(mm_slot_cache, mm_slot);
2768 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2769 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2770 		mmdrop(mm);
2771 	} else if (mm_slot) {
2772 		mmap_write_lock(mm);
2773 		mmap_write_unlock(mm);
2774 	}
2775 
2776 	trace_ksm_exit(mm);
2777 }
2778 
2779 struct page *ksm_might_need_to_copy(struct page *page,
2780 			struct vm_area_struct *vma, unsigned long address)
2781 {
2782 	struct folio *folio = page_folio(page);
2783 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2784 	struct page *new_page;
2785 
2786 	if (PageKsm(page)) {
2787 		if (page_stable_node(page) &&
2788 		    !(ksm_run & KSM_RUN_UNMERGE))
2789 			return page;	/* no need to copy it */
2790 	} else if (!anon_vma) {
2791 		return page;		/* no need to copy it */
2792 	} else if (page->index == linear_page_index(vma, address) &&
2793 			anon_vma->root == vma->anon_vma->root) {
2794 		return page;		/* still no need to copy it */
2795 	}
2796 	if (!PageUptodate(page))
2797 		return page;		/* let do_swap_page report the error */
2798 
2799 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2800 	if (new_page &&
2801 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2802 		put_page(new_page);
2803 		new_page = NULL;
2804 	}
2805 	if (new_page) {
2806 		if (copy_mc_user_highpage(new_page, page, address, vma)) {
2807 			put_page(new_page);
2808 			memory_failure_queue(page_to_pfn(page), 0);
2809 			return ERR_PTR(-EHWPOISON);
2810 		}
2811 		SetPageDirty(new_page);
2812 		__SetPageUptodate(new_page);
2813 		__SetPageLocked(new_page);
2814 #ifdef CONFIG_SWAP
2815 		count_vm_event(KSM_SWPIN_COPY);
2816 #endif
2817 	}
2818 
2819 	return new_page;
2820 }
2821 
2822 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2823 {
2824 	struct ksm_stable_node *stable_node;
2825 	struct ksm_rmap_item *rmap_item;
2826 	int search_new_forks = 0;
2827 
2828 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2829 
2830 	/*
2831 	 * Rely on the page lock to protect against concurrent modifications
2832 	 * to that page's node of the stable tree.
2833 	 */
2834 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2835 
2836 	stable_node = folio_stable_node(folio);
2837 	if (!stable_node)
2838 		return;
2839 again:
2840 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2841 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2842 		struct anon_vma_chain *vmac;
2843 		struct vm_area_struct *vma;
2844 
2845 		cond_resched();
2846 		if (!anon_vma_trylock_read(anon_vma)) {
2847 			if (rwc->try_lock) {
2848 				rwc->contended = true;
2849 				return;
2850 			}
2851 			anon_vma_lock_read(anon_vma);
2852 		}
2853 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2854 					       0, ULONG_MAX) {
2855 			unsigned long addr;
2856 
2857 			cond_resched();
2858 			vma = vmac->vma;
2859 
2860 			/* Ignore the stable/unstable/sqnr flags */
2861 			addr = rmap_item->address & PAGE_MASK;
2862 
2863 			if (addr < vma->vm_start || addr >= vma->vm_end)
2864 				continue;
2865 			/*
2866 			 * Initially we examine only the vma which covers this
2867 			 * rmap_item; but later, if there is still work to do,
2868 			 * we examine covering vmas in other mms: in case they
2869 			 * were forked from the original since ksmd passed.
2870 			 */
2871 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2872 				continue;
2873 
2874 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2875 				continue;
2876 
2877 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2878 				anon_vma_unlock_read(anon_vma);
2879 				return;
2880 			}
2881 			if (rwc->done && rwc->done(folio)) {
2882 				anon_vma_unlock_read(anon_vma);
2883 				return;
2884 			}
2885 		}
2886 		anon_vma_unlock_read(anon_vma);
2887 	}
2888 	if (!search_new_forks++)
2889 		goto again;
2890 }
2891 
2892 #ifdef CONFIG_MEMORY_FAILURE
2893 /*
2894  * Collect processes when the error hit an ksm page.
2895  */
2896 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2897 		       int force_early)
2898 {
2899 	struct ksm_stable_node *stable_node;
2900 	struct ksm_rmap_item *rmap_item;
2901 	struct folio *folio = page_folio(page);
2902 	struct vm_area_struct *vma;
2903 	struct task_struct *tsk;
2904 
2905 	stable_node = folio_stable_node(folio);
2906 	if (!stable_node)
2907 		return;
2908 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2909 		struct anon_vma *av = rmap_item->anon_vma;
2910 
2911 		anon_vma_lock_read(av);
2912 		read_lock(&tasklist_lock);
2913 		for_each_process(tsk) {
2914 			struct anon_vma_chain *vmac;
2915 			unsigned long addr;
2916 			struct task_struct *t =
2917 				task_early_kill(tsk, force_early);
2918 			if (!t)
2919 				continue;
2920 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2921 						       ULONG_MAX)
2922 			{
2923 				vma = vmac->vma;
2924 				if (vma->vm_mm == t->mm) {
2925 					addr = rmap_item->address & PAGE_MASK;
2926 					add_to_kill_ksm(t, page, vma, to_kill,
2927 							addr);
2928 				}
2929 			}
2930 		}
2931 		read_unlock(&tasklist_lock);
2932 		anon_vma_unlock_read(av);
2933 	}
2934 }
2935 #endif
2936 
2937 #ifdef CONFIG_MIGRATION
2938 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2939 {
2940 	struct ksm_stable_node *stable_node;
2941 
2942 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2943 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2944 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2945 
2946 	stable_node = folio_stable_node(folio);
2947 	if (stable_node) {
2948 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2949 		stable_node->kpfn = folio_pfn(newfolio);
2950 		/*
2951 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2952 		 * to make sure that the new stable_node->kpfn is visible
2953 		 * to get_ksm_page() before it can see that folio->mapping
2954 		 * has gone stale (or that folio_test_swapcache has been cleared).
2955 		 */
2956 		smp_wmb();
2957 		set_page_stable_node(&folio->page, NULL);
2958 	}
2959 }
2960 #endif /* CONFIG_MIGRATION */
2961 
2962 #ifdef CONFIG_MEMORY_HOTREMOVE
2963 static void wait_while_offlining(void)
2964 {
2965 	while (ksm_run & KSM_RUN_OFFLINE) {
2966 		mutex_unlock(&ksm_thread_mutex);
2967 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2968 			    TASK_UNINTERRUPTIBLE);
2969 		mutex_lock(&ksm_thread_mutex);
2970 	}
2971 }
2972 
2973 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2974 					 unsigned long start_pfn,
2975 					 unsigned long end_pfn)
2976 {
2977 	if (stable_node->kpfn >= start_pfn &&
2978 	    stable_node->kpfn < end_pfn) {
2979 		/*
2980 		 * Don't get_ksm_page, page has already gone:
2981 		 * which is why we keep kpfn instead of page*
2982 		 */
2983 		remove_node_from_stable_tree(stable_node);
2984 		return true;
2985 	}
2986 	return false;
2987 }
2988 
2989 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2990 					   unsigned long start_pfn,
2991 					   unsigned long end_pfn,
2992 					   struct rb_root *root)
2993 {
2994 	struct ksm_stable_node *dup;
2995 	struct hlist_node *hlist_safe;
2996 
2997 	if (!is_stable_node_chain(stable_node)) {
2998 		VM_BUG_ON(is_stable_node_dup(stable_node));
2999 		return stable_node_dup_remove_range(stable_node, start_pfn,
3000 						    end_pfn);
3001 	}
3002 
3003 	hlist_for_each_entry_safe(dup, hlist_safe,
3004 				  &stable_node->hlist, hlist_dup) {
3005 		VM_BUG_ON(!is_stable_node_dup(dup));
3006 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3007 	}
3008 	if (hlist_empty(&stable_node->hlist)) {
3009 		free_stable_node_chain(stable_node, root);
3010 		return true; /* notify caller that tree was rebalanced */
3011 	} else
3012 		return false;
3013 }
3014 
3015 static void ksm_check_stable_tree(unsigned long start_pfn,
3016 				  unsigned long end_pfn)
3017 {
3018 	struct ksm_stable_node *stable_node, *next;
3019 	struct rb_node *node;
3020 	int nid;
3021 
3022 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3023 		node = rb_first(root_stable_tree + nid);
3024 		while (node) {
3025 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3026 			if (stable_node_chain_remove_range(stable_node,
3027 							   start_pfn, end_pfn,
3028 							   root_stable_tree +
3029 							   nid))
3030 				node = rb_first(root_stable_tree + nid);
3031 			else
3032 				node = rb_next(node);
3033 			cond_resched();
3034 		}
3035 	}
3036 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3037 		if (stable_node->kpfn >= start_pfn &&
3038 		    stable_node->kpfn < end_pfn)
3039 			remove_node_from_stable_tree(stable_node);
3040 		cond_resched();
3041 	}
3042 }
3043 
3044 static int ksm_memory_callback(struct notifier_block *self,
3045 			       unsigned long action, void *arg)
3046 {
3047 	struct memory_notify *mn = arg;
3048 
3049 	switch (action) {
3050 	case MEM_GOING_OFFLINE:
3051 		/*
3052 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3053 		 * and remove_all_stable_nodes() while memory is going offline:
3054 		 * it is unsafe for them to touch the stable tree at this time.
3055 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3056 		 * which do not need the ksm_thread_mutex are all safe.
3057 		 */
3058 		mutex_lock(&ksm_thread_mutex);
3059 		ksm_run |= KSM_RUN_OFFLINE;
3060 		mutex_unlock(&ksm_thread_mutex);
3061 		break;
3062 
3063 	case MEM_OFFLINE:
3064 		/*
3065 		 * Most of the work is done by page migration; but there might
3066 		 * be a few stable_nodes left over, still pointing to struct
3067 		 * pages which have been offlined: prune those from the tree,
3068 		 * otherwise get_ksm_page() might later try to access a
3069 		 * non-existent struct page.
3070 		 */
3071 		ksm_check_stable_tree(mn->start_pfn,
3072 				      mn->start_pfn + mn->nr_pages);
3073 		fallthrough;
3074 	case MEM_CANCEL_OFFLINE:
3075 		mutex_lock(&ksm_thread_mutex);
3076 		ksm_run &= ~KSM_RUN_OFFLINE;
3077 		mutex_unlock(&ksm_thread_mutex);
3078 
3079 		smp_mb();	/* wake_up_bit advises this */
3080 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3081 		break;
3082 	}
3083 	return NOTIFY_OK;
3084 }
3085 #else
3086 static void wait_while_offlining(void)
3087 {
3088 }
3089 #endif /* CONFIG_MEMORY_HOTREMOVE */
3090 
3091 #ifdef CONFIG_PROC_FS
3092 long ksm_process_profit(struct mm_struct *mm)
3093 {
3094 	return mm->ksm_merging_pages * PAGE_SIZE -
3095 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3096 }
3097 #endif /* CONFIG_PROC_FS */
3098 
3099 #ifdef CONFIG_SYSFS
3100 /*
3101  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3102  */
3103 
3104 #define KSM_ATTR_RO(_name) \
3105 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3106 #define KSM_ATTR(_name) \
3107 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3108 
3109 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3110 				    struct kobj_attribute *attr, char *buf)
3111 {
3112 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3113 }
3114 
3115 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3116 				     struct kobj_attribute *attr,
3117 				     const char *buf, size_t count)
3118 {
3119 	unsigned int msecs;
3120 	int err;
3121 
3122 	err = kstrtouint(buf, 10, &msecs);
3123 	if (err)
3124 		return -EINVAL;
3125 
3126 	ksm_thread_sleep_millisecs = msecs;
3127 	wake_up_interruptible(&ksm_iter_wait);
3128 
3129 	return count;
3130 }
3131 KSM_ATTR(sleep_millisecs);
3132 
3133 static ssize_t pages_to_scan_show(struct kobject *kobj,
3134 				  struct kobj_attribute *attr, char *buf)
3135 {
3136 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3137 }
3138 
3139 static ssize_t pages_to_scan_store(struct kobject *kobj,
3140 				   struct kobj_attribute *attr,
3141 				   const char *buf, size_t count)
3142 {
3143 	unsigned int nr_pages;
3144 	int err;
3145 
3146 	err = kstrtouint(buf, 10, &nr_pages);
3147 	if (err)
3148 		return -EINVAL;
3149 
3150 	ksm_thread_pages_to_scan = nr_pages;
3151 
3152 	return count;
3153 }
3154 KSM_ATTR(pages_to_scan);
3155 
3156 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3157 			char *buf)
3158 {
3159 	return sysfs_emit(buf, "%lu\n", ksm_run);
3160 }
3161 
3162 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3163 			 const char *buf, size_t count)
3164 {
3165 	unsigned int flags;
3166 	int err;
3167 
3168 	err = kstrtouint(buf, 10, &flags);
3169 	if (err)
3170 		return -EINVAL;
3171 	if (flags > KSM_RUN_UNMERGE)
3172 		return -EINVAL;
3173 
3174 	/*
3175 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3176 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3177 	 * breaking COW to free the pages_shared (but leaves mm_slots
3178 	 * on the list for when ksmd may be set running again).
3179 	 */
3180 
3181 	mutex_lock(&ksm_thread_mutex);
3182 	wait_while_offlining();
3183 	if (ksm_run != flags) {
3184 		ksm_run = flags;
3185 		if (flags & KSM_RUN_UNMERGE) {
3186 			set_current_oom_origin();
3187 			err = unmerge_and_remove_all_rmap_items();
3188 			clear_current_oom_origin();
3189 			if (err) {
3190 				ksm_run = KSM_RUN_STOP;
3191 				count = err;
3192 			}
3193 		}
3194 	}
3195 	mutex_unlock(&ksm_thread_mutex);
3196 
3197 	if (flags & KSM_RUN_MERGE)
3198 		wake_up_interruptible(&ksm_thread_wait);
3199 
3200 	return count;
3201 }
3202 KSM_ATTR(run);
3203 
3204 #ifdef CONFIG_NUMA
3205 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3206 				       struct kobj_attribute *attr, char *buf)
3207 {
3208 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3209 }
3210 
3211 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3212 				   struct kobj_attribute *attr,
3213 				   const char *buf, size_t count)
3214 {
3215 	int err;
3216 	unsigned long knob;
3217 
3218 	err = kstrtoul(buf, 10, &knob);
3219 	if (err)
3220 		return err;
3221 	if (knob > 1)
3222 		return -EINVAL;
3223 
3224 	mutex_lock(&ksm_thread_mutex);
3225 	wait_while_offlining();
3226 	if (ksm_merge_across_nodes != knob) {
3227 		if (ksm_pages_shared || remove_all_stable_nodes())
3228 			err = -EBUSY;
3229 		else if (root_stable_tree == one_stable_tree) {
3230 			struct rb_root *buf;
3231 			/*
3232 			 * This is the first time that we switch away from the
3233 			 * default of merging across nodes: must now allocate
3234 			 * a buffer to hold as many roots as may be needed.
3235 			 * Allocate stable and unstable together:
3236 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3237 			 */
3238 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3239 				      GFP_KERNEL);
3240 			/* Let us assume that RB_ROOT is NULL is zero */
3241 			if (!buf)
3242 				err = -ENOMEM;
3243 			else {
3244 				root_stable_tree = buf;
3245 				root_unstable_tree = buf + nr_node_ids;
3246 				/* Stable tree is empty but not the unstable */
3247 				root_unstable_tree[0] = one_unstable_tree[0];
3248 			}
3249 		}
3250 		if (!err) {
3251 			ksm_merge_across_nodes = knob;
3252 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3253 		}
3254 	}
3255 	mutex_unlock(&ksm_thread_mutex);
3256 
3257 	return err ? err : count;
3258 }
3259 KSM_ATTR(merge_across_nodes);
3260 #endif
3261 
3262 static ssize_t use_zero_pages_show(struct kobject *kobj,
3263 				   struct kobj_attribute *attr, char *buf)
3264 {
3265 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3266 }
3267 static ssize_t use_zero_pages_store(struct kobject *kobj,
3268 				   struct kobj_attribute *attr,
3269 				   const char *buf, size_t count)
3270 {
3271 	int err;
3272 	bool value;
3273 
3274 	err = kstrtobool(buf, &value);
3275 	if (err)
3276 		return -EINVAL;
3277 
3278 	ksm_use_zero_pages = value;
3279 
3280 	return count;
3281 }
3282 KSM_ATTR(use_zero_pages);
3283 
3284 static ssize_t max_page_sharing_show(struct kobject *kobj,
3285 				     struct kobj_attribute *attr, char *buf)
3286 {
3287 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3288 }
3289 
3290 static ssize_t max_page_sharing_store(struct kobject *kobj,
3291 				      struct kobj_attribute *attr,
3292 				      const char *buf, size_t count)
3293 {
3294 	int err;
3295 	int knob;
3296 
3297 	err = kstrtoint(buf, 10, &knob);
3298 	if (err)
3299 		return err;
3300 	/*
3301 	 * When a KSM page is created it is shared by 2 mappings. This
3302 	 * being a signed comparison, it implicitly verifies it's not
3303 	 * negative.
3304 	 */
3305 	if (knob < 2)
3306 		return -EINVAL;
3307 
3308 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3309 		return count;
3310 
3311 	mutex_lock(&ksm_thread_mutex);
3312 	wait_while_offlining();
3313 	if (ksm_max_page_sharing != knob) {
3314 		if (ksm_pages_shared || remove_all_stable_nodes())
3315 			err = -EBUSY;
3316 		else
3317 			ksm_max_page_sharing = knob;
3318 	}
3319 	mutex_unlock(&ksm_thread_mutex);
3320 
3321 	return err ? err : count;
3322 }
3323 KSM_ATTR(max_page_sharing);
3324 
3325 static ssize_t pages_shared_show(struct kobject *kobj,
3326 				 struct kobj_attribute *attr, char *buf)
3327 {
3328 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3329 }
3330 KSM_ATTR_RO(pages_shared);
3331 
3332 static ssize_t pages_sharing_show(struct kobject *kobj,
3333 				  struct kobj_attribute *attr, char *buf)
3334 {
3335 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3336 }
3337 KSM_ATTR_RO(pages_sharing);
3338 
3339 static ssize_t pages_unshared_show(struct kobject *kobj,
3340 				   struct kobj_attribute *attr, char *buf)
3341 {
3342 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3343 }
3344 KSM_ATTR_RO(pages_unshared);
3345 
3346 static ssize_t pages_volatile_show(struct kobject *kobj,
3347 				   struct kobj_attribute *attr, char *buf)
3348 {
3349 	long ksm_pages_volatile;
3350 
3351 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3352 				- ksm_pages_sharing - ksm_pages_unshared;
3353 	/*
3354 	 * It was not worth any locking to calculate that statistic,
3355 	 * but it might therefore sometimes be negative: conceal that.
3356 	 */
3357 	if (ksm_pages_volatile < 0)
3358 		ksm_pages_volatile = 0;
3359 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3360 }
3361 KSM_ATTR_RO(pages_volatile);
3362 
3363 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3364 				struct kobj_attribute *attr, char *buf)
3365 {
3366 	return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3367 }
3368 KSM_ATTR_RO(ksm_zero_pages);
3369 
3370 static ssize_t general_profit_show(struct kobject *kobj,
3371 				   struct kobj_attribute *attr, char *buf)
3372 {
3373 	long general_profit;
3374 
3375 	general_profit = ksm_pages_sharing * PAGE_SIZE -
3376 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3377 
3378 	return sysfs_emit(buf, "%ld\n", general_profit);
3379 }
3380 KSM_ATTR_RO(general_profit);
3381 
3382 static ssize_t stable_node_dups_show(struct kobject *kobj,
3383 				     struct kobj_attribute *attr, char *buf)
3384 {
3385 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3386 }
3387 KSM_ATTR_RO(stable_node_dups);
3388 
3389 static ssize_t stable_node_chains_show(struct kobject *kobj,
3390 				       struct kobj_attribute *attr, char *buf)
3391 {
3392 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3393 }
3394 KSM_ATTR_RO(stable_node_chains);
3395 
3396 static ssize_t
3397 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3398 					struct kobj_attribute *attr,
3399 					char *buf)
3400 {
3401 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3402 }
3403 
3404 static ssize_t
3405 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3406 					 struct kobj_attribute *attr,
3407 					 const char *buf, size_t count)
3408 {
3409 	unsigned int msecs;
3410 	int err;
3411 
3412 	err = kstrtouint(buf, 10, &msecs);
3413 	if (err)
3414 		return -EINVAL;
3415 
3416 	ksm_stable_node_chains_prune_millisecs = msecs;
3417 
3418 	return count;
3419 }
3420 KSM_ATTR(stable_node_chains_prune_millisecs);
3421 
3422 static ssize_t full_scans_show(struct kobject *kobj,
3423 			       struct kobj_attribute *attr, char *buf)
3424 {
3425 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3426 }
3427 KSM_ATTR_RO(full_scans);
3428 
3429 static struct attribute *ksm_attrs[] = {
3430 	&sleep_millisecs_attr.attr,
3431 	&pages_to_scan_attr.attr,
3432 	&run_attr.attr,
3433 	&pages_shared_attr.attr,
3434 	&pages_sharing_attr.attr,
3435 	&pages_unshared_attr.attr,
3436 	&pages_volatile_attr.attr,
3437 	&ksm_zero_pages_attr.attr,
3438 	&full_scans_attr.attr,
3439 #ifdef CONFIG_NUMA
3440 	&merge_across_nodes_attr.attr,
3441 #endif
3442 	&max_page_sharing_attr.attr,
3443 	&stable_node_chains_attr.attr,
3444 	&stable_node_dups_attr.attr,
3445 	&stable_node_chains_prune_millisecs_attr.attr,
3446 	&use_zero_pages_attr.attr,
3447 	&general_profit_attr.attr,
3448 	NULL,
3449 };
3450 
3451 static const struct attribute_group ksm_attr_group = {
3452 	.attrs = ksm_attrs,
3453 	.name = "ksm",
3454 };
3455 #endif /* CONFIG_SYSFS */
3456 
3457 static int __init ksm_init(void)
3458 {
3459 	struct task_struct *ksm_thread;
3460 	int err;
3461 
3462 	/* The correct value depends on page size and endianness */
3463 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3464 	/* Default to false for backwards compatibility */
3465 	ksm_use_zero_pages = false;
3466 
3467 	err = ksm_slab_init();
3468 	if (err)
3469 		goto out;
3470 
3471 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3472 	if (IS_ERR(ksm_thread)) {
3473 		pr_err("ksm: creating kthread failed\n");
3474 		err = PTR_ERR(ksm_thread);
3475 		goto out_free;
3476 	}
3477 
3478 #ifdef CONFIG_SYSFS
3479 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3480 	if (err) {
3481 		pr_err("ksm: register sysfs failed\n");
3482 		kthread_stop(ksm_thread);
3483 		goto out_free;
3484 	}
3485 #else
3486 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3487 
3488 #endif /* CONFIG_SYSFS */
3489 
3490 #ifdef CONFIG_MEMORY_HOTREMOVE
3491 	/* There is no significance to this priority 100 */
3492 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3493 #endif
3494 	return 0;
3495 
3496 out_free:
3497 	ksm_slab_free();
3498 out:
3499 	return err;
3500 }
3501 subsys_initcall(ksm_init);
3502