xref: /openbmc/linux/mm/ksm.c (revision dc3401c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41 
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44 
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)		(x)
47 #define DO_NUMA(x)	do { (x); } while (0)
48 #else
49 #define NUMA(x)		(0)
50 #define DO_NUMA(x)	do { } while (0)
51 #endif
52 
53 /**
54  * DOC: Overview
55  *
56  * A few notes about the KSM scanning process,
57  * to make it easier to understand the data structures below:
58  *
59  * In order to reduce excessive scanning, KSM sorts the memory pages by their
60  * contents into a data structure that holds pointers to the pages' locations.
61  *
62  * Since the contents of the pages may change at any moment, KSM cannot just
63  * insert the pages into a normal sorted tree and expect it to find anything.
64  * Therefore KSM uses two data structures - the stable and the unstable tree.
65  *
66  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67  * by their contents.  Because each such page is write-protected, searching on
68  * this tree is fully assured to be working (except when pages are unmapped),
69  * and therefore this tree is called the stable tree.
70  *
71  * The stable tree node includes information required for reverse
72  * mapping from a KSM page to virtual addresses that map this page.
73  *
74  * In order to avoid large latencies of the rmap walks on KSM pages,
75  * KSM maintains two types of nodes in the stable tree:
76  *
77  * * the regular nodes that keep the reverse mapping structures in a
78  *   linked list
79  * * the "chains" that link nodes ("dups") that represent the same
80  *   write protected memory content, but each "dup" corresponds to a
81  *   different KSM page copy of that content
82  *
83  * Internally, the regular nodes, "dups" and "chains" are represented
84  * using the same struct stable_node structure.
85  *
86  * In addition to the stable tree, KSM uses a second data structure called the
87  * unstable tree: this tree holds pointers to pages which have been found to
88  * be "unchanged for a period of time".  The unstable tree sorts these pages
89  * by their contents, but since they are not write-protected, KSM cannot rely
90  * upon the unstable tree to work correctly - the unstable tree is liable to
91  * be corrupted as its contents are modified, and so it is called unstable.
92  *
93  * KSM solves this problem by several techniques:
94  *
95  * 1) The unstable tree is flushed every time KSM completes scanning all
96  *    memory areas, and then the tree is rebuilt again from the beginning.
97  * 2) KSM will only insert into the unstable tree, pages whose hash value
98  *    has not changed since the previous scan of all memory areas.
99  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100  *    colors of the nodes and not on their contents, assuring that even when
101  *    the tree gets "corrupted" it won't get out of balance, so scanning time
102  *    remains the same (also, searching and inserting nodes in an rbtree uses
103  *    the same algorithm, so we have no overhead when we flush and rebuild).
104  * 4) KSM never flushes the stable tree, which means that even if it were to
105  *    take 10 attempts to find a page in the unstable tree, once it is found,
106  *    it is secured in the stable tree.  (When we scan a new page, we first
107  *    compare it against the stable tree, and then against the unstable tree.)
108  *
109  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110  * stable trees and multiple unstable trees: one of each for each NUMA node.
111  */
112 
113 /**
114  * struct mm_slot - ksm information per mm that is being scanned
115  * @link: link to the mm_slots hash list
116  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118  * @mm: the mm that this information is valid for
119  */
120 struct mm_slot {
121 	struct hlist_node link;
122 	struct list_head mm_list;
123 	struct rmap_item *rmap_list;
124 	struct mm_struct *mm;
125 };
126 
127 /**
128  * struct ksm_scan - cursor for scanning
129  * @mm_slot: the current mm_slot we are scanning
130  * @address: the next address inside that to be scanned
131  * @rmap_list: link to the next rmap to be scanned in the rmap_list
132  * @seqnr: count of completed full scans (needed when removing unstable node)
133  *
134  * There is only the one ksm_scan instance of this cursor structure.
135  */
136 struct ksm_scan {
137 	struct mm_slot *mm_slot;
138 	unsigned long address;
139 	struct rmap_item **rmap_list;
140 	unsigned long seqnr;
141 };
142 
143 /**
144  * struct stable_node - node of the stable rbtree
145  * @node: rb node of this ksm page in the stable tree
146  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148  * @list: linked into migrate_nodes, pending placement in the proper node tree
149  * @hlist: hlist head of rmap_items using this ksm page
150  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151  * @chain_prune_time: time of the last full garbage collection
152  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154  */
155 struct stable_node {
156 	union {
157 		struct rb_node node;	/* when node of stable tree */
158 		struct {		/* when listed for migration */
159 			struct list_head *head;
160 			struct {
161 				struct hlist_node hlist_dup;
162 				struct list_head list;
163 			};
164 		};
165 	};
166 	struct hlist_head hlist;
167 	union {
168 		unsigned long kpfn;
169 		unsigned long chain_prune_time;
170 	};
171 	/*
172 	 * STABLE_NODE_CHAIN can be any negative number in
173 	 * rmap_hlist_len negative range, but better not -1 to be able
174 	 * to reliably detect underflows.
175 	 */
176 #define STABLE_NODE_CHAIN -1024
177 	int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 	int nid;
180 #endif
181 };
182 
183 /**
184  * struct rmap_item - reverse mapping item for virtual addresses
185  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187  * @nid: NUMA node id of unstable tree in which linked (may not match page)
188  * @mm: the memory structure this rmap_item is pointing into
189  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190  * @oldchecksum: previous checksum of the page at that virtual address
191  * @node: rb node of this rmap_item in the unstable tree
192  * @head: pointer to stable_node heading this list in the stable tree
193  * @hlist: link into hlist of rmap_items hanging off that stable_node
194  */
195 struct rmap_item {
196 	struct rmap_item *rmap_list;
197 	union {
198 		struct anon_vma *anon_vma;	/* when stable */
199 #ifdef CONFIG_NUMA
200 		int nid;		/* when node of unstable tree */
201 #endif
202 	};
203 	struct mm_struct *mm;
204 	unsigned long address;		/* + low bits used for flags below */
205 	unsigned int oldchecksum;	/* when unstable */
206 	union {
207 		struct rb_node node;	/* when node of unstable tree */
208 		struct {		/* when listed from stable tree */
209 			struct stable_node *head;
210 			struct hlist_node hlist;
211 		};
212 	};
213 };
214 
215 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
217 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
218 
219 /* The stable and unstable tree heads */
220 static struct rb_root one_stable_tree[1] = { RB_ROOT };
221 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222 static struct rb_root *root_stable_tree = one_stable_tree;
223 static struct rb_root *root_unstable_tree = one_unstable_tree;
224 
225 /* Recently migrated nodes of stable tree, pending proper placement */
226 static LIST_HEAD(migrate_nodes);
227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228 
229 #define MM_SLOTS_HASH_BITS 10
230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231 
232 static struct mm_slot ksm_mm_head = {
233 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234 };
235 static struct ksm_scan ksm_scan = {
236 	.mm_slot = &ksm_mm_head,
237 };
238 
239 static struct kmem_cache *rmap_item_cache;
240 static struct kmem_cache *stable_node_cache;
241 static struct kmem_cache *mm_slot_cache;
242 
243 /* The number of nodes in the stable tree */
244 static unsigned long ksm_pages_shared;
245 
246 /* The number of page slots additionally sharing those nodes */
247 static unsigned long ksm_pages_sharing;
248 
249 /* The number of nodes in the unstable tree */
250 static unsigned long ksm_pages_unshared;
251 
252 /* The number of rmap_items in use: to calculate pages_volatile */
253 static unsigned long ksm_rmap_items;
254 
255 /* The number of stable_node chains */
256 static unsigned long ksm_stable_node_chains;
257 
258 /* The number of stable_node dups linked to the stable_node chains */
259 static unsigned long ksm_stable_node_dups;
260 
261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
262 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
263 
264 /* Maximum number of page slots sharing a stable node */
265 static int ksm_max_page_sharing = 256;
266 
267 /* Number of pages ksmd should scan in one batch */
268 static unsigned int ksm_thread_pages_to_scan = 100;
269 
270 /* Milliseconds ksmd should sleep between batches */
271 static unsigned int ksm_thread_sleep_millisecs = 20;
272 
273 /* Checksum of an empty (zeroed) page */
274 static unsigned int zero_checksum __read_mostly;
275 
276 /* Whether to merge empty (zeroed) pages with actual zero pages */
277 static bool ksm_use_zero_pages __read_mostly;
278 
279 #ifdef CONFIG_NUMA
280 /* Zeroed when merging across nodes is not allowed */
281 static unsigned int ksm_merge_across_nodes = 1;
282 static int ksm_nr_node_ids = 1;
283 #else
284 #define ksm_merge_across_nodes	1U
285 #define ksm_nr_node_ids		1
286 #endif
287 
288 #define KSM_RUN_STOP	0
289 #define KSM_RUN_MERGE	1
290 #define KSM_RUN_UNMERGE	2
291 #define KSM_RUN_OFFLINE	4
292 static unsigned long ksm_run = KSM_RUN_STOP;
293 static void wait_while_offlining(void);
294 
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299 
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301 		sizeof(struct __struct), __alignof__(struct __struct),\
302 		(__flags), NULL)
303 
304 static int __init ksm_slab_init(void)
305 {
306 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307 	if (!rmap_item_cache)
308 		goto out;
309 
310 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311 	if (!stable_node_cache)
312 		goto out_free1;
313 
314 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315 	if (!mm_slot_cache)
316 		goto out_free2;
317 
318 	return 0;
319 
320 out_free2:
321 	kmem_cache_destroy(stable_node_cache);
322 out_free1:
323 	kmem_cache_destroy(rmap_item_cache);
324 out:
325 	return -ENOMEM;
326 }
327 
328 static void __init ksm_slab_free(void)
329 {
330 	kmem_cache_destroy(mm_slot_cache);
331 	kmem_cache_destroy(stable_node_cache);
332 	kmem_cache_destroy(rmap_item_cache);
333 	mm_slot_cache = NULL;
334 }
335 
336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340 
341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343 	return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345 
346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347 					     struct stable_node *chain)
348 {
349 	VM_BUG_ON(is_stable_node_dup(dup));
350 	dup->head = STABLE_NODE_DUP_HEAD;
351 	VM_BUG_ON(!is_stable_node_chain(chain));
352 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
353 	ksm_stable_node_dups++;
354 }
355 
356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358 	VM_BUG_ON(!is_stable_node_dup(dup));
359 	hlist_del(&dup->hlist_dup);
360 	ksm_stable_node_dups--;
361 }
362 
363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365 	VM_BUG_ON(is_stable_node_chain(dup));
366 	if (is_stable_node_dup(dup))
367 		__stable_node_dup_del(dup);
368 	else
369 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371 	dup->head = NULL;
372 #endif
373 }
374 
375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377 	struct rmap_item *rmap_item;
378 
379 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380 						__GFP_NORETRY | __GFP_NOWARN);
381 	if (rmap_item)
382 		ksm_rmap_items++;
383 	return rmap_item;
384 }
385 
386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388 	ksm_rmap_items--;
389 	rmap_item->mm = NULL;	/* debug safety */
390 	kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392 
393 static inline struct stable_node *alloc_stable_node(void)
394 {
395 	/*
396 	 * The allocation can take too long with GFP_KERNEL when memory is under
397 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398 	 * grants access to memory reserves, helping to avoid this problem.
399 	 */
400 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402 
403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405 	VM_BUG_ON(stable_node->rmap_hlist_len &&
406 		  !is_stable_node_chain(stable_node));
407 	kmem_cache_free(stable_node_cache, stable_node);
408 }
409 
410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412 	if (!mm_slot_cache)	/* initialization failed */
413 		return NULL;
414 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416 
417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419 	kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421 
422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424 	struct mm_slot *slot;
425 
426 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427 		if (slot->mm == mm)
428 			return slot;
429 
430 	return NULL;
431 }
432 
433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434 				    struct mm_slot *mm_slot)
435 {
436 	mm_slot->mm = mm;
437 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439 
440 /*
441  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442  * page tables after it has passed through ksm_exit() - which, if necessary,
443  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
444  * a special flag: they can just back out as soon as mm_users goes to zero.
445  * ksm_test_exit() is used throughout to make this test for exit: in some
446  * places for correctness, in some places just to avoid unnecessary work.
447  */
448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450 	return atomic_read(&mm->mm_users) == 0;
451 }
452 
453 /*
454  * We use break_ksm to break COW on a ksm page: it's a stripped down
455  *
456  *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
457  *		put_page(page);
458  *
459  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460  * in case the application has unmapped and remapped mm,addr meanwhile.
461  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
462  * mmap of /dev/mem, where we would not want to touch it.
463  *
464  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465  * of the process that owns 'vma'.  We also do not want to enforce
466  * protection keys here anyway.
467  */
468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470 	struct page *page;
471 	vm_fault_t ret = 0;
472 
473 	do {
474 		cond_resched();
475 		page = follow_page(vma, addr,
476 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477 		if (IS_ERR_OR_NULL(page))
478 			break;
479 		if (PageKsm(page))
480 			ret = handle_mm_fault(vma, addr,
481 					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482 					      NULL);
483 		else
484 			ret = VM_FAULT_WRITE;
485 		put_page(page);
486 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487 	/*
488 	 * We must loop because handle_mm_fault() may back out if there's
489 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
490 	 *
491 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492 	 * COW has been broken, even if the vma does not permit VM_WRITE;
493 	 * but note that a concurrent fault might break PageKsm for us.
494 	 *
495 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 	 * backing file, which also invalidates anonymous pages: that's
497 	 * okay, that truncation will have unmapped the PageKsm for us.
498 	 *
499 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 	 * to user; and ksmd, having no mm, would never be chosen for that.
503 	 *
504 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 	 * even ksmd can fail in this way - though it's usually breaking ksm
507 	 * just to undo a merge it made a moment before, so unlikely to oom.
508 	 *
509 	 * That's a pity: we might therefore have more kernel pages allocated
510 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 	 * will retry to break_cow on each pass, so should recover the page
512 	 * in due course.  The important thing is to not let VM_MERGEABLE
513 	 * be cleared while any such pages might remain in the area.
514 	 */
515 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517 
518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519 		unsigned long addr)
520 {
521 	struct vm_area_struct *vma;
522 	if (ksm_test_exit(mm))
523 		return NULL;
524 	vma = vma_lookup(mm, addr);
525 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
526 		return NULL;
527 	return vma;
528 }
529 
530 static void break_cow(struct rmap_item *rmap_item)
531 {
532 	struct mm_struct *mm = rmap_item->mm;
533 	unsigned long addr = rmap_item->address;
534 	struct vm_area_struct *vma;
535 
536 	/*
537 	 * It is not an accident that whenever we want to break COW
538 	 * to undo, we also need to drop a reference to the anon_vma.
539 	 */
540 	put_anon_vma(rmap_item->anon_vma);
541 
542 	mmap_read_lock(mm);
543 	vma = find_mergeable_vma(mm, addr);
544 	if (vma)
545 		break_ksm(vma, addr);
546 	mmap_read_unlock(mm);
547 }
548 
549 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
550 {
551 	struct mm_struct *mm = rmap_item->mm;
552 	unsigned long addr = rmap_item->address;
553 	struct vm_area_struct *vma;
554 	struct page *page;
555 
556 	mmap_read_lock(mm);
557 	vma = find_mergeable_vma(mm, addr);
558 	if (!vma)
559 		goto out;
560 
561 	page = follow_page(vma, addr, FOLL_GET);
562 	if (IS_ERR_OR_NULL(page))
563 		goto out;
564 	if (PageAnon(page)) {
565 		flush_anon_page(vma, page, addr);
566 		flush_dcache_page(page);
567 	} else {
568 		put_page(page);
569 out:
570 		page = NULL;
571 	}
572 	mmap_read_unlock(mm);
573 	return page;
574 }
575 
576 /*
577  * This helper is used for getting right index into array of tree roots.
578  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580  * every node has its own stable and unstable tree.
581  */
582 static inline int get_kpfn_nid(unsigned long kpfn)
583 {
584 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
585 }
586 
587 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
588 						   struct rb_root *root)
589 {
590 	struct stable_node *chain = alloc_stable_node();
591 	VM_BUG_ON(is_stable_node_chain(dup));
592 	if (likely(chain)) {
593 		INIT_HLIST_HEAD(&chain->hlist);
594 		chain->chain_prune_time = jiffies;
595 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
597 		chain->nid = NUMA_NO_NODE; /* debug */
598 #endif
599 		ksm_stable_node_chains++;
600 
601 		/*
602 		 * Put the stable node chain in the first dimension of
603 		 * the stable tree and at the same time remove the old
604 		 * stable node.
605 		 */
606 		rb_replace_node(&dup->node, &chain->node, root);
607 
608 		/*
609 		 * Move the old stable node to the second dimension
610 		 * queued in the hlist_dup. The invariant is that all
611 		 * dup stable_nodes in the chain->hlist point to pages
612 		 * that are write protected and have the exact same
613 		 * content.
614 		 */
615 		stable_node_chain_add_dup(dup, chain);
616 	}
617 	return chain;
618 }
619 
620 static inline void free_stable_node_chain(struct stable_node *chain,
621 					  struct rb_root *root)
622 {
623 	rb_erase(&chain->node, root);
624 	free_stable_node(chain);
625 	ksm_stable_node_chains--;
626 }
627 
628 static void remove_node_from_stable_tree(struct stable_node *stable_node)
629 {
630 	struct rmap_item *rmap_item;
631 
632 	/* check it's not STABLE_NODE_CHAIN or negative */
633 	BUG_ON(stable_node->rmap_hlist_len < 0);
634 
635 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
636 		if (rmap_item->hlist.next)
637 			ksm_pages_sharing--;
638 		else
639 			ksm_pages_shared--;
640 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
641 		stable_node->rmap_hlist_len--;
642 		put_anon_vma(rmap_item->anon_vma);
643 		rmap_item->address &= PAGE_MASK;
644 		cond_resched();
645 	}
646 
647 	/*
648 	 * We need the second aligned pointer of the migrate_nodes
649 	 * list_head to stay clear from the rb_parent_color union
650 	 * (aligned and different than any node) and also different
651 	 * from &migrate_nodes. This will verify that future list.h changes
652 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
653 	 */
654 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
655 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
656 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
657 #endif
658 
659 	if (stable_node->head == &migrate_nodes)
660 		list_del(&stable_node->list);
661 	else
662 		stable_node_dup_del(stable_node);
663 	free_stable_node(stable_node);
664 }
665 
666 enum get_ksm_page_flags {
667 	GET_KSM_PAGE_NOLOCK,
668 	GET_KSM_PAGE_LOCK,
669 	GET_KSM_PAGE_TRYLOCK
670 };
671 
672 /*
673  * get_ksm_page: checks if the page indicated by the stable node
674  * is still its ksm page, despite having held no reference to it.
675  * In which case we can trust the content of the page, and it
676  * returns the gotten page; but if the page has now been zapped,
677  * remove the stale node from the stable tree and return NULL.
678  * But beware, the stable node's page might be being migrated.
679  *
680  * You would expect the stable_node to hold a reference to the ksm page.
681  * But if it increments the page's count, swapping out has to wait for
682  * ksmd to come around again before it can free the page, which may take
683  * seconds or even minutes: much too unresponsive.  So instead we use a
684  * "keyhole reference": access to the ksm page from the stable node peeps
685  * out through its keyhole to see if that page still holds the right key,
686  * pointing back to this stable node.  This relies on freeing a PageAnon
687  * page to reset its page->mapping to NULL, and relies on no other use of
688  * a page to put something that might look like our key in page->mapping.
689  * is on its way to being freed; but it is an anomaly to bear in mind.
690  */
691 static struct page *get_ksm_page(struct stable_node *stable_node,
692 				 enum get_ksm_page_flags flags)
693 {
694 	struct page *page;
695 	void *expected_mapping;
696 	unsigned long kpfn;
697 
698 	expected_mapping = (void *)((unsigned long)stable_node |
699 					PAGE_MAPPING_KSM);
700 again:
701 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
702 	page = pfn_to_page(kpfn);
703 	if (READ_ONCE(page->mapping) != expected_mapping)
704 		goto stale;
705 
706 	/*
707 	 * We cannot do anything with the page while its refcount is 0.
708 	 * Usually 0 means free, or tail of a higher-order page: in which
709 	 * case this node is no longer referenced, and should be freed;
710 	 * however, it might mean that the page is under page_ref_freeze().
711 	 * The __remove_mapping() case is easy, again the node is now stale;
712 	 * the same is in reuse_ksm_page() case; but if page is swapcache
713 	 * in migrate_page_move_mapping(), it might still be our page,
714 	 * in which case it's essential to keep the node.
715 	 */
716 	while (!get_page_unless_zero(page)) {
717 		/*
718 		 * Another check for page->mapping != expected_mapping would
719 		 * work here too.  We have chosen the !PageSwapCache test to
720 		 * optimize the common case, when the page is or is about to
721 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
722 		 * in the ref_freeze section of __remove_mapping(); but Anon
723 		 * page->mapping reset to NULL later, in free_pages_prepare().
724 		 */
725 		if (!PageSwapCache(page))
726 			goto stale;
727 		cpu_relax();
728 	}
729 
730 	if (READ_ONCE(page->mapping) != expected_mapping) {
731 		put_page(page);
732 		goto stale;
733 	}
734 
735 	if (flags == GET_KSM_PAGE_TRYLOCK) {
736 		if (!trylock_page(page)) {
737 			put_page(page);
738 			return ERR_PTR(-EBUSY);
739 		}
740 	} else if (flags == GET_KSM_PAGE_LOCK)
741 		lock_page(page);
742 
743 	if (flags != GET_KSM_PAGE_NOLOCK) {
744 		if (READ_ONCE(page->mapping) != expected_mapping) {
745 			unlock_page(page);
746 			put_page(page);
747 			goto stale;
748 		}
749 	}
750 	return page;
751 
752 stale:
753 	/*
754 	 * We come here from above when page->mapping or !PageSwapCache
755 	 * suggests that the node is stale; but it might be under migration.
756 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
757 	 * before checking whether node->kpfn has been changed.
758 	 */
759 	smp_rmb();
760 	if (READ_ONCE(stable_node->kpfn) != kpfn)
761 		goto again;
762 	remove_node_from_stable_tree(stable_node);
763 	return NULL;
764 }
765 
766 /*
767  * Removing rmap_item from stable or unstable tree.
768  * This function will clean the information from the stable/unstable tree.
769  */
770 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
771 {
772 	if (rmap_item->address & STABLE_FLAG) {
773 		struct stable_node *stable_node;
774 		struct page *page;
775 
776 		stable_node = rmap_item->head;
777 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
778 		if (!page)
779 			goto out;
780 
781 		hlist_del(&rmap_item->hlist);
782 		unlock_page(page);
783 		put_page(page);
784 
785 		if (!hlist_empty(&stable_node->hlist))
786 			ksm_pages_sharing--;
787 		else
788 			ksm_pages_shared--;
789 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
790 		stable_node->rmap_hlist_len--;
791 
792 		put_anon_vma(rmap_item->anon_vma);
793 		rmap_item->head = NULL;
794 		rmap_item->address &= PAGE_MASK;
795 
796 	} else if (rmap_item->address & UNSTABLE_FLAG) {
797 		unsigned char age;
798 		/*
799 		 * Usually ksmd can and must skip the rb_erase, because
800 		 * root_unstable_tree was already reset to RB_ROOT.
801 		 * But be careful when an mm is exiting: do the rb_erase
802 		 * if this rmap_item was inserted by this scan, rather
803 		 * than left over from before.
804 		 */
805 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
806 		BUG_ON(age > 1);
807 		if (!age)
808 			rb_erase(&rmap_item->node,
809 				 root_unstable_tree + NUMA(rmap_item->nid));
810 		ksm_pages_unshared--;
811 		rmap_item->address &= PAGE_MASK;
812 	}
813 out:
814 	cond_resched();		/* we're called from many long loops */
815 }
816 
817 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
818 {
819 	while (*rmap_list) {
820 		struct rmap_item *rmap_item = *rmap_list;
821 		*rmap_list = rmap_item->rmap_list;
822 		remove_rmap_item_from_tree(rmap_item);
823 		free_rmap_item(rmap_item);
824 	}
825 }
826 
827 /*
828  * Though it's very tempting to unmerge rmap_items from stable tree rather
829  * than check every pte of a given vma, the locking doesn't quite work for
830  * that - an rmap_item is assigned to the stable tree after inserting ksm
831  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
832  * rmap_items from parent to child at fork time (so as not to waste time
833  * if exit comes before the next scan reaches it).
834  *
835  * Similarly, although we'd like to remove rmap_items (so updating counts
836  * and freeing memory) when unmerging an area, it's easier to leave that
837  * to the next pass of ksmd - consider, for example, how ksmd might be
838  * in cmp_and_merge_page on one of the rmap_items we would be removing.
839  */
840 static int unmerge_ksm_pages(struct vm_area_struct *vma,
841 			     unsigned long start, unsigned long end)
842 {
843 	unsigned long addr;
844 	int err = 0;
845 
846 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
847 		if (ksm_test_exit(vma->vm_mm))
848 			break;
849 		if (signal_pending(current))
850 			err = -ERESTARTSYS;
851 		else
852 			err = break_ksm(vma, addr);
853 	}
854 	return err;
855 }
856 
857 static inline struct stable_node *page_stable_node(struct page *page)
858 {
859 	return PageKsm(page) ? page_rmapping(page) : NULL;
860 }
861 
862 static inline void set_page_stable_node(struct page *page,
863 					struct stable_node *stable_node)
864 {
865 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
866 }
867 
868 #ifdef CONFIG_SYSFS
869 /*
870  * Only called through the sysfs control interface:
871  */
872 static int remove_stable_node(struct stable_node *stable_node)
873 {
874 	struct page *page;
875 	int err;
876 
877 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
878 	if (!page) {
879 		/*
880 		 * get_ksm_page did remove_node_from_stable_tree itself.
881 		 */
882 		return 0;
883 	}
884 
885 	/*
886 	 * Page could be still mapped if this races with __mmput() running in
887 	 * between ksm_exit() and exit_mmap(). Just refuse to let
888 	 * merge_across_nodes/max_page_sharing be switched.
889 	 */
890 	err = -EBUSY;
891 	if (!page_mapped(page)) {
892 		/*
893 		 * The stable node did not yet appear stale to get_ksm_page(),
894 		 * since that allows for an unmapped ksm page to be recognized
895 		 * right up until it is freed; but the node is safe to remove.
896 		 * This page might be in a pagevec waiting to be freed,
897 		 * or it might be PageSwapCache (perhaps under writeback),
898 		 * or it might have been removed from swapcache a moment ago.
899 		 */
900 		set_page_stable_node(page, NULL);
901 		remove_node_from_stable_tree(stable_node);
902 		err = 0;
903 	}
904 
905 	unlock_page(page);
906 	put_page(page);
907 	return err;
908 }
909 
910 static int remove_stable_node_chain(struct stable_node *stable_node,
911 				    struct rb_root *root)
912 {
913 	struct stable_node *dup;
914 	struct hlist_node *hlist_safe;
915 
916 	if (!is_stable_node_chain(stable_node)) {
917 		VM_BUG_ON(is_stable_node_dup(stable_node));
918 		if (remove_stable_node(stable_node))
919 			return true;
920 		else
921 			return false;
922 	}
923 
924 	hlist_for_each_entry_safe(dup, hlist_safe,
925 				  &stable_node->hlist, hlist_dup) {
926 		VM_BUG_ON(!is_stable_node_dup(dup));
927 		if (remove_stable_node(dup))
928 			return true;
929 	}
930 	BUG_ON(!hlist_empty(&stable_node->hlist));
931 	free_stable_node_chain(stable_node, root);
932 	return false;
933 }
934 
935 static int remove_all_stable_nodes(void)
936 {
937 	struct stable_node *stable_node, *next;
938 	int nid;
939 	int err = 0;
940 
941 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
942 		while (root_stable_tree[nid].rb_node) {
943 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
944 						struct stable_node, node);
945 			if (remove_stable_node_chain(stable_node,
946 						     root_stable_tree + nid)) {
947 				err = -EBUSY;
948 				break;	/* proceed to next nid */
949 			}
950 			cond_resched();
951 		}
952 	}
953 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
954 		if (remove_stable_node(stable_node))
955 			err = -EBUSY;
956 		cond_resched();
957 	}
958 	return err;
959 }
960 
961 static int unmerge_and_remove_all_rmap_items(void)
962 {
963 	struct mm_slot *mm_slot;
964 	struct mm_struct *mm;
965 	struct vm_area_struct *vma;
966 	int err = 0;
967 
968 	spin_lock(&ksm_mmlist_lock);
969 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
970 						struct mm_slot, mm_list);
971 	spin_unlock(&ksm_mmlist_lock);
972 
973 	for (mm_slot = ksm_scan.mm_slot;
974 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
975 		mm = mm_slot->mm;
976 		mmap_read_lock(mm);
977 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
978 			if (ksm_test_exit(mm))
979 				break;
980 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
981 				continue;
982 			err = unmerge_ksm_pages(vma,
983 						vma->vm_start, vma->vm_end);
984 			if (err)
985 				goto error;
986 		}
987 
988 		remove_trailing_rmap_items(&mm_slot->rmap_list);
989 		mmap_read_unlock(mm);
990 
991 		spin_lock(&ksm_mmlist_lock);
992 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
993 						struct mm_slot, mm_list);
994 		if (ksm_test_exit(mm)) {
995 			hash_del(&mm_slot->link);
996 			list_del(&mm_slot->mm_list);
997 			spin_unlock(&ksm_mmlist_lock);
998 
999 			free_mm_slot(mm_slot);
1000 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1001 			mmdrop(mm);
1002 		} else
1003 			spin_unlock(&ksm_mmlist_lock);
1004 	}
1005 
1006 	/* Clean up stable nodes, but don't worry if some are still busy */
1007 	remove_all_stable_nodes();
1008 	ksm_scan.seqnr = 0;
1009 	return 0;
1010 
1011 error:
1012 	mmap_read_unlock(mm);
1013 	spin_lock(&ksm_mmlist_lock);
1014 	ksm_scan.mm_slot = &ksm_mm_head;
1015 	spin_unlock(&ksm_mmlist_lock);
1016 	return err;
1017 }
1018 #endif /* CONFIG_SYSFS */
1019 
1020 static u32 calc_checksum(struct page *page)
1021 {
1022 	u32 checksum;
1023 	void *addr = kmap_atomic(page);
1024 	checksum = xxhash(addr, PAGE_SIZE, 0);
1025 	kunmap_atomic(addr);
1026 	return checksum;
1027 }
1028 
1029 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1030 			      pte_t *orig_pte)
1031 {
1032 	struct mm_struct *mm = vma->vm_mm;
1033 	struct page_vma_mapped_walk pvmw = {
1034 		.page = page,
1035 		.vma = vma,
1036 	};
1037 	int swapped;
1038 	int err = -EFAULT;
1039 	struct mmu_notifier_range range;
1040 
1041 	pvmw.address = page_address_in_vma(page, vma);
1042 	if (pvmw.address == -EFAULT)
1043 		goto out;
1044 
1045 	BUG_ON(PageTransCompound(page));
1046 
1047 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1048 				pvmw.address,
1049 				pvmw.address + PAGE_SIZE);
1050 	mmu_notifier_invalidate_range_start(&range);
1051 
1052 	if (!page_vma_mapped_walk(&pvmw))
1053 		goto out_mn;
1054 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1055 		goto out_unlock;
1056 
1057 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1058 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1059 						mm_tlb_flush_pending(mm)) {
1060 		pte_t entry;
1061 
1062 		swapped = PageSwapCache(page);
1063 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1064 		/*
1065 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1066 		 * take any lock, therefore the check that we are going to make
1067 		 * with the pagecount against the mapcount is racy and
1068 		 * O_DIRECT can happen right after the check.
1069 		 * So we clear the pte and flush the tlb before the check
1070 		 * this assure us that no O_DIRECT can happen after the check
1071 		 * or in the middle of the check.
1072 		 *
1073 		 * No need to notify as we are downgrading page table to read
1074 		 * only not changing it to point to a new page.
1075 		 *
1076 		 * See Documentation/vm/mmu_notifier.rst
1077 		 */
1078 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1079 		/*
1080 		 * Check that no O_DIRECT or similar I/O is in progress on the
1081 		 * page
1082 		 */
1083 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1084 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1085 			goto out_unlock;
1086 		}
1087 		if (pte_dirty(entry))
1088 			set_page_dirty(page);
1089 
1090 		if (pte_protnone(entry))
1091 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1092 		else
1093 			entry = pte_mkclean(pte_wrprotect(entry));
1094 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1095 	}
1096 	*orig_pte = *pvmw.pte;
1097 	err = 0;
1098 
1099 out_unlock:
1100 	page_vma_mapped_walk_done(&pvmw);
1101 out_mn:
1102 	mmu_notifier_invalidate_range_end(&range);
1103 out:
1104 	return err;
1105 }
1106 
1107 /**
1108  * replace_page - replace page in vma by new ksm page
1109  * @vma:      vma that holds the pte pointing to page
1110  * @page:     the page we are replacing by kpage
1111  * @kpage:    the ksm page we replace page by
1112  * @orig_pte: the original value of the pte
1113  *
1114  * Returns 0 on success, -EFAULT on failure.
1115  */
1116 static int replace_page(struct vm_area_struct *vma, struct page *page,
1117 			struct page *kpage, pte_t orig_pte)
1118 {
1119 	struct mm_struct *mm = vma->vm_mm;
1120 	pmd_t *pmd;
1121 	pte_t *ptep;
1122 	pte_t newpte;
1123 	spinlock_t *ptl;
1124 	unsigned long addr;
1125 	int err = -EFAULT;
1126 	struct mmu_notifier_range range;
1127 
1128 	addr = page_address_in_vma(page, vma);
1129 	if (addr == -EFAULT)
1130 		goto out;
1131 
1132 	pmd = mm_find_pmd(mm, addr);
1133 	if (!pmd)
1134 		goto out;
1135 
1136 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1137 				addr + PAGE_SIZE);
1138 	mmu_notifier_invalidate_range_start(&range);
1139 
1140 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1141 	if (!pte_same(*ptep, orig_pte)) {
1142 		pte_unmap_unlock(ptep, ptl);
1143 		goto out_mn;
1144 	}
1145 
1146 	/*
1147 	 * No need to check ksm_use_zero_pages here: we can only have a
1148 	 * zero_page here if ksm_use_zero_pages was enabled already.
1149 	 */
1150 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1151 		get_page(kpage);
1152 		page_add_anon_rmap(kpage, vma, addr, false);
1153 		newpte = mk_pte(kpage, vma->vm_page_prot);
1154 	} else {
1155 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1156 					       vma->vm_page_prot));
1157 		/*
1158 		 * We're replacing an anonymous page with a zero page, which is
1159 		 * not anonymous. We need to do proper accounting otherwise we
1160 		 * will get wrong values in /proc, and a BUG message in dmesg
1161 		 * when tearing down the mm.
1162 		 */
1163 		dec_mm_counter(mm, MM_ANONPAGES);
1164 	}
1165 
1166 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1167 	/*
1168 	 * No need to notify as we are replacing a read only page with another
1169 	 * read only page with the same content.
1170 	 *
1171 	 * See Documentation/vm/mmu_notifier.rst
1172 	 */
1173 	ptep_clear_flush(vma, addr, ptep);
1174 	set_pte_at_notify(mm, addr, ptep, newpte);
1175 
1176 	page_remove_rmap(page, false);
1177 	if (!page_mapped(page))
1178 		try_to_free_swap(page);
1179 	put_page(page);
1180 
1181 	pte_unmap_unlock(ptep, ptl);
1182 	err = 0;
1183 out_mn:
1184 	mmu_notifier_invalidate_range_end(&range);
1185 out:
1186 	return err;
1187 }
1188 
1189 /*
1190  * try_to_merge_one_page - take two pages and merge them into one
1191  * @vma: the vma that holds the pte pointing to page
1192  * @page: the PageAnon page that we want to replace with kpage
1193  * @kpage: the PageKsm page that we want to map instead of page,
1194  *         or NULL the first time when we want to use page as kpage.
1195  *
1196  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1197  */
1198 static int try_to_merge_one_page(struct vm_area_struct *vma,
1199 				 struct page *page, struct page *kpage)
1200 {
1201 	pte_t orig_pte = __pte(0);
1202 	int err = -EFAULT;
1203 
1204 	if (page == kpage)			/* ksm page forked */
1205 		return 0;
1206 
1207 	if (!PageAnon(page))
1208 		goto out;
1209 
1210 	/*
1211 	 * We need the page lock to read a stable PageSwapCache in
1212 	 * write_protect_page().  We use trylock_page() instead of
1213 	 * lock_page() because we don't want to wait here - we
1214 	 * prefer to continue scanning and merging different pages,
1215 	 * then come back to this page when it is unlocked.
1216 	 */
1217 	if (!trylock_page(page))
1218 		goto out;
1219 
1220 	if (PageTransCompound(page)) {
1221 		if (split_huge_page(page))
1222 			goto out_unlock;
1223 	}
1224 
1225 	/*
1226 	 * If this anonymous page is mapped only here, its pte may need
1227 	 * to be write-protected.  If it's mapped elsewhere, all of its
1228 	 * ptes are necessarily already write-protected.  But in either
1229 	 * case, we need to lock and check page_count is not raised.
1230 	 */
1231 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1232 		if (!kpage) {
1233 			/*
1234 			 * While we hold page lock, upgrade page from
1235 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1236 			 * stable_tree_insert() will update stable_node.
1237 			 */
1238 			set_page_stable_node(page, NULL);
1239 			mark_page_accessed(page);
1240 			/*
1241 			 * Page reclaim just frees a clean page with no dirty
1242 			 * ptes: make sure that the ksm page would be swapped.
1243 			 */
1244 			if (!PageDirty(page))
1245 				SetPageDirty(page);
1246 			err = 0;
1247 		} else if (pages_identical(page, kpage))
1248 			err = replace_page(vma, page, kpage, orig_pte);
1249 	}
1250 
1251 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1252 		munlock_vma_page(page);
1253 		if (!PageMlocked(kpage)) {
1254 			unlock_page(page);
1255 			lock_page(kpage);
1256 			mlock_vma_page(kpage);
1257 			page = kpage;		/* for final unlock */
1258 		}
1259 	}
1260 
1261 out_unlock:
1262 	unlock_page(page);
1263 out:
1264 	return err;
1265 }
1266 
1267 /*
1268  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1269  * but no new kernel page is allocated: kpage must already be a ksm page.
1270  *
1271  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1272  */
1273 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1274 				      struct page *page, struct page *kpage)
1275 {
1276 	struct mm_struct *mm = rmap_item->mm;
1277 	struct vm_area_struct *vma;
1278 	int err = -EFAULT;
1279 
1280 	mmap_read_lock(mm);
1281 	vma = find_mergeable_vma(mm, rmap_item->address);
1282 	if (!vma)
1283 		goto out;
1284 
1285 	err = try_to_merge_one_page(vma, page, kpage);
1286 	if (err)
1287 		goto out;
1288 
1289 	/* Unstable nid is in union with stable anon_vma: remove first */
1290 	remove_rmap_item_from_tree(rmap_item);
1291 
1292 	/* Must get reference to anon_vma while still holding mmap_lock */
1293 	rmap_item->anon_vma = vma->anon_vma;
1294 	get_anon_vma(vma->anon_vma);
1295 out:
1296 	mmap_read_unlock(mm);
1297 	return err;
1298 }
1299 
1300 /*
1301  * try_to_merge_two_pages - take two identical pages and prepare them
1302  * to be merged into one page.
1303  *
1304  * This function returns the kpage if we successfully merged two identical
1305  * pages into one ksm page, NULL otherwise.
1306  *
1307  * Note that this function upgrades page to ksm page: if one of the pages
1308  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1309  */
1310 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1311 					   struct page *page,
1312 					   struct rmap_item *tree_rmap_item,
1313 					   struct page *tree_page)
1314 {
1315 	int err;
1316 
1317 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1318 	if (!err) {
1319 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1320 							tree_page, page);
1321 		/*
1322 		 * If that fails, we have a ksm page with only one pte
1323 		 * pointing to it: so break it.
1324 		 */
1325 		if (err)
1326 			break_cow(rmap_item);
1327 	}
1328 	return err ? NULL : page;
1329 }
1330 
1331 static __always_inline
1332 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1333 {
1334 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1335 	/*
1336 	 * Check that at least one mapping still exists, otherwise
1337 	 * there's no much point to merge and share with this
1338 	 * stable_node, as the underlying tree_page of the other
1339 	 * sharer is going to be freed soon.
1340 	 */
1341 	return stable_node->rmap_hlist_len &&
1342 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1343 }
1344 
1345 static __always_inline
1346 bool is_page_sharing_candidate(struct stable_node *stable_node)
1347 {
1348 	return __is_page_sharing_candidate(stable_node, 0);
1349 }
1350 
1351 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1352 				    struct stable_node **_stable_node,
1353 				    struct rb_root *root,
1354 				    bool prune_stale_stable_nodes)
1355 {
1356 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1357 	struct hlist_node *hlist_safe;
1358 	struct page *_tree_page, *tree_page = NULL;
1359 	int nr = 0;
1360 	int found_rmap_hlist_len;
1361 
1362 	if (!prune_stale_stable_nodes ||
1363 	    time_before(jiffies, stable_node->chain_prune_time +
1364 			msecs_to_jiffies(
1365 				ksm_stable_node_chains_prune_millisecs)))
1366 		prune_stale_stable_nodes = false;
1367 	else
1368 		stable_node->chain_prune_time = jiffies;
1369 
1370 	hlist_for_each_entry_safe(dup, hlist_safe,
1371 				  &stable_node->hlist, hlist_dup) {
1372 		cond_resched();
1373 		/*
1374 		 * We must walk all stable_node_dup to prune the stale
1375 		 * stable nodes during lookup.
1376 		 *
1377 		 * get_ksm_page can drop the nodes from the
1378 		 * stable_node->hlist if they point to freed pages
1379 		 * (that's why we do a _safe walk). The "dup"
1380 		 * stable_node parameter itself will be freed from
1381 		 * under us if it returns NULL.
1382 		 */
1383 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1384 		if (!_tree_page)
1385 			continue;
1386 		nr += 1;
1387 		if (is_page_sharing_candidate(dup)) {
1388 			if (!found ||
1389 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1390 				if (found)
1391 					put_page(tree_page);
1392 				found = dup;
1393 				found_rmap_hlist_len = found->rmap_hlist_len;
1394 				tree_page = _tree_page;
1395 
1396 				/* skip put_page for found dup */
1397 				if (!prune_stale_stable_nodes)
1398 					break;
1399 				continue;
1400 			}
1401 		}
1402 		put_page(_tree_page);
1403 	}
1404 
1405 	if (found) {
1406 		/*
1407 		 * nr is counting all dups in the chain only if
1408 		 * prune_stale_stable_nodes is true, otherwise we may
1409 		 * break the loop at nr == 1 even if there are
1410 		 * multiple entries.
1411 		 */
1412 		if (prune_stale_stable_nodes && nr == 1) {
1413 			/*
1414 			 * If there's not just one entry it would
1415 			 * corrupt memory, better BUG_ON. In KSM
1416 			 * context with no lock held it's not even
1417 			 * fatal.
1418 			 */
1419 			BUG_ON(stable_node->hlist.first->next);
1420 
1421 			/*
1422 			 * There's just one entry and it is below the
1423 			 * deduplication limit so drop the chain.
1424 			 */
1425 			rb_replace_node(&stable_node->node, &found->node,
1426 					root);
1427 			free_stable_node(stable_node);
1428 			ksm_stable_node_chains--;
1429 			ksm_stable_node_dups--;
1430 			/*
1431 			 * NOTE: the caller depends on the stable_node
1432 			 * to be equal to stable_node_dup if the chain
1433 			 * was collapsed.
1434 			 */
1435 			*_stable_node = found;
1436 			/*
1437 			 * Just for robustness, as stable_node is
1438 			 * otherwise left as a stable pointer, the
1439 			 * compiler shall optimize it away at build
1440 			 * time.
1441 			 */
1442 			stable_node = NULL;
1443 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1444 			   __is_page_sharing_candidate(found, 1)) {
1445 			/*
1446 			 * If the found stable_node dup can accept one
1447 			 * more future merge (in addition to the one
1448 			 * that is underway) and is not at the head of
1449 			 * the chain, put it there so next search will
1450 			 * be quicker in the !prune_stale_stable_nodes
1451 			 * case.
1452 			 *
1453 			 * NOTE: it would be inaccurate to use nr > 1
1454 			 * instead of checking the hlist.first pointer
1455 			 * directly, because in the
1456 			 * prune_stale_stable_nodes case "nr" isn't
1457 			 * the position of the found dup in the chain,
1458 			 * but the total number of dups in the chain.
1459 			 */
1460 			hlist_del(&found->hlist_dup);
1461 			hlist_add_head(&found->hlist_dup,
1462 				       &stable_node->hlist);
1463 		}
1464 	}
1465 
1466 	*_stable_node_dup = found;
1467 	return tree_page;
1468 }
1469 
1470 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1471 					       struct rb_root *root)
1472 {
1473 	if (!is_stable_node_chain(stable_node))
1474 		return stable_node;
1475 	if (hlist_empty(&stable_node->hlist)) {
1476 		free_stable_node_chain(stable_node, root);
1477 		return NULL;
1478 	}
1479 	return hlist_entry(stable_node->hlist.first,
1480 			   typeof(*stable_node), hlist_dup);
1481 }
1482 
1483 /*
1484  * Like for get_ksm_page, this function can free the *_stable_node and
1485  * *_stable_node_dup if the returned tree_page is NULL.
1486  *
1487  * It can also free and overwrite *_stable_node with the found
1488  * stable_node_dup if the chain is collapsed (in which case
1489  * *_stable_node will be equal to *_stable_node_dup like if the chain
1490  * never existed). It's up to the caller to verify tree_page is not
1491  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1492  *
1493  * *_stable_node_dup is really a second output parameter of this
1494  * function and will be overwritten in all cases, the caller doesn't
1495  * need to initialize it.
1496  */
1497 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1498 					struct stable_node **_stable_node,
1499 					struct rb_root *root,
1500 					bool prune_stale_stable_nodes)
1501 {
1502 	struct stable_node *stable_node = *_stable_node;
1503 	if (!is_stable_node_chain(stable_node)) {
1504 		if (is_page_sharing_candidate(stable_node)) {
1505 			*_stable_node_dup = stable_node;
1506 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1507 		}
1508 		/*
1509 		 * _stable_node_dup set to NULL means the stable_node
1510 		 * reached the ksm_max_page_sharing limit.
1511 		 */
1512 		*_stable_node_dup = NULL;
1513 		return NULL;
1514 	}
1515 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1516 			       prune_stale_stable_nodes);
1517 }
1518 
1519 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1520 						struct stable_node **s_n,
1521 						struct rb_root *root)
1522 {
1523 	return __stable_node_chain(s_n_d, s_n, root, true);
1524 }
1525 
1526 static __always_inline struct page *chain(struct stable_node **s_n_d,
1527 					  struct stable_node *s_n,
1528 					  struct rb_root *root)
1529 {
1530 	struct stable_node *old_stable_node = s_n;
1531 	struct page *tree_page;
1532 
1533 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1534 	/* not pruning dups so s_n cannot have changed */
1535 	VM_BUG_ON(s_n != old_stable_node);
1536 	return tree_page;
1537 }
1538 
1539 /*
1540  * stable_tree_search - search for page inside the stable tree
1541  *
1542  * This function checks if there is a page inside the stable tree
1543  * with identical content to the page that we are scanning right now.
1544  *
1545  * This function returns the stable tree node of identical content if found,
1546  * NULL otherwise.
1547  */
1548 static struct page *stable_tree_search(struct page *page)
1549 {
1550 	int nid;
1551 	struct rb_root *root;
1552 	struct rb_node **new;
1553 	struct rb_node *parent;
1554 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1555 	struct stable_node *page_node;
1556 
1557 	page_node = page_stable_node(page);
1558 	if (page_node && page_node->head != &migrate_nodes) {
1559 		/* ksm page forked */
1560 		get_page(page);
1561 		return page;
1562 	}
1563 
1564 	nid = get_kpfn_nid(page_to_pfn(page));
1565 	root = root_stable_tree + nid;
1566 again:
1567 	new = &root->rb_node;
1568 	parent = NULL;
1569 
1570 	while (*new) {
1571 		struct page *tree_page;
1572 		int ret;
1573 
1574 		cond_resched();
1575 		stable_node = rb_entry(*new, struct stable_node, node);
1576 		stable_node_any = NULL;
1577 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1578 		/*
1579 		 * NOTE: stable_node may have been freed by
1580 		 * chain_prune() if the returned stable_node_dup is
1581 		 * not NULL. stable_node_dup may have been inserted in
1582 		 * the rbtree instead as a regular stable_node (in
1583 		 * order to collapse the stable_node chain if a single
1584 		 * stable_node dup was found in it). In such case the
1585 		 * stable_node is overwritten by the calleee to point
1586 		 * to the stable_node_dup that was collapsed in the
1587 		 * stable rbtree and stable_node will be equal to
1588 		 * stable_node_dup like if the chain never existed.
1589 		 */
1590 		if (!stable_node_dup) {
1591 			/*
1592 			 * Either all stable_node dups were full in
1593 			 * this stable_node chain, or this chain was
1594 			 * empty and should be rb_erased.
1595 			 */
1596 			stable_node_any = stable_node_dup_any(stable_node,
1597 							      root);
1598 			if (!stable_node_any) {
1599 				/* rb_erase just run */
1600 				goto again;
1601 			}
1602 			/*
1603 			 * Take any of the stable_node dups page of
1604 			 * this stable_node chain to let the tree walk
1605 			 * continue. All KSM pages belonging to the
1606 			 * stable_node dups in a stable_node chain
1607 			 * have the same content and they're
1608 			 * write protected at all times. Any will work
1609 			 * fine to continue the walk.
1610 			 */
1611 			tree_page = get_ksm_page(stable_node_any,
1612 						 GET_KSM_PAGE_NOLOCK);
1613 		}
1614 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1615 		if (!tree_page) {
1616 			/*
1617 			 * If we walked over a stale stable_node,
1618 			 * get_ksm_page() will call rb_erase() and it
1619 			 * may rebalance the tree from under us. So
1620 			 * restart the search from scratch. Returning
1621 			 * NULL would be safe too, but we'd generate
1622 			 * false negative insertions just because some
1623 			 * stable_node was stale.
1624 			 */
1625 			goto again;
1626 		}
1627 
1628 		ret = memcmp_pages(page, tree_page);
1629 		put_page(tree_page);
1630 
1631 		parent = *new;
1632 		if (ret < 0)
1633 			new = &parent->rb_left;
1634 		else if (ret > 0)
1635 			new = &parent->rb_right;
1636 		else {
1637 			if (page_node) {
1638 				VM_BUG_ON(page_node->head != &migrate_nodes);
1639 				/*
1640 				 * Test if the migrated page should be merged
1641 				 * into a stable node dup. If the mapcount is
1642 				 * 1 we can migrate it with another KSM page
1643 				 * without adding it to the chain.
1644 				 */
1645 				if (page_mapcount(page) > 1)
1646 					goto chain_append;
1647 			}
1648 
1649 			if (!stable_node_dup) {
1650 				/*
1651 				 * If the stable_node is a chain and
1652 				 * we got a payload match in memcmp
1653 				 * but we cannot merge the scanned
1654 				 * page in any of the existing
1655 				 * stable_node dups because they're
1656 				 * all full, we need to wait the
1657 				 * scanned page to find itself a match
1658 				 * in the unstable tree to create a
1659 				 * brand new KSM page to add later to
1660 				 * the dups of this stable_node.
1661 				 */
1662 				return NULL;
1663 			}
1664 
1665 			/*
1666 			 * Lock and unlock the stable_node's page (which
1667 			 * might already have been migrated) so that page
1668 			 * migration is sure to notice its raised count.
1669 			 * It would be more elegant to return stable_node
1670 			 * than kpage, but that involves more changes.
1671 			 */
1672 			tree_page = get_ksm_page(stable_node_dup,
1673 						 GET_KSM_PAGE_TRYLOCK);
1674 
1675 			if (PTR_ERR(tree_page) == -EBUSY)
1676 				return ERR_PTR(-EBUSY);
1677 
1678 			if (unlikely(!tree_page))
1679 				/*
1680 				 * The tree may have been rebalanced,
1681 				 * so re-evaluate parent and new.
1682 				 */
1683 				goto again;
1684 			unlock_page(tree_page);
1685 
1686 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1687 			    NUMA(stable_node_dup->nid)) {
1688 				put_page(tree_page);
1689 				goto replace;
1690 			}
1691 			return tree_page;
1692 		}
1693 	}
1694 
1695 	if (!page_node)
1696 		return NULL;
1697 
1698 	list_del(&page_node->list);
1699 	DO_NUMA(page_node->nid = nid);
1700 	rb_link_node(&page_node->node, parent, new);
1701 	rb_insert_color(&page_node->node, root);
1702 out:
1703 	if (is_page_sharing_candidate(page_node)) {
1704 		get_page(page);
1705 		return page;
1706 	} else
1707 		return NULL;
1708 
1709 replace:
1710 	/*
1711 	 * If stable_node was a chain and chain_prune collapsed it,
1712 	 * stable_node has been updated to be the new regular
1713 	 * stable_node. A collapse of the chain is indistinguishable
1714 	 * from the case there was no chain in the stable
1715 	 * rbtree. Otherwise stable_node is the chain and
1716 	 * stable_node_dup is the dup to replace.
1717 	 */
1718 	if (stable_node_dup == stable_node) {
1719 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1720 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1721 		/* there is no chain */
1722 		if (page_node) {
1723 			VM_BUG_ON(page_node->head != &migrate_nodes);
1724 			list_del(&page_node->list);
1725 			DO_NUMA(page_node->nid = nid);
1726 			rb_replace_node(&stable_node_dup->node,
1727 					&page_node->node,
1728 					root);
1729 			if (is_page_sharing_candidate(page_node))
1730 				get_page(page);
1731 			else
1732 				page = NULL;
1733 		} else {
1734 			rb_erase(&stable_node_dup->node, root);
1735 			page = NULL;
1736 		}
1737 	} else {
1738 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1739 		__stable_node_dup_del(stable_node_dup);
1740 		if (page_node) {
1741 			VM_BUG_ON(page_node->head != &migrate_nodes);
1742 			list_del(&page_node->list);
1743 			DO_NUMA(page_node->nid = nid);
1744 			stable_node_chain_add_dup(page_node, stable_node);
1745 			if (is_page_sharing_candidate(page_node))
1746 				get_page(page);
1747 			else
1748 				page = NULL;
1749 		} else {
1750 			page = NULL;
1751 		}
1752 	}
1753 	stable_node_dup->head = &migrate_nodes;
1754 	list_add(&stable_node_dup->list, stable_node_dup->head);
1755 	return page;
1756 
1757 chain_append:
1758 	/* stable_node_dup could be null if it reached the limit */
1759 	if (!stable_node_dup)
1760 		stable_node_dup = stable_node_any;
1761 	/*
1762 	 * If stable_node was a chain and chain_prune collapsed it,
1763 	 * stable_node has been updated to be the new regular
1764 	 * stable_node. A collapse of the chain is indistinguishable
1765 	 * from the case there was no chain in the stable
1766 	 * rbtree. Otherwise stable_node is the chain and
1767 	 * stable_node_dup is the dup to replace.
1768 	 */
1769 	if (stable_node_dup == stable_node) {
1770 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1771 		/* chain is missing so create it */
1772 		stable_node = alloc_stable_node_chain(stable_node_dup,
1773 						      root);
1774 		if (!stable_node)
1775 			return NULL;
1776 	}
1777 	/*
1778 	 * Add this stable_node dup that was
1779 	 * migrated to the stable_node chain
1780 	 * of the current nid for this page
1781 	 * content.
1782 	 */
1783 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1784 	VM_BUG_ON(page_node->head != &migrate_nodes);
1785 	list_del(&page_node->list);
1786 	DO_NUMA(page_node->nid = nid);
1787 	stable_node_chain_add_dup(page_node, stable_node);
1788 	goto out;
1789 }
1790 
1791 /*
1792  * stable_tree_insert - insert stable tree node pointing to new ksm page
1793  * into the stable tree.
1794  *
1795  * This function returns the stable tree node just allocated on success,
1796  * NULL otherwise.
1797  */
1798 static struct stable_node *stable_tree_insert(struct page *kpage)
1799 {
1800 	int nid;
1801 	unsigned long kpfn;
1802 	struct rb_root *root;
1803 	struct rb_node **new;
1804 	struct rb_node *parent;
1805 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1806 	bool need_chain = false;
1807 
1808 	kpfn = page_to_pfn(kpage);
1809 	nid = get_kpfn_nid(kpfn);
1810 	root = root_stable_tree + nid;
1811 again:
1812 	parent = NULL;
1813 	new = &root->rb_node;
1814 
1815 	while (*new) {
1816 		struct page *tree_page;
1817 		int ret;
1818 
1819 		cond_resched();
1820 		stable_node = rb_entry(*new, struct stable_node, node);
1821 		stable_node_any = NULL;
1822 		tree_page = chain(&stable_node_dup, stable_node, root);
1823 		if (!stable_node_dup) {
1824 			/*
1825 			 * Either all stable_node dups were full in
1826 			 * this stable_node chain, or this chain was
1827 			 * empty and should be rb_erased.
1828 			 */
1829 			stable_node_any = stable_node_dup_any(stable_node,
1830 							      root);
1831 			if (!stable_node_any) {
1832 				/* rb_erase just run */
1833 				goto again;
1834 			}
1835 			/*
1836 			 * Take any of the stable_node dups page of
1837 			 * this stable_node chain to let the tree walk
1838 			 * continue. All KSM pages belonging to the
1839 			 * stable_node dups in a stable_node chain
1840 			 * have the same content and they're
1841 			 * write protected at all times. Any will work
1842 			 * fine to continue the walk.
1843 			 */
1844 			tree_page = get_ksm_page(stable_node_any,
1845 						 GET_KSM_PAGE_NOLOCK);
1846 		}
1847 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1848 		if (!tree_page) {
1849 			/*
1850 			 * If we walked over a stale stable_node,
1851 			 * get_ksm_page() will call rb_erase() and it
1852 			 * may rebalance the tree from under us. So
1853 			 * restart the search from scratch. Returning
1854 			 * NULL would be safe too, but we'd generate
1855 			 * false negative insertions just because some
1856 			 * stable_node was stale.
1857 			 */
1858 			goto again;
1859 		}
1860 
1861 		ret = memcmp_pages(kpage, tree_page);
1862 		put_page(tree_page);
1863 
1864 		parent = *new;
1865 		if (ret < 0)
1866 			new = &parent->rb_left;
1867 		else if (ret > 0)
1868 			new = &parent->rb_right;
1869 		else {
1870 			need_chain = true;
1871 			break;
1872 		}
1873 	}
1874 
1875 	stable_node_dup = alloc_stable_node();
1876 	if (!stable_node_dup)
1877 		return NULL;
1878 
1879 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1880 	stable_node_dup->kpfn = kpfn;
1881 	set_page_stable_node(kpage, stable_node_dup);
1882 	stable_node_dup->rmap_hlist_len = 0;
1883 	DO_NUMA(stable_node_dup->nid = nid);
1884 	if (!need_chain) {
1885 		rb_link_node(&stable_node_dup->node, parent, new);
1886 		rb_insert_color(&stable_node_dup->node, root);
1887 	} else {
1888 		if (!is_stable_node_chain(stable_node)) {
1889 			struct stable_node *orig = stable_node;
1890 			/* chain is missing so create it */
1891 			stable_node = alloc_stable_node_chain(orig, root);
1892 			if (!stable_node) {
1893 				free_stable_node(stable_node_dup);
1894 				return NULL;
1895 			}
1896 		}
1897 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1898 	}
1899 
1900 	return stable_node_dup;
1901 }
1902 
1903 /*
1904  * unstable_tree_search_insert - search for identical page,
1905  * else insert rmap_item into the unstable tree.
1906  *
1907  * This function searches for a page in the unstable tree identical to the
1908  * page currently being scanned; and if no identical page is found in the
1909  * tree, we insert rmap_item as a new object into the unstable tree.
1910  *
1911  * This function returns pointer to rmap_item found to be identical
1912  * to the currently scanned page, NULL otherwise.
1913  *
1914  * This function does both searching and inserting, because they share
1915  * the same walking algorithm in an rbtree.
1916  */
1917 static
1918 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1919 					      struct page *page,
1920 					      struct page **tree_pagep)
1921 {
1922 	struct rb_node **new;
1923 	struct rb_root *root;
1924 	struct rb_node *parent = NULL;
1925 	int nid;
1926 
1927 	nid = get_kpfn_nid(page_to_pfn(page));
1928 	root = root_unstable_tree + nid;
1929 	new = &root->rb_node;
1930 
1931 	while (*new) {
1932 		struct rmap_item *tree_rmap_item;
1933 		struct page *tree_page;
1934 		int ret;
1935 
1936 		cond_resched();
1937 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1938 		tree_page = get_mergeable_page(tree_rmap_item);
1939 		if (!tree_page)
1940 			return NULL;
1941 
1942 		/*
1943 		 * Don't substitute a ksm page for a forked page.
1944 		 */
1945 		if (page == tree_page) {
1946 			put_page(tree_page);
1947 			return NULL;
1948 		}
1949 
1950 		ret = memcmp_pages(page, tree_page);
1951 
1952 		parent = *new;
1953 		if (ret < 0) {
1954 			put_page(tree_page);
1955 			new = &parent->rb_left;
1956 		} else if (ret > 0) {
1957 			put_page(tree_page);
1958 			new = &parent->rb_right;
1959 		} else if (!ksm_merge_across_nodes &&
1960 			   page_to_nid(tree_page) != nid) {
1961 			/*
1962 			 * If tree_page has been migrated to another NUMA node,
1963 			 * it will be flushed out and put in the right unstable
1964 			 * tree next time: only merge with it when across_nodes.
1965 			 */
1966 			put_page(tree_page);
1967 			return NULL;
1968 		} else {
1969 			*tree_pagep = tree_page;
1970 			return tree_rmap_item;
1971 		}
1972 	}
1973 
1974 	rmap_item->address |= UNSTABLE_FLAG;
1975 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1976 	DO_NUMA(rmap_item->nid = nid);
1977 	rb_link_node(&rmap_item->node, parent, new);
1978 	rb_insert_color(&rmap_item->node, root);
1979 
1980 	ksm_pages_unshared++;
1981 	return NULL;
1982 }
1983 
1984 /*
1985  * stable_tree_append - add another rmap_item to the linked list of
1986  * rmap_items hanging off a given node of the stable tree, all sharing
1987  * the same ksm page.
1988  */
1989 static void stable_tree_append(struct rmap_item *rmap_item,
1990 			       struct stable_node *stable_node,
1991 			       bool max_page_sharing_bypass)
1992 {
1993 	/*
1994 	 * rmap won't find this mapping if we don't insert the
1995 	 * rmap_item in the right stable_node
1996 	 * duplicate. page_migration could break later if rmap breaks,
1997 	 * so we can as well crash here. We really need to check for
1998 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1999 	 * for other negative values as an underflow if detected here
2000 	 * for the first time (and not when decreasing rmap_hlist_len)
2001 	 * would be sign of memory corruption in the stable_node.
2002 	 */
2003 	BUG_ON(stable_node->rmap_hlist_len < 0);
2004 
2005 	stable_node->rmap_hlist_len++;
2006 	if (!max_page_sharing_bypass)
2007 		/* possibly non fatal but unexpected overflow, only warn */
2008 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2009 			     ksm_max_page_sharing);
2010 
2011 	rmap_item->head = stable_node;
2012 	rmap_item->address |= STABLE_FLAG;
2013 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2014 
2015 	if (rmap_item->hlist.next)
2016 		ksm_pages_sharing++;
2017 	else
2018 		ksm_pages_shared++;
2019 }
2020 
2021 /*
2022  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2023  * if not, compare checksum to previous and if it's the same, see if page can
2024  * be inserted into the unstable tree, or merged with a page already there and
2025  * both transferred to the stable tree.
2026  *
2027  * @page: the page that we are searching identical page to.
2028  * @rmap_item: the reverse mapping into the virtual address of this page
2029  */
2030 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2031 {
2032 	struct mm_struct *mm = rmap_item->mm;
2033 	struct rmap_item *tree_rmap_item;
2034 	struct page *tree_page = NULL;
2035 	struct stable_node *stable_node;
2036 	struct page *kpage;
2037 	unsigned int checksum;
2038 	int err;
2039 	bool max_page_sharing_bypass = false;
2040 
2041 	stable_node = page_stable_node(page);
2042 	if (stable_node) {
2043 		if (stable_node->head != &migrate_nodes &&
2044 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2045 		    NUMA(stable_node->nid)) {
2046 			stable_node_dup_del(stable_node);
2047 			stable_node->head = &migrate_nodes;
2048 			list_add(&stable_node->list, stable_node->head);
2049 		}
2050 		if (stable_node->head != &migrate_nodes &&
2051 		    rmap_item->head == stable_node)
2052 			return;
2053 		/*
2054 		 * If it's a KSM fork, allow it to go over the sharing limit
2055 		 * without warnings.
2056 		 */
2057 		if (!is_page_sharing_candidate(stable_node))
2058 			max_page_sharing_bypass = true;
2059 	}
2060 
2061 	/* We first start with searching the page inside the stable tree */
2062 	kpage = stable_tree_search(page);
2063 	if (kpage == page && rmap_item->head == stable_node) {
2064 		put_page(kpage);
2065 		return;
2066 	}
2067 
2068 	remove_rmap_item_from_tree(rmap_item);
2069 
2070 	if (kpage) {
2071 		if (PTR_ERR(kpage) == -EBUSY)
2072 			return;
2073 
2074 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2075 		if (!err) {
2076 			/*
2077 			 * The page was successfully merged:
2078 			 * add its rmap_item to the stable tree.
2079 			 */
2080 			lock_page(kpage);
2081 			stable_tree_append(rmap_item, page_stable_node(kpage),
2082 					   max_page_sharing_bypass);
2083 			unlock_page(kpage);
2084 		}
2085 		put_page(kpage);
2086 		return;
2087 	}
2088 
2089 	/*
2090 	 * If the hash value of the page has changed from the last time
2091 	 * we calculated it, this page is changing frequently: therefore we
2092 	 * don't want to insert it in the unstable tree, and we don't want
2093 	 * to waste our time searching for something identical to it there.
2094 	 */
2095 	checksum = calc_checksum(page);
2096 	if (rmap_item->oldchecksum != checksum) {
2097 		rmap_item->oldchecksum = checksum;
2098 		return;
2099 	}
2100 
2101 	/*
2102 	 * Same checksum as an empty page. We attempt to merge it with the
2103 	 * appropriate zero page if the user enabled this via sysfs.
2104 	 */
2105 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2106 		struct vm_area_struct *vma;
2107 
2108 		mmap_read_lock(mm);
2109 		vma = find_mergeable_vma(mm, rmap_item->address);
2110 		if (vma) {
2111 			err = try_to_merge_one_page(vma, page,
2112 					ZERO_PAGE(rmap_item->address));
2113 		} else {
2114 			/*
2115 			 * If the vma is out of date, we do not need to
2116 			 * continue.
2117 			 */
2118 			err = 0;
2119 		}
2120 		mmap_read_unlock(mm);
2121 		/*
2122 		 * In case of failure, the page was not really empty, so we
2123 		 * need to continue. Otherwise we're done.
2124 		 */
2125 		if (!err)
2126 			return;
2127 	}
2128 	tree_rmap_item =
2129 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2130 	if (tree_rmap_item) {
2131 		bool split;
2132 
2133 		kpage = try_to_merge_two_pages(rmap_item, page,
2134 						tree_rmap_item, tree_page);
2135 		/*
2136 		 * If both pages we tried to merge belong to the same compound
2137 		 * page, then we actually ended up increasing the reference
2138 		 * count of the same compound page twice, and split_huge_page
2139 		 * failed.
2140 		 * Here we set a flag if that happened, and we use it later to
2141 		 * try split_huge_page again. Since we call put_page right
2142 		 * afterwards, the reference count will be correct and
2143 		 * split_huge_page should succeed.
2144 		 */
2145 		split = PageTransCompound(page)
2146 			&& compound_head(page) == compound_head(tree_page);
2147 		put_page(tree_page);
2148 		if (kpage) {
2149 			/*
2150 			 * The pages were successfully merged: insert new
2151 			 * node in the stable tree and add both rmap_items.
2152 			 */
2153 			lock_page(kpage);
2154 			stable_node = stable_tree_insert(kpage);
2155 			if (stable_node) {
2156 				stable_tree_append(tree_rmap_item, stable_node,
2157 						   false);
2158 				stable_tree_append(rmap_item, stable_node,
2159 						   false);
2160 			}
2161 			unlock_page(kpage);
2162 
2163 			/*
2164 			 * If we fail to insert the page into the stable tree,
2165 			 * we will have 2 virtual addresses that are pointing
2166 			 * to a ksm page left outside the stable tree,
2167 			 * in which case we need to break_cow on both.
2168 			 */
2169 			if (!stable_node) {
2170 				break_cow(tree_rmap_item);
2171 				break_cow(rmap_item);
2172 			}
2173 		} else if (split) {
2174 			/*
2175 			 * We are here if we tried to merge two pages and
2176 			 * failed because they both belonged to the same
2177 			 * compound page. We will split the page now, but no
2178 			 * merging will take place.
2179 			 * We do not want to add the cost of a full lock; if
2180 			 * the page is locked, it is better to skip it and
2181 			 * perhaps try again later.
2182 			 */
2183 			if (!trylock_page(page))
2184 				return;
2185 			split_huge_page(page);
2186 			unlock_page(page);
2187 		}
2188 	}
2189 }
2190 
2191 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2192 					    struct rmap_item **rmap_list,
2193 					    unsigned long addr)
2194 {
2195 	struct rmap_item *rmap_item;
2196 
2197 	while (*rmap_list) {
2198 		rmap_item = *rmap_list;
2199 		if ((rmap_item->address & PAGE_MASK) == addr)
2200 			return rmap_item;
2201 		if (rmap_item->address > addr)
2202 			break;
2203 		*rmap_list = rmap_item->rmap_list;
2204 		remove_rmap_item_from_tree(rmap_item);
2205 		free_rmap_item(rmap_item);
2206 	}
2207 
2208 	rmap_item = alloc_rmap_item();
2209 	if (rmap_item) {
2210 		/* It has already been zeroed */
2211 		rmap_item->mm = mm_slot->mm;
2212 		rmap_item->address = addr;
2213 		rmap_item->rmap_list = *rmap_list;
2214 		*rmap_list = rmap_item;
2215 	}
2216 	return rmap_item;
2217 }
2218 
2219 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2220 {
2221 	struct mm_struct *mm;
2222 	struct mm_slot *slot;
2223 	struct vm_area_struct *vma;
2224 	struct rmap_item *rmap_item;
2225 	int nid;
2226 
2227 	if (list_empty(&ksm_mm_head.mm_list))
2228 		return NULL;
2229 
2230 	slot = ksm_scan.mm_slot;
2231 	if (slot == &ksm_mm_head) {
2232 		/*
2233 		 * A number of pages can hang around indefinitely on per-cpu
2234 		 * pagevecs, raised page count preventing write_protect_page
2235 		 * from merging them.  Though it doesn't really matter much,
2236 		 * it is puzzling to see some stuck in pages_volatile until
2237 		 * other activity jostles them out, and they also prevented
2238 		 * LTP's KSM test from succeeding deterministically; so drain
2239 		 * them here (here rather than on entry to ksm_do_scan(),
2240 		 * so we don't IPI too often when pages_to_scan is set low).
2241 		 */
2242 		lru_add_drain_all();
2243 
2244 		/*
2245 		 * Whereas stale stable_nodes on the stable_tree itself
2246 		 * get pruned in the regular course of stable_tree_search(),
2247 		 * those moved out to the migrate_nodes list can accumulate:
2248 		 * so prune them once before each full scan.
2249 		 */
2250 		if (!ksm_merge_across_nodes) {
2251 			struct stable_node *stable_node, *next;
2252 			struct page *page;
2253 
2254 			list_for_each_entry_safe(stable_node, next,
2255 						 &migrate_nodes, list) {
2256 				page = get_ksm_page(stable_node,
2257 						    GET_KSM_PAGE_NOLOCK);
2258 				if (page)
2259 					put_page(page);
2260 				cond_resched();
2261 			}
2262 		}
2263 
2264 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2265 			root_unstable_tree[nid] = RB_ROOT;
2266 
2267 		spin_lock(&ksm_mmlist_lock);
2268 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2269 		ksm_scan.mm_slot = slot;
2270 		spin_unlock(&ksm_mmlist_lock);
2271 		/*
2272 		 * Although we tested list_empty() above, a racing __ksm_exit
2273 		 * of the last mm on the list may have removed it since then.
2274 		 */
2275 		if (slot == &ksm_mm_head)
2276 			return NULL;
2277 next_mm:
2278 		ksm_scan.address = 0;
2279 		ksm_scan.rmap_list = &slot->rmap_list;
2280 	}
2281 
2282 	mm = slot->mm;
2283 	mmap_read_lock(mm);
2284 	if (ksm_test_exit(mm))
2285 		vma = NULL;
2286 	else
2287 		vma = find_vma(mm, ksm_scan.address);
2288 
2289 	for (; vma; vma = vma->vm_next) {
2290 		if (!(vma->vm_flags & VM_MERGEABLE))
2291 			continue;
2292 		if (ksm_scan.address < vma->vm_start)
2293 			ksm_scan.address = vma->vm_start;
2294 		if (!vma->anon_vma)
2295 			ksm_scan.address = vma->vm_end;
2296 
2297 		while (ksm_scan.address < vma->vm_end) {
2298 			if (ksm_test_exit(mm))
2299 				break;
2300 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2301 			if (IS_ERR_OR_NULL(*page)) {
2302 				ksm_scan.address += PAGE_SIZE;
2303 				cond_resched();
2304 				continue;
2305 			}
2306 			if (PageAnon(*page)) {
2307 				flush_anon_page(vma, *page, ksm_scan.address);
2308 				flush_dcache_page(*page);
2309 				rmap_item = get_next_rmap_item(slot,
2310 					ksm_scan.rmap_list, ksm_scan.address);
2311 				if (rmap_item) {
2312 					ksm_scan.rmap_list =
2313 							&rmap_item->rmap_list;
2314 					ksm_scan.address += PAGE_SIZE;
2315 				} else
2316 					put_page(*page);
2317 				mmap_read_unlock(mm);
2318 				return rmap_item;
2319 			}
2320 			put_page(*page);
2321 			ksm_scan.address += PAGE_SIZE;
2322 			cond_resched();
2323 		}
2324 	}
2325 
2326 	if (ksm_test_exit(mm)) {
2327 		ksm_scan.address = 0;
2328 		ksm_scan.rmap_list = &slot->rmap_list;
2329 	}
2330 	/*
2331 	 * Nuke all the rmap_items that are above this current rmap:
2332 	 * because there were no VM_MERGEABLE vmas with such addresses.
2333 	 */
2334 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2335 
2336 	spin_lock(&ksm_mmlist_lock);
2337 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2338 						struct mm_slot, mm_list);
2339 	if (ksm_scan.address == 0) {
2340 		/*
2341 		 * We've completed a full scan of all vmas, holding mmap_lock
2342 		 * throughout, and found no VM_MERGEABLE: so do the same as
2343 		 * __ksm_exit does to remove this mm from all our lists now.
2344 		 * This applies either when cleaning up after __ksm_exit
2345 		 * (but beware: we can reach here even before __ksm_exit),
2346 		 * or when all VM_MERGEABLE areas have been unmapped (and
2347 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2348 		 */
2349 		hash_del(&slot->link);
2350 		list_del(&slot->mm_list);
2351 		spin_unlock(&ksm_mmlist_lock);
2352 
2353 		free_mm_slot(slot);
2354 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2355 		mmap_read_unlock(mm);
2356 		mmdrop(mm);
2357 	} else {
2358 		mmap_read_unlock(mm);
2359 		/*
2360 		 * mmap_read_unlock(mm) first because after
2361 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2362 		 * already have been freed under us by __ksm_exit()
2363 		 * because the "mm_slot" is still hashed and
2364 		 * ksm_scan.mm_slot doesn't point to it anymore.
2365 		 */
2366 		spin_unlock(&ksm_mmlist_lock);
2367 	}
2368 
2369 	/* Repeat until we've completed scanning the whole list */
2370 	slot = ksm_scan.mm_slot;
2371 	if (slot != &ksm_mm_head)
2372 		goto next_mm;
2373 
2374 	ksm_scan.seqnr++;
2375 	return NULL;
2376 }
2377 
2378 /**
2379  * ksm_do_scan  - the ksm scanner main worker function.
2380  * @scan_npages:  number of pages we want to scan before we return.
2381  */
2382 static void ksm_do_scan(unsigned int scan_npages)
2383 {
2384 	struct rmap_item *rmap_item;
2385 	struct page *page;
2386 
2387 	while (scan_npages-- && likely(!freezing(current))) {
2388 		cond_resched();
2389 		rmap_item = scan_get_next_rmap_item(&page);
2390 		if (!rmap_item)
2391 			return;
2392 		cmp_and_merge_page(page, rmap_item);
2393 		put_page(page);
2394 	}
2395 }
2396 
2397 static int ksmd_should_run(void)
2398 {
2399 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2400 }
2401 
2402 static int ksm_scan_thread(void *nothing)
2403 {
2404 	unsigned int sleep_ms;
2405 
2406 	set_freezable();
2407 	set_user_nice(current, 5);
2408 
2409 	while (!kthread_should_stop()) {
2410 		mutex_lock(&ksm_thread_mutex);
2411 		wait_while_offlining();
2412 		if (ksmd_should_run())
2413 			ksm_do_scan(ksm_thread_pages_to_scan);
2414 		mutex_unlock(&ksm_thread_mutex);
2415 
2416 		try_to_freeze();
2417 
2418 		if (ksmd_should_run()) {
2419 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2420 			wait_event_interruptible_timeout(ksm_iter_wait,
2421 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2422 				msecs_to_jiffies(sleep_ms));
2423 		} else {
2424 			wait_event_freezable(ksm_thread_wait,
2425 				ksmd_should_run() || kthread_should_stop());
2426 		}
2427 	}
2428 	return 0;
2429 }
2430 
2431 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2432 		unsigned long end, int advice, unsigned long *vm_flags)
2433 {
2434 	struct mm_struct *mm = vma->vm_mm;
2435 	int err;
2436 
2437 	switch (advice) {
2438 	case MADV_MERGEABLE:
2439 		/*
2440 		 * Be somewhat over-protective for now!
2441 		 */
2442 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2443 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2444 				 VM_HUGETLB | VM_MIXEDMAP))
2445 			return 0;		/* just ignore the advice */
2446 
2447 		if (vma_is_dax(vma))
2448 			return 0;
2449 
2450 #ifdef VM_SAO
2451 		if (*vm_flags & VM_SAO)
2452 			return 0;
2453 #endif
2454 #ifdef VM_SPARC_ADI
2455 		if (*vm_flags & VM_SPARC_ADI)
2456 			return 0;
2457 #endif
2458 
2459 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2460 			err = __ksm_enter(mm);
2461 			if (err)
2462 				return err;
2463 		}
2464 
2465 		*vm_flags |= VM_MERGEABLE;
2466 		break;
2467 
2468 	case MADV_UNMERGEABLE:
2469 		if (!(*vm_flags & VM_MERGEABLE))
2470 			return 0;		/* just ignore the advice */
2471 
2472 		if (vma->anon_vma) {
2473 			err = unmerge_ksm_pages(vma, start, end);
2474 			if (err)
2475 				return err;
2476 		}
2477 
2478 		*vm_flags &= ~VM_MERGEABLE;
2479 		break;
2480 	}
2481 
2482 	return 0;
2483 }
2484 EXPORT_SYMBOL_GPL(ksm_madvise);
2485 
2486 int __ksm_enter(struct mm_struct *mm)
2487 {
2488 	struct mm_slot *mm_slot;
2489 	int needs_wakeup;
2490 
2491 	mm_slot = alloc_mm_slot();
2492 	if (!mm_slot)
2493 		return -ENOMEM;
2494 
2495 	/* Check ksm_run too?  Would need tighter locking */
2496 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2497 
2498 	spin_lock(&ksm_mmlist_lock);
2499 	insert_to_mm_slots_hash(mm, mm_slot);
2500 	/*
2501 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2502 	 * insert just behind the scanning cursor, to let the area settle
2503 	 * down a little; when fork is followed by immediate exec, we don't
2504 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2505 	 *
2506 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2507 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2508 	 * missed: then we might as well insert at the end of the list.
2509 	 */
2510 	if (ksm_run & KSM_RUN_UNMERGE)
2511 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2512 	else
2513 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2514 	spin_unlock(&ksm_mmlist_lock);
2515 
2516 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2517 	mmgrab(mm);
2518 
2519 	if (needs_wakeup)
2520 		wake_up_interruptible(&ksm_thread_wait);
2521 
2522 	return 0;
2523 }
2524 
2525 void __ksm_exit(struct mm_struct *mm)
2526 {
2527 	struct mm_slot *mm_slot;
2528 	int easy_to_free = 0;
2529 
2530 	/*
2531 	 * This process is exiting: if it's straightforward (as is the
2532 	 * case when ksmd was never running), free mm_slot immediately.
2533 	 * But if it's at the cursor or has rmap_items linked to it, use
2534 	 * mmap_lock to synchronize with any break_cows before pagetables
2535 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2536 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2537 	 */
2538 
2539 	spin_lock(&ksm_mmlist_lock);
2540 	mm_slot = get_mm_slot(mm);
2541 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2542 		if (!mm_slot->rmap_list) {
2543 			hash_del(&mm_slot->link);
2544 			list_del(&mm_slot->mm_list);
2545 			easy_to_free = 1;
2546 		} else {
2547 			list_move(&mm_slot->mm_list,
2548 				  &ksm_scan.mm_slot->mm_list);
2549 		}
2550 	}
2551 	spin_unlock(&ksm_mmlist_lock);
2552 
2553 	if (easy_to_free) {
2554 		free_mm_slot(mm_slot);
2555 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2556 		mmdrop(mm);
2557 	} else if (mm_slot) {
2558 		mmap_write_lock(mm);
2559 		mmap_write_unlock(mm);
2560 	}
2561 }
2562 
2563 struct page *ksm_might_need_to_copy(struct page *page,
2564 			struct vm_area_struct *vma, unsigned long address)
2565 {
2566 	struct anon_vma *anon_vma = page_anon_vma(page);
2567 	struct page *new_page;
2568 
2569 	if (PageKsm(page)) {
2570 		if (page_stable_node(page) &&
2571 		    !(ksm_run & KSM_RUN_UNMERGE))
2572 			return page;	/* no need to copy it */
2573 	} else if (!anon_vma) {
2574 		return page;		/* no need to copy it */
2575 	} else if (anon_vma->root == vma->anon_vma->root &&
2576 		 page->index == linear_page_index(vma, address)) {
2577 		return page;		/* still no need to copy it */
2578 	}
2579 	if (!PageUptodate(page))
2580 		return page;		/* let do_swap_page report the error */
2581 
2582 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2583 	if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2584 		put_page(new_page);
2585 		new_page = NULL;
2586 	}
2587 	if (new_page) {
2588 		copy_user_highpage(new_page, page, address, vma);
2589 
2590 		SetPageDirty(new_page);
2591 		__SetPageUptodate(new_page);
2592 		__SetPageLocked(new_page);
2593 	}
2594 
2595 	return new_page;
2596 }
2597 
2598 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2599 {
2600 	struct stable_node *stable_node;
2601 	struct rmap_item *rmap_item;
2602 	int search_new_forks = 0;
2603 
2604 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2605 
2606 	/*
2607 	 * Rely on the page lock to protect against concurrent modifications
2608 	 * to that page's node of the stable tree.
2609 	 */
2610 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2611 
2612 	stable_node = page_stable_node(page);
2613 	if (!stable_node)
2614 		return;
2615 again:
2616 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2617 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2618 		struct anon_vma_chain *vmac;
2619 		struct vm_area_struct *vma;
2620 
2621 		cond_resched();
2622 		anon_vma_lock_read(anon_vma);
2623 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2624 					       0, ULONG_MAX) {
2625 			unsigned long addr;
2626 
2627 			cond_resched();
2628 			vma = vmac->vma;
2629 
2630 			/* Ignore the stable/unstable/sqnr flags */
2631 			addr = rmap_item->address & PAGE_MASK;
2632 
2633 			if (addr < vma->vm_start || addr >= vma->vm_end)
2634 				continue;
2635 			/*
2636 			 * Initially we examine only the vma which covers this
2637 			 * rmap_item; but later, if there is still work to do,
2638 			 * we examine covering vmas in other mms: in case they
2639 			 * were forked from the original since ksmd passed.
2640 			 */
2641 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2642 				continue;
2643 
2644 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2645 				continue;
2646 
2647 			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2648 				anon_vma_unlock_read(anon_vma);
2649 				return;
2650 			}
2651 			if (rwc->done && rwc->done(page)) {
2652 				anon_vma_unlock_read(anon_vma);
2653 				return;
2654 			}
2655 		}
2656 		anon_vma_unlock_read(anon_vma);
2657 	}
2658 	if (!search_new_forks++)
2659 		goto again;
2660 }
2661 
2662 #ifdef CONFIG_MIGRATION
2663 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2664 {
2665 	struct stable_node *stable_node;
2666 
2667 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2668 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2669 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2670 
2671 	stable_node = page_stable_node(newpage);
2672 	if (stable_node) {
2673 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2674 		stable_node->kpfn = page_to_pfn(newpage);
2675 		/*
2676 		 * newpage->mapping was set in advance; now we need smp_wmb()
2677 		 * to make sure that the new stable_node->kpfn is visible
2678 		 * to get_ksm_page() before it can see that oldpage->mapping
2679 		 * has gone stale (or that PageSwapCache has been cleared).
2680 		 */
2681 		smp_wmb();
2682 		set_page_stable_node(oldpage, NULL);
2683 	}
2684 }
2685 #endif /* CONFIG_MIGRATION */
2686 
2687 #ifdef CONFIG_MEMORY_HOTREMOVE
2688 static void wait_while_offlining(void)
2689 {
2690 	while (ksm_run & KSM_RUN_OFFLINE) {
2691 		mutex_unlock(&ksm_thread_mutex);
2692 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2693 			    TASK_UNINTERRUPTIBLE);
2694 		mutex_lock(&ksm_thread_mutex);
2695 	}
2696 }
2697 
2698 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2699 					 unsigned long start_pfn,
2700 					 unsigned long end_pfn)
2701 {
2702 	if (stable_node->kpfn >= start_pfn &&
2703 	    stable_node->kpfn < end_pfn) {
2704 		/*
2705 		 * Don't get_ksm_page, page has already gone:
2706 		 * which is why we keep kpfn instead of page*
2707 		 */
2708 		remove_node_from_stable_tree(stable_node);
2709 		return true;
2710 	}
2711 	return false;
2712 }
2713 
2714 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2715 					   unsigned long start_pfn,
2716 					   unsigned long end_pfn,
2717 					   struct rb_root *root)
2718 {
2719 	struct stable_node *dup;
2720 	struct hlist_node *hlist_safe;
2721 
2722 	if (!is_stable_node_chain(stable_node)) {
2723 		VM_BUG_ON(is_stable_node_dup(stable_node));
2724 		return stable_node_dup_remove_range(stable_node, start_pfn,
2725 						    end_pfn);
2726 	}
2727 
2728 	hlist_for_each_entry_safe(dup, hlist_safe,
2729 				  &stable_node->hlist, hlist_dup) {
2730 		VM_BUG_ON(!is_stable_node_dup(dup));
2731 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2732 	}
2733 	if (hlist_empty(&stable_node->hlist)) {
2734 		free_stable_node_chain(stable_node, root);
2735 		return true; /* notify caller that tree was rebalanced */
2736 	} else
2737 		return false;
2738 }
2739 
2740 static void ksm_check_stable_tree(unsigned long start_pfn,
2741 				  unsigned long end_pfn)
2742 {
2743 	struct stable_node *stable_node, *next;
2744 	struct rb_node *node;
2745 	int nid;
2746 
2747 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2748 		node = rb_first(root_stable_tree + nid);
2749 		while (node) {
2750 			stable_node = rb_entry(node, struct stable_node, node);
2751 			if (stable_node_chain_remove_range(stable_node,
2752 							   start_pfn, end_pfn,
2753 							   root_stable_tree +
2754 							   nid))
2755 				node = rb_first(root_stable_tree + nid);
2756 			else
2757 				node = rb_next(node);
2758 			cond_resched();
2759 		}
2760 	}
2761 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2762 		if (stable_node->kpfn >= start_pfn &&
2763 		    stable_node->kpfn < end_pfn)
2764 			remove_node_from_stable_tree(stable_node);
2765 		cond_resched();
2766 	}
2767 }
2768 
2769 static int ksm_memory_callback(struct notifier_block *self,
2770 			       unsigned long action, void *arg)
2771 {
2772 	struct memory_notify *mn = arg;
2773 
2774 	switch (action) {
2775 	case MEM_GOING_OFFLINE:
2776 		/*
2777 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2778 		 * and remove_all_stable_nodes() while memory is going offline:
2779 		 * it is unsafe for them to touch the stable tree at this time.
2780 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2781 		 * which do not need the ksm_thread_mutex are all safe.
2782 		 */
2783 		mutex_lock(&ksm_thread_mutex);
2784 		ksm_run |= KSM_RUN_OFFLINE;
2785 		mutex_unlock(&ksm_thread_mutex);
2786 		break;
2787 
2788 	case MEM_OFFLINE:
2789 		/*
2790 		 * Most of the work is done by page migration; but there might
2791 		 * be a few stable_nodes left over, still pointing to struct
2792 		 * pages which have been offlined: prune those from the tree,
2793 		 * otherwise get_ksm_page() might later try to access a
2794 		 * non-existent struct page.
2795 		 */
2796 		ksm_check_stable_tree(mn->start_pfn,
2797 				      mn->start_pfn + mn->nr_pages);
2798 		fallthrough;
2799 	case MEM_CANCEL_OFFLINE:
2800 		mutex_lock(&ksm_thread_mutex);
2801 		ksm_run &= ~KSM_RUN_OFFLINE;
2802 		mutex_unlock(&ksm_thread_mutex);
2803 
2804 		smp_mb();	/* wake_up_bit advises this */
2805 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2806 		break;
2807 	}
2808 	return NOTIFY_OK;
2809 }
2810 #else
2811 static void wait_while_offlining(void)
2812 {
2813 }
2814 #endif /* CONFIG_MEMORY_HOTREMOVE */
2815 
2816 #ifdef CONFIG_SYSFS
2817 /*
2818  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2819  */
2820 
2821 #define KSM_ATTR_RO(_name) \
2822 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2823 #define KSM_ATTR(_name) \
2824 	static struct kobj_attribute _name##_attr = \
2825 		__ATTR(_name, 0644, _name##_show, _name##_store)
2826 
2827 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2828 				    struct kobj_attribute *attr, char *buf)
2829 {
2830 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2831 }
2832 
2833 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2834 				     struct kobj_attribute *attr,
2835 				     const char *buf, size_t count)
2836 {
2837 	unsigned int msecs;
2838 	int err;
2839 
2840 	err = kstrtouint(buf, 10, &msecs);
2841 	if (err)
2842 		return -EINVAL;
2843 
2844 	ksm_thread_sleep_millisecs = msecs;
2845 	wake_up_interruptible(&ksm_iter_wait);
2846 
2847 	return count;
2848 }
2849 KSM_ATTR(sleep_millisecs);
2850 
2851 static ssize_t pages_to_scan_show(struct kobject *kobj,
2852 				  struct kobj_attribute *attr, char *buf)
2853 {
2854 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2855 }
2856 
2857 static ssize_t pages_to_scan_store(struct kobject *kobj,
2858 				   struct kobj_attribute *attr,
2859 				   const char *buf, size_t count)
2860 {
2861 	unsigned int nr_pages;
2862 	int err;
2863 
2864 	err = kstrtouint(buf, 10, &nr_pages);
2865 	if (err)
2866 		return -EINVAL;
2867 
2868 	ksm_thread_pages_to_scan = nr_pages;
2869 
2870 	return count;
2871 }
2872 KSM_ATTR(pages_to_scan);
2873 
2874 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2875 			char *buf)
2876 {
2877 	return sysfs_emit(buf, "%lu\n", ksm_run);
2878 }
2879 
2880 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2881 			 const char *buf, size_t count)
2882 {
2883 	unsigned int flags;
2884 	int err;
2885 
2886 	err = kstrtouint(buf, 10, &flags);
2887 	if (err)
2888 		return -EINVAL;
2889 	if (flags > KSM_RUN_UNMERGE)
2890 		return -EINVAL;
2891 
2892 	/*
2893 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2894 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2895 	 * breaking COW to free the pages_shared (but leaves mm_slots
2896 	 * on the list for when ksmd may be set running again).
2897 	 */
2898 
2899 	mutex_lock(&ksm_thread_mutex);
2900 	wait_while_offlining();
2901 	if (ksm_run != flags) {
2902 		ksm_run = flags;
2903 		if (flags & KSM_RUN_UNMERGE) {
2904 			set_current_oom_origin();
2905 			err = unmerge_and_remove_all_rmap_items();
2906 			clear_current_oom_origin();
2907 			if (err) {
2908 				ksm_run = KSM_RUN_STOP;
2909 				count = err;
2910 			}
2911 		}
2912 	}
2913 	mutex_unlock(&ksm_thread_mutex);
2914 
2915 	if (flags & KSM_RUN_MERGE)
2916 		wake_up_interruptible(&ksm_thread_wait);
2917 
2918 	return count;
2919 }
2920 KSM_ATTR(run);
2921 
2922 #ifdef CONFIG_NUMA
2923 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2924 				       struct kobj_attribute *attr, char *buf)
2925 {
2926 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2927 }
2928 
2929 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2930 				   struct kobj_attribute *attr,
2931 				   const char *buf, size_t count)
2932 {
2933 	int err;
2934 	unsigned long knob;
2935 
2936 	err = kstrtoul(buf, 10, &knob);
2937 	if (err)
2938 		return err;
2939 	if (knob > 1)
2940 		return -EINVAL;
2941 
2942 	mutex_lock(&ksm_thread_mutex);
2943 	wait_while_offlining();
2944 	if (ksm_merge_across_nodes != knob) {
2945 		if (ksm_pages_shared || remove_all_stable_nodes())
2946 			err = -EBUSY;
2947 		else if (root_stable_tree == one_stable_tree) {
2948 			struct rb_root *buf;
2949 			/*
2950 			 * This is the first time that we switch away from the
2951 			 * default of merging across nodes: must now allocate
2952 			 * a buffer to hold as many roots as may be needed.
2953 			 * Allocate stable and unstable together:
2954 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2955 			 */
2956 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2957 				      GFP_KERNEL);
2958 			/* Let us assume that RB_ROOT is NULL is zero */
2959 			if (!buf)
2960 				err = -ENOMEM;
2961 			else {
2962 				root_stable_tree = buf;
2963 				root_unstable_tree = buf + nr_node_ids;
2964 				/* Stable tree is empty but not the unstable */
2965 				root_unstable_tree[0] = one_unstable_tree[0];
2966 			}
2967 		}
2968 		if (!err) {
2969 			ksm_merge_across_nodes = knob;
2970 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2971 		}
2972 	}
2973 	mutex_unlock(&ksm_thread_mutex);
2974 
2975 	return err ? err : count;
2976 }
2977 KSM_ATTR(merge_across_nodes);
2978 #endif
2979 
2980 static ssize_t use_zero_pages_show(struct kobject *kobj,
2981 				   struct kobj_attribute *attr, char *buf)
2982 {
2983 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2984 }
2985 static ssize_t use_zero_pages_store(struct kobject *kobj,
2986 				   struct kobj_attribute *attr,
2987 				   const char *buf, size_t count)
2988 {
2989 	int err;
2990 	bool value;
2991 
2992 	err = kstrtobool(buf, &value);
2993 	if (err)
2994 		return -EINVAL;
2995 
2996 	ksm_use_zero_pages = value;
2997 
2998 	return count;
2999 }
3000 KSM_ATTR(use_zero_pages);
3001 
3002 static ssize_t max_page_sharing_show(struct kobject *kobj,
3003 				     struct kobj_attribute *attr, char *buf)
3004 {
3005 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3006 }
3007 
3008 static ssize_t max_page_sharing_store(struct kobject *kobj,
3009 				      struct kobj_attribute *attr,
3010 				      const char *buf, size_t count)
3011 {
3012 	int err;
3013 	int knob;
3014 
3015 	err = kstrtoint(buf, 10, &knob);
3016 	if (err)
3017 		return err;
3018 	/*
3019 	 * When a KSM page is created it is shared by 2 mappings. This
3020 	 * being a signed comparison, it implicitly verifies it's not
3021 	 * negative.
3022 	 */
3023 	if (knob < 2)
3024 		return -EINVAL;
3025 
3026 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3027 		return count;
3028 
3029 	mutex_lock(&ksm_thread_mutex);
3030 	wait_while_offlining();
3031 	if (ksm_max_page_sharing != knob) {
3032 		if (ksm_pages_shared || remove_all_stable_nodes())
3033 			err = -EBUSY;
3034 		else
3035 			ksm_max_page_sharing = knob;
3036 	}
3037 	mutex_unlock(&ksm_thread_mutex);
3038 
3039 	return err ? err : count;
3040 }
3041 KSM_ATTR(max_page_sharing);
3042 
3043 static ssize_t pages_shared_show(struct kobject *kobj,
3044 				 struct kobj_attribute *attr, char *buf)
3045 {
3046 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3047 }
3048 KSM_ATTR_RO(pages_shared);
3049 
3050 static ssize_t pages_sharing_show(struct kobject *kobj,
3051 				  struct kobj_attribute *attr, char *buf)
3052 {
3053 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3054 }
3055 KSM_ATTR_RO(pages_sharing);
3056 
3057 static ssize_t pages_unshared_show(struct kobject *kobj,
3058 				   struct kobj_attribute *attr, char *buf)
3059 {
3060 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3061 }
3062 KSM_ATTR_RO(pages_unshared);
3063 
3064 static ssize_t pages_volatile_show(struct kobject *kobj,
3065 				   struct kobj_attribute *attr, char *buf)
3066 {
3067 	long ksm_pages_volatile;
3068 
3069 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3070 				- ksm_pages_sharing - ksm_pages_unshared;
3071 	/*
3072 	 * It was not worth any locking to calculate that statistic,
3073 	 * but it might therefore sometimes be negative: conceal that.
3074 	 */
3075 	if (ksm_pages_volatile < 0)
3076 		ksm_pages_volatile = 0;
3077 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3078 }
3079 KSM_ATTR_RO(pages_volatile);
3080 
3081 static ssize_t stable_node_dups_show(struct kobject *kobj,
3082 				     struct kobj_attribute *attr, char *buf)
3083 {
3084 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3085 }
3086 KSM_ATTR_RO(stable_node_dups);
3087 
3088 static ssize_t stable_node_chains_show(struct kobject *kobj,
3089 				       struct kobj_attribute *attr, char *buf)
3090 {
3091 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3092 }
3093 KSM_ATTR_RO(stable_node_chains);
3094 
3095 static ssize_t
3096 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3097 					struct kobj_attribute *attr,
3098 					char *buf)
3099 {
3100 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3101 }
3102 
3103 static ssize_t
3104 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3105 					 struct kobj_attribute *attr,
3106 					 const char *buf, size_t count)
3107 {
3108 	unsigned int msecs;
3109 	int err;
3110 
3111 	err = kstrtouint(buf, 10, &msecs);
3112 	if (err)
3113 		return -EINVAL;
3114 
3115 	ksm_stable_node_chains_prune_millisecs = msecs;
3116 
3117 	return count;
3118 }
3119 KSM_ATTR(stable_node_chains_prune_millisecs);
3120 
3121 static ssize_t full_scans_show(struct kobject *kobj,
3122 			       struct kobj_attribute *attr, char *buf)
3123 {
3124 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3125 }
3126 KSM_ATTR_RO(full_scans);
3127 
3128 static struct attribute *ksm_attrs[] = {
3129 	&sleep_millisecs_attr.attr,
3130 	&pages_to_scan_attr.attr,
3131 	&run_attr.attr,
3132 	&pages_shared_attr.attr,
3133 	&pages_sharing_attr.attr,
3134 	&pages_unshared_attr.attr,
3135 	&pages_volatile_attr.attr,
3136 	&full_scans_attr.attr,
3137 #ifdef CONFIG_NUMA
3138 	&merge_across_nodes_attr.attr,
3139 #endif
3140 	&max_page_sharing_attr.attr,
3141 	&stable_node_chains_attr.attr,
3142 	&stable_node_dups_attr.attr,
3143 	&stable_node_chains_prune_millisecs_attr.attr,
3144 	&use_zero_pages_attr.attr,
3145 	NULL,
3146 };
3147 
3148 static const struct attribute_group ksm_attr_group = {
3149 	.attrs = ksm_attrs,
3150 	.name = "ksm",
3151 };
3152 #endif /* CONFIG_SYSFS */
3153 
3154 static int __init ksm_init(void)
3155 {
3156 	struct task_struct *ksm_thread;
3157 	int err;
3158 
3159 	/* The correct value depends on page size and endianness */
3160 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3161 	/* Default to false for backwards compatibility */
3162 	ksm_use_zero_pages = false;
3163 
3164 	err = ksm_slab_init();
3165 	if (err)
3166 		goto out;
3167 
3168 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3169 	if (IS_ERR(ksm_thread)) {
3170 		pr_err("ksm: creating kthread failed\n");
3171 		err = PTR_ERR(ksm_thread);
3172 		goto out_free;
3173 	}
3174 
3175 #ifdef CONFIG_SYSFS
3176 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3177 	if (err) {
3178 		pr_err("ksm: register sysfs failed\n");
3179 		kthread_stop(ksm_thread);
3180 		goto out_free;
3181 	}
3182 #else
3183 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3184 
3185 #endif /* CONFIG_SYSFS */
3186 
3187 #ifdef CONFIG_MEMORY_HOTREMOVE
3188 	/* There is no significance to this priority 100 */
3189 	hotplug_memory_notifier(ksm_memory_callback, 100);
3190 #endif
3191 	return 0;
3192 
3193 out_free:
3194 	ksm_slab_free();
3195 out:
3196 	return err;
3197 }
3198 subsys_initcall(ksm_init);
3199