1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same :c:type:`struct stable_node` structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) 220 /* to mask all the flags */ 221 222 /* The stable and unstable tree heads */ 223 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 224 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 225 static struct rb_root *root_stable_tree = one_stable_tree; 226 static struct rb_root *root_unstable_tree = one_unstable_tree; 227 228 /* Recently migrated nodes of stable tree, pending proper placement */ 229 static LIST_HEAD(migrate_nodes); 230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 231 232 #define MM_SLOTS_HASH_BITS 10 233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 234 235 static struct mm_slot ksm_mm_head = { 236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 237 }; 238 static struct ksm_scan ksm_scan = { 239 .mm_slot = &ksm_mm_head, 240 }; 241 242 static struct kmem_cache *rmap_item_cache; 243 static struct kmem_cache *stable_node_cache; 244 static struct kmem_cache *mm_slot_cache; 245 246 /* The number of nodes in the stable tree */ 247 static unsigned long ksm_pages_shared; 248 249 /* The number of page slots additionally sharing those nodes */ 250 static unsigned long ksm_pages_sharing; 251 252 /* The number of nodes in the unstable tree */ 253 static unsigned long ksm_pages_unshared; 254 255 /* The number of rmap_items in use: to calculate pages_volatile */ 256 static unsigned long ksm_rmap_items; 257 258 /* The number of stable_node chains */ 259 static unsigned long ksm_stable_node_chains; 260 261 /* The number of stable_node dups linked to the stable_node chains */ 262 static unsigned long ksm_stable_node_dups; 263 264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 265 static int ksm_stable_node_chains_prune_millisecs = 2000; 266 267 /* Maximum number of page slots sharing a stable node */ 268 static int ksm_max_page_sharing = 256; 269 270 /* Number of pages ksmd should scan in one batch */ 271 static unsigned int ksm_thread_pages_to_scan = 100; 272 273 /* Milliseconds ksmd should sleep between batches */ 274 static unsigned int ksm_thread_sleep_millisecs = 20; 275 276 /* Checksum of an empty (zeroed) page */ 277 static unsigned int zero_checksum __read_mostly; 278 279 /* Whether to merge empty (zeroed) pages with actual zero pages */ 280 static bool ksm_use_zero_pages __read_mostly; 281 282 #ifdef CONFIG_NUMA 283 /* Zeroed when merging across nodes is not allowed */ 284 static unsigned int ksm_merge_across_nodes = 1; 285 static int ksm_nr_node_ids = 1; 286 #else 287 #define ksm_merge_across_nodes 1U 288 #define ksm_nr_node_ids 1 289 #endif 290 291 #define KSM_RUN_STOP 0 292 #define KSM_RUN_MERGE 1 293 #define KSM_RUN_UNMERGE 2 294 #define KSM_RUN_OFFLINE 4 295 static unsigned long ksm_run = KSM_RUN_STOP; 296 static void wait_while_offlining(void); 297 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 300 static DEFINE_MUTEX(ksm_thread_mutex); 301 static DEFINE_SPINLOCK(ksm_mmlist_lock); 302 303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 304 sizeof(struct __struct), __alignof__(struct __struct),\ 305 (__flags), NULL) 306 307 static int __init ksm_slab_init(void) 308 { 309 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 310 if (!rmap_item_cache) 311 goto out; 312 313 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 314 if (!stable_node_cache) 315 goto out_free1; 316 317 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 318 if (!mm_slot_cache) 319 goto out_free2; 320 321 return 0; 322 323 out_free2: 324 kmem_cache_destroy(stable_node_cache); 325 out_free1: 326 kmem_cache_destroy(rmap_item_cache); 327 out: 328 return -ENOMEM; 329 } 330 331 static void __init ksm_slab_free(void) 332 { 333 kmem_cache_destroy(mm_slot_cache); 334 kmem_cache_destroy(stable_node_cache); 335 kmem_cache_destroy(rmap_item_cache); 336 mm_slot_cache = NULL; 337 } 338 339 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 340 { 341 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 342 } 343 344 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 345 { 346 return dup->head == STABLE_NODE_DUP_HEAD; 347 } 348 349 static inline void stable_node_chain_add_dup(struct stable_node *dup, 350 struct stable_node *chain) 351 { 352 VM_BUG_ON(is_stable_node_dup(dup)); 353 dup->head = STABLE_NODE_DUP_HEAD; 354 VM_BUG_ON(!is_stable_node_chain(chain)); 355 hlist_add_head(&dup->hlist_dup, &chain->hlist); 356 ksm_stable_node_dups++; 357 } 358 359 static inline void __stable_node_dup_del(struct stable_node *dup) 360 { 361 VM_BUG_ON(!is_stable_node_dup(dup)); 362 hlist_del(&dup->hlist_dup); 363 ksm_stable_node_dups--; 364 } 365 366 static inline void stable_node_dup_del(struct stable_node *dup) 367 { 368 VM_BUG_ON(is_stable_node_chain(dup)); 369 if (is_stable_node_dup(dup)) 370 __stable_node_dup_del(dup); 371 else 372 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 373 #ifdef CONFIG_DEBUG_VM 374 dup->head = NULL; 375 #endif 376 } 377 378 static inline struct rmap_item *alloc_rmap_item(void) 379 { 380 struct rmap_item *rmap_item; 381 382 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 383 __GFP_NORETRY | __GFP_NOWARN); 384 if (rmap_item) 385 ksm_rmap_items++; 386 return rmap_item; 387 } 388 389 static inline void free_rmap_item(struct rmap_item *rmap_item) 390 { 391 ksm_rmap_items--; 392 rmap_item->mm = NULL; /* debug safety */ 393 kmem_cache_free(rmap_item_cache, rmap_item); 394 } 395 396 static inline struct stable_node *alloc_stable_node(void) 397 { 398 /* 399 * The allocation can take too long with GFP_KERNEL when memory is under 400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 401 * grants access to memory reserves, helping to avoid this problem. 402 */ 403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 404 } 405 406 static inline void free_stable_node(struct stable_node *stable_node) 407 { 408 VM_BUG_ON(stable_node->rmap_hlist_len && 409 !is_stable_node_chain(stable_node)); 410 kmem_cache_free(stable_node_cache, stable_node); 411 } 412 413 static inline struct mm_slot *alloc_mm_slot(void) 414 { 415 if (!mm_slot_cache) /* initialization failed */ 416 return NULL; 417 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 418 } 419 420 static inline void free_mm_slot(struct mm_slot *mm_slot) 421 { 422 kmem_cache_free(mm_slot_cache, mm_slot); 423 } 424 425 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 426 { 427 struct mm_slot *slot; 428 429 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 430 if (slot->mm == mm) 431 return slot; 432 433 return NULL; 434 } 435 436 static void insert_to_mm_slots_hash(struct mm_struct *mm, 437 struct mm_slot *mm_slot) 438 { 439 mm_slot->mm = mm; 440 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 441 } 442 443 /* 444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 445 * page tables after it has passed through ksm_exit() - which, if necessary, 446 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 447 * a special flag: they can just back out as soon as mm_users goes to zero. 448 * ksm_test_exit() is used throughout to make this test for exit: in some 449 * places for correctness, in some places just to avoid unnecessary work. 450 */ 451 static inline bool ksm_test_exit(struct mm_struct *mm) 452 { 453 return atomic_read(&mm->mm_users) == 0; 454 } 455 456 /* 457 * We use break_ksm to break COW on a ksm page: it's a stripped down 458 * 459 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 460 * put_page(page); 461 * 462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 463 * in case the application has unmapped and remapped mm,addr meanwhile. 464 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 466 * 467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 468 * of the process that owns 'vma'. We also do not want to enforce 469 * protection keys here anyway. 470 */ 471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 472 { 473 struct page *page; 474 vm_fault_t ret = 0; 475 476 do { 477 cond_resched(); 478 page = follow_page(vma, addr, 479 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 480 if (IS_ERR_OR_NULL(page)) 481 break; 482 if (PageKsm(page)) 483 ret = handle_mm_fault(vma, addr, 484 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 485 else 486 ret = VM_FAULT_WRITE; 487 put_page(page); 488 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 489 /* 490 * We must loop because handle_mm_fault() may back out if there's 491 * any difficulty e.g. if pte accessed bit gets updated concurrently. 492 * 493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 494 * COW has been broken, even if the vma does not permit VM_WRITE; 495 * but note that a concurrent fault might break PageKsm for us. 496 * 497 * VM_FAULT_SIGBUS could occur if we race with truncation of the 498 * backing file, which also invalidates anonymous pages: that's 499 * okay, that truncation will have unmapped the PageKsm for us. 500 * 501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 503 * current task has TIF_MEMDIE set, and will be OOM killed on return 504 * to user; and ksmd, having no mm, would never be chosen for that. 505 * 506 * But if the mm is in a limited mem_cgroup, then the fault may fail 507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 508 * even ksmd can fail in this way - though it's usually breaking ksm 509 * just to undo a merge it made a moment before, so unlikely to oom. 510 * 511 * That's a pity: we might therefore have more kernel pages allocated 512 * than we're counting as nodes in the stable tree; but ksm_do_scan 513 * will retry to break_cow on each pass, so should recover the page 514 * in due course. The important thing is to not let VM_MERGEABLE 515 * be cleared while any such pages might remain in the area. 516 */ 517 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 518 } 519 520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 521 unsigned long addr) 522 { 523 struct vm_area_struct *vma; 524 if (ksm_test_exit(mm)) 525 return NULL; 526 vma = find_vma(mm, addr); 527 if (!vma || vma->vm_start > addr) 528 return NULL; 529 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 530 return NULL; 531 return vma; 532 } 533 534 static void break_cow(struct rmap_item *rmap_item) 535 { 536 struct mm_struct *mm = rmap_item->mm; 537 unsigned long addr = rmap_item->address; 538 struct vm_area_struct *vma; 539 540 /* 541 * It is not an accident that whenever we want to break COW 542 * to undo, we also need to drop a reference to the anon_vma. 543 */ 544 put_anon_vma(rmap_item->anon_vma); 545 546 down_read(&mm->mmap_sem); 547 vma = find_mergeable_vma(mm, addr); 548 if (vma) 549 break_ksm(vma, addr); 550 up_read(&mm->mmap_sem); 551 } 552 553 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 554 { 555 struct mm_struct *mm = rmap_item->mm; 556 unsigned long addr = rmap_item->address; 557 struct vm_area_struct *vma; 558 struct page *page; 559 560 down_read(&mm->mmap_sem); 561 vma = find_mergeable_vma(mm, addr); 562 if (!vma) 563 goto out; 564 565 page = follow_page(vma, addr, FOLL_GET); 566 if (IS_ERR_OR_NULL(page)) 567 goto out; 568 if (PageAnon(page)) { 569 flush_anon_page(vma, page, addr); 570 flush_dcache_page(page); 571 } else { 572 put_page(page); 573 out: 574 page = NULL; 575 } 576 up_read(&mm->mmap_sem); 577 return page; 578 } 579 580 /* 581 * This helper is used for getting right index into array of tree roots. 582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 583 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 584 * every node has its own stable and unstable tree. 585 */ 586 static inline int get_kpfn_nid(unsigned long kpfn) 587 { 588 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 589 } 590 591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 592 struct rb_root *root) 593 { 594 struct stable_node *chain = alloc_stable_node(); 595 VM_BUG_ON(is_stable_node_chain(dup)); 596 if (likely(chain)) { 597 INIT_HLIST_HEAD(&chain->hlist); 598 chain->chain_prune_time = jiffies; 599 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 601 chain->nid = -1; /* debug */ 602 #endif 603 ksm_stable_node_chains++; 604 605 /* 606 * Put the stable node chain in the first dimension of 607 * the stable tree and at the same time remove the old 608 * stable node. 609 */ 610 rb_replace_node(&dup->node, &chain->node, root); 611 612 /* 613 * Move the old stable node to the second dimension 614 * queued in the hlist_dup. The invariant is that all 615 * dup stable_nodes in the chain->hlist point to pages 616 * that are wrprotected and have the exact same 617 * content. 618 */ 619 stable_node_chain_add_dup(dup, chain); 620 } 621 return chain; 622 } 623 624 static inline void free_stable_node_chain(struct stable_node *chain, 625 struct rb_root *root) 626 { 627 rb_erase(&chain->node, root); 628 free_stable_node(chain); 629 ksm_stable_node_chains--; 630 } 631 632 static void remove_node_from_stable_tree(struct stable_node *stable_node) 633 { 634 struct rmap_item *rmap_item; 635 636 /* check it's not STABLE_NODE_CHAIN or negative */ 637 BUG_ON(stable_node->rmap_hlist_len < 0); 638 639 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 640 if (rmap_item->hlist.next) 641 ksm_pages_sharing--; 642 else 643 ksm_pages_shared--; 644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 645 stable_node->rmap_hlist_len--; 646 put_anon_vma(rmap_item->anon_vma); 647 rmap_item->address &= PAGE_MASK; 648 cond_resched(); 649 } 650 651 /* 652 * We need the second aligned pointer of the migrate_nodes 653 * list_head to stay clear from the rb_parent_color union 654 * (aligned and different than any node) and also different 655 * from &migrate_nodes. This will verify that future list.h changes 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 657 */ 658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 661 #endif 662 663 if (stable_node->head == &migrate_nodes) 664 list_del(&stable_node->list); 665 else 666 stable_node_dup_del(stable_node); 667 free_stable_node(stable_node); 668 } 669 670 /* 671 * get_ksm_page: checks if the page indicated by the stable node 672 * is still its ksm page, despite having held no reference to it. 673 * In which case we can trust the content of the page, and it 674 * returns the gotten page; but if the page has now been zapped, 675 * remove the stale node from the stable tree and return NULL. 676 * But beware, the stable node's page might be being migrated. 677 * 678 * You would expect the stable_node to hold a reference to the ksm page. 679 * But if it increments the page's count, swapping out has to wait for 680 * ksmd to come around again before it can free the page, which may take 681 * seconds or even minutes: much too unresponsive. So instead we use a 682 * "keyhole reference": access to the ksm page from the stable node peeps 683 * out through its keyhole to see if that page still holds the right key, 684 * pointing back to this stable node. This relies on freeing a PageAnon 685 * page to reset its page->mapping to NULL, and relies on no other use of 686 * a page to put something that might look like our key in page->mapping. 687 * is on its way to being freed; but it is an anomaly to bear in mind. 688 */ 689 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 690 { 691 struct page *page; 692 void *expected_mapping; 693 unsigned long kpfn; 694 695 expected_mapping = (void *)((unsigned long)stable_node | 696 PAGE_MAPPING_KSM); 697 again: 698 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 699 page = pfn_to_page(kpfn); 700 if (READ_ONCE(page->mapping) != expected_mapping) 701 goto stale; 702 703 /* 704 * We cannot do anything with the page while its refcount is 0. 705 * Usually 0 means free, or tail of a higher-order page: in which 706 * case this node is no longer referenced, and should be freed; 707 * however, it might mean that the page is under page_ref_freeze(). 708 * The __remove_mapping() case is easy, again the node is now stale; 709 * but if page is swapcache in migrate_page_move_mapping(), it might 710 * still be our page, in which case it's essential to keep the node. 711 */ 712 while (!get_page_unless_zero(page)) { 713 /* 714 * Another check for page->mapping != expected_mapping would 715 * work here too. We have chosen the !PageSwapCache test to 716 * optimize the common case, when the page is or is about to 717 * be freed: PageSwapCache is cleared (under spin_lock_irq) 718 * in the ref_freeze section of __remove_mapping(); but Anon 719 * page->mapping reset to NULL later, in free_pages_prepare(). 720 */ 721 if (!PageSwapCache(page)) 722 goto stale; 723 cpu_relax(); 724 } 725 726 if (READ_ONCE(page->mapping) != expected_mapping) { 727 put_page(page); 728 goto stale; 729 } 730 731 if (lock_it) { 732 lock_page(page); 733 if (READ_ONCE(page->mapping) != expected_mapping) { 734 unlock_page(page); 735 put_page(page); 736 goto stale; 737 } 738 } 739 return page; 740 741 stale: 742 /* 743 * We come here from above when page->mapping or !PageSwapCache 744 * suggests that the node is stale; but it might be under migration. 745 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 746 * before checking whether node->kpfn has been changed. 747 */ 748 smp_rmb(); 749 if (READ_ONCE(stable_node->kpfn) != kpfn) 750 goto again; 751 remove_node_from_stable_tree(stable_node); 752 return NULL; 753 } 754 755 /* 756 * Removing rmap_item from stable or unstable tree. 757 * This function will clean the information from the stable/unstable tree. 758 */ 759 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 760 { 761 if (rmap_item->address & STABLE_FLAG) { 762 struct stable_node *stable_node; 763 struct page *page; 764 765 stable_node = rmap_item->head; 766 page = get_ksm_page(stable_node, true); 767 if (!page) 768 goto out; 769 770 hlist_del(&rmap_item->hlist); 771 unlock_page(page); 772 put_page(page); 773 774 if (!hlist_empty(&stable_node->hlist)) 775 ksm_pages_sharing--; 776 else 777 ksm_pages_shared--; 778 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 779 stable_node->rmap_hlist_len--; 780 781 put_anon_vma(rmap_item->anon_vma); 782 rmap_item->address &= PAGE_MASK; 783 784 } else if (rmap_item->address & UNSTABLE_FLAG) { 785 unsigned char age; 786 /* 787 * Usually ksmd can and must skip the rb_erase, because 788 * root_unstable_tree was already reset to RB_ROOT. 789 * But be careful when an mm is exiting: do the rb_erase 790 * if this rmap_item was inserted by this scan, rather 791 * than left over from before. 792 */ 793 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 794 BUG_ON(age > 1); 795 if (!age) 796 rb_erase(&rmap_item->node, 797 root_unstable_tree + NUMA(rmap_item->nid)); 798 ksm_pages_unshared--; 799 rmap_item->address &= PAGE_MASK; 800 } 801 out: 802 cond_resched(); /* we're called from many long loops */ 803 } 804 805 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 806 struct rmap_item **rmap_list) 807 { 808 while (*rmap_list) { 809 struct rmap_item *rmap_item = *rmap_list; 810 *rmap_list = rmap_item->rmap_list; 811 remove_rmap_item_from_tree(rmap_item); 812 free_rmap_item(rmap_item); 813 } 814 } 815 816 /* 817 * Though it's very tempting to unmerge rmap_items from stable tree rather 818 * than check every pte of a given vma, the locking doesn't quite work for 819 * that - an rmap_item is assigned to the stable tree after inserting ksm 820 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 821 * rmap_items from parent to child at fork time (so as not to waste time 822 * if exit comes before the next scan reaches it). 823 * 824 * Similarly, although we'd like to remove rmap_items (so updating counts 825 * and freeing memory) when unmerging an area, it's easier to leave that 826 * to the next pass of ksmd - consider, for example, how ksmd might be 827 * in cmp_and_merge_page on one of the rmap_items we would be removing. 828 */ 829 static int unmerge_ksm_pages(struct vm_area_struct *vma, 830 unsigned long start, unsigned long end) 831 { 832 unsigned long addr; 833 int err = 0; 834 835 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 836 if (ksm_test_exit(vma->vm_mm)) 837 break; 838 if (signal_pending(current)) 839 err = -ERESTARTSYS; 840 else 841 err = break_ksm(vma, addr); 842 } 843 return err; 844 } 845 846 static inline struct stable_node *page_stable_node(struct page *page) 847 { 848 return PageKsm(page) ? page_rmapping(page) : NULL; 849 } 850 851 static inline void set_page_stable_node(struct page *page, 852 struct stable_node *stable_node) 853 { 854 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 855 } 856 857 #ifdef CONFIG_SYSFS 858 /* 859 * Only called through the sysfs control interface: 860 */ 861 static int remove_stable_node(struct stable_node *stable_node) 862 { 863 struct page *page; 864 int err; 865 866 page = get_ksm_page(stable_node, true); 867 if (!page) { 868 /* 869 * get_ksm_page did remove_node_from_stable_tree itself. 870 */ 871 return 0; 872 } 873 874 if (WARN_ON_ONCE(page_mapped(page))) { 875 /* 876 * This should not happen: but if it does, just refuse to let 877 * merge_across_nodes be switched - there is no need to panic. 878 */ 879 err = -EBUSY; 880 } else { 881 /* 882 * The stable node did not yet appear stale to get_ksm_page(), 883 * since that allows for an unmapped ksm page to be recognized 884 * right up until it is freed; but the node is safe to remove. 885 * This page might be in a pagevec waiting to be freed, 886 * or it might be PageSwapCache (perhaps under writeback), 887 * or it might have been removed from swapcache a moment ago. 888 */ 889 set_page_stable_node(page, NULL); 890 remove_node_from_stable_tree(stable_node); 891 err = 0; 892 } 893 894 unlock_page(page); 895 put_page(page); 896 return err; 897 } 898 899 static int remove_stable_node_chain(struct stable_node *stable_node, 900 struct rb_root *root) 901 { 902 struct stable_node *dup; 903 struct hlist_node *hlist_safe; 904 905 if (!is_stable_node_chain(stable_node)) { 906 VM_BUG_ON(is_stable_node_dup(stable_node)); 907 if (remove_stable_node(stable_node)) 908 return true; 909 else 910 return false; 911 } 912 913 hlist_for_each_entry_safe(dup, hlist_safe, 914 &stable_node->hlist, hlist_dup) { 915 VM_BUG_ON(!is_stable_node_dup(dup)); 916 if (remove_stable_node(dup)) 917 return true; 918 } 919 BUG_ON(!hlist_empty(&stable_node->hlist)); 920 free_stable_node_chain(stable_node, root); 921 return false; 922 } 923 924 static int remove_all_stable_nodes(void) 925 { 926 struct stable_node *stable_node, *next; 927 int nid; 928 int err = 0; 929 930 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 931 while (root_stable_tree[nid].rb_node) { 932 stable_node = rb_entry(root_stable_tree[nid].rb_node, 933 struct stable_node, node); 934 if (remove_stable_node_chain(stable_node, 935 root_stable_tree + nid)) { 936 err = -EBUSY; 937 break; /* proceed to next nid */ 938 } 939 cond_resched(); 940 } 941 } 942 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 943 if (remove_stable_node(stable_node)) 944 err = -EBUSY; 945 cond_resched(); 946 } 947 return err; 948 } 949 950 static int unmerge_and_remove_all_rmap_items(void) 951 { 952 struct mm_slot *mm_slot; 953 struct mm_struct *mm; 954 struct vm_area_struct *vma; 955 int err = 0; 956 957 spin_lock(&ksm_mmlist_lock); 958 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 959 struct mm_slot, mm_list); 960 spin_unlock(&ksm_mmlist_lock); 961 962 for (mm_slot = ksm_scan.mm_slot; 963 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 964 mm = mm_slot->mm; 965 down_read(&mm->mmap_sem); 966 for (vma = mm->mmap; vma; vma = vma->vm_next) { 967 if (ksm_test_exit(mm)) 968 break; 969 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 970 continue; 971 err = unmerge_ksm_pages(vma, 972 vma->vm_start, vma->vm_end); 973 if (err) 974 goto error; 975 } 976 977 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 978 up_read(&mm->mmap_sem); 979 980 spin_lock(&ksm_mmlist_lock); 981 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 982 struct mm_slot, mm_list); 983 if (ksm_test_exit(mm)) { 984 hash_del(&mm_slot->link); 985 list_del(&mm_slot->mm_list); 986 spin_unlock(&ksm_mmlist_lock); 987 988 free_mm_slot(mm_slot); 989 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 990 mmdrop(mm); 991 } else 992 spin_unlock(&ksm_mmlist_lock); 993 } 994 995 /* Clean up stable nodes, but don't worry if some are still busy */ 996 remove_all_stable_nodes(); 997 ksm_scan.seqnr = 0; 998 return 0; 999 1000 error: 1001 up_read(&mm->mmap_sem); 1002 spin_lock(&ksm_mmlist_lock); 1003 ksm_scan.mm_slot = &ksm_mm_head; 1004 spin_unlock(&ksm_mmlist_lock); 1005 return err; 1006 } 1007 #endif /* CONFIG_SYSFS */ 1008 1009 static u32 calc_checksum(struct page *page) 1010 { 1011 u32 checksum; 1012 void *addr = kmap_atomic(page); 1013 checksum = xxhash(addr, PAGE_SIZE, 0); 1014 kunmap_atomic(addr); 1015 return checksum; 1016 } 1017 1018 static int memcmp_pages(struct page *page1, struct page *page2) 1019 { 1020 char *addr1, *addr2; 1021 int ret; 1022 1023 addr1 = kmap_atomic(page1); 1024 addr2 = kmap_atomic(page2); 1025 ret = memcmp(addr1, addr2, PAGE_SIZE); 1026 kunmap_atomic(addr2); 1027 kunmap_atomic(addr1); 1028 return ret; 1029 } 1030 1031 static inline int pages_identical(struct page *page1, struct page *page2) 1032 { 1033 return !memcmp_pages(page1, page2); 1034 } 1035 1036 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1037 pte_t *orig_pte) 1038 { 1039 struct mm_struct *mm = vma->vm_mm; 1040 struct page_vma_mapped_walk pvmw = { 1041 .page = page, 1042 .vma = vma, 1043 }; 1044 int swapped; 1045 int err = -EFAULT; 1046 struct mmu_notifier_range range; 1047 1048 pvmw.address = page_address_in_vma(page, vma); 1049 if (pvmw.address == -EFAULT) 1050 goto out; 1051 1052 BUG_ON(PageTransCompound(page)); 1053 1054 mmu_notifier_range_init(&range, mm, pvmw.address, 1055 pvmw.address + PAGE_SIZE); 1056 mmu_notifier_invalidate_range_start(&range); 1057 1058 if (!page_vma_mapped_walk(&pvmw)) 1059 goto out_mn; 1060 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1061 goto out_unlock; 1062 1063 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1064 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1065 mm_tlb_flush_pending(mm)) { 1066 pte_t entry; 1067 1068 swapped = PageSwapCache(page); 1069 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1070 /* 1071 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1072 * take any lock, therefore the check that we are going to make 1073 * with the pagecount against the mapcount is racey and 1074 * O_DIRECT can happen right after the check. 1075 * So we clear the pte and flush the tlb before the check 1076 * this assure us that no O_DIRECT can happen after the check 1077 * or in the middle of the check. 1078 * 1079 * No need to notify as we are downgrading page table to read 1080 * only not changing it to point to a new page. 1081 * 1082 * See Documentation/vm/mmu_notifier.rst 1083 */ 1084 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1085 /* 1086 * Check that no O_DIRECT or similar I/O is in progress on the 1087 * page 1088 */ 1089 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1090 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1091 goto out_unlock; 1092 } 1093 if (pte_dirty(entry)) 1094 set_page_dirty(page); 1095 1096 if (pte_protnone(entry)) 1097 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1098 else 1099 entry = pte_mkclean(pte_wrprotect(entry)); 1100 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1101 } 1102 *orig_pte = *pvmw.pte; 1103 err = 0; 1104 1105 out_unlock: 1106 page_vma_mapped_walk_done(&pvmw); 1107 out_mn: 1108 mmu_notifier_invalidate_range_end(&range); 1109 out: 1110 return err; 1111 } 1112 1113 /** 1114 * replace_page - replace page in vma by new ksm page 1115 * @vma: vma that holds the pte pointing to page 1116 * @page: the page we are replacing by kpage 1117 * @kpage: the ksm page we replace page by 1118 * @orig_pte: the original value of the pte 1119 * 1120 * Returns 0 on success, -EFAULT on failure. 1121 */ 1122 static int replace_page(struct vm_area_struct *vma, struct page *page, 1123 struct page *kpage, pte_t orig_pte) 1124 { 1125 struct mm_struct *mm = vma->vm_mm; 1126 pmd_t *pmd; 1127 pte_t *ptep; 1128 pte_t newpte; 1129 spinlock_t *ptl; 1130 unsigned long addr; 1131 int err = -EFAULT; 1132 struct mmu_notifier_range range; 1133 1134 addr = page_address_in_vma(page, vma); 1135 if (addr == -EFAULT) 1136 goto out; 1137 1138 pmd = mm_find_pmd(mm, addr); 1139 if (!pmd) 1140 goto out; 1141 1142 mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE); 1143 mmu_notifier_invalidate_range_start(&range); 1144 1145 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1146 if (!pte_same(*ptep, orig_pte)) { 1147 pte_unmap_unlock(ptep, ptl); 1148 goto out_mn; 1149 } 1150 1151 /* 1152 * No need to check ksm_use_zero_pages here: we can only have a 1153 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1154 */ 1155 if (!is_zero_pfn(page_to_pfn(kpage))) { 1156 get_page(kpage); 1157 page_add_anon_rmap(kpage, vma, addr, false); 1158 newpte = mk_pte(kpage, vma->vm_page_prot); 1159 } else { 1160 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1161 vma->vm_page_prot)); 1162 /* 1163 * We're replacing an anonymous page with a zero page, which is 1164 * not anonymous. We need to do proper accounting otherwise we 1165 * will get wrong values in /proc, and a BUG message in dmesg 1166 * when tearing down the mm. 1167 */ 1168 dec_mm_counter(mm, MM_ANONPAGES); 1169 } 1170 1171 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1172 /* 1173 * No need to notify as we are replacing a read only page with another 1174 * read only page with the same content. 1175 * 1176 * See Documentation/vm/mmu_notifier.rst 1177 */ 1178 ptep_clear_flush(vma, addr, ptep); 1179 set_pte_at_notify(mm, addr, ptep, newpte); 1180 1181 page_remove_rmap(page, false); 1182 if (!page_mapped(page)) 1183 try_to_free_swap(page); 1184 put_page(page); 1185 1186 pte_unmap_unlock(ptep, ptl); 1187 err = 0; 1188 out_mn: 1189 mmu_notifier_invalidate_range_end(&range); 1190 out: 1191 return err; 1192 } 1193 1194 /* 1195 * try_to_merge_one_page - take two pages and merge them into one 1196 * @vma: the vma that holds the pte pointing to page 1197 * @page: the PageAnon page that we want to replace with kpage 1198 * @kpage: the PageKsm page that we want to map instead of page, 1199 * or NULL the first time when we want to use page as kpage. 1200 * 1201 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1202 */ 1203 static int try_to_merge_one_page(struct vm_area_struct *vma, 1204 struct page *page, struct page *kpage) 1205 { 1206 pte_t orig_pte = __pte(0); 1207 int err = -EFAULT; 1208 1209 if (page == kpage) /* ksm page forked */ 1210 return 0; 1211 1212 if (!PageAnon(page)) 1213 goto out; 1214 1215 /* 1216 * We need the page lock to read a stable PageSwapCache in 1217 * write_protect_page(). We use trylock_page() instead of 1218 * lock_page() because we don't want to wait here - we 1219 * prefer to continue scanning and merging different pages, 1220 * then come back to this page when it is unlocked. 1221 */ 1222 if (!trylock_page(page)) 1223 goto out; 1224 1225 if (PageTransCompound(page)) { 1226 if (split_huge_page(page)) 1227 goto out_unlock; 1228 } 1229 1230 /* 1231 * If this anonymous page is mapped only here, its pte may need 1232 * to be write-protected. If it's mapped elsewhere, all of its 1233 * ptes are necessarily already write-protected. But in either 1234 * case, we need to lock and check page_count is not raised. 1235 */ 1236 if (write_protect_page(vma, page, &orig_pte) == 0) { 1237 if (!kpage) { 1238 /* 1239 * While we hold page lock, upgrade page from 1240 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1241 * stable_tree_insert() will update stable_node. 1242 */ 1243 set_page_stable_node(page, NULL); 1244 mark_page_accessed(page); 1245 /* 1246 * Page reclaim just frees a clean page with no dirty 1247 * ptes: make sure that the ksm page would be swapped. 1248 */ 1249 if (!PageDirty(page)) 1250 SetPageDirty(page); 1251 err = 0; 1252 } else if (pages_identical(page, kpage)) 1253 err = replace_page(vma, page, kpage, orig_pte); 1254 } 1255 1256 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1257 munlock_vma_page(page); 1258 if (!PageMlocked(kpage)) { 1259 unlock_page(page); 1260 lock_page(kpage); 1261 mlock_vma_page(kpage); 1262 page = kpage; /* for final unlock */ 1263 } 1264 } 1265 1266 out_unlock: 1267 unlock_page(page); 1268 out: 1269 return err; 1270 } 1271 1272 /* 1273 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1274 * but no new kernel page is allocated: kpage must already be a ksm page. 1275 * 1276 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1277 */ 1278 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1279 struct page *page, struct page *kpage) 1280 { 1281 struct mm_struct *mm = rmap_item->mm; 1282 struct vm_area_struct *vma; 1283 int err = -EFAULT; 1284 1285 down_read(&mm->mmap_sem); 1286 vma = find_mergeable_vma(mm, rmap_item->address); 1287 if (!vma) 1288 goto out; 1289 1290 err = try_to_merge_one_page(vma, page, kpage); 1291 if (err) 1292 goto out; 1293 1294 /* Unstable nid is in union with stable anon_vma: remove first */ 1295 remove_rmap_item_from_tree(rmap_item); 1296 1297 /* Must get reference to anon_vma while still holding mmap_sem */ 1298 rmap_item->anon_vma = vma->anon_vma; 1299 get_anon_vma(vma->anon_vma); 1300 out: 1301 up_read(&mm->mmap_sem); 1302 return err; 1303 } 1304 1305 /* 1306 * try_to_merge_two_pages - take two identical pages and prepare them 1307 * to be merged into one page. 1308 * 1309 * This function returns the kpage if we successfully merged two identical 1310 * pages into one ksm page, NULL otherwise. 1311 * 1312 * Note that this function upgrades page to ksm page: if one of the pages 1313 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1314 */ 1315 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1316 struct page *page, 1317 struct rmap_item *tree_rmap_item, 1318 struct page *tree_page) 1319 { 1320 int err; 1321 1322 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1323 if (!err) { 1324 err = try_to_merge_with_ksm_page(tree_rmap_item, 1325 tree_page, page); 1326 /* 1327 * If that fails, we have a ksm page with only one pte 1328 * pointing to it: so break it. 1329 */ 1330 if (err) 1331 break_cow(rmap_item); 1332 } 1333 return err ? NULL : page; 1334 } 1335 1336 static __always_inline 1337 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1338 { 1339 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1340 /* 1341 * Check that at least one mapping still exists, otherwise 1342 * there's no much point to merge and share with this 1343 * stable_node, as the underlying tree_page of the other 1344 * sharer is going to be freed soon. 1345 */ 1346 return stable_node->rmap_hlist_len && 1347 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1348 } 1349 1350 static __always_inline 1351 bool is_page_sharing_candidate(struct stable_node *stable_node) 1352 { 1353 return __is_page_sharing_candidate(stable_node, 0); 1354 } 1355 1356 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1357 struct stable_node **_stable_node, 1358 struct rb_root *root, 1359 bool prune_stale_stable_nodes) 1360 { 1361 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1362 struct hlist_node *hlist_safe; 1363 struct page *_tree_page, *tree_page = NULL; 1364 int nr = 0; 1365 int found_rmap_hlist_len; 1366 1367 if (!prune_stale_stable_nodes || 1368 time_before(jiffies, stable_node->chain_prune_time + 1369 msecs_to_jiffies( 1370 ksm_stable_node_chains_prune_millisecs))) 1371 prune_stale_stable_nodes = false; 1372 else 1373 stable_node->chain_prune_time = jiffies; 1374 1375 hlist_for_each_entry_safe(dup, hlist_safe, 1376 &stable_node->hlist, hlist_dup) { 1377 cond_resched(); 1378 /* 1379 * We must walk all stable_node_dup to prune the stale 1380 * stable nodes during lookup. 1381 * 1382 * get_ksm_page can drop the nodes from the 1383 * stable_node->hlist if they point to freed pages 1384 * (that's why we do a _safe walk). The "dup" 1385 * stable_node parameter itself will be freed from 1386 * under us if it returns NULL. 1387 */ 1388 _tree_page = get_ksm_page(dup, false); 1389 if (!_tree_page) 1390 continue; 1391 nr += 1; 1392 if (is_page_sharing_candidate(dup)) { 1393 if (!found || 1394 dup->rmap_hlist_len > found_rmap_hlist_len) { 1395 if (found) 1396 put_page(tree_page); 1397 found = dup; 1398 found_rmap_hlist_len = found->rmap_hlist_len; 1399 tree_page = _tree_page; 1400 1401 /* skip put_page for found dup */ 1402 if (!prune_stale_stable_nodes) 1403 break; 1404 continue; 1405 } 1406 } 1407 put_page(_tree_page); 1408 } 1409 1410 if (found) { 1411 /* 1412 * nr is counting all dups in the chain only if 1413 * prune_stale_stable_nodes is true, otherwise we may 1414 * break the loop at nr == 1 even if there are 1415 * multiple entries. 1416 */ 1417 if (prune_stale_stable_nodes && nr == 1) { 1418 /* 1419 * If there's not just one entry it would 1420 * corrupt memory, better BUG_ON. In KSM 1421 * context with no lock held it's not even 1422 * fatal. 1423 */ 1424 BUG_ON(stable_node->hlist.first->next); 1425 1426 /* 1427 * There's just one entry and it is below the 1428 * deduplication limit so drop the chain. 1429 */ 1430 rb_replace_node(&stable_node->node, &found->node, 1431 root); 1432 free_stable_node(stable_node); 1433 ksm_stable_node_chains--; 1434 ksm_stable_node_dups--; 1435 /* 1436 * NOTE: the caller depends on the stable_node 1437 * to be equal to stable_node_dup if the chain 1438 * was collapsed. 1439 */ 1440 *_stable_node = found; 1441 /* 1442 * Just for robustneess as stable_node is 1443 * otherwise left as a stable pointer, the 1444 * compiler shall optimize it away at build 1445 * time. 1446 */ 1447 stable_node = NULL; 1448 } else if (stable_node->hlist.first != &found->hlist_dup && 1449 __is_page_sharing_candidate(found, 1)) { 1450 /* 1451 * If the found stable_node dup can accept one 1452 * more future merge (in addition to the one 1453 * that is underway) and is not at the head of 1454 * the chain, put it there so next search will 1455 * be quicker in the !prune_stale_stable_nodes 1456 * case. 1457 * 1458 * NOTE: it would be inaccurate to use nr > 1 1459 * instead of checking the hlist.first pointer 1460 * directly, because in the 1461 * prune_stale_stable_nodes case "nr" isn't 1462 * the position of the found dup in the chain, 1463 * but the total number of dups in the chain. 1464 */ 1465 hlist_del(&found->hlist_dup); 1466 hlist_add_head(&found->hlist_dup, 1467 &stable_node->hlist); 1468 } 1469 } 1470 1471 *_stable_node_dup = found; 1472 return tree_page; 1473 } 1474 1475 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1476 struct rb_root *root) 1477 { 1478 if (!is_stable_node_chain(stable_node)) 1479 return stable_node; 1480 if (hlist_empty(&stable_node->hlist)) { 1481 free_stable_node_chain(stable_node, root); 1482 return NULL; 1483 } 1484 return hlist_entry(stable_node->hlist.first, 1485 typeof(*stable_node), hlist_dup); 1486 } 1487 1488 /* 1489 * Like for get_ksm_page, this function can free the *_stable_node and 1490 * *_stable_node_dup if the returned tree_page is NULL. 1491 * 1492 * It can also free and overwrite *_stable_node with the found 1493 * stable_node_dup if the chain is collapsed (in which case 1494 * *_stable_node will be equal to *_stable_node_dup like if the chain 1495 * never existed). It's up to the caller to verify tree_page is not 1496 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1497 * 1498 * *_stable_node_dup is really a second output parameter of this 1499 * function and will be overwritten in all cases, the caller doesn't 1500 * need to initialize it. 1501 */ 1502 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1503 struct stable_node **_stable_node, 1504 struct rb_root *root, 1505 bool prune_stale_stable_nodes) 1506 { 1507 struct stable_node *stable_node = *_stable_node; 1508 if (!is_stable_node_chain(stable_node)) { 1509 if (is_page_sharing_candidate(stable_node)) { 1510 *_stable_node_dup = stable_node; 1511 return get_ksm_page(stable_node, false); 1512 } 1513 /* 1514 * _stable_node_dup set to NULL means the stable_node 1515 * reached the ksm_max_page_sharing limit. 1516 */ 1517 *_stable_node_dup = NULL; 1518 return NULL; 1519 } 1520 return stable_node_dup(_stable_node_dup, _stable_node, root, 1521 prune_stale_stable_nodes); 1522 } 1523 1524 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1525 struct stable_node **s_n, 1526 struct rb_root *root) 1527 { 1528 return __stable_node_chain(s_n_d, s_n, root, true); 1529 } 1530 1531 static __always_inline struct page *chain(struct stable_node **s_n_d, 1532 struct stable_node *s_n, 1533 struct rb_root *root) 1534 { 1535 struct stable_node *old_stable_node = s_n; 1536 struct page *tree_page; 1537 1538 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1539 /* not pruning dups so s_n cannot have changed */ 1540 VM_BUG_ON(s_n != old_stable_node); 1541 return tree_page; 1542 } 1543 1544 /* 1545 * stable_tree_search - search for page inside the stable tree 1546 * 1547 * This function checks if there is a page inside the stable tree 1548 * with identical content to the page that we are scanning right now. 1549 * 1550 * This function returns the stable tree node of identical content if found, 1551 * NULL otherwise. 1552 */ 1553 static struct page *stable_tree_search(struct page *page) 1554 { 1555 int nid; 1556 struct rb_root *root; 1557 struct rb_node **new; 1558 struct rb_node *parent; 1559 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1560 struct stable_node *page_node; 1561 1562 page_node = page_stable_node(page); 1563 if (page_node && page_node->head != &migrate_nodes) { 1564 /* ksm page forked */ 1565 get_page(page); 1566 return page; 1567 } 1568 1569 nid = get_kpfn_nid(page_to_pfn(page)); 1570 root = root_stable_tree + nid; 1571 again: 1572 new = &root->rb_node; 1573 parent = NULL; 1574 1575 while (*new) { 1576 struct page *tree_page; 1577 int ret; 1578 1579 cond_resched(); 1580 stable_node = rb_entry(*new, struct stable_node, node); 1581 stable_node_any = NULL; 1582 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1583 /* 1584 * NOTE: stable_node may have been freed by 1585 * chain_prune() if the returned stable_node_dup is 1586 * not NULL. stable_node_dup may have been inserted in 1587 * the rbtree instead as a regular stable_node (in 1588 * order to collapse the stable_node chain if a single 1589 * stable_node dup was found in it). In such case the 1590 * stable_node is overwritten by the calleee to point 1591 * to the stable_node_dup that was collapsed in the 1592 * stable rbtree and stable_node will be equal to 1593 * stable_node_dup like if the chain never existed. 1594 */ 1595 if (!stable_node_dup) { 1596 /* 1597 * Either all stable_node dups were full in 1598 * this stable_node chain, or this chain was 1599 * empty and should be rb_erased. 1600 */ 1601 stable_node_any = stable_node_dup_any(stable_node, 1602 root); 1603 if (!stable_node_any) { 1604 /* rb_erase just run */ 1605 goto again; 1606 } 1607 /* 1608 * Take any of the stable_node dups page of 1609 * this stable_node chain to let the tree walk 1610 * continue. All KSM pages belonging to the 1611 * stable_node dups in a stable_node chain 1612 * have the same content and they're 1613 * wrprotected at all times. Any will work 1614 * fine to continue the walk. 1615 */ 1616 tree_page = get_ksm_page(stable_node_any, false); 1617 } 1618 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1619 if (!tree_page) { 1620 /* 1621 * If we walked over a stale stable_node, 1622 * get_ksm_page() will call rb_erase() and it 1623 * may rebalance the tree from under us. So 1624 * restart the search from scratch. Returning 1625 * NULL would be safe too, but we'd generate 1626 * false negative insertions just because some 1627 * stable_node was stale. 1628 */ 1629 goto again; 1630 } 1631 1632 ret = memcmp_pages(page, tree_page); 1633 put_page(tree_page); 1634 1635 parent = *new; 1636 if (ret < 0) 1637 new = &parent->rb_left; 1638 else if (ret > 0) 1639 new = &parent->rb_right; 1640 else { 1641 if (page_node) { 1642 VM_BUG_ON(page_node->head != &migrate_nodes); 1643 /* 1644 * Test if the migrated page should be merged 1645 * into a stable node dup. If the mapcount is 1646 * 1 we can migrate it with another KSM page 1647 * without adding it to the chain. 1648 */ 1649 if (page_mapcount(page) > 1) 1650 goto chain_append; 1651 } 1652 1653 if (!stable_node_dup) { 1654 /* 1655 * If the stable_node is a chain and 1656 * we got a payload match in memcmp 1657 * but we cannot merge the scanned 1658 * page in any of the existing 1659 * stable_node dups because they're 1660 * all full, we need to wait the 1661 * scanned page to find itself a match 1662 * in the unstable tree to create a 1663 * brand new KSM page to add later to 1664 * the dups of this stable_node. 1665 */ 1666 return NULL; 1667 } 1668 1669 /* 1670 * Lock and unlock the stable_node's page (which 1671 * might already have been migrated) so that page 1672 * migration is sure to notice its raised count. 1673 * It would be more elegant to return stable_node 1674 * than kpage, but that involves more changes. 1675 */ 1676 tree_page = get_ksm_page(stable_node_dup, true); 1677 if (unlikely(!tree_page)) 1678 /* 1679 * The tree may have been rebalanced, 1680 * so re-evaluate parent and new. 1681 */ 1682 goto again; 1683 unlock_page(tree_page); 1684 1685 if (get_kpfn_nid(stable_node_dup->kpfn) != 1686 NUMA(stable_node_dup->nid)) { 1687 put_page(tree_page); 1688 goto replace; 1689 } 1690 return tree_page; 1691 } 1692 } 1693 1694 if (!page_node) 1695 return NULL; 1696 1697 list_del(&page_node->list); 1698 DO_NUMA(page_node->nid = nid); 1699 rb_link_node(&page_node->node, parent, new); 1700 rb_insert_color(&page_node->node, root); 1701 out: 1702 if (is_page_sharing_candidate(page_node)) { 1703 get_page(page); 1704 return page; 1705 } else 1706 return NULL; 1707 1708 replace: 1709 /* 1710 * If stable_node was a chain and chain_prune collapsed it, 1711 * stable_node has been updated to be the new regular 1712 * stable_node. A collapse of the chain is indistinguishable 1713 * from the case there was no chain in the stable 1714 * rbtree. Otherwise stable_node is the chain and 1715 * stable_node_dup is the dup to replace. 1716 */ 1717 if (stable_node_dup == stable_node) { 1718 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1719 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1720 /* there is no chain */ 1721 if (page_node) { 1722 VM_BUG_ON(page_node->head != &migrate_nodes); 1723 list_del(&page_node->list); 1724 DO_NUMA(page_node->nid = nid); 1725 rb_replace_node(&stable_node_dup->node, 1726 &page_node->node, 1727 root); 1728 if (is_page_sharing_candidate(page_node)) 1729 get_page(page); 1730 else 1731 page = NULL; 1732 } else { 1733 rb_erase(&stable_node_dup->node, root); 1734 page = NULL; 1735 } 1736 } else { 1737 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1738 __stable_node_dup_del(stable_node_dup); 1739 if (page_node) { 1740 VM_BUG_ON(page_node->head != &migrate_nodes); 1741 list_del(&page_node->list); 1742 DO_NUMA(page_node->nid = nid); 1743 stable_node_chain_add_dup(page_node, stable_node); 1744 if (is_page_sharing_candidate(page_node)) 1745 get_page(page); 1746 else 1747 page = NULL; 1748 } else { 1749 page = NULL; 1750 } 1751 } 1752 stable_node_dup->head = &migrate_nodes; 1753 list_add(&stable_node_dup->list, stable_node_dup->head); 1754 return page; 1755 1756 chain_append: 1757 /* stable_node_dup could be null if it reached the limit */ 1758 if (!stable_node_dup) 1759 stable_node_dup = stable_node_any; 1760 /* 1761 * If stable_node was a chain and chain_prune collapsed it, 1762 * stable_node has been updated to be the new regular 1763 * stable_node. A collapse of the chain is indistinguishable 1764 * from the case there was no chain in the stable 1765 * rbtree. Otherwise stable_node is the chain and 1766 * stable_node_dup is the dup to replace. 1767 */ 1768 if (stable_node_dup == stable_node) { 1769 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1770 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1771 /* chain is missing so create it */ 1772 stable_node = alloc_stable_node_chain(stable_node_dup, 1773 root); 1774 if (!stable_node) 1775 return NULL; 1776 } 1777 /* 1778 * Add this stable_node dup that was 1779 * migrated to the stable_node chain 1780 * of the current nid for this page 1781 * content. 1782 */ 1783 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1784 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1785 VM_BUG_ON(page_node->head != &migrate_nodes); 1786 list_del(&page_node->list); 1787 DO_NUMA(page_node->nid = nid); 1788 stable_node_chain_add_dup(page_node, stable_node); 1789 goto out; 1790 } 1791 1792 /* 1793 * stable_tree_insert - insert stable tree node pointing to new ksm page 1794 * into the stable tree. 1795 * 1796 * This function returns the stable tree node just allocated on success, 1797 * NULL otherwise. 1798 */ 1799 static struct stable_node *stable_tree_insert(struct page *kpage) 1800 { 1801 int nid; 1802 unsigned long kpfn; 1803 struct rb_root *root; 1804 struct rb_node **new; 1805 struct rb_node *parent; 1806 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1807 bool need_chain = false; 1808 1809 kpfn = page_to_pfn(kpage); 1810 nid = get_kpfn_nid(kpfn); 1811 root = root_stable_tree + nid; 1812 again: 1813 parent = NULL; 1814 new = &root->rb_node; 1815 1816 while (*new) { 1817 struct page *tree_page; 1818 int ret; 1819 1820 cond_resched(); 1821 stable_node = rb_entry(*new, struct stable_node, node); 1822 stable_node_any = NULL; 1823 tree_page = chain(&stable_node_dup, stable_node, root); 1824 if (!stable_node_dup) { 1825 /* 1826 * Either all stable_node dups were full in 1827 * this stable_node chain, or this chain was 1828 * empty and should be rb_erased. 1829 */ 1830 stable_node_any = stable_node_dup_any(stable_node, 1831 root); 1832 if (!stable_node_any) { 1833 /* rb_erase just run */ 1834 goto again; 1835 } 1836 /* 1837 * Take any of the stable_node dups page of 1838 * this stable_node chain to let the tree walk 1839 * continue. All KSM pages belonging to the 1840 * stable_node dups in a stable_node chain 1841 * have the same content and they're 1842 * wrprotected at all times. Any will work 1843 * fine to continue the walk. 1844 */ 1845 tree_page = get_ksm_page(stable_node_any, false); 1846 } 1847 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1848 if (!tree_page) { 1849 /* 1850 * If we walked over a stale stable_node, 1851 * get_ksm_page() will call rb_erase() and it 1852 * may rebalance the tree from under us. So 1853 * restart the search from scratch. Returning 1854 * NULL would be safe too, but we'd generate 1855 * false negative insertions just because some 1856 * stable_node was stale. 1857 */ 1858 goto again; 1859 } 1860 1861 ret = memcmp_pages(kpage, tree_page); 1862 put_page(tree_page); 1863 1864 parent = *new; 1865 if (ret < 0) 1866 new = &parent->rb_left; 1867 else if (ret > 0) 1868 new = &parent->rb_right; 1869 else { 1870 need_chain = true; 1871 break; 1872 } 1873 } 1874 1875 stable_node_dup = alloc_stable_node(); 1876 if (!stable_node_dup) 1877 return NULL; 1878 1879 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1880 stable_node_dup->kpfn = kpfn; 1881 set_page_stable_node(kpage, stable_node_dup); 1882 stable_node_dup->rmap_hlist_len = 0; 1883 DO_NUMA(stable_node_dup->nid = nid); 1884 if (!need_chain) { 1885 rb_link_node(&stable_node_dup->node, parent, new); 1886 rb_insert_color(&stable_node_dup->node, root); 1887 } else { 1888 if (!is_stable_node_chain(stable_node)) { 1889 struct stable_node *orig = stable_node; 1890 /* chain is missing so create it */ 1891 stable_node = alloc_stable_node_chain(orig, root); 1892 if (!stable_node) { 1893 free_stable_node(stable_node_dup); 1894 return NULL; 1895 } 1896 } 1897 stable_node_chain_add_dup(stable_node_dup, stable_node); 1898 } 1899 1900 return stable_node_dup; 1901 } 1902 1903 /* 1904 * unstable_tree_search_insert - search for identical page, 1905 * else insert rmap_item into the unstable tree. 1906 * 1907 * This function searches for a page in the unstable tree identical to the 1908 * page currently being scanned; and if no identical page is found in the 1909 * tree, we insert rmap_item as a new object into the unstable tree. 1910 * 1911 * This function returns pointer to rmap_item found to be identical 1912 * to the currently scanned page, NULL otherwise. 1913 * 1914 * This function does both searching and inserting, because they share 1915 * the same walking algorithm in an rbtree. 1916 */ 1917 static 1918 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1919 struct page *page, 1920 struct page **tree_pagep) 1921 { 1922 struct rb_node **new; 1923 struct rb_root *root; 1924 struct rb_node *parent = NULL; 1925 int nid; 1926 1927 nid = get_kpfn_nid(page_to_pfn(page)); 1928 root = root_unstable_tree + nid; 1929 new = &root->rb_node; 1930 1931 while (*new) { 1932 struct rmap_item *tree_rmap_item; 1933 struct page *tree_page; 1934 int ret; 1935 1936 cond_resched(); 1937 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1938 tree_page = get_mergeable_page(tree_rmap_item); 1939 if (!tree_page) 1940 return NULL; 1941 1942 /* 1943 * Don't substitute a ksm page for a forked page. 1944 */ 1945 if (page == tree_page) { 1946 put_page(tree_page); 1947 return NULL; 1948 } 1949 1950 ret = memcmp_pages(page, tree_page); 1951 1952 parent = *new; 1953 if (ret < 0) { 1954 put_page(tree_page); 1955 new = &parent->rb_left; 1956 } else if (ret > 0) { 1957 put_page(tree_page); 1958 new = &parent->rb_right; 1959 } else if (!ksm_merge_across_nodes && 1960 page_to_nid(tree_page) != nid) { 1961 /* 1962 * If tree_page has been migrated to another NUMA node, 1963 * it will be flushed out and put in the right unstable 1964 * tree next time: only merge with it when across_nodes. 1965 */ 1966 put_page(tree_page); 1967 return NULL; 1968 } else { 1969 *tree_pagep = tree_page; 1970 return tree_rmap_item; 1971 } 1972 } 1973 1974 rmap_item->address |= UNSTABLE_FLAG; 1975 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1976 DO_NUMA(rmap_item->nid = nid); 1977 rb_link_node(&rmap_item->node, parent, new); 1978 rb_insert_color(&rmap_item->node, root); 1979 1980 ksm_pages_unshared++; 1981 return NULL; 1982 } 1983 1984 /* 1985 * stable_tree_append - add another rmap_item to the linked list of 1986 * rmap_items hanging off a given node of the stable tree, all sharing 1987 * the same ksm page. 1988 */ 1989 static void stable_tree_append(struct rmap_item *rmap_item, 1990 struct stable_node *stable_node, 1991 bool max_page_sharing_bypass) 1992 { 1993 /* 1994 * rmap won't find this mapping if we don't insert the 1995 * rmap_item in the right stable_node 1996 * duplicate. page_migration could break later if rmap breaks, 1997 * so we can as well crash here. We really need to check for 1998 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1999 * for other negative values as an undeflow if detected here 2000 * for the first time (and not when decreasing rmap_hlist_len) 2001 * would be sign of memory corruption in the stable_node. 2002 */ 2003 BUG_ON(stable_node->rmap_hlist_len < 0); 2004 2005 stable_node->rmap_hlist_len++; 2006 if (!max_page_sharing_bypass) 2007 /* possibly non fatal but unexpected overflow, only warn */ 2008 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2009 ksm_max_page_sharing); 2010 2011 rmap_item->head = stable_node; 2012 rmap_item->address |= STABLE_FLAG; 2013 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2014 2015 if (rmap_item->hlist.next) 2016 ksm_pages_sharing++; 2017 else 2018 ksm_pages_shared++; 2019 } 2020 2021 /* 2022 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2023 * if not, compare checksum to previous and if it's the same, see if page can 2024 * be inserted into the unstable tree, or merged with a page already there and 2025 * both transferred to the stable tree. 2026 * 2027 * @page: the page that we are searching identical page to. 2028 * @rmap_item: the reverse mapping into the virtual address of this page 2029 */ 2030 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2031 { 2032 struct mm_struct *mm = rmap_item->mm; 2033 struct rmap_item *tree_rmap_item; 2034 struct page *tree_page = NULL; 2035 struct stable_node *stable_node; 2036 struct page *kpage; 2037 unsigned int checksum; 2038 int err; 2039 bool max_page_sharing_bypass = false; 2040 2041 stable_node = page_stable_node(page); 2042 if (stable_node) { 2043 if (stable_node->head != &migrate_nodes && 2044 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2045 NUMA(stable_node->nid)) { 2046 stable_node_dup_del(stable_node); 2047 stable_node->head = &migrate_nodes; 2048 list_add(&stable_node->list, stable_node->head); 2049 } 2050 if (stable_node->head != &migrate_nodes && 2051 rmap_item->head == stable_node) 2052 return; 2053 /* 2054 * If it's a KSM fork, allow it to go over the sharing limit 2055 * without warnings. 2056 */ 2057 if (!is_page_sharing_candidate(stable_node)) 2058 max_page_sharing_bypass = true; 2059 } 2060 2061 /* We first start with searching the page inside the stable tree */ 2062 kpage = stable_tree_search(page); 2063 if (kpage == page && rmap_item->head == stable_node) { 2064 put_page(kpage); 2065 return; 2066 } 2067 2068 remove_rmap_item_from_tree(rmap_item); 2069 2070 if (kpage) { 2071 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2072 if (!err) { 2073 /* 2074 * The page was successfully merged: 2075 * add its rmap_item to the stable tree. 2076 */ 2077 lock_page(kpage); 2078 stable_tree_append(rmap_item, page_stable_node(kpage), 2079 max_page_sharing_bypass); 2080 unlock_page(kpage); 2081 } 2082 put_page(kpage); 2083 return; 2084 } 2085 2086 /* 2087 * If the hash value of the page has changed from the last time 2088 * we calculated it, this page is changing frequently: therefore we 2089 * don't want to insert it in the unstable tree, and we don't want 2090 * to waste our time searching for something identical to it there. 2091 */ 2092 checksum = calc_checksum(page); 2093 if (rmap_item->oldchecksum != checksum) { 2094 rmap_item->oldchecksum = checksum; 2095 return; 2096 } 2097 2098 /* 2099 * Same checksum as an empty page. We attempt to merge it with the 2100 * appropriate zero page if the user enabled this via sysfs. 2101 */ 2102 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2103 struct vm_area_struct *vma; 2104 2105 down_read(&mm->mmap_sem); 2106 vma = find_mergeable_vma(mm, rmap_item->address); 2107 err = try_to_merge_one_page(vma, page, 2108 ZERO_PAGE(rmap_item->address)); 2109 up_read(&mm->mmap_sem); 2110 /* 2111 * In case of failure, the page was not really empty, so we 2112 * need to continue. Otherwise we're done. 2113 */ 2114 if (!err) 2115 return; 2116 } 2117 tree_rmap_item = 2118 unstable_tree_search_insert(rmap_item, page, &tree_page); 2119 if (tree_rmap_item) { 2120 bool split; 2121 2122 kpage = try_to_merge_two_pages(rmap_item, page, 2123 tree_rmap_item, tree_page); 2124 /* 2125 * If both pages we tried to merge belong to the same compound 2126 * page, then we actually ended up increasing the reference 2127 * count of the same compound page twice, and split_huge_page 2128 * failed. 2129 * Here we set a flag if that happened, and we use it later to 2130 * try split_huge_page again. Since we call put_page right 2131 * afterwards, the reference count will be correct and 2132 * split_huge_page should succeed. 2133 */ 2134 split = PageTransCompound(page) 2135 && compound_head(page) == compound_head(tree_page); 2136 put_page(tree_page); 2137 if (kpage) { 2138 /* 2139 * The pages were successfully merged: insert new 2140 * node in the stable tree and add both rmap_items. 2141 */ 2142 lock_page(kpage); 2143 stable_node = stable_tree_insert(kpage); 2144 if (stable_node) { 2145 stable_tree_append(tree_rmap_item, stable_node, 2146 false); 2147 stable_tree_append(rmap_item, stable_node, 2148 false); 2149 } 2150 unlock_page(kpage); 2151 2152 /* 2153 * If we fail to insert the page into the stable tree, 2154 * we will have 2 virtual addresses that are pointing 2155 * to a ksm page left outside the stable tree, 2156 * in which case we need to break_cow on both. 2157 */ 2158 if (!stable_node) { 2159 break_cow(tree_rmap_item); 2160 break_cow(rmap_item); 2161 } 2162 } else if (split) { 2163 /* 2164 * We are here if we tried to merge two pages and 2165 * failed because they both belonged to the same 2166 * compound page. We will split the page now, but no 2167 * merging will take place. 2168 * We do not want to add the cost of a full lock; if 2169 * the page is locked, it is better to skip it and 2170 * perhaps try again later. 2171 */ 2172 if (!trylock_page(page)) 2173 return; 2174 split_huge_page(page); 2175 unlock_page(page); 2176 } 2177 } 2178 } 2179 2180 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2181 struct rmap_item **rmap_list, 2182 unsigned long addr) 2183 { 2184 struct rmap_item *rmap_item; 2185 2186 while (*rmap_list) { 2187 rmap_item = *rmap_list; 2188 if ((rmap_item->address & PAGE_MASK) == addr) 2189 return rmap_item; 2190 if (rmap_item->address > addr) 2191 break; 2192 *rmap_list = rmap_item->rmap_list; 2193 remove_rmap_item_from_tree(rmap_item); 2194 free_rmap_item(rmap_item); 2195 } 2196 2197 rmap_item = alloc_rmap_item(); 2198 if (rmap_item) { 2199 /* It has already been zeroed */ 2200 rmap_item->mm = mm_slot->mm; 2201 rmap_item->address = addr; 2202 rmap_item->rmap_list = *rmap_list; 2203 *rmap_list = rmap_item; 2204 } 2205 return rmap_item; 2206 } 2207 2208 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2209 { 2210 struct mm_struct *mm; 2211 struct mm_slot *slot; 2212 struct vm_area_struct *vma; 2213 struct rmap_item *rmap_item; 2214 int nid; 2215 2216 if (list_empty(&ksm_mm_head.mm_list)) 2217 return NULL; 2218 2219 slot = ksm_scan.mm_slot; 2220 if (slot == &ksm_mm_head) { 2221 /* 2222 * A number of pages can hang around indefinitely on per-cpu 2223 * pagevecs, raised page count preventing write_protect_page 2224 * from merging them. Though it doesn't really matter much, 2225 * it is puzzling to see some stuck in pages_volatile until 2226 * other activity jostles them out, and they also prevented 2227 * LTP's KSM test from succeeding deterministically; so drain 2228 * them here (here rather than on entry to ksm_do_scan(), 2229 * so we don't IPI too often when pages_to_scan is set low). 2230 */ 2231 lru_add_drain_all(); 2232 2233 /* 2234 * Whereas stale stable_nodes on the stable_tree itself 2235 * get pruned in the regular course of stable_tree_search(), 2236 * those moved out to the migrate_nodes list can accumulate: 2237 * so prune them once before each full scan. 2238 */ 2239 if (!ksm_merge_across_nodes) { 2240 struct stable_node *stable_node, *next; 2241 struct page *page; 2242 2243 list_for_each_entry_safe(stable_node, next, 2244 &migrate_nodes, list) { 2245 page = get_ksm_page(stable_node, false); 2246 if (page) 2247 put_page(page); 2248 cond_resched(); 2249 } 2250 } 2251 2252 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2253 root_unstable_tree[nid] = RB_ROOT; 2254 2255 spin_lock(&ksm_mmlist_lock); 2256 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2257 ksm_scan.mm_slot = slot; 2258 spin_unlock(&ksm_mmlist_lock); 2259 /* 2260 * Although we tested list_empty() above, a racing __ksm_exit 2261 * of the last mm on the list may have removed it since then. 2262 */ 2263 if (slot == &ksm_mm_head) 2264 return NULL; 2265 next_mm: 2266 ksm_scan.address = 0; 2267 ksm_scan.rmap_list = &slot->rmap_list; 2268 } 2269 2270 mm = slot->mm; 2271 down_read(&mm->mmap_sem); 2272 if (ksm_test_exit(mm)) 2273 vma = NULL; 2274 else 2275 vma = find_vma(mm, ksm_scan.address); 2276 2277 for (; vma; vma = vma->vm_next) { 2278 if (!(vma->vm_flags & VM_MERGEABLE)) 2279 continue; 2280 if (ksm_scan.address < vma->vm_start) 2281 ksm_scan.address = vma->vm_start; 2282 if (!vma->anon_vma) 2283 ksm_scan.address = vma->vm_end; 2284 2285 while (ksm_scan.address < vma->vm_end) { 2286 if (ksm_test_exit(mm)) 2287 break; 2288 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2289 if (IS_ERR_OR_NULL(*page)) { 2290 ksm_scan.address += PAGE_SIZE; 2291 cond_resched(); 2292 continue; 2293 } 2294 if (PageAnon(*page)) { 2295 flush_anon_page(vma, *page, ksm_scan.address); 2296 flush_dcache_page(*page); 2297 rmap_item = get_next_rmap_item(slot, 2298 ksm_scan.rmap_list, ksm_scan.address); 2299 if (rmap_item) { 2300 ksm_scan.rmap_list = 2301 &rmap_item->rmap_list; 2302 ksm_scan.address += PAGE_SIZE; 2303 } else 2304 put_page(*page); 2305 up_read(&mm->mmap_sem); 2306 return rmap_item; 2307 } 2308 put_page(*page); 2309 ksm_scan.address += PAGE_SIZE; 2310 cond_resched(); 2311 } 2312 } 2313 2314 if (ksm_test_exit(mm)) { 2315 ksm_scan.address = 0; 2316 ksm_scan.rmap_list = &slot->rmap_list; 2317 } 2318 /* 2319 * Nuke all the rmap_items that are above this current rmap: 2320 * because there were no VM_MERGEABLE vmas with such addresses. 2321 */ 2322 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2323 2324 spin_lock(&ksm_mmlist_lock); 2325 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2326 struct mm_slot, mm_list); 2327 if (ksm_scan.address == 0) { 2328 /* 2329 * We've completed a full scan of all vmas, holding mmap_sem 2330 * throughout, and found no VM_MERGEABLE: so do the same as 2331 * __ksm_exit does to remove this mm from all our lists now. 2332 * This applies either when cleaning up after __ksm_exit 2333 * (but beware: we can reach here even before __ksm_exit), 2334 * or when all VM_MERGEABLE areas have been unmapped (and 2335 * mmap_sem then protects against race with MADV_MERGEABLE). 2336 */ 2337 hash_del(&slot->link); 2338 list_del(&slot->mm_list); 2339 spin_unlock(&ksm_mmlist_lock); 2340 2341 free_mm_slot(slot); 2342 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2343 up_read(&mm->mmap_sem); 2344 mmdrop(mm); 2345 } else { 2346 up_read(&mm->mmap_sem); 2347 /* 2348 * up_read(&mm->mmap_sem) first because after 2349 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2350 * already have been freed under us by __ksm_exit() 2351 * because the "mm_slot" is still hashed and 2352 * ksm_scan.mm_slot doesn't point to it anymore. 2353 */ 2354 spin_unlock(&ksm_mmlist_lock); 2355 } 2356 2357 /* Repeat until we've completed scanning the whole list */ 2358 slot = ksm_scan.mm_slot; 2359 if (slot != &ksm_mm_head) 2360 goto next_mm; 2361 2362 ksm_scan.seqnr++; 2363 return NULL; 2364 } 2365 2366 /** 2367 * ksm_do_scan - the ksm scanner main worker function. 2368 * @scan_npages: number of pages we want to scan before we return. 2369 */ 2370 static void ksm_do_scan(unsigned int scan_npages) 2371 { 2372 struct rmap_item *rmap_item; 2373 struct page *uninitialized_var(page); 2374 2375 while (scan_npages-- && likely(!freezing(current))) { 2376 cond_resched(); 2377 rmap_item = scan_get_next_rmap_item(&page); 2378 if (!rmap_item) 2379 return; 2380 cmp_and_merge_page(page, rmap_item); 2381 put_page(page); 2382 } 2383 } 2384 2385 static int ksmd_should_run(void) 2386 { 2387 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2388 } 2389 2390 static int ksm_scan_thread(void *nothing) 2391 { 2392 unsigned int sleep_ms; 2393 2394 set_freezable(); 2395 set_user_nice(current, 5); 2396 2397 while (!kthread_should_stop()) { 2398 mutex_lock(&ksm_thread_mutex); 2399 wait_while_offlining(); 2400 if (ksmd_should_run()) 2401 ksm_do_scan(ksm_thread_pages_to_scan); 2402 mutex_unlock(&ksm_thread_mutex); 2403 2404 try_to_freeze(); 2405 2406 if (ksmd_should_run()) { 2407 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2408 wait_event_interruptible_timeout(ksm_iter_wait, 2409 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2410 msecs_to_jiffies(sleep_ms)); 2411 } else { 2412 wait_event_freezable(ksm_thread_wait, 2413 ksmd_should_run() || kthread_should_stop()); 2414 } 2415 } 2416 return 0; 2417 } 2418 2419 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2420 unsigned long end, int advice, unsigned long *vm_flags) 2421 { 2422 struct mm_struct *mm = vma->vm_mm; 2423 int err; 2424 2425 switch (advice) { 2426 case MADV_MERGEABLE: 2427 /* 2428 * Be somewhat over-protective for now! 2429 */ 2430 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2431 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2432 VM_HUGETLB | VM_MIXEDMAP)) 2433 return 0; /* just ignore the advice */ 2434 2435 if (vma_is_dax(vma)) 2436 return 0; 2437 2438 #ifdef VM_SAO 2439 if (*vm_flags & VM_SAO) 2440 return 0; 2441 #endif 2442 #ifdef VM_SPARC_ADI 2443 if (*vm_flags & VM_SPARC_ADI) 2444 return 0; 2445 #endif 2446 2447 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2448 err = __ksm_enter(mm); 2449 if (err) 2450 return err; 2451 } 2452 2453 *vm_flags |= VM_MERGEABLE; 2454 break; 2455 2456 case MADV_UNMERGEABLE: 2457 if (!(*vm_flags & VM_MERGEABLE)) 2458 return 0; /* just ignore the advice */ 2459 2460 if (vma->anon_vma) { 2461 err = unmerge_ksm_pages(vma, start, end); 2462 if (err) 2463 return err; 2464 } 2465 2466 *vm_flags &= ~VM_MERGEABLE; 2467 break; 2468 } 2469 2470 return 0; 2471 } 2472 2473 int __ksm_enter(struct mm_struct *mm) 2474 { 2475 struct mm_slot *mm_slot; 2476 int needs_wakeup; 2477 2478 mm_slot = alloc_mm_slot(); 2479 if (!mm_slot) 2480 return -ENOMEM; 2481 2482 /* Check ksm_run too? Would need tighter locking */ 2483 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2484 2485 spin_lock(&ksm_mmlist_lock); 2486 insert_to_mm_slots_hash(mm, mm_slot); 2487 /* 2488 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2489 * insert just behind the scanning cursor, to let the area settle 2490 * down a little; when fork is followed by immediate exec, we don't 2491 * want ksmd to waste time setting up and tearing down an rmap_list. 2492 * 2493 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2494 * scanning cursor, otherwise KSM pages in newly forked mms will be 2495 * missed: then we might as well insert at the end of the list. 2496 */ 2497 if (ksm_run & KSM_RUN_UNMERGE) 2498 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2499 else 2500 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2501 spin_unlock(&ksm_mmlist_lock); 2502 2503 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2504 mmgrab(mm); 2505 2506 if (needs_wakeup) 2507 wake_up_interruptible(&ksm_thread_wait); 2508 2509 return 0; 2510 } 2511 2512 void __ksm_exit(struct mm_struct *mm) 2513 { 2514 struct mm_slot *mm_slot; 2515 int easy_to_free = 0; 2516 2517 /* 2518 * This process is exiting: if it's straightforward (as is the 2519 * case when ksmd was never running), free mm_slot immediately. 2520 * But if it's at the cursor or has rmap_items linked to it, use 2521 * mmap_sem to synchronize with any break_cows before pagetables 2522 * are freed, and leave the mm_slot on the list for ksmd to free. 2523 * Beware: ksm may already have noticed it exiting and freed the slot. 2524 */ 2525 2526 spin_lock(&ksm_mmlist_lock); 2527 mm_slot = get_mm_slot(mm); 2528 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2529 if (!mm_slot->rmap_list) { 2530 hash_del(&mm_slot->link); 2531 list_del(&mm_slot->mm_list); 2532 easy_to_free = 1; 2533 } else { 2534 list_move(&mm_slot->mm_list, 2535 &ksm_scan.mm_slot->mm_list); 2536 } 2537 } 2538 spin_unlock(&ksm_mmlist_lock); 2539 2540 if (easy_to_free) { 2541 free_mm_slot(mm_slot); 2542 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2543 mmdrop(mm); 2544 } else if (mm_slot) { 2545 down_write(&mm->mmap_sem); 2546 up_write(&mm->mmap_sem); 2547 } 2548 } 2549 2550 struct page *ksm_might_need_to_copy(struct page *page, 2551 struct vm_area_struct *vma, unsigned long address) 2552 { 2553 struct anon_vma *anon_vma = page_anon_vma(page); 2554 struct page *new_page; 2555 2556 if (PageKsm(page)) { 2557 if (page_stable_node(page) && 2558 !(ksm_run & KSM_RUN_UNMERGE)) 2559 return page; /* no need to copy it */ 2560 } else if (!anon_vma) { 2561 return page; /* no need to copy it */ 2562 } else if (anon_vma->root == vma->anon_vma->root && 2563 page->index == linear_page_index(vma, address)) { 2564 return page; /* still no need to copy it */ 2565 } 2566 if (!PageUptodate(page)) 2567 return page; /* let do_swap_page report the error */ 2568 2569 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2570 if (new_page) { 2571 copy_user_highpage(new_page, page, address, vma); 2572 2573 SetPageDirty(new_page); 2574 __SetPageUptodate(new_page); 2575 __SetPageLocked(new_page); 2576 } 2577 2578 return new_page; 2579 } 2580 2581 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2582 { 2583 struct stable_node *stable_node; 2584 struct rmap_item *rmap_item; 2585 int search_new_forks = 0; 2586 2587 VM_BUG_ON_PAGE(!PageKsm(page), page); 2588 2589 /* 2590 * Rely on the page lock to protect against concurrent modifications 2591 * to that page's node of the stable tree. 2592 */ 2593 VM_BUG_ON_PAGE(!PageLocked(page), page); 2594 2595 stable_node = page_stable_node(page); 2596 if (!stable_node) 2597 return; 2598 again: 2599 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2600 struct anon_vma *anon_vma = rmap_item->anon_vma; 2601 struct anon_vma_chain *vmac; 2602 struct vm_area_struct *vma; 2603 2604 cond_resched(); 2605 anon_vma_lock_read(anon_vma); 2606 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2607 0, ULONG_MAX) { 2608 unsigned long addr; 2609 2610 cond_resched(); 2611 vma = vmac->vma; 2612 2613 /* Ignore the stable/unstable/sqnr flags */ 2614 addr = rmap_item->address & ~KSM_FLAG_MASK; 2615 2616 if (addr < vma->vm_start || addr >= vma->vm_end) 2617 continue; 2618 /* 2619 * Initially we examine only the vma which covers this 2620 * rmap_item; but later, if there is still work to do, 2621 * we examine covering vmas in other mms: in case they 2622 * were forked from the original since ksmd passed. 2623 */ 2624 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2625 continue; 2626 2627 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2628 continue; 2629 2630 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2631 anon_vma_unlock_read(anon_vma); 2632 return; 2633 } 2634 if (rwc->done && rwc->done(page)) { 2635 anon_vma_unlock_read(anon_vma); 2636 return; 2637 } 2638 } 2639 anon_vma_unlock_read(anon_vma); 2640 } 2641 if (!search_new_forks++) 2642 goto again; 2643 } 2644 2645 #ifdef CONFIG_MIGRATION 2646 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2647 { 2648 struct stable_node *stable_node; 2649 2650 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2651 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2652 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2653 2654 stable_node = page_stable_node(newpage); 2655 if (stable_node) { 2656 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2657 stable_node->kpfn = page_to_pfn(newpage); 2658 /* 2659 * newpage->mapping was set in advance; now we need smp_wmb() 2660 * to make sure that the new stable_node->kpfn is visible 2661 * to get_ksm_page() before it can see that oldpage->mapping 2662 * has gone stale (or that PageSwapCache has been cleared). 2663 */ 2664 smp_wmb(); 2665 set_page_stable_node(oldpage, NULL); 2666 } 2667 } 2668 #endif /* CONFIG_MIGRATION */ 2669 2670 #ifdef CONFIG_MEMORY_HOTREMOVE 2671 static void wait_while_offlining(void) 2672 { 2673 while (ksm_run & KSM_RUN_OFFLINE) { 2674 mutex_unlock(&ksm_thread_mutex); 2675 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2676 TASK_UNINTERRUPTIBLE); 2677 mutex_lock(&ksm_thread_mutex); 2678 } 2679 } 2680 2681 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2682 unsigned long start_pfn, 2683 unsigned long end_pfn) 2684 { 2685 if (stable_node->kpfn >= start_pfn && 2686 stable_node->kpfn < end_pfn) { 2687 /* 2688 * Don't get_ksm_page, page has already gone: 2689 * which is why we keep kpfn instead of page* 2690 */ 2691 remove_node_from_stable_tree(stable_node); 2692 return true; 2693 } 2694 return false; 2695 } 2696 2697 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2698 unsigned long start_pfn, 2699 unsigned long end_pfn, 2700 struct rb_root *root) 2701 { 2702 struct stable_node *dup; 2703 struct hlist_node *hlist_safe; 2704 2705 if (!is_stable_node_chain(stable_node)) { 2706 VM_BUG_ON(is_stable_node_dup(stable_node)); 2707 return stable_node_dup_remove_range(stable_node, start_pfn, 2708 end_pfn); 2709 } 2710 2711 hlist_for_each_entry_safe(dup, hlist_safe, 2712 &stable_node->hlist, hlist_dup) { 2713 VM_BUG_ON(!is_stable_node_dup(dup)); 2714 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2715 } 2716 if (hlist_empty(&stable_node->hlist)) { 2717 free_stable_node_chain(stable_node, root); 2718 return true; /* notify caller that tree was rebalanced */ 2719 } else 2720 return false; 2721 } 2722 2723 static void ksm_check_stable_tree(unsigned long start_pfn, 2724 unsigned long end_pfn) 2725 { 2726 struct stable_node *stable_node, *next; 2727 struct rb_node *node; 2728 int nid; 2729 2730 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2731 node = rb_first(root_stable_tree + nid); 2732 while (node) { 2733 stable_node = rb_entry(node, struct stable_node, node); 2734 if (stable_node_chain_remove_range(stable_node, 2735 start_pfn, end_pfn, 2736 root_stable_tree + 2737 nid)) 2738 node = rb_first(root_stable_tree + nid); 2739 else 2740 node = rb_next(node); 2741 cond_resched(); 2742 } 2743 } 2744 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2745 if (stable_node->kpfn >= start_pfn && 2746 stable_node->kpfn < end_pfn) 2747 remove_node_from_stable_tree(stable_node); 2748 cond_resched(); 2749 } 2750 } 2751 2752 static int ksm_memory_callback(struct notifier_block *self, 2753 unsigned long action, void *arg) 2754 { 2755 struct memory_notify *mn = arg; 2756 2757 switch (action) { 2758 case MEM_GOING_OFFLINE: 2759 /* 2760 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2761 * and remove_all_stable_nodes() while memory is going offline: 2762 * it is unsafe for them to touch the stable tree at this time. 2763 * But unmerge_ksm_pages(), rmap lookups and other entry points 2764 * which do not need the ksm_thread_mutex are all safe. 2765 */ 2766 mutex_lock(&ksm_thread_mutex); 2767 ksm_run |= KSM_RUN_OFFLINE; 2768 mutex_unlock(&ksm_thread_mutex); 2769 break; 2770 2771 case MEM_OFFLINE: 2772 /* 2773 * Most of the work is done by page migration; but there might 2774 * be a few stable_nodes left over, still pointing to struct 2775 * pages which have been offlined: prune those from the tree, 2776 * otherwise get_ksm_page() might later try to access a 2777 * non-existent struct page. 2778 */ 2779 ksm_check_stable_tree(mn->start_pfn, 2780 mn->start_pfn + mn->nr_pages); 2781 /* fallthrough */ 2782 2783 case MEM_CANCEL_OFFLINE: 2784 mutex_lock(&ksm_thread_mutex); 2785 ksm_run &= ~KSM_RUN_OFFLINE; 2786 mutex_unlock(&ksm_thread_mutex); 2787 2788 smp_mb(); /* wake_up_bit advises this */ 2789 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2790 break; 2791 } 2792 return NOTIFY_OK; 2793 } 2794 #else 2795 static void wait_while_offlining(void) 2796 { 2797 } 2798 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2799 2800 #ifdef CONFIG_SYSFS 2801 /* 2802 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2803 */ 2804 2805 #define KSM_ATTR_RO(_name) \ 2806 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2807 #define KSM_ATTR(_name) \ 2808 static struct kobj_attribute _name##_attr = \ 2809 __ATTR(_name, 0644, _name##_show, _name##_store) 2810 2811 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2812 struct kobj_attribute *attr, char *buf) 2813 { 2814 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2815 } 2816 2817 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2818 struct kobj_attribute *attr, 2819 const char *buf, size_t count) 2820 { 2821 unsigned long msecs; 2822 int err; 2823 2824 err = kstrtoul(buf, 10, &msecs); 2825 if (err || msecs > UINT_MAX) 2826 return -EINVAL; 2827 2828 ksm_thread_sleep_millisecs = msecs; 2829 wake_up_interruptible(&ksm_iter_wait); 2830 2831 return count; 2832 } 2833 KSM_ATTR(sleep_millisecs); 2834 2835 static ssize_t pages_to_scan_show(struct kobject *kobj, 2836 struct kobj_attribute *attr, char *buf) 2837 { 2838 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2839 } 2840 2841 static ssize_t pages_to_scan_store(struct kobject *kobj, 2842 struct kobj_attribute *attr, 2843 const char *buf, size_t count) 2844 { 2845 int err; 2846 unsigned long nr_pages; 2847 2848 err = kstrtoul(buf, 10, &nr_pages); 2849 if (err || nr_pages > UINT_MAX) 2850 return -EINVAL; 2851 2852 ksm_thread_pages_to_scan = nr_pages; 2853 2854 return count; 2855 } 2856 KSM_ATTR(pages_to_scan); 2857 2858 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2859 char *buf) 2860 { 2861 return sprintf(buf, "%lu\n", ksm_run); 2862 } 2863 2864 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2865 const char *buf, size_t count) 2866 { 2867 int err; 2868 unsigned long flags; 2869 2870 err = kstrtoul(buf, 10, &flags); 2871 if (err || flags > UINT_MAX) 2872 return -EINVAL; 2873 if (flags > KSM_RUN_UNMERGE) 2874 return -EINVAL; 2875 2876 /* 2877 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2878 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2879 * breaking COW to free the pages_shared (but leaves mm_slots 2880 * on the list for when ksmd may be set running again). 2881 */ 2882 2883 mutex_lock(&ksm_thread_mutex); 2884 wait_while_offlining(); 2885 if (ksm_run != flags) { 2886 ksm_run = flags; 2887 if (flags & KSM_RUN_UNMERGE) { 2888 set_current_oom_origin(); 2889 err = unmerge_and_remove_all_rmap_items(); 2890 clear_current_oom_origin(); 2891 if (err) { 2892 ksm_run = KSM_RUN_STOP; 2893 count = err; 2894 } 2895 } 2896 } 2897 mutex_unlock(&ksm_thread_mutex); 2898 2899 if (flags & KSM_RUN_MERGE) 2900 wake_up_interruptible(&ksm_thread_wait); 2901 2902 return count; 2903 } 2904 KSM_ATTR(run); 2905 2906 #ifdef CONFIG_NUMA 2907 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2908 struct kobj_attribute *attr, char *buf) 2909 { 2910 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2911 } 2912 2913 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2914 struct kobj_attribute *attr, 2915 const char *buf, size_t count) 2916 { 2917 int err; 2918 unsigned long knob; 2919 2920 err = kstrtoul(buf, 10, &knob); 2921 if (err) 2922 return err; 2923 if (knob > 1) 2924 return -EINVAL; 2925 2926 mutex_lock(&ksm_thread_mutex); 2927 wait_while_offlining(); 2928 if (ksm_merge_across_nodes != knob) { 2929 if (ksm_pages_shared || remove_all_stable_nodes()) 2930 err = -EBUSY; 2931 else if (root_stable_tree == one_stable_tree) { 2932 struct rb_root *buf; 2933 /* 2934 * This is the first time that we switch away from the 2935 * default of merging across nodes: must now allocate 2936 * a buffer to hold as many roots as may be needed. 2937 * Allocate stable and unstable together: 2938 * MAXSMP NODES_SHIFT 10 will use 16kB. 2939 */ 2940 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2941 GFP_KERNEL); 2942 /* Let us assume that RB_ROOT is NULL is zero */ 2943 if (!buf) 2944 err = -ENOMEM; 2945 else { 2946 root_stable_tree = buf; 2947 root_unstable_tree = buf + nr_node_ids; 2948 /* Stable tree is empty but not the unstable */ 2949 root_unstable_tree[0] = one_unstable_tree[0]; 2950 } 2951 } 2952 if (!err) { 2953 ksm_merge_across_nodes = knob; 2954 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2955 } 2956 } 2957 mutex_unlock(&ksm_thread_mutex); 2958 2959 return err ? err : count; 2960 } 2961 KSM_ATTR(merge_across_nodes); 2962 #endif 2963 2964 static ssize_t use_zero_pages_show(struct kobject *kobj, 2965 struct kobj_attribute *attr, char *buf) 2966 { 2967 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2968 } 2969 static ssize_t use_zero_pages_store(struct kobject *kobj, 2970 struct kobj_attribute *attr, 2971 const char *buf, size_t count) 2972 { 2973 int err; 2974 bool value; 2975 2976 err = kstrtobool(buf, &value); 2977 if (err) 2978 return -EINVAL; 2979 2980 ksm_use_zero_pages = value; 2981 2982 return count; 2983 } 2984 KSM_ATTR(use_zero_pages); 2985 2986 static ssize_t max_page_sharing_show(struct kobject *kobj, 2987 struct kobj_attribute *attr, char *buf) 2988 { 2989 return sprintf(buf, "%u\n", ksm_max_page_sharing); 2990 } 2991 2992 static ssize_t max_page_sharing_store(struct kobject *kobj, 2993 struct kobj_attribute *attr, 2994 const char *buf, size_t count) 2995 { 2996 int err; 2997 int knob; 2998 2999 err = kstrtoint(buf, 10, &knob); 3000 if (err) 3001 return err; 3002 /* 3003 * When a KSM page is created it is shared by 2 mappings. This 3004 * being a signed comparison, it implicitly verifies it's not 3005 * negative. 3006 */ 3007 if (knob < 2) 3008 return -EINVAL; 3009 3010 if (READ_ONCE(ksm_max_page_sharing) == knob) 3011 return count; 3012 3013 mutex_lock(&ksm_thread_mutex); 3014 wait_while_offlining(); 3015 if (ksm_max_page_sharing != knob) { 3016 if (ksm_pages_shared || remove_all_stable_nodes()) 3017 err = -EBUSY; 3018 else 3019 ksm_max_page_sharing = knob; 3020 } 3021 mutex_unlock(&ksm_thread_mutex); 3022 3023 return err ? err : count; 3024 } 3025 KSM_ATTR(max_page_sharing); 3026 3027 static ssize_t pages_shared_show(struct kobject *kobj, 3028 struct kobj_attribute *attr, char *buf) 3029 { 3030 return sprintf(buf, "%lu\n", ksm_pages_shared); 3031 } 3032 KSM_ATTR_RO(pages_shared); 3033 3034 static ssize_t pages_sharing_show(struct kobject *kobj, 3035 struct kobj_attribute *attr, char *buf) 3036 { 3037 return sprintf(buf, "%lu\n", ksm_pages_sharing); 3038 } 3039 KSM_ATTR_RO(pages_sharing); 3040 3041 static ssize_t pages_unshared_show(struct kobject *kobj, 3042 struct kobj_attribute *attr, char *buf) 3043 { 3044 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3045 } 3046 KSM_ATTR_RO(pages_unshared); 3047 3048 static ssize_t pages_volatile_show(struct kobject *kobj, 3049 struct kobj_attribute *attr, char *buf) 3050 { 3051 long ksm_pages_volatile; 3052 3053 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3054 - ksm_pages_sharing - ksm_pages_unshared; 3055 /* 3056 * It was not worth any locking to calculate that statistic, 3057 * but it might therefore sometimes be negative: conceal that. 3058 */ 3059 if (ksm_pages_volatile < 0) 3060 ksm_pages_volatile = 0; 3061 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3062 } 3063 KSM_ATTR_RO(pages_volatile); 3064 3065 static ssize_t stable_node_dups_show(struct kobject *kobj, 3066 struct kobj_attribute *attr, char *buf) 3067 { 3068 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3069 } 3070 KSM_ATTR_RO(stable_node_dups); 3071 3072 static ssize_t stable_node_chains_show(struct kobject *kobj, 3073 struct kobj_attribute *attr, char *buf) 3074 { 3075 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3076 } 3077 KSM_ATTR_RO(stable_node_chains); 3078 3079 static ssize_t 3080 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3081 struct kobj_attribute *attr, 3082 char *buf) 3083 { 3084 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3085 } 3086 3087 static ssize_t 3088 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3089 struct kobj_attribute *attr, 3090 const char *buf, size_t count) 3091 { 3092 unsigned long msecs; 3093 int err; 3094 3095 err = kstrtoul(buf, 10, &msecs); 3096 if (err || msecs > UINT_MAX) 3097 return -EINVAL; 3098 3099 ksm_stable_node_chains_prune_millisecs = msecs; 3100 3101 return count; 3102 } 3103 KSM_ATTR(stable_node_chains_prune_millisecs); 3104 3105 static ssize_t full_scans_show(struct kobject *kobj, 3106 struct kobj_attribute *attr, char *buf) 3107 { 3108 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3109 } 3110 KSM_ATTR_RO(full_scans); 3111 3112 static struct attribute *ksm_attrs[] = { 3113 &sleep_millisecs_attr.attr, 3114 &pages_to_scan_attr.attr, 3115 &run_attr.attr, 3116 &pages_shared_attr.attr, 3117 &pages_sharing_attr.attr, 3118 &pages_unshared_attr.attr, 3119 &pages_volatile_attr.attr, 3120 &full_scans_attr.attr, 3121 #ifdef CONFIG_NUMA 3122 &merge_across_nodes_attr.attr, 3123 #endif 3124 &max_page_sharing_attr.attr, 3125 &stable_node_chains_attr.attr, 3126 &stable_node_dups_attr.attr, 3127 &stable_node_chains_prune_millisecs_attr.attr, 3128 &use_zero_pages_attr.attr, 3129 NULL, 3130 }; 3131 3132 static const struct attribute_group ksm_attr_group = { 3133 .attrs = ksm_attrs, 3134 .name = "ksm", 3135 }; 3136 #endif /* CONFIG_SYSFS */ 3137 3138 static int __init ksm_init(void) 3139 { 3140 struct task_struct *ksm_thread; 3141 int err; 3142 3143 /* The correct value depends on page size and endianness */ 3144 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3145 /* Default to false for backwards compatibility */ 3146 ksm_use_zero_pages = false; 3147 3148 err = ksm_slab_init(); 3149 if (err) 3150 goto out; 3151 3152 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3153 if (IS_ERR(ksm_thread)) { 3154 pr_err("ksm: creating kthread failed\n"); 3155 err = PTR_ERR(ksm_thread); 3156 goto out_free; 3157 } 3158 3159 #ifdef CONFIG_SYSFS 3160 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3161 if (err) { 3162 pr_err("ksm: register sysfs failed\n"); 3163 kthread_stop(ksm_thread); 3164 goto out_free; 3165 } 3166 #else 3167 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3168 3169 #endif /* CONFIG_SYSFS */ 3170 3171 #ifdef CONFIG_MEMORY_HOTREMOVE 3172 /* There is no significance to this priority 100 */ 3173 hotplug_memory_notifier(ksm_memory_callback, 100); 3174 #endif 3175 return 0; 3176 3177 out_free: 3178 ksm_slab_free(); 3179 out: 3180 return err; 3181 } 3182 subsys_initcall(ksm_init); 3183