1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same struct stable_node structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 220 /* The stable and unstable tree heads */ 221 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 222 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 223 static struct rb_root *root_stable_tree = one_stable_tree; 224 static struct rb_root *root_unstable_tree = one_unstable_tree; 225 226 /* Recently migrated nodes of stable tree, pending proper placement */ 227 static LIST_HEAD(migrate_nodes); 228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 229 230 #define MM_SLOTS_HASH_BITS 10 231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 232 233 static struct mm_slot ksm_mm_head = { 234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 235 }; 236 static struct ksm_scan ksm_scan = { 237 .mm_slot = &ksm_mm_head, 238 }; 239 240 static struct kmem_cache *rmap_item_cache; 241 static struct kmem_cache *stable_node_cache; 242 static struct kmem_cache *mm_slot_cache; 243 244 /* The number of nodes in the stable tree */ 245 static unsigned long ksm_pages_shared; 246 247 /* The number of page slots additionally sharing those nodes */ 248 static unsigned long ksm_pages_sharing; 249 250 /* The number of nodes in the unstable tree */ 251 static unsigned long ksm_pages_unshared; 252 253 /* The number of rmap_items in use: to calculate pages_volatile */ 254 static unsigned long ksm_rmap_items; 255 256 /* The number of stable_node chains */ 257 static unsigned long ksm_stable_node_chains; 258 259 /* The number of stable_node dups linked to the stable_node chains */ 260 static unsigned long ksm_stable_node_dups; 261 262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 264 265 /* Maximum number of page slots sharing a stable node */ 266 static int ksm_max_page_sharing = 256; 267 268 /* Number of pages ksmd should scan in one batch */ 269 static unsigned int ksm_thread_pages_to_scan = 100; 270 271 /* Milliseconds ksmd should sleep between batches */ 272 static unsigned int ksm_thread_sleep_millisecs = 20; 273 274 /* Checksum of an empty (zeroed) page */ 275 static unsigned int zero_checksum __read_mostly; 276 277 /* Whether to merge empty (zeroed) pages with actual zero pages */ 278 static bool ksm_use_zero_pages __read_mostly; 279 280 #ifdef CONFIG_NUMA 281 /* Zeroed when merging across nodes is not allowed */ 282 static unsigned int ksm_merge_across_nodes = 1; 283 static int ksm_nr_node_ids = 1; 284 #else 285 #define ksm_merge_across_nodes 1U 286 #define ksm_nr_node_ids 1 287 #endif 288 289 #define KSM_RUN_STOP 0 290 #define KSM_RUN_MERGE 1 291 #define KSM_RUN_UNMERGE 2 292 #define KSM_RUN_OFFLINE 4 293 static unsigned long ksm_run = KSM_RUN_STOP; 294 static void wait_while_offlining(void); 295 296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 298 static DEFINE_MUTEX(ksm_thread_mutex); 299 static DEFINE_SPINLOCK(ksm_mmlist_lock); 300 301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 302 sizeof(struct __struct), __alignof__(struct __struct),\ 303 (__flags), NULL) 304 305 static int __init ksm_slab_init(void) 306 { 307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 308 if (!rmap_item_cache) 309 goto out; 310 311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 312 if (!stable_node_cache) 313 goto out_free1; 314 315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 316 if (!mm_slot_cache) 317 goto out_free2; 318 319 return 0; 320 321 out_free2: 322 kmem_cache_destroy(stable_node_cache); 323 out_free1: 324 kmem_cache_destroy(rmap_item_cache); 325 out: 326 return -ENOMEM; 327 } 328 329 static void __init ksm_slab_free(void) 330 { 331 kmem_cache_destroy(mm_slot_cache); 332 kmem_cache_destroy(stable_node_cache); 333 kmem_cache_destroy(rmap_item_cache); 334 mm_slot_cache = NULL; 335 } 336 337 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 338 { 339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 340 } 341 342 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 343 { 344 return dup->head == STABLE_NODE_DUP_HEAD; 345 } 346 347 static inline void stable_node_chain_add_dup(struct stable_node *dup, 348 struct stable_node *chain) 349 { 350 VM_BUG_ON(is_stable_node_dup(dup)); 351 dup->head = STABLE_NODE_DUP_HEAD; 352 VM_BUG_ON(!is_stable_node_chain(chain)); 353 hlist_add_head(&dup->hlist_dup, &chain->hlist); 354 ksm_stable_node_dups++; 355 } 356 357 static inline void __stable_node_dup_del(struct stable_node *dup) 358 { 359 VM_BUG_ON(!is_stable_node_dup(dup)); 360 hlist_del(&dup->hlist_dup); 361 ksm_stable_node_dups--; 362 } 363 364 static inline void stable_node_dup_del(struct stable_node *dup) 365 { 366 VM_BUG_ON(is_stable_node_chain(dup)); 367 if (is_stable_node_dup(dup)) 368 __stable_node_dup_del(dup); 369 else 370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 371 #ifdef CONFIG_DEBUG_VM 372 dup->head = NULL; 373 #endif 374 } 375 376 static inline struct rmap_item *alloc_rmap_item(void) 377 { 378 struct rmap_item *rmap_item; 379 380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 381 __GFP_NORETRY | __GFP_NOWARN); 382 if (rmap_item) 383 ksm_rmap_items++; 384 return rmap_item; 385 } 386 387 static inline void free_rmap_item(struct rmap_item *rmap_item) 388 { 389 ksm_rmap_items--; 390 rmap_item->mm = NULL; /* debug safety */ 391 kmem_cache_free(rmap_item_cache, rmap_item); 392 } 393 394 static inline struct stable_node *alloc_stable_node(void) 395 { 396 /* 397 * The allocation can take too long with GFP_KERNEL when memory is under 398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 399 * grants access to memory reserves, helping to avoid this problem. 400 */ 401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 402 } 403 404 static inline void free_stable_node(struct stable_node *stable_node) 405 { 406 VM_BUG_ON(stable_node->rmap_hlist_len && 407 !is_stable_node_chain(stable_node)); 408 kmem_cache_free(stable_node_cache, stable_node); 409 } 410 411 static inline struct mm_slot *alloc_mm_slot(void) 412 { 413 if (!mm_slot_cache) /* initialization failed */ 414 return NULL; 415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 416 } 417 418 static inline void free_mm_slot(struct mm_slot *mm_slot) 419 { 420 kmem_cache_free(mm_slot_cache, mm_slot); 421 } 422 423 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 424 { 425 struct mm_slot *slot; 426 427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 428 if (slot->mm == mm) 429 return slot; 430 431 return NULL; 432 } 433 434 static void insert_to_mm_slots_hash(struct mm_struct *mm, 435 struct mm_slot *mm_slot) 436 { 437 mm_slot->mm = mm; 438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 439 } 440 441 /* 442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 443 * page tables after it has passed through ksm_exit() - which, if necessary, 444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 445 * a special flag: they can just back out as soon as mm_users goes to zero. 446 * ksm_test_exit() is used throughout to make this test for exit: in some 447 * places for correctness, in some places just to avoid unnecessary work. 448 */ 449 static inline bool ksm_test_exit(struct mm_struct *mm) 450 { 451 return atomic_read(&mm->mm_users) == 0; 452 } 453 454 /* 455 * We use break_ksm to break COW on a ksm page: it's a stripped down 456 * 457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 458 * put_page(page); 459 * 460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 461 * in case the application has unmapped and remapped mm,addr meanwhile. 462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 463 * mmap of /dev/mem, where we would not want to touch it. 464 * 465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 466 * of the process that owns 'vma'. We also do not want to enforce 467 * protection keys here anyway. 468 */ 469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 470 { 471 struct page *page; 472 vm_fault_t ret = 0; 473 474 do { 475 cond_resched(); 476 page = follow_page(vma, addr, 477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 478 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page)) 479 break; 480 if (PageKsm(page)) 481 ret = handle_mm_fault(vma, addr, 482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 483 NULL); 484 else 485 ret = VM_FAULT_WRITE; 486 put_page(page); 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 488 /* 489 * We must loop because handle_mm_fault() may back out if there's 490 * any difficulty e.g. if pte accessed bit gets updated concurrently. 491 * 492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 493 * COW has been broken, even if the vma does not permit VM_WRITE; 494 * but note that a concurrent fault might break PageKsm for us. 495 * 496 * VM_FAULT_SIGBUS could occur if we race with truncation of the 497 * backing file, which also invalidates anonymous pages: that's 498 * okay, that truncation will have unmapped the PageKsm for us. 499 * 500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 502 * current task has TIF_MEMDIE set, and will be OOM killed on return 503 * to user; and ksmd, having no mm, would never be chosen for that. 504 * 505 * But if the mm is in a limited mem_cgroup, then the fault may fail 506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 507 * even ksmd can fail in this way - though it's usually breaking ksm 508 * just to undo a merge it made a moment before, so unlikely to oom. 509 * 510 * That's a pity: we might therefore have more kernel pages allocated 511 * than we're counting as nodes in the stable tree; but ksm_do_scan 512 * will retry to break_cow on each pass, so should recover the page 513 * in due course. The important thing is to not let VM_MERGEABLE 514 * be cleared while any such pages might remain in the area. 515 */ 516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 517 } 518 519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 520 unsigned long addr) 521 { 522 struct vm_area_struct *vma; 523 if (ksm_test_exit(mm)) 524 return NULL; 525 vma = vma_lookup(mm, addr); 526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 527 return NULL; 528 return vma; 529 } 530 531 static void break_cow(struct rmap_item *rmap_item) 532 { 533 struct mm_struct *mm = rmap_item->mm; 534 unsigned long addr = rmap_item->address; 535 struct vm_area_struct *vma; 536 537 /* 538 * It is not an accident that whenever we want to break COW 539 * to undo, we also need to drop a reference to the anon_vma. 540 */ 541 put_anon_vma(rmap_item->anon_vma); 542 543 mmap_read_lock(mm); 544 vma = find_mergeable_vma(mm, addr); 545 if (vma) 546 break_ksm(vma, addr); 547 mmap_read_unlock(mm); 548 } 549 550 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 551 { 552 struct mm_struct *mm = rmap_item->mm; 553 unsigned long addr = rmap_item->address; 554 struct vm_area_struct *vma; 555 struct page *page; 556 557 mmap_read_lock(mm); 558 vma = find_mergeable_vma(mm, addr); 559 if (!vma) 560 goto out; 561 562 page = follow_page(vma, addr, FOLL_GET); 563 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page)) 564 goto out; 565 if (PageAnon(page)) { 566 flush_anon_page(vma, page, addr); 567 flush_dcache_page(page); 568 } else { 569 put_page(page); 570 out: 571 page = NULL; 572 } 573 mmap_read_unlock(mm); 574 return page; 575 } 576 577 /* 578 * This helper is used for getting right index into array of tree roots. 579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 580 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 581 * every node has its own stable and unstable tree. 582 */ 583 static inline int get_kpfn_nid(unsigned long kpfn) 584 { 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 586 } 587 588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 589 struct rb_root *root) 590 { 591 struct stable_node *chain = alloc_stable_node(); 592 VM_BUG_ON(is_stable_node_chain(dup)); 593 if (likely(chain)) { 594 INIT_HLIST_HEAD(&chain->hlist); 595 chain->chain_prune_time = jiffies; 596 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 598 chain->nid = NUMA_NO_NODE; /* debug */ 599 #endif 600 ksm_stable_node_chains++; 601 602 /* 603 * Put the stable node chain in the first dimension of 604 * the stable tree and at the same time remove the old 605 * stable node. 606 */ 607 rb_replace_node(&dup->node, &chain->node, root); 608 609 /* 610 * Move the old stable node to the second dimension 611 * queued in the hlist_dup. The invariant is that all 612 * dup stable_nodes in the chain->hlist point to pages 613 * that are write protected and have the exact same 614 * content. 615 */ 616 stable_node_chain_add_dup(dup, chain); 617 } 618 return chain; 619 } 620 621 static inline void free_stable_node_chain(struct stable_node *chain, 622 struct rb_root *root) 623 { 624 rb_erase(&chain->node, root); 625 free_stable_node(chain); 626 ksm_stable_node_chains--; 627 } 628 629 static void remove_node_from_stable_tree(struct stable_node *stable_node) 630 { 631 struct rmap_item *rmap_item; 632 633 /* check it's not STABLE_NODE_CHAIN or negative */ 634 BUG_ON(stable_node->rmap_hlist_len < 0); 635 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 637 if (rmap_item->hlist.next) 638 ksm_pages_sharing--; 639 else 640 ksm_pages_shared--; 641 642 rmap_item->mm->ksm_merging_pages--; 643 644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 645 stable_node->rmap_hlist_len--; 646 put_anon_vma(rmap_item->anon_vma); 647 rmap_item->address &= PAGE_MASK; 648 cond_resched(); 649 } 650 651 /* 652 * We need the second aligned pointer of the migrate_nodes 653 * list_head to stay clear from the rb_parent_color union 654 * (aligned and different than any node) and also different 655 * from &migrate_nodes. This will verify that future list.h changes 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 657 */ 658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 660 661 if (stable_node->head == &migrate_nodes) 662 list_del(&stable_node->list); 663 else 664 stable_node_dup_del(stable_node); 665 free_stable_node(stable_node); 666 } 667 668 enum get_ksm_page_flags { 669 GET_KSM_PAGE_NOLOCK, 670 GET_KSM_PAGE_LOCK, 671 GET_KSM_PAGE_TRYLOCK 672 }; 673 674 /* 675 * get_ksm_page: checks if the page indicated by the stable node 676 * is still its ksm page, despite having held no reference to it. 677 * In which case we can trust the content of the page, and it 678 * returns the gotten page; but if the page has now been zapped, 679 * remove the stale node from the stable tree and return NULL. 680 * But beware, the stable node's page might be being migrated. 681 * 682 * You would expect the stable_node to hold a reference to the ksm page. 683 * But if it increments the page's count, swapping out has to wait for 684 * ksmd to come around again before it can free the page, which may take 685 * seconds or even minutes: much too unresponsive. So instead we use a 686 * "keyhole reference": access to the ksm page from the stable node peeps 687 * out through its keyhole to see if that page still holds the right key, 688 * pointing back to this stable node. This relies on freeing a PageAnon 689 * page to reset its page->mapping to NULL, and relies on no other use of 690 * a page to put something that might look like our key in page->mapping. 691 * is on its way to being freed; but it is an anomaly to bear in mind. 692 */ 693 static struct page *get_ksm_page(struct stable_node *stable_node, 694 enum get_ksm_page_flags flags) 695 { 696 struct page *page; 697 void *expected_mapping; 698 unsigned long kpfn; 699 700 expected_mapping = (void *)((unsigned long)stable_node | 701 PAGE_MAPPING_KSM); 702 again: 703 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 704 page = pfn_to_page(kpfn); 705 if (READ_ONCE(page->mapping) != expected_mapping) 706 goto stale; 707 708 /* 709 * We cannot do anything with the page while its refcount is 0. 710 * Usually 0 means free, or tail of a higher-order page: in which 711 * case this node is no longer referenced, and should be freed; 712 * however, it might mean that the page is under page_ref_freeze(). 713 * The __remove_mapping() case is easy, again the node is now stale; 714 * the same is in reuse_ksm_page() case; but if page is swapcache 715 * in folio_migrate_mapping(), it might still be our page, 716 * in which case it's essential to keep the node. 717 */ 718 while (!get_page_unless_zero(page)) { 719 /* 720 * Another check for page->mapping != expected_mapping would 721 * work here too. We have chosen the !PageSwapCache test to 722 * optimize the common case, when the page is or is about to 723 * be freed: PageSwapCache is cleared (under spin_lock_irq) 724 * in the ref_freeze section of __remove_mapping(); but Anon 725 * page->mapping reset to NULL later, in free_pages_prepare(). 726 */ 727 if (!PageSwapCache(page)) 728 goto stale; 729 cpu_relax(); 730 } 731 732 if (READ_ONCE(page->mapping) != expected_mapping) { 733 put_page(page); 734 goto stale; 735 } 736 737 if (flags == GET_KSM_PAGE_TRYLOCK) { 738 if (!trylock_page(page)) { 739 put_page(page); 740 return ERR_PTR(-EBUSY); 741 } 742 } else if (flags == GET_KSM_PAGE_LOCK) 743 lock_page(page); 744 745 if (flags != GET_KSM_PAGE_NOLOCK) { 746 if (READ_ONCE(page->mapping) != expected_mapping) { 747 unlock_page(page); 748 put_page(page); 749 goto stale; 750 } 751 } 752 return page; 753 754 stale: 755 /* 756 * We come here from above when page->mapping or !PageSwapCache 757 * suggests that the node is stale; but it might be under migration. 758 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 759 * before checking whether node->kpfn has been changed. 760 */ 761 smp_rmb(); 762 if (READ_ONCE(stable_node->kpfn) != kpfn) 763 goto again; 764 remove_node_from_stable_tree(stable_node); 765 return NULL; 766 } 767 768 /* 769 * Removing rmap_item from stable or unstable tree. 770 * This function will clean the information from the stable/unstable tree. 771 */ 772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 773 { 774 if (rmap_item->address & STABLE_FLAG) { 775 struct stable_node *stable_node; 776 struct page *page; 777 778 stable_node = rmap_item->head; 779 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 780 if (!page) 781 goto out; 782 783 hlist_del(&rmap_item->hlist); 784 unlock_page(page); 785 put_page(page); 786 787 if (!hlist_empty(&stable_node->hlist)) 788 ksm_pages_sharing--; 789 else 790 ksm_pages_shared--; 791 792 rmap_item->mm->ksm_merging_pages--; 793 794 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 795 stable_node->rmap_hlist_len--; 796 797 put_anon_vma(rmap_item->anon_vma); 798 rmap_item->head = NULL; 799 rmap_item->address &= PAGE_MASK; 800 801 } else if (rmap_item->address & UNSTABLE_FLAG) { 802 unsigned char age; 803 /* 804 * Usually ksmd can and must skip the rb_erase, because 805 * root_unstable_tree was already reset to RB_ROOT. 806 * But be careful when an mm is exiting: do the rb_erase 807 * if this rmap_item was inserted by this scan, rather 808 * than left over from before. 809 */ 810 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 811 BUG_ON(age > 1); 812 if (!age) 813 rb_erase(&rmap_item->node, 814 root_unstable_tree + NUMA(rmap_item->nid)); 815 ksm_pages_unshared--; 816 rmap_item->address &= PAGE_MASK; 817 } 818 out: 819 cond_resched(); /* we're called from many long loops */ 820 } 821 822 static void remove_trailing_rmap_items(struct rmap_item **rmap_list) 823 { 824 while (*rmap_list) { 825 struct rmap_item *rmap_item = *rmap_list; 826 *rmap_list = rmap_item->rmap_list; 827 remove_rmap_item_from_tree(rmap_item); 828 free_rmap_item(rmap_item); 829 } 830 } 831 832 /* 833 * Though it's very tempting to unmerge rmap_items from stable tree rather 834 * than check every pte of a given vma, the locking doesn't quite work for 835 * that - an rmap_item is assigned to the stable tree after inserting ksm 836 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 837 * rmap_items from parent to child at fork time (so as not to waste time 838 * if exit comes before the next scan reaches it). 839 * 840 * Similarly, although we'd like to remove rmap_items (so updating counts 841 * and freeing memory) when unmerging an area, it's easier to leave that 842 * to the next pass of ksmd - consider, for example, how ksmd might be 843 * in cmp_and_merge_page on one of the rmap_items we would be removing. 844 */ 845 static int unmerge_ksm_pages(struct vm_area_struct *vma, 846 unsigned long start, unsigned long end) 847 { 848 unsigned long addr; 849 int err = 0; 850 851 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 852 if (ksm_test_exit(vma->vm_mm)) 853 break; 854 if (signal_pending(current)) 855 err = -ERESTARTSYS; 856 else 857 err = break_ksm(vma, addr); 858 } 859 return err; 860 } 861 862 static inline struct stable_node *folio_stable_node(struct folio *folio) 863 { 864 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 865 } 866 867 static inline struct stable_node *page_stable_node(struct page *page) 868 { 869 return folio_stable_node(page_folio(page)); 870 } 871 872 static inline void set_page_stable_node(struct page *page, 873 struct stable_node *stable_node) 874 { 875 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 876 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 877 } 878 879 #ifdef CONFIG_SYSFS 880 /* 881 * Only called through the sysfs control interface: 882 */ 883 static int remove_stable_node(struct stable_node *stable_node) 884 { 885 struct page *page; 886 int err; 887 888 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 889 if (!page) { 890 /* 891 * get_ksm_page did remove_node_from_stable_tree itself. 892 */ 893 return 0; 894 } 895 896 /* 897 * Page could be still mapped if this races with __mmput() running in 898 * between ksm_exit() and exit_mmap(). Just refuse to let 899 * merge_across_nodes/max_page_sharing be switched. 900 */ 901 err = -EBUSY; 902 if (!page_mapped(page)) { 903 /* 904 * The stable node did not yet appear stale to get_ksm_page(), 905 * since that allows for an unmapped ksm page to be recognized 906 * right up until it is freed; but the node is safe to remove. 907 * This page might be in a pagevec waiting to be freed, 908 * or it might be PageSwapCache (perhaps under writeback), 909 * or it might have been removed from swapcache a moment ago. 910 */ 911 set_page_stable_node(page, NULL); 912 remove_node_from_stable_tree(stable_node); 913 err = 0; 914 } 915 916 unlock_page(page); 917 put_page(page); 918 return err; 919 } 920 921 static int remove_stable_node_chain(struct stable_node *stable_node, 922 struct rb_root *root) 923 { 924 struct stable_node *dup; 925 struct hlist_node *hlist_safe; 926 927 if (!is_stable_node_chain(stable_node)) { 928 VM_BUG_ON(is_stable_node_dup(stable_node)); 929 if (remove_stable_node(stable_node)) 930 return true; 931 else 932 return false; 933 } 934 935 hlist_for_each_entry_safe(dup, hlist_safe, 936 &stable_node->hlist, hlist_dup) { 937 VM_BUG_ON(!is_stable_node_dup(dup)); 938 if (remove_stable_node(dup)) 939 return true; 940 } 941 BUG_ON(!hlist_empty(&stable_node->hlist)); 942 free_stable_node_chain(stable_node, root); 943 return false; 944 } 945 946 static int remove_all_stable_nodes(void) 947 { 948 struct stable_node *stable_node, *next; 949 int nid; 950 int err = 0; 951 952 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 953 while (root_stable_tree[nid].rb_node) { 954 stable_node = rb_entry(root_stable_tree[nid].rb_node, 955 struct stable_node, node); 956 if (remove_stable_node_chain(stable_node, 957 root_stable_tree + nid)) { 958 err = -EBUSY; 959 break; /* proceed to next nid */ 960 } 961 cond_resched(); 962 } 963 } 964 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 965 if (remove_stable_node(stable_node)) 966 err = -EBUSY; 967 cond_resched(); 968 } 969 return err; 970 } 971 972 static int unmerge_and_remove_all_rmap_items(void) 973 { 974 struct mm_slot *mm_slot; 975 struct mm_struct *mm; 976 struct vm_area_struct *vma; 977 int err = 0; 978 979 spin_lock(&ksm_mmlist_lock); 980 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 981 struct mm_slot, mm_list); 982 spin_unlock(&ksm_mmlist_lock); 983 984 for (mm_slot = ksm_scan.mm_slot; 985 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 986 mm = mm_slot->mm; 987 mmap_read_lock(mm); 988 for (vma = mm->mmap; vma; vma = vma->vm_next) { 989 if (ksm_test_exit(mm)) 990 break; 991 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 992 continue; 993 err = unmerge_ksm_pages(vma, 994 vma->vm_start, vma->vm_end); 995 if (err) 996 goto error; 997 } 998 999 remove_trailing_rmap_items(&mm_slot->rmap_list); 1000 mmap_read_unlock(mm); 1001 1002 spin_lock(&ksm_mmlist_lock); 1003 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 1004 struct mm_slot, mm_list); 1005 if (ksm_test_exit(mm)) { 1006 hash_del(&mm_slot->link); 1007 list_del(&mm_slot->mm_list); 1008 spin_unlock(&ksm_mmlist_lock); 1009 1010 free_mm_slot(mm_slot); 1011 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1012 mmdrop(mm); 1013 } else 1014 spin_unlock(&ksm_mmlist_lock); 1015 } 1016 1017 /* Clean up stable nodes, but don't worry if some are still busy */ 1018 remove_all_stable_nodes(); 1019 ksm_scan.seqnr = 0; 1020 return 0; 1021 1022 error: 1023 mmap_read_unlock(mm); 1024 spin_lock(&ksm_mmlist_lock); 1025 ksm_scan.mm_slot = &ksm_mm_head; 1026 spin_unlock(&ksm_mmlist_lock); 1027 return err; 1028 } 1029 #endif /* CONFIG_SYSFS */ 1030 1031 static u32 calc_checksum(struct page *page) 1032 { 1033 u32 checksum; 1034 void *addr = kmap_atomic(page); 1035 checksum = xxhash(addr, PAGE_SIZE, 0); 1036 kunmap_atomic(addr); 1037 return checksum; 1038 } 1039 1040 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1041 pte_t *orig_pte) 1042 { 1043 struct mm_struct *mm = vma->vm_mm; 1044 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1045 int swapped; 1046 int err = -EFAULT; 1047 struct mmu_notifier_range range; 1048 bool anon_exclusive; 1049 1050 pvmw.address = page_address_in_vma(page, vma); 1051 if (pvmw.address == -EFAULT) 1052 goto out; 1053 1054 BUG_ON(PageTransCompound(page)); 1055 1056 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1057 pvmw.address, 1058 pvmw.address + PAGE_SIZE); 1059 mmu_notifier_invalidate_range_start(&range); 1060 1061 if (!page_vma_mapped_walk(&pvmw)) 1062 goto out_mn; 1063 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1064 goto out_unlock; 1065 1066 anon_exclusive = PageAnonExclusive(page); 1067 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1068 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1069 anon_exclusive || mm_tlb_flush_pending(mm)) { 1070 pte_t entry; 1071 1072 swapped = PageSwapCache(page); 1073 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1074 /* 1075 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1076 * take any lock, therefore the check that we are going to make 1077 * with the pagecount against the mapcount is racy and 1078 * O_DIRECT can happen right after the check. 1079 * So we clear the pte and flush the tlb before the check 1080 * this assure us that no O_DIRECT can happen after the check 1081 * or in the middle of the check. 1082 * 1083 * No need to notify as we are downgrading page table to read 1084 * only not changing it to point to a new page. 1085 * 1086 * See Documentation/mm/mmu_notifier.rst 1087 */ 1088 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1089 /* 1090 * Check that no O_DIRECT or similar I/O is in progress on the 1091 * page 1092 */ 1093 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1094 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1095 goto out_unlock; 1096 } 1097 1098 if (anon_exclusive && page_try_share_anon_rmap(page)) { 1099 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1100 goto out_unlock; 1101 } 1102 1103 if (pte_dirty(entry)) 1104 set_page_dirty(page); 1105 1106 if (pte_protnone(entry)) 1107 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1108 else 1109 entry = pte_mkclean(pte_wrprotect(entry)); 1110 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1111 } 1112 *orig_pte = *pvmw.pte; 1113 err = 0; 1114 1115 out_unlock: 1116 page_vma_mapped_walk_done(&pvmw); 1117 out_mn: 1118 mmu_notifier_invalidate_range_end(&range); 1119 out: 1120 return err; 1121 } 1122 1123 /** 1124 * replace_page - replace page in vma by new ksm page 1125 * @vma: vma that holds the pte pointing to page 1126 * @page: the page we are replacing by kpage 1127 * @kpage: the ksm page we replace page by 1128 * @orig_pte: the original value of the pte 1129 * 1130 * Returns 0 on success, -EFAULT on failure. 1131 */ 1132 static int replace_page(struct vm_area_struct *vma, struct page *page, 1133 struct page *kpage, pte_t orig_pte) 1134 { 1135 struct mm_struct *mm = vma->vm_mm; 1136 pmd_t *pmd; 1137 pte_t *ptep; 1138 pte_t newpte; 1139 spinlock_t *ptl; 1140 unsigned long addr; 1141 int err = -EFAULT; 1142 struct mmu_notifier_range range; 1143 1144 addr = page_address_in_vma(page, vma); 1145 if (addr == -EFAULT) 1146 goto out; 1147 1148 pmd = mm_find_pmd(mm, addr); 1149 if (!pmd) 1150 goto out; 1151 1152 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1153 addr + PAGE_SIZE); 1154 mmu_notifier_invalidate_range_start(&range); 1155 1156 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1157 if (!pte_same(*ptep, orig_pte)) { 1158 pte_unmap_unlock(ptep, ptl); 1159 goto out_mn; 1160 } 1161 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1162 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); 1163 1164 /* 1165 * No need to check ksm_use_zero_pages here: we can only have a 1166 * zero_page here if ksm_use_zero_pages was enabled already. 1167 */ 1168 if (!is_zero_pfn(page_to_pfn(kpage))) { 1169 get_page(kpage); 1170 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); 1171 newpte = mk_pte(kpage, vma->vm_page_prot); 1172 } else { 1173 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1174 vma->vm_page_prot)); 1175 /* 1176 * We're replacing an anonymous page with a zero page, which is 1177 * not anonymous. We need to do proper accounting otherwise we 1178 * will get wrong values in /proc, and a BUG message in dmesg 1179 * when tearing down the mm. 1180 */ 1181 dec_mm_counter(mm, MM_ANONPAGES); 1182 } 1183 1184 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1185 /* 1186 * No need to notify as we are replacing a read only page with another 1187 * read only page with the same content. 1188 * 1189 * See Documentation/mm/mmu_notifier.rst 1190 */ 1191 ptep_clear_flush(vma, addr, ptep); 1192 set_pte_at_notify(mm, addr, ptep, newpte); 1193 1194 page_remove_rmap(page, vma, false); 1195 if (!page_mapped(page)) 1196 try_to_free_swap(page); 1197 put_page(page); 1198 1199 pte_unmap_unlock(ptep, ptl); 1200 err = 0; 1201 out_mn: 1202 mmu_notifier_invalidate_range_end(&range); 1203 out: 1204 return err; 1205 } 1206 1207 /* 1208 * try_to_merge_one_page - take two pages and merge them into one 1209 * @vma: the vma that holds the pte pointing to page 1210 * @page: the PageAnon page that we want to replace with kpage 1211 * @kpage: the PageKsm page that we want to map instead of page, 1212 * or NULL the first time when we want to use page as kpage. 1213 * 1214 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1215 */ 1216 static int try_to_merge_one_page(struct vm_area_struct *vma, 1217 struct page *page, struct page *kpage) 1218 { 1219 pte_t orig_pte = __pte(0); 1220 int err = -EFAULT; 1221 1222 if (page == kpage) /* ksm page forked */ 1223 return 0; 1224 1225 if (!PageAnon(page)) 1226 goto out; 1227 1228 /* 1229 * We need the page lock to read a stable PageSwapCache in 1230 * write_protect_page(). We use trylock_page() instead of 1231 * lock_page() because we don't want to wait here - we 1232 * prefer to continue scanning and merging different pages, 1233 * then come back to this page when it is unlocked. 1234 */ 1235 if (!trylock_page(page)) 1236 goto out; 1237 1238 if (PageTransCompound(page)) { 1239 if (split_huge_page(page)) 1240 goto out_unlock; 1241 } 1242 1243 /* 1244 * If this anonymous page is mapped only here, its pte may need 1245 * to be write-protected. If it's mapped elsewhere, all of its 1246 * ptes are necessarily already write-protected. But in either 1247 * case, we need to lock and check page_count is not raised. 1248 */ 1249 if (write_protect_page(vma, page, &orig_pte) == 0) { 1250 if (!kpage) { 1251 /* 1252 * While we hold page lock, upgrade page from 1253 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1254 * stable_tree_insert() will update stable_node. 1255 */ 1256 set_page_stable_node(page, NULL); 1257 mark_page_accessed(page); 1258 /* 1259 * Page reclaim just frees a clean page with no dirty 1260 * ptes: make sure that the ksm page would be swapped. 1261 */ 1262 if (!PageDirty(page)) 1263 SetPageDirty(page); 1264 err = 0; 1265 } else if (pages_identical(page, kpage)) 1266 err = replace_page(vma, page, kpage, orig_pte); 1267 } 1268 1269 out_unlock: 1270 unlock_page(page); 1271 out: 1272 return err; 1273 } 1274 1275 /* 1276 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1277 * but no new kernel page is allocated: kpage must already be a ksm page. 1278 * 1279 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1280 */ 1281 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1282 struct page *page, struct page *kpage) 1283 { 1284 struct mm_struct *mm = rmap_item->mm; 1285 struct vm_area_struct *vma; 1286 int err = -EFAULT; 1287 1288 mmap_read_lock(mm); 1289 vma = find_mergeable_vma(mm, rmap_item->address); 1290 if (!vma) 1291 goto out; 1292 1293 err = try_to_merge_one_page(vma, page, kpage); 1294 if (err) 1295 goto out; 1296 1297 /* Unstable nid is in union with stable anon_vma: remove first */ 1298 remove_rmap_item_from_tree(rmap_item); 1299 1300 /* Must get reference to anon_vma while still holding mmap_lock */ 1301 rmap_item->anon_vma = vma->anon_vma; 1302 get_anon_vma(vma->anon_vma); 1303 out: 1304 mmap_read_unlock(mm); 1305 return err; 1306 } 1307 1308 /* 1309 * try_to_merge_two_pages - take two identical pages and prepare them 1310 * to be merged into one page. 1311 * 1312 * This function returns the kpage if we successfully merged two identical 1313 * pages into one ksm page, NULL otherwise. 1314 * 1315 * Note that this function upgrades page to ksm page: if one of the pages 1316 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1317 */ 1318 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1319 struct page *page, 1320 struct rmap_item *tree_rmap_item, 1321 struct page *tree_page) 1322 { 1323 int err; 1324 1325 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1326 if (!err) { 1327 err = try_to_merge_with_ksm_page(tree_rmap_item, 1328 tree_page, page); 1329 /* 1330 * If that fails, we have a ksm page with only one pte 1331 * pointing to it: so break it. 1332 */ 1333 if (err) 1334 break_cow(rmap_item); 1335 } 1336 return err ? NULL : page; 1337 } 1338 1339 static __always_inline 1340 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1341 { 1342 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1343 /* 1344 * Check that at least one mapping still exists, otherwise 1345 * there's no much point to merge and share with this 1346 * stable_node, as the underlying tree_page of the other 1347 * sharer is going to be freed soon. 1348 */ 1349 return stable_node->rmap_hlist_len && 1350 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1351 } 1352 1353 static __always_inline 1354 bool is_page_sharing_candidate(struct stable_node *stable_node) 1355 { 1356 return __is_page_sharing_candidate(stable_node, 0); 1357 } 1358 1359 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1360 struct stable_node **_stable_node, 1361 struct rb_root *root, 1362 bool prune_stale_stable_nodes) 1363 { 1364 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1365 struct hlist_node *hlist_safe; 1366 struct page *_tree_page, *tree_page = NULL; 1367 int nr = 0; 1368 int found_rmap_hlist_len; 1369 1370 if (!prune_stale_stable_nodes || 1371 time_before(jiffies, stable_node->chain_prune_time + 1372 msecs_to_jiffies( 1373 ksm_stable_node_chains_prune_millisecs))) 1374 prune_stale_stable_nodes = false; 1375 else 1376 stable_node->chain_prune_time = jiffies; 1377 1378 hlist_for_each_entry_safe(dup, hlist_safe, 1379 &stable_node->hlist, hlist_dup) { 1380 cond_resched(); 1381 /* 1382 * We must walk all stable_node_dup to prune the stale 1383 * stable nodes during lookup. 1384 * 1385 * get_ksm_page can drop the nodes from the 1386 * stable_node->hlist if they point to freed pages 1387 * (that's why we do a _safe walk). The "dup" 1388 * stable_node parameter itself will be freed from 1389 * under us if it returns NULL. 1390 */ 1391 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1392 if (!_tree_page) 1393 continue; 1394 nr += 1; 1395 if (is_page_sharing_candidate(dup)) { 1396 if (!found || 1397 dup->rmap_hlist_len > found_rmap_hlist_len) { 1398 if (found) 1399 put_page(tree_page); 1400 found = dup; 1401 found_rmap_hlist_len = found->rmap_hlist_len; 1402 tree_page = _tree_page; 1403 1404 /* skip put_page for found dup */ 1405 if (!prune_stale_stable_nodes) 1406 break; 1407 continue; 1408 } 1409 } 1410 put_page(_tree_page); 1411 } 1412 1413 if (found) { 1414 /* 1415 * nr is counting all dups in the chain only if 1416 * prune_stale_stable_nodes is true, otherwise we may 1417 * break the loop at nr == 1 even if there are 1418 * multiple entries. 1419 */ 1420 if (prune_stale_stable_nodes && nr == 1) { 1421 /* 1422 * If there's not just one entry it would 1423 * corrupt memory, better BUG_ON. In KSM 1424 * context with no lock held it's not even 1425 * fatal. 1426 */ 1427 BUG_ON(stable_node->hlist.first->next); 1428 1429 /* 1430 * There's just one entry and it is below the 1431 * deduplication limit so drop the chain. 1432 */ 1433 rb_replace_node(&stable_node->node, &found->node, 1434 root); 1435 free_stable_node(stable_node); 1436 ksm_stable_node_chains--; 1437 ksm_stable_node_dups--; 1438 /* 1439 * NOTE: the caller depends on the stable_node 1440 * to be equal to stable_node_dup if the chain 1441 * was collapsed. 1442 */ 1443 *_stable_node = found; 1444 /* 1445 * Just for robustness, as stable_node is 1446 * otherwise left as a stable pointer, the 1447 * compiler shall optimize it away at build 1448 * time. 1449 */ 1450 stable_node = NULL; 1451 } else if (stable_node->hlist.first != &found->hlist_dup && 1452 __is_page_sharing_candidate(found, 1)) { 1453 /* 1454 * If the found stable_node dup can accept one 1455 * more future merge (in addition to the one 1456 * that is underway) and is not at the head of 1457 * the chain, put it there so next search will 1458 * be quicker in the !prune_stale_stable_nodes 1459 * case. 1460 * 1461 * NOTE: it would be inaccurate to use nr > 1 1462 * instead of checking the hlist.first pointer 1463 * directly, because in the 1464 * prune_stale_stable_nodes case "nr" isn't 1465 * the position of the found dup in the chain, 1466 * but the total number of dups in the chain. 1467 */ 1468 hlist_del(&found->hlist_dup); 1469 hlist_add_head(&found->hlist_dup, 1470 &stable_node->hlist); 1471 } 1472 } 1473 1474 *_stable_node_dup = found; 1475 return tree_page; 1476 } 1477 1478 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1479 struct rb_root *root) 1480 { 1481 if (!is_stable_node_chain(stable_node)) 1482 return stable_node; 1483 if (hlist_empty(&stable_node->hlist)) { 1484 free_stable_node_chain(stable_node, root); 1485 return NULL; 1486 } 1487 return hlist_entry(stable_node->hlist.first, 1488 typeof(*stable_node), hlist_dup); 1489 } 1490 1491 /* 1492 * Like for get_ksm_page, this function can free the *_stable_node and 1493 * *_stable_node_dup if the returned tree_page is NULL. 1494 * 1495 * It can also free and overwrite *_stable_node with the found 1496 * stable_node_dup if the chain is collapsed (in which case 1497 * *_stable_node will be equal to *_stable_node_dup like if the chain 1498 * never existed). It's up to the caller to verify tree_page is not 1499 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1500 * 1501 * *_stable_node_dup is really a second output parameter of this 1502 * function and will be overwritten in all cases, the caller doesn't 1503 * need to initialize it. 1504 */ 1505 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1506 struct stable_node **_stable_node, 1507 struct rb_root *root, 1508 bool prune_stale_stable_nodes) 1509 { 1510 struct stable_node *stable_node = *_stable_node; 1511 if (!is_stable_node_chain(stable_node)) { 1512 if (is_page_sharing_candidate(stable_node)) { 1513 *_stable_node_dup = stable_node; 1514 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1515 } 1516 /* 1517 * _stable_node_dup set to NULL means the stable_node 1518 * reached the ksm_max_page_sharing limit. 1519 */ 1520 *_stable_node_dup = NULL; 1521 return NULL; 1522 } 1523 return stable_node_dup(_stable_node_dup, _stable_node, root, 1524 prune_stale_stable_nodes); 1525 } 1526 1527 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1528 struct stable_node **s_n, 1529 struct rb_root *root) 1530 { 1531 return __stable_node_chain(s_n_d, s_n, root, true); 1532 } 1533 1534 static __always_inline struct page *chain(struct stable_node **s_n_d, 1535 struct stable_node *s_n, 1536 struct rb_root *root) 1537 { 1538 struct stable_node *old_stable_node = s_n; 1539 struct page *tree_page; 1540 1541 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1542 /* not pruning dups so s_n cannot have changed */ 1543 VM_BUG_ON(s_n != old_stable_node); 1544 return tree_page; 1545 } 1546 1547 /* 1548 * stable_tree_search - search for page inside the stable tree 1549 * 1550 * This function checks if there is a page inside the stable tree 1551 * with identical content to the page that we are scanning right now. 1552 * 1553 * This function returns the stable tree node of identical content if found, 1554 * NULL otherwise. 1555 */ 1556 static struct page *stable_tree_search(struct page *page) 1557 { 1558 int nid; 1559 struct rb_root *root; 1560 struct rb_node **new; 1561 struct rb_node *parent; 1562 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1563 struct stable_node *page_node; 1564 1565 page_node = page_stable_node(page); 1566 if (page_node && page_node->head != &migrate_nodes) { 1567 /* ksm page forked */ 1568 get_page(page); 1569 return page; 1570 } 1571 1572 nid = get_kpfn_nid(page_to_pfn(page)); 1573 root = root_stable_tree + nid; 1574 again: 1575 new = &root->rb_node; 1576 parent = NULL; 1577 1578 while (*new) { 1579 struct page *tree_page; 1580 int ret; 1581 1582 cond_resched(); 1583 stable_node = rb_entry(*new, struct stable_node, node); 1584 stable_node_any = NULL; 1585 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1586 /* 1587 * NOTE: stable_node may have been freed by 1588 * chain_prune() if the returned stable_node_dup is 1589 * not NULL. stable_node_dup may have been inserted in 1590 * the rbtree instead as a regular stable_node (in 1591 * order to collapse the stable_node chain if a single 1592 * stable_node dup was found in it). In such case the 1593 * stable_node is overwritten by the callee to point 1594 * to the stable_node_dup that was collapsed in the 1595 * stable rbtree and stable_node will be equal to 1596 * stable_node_dup like if the chain never existed. 1597 */ 1598 if (!stable_node_dup) { 1599 /* 1600 * Either all stable_node dups were full in 1601 * this stable_node chain, or this chain was 1602 * empty and should be rb_erased. 1603 */ 1604 stable_node_any = stable_node_dup_any(stable_node, 1605 root); 1606 if (!stable_node_any) { 1607 /* rb_erase just run */ 1608 goto again; 1609 } 1610 /* 1611 * Take any of the stable_node dups page of 1612 * this stable_node chain to let the tree walk 1613 * continue. All KSM pages belonging to the 1614 * stable_node dups in a stable_node chain 1615 * have the same content and they're 1616 * write protected at all times. Any will work 1617 * fine to continue the walk. 1618 */ 1619 tree_page = get_ksm_page(stable_node_any, 1620 GET_KSM_PAGE_NOLOCK); 1621 } 1622 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1623 if (!tree_page) { 1624 /* 1625 * If we walked over a stale stable_node, 1626 * get_ksm_page() will call rb_erase() and it 1627 * may rebalance the tree from under us. So 1628 * restart the search from scratch. Returning 1629 * NULL would be safe too, but we'd generate 1630 * false negative insertions just because some 1631 * stable_node was stale. 1632 */ 1633 goto again; 1634 } 1635 1636 ret = memcmp_pages(page, tree_page); 1637 put_page(tree_page); 1638 1639 parent = *new; 1640 if (ret < 0) 1641 new = &parent->rb_left; 1642 else if (ret > 0) 1643 new = &parent->rb_right; 1644 else { 1645 if (page_node) { 1646 VM_BUG_ON(page_node->head != &migrate_nodes); 1647 /* 1648 * Test if the migrated page should be merged 1649 * into a stable node dup. If the mapcount is 1650 * 1 we can migrate it with another KSM page 1651 * without adding it to the chain. 1652 */ 1653 if (page_mapcount(page) > 1) 1654 goto chain_append; 1655 } 1656 1657 if (!stable_node_dup) { 1658 /* 1659 * If the stable_node is a chain and 1660 * we got a payload match in memcmp 1661 * but we cannot merge the scanned 1662 * page in any of the existing 1663 * stable_node dups because they're 1664 * all full, we need to wait the 1665 * scanned page to find itself a match 1666 * in the unstable tree to create a 1667 * brand new KSM page to add later to 1668 * the dups of this stable_node. 1669 */ 1670 return NULL; 1671 } 1672 1673 /* 1674 * Lock and unlock the stable_node's page (which 1675 * might already have been migrated) so that page 1676 * migration is sure to notice its raised count. 1677 * It would be more elegant to return stable_node 1678 * than kpage, but that involves more changes. 1679 */ 1680 tree_page = get_ksm_page(stable_node_dup, 1681 GET_KSM_PAGE_TRYLOCK); 1682 1683 if (PTR_ERR(tree_page) == -EBUSY) 1684 return ERR_PTR(-EBUSY); 1685 1686 if (unlikely(!tree_page)) 1687 /* 1688 * The tree may have been rebalanced, 1689 * so re-evaluate parent and new. 1690 */ 1691 goto again; 1692 unlock_page(tree_page); 1693 1694 if (get_kpfn_nid(stable_node_dup->kpfn) != 1695 NUMA(stable_node_dup->nid)) { 1696 put_page(tree_page); 1697 goto replace; 1698 } 1699 return tree_page; 1700 } 1701 } 1702 1703 if (!page_node) 1704 return NULL; 1705 1706 list_del(&page_node->list); 1707 DO_NUMA(page_node->nid = nid); 1708 rb_link_node(&page_node->node, parent, new); 1709 rb_insert_color(&page_node->node, root); 1710 out: 1711 if (is_page_sharing_candidate(page_node)) { 1712 get_page(page); 1713 return page; 1714 } else 1715 return NULL; 1716 1717 replace: 1718 /* 1719 * If stable_node was a chain and chain_prune collapsed it, 1720 * stable_node has been updated to be the new regular 1721 * stable_node. A collapse of the chain is indistinguishable 1722 * from the case there was no chain in the stable 1723 * rbtree. Otherwise stable_node is the chain and 1724 * stable_node_dup is the dup to replace. 1725 */ 1726 if (stable_node_dup == stable_node) { 1727 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1728 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1729 /* there is no chain */ 1730 if (page_node) { 1731 VM_BUG_ON(page_node->head != &migrate_nodes); 1732 list_del(&page_node->list); 1733 DO_NUMA(page_node->nid = nid); 1734 rb_replace_node(&stable_node_dup->node, 1735 &page_node->node, 1736 root); 1737 if (is_page_sharing_candidate(page_node)) 1738 get_page(page); 1739 else 1740 page = NULL; 1741 } else { 1742 rb_erase(&stable_node_dup->node, root); 1743 page = NULL; 1744 } 1745 } else { 1746 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1747 __stable_node_dup_del(stable_node_dup); 1748 if (page_node) { 1749 VM_BUG_ON(page_node->head != &migrate_nodes); 1750 list_del(&page_node->list); 1751 DO_NUMA(page_node->nid = nid); 1752 stable_node_chain_add_dup(page_node, stable_node); 1753 if (is_page_sharing_candidate(page_node)) 1754 get_page(page); 1755 else 1756 page = NULL; 1757 } else { 1758 page = NULL; 1759 } 1760 } 1761 stable_node_dup->head = &migrate_nodes; 1762 list_add(&stable_node_dup->list, stable_node_dup->head); 1763 return page; 1764 1765 chain_append: 1766 /* stable_node_dup could be null if it reached the limit */ 1767 if (!stable_node_dup) 1768 stable_node_dup = stable_node_any; 1769 /* 1770 * If stable_node was a chain and chain_prune collapsed it, 1771 * stable_node has been updated to be the new regular 1772 * stable_node. A collapse of the chain is indistinguishable 1773 * from the case there was no chain in the stable 1774 * rbtree. Otherwise stable_node is the chain and 1775 * stable_node_dup is the dup to replace. 1776 */ 1777 if (stable_node_dup == stable_node) { 1778 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1779 /* chain is missing so create it */ 1780 stable_node = alloc_stable_node_chain(stable_node_dup, 1781 root); 1782 if (!stable_node) 1783 return NULL; 1784 } 1785 /* 1786 * Add this stable_node dup that was 1787 * migrated to the stable_node chain 1788 * of the current nid for this page 1789 * content. 1790 */ 1791 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1792 VM_BUG_ON(page_node->head != &migrate_nodes); 1793 list_del(&page_node->list); 1794 DO_NUMA(page_node->nid = nid); 1795 stable_node_chain_add_dup(page_node, stable_node); 1796 goto out; 1797 } 1798 1799 /* 1800 * stable_tree_insert - insert stable tree node pointing to new ksm page 1801 * into the stable tree. 1802 * 1803 * This function returns the stable tree node just allocated on success, 1804 * NULL otherwise. 1805 */ 1806 static struct stable_node *stable_tree_insert(struct page *kpage) 1807 { 1808 int nid; 1809 unsigned long kpfn; 1810 struct rb_root *root; 1811 struct rb_node **new; 1812 struct rb_node *parent; 1813 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1814 bool need_chain = false; 1815 1816 kpfn = page_to_pfn(kpage); 1817 nid = get_kpfn_nid(kpfn); 1818 root = root_stable_tree + nid; 1819 again: 1820 parent = NULL; 1821 new = &root->rb_node; 1822 1823 while (*new) { 1824 struct page *tree_page; 1825 int ret; 1826 1827 cond_resched(); 1828 stable_node = rb_entry(*new, struct stable_node, node); 1829 stable_node_any = NULL; 1830 tree_page = chain(&stable_node_dup, stable_node, root); 1831 if (!stable_node_dup) { 1832 /* 1833 * Either all stable_node dups were full in 1834 * this stable_node chain, or this chain was 1835 * empty and should be rb_erased. 1836 */ 1837 stable_node_any = stable_node_dup_any(stable_node, 1838 root); 1839 if (!stable_node_any) { 1840 /* rb_erase just run */ 1841 goto again; 1842 } 1843 /* 1844 * Take any of the stable_node dups page of 1845 * this stable_node chain to let the tree walk 1846 * continue. All KSM pages belonging to the 1847 * stable_node dups in a stable_node chain 1848 * have the same content and they're 1849 * write protected at all times. Any will work 1850 * fine to continue the walk. 1851 */ 1852 tree_page = get_ksm_page(stable_node_any, 1853 GET_KSM_PAGE_NOLOCK); 1854 } 1855 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1856 if (!tree_page) { 1857 /* 1858 * If we walked over a stale stable_node, 1859 * get_ksm_page() will call rb_erase() and it 1860 * may rebalance the tree from under us. So 1861 * restart the search from scratch. Returning 1862 * NULL would be safe too, but we'd generate 1863 * false negative insertions just because some 1864 * stable_node was stale. 1865 */ 1866 goto again; 1867 } 1868 1869 ret = memcmp_pages(kpage, tree_page); 1870 put_page(tree_page); 1871 1872 parent = *new; 1873 if (ret < 0) 1874 new = &parent->rb_left; 1875 else if (ret > 0) 1876 new = &parent->rb_right; 1877 else { 1878 need_chain = true; 1879 break; 1880 } 1881 } 1882 1883 stable_node_dup = alloc_stable_node(); 1884 if (!stable_node_dup) 1885 return NULL; 1886 1887 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1888 stable_node_dup->kpfn = kpfn; 1889 set_page_stable_node(kpage, stable_node_dup); 1890 stable_node_dup->rmap_hlist_len = 0; 1891 DO_NUMA(stable_node_dup->nid = nid); 1892 if (!need_chain) { 1893 rb_link_node(&stable_node_dup->node, parent, new); 1894 rb_insert_color(&stable_node_dup->node, root); 1895 } else { 1896 if (!is_stable_node_chain(stable_node)) { 1897 struct stable_node *orig = stable_node; 1898 /* chain is missing so create it */ 1899 stable_node = alloc_stable_node_chain(orig, root); 1900 if (!stable_node) { 1901 free_stable_node(stable_node_dup); 1902 return NULL; 1903 } 1904 } 1905 stable_node_chain_add_dup(stable_node_dup, stable_node); 1906 } 1907 1908 return stable_node_dup; 1909 } 1910 1911 /* 1912 * unstable_tree_search_insert - search for identical page, 1913 * else insert rmap_item into the unstable tree. 1914 * 1915 * This function searches for a page in the unstable tree identical to the 1916 * page currently being scanned; and if no identical page is found in the 1917 * tree, we insert rmap_item as a new object into the unstable tree. 1918 * 1919 * This function returns pointer to rmap_item found to be identical 1920 * to the currently scanned page, NULL otherwise. 1921 * 1922 * This function does both searching and inserting, because they share 1923 * the same walking algorithm in an rbtree. 1924 */ 1925 static 1926 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1927 struct page *page, 1928 struct page **tree_pagep) 1929 { 1930 struct rb_node **new; 1931 struct rb_root *root; 1932 struct rb_node *parent = NULL; 1933 int nid; 1934 1935 nid = get_kpfn_nid(page_to_pfn(page)); 1936 root = root_unstable_tree + nid; 1937 new = &root->rb_node; 1938 1939 while (*new) { 1940 struct rmap_item *tree_rmap_item; 1941 struct page *tree_page; 1942 int ret; 1943 1944 cond_resched(); 1945 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1946 tree_page = get_mergeable_page(tree_rmap_item); 1947 if (!tree_page) 1948 return NULL; 1949 1950 /* 1951 * Don't substitute a ksm page for a forked page. 1952 */ 1953 if (page == tree_page) { 1954 put_page(tree_page); 1955 return NULL; 1956 } 1957 1958 ret = memcmp_pages(page, tree_page); 1959 1960 parent = *new; 1961 if (ret < 0) { 1962 put_page(tree_page); 1963 new = &parent->rb_left; 1964 } else if (ret > 0) { 1965 put_page(tree_page); 1966 new = &parent->rb_right; 1967 } else if (!ksm_merge_across_nodes && 1968 page_to_nid(tree_page) != nid) { 1969 /* 1970 * If tree_page has been migrated to another NUMA node, 1971 * it will be flushed out and put in the right unstable 1972 * tree next time: only merge with it when across_nodes. 1973 */ 1974 put_page(tree_page); 1975 return NULL; 1976 } else { 1977 *tree_pagep = tree_page; 1978 return tree_rmap_item; 1979 } 1980 } 1981 1982 rmap_item->address |= UNSTABLE_FLAG; 1983 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1984 DO_NUMA(rmap_item->nid = nid); 1985 rb_link_node(&rmap_item->node, parent, new); 1986 rb_insert_color(&rmap_item->node, root); 1987 1988 ksm_pages_unshared++; 1989 return NULL; 1990 } 1991 1992 /* 1993 * stable_tree_append - add another rmap_item to the linked list of 1994 * rmap_items hanging off a given node of the stable tree, all sharing 1995 * the same ksm page. 1996 */ 1997 static void stable_tree_append(struct rmap_item *rmap_item, 1998 struct stable_node *stable_node, 1999 bool max_page_sharing_bypass) 2000 { 2001 /* 2002 * rmap won't find this mapping if we don't insert the 2003 * rmap_item in the right stable_node 2004 * duplicate. page_migration could break later if rmap breaks, 2005 * so we can as well crash here. We really need to check for 2006 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2007 * for other negative values as an underflow if detected here 2008 * for the first time (and not when decreasing rmap_hlist_len) 2009 * would be sign of memory corruption in the stable_node. 2010 */ 2011 BUG_ON(stable_node->rmap_hlist_len < 0); 2012 2013 stable_node->rmap_hlist_len++; 2014 if (!max_page_sharing_bypass) 2015 /* possibly non fatal but unexpected overflow, only warn */ 2016 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2017 ksm_max_page_sharing); 2018 2019 rmap_item->head = stable_node; 2020 rmap_item->address |= STABLE_FLAG; 2021 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2022 2023 if (rmap_item->hlist.next) 2024 ksm_pages_sharing++; 2025 else 2026 ksm_pages_shared++; 2027 2028 rmap_item->mm->ksm_merging_pages++; 2029 } 2030 2031 /* 2032 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2033 * if not, compare checksum to previous and if it's the same, see if page can 2034 * be inserted into the unstable tree, or merged with a page already there and 2035 * both transferred to the stable tree. 2036 * 2037 * @page: the page that we are searching identical page to. 2038 * @rmap_item: the reverse mapping into the virtual address of this page 2039 */ 2040 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2041 { 2042 struct mm_struct *mm = rmap_item->mm; 2043 struct rmap_item *tree_rmap_item; 2044 struct page *tree_page = NULL; 2045 struct stable_node *stable_node; 2046 struct page *kpage; 2047 unsigned int checksum; 2048 int err; 2049 bool max_page_sharing_bypass = false; 2050 2051 stable_node = page_stable_node(page); 2052 if (stable_node) { 2053 if (stable_node->head != &migrate_nodes && 2054 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2055 NUMA(stable_node->nid)) { 2056 stable_node_dup_del(stable_node); 2057 stable_node->head = &migrate_nodes; 2058 list_add(&stable_node->list, stable_node->head); 2059 } 2060 if (stable_node->head != &migrate_nodes && 2061 rmap_item->head == stable_node) 2062 return; 2063 /* 2064 * If it's a KSM fork, allow it to go over the sharing limit 2065 * without warnings. 2066 */ 2067 if (!is_page_sharing_candidate(stable_node)) 2068 max_page_sharing_bypass = true; 2069 } 2070 2071 /* We first start with searching the page inside the stable tree */ 2072 kpage = stable_tree_search(page); 2073 if (kpage == page && rmap_item->head == stable_node) { 2074 put_page(kpage); 2075 return; 2076 } 2077 2078 remove_rmap_item_from_tree(rmap_item); 2079 2080 if (kpage) { 2081 if (PTR_ERR(kpage) == -EBUSY) 2082 return; 2083 2084 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2085 if (!err) { 2086 /* 2087 * The page was successfully merged: 2088 * add its rmap_item to the stable tree. 2089 */ 2090 lock_page(kpage); 2091 stable_tree_append(rmap_item, page_stable_node(kpage), 2092 max_page_sharing_bypass); 2093 unlock_page(kpage); 2094 } 2095 put_page(kpage); 2096 return; 2097 } 2098 2099 /* 2100 * If the hash value of the page has changed from the last time 2101 * we calculated it, this page is changing frequently: therefore we 2102 * don't want to insert it in the unstable tree, and we don't want 2103 * to waste our time searching for something identical to it there. 2104 */ 2105 checksum = calc_checksum(page); 2106 if (rmap_item->oldchecksum != checksum) { 2107 rmap_item->oldchecksum = checksum; 2108 return; 2109 } 2110 2111 /* 2112 * Same checksum as an empty page. We attempt to merge it with the 2113 * appropriate zero page if the user enabled this via sysfs. 2114 */ 2115 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2116 struct vm_area_struct *vma; 2117 2118 mmap_read_lock(mm); 2119 vma = find_mergeable_vma(mm, rmap_item->address); 2120 if (vma) { 2121 err = try_to_merge_one_page(vma, page, 2122 ZERO_PAGE(rmap_item->address)); 2123 } else { 2124 /* 2125 * If the vma is out of date, we do not need to 2126 * continue. 2127 */ 2128 err = 0; 2129 } 2130 mmap_read_unlock(mm); 2131 /* 2132 * In case of failure, the page was not really empty, so we 2133 * need to continue. Otherwise we're done. 2134 */ 2135 if (!err) 2136 return; 2137 } 2138 tree_rmap_item = 2139 unstable_tree_search_insert(rmap_item, page, &tree_page); 2140 if (tree_rmap_item) { 2141 bool split; 2142 2143 kpage = try_to_merge_two_pages(rmap_item, page, 2144 tree_rmap_item, tree_page); 2145 /* 2146 * If both pages we tried to merge belong to the same compound 2147 * page, then we actually ended up increasing the reference 2148 * count of the same compound page twice, and split_huge_page 2149 * failed. 2150 * Here we set a flag if that happened, and we use it later to 2151 * try split_huge_page again. Since we call put_page right 2152 * afterwards, the reference count will be correct and 2153 * split_huge_page should succeed. 2154 */ 2155 split = PageTransCompound(page) 2156 && compound_head(page) == compound_head(tree_page); 2157 put_page(tree_page); 2158 if (kpage) { 2159 /* 2160 * The pages were successfully merged: insert new 2161 * node in the stable tree and add both rmap_items. 2162 */ 2163 lock_page(kpage); 2164 stable_node = stable_tree_insert(kpage); 2165 if (stable_node) { 2166 stable_tree_append(tree_rmap_item, stable_node, 2167 false); 2168 stable_tree_append(rmap_item, stable_node, 2169 false); 2170 } 2171 unlock_page(kpage); 2172 2173 /* 2174 * If we fail to insert the page into the stable tree, 2175 * we will have 2 virtual addresses that are pointing 2176 * to a ksm page left outside the stable tree, 2177 * in which case we need to break_cow on both. 2178 */ 2179 if (!stable_node) { 2180 break_cow(tree_rmap_item); 2181 break_cow(rmap_item); 2182 } 2183 } else if (split) { 2184 /* 2185 * We are here if we tried to merge two pages and 2186 * failed because they both belonged to the same 2187 * compound page. We will split the page now, but no 2188 * merging will take place. 2189 * We do not want to add the cost of a full lock; if 2190 * the page is locked, it is better to skip it and 2191 * perhaps try again later. 2192 */ 2193 if (!trylock_page(page)) 2194 return; 2195 split_huge_page(page); 2196 unlock_page(page); 2197 } 2198 } 2199 } 2200 2201 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2202 struct rmap_item **rmap_list, 2203 unsigned long addr) 2204 { 2205 struct rmap_item *rmap_item; 2206 2207 while (*rmap_list) { 2208 rmap_item = *rmap_list; 2209 if ((rmap_item->address & PAGE_MASK) == addr) 2210 return rmap_item; 2211 if (rmap_item->address > addr) 2212 break; 2213 *rmap_list = rmap_item->rmap_list; 2214 remove_rmap_item_from_tree(rmap_item); 2215 free_rmap_item(rmap_item); 2216 } 2217 2218 rmap_item = alloc_rmap_item(); 2219 if (rmap_item) { 2220 /* It has already been zeroed */ 2221 rmap_item->mm = mm_slot->mm; 2222 rmap_item->address = addr; 2223 rmap_item->rmap_list = *rmap_list; 2224 *rmap_list = rmap_item; 2225 } 2226 return rmap_item; 2227 } 2228 2229 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2230 { 2231 struct mm_struct *mm; 2232 struct mm_slot *slot; 2233 struct vm_area_struct *vma; 2234 struct rmap_item *rmap_item; 2235 int nid; 2236 2237 if (list_empty(&ksm_mm_head.mm_list)) 2238 return NULL; 2239 2240 slot = ksm_scan.mm_slot; 2241 if (slot == &ksm_mm_head) { 2242 /* 2243 * A number of pages can hang around indefinitely on per-cpu 2244 * pagevecs, raised page count preventing write_protect_page 2245 * from merging them. Though it doesn't really matter much, 2246 * it is puzzling to see some stuck in pages_volatile until 2247 * other activity jostles them out, and they also prevented 2248 * LTP's KSM test from succeeding deterministically; so drain 2249 * them here (here rather than on entry to ksm_do_scan(), 2250 * so we don't IPI too often when pages_to_scan is set low). 2251 */ 2252 lru_add_drain_all(); 2253 2254 /* 2255 * Whereas stale stable_nodes on the stable_tree itself 2256 * get pruned in the regular course of stable_tree_search(), 2257 * those moved out to the migrate_nodes list can accumulate: 2258 * so prune them once before each full scan. 2259 */ 2260 if (!ksm_merge_across_nodes) { 2261 struct stable_node *stable_node, *next; 2262 struct page *page; 2263 2264 list_for_each_entry_safe(stable_node, next, 2265 &migrate_nodes, list) { 2266 page = get_ksm_page(stable_node, 2267 GET_KSM_PAGE_NOLOCK); 2268 if (page) 2269 put_page(page); 2270 cond_resched(); 2271 } 2272 } 2273 2274 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2275 root_unstable_tree[nid] = RB_ROOT; 2276 2277 spin_lock(&ksm_mmlist_lock); 2278 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2279 ksm_scan.mm_slot = slot; 2280 spin_unlock(&ksm_mmlist_lock); 2281 /* 2282 * Although we tested list_empty() above, a racing __ksm_exit 2283 * of the last mm on the list may have removed it since then. 2284 */ 2285 if (slot == &ksm_mm_head) 2286 return NULL; 2287 next_mm: 2288 ksm_scan.address = 0; 2289 ksm_scan.rmap_list = &slot->rmap_list; 2290 } 2291 2292 mm = slot->mm; 2293 mmap_read_lock(mm); 2294 if (ksm_test_exit(mm)) 2295 vma = NULL; 2296 else 2297 vma = find_vma(mm, ksm_scan.address); 2298 2299 for (; vma; vma = vma->vm_next) { 2300 if (!(vma->vm_flags & VM_MERGEABLE)) 2301 continue; 2302 if (ksm_scan.address < vma->vm_start) 2303 ksm_scan.address = vma->vm_start; 2304 if (!vma->anon_vma) 2305 ksm_scan.address = vma->vm_end; 2306 2307 while (ksm_scan.address < vma->vm_end) { 2308 if (ksm_test_exit(mm)) 2309 break; 2310 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2311 if (IS_ERR_OR_NULL(*page) || is_zone_device_page(*page)) { 2312 ksm_scan.address += PAGE_SIZE; 2313 cond_resched(); 2314 continue; 2315 } 2316 if (PageAnon(*page)) { 2317 flush_anon_page(vma, *page, ksm_scan.address); 2318 flush_dcache_page(*page); 2319 rmap_item = get_next_rmap_item(slot, 2320 ksm_scan.rmap_list, ksm_scan.address); 2321 if (rmap_item) { 2322 ksm_scan.rmap_list = 2323 &rmap_item->rmap_list; 2324 ksm_scan.address += PAGE_SIZE; 2325 } else 2326 put_page(*page); 2327 mmap_read_unlock(mm); 2328 return rmap_item; 2329 } 2330 put_page(*page); 2331 ksm_scan.address += PAGE_SIZE; 2332 cond_resched(); 2333 } 2334 } 2335 2336 if (ksm_test_exit(mm)) { 2337 ksm_scan.address = 0; 2338 ksm_scan.rmap_list = &slot->rmap_list; 2339 } 2340 /* 2341 * Nuke all the rmap_items that are above this current rmap: 2342 * because there were no VM_MERGEABLE vmas with such addresses. 2343 */ 2344 remove_trailing_rmap_items(ksm_scan.rmap_list); 2345 2346 spin_lock(&ksm_mmlist_lock); 2347 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2348 struct mm_slot, mm_list); 2349 if (ksm_scan.address == 0) { 2350 /* 2351 * We've completed a full scan of all vmas, holding mmap_lock 2352 * throughout, and found no VM_MERGEABLE: so do the same as 2353 * __ksm_exit does to remove this mm from all our lists now. 2354 * This applies either when cleaning up after __ksm_exit 2355 * (but beware: we can reach here even before __ksm_exit), 2356 * or when all VM_MERGEABLE areas have been unmapped (and 2357 * mmap_lock then protects against race with MADV_MERGEABLE). 2358 */ 2359 hash_del(&slot->link); 2360 list_del(&slot->mm_list); 2361 spin_unlock(&ksm_mmlist_lock); 2362 2363 free_mm_slot(slot); 2364 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2365 mmap_read_unlock(mm); 2366 mmdrop(mm); 2367 } else { 2368 mmap_read_unlock(mm); 2369 /* 2370 * mmap_read_unlock(mm) first because after 2371 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2372 * already have been freed under us by __ksm_exit() 2373 * because the "mm_slot" is still hashed and 2374 * ksm_scan.mm_slot doesn't point to it anymore. 2375 */ 2376 spin_unlock(&ksm_mmlist_lock); 2377 } 2378 2379 /* Repeat until we've completed scanning the whole list */ 2380 slot = ksm_scan.mm_slot; 2381 if (slot != &ksm_mm_head) 2382 goto next_mm; 2383 2384 ksm_scan.seqnr++; 2385 return NULL; 2386 } 2387 2388 /** 2389 * ksm_do_scan - the ksm scanner main worker function. 2390 * @scan_npages: number of pages we want to scan before we return. 2391 */ 2392 static void ksm_do_scan(unsigned int scan_npages) 2393 { 2394 struct rmap_item *rmap_item; 2395 struct page *page; 2396 2397 while (scan_npages-- && likely(!freezing(current))) { 2398 cond_resched(); 2399 rmap_item = scan_get_next_rmap_item(&page); 2400 if (!rmap_item) 2401 return; 2402 cmp_and_merge_page(page, rmap_item); 2403 put_page(page); 2404 } 2405 } 2406 2407 static int ksmd_should_run(void) 2408 { 2409 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2410 } 2411 2412 static int ksm_scan_thread(void *nothing) 2413 { 2414 unsigned int sleep_ms; 2415 2416 set_freezable(); 2417 set_user_nice(current, 5); 2418 2419 while (!kthread_should_stop()) { 2420 mutex_lock(&ksm_thread_mutex); 2421 wait_while_offlining(); 2422 if (ksmd_should_run()) 2423 ksm_do_scan(ksm_thread_pages_to_scan); 2424 mutex_unlock(&ksm_thread_mutex); 2425 2426 try_to_freeze(); 2427 2428 if (ksmd_should_run()) { 2429 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2430 wait_event_interruptible_timeout(ksm_iter_wait, 2431 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2432 msecs_to_jiffies(sleep_ms)); 2433 } else { 2434 wait_event_freezable(ksm_thread_wait, 2435 ksmd_should_run() || kthread_should_stop()); 2436 } 2437 } 2438 return 0; 2439 } 2440 2441 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2442 unsigned long end, int advice, unsigned long *vm_flags) 2443 { 2444 struct mm_struct *mm = vma->vm_mm; 2445 int err; 2446 2447 switch (advice) { 2448 case MADV_MERGEABLE: 2449 /* 2450 * Be somewhat over-protective for now! 2451 */ 2452 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2453 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2454 VM_HUGETLB | VM_MIXEDMAP)) 2455 return 0; /* just ignore the advice */ 2456 2457 if (vma_is_dax(vma)) 2458 return 0; 2459 2460 #ifdef VM_SAO 2461 if (*vm_flags & VM_SAO) 2462 return 0; 2463 #endif 2464 #ifdef VM_SPARC_ADI 2465 if (*vm_flags & VM_SPARC_ADI) 2466 return 0; 2467 #endif 2468 2469 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2470 err = __ksm_enter(mm); 2471 if (err) 2472 return err; 2473 } 2474 2475 *vm_flags |= VM_MERGEABLE; 2476 break; 2477 2478 case MADV_UNMERGEABLE: 2479 if (!(*vm_flags & VM_MERGEABLE)) 2480 return 0; /* just ignore the advice */ 2481 2482 if (vma->anon_vma) { 2483 err = unmerge_ksm_pages(vma, start, end); 2484 if (err) 2485 return err; 2486 } 2487 2488 *vm_flags &= ~VM_MERGEABLE; 2489 break; 2490 } 2491 2492 return 0; 2493 } 2494 EXPORT_SYMBOL_GPL(ksm_madvise); 2495 2496 int __ksm_enter(struct mm_struct *mm) 2497 { 2498 struct mm_slot *mm_slot; 2499 int needs_wakeup; 2500 2501 mm_slot = alloc_mm_slot(); 2502 if (!mm_slot) 2503 return -ENOMEM; 2504 2505 /* Check ksm_run too? Would need tighter locking */ 2506 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2507 2508 spin_lock(&ksm_mmlist_lock); 2509 insert_to_mm_slots_hash(mm, mm_slot); 2510 /* 2511 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2512 * insert just behind the scanning cursor, to let the area settle 2513 * down a little; when fork is followed by immediate exec, we don't 2514 * want ksmd to waste time setting up and tearing down an rmap_list. 2515 * 2516 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2517 * scanning cursor, otherwise KSM pages in newly forked mms will be 2518 * missed: then we might as well insert at the end of the list. 2519 */ 2520 if (ksm_run & KSM_RUN_UNMERGE) 2521 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2522 else 2523 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2524 spin_unlock(&ksm_mmlist_lock); 2525 2526 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2527 mmgrab(mm); 2528 2529 if (needs_wakeup) 2530 wake_up_interruptible(&ksm_thread_wait); 2531 2532 return 0; 2533 } 2534 2535 void __ksm_exit(struct mm_struct *mm) 2536 { 2537 struct mm_slot *mm_slot; 2538 int easy_to_free = 0; 2539 2540 /* 2541 * This process is exiting: if it's straightforward (as is the 2542 * case when ksmd was never running), free mm_slot immediately. 2543 * But if it's at the cursor or has rmap_items linked to it, use 2544 * mmap_lock to synchronize with any break_cows before pagetables 2545 * are freed, and leave the mm_slot on the list for ksmd to free. 2546 * Beware: ksm may already have noticed it exiting and freed the slot. 2547 */ 2548 2549 spin_lock(&ksm_mmlist_lock); 2550 mm_slot = get_mm_slot(mm); 2551 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2552 if (!mm_slot->rmap_list) { 2553 hash_del(&mm_slot->link); 2554 list_del(&mm_slot->mm_list); 2555 easy_to_free = 1; 2556 } else { 2557 list_move(&mm_slot->mm_list, 2558 &ksm_scan.mm_slot->mm_list); 2559 } 2560 } 2561 spin_unlock(&ksm_mmlist_lock); 2562 2563 if (easy_to_free) { 2564 free_mm_slot(mm_slot); 2565 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2566 mmdrop(mm); 2567 } else if (mm_slot) { 2568 mmap_write_lock(mm); 2569 mmap_write_unlock(mm); 2570 } 2571 } 2572 2573 struct page *ksm_might_need_to_copy(struct page *page, 2574 struct vm_area_struct *vma, unsigned long address) 2575 { 2576 struct folio *folio = page_folio(page); 2577 struct anon_vma *anon_vma = folio_anon_vma(folio); 2578 struct page *new_page; 2579 2580 if (PageKsm(page)) { 2581 if (page_stable_node(page) && 2582 !(ksm_run & KSM_RUN_UNMERGE)) 2583 return page; /* no need to copy it */ 2584 } else if (!anon_vma) { 2585 return page; /* no need to copy it */ 2586 } else if (page->index == linear_page_index(vma, address) && 2587 anon_vma->root == vma->anon_vma->root) { 2588 return page; /* still no need to copy it */ 2589 } 2590 if (!PageUptodate(page)) 2591 return page; /* let do_swap_page report the error */ 2592 2593 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2594 if (new_page && 2595 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2596 put_page(new_page); 2597 new_page = NULL; 2598 } 2599 if (new_page) { 2600 copy_user_highpage(new_page, page, address, vma); 2601 2602 SetPageDirty(new_page); 2603 __SetPageUptodate(new_page); 2604 __SetPageLocked(new_page); 2605 #ifdef CONFIG_SWAP 2606 count_vm_event(KSM_SWPIN_COPY); 2607 #endif 2608 } 2609 2610 return new_page; 2611 } 2612 2613 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2614 { 2615 struct stable_node *stable_node; 2616 struct rmap_item *rmap_item; 2617 int search_new_forks = 0; 2618 2619 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2620 2621 /* 2622 * Rely on the page lock to protect against concurrent modifications 2623 * to that page's node of the stable tree. 2624 */ 2625 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2626 2627 stable_node = folio_stable_node(folio); 2628 if (!stable_node) 2629 return; 2630 again: 2631 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2632 struct anon_vma *anon_vma = rmap_item->anon_vma; 2633 struct anon_vma_chain *vmac; 2634 struct vm_area_struct *vma; 2635 2636 cond_resched(); 2637 if (!anon_vma_trylock_read(anon_vma)) { 2638 if (rwc->try_lock) { 2639 rwc->contended = true; 2640 return; 2641 } 2642 anon_vma_lock_read(anon_vma); 2643 } 2644 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2645 0, ULONG_MAX) { 2646 unsigned long addr; 2647 2648 cond_resched(); 2649 vma = vmac->vma; 2650 2651 /* Ignore the stable/unstable/sqnr flags */ 2652 addr = rmap_item->address & PAGE_MASK; 2653 2654 if (addr < vma->vm_start || addr >= vma->vm_end) 2655 continue; 2656 /* 2657 * Initially we examine only the vma which covers this 2658 * rmap_item; but later, if there is still work to do, 2659 * we examine covering vmas in other mms: in case they 2660 * were forked from the original since ksmd passed. 2661 */ 2662 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2663 continue; 2664 2665 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2666 continue; 2667 2668 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2669 anon_vma_unlock_read(anon_vma); 2670 return; 2671 } 2672 if (rwc->done && rwc->done(folio)) { 2673 anon_vma_unlock_read(anon_vma); 2674 return; 2675 } 2676 } 2677 anon_vma_unlock_read(anon_vma); 2678 } 2679 if (!search_new_forks++) 2680 goto again; 2681 } 2682 2683 #ifdef CONFIG_MIGRATION 2684 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2685 { 2686 struct stable_node *stable_node; 2687 2688 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2689 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2690 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2691 2692 stable_node = folio_stable_node(folio); 2693 if (stable_node) { 2694 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2695 stable_node->kpfn = folio_pfn(newfolio); 2696 /* 2697 * newfolio->mapping was set in advance; now we need smp_wmb() 2698 * to make sure that the new stable_node->kpfn is visible 2699 * to get_ksm_page() before it can see that folio->mapping 2700 * has gone stale (or that folio_test_swapcache has been cleared). 2701 */ 2702 smp_wmb(); 2703 set_page_stable_node(&folio->page, NULL); 2704 } 2705 } 2706 #endif /* CONFIG_MIGRATION */ 2707 2708 #ifdef CONFIG_MEMORY_HOTREMOVE 2709 static void wait_while_offlining(void) 2710 { 2711 while (ksm_run & KSM_RUN_OFFLINE) { 2712 mutex_unlock(&ksm_thread_mutex); 2713 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2714 TASK_UNINTERRUPTIBLE); 2715 mutex_lock(&ksm_thread_mutex); 2716 } 2717 } 2718 2719 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2720 unsigned long start_pfn, 2721 unsigned long end_pfn) 2722 { 2723 if (stable_node->kpfn >= start_pfn && 2724 stable_node->kpfn < end_pfn) { 2725 /* 2726 * Don't get_ksm_page, page has already gone: 2727 * which is why we keep kpfn instead of page* 2728 */ 2729 remove_node_from_stable_tree(stable_node); 2730 return true; 2731 } 2732 return false; 2733 } 2734 2735 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2736 unsigned long start_pfn, 2737 unsigned long end_pfn, 2738 struct rb_root *root) 2739 { 2740 struct stable_node *dup; 2741 struct hlist_node *hlist_safe; 2742 2743 if (!is_stable_node_chain(stable_node)) { 2744 VM_BUG_ON(is_stable_node_dup(stable_node)); 2745 return stable_node_dup_remove_range(stable_node, start_pfn, 2746 end_pfn); 2747 } 2748 2749 hlist_for_each_entry_safe(dup, hlist_safe, 2750 &stable_node->hlist, hlist_dup) { 2751 VM_BUG_ON(!is_stable_node_dup(dup)); 2752 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2753 } 2754 if (hlist_empty(&stable_node->hlist)) { 2755 free_stable_node_chain(stable_node, root); 2756 return true; /* notify caller that tree was rebalanced */ 2757 } else 2758 return false; 2759 } 2760 2761 static void ksm_check_stable_tree(unsigned long start_pfn, 2762 unsigned long end_pfn) 2763 { 2764 struct stable_node *stable_node, *next; 2765 struct rb_node *node; 2766 int nid; 2767 2768 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2769 node = rb_first(root_stable_tree + nid); 2770 while (node) { 2771 stable_node = rb_entry(node, struct stable_node, node); 2772 if (stable_node_chain_remove_range(stable_node, 2773 start_pfn, end_pfn, 2774 root_stable_tree + 2775 nid)) 2776 node = rb_first(root_stable_tree + nid); 2777 else 2778 node = rb_next(node); 2779 cond_resched(); 2780 } 2781 } 2782 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2783 if (stable_node->kpfn >= start_pfn && 2784 stable_node->kpfn < end_pfn) 2785 remove_node_from_stable_tree(stable_node); 2786 cond_resched(); 2787 } 2788 } 2789 2790 static int ksm_memory_callback(struct notifier_block *self, 2791 unsigned long action, void *arg) 2792 { 2793 struct memory_notify *mn = arg; 2794 2795 switch (action) { 2796 case MEM_GOING_OFFLINE: 2797 /* 2798 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2799 * and remove_all_stable_nodes() while memory is going offline: 2800 * it is unsafe for them to touch the stable tree at this time. 2801 * But unmerge_ksm_pages(), rmap lookups and other entry points 2802 * which do not need the ksm_thread_mutex are all safe. 2803 */ 2804 mutex_lock(&ksm_thread_mutex); 2805 ksm_run |= KSM_RUN_OFFLINE; 2806 mutex_unlock(&ksm_thread_mutex); 2807 break; 2808 2809 case MEM_OFFLINE: 2810 /* 2811 * Most of the work is done by page migration; but there might 2812 * be a few stable_nodes left over, still pointing to struct 2813 * pages which have been offlined: prune those from the tree, 2814 * otherwise get_ksm_page() might later try to access a 2815 * non-existent struct page. 2816 */ 2817 ksm_check_stable_tree(mn->start_pfn, 2818 mn->start_pfn + mn->nr_pages); 2819 fallthrough; 2820 case MEM_CANCEL_OFFLINE: 2821 mutex_lock(&ksm_thread_mutex); 2822 ksm_run &= ~KSM_RUN_OFFLINE; 2823 mutex_unlock(&ksm_thread_mutex); 2824 2825 smp_mb(); /* wake_up_bit advises this */ 2826 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2827 break; 2828 } 2829 return NOTIFY_OK; 2830 } 2831 #else 2832 static void wait_while_offlining(void) 2833 { 2834 } 2835 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2836 2837 #ifdef CONFIG_SYSFS 2838 /* 2839 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2840 */ 2841 2842 #define KSM_ATTR_RO(_name) \ 2843 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2844 #define KSM_ATTR(_name) \ 2845 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 2846 2847 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2848 struct kobj_attribute *attr, char *buf) 2849 { 2850 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2851 } 2852 2853 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2854 struct kobj_attribute *attr, 2855 const char *buf, size_t count) 2856 { 2857 unsigned int msecs; 2858 int err; 2859 2860 err = kstrtouint(buf, 10, &msecs); 2861 if (err) 2862 return -EINVAL; 2863 2864 ksm_thread_sleep_millisecs = msecs; 2865 wake_up_interruptible(&ksm_iter_wait); 2866 2867 return count; 2868 } 2869 KSM_ATTR(sleep_millisecs); 2870 2871 static ssize_t pages_to_scan_show(struct kobject *kobj, 2872 struct kobj_attribute *attr, char *buf) 2873 { 2874 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2875 } 2876 2877 static ssize_t pages_to_scan_store(struct kobject *kobj, 2878 struct kobj_attribute *attr, 2879 const char *buf, size_t count) 2880 { 2881 unsigned int nr_pages; 2882 int err; 2883 2884 err = kstrtouint(buf, 10, &nr_pages); 2885 if (err) 2886 return -EINVAL; 2887 2888 ksm_thread_pages_to_scan = nr_pages; 2889 2890 return count; 2891 } 2892 KSM_ATTR(pages_to_scan); 2893 2894 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2895 char *buf) 2896 { 2897 return sysfs_emit(buf, "%lu\n", ksm_run); 2898 } 2899 2900 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2901 const char *buf, size_t count) 2902 { 2903 unsigned int flags; 2904 int err; 2905 2906 err = kstrtouint(buf, 10, &flags); 2907 if (err) 2908 return -EINVAL; 2909 if (flags > KSM_RUN_UNMERGE) 2910 return -EINVAL; 2911 2912 /* 2913 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2914 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2915 * breaking COW to free the pages_shared (but leaves mm_slots 2916 * on the list for when ksmd may be set running again). 2917 */ 2918 2919 mutex_lock(&ksm_thread_mutex); 2920 wait_while_offlining(); 2921 if (ksm_run != flags) { 2922 ksm_run = flags; 2923 if (flags & KSM_RUN_UNMERGE) { 2924 set_current_oom_origin(); 2925 err = unmerge_and_remove_all_rmap_items(); 2926 clear_current_oom_origin(); 2927 if (err) { 2928 ksm_run = KSM_RUN_STOP; 2929 count = err; 2930 } 2931 } 2932 } 2933 mutex_unlock(&ksm_thread_mutex); 2934 2935 if (flags & KSM_RUN_MERGE) 2936 wake_up_interruptible(&ksm_thread_wait); 2937 2938 return count; 2939 } 2940 KSM_ATTR(run); 2941 2942 #ifdef CONFIG_NUMA 2943 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2944 struct kobj_attribute *attr, char *buf) 2945 { 2946 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2947 } 2948 2949 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2950 struct kobj_attribute *attr, 2951 const char *buf, size_t count) 2952 { 2953 int err; 2954 unsigned long knob; 2955 2956 err = kstrtoul(buf, 10, &knob); 2957 if (err) 2958 return err; 2959 if (knob > 1) 2960 return -EINVAL; 2961 2962 mutex_lock(&ksm_thread_mutex); 2963 wait_while_offlining(); 2964 if (ksm_merge_across_nodes != knob) { 2965 if (ksm_pages_shared || remove_all_stable_nodes()) 2966 err = -EBUSY; 2967 else if (root_stable_tree == one_stable_tree) { 2968 struct rb_root *buf; 2969 /* 2970 * This is the first time that we switch away from the 2971 * default of merging across nodes: must now allocate 2972 * a buffer to hold as many roots as may be needed. 2973 * Allocate stable and unstable together: 2974 * MAXSMP NODES_SHIFT 10 will use 16kB. 2975 */ 2976 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2977 GFP_KERNEL); 2978 /* Let us assume that RB_ROOT is NULL is zero */ 2979 if (!buf) 2980 err = -ENOMEM; 2981 else { 2982 root_stable_tree = buf; 2983 root_unstable_tree = buf + nr_node_ids; 2984 /* Stable tree is empty but not the unstable */ 2985 root_unstable_tree[0] = one_unstable_tree[0]; 2986 } 2987 } 2988 if (!err) { 2989 ksm_merge_across_nodes = knob; 2990 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2991 } 2992 } 2993 mutex_unlock(&ksm_thread_mutex); 2994 2995 return err ? err : count; 2996 } 2997 KSM_ATTR(merge_across_nodes); 2998 #endif 2999 3000 static ssize_t use_zero_pages_show(struct kobject *kobj, 3001 struct kobj_attribute *attr, char *buf) 3002 { 3003 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3004 } 3005 static ssize_t use_zero_pages_store(struct kobject *kobj, 3006 struct kobj_attribute *attr, 3007 const char *buf, size_t count) 3008 { 3009 int err; 3010 bool value; 3011 3012 err = kstrtobool(buf, &value); 3013 if (err) 3014 return -EINVAL; 3015 3016 ksm_use_zero_pages = value; 3017 3018 return count; 3019 } 3020 KSM_ATTR(use_zero_pages); 3021 3022 static ssize_t max_page_sharing_show(struct kobject *kobj, 3023 struct kobj_attribute *attr, char *buf) 3024 { 3025 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3026 } 3027 3028 static ssize_t max_page_sharing_store(struct kobject *kobj, 3029 struct kobj_attribute *attr, 3030 const char *buf, size_t count) 3031 { 3032 int err; 3033 int knob; 3034 3035 err = kstrtoint(buf, 10, &knob); 3036 if (err) 3037 return err; 3038 /* 3039 * When a KSM page is created it is shared by 2 mappings. This 3040 * being a signed comparison, it implicitly verifies it's not 3041 * negative. 3042 */ 3043 if (knob < 2) 3044 return -EINVAL; 3045 3046 if (READ_ONCE(ksm_max_page_sharing) == knob) 3047 return count; 3048 3049 mutex_lock(&ksm_thread_mutex); 3050 wait_while_offlining(); 3051 if (ksm_max_page_sharing != knob) { 3052 if (ksm_pages_shared || remove_all_stable_nodes()) 3053 err = -EBUSY; 3054 else 3055 ksm_max_page_sharing = knob; 3056 } 3057 mutex_unlock(&ksm_thread_mutex); 3058 3059 return err ? err : count; 3060 } 3061 KSM_ATTR(max_page_sharing); 3062 3063 static ssize_t pages_shared_show(struct kobject *kobj, 3064 struct kobj_attribute *attr, char *buf) 3065 { 3066 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3067 } 3068 KSM_ATTR_RO(pages_shared); 3069 3070 static ssize_t pages_sharing_show(struct kobject *kobj, 3071 struct kobj_attribute *attr, char *buf) 3072 { 3073 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3074 } 3075 KSM_ATTR_RO(pages_sharing); 3076 3077 static ssize_t pages_unshared_show(struct kobject *kobj, 3078 struct kobj_attribute *attr, char *buf) 3079 { 3080 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3081 } 3082 KSM_ATTR_RO(pages_unshared); 3083 3084 static ssize_t pages_volatile_show(struct kobject *kobj, 3085 struct kobj_attribute *attr, char *buf) 3086 { 3087 long ksm_pages_volatile; 3088 3089 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3090 - ksm_pages_sharing - ksm_pages_unshared; 3091 /* 3092 * It was not worth any locking to calculate that statistic, 3093 * but it might therefore sometimes be negative: conceal that. 3094 */ 3095 if (ksm_pages_volatile < 0) 3096 ksm_pages_volatile = 0; 3097 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3098 } 3099 KSM_ATTR_RO(pages_volatile); 3100 3101 static ssize_t stable_node_dups_show(struct kobject *kobj, 3102 struct kobj_attribute *attr, char *buf) 3103 { 3104 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3105 } 3106 KSM_ATTR_RO(stable_node_dups); 3107 3108 static ssize_t stable_node_chains_show(struct kobject *kobj, 3109 struct kobj_attribute *attr, char *buf) 3110 { 3111 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3112 } 3113 KSM_ATTR_RO(stable_node_chains); 3114 3115 static ssize_t 3116 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3117 struct kobj_attribute *attr, 3118 char *buf) 3119 { 3120 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3121 } 3122 3123 static ssize_t 3124 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3125 struct kobj_attribute *attr, 3126 const char *buf, size_t count) 3127 { 3128 unsigned int msecs; 3129 int err; 3130 3131 err = kstrtouint(buf, 10, &msecs); 3132 if (err) 3133 return -EINVAL; 3134 3135 ksm_stable_node_chains_prune_millisecs = msecs; 3136 3137 return count; 3138 } 3139 KSM_ATTR(stable_node_chains_prune_millisecs); 3140 3141 static ssize_t full_scans_show(struct kobject *kobj, 3142 struct kobj_attribute *attr, char *buf) 3143 { 3144 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3145 } 3146 KSM_ATTR_RO(full_scans); 3147 3148 static struct attribute *ksm_attrs[] = { 3149 &sleep_millisecs_attr.attr, 3150 &pages_to_scan_attr.attr, 3151 &run_attr.attr, 3152 &pages_shared_attr.attr, 3153 &pages_sharing_attr.attr, 3154 &pages_unshared_attr.attr, 3155 &pages_volatile_attr.attr, 3156 &full_scans_attr.attr, 3157 #ifdef CONFIG_NUMA 3158 &merge_across_nodes_attr.attr, 3159 #endif 3160 &max_page_sharing_attr.attr, 3161 &stable_node_chains_attr.attr, 3162 &stable_node_dups_attr.attr, 3163 &stable_node_chains_prune_millisecs_attr.attr, 3164 &use_zero_pages_attr.attr, 3165 NULL, 3166 }; 3167 3168 static const struct attribute_group ksm_attr_group = { 3169 .attrs = ksm_attrs, 3170 .name = "ksm", 3171 }; 3172 #endif /* CONFIG_SYSFS */ 3173 3174 static int __init ksm_init(void) 3175 { 3176 struct task_struct *ksm_thread; 3177 int err; 3178 3179 /* The correct value depends on page size and endianness */ 3180 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3181 /* Default to false for backwards compatibility */ 3182 ksm_use_zero_pages = false; 3183 3184 err = ksm_slab_init(); 3185 if (err) 3186 goto out; 3187 3188 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3189 if (IS_ERR(ksm_thread)) { 3190 pr_err("ksm: creating kthread failed\n"); 3191 err = PTR_ERR(ksm_thread); 3192 goto out_free; 3193 } 3194 3195 #ifdef CONFIG_SYSFS 3196 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3197 if (err) { 3198 pr_err("ksm: register sysfs failed\n"); 3199 kthread_stop(ksm_thread); 3200 goto out_free; 3201 } 3202 #else 3203 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3204 3205 #endif /* CONFIG_SYSFS */ 3206 3207 #ifdef CONFIG_MEMORY_HOTREMOVE 3208 /* There is no significance to this priority 100 */ 3209 hotplug_memory_notifier(ksm_memory_callback, 100); 3210 #endif 3211 return 0; 3212 3213 out_free: 3214 ksm_slab_free(); 3215 out: 3216 return err; 3217 } 3218 subsys_initcall(ksm_init); 3219