1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same struct stable_node structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 220 /* The stable and unstable tree heads */ 221 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 222 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 223 static struct rb_root *root_stable_tree = one_stable_tree; 224 static struct rb_root *root_unstable_tree = one_unstable_tree; 225 226 /* Recently migrated nodes of stable tree, pending proper placement */ 227 static LIST_HEAD(migrate_nodes); 228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 229 230 #define MM_SLOTS_HASH_BITS 10 231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 232 233 static struct mm_slot ksm_mm_head = { 234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 235 }; 236 static struct ksm_scan ksm_scan = { 237 .mm_slot = &ksm_mm_head, 238 }; 239 240 static struct kmem_cache *rmap_item_cache; 241 static struct kmem_cache *stable_node_cache; 242 static struct kmem_cache *mm_slot_cache; 243 244 /* The number of nodes in the stable tree */ 245 static unsigned long ksm_pages_shared; 246 247 /* The number of page slots additionally sharing those nodes */ 248 static unsigned long ksm_pages_sharing; 249 250 /* The number of nodes in the unstable tree */ 251 static unsigned long ksm_pages_unshared; 252 253 /* The number of rmap_items in use: to calculate pages_volatile */ 254 static unsigned long ksm_rmap_items; 255 256 /* The number of stable_node chains */ 257 static unsigned long ksm_stable_node_chains; 258 259 /* The number of stable_node dups linked to the stable_node chains */ 260 static unsigned long ksm_stable_node_dups; 261 262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 264 265 /* Maximum number of page slots sharing a stable node */ 266 static int ksm_max_page_sharing = 256; 267 268 /* Number of pages ksmd should scan in one batch */ 269 static unsigned int ksm_thread_pages_to_scan = 100; 270 271 /* Milliseconds ksmd should sleep between batches */ 272 static unsigned int ksm_thread_sleep_millisecs = 20; 273 274 /* Checksum of an empty (zeroed) page */ 275 static unsigned int zero_checksum __read_mostly; 276 277 /* Whether to merge empty (zeroed) pages with actual zero pages */ 278 static bool ksm_use_zero_pages __read_mostly; 279 280 #ifdef CONFIG_NUMA 281 /* Zeroed when merging across nodes is not allowed */ 282 static unsigned int ksm_merge_across_nodes = 1; 283 static int ksm_nr_node_ids = 1; 284 #else 285 #define ksm_merge_across_nodes 1U 286 #define ksm_nr_node_ids 1 287 #endif 288 289 #define KSM_RUN_STOP 0 290 #define KSM_RUN_MERGE 1 291 #define KSM_RUN_UNMERGE 2 292 #define KSM_RUN_OFFLINE 4 293 static unsigned long ksm_run = KSM_RUN_STOP; 294 static void wait_while_offlining(void); 295 296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 298 static DEFINE_MUTEX(ksm_thread_mutex); 299 static DEFINE_SPINLOCK(ksm_mmlist_lock); 300 301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 302 sizeof(struct __struct), __alignof__(struct __struct),\ 303 (__flags), NULL) 304 305 static int __init ksm_slab_init(void) 306 { 307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 308 if (!rmap_item_cache) 309 goto out; 310 311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 312 if (!stable_node_cache) 313 goto out_free1; 314 315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 316 if (!mm_slot_cache) 317 goto out_free2; 318 319 return 0; 320 321 out_free2: 322 kmem_cache_destroy(stable_node_cache); 323 out_free1: 324 kmem_cache_destroy(rmap_item_cache); 325 out: 326 return -ENOMEM; 327 } 328 329 static void __init ksm_slab_free(void) 330 { 331 kmem_cache_destroy(mm_slot_cache); 332 kmem_cache_destroy(stable_node_cache); 333 kmem_cache_destroy(rmap_item_cache); 334 mm_slot_cache = NULL; 335 } 336 337 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 338 { 339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 340 } 341 342 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 343 { 344 return dup->head == STABLE_NODE_DUP_HEAD; 345 } 346 347 static inline void stable_node_chain_add_dup(struct stable_node *dup, 348 struct stable_node *chain) 349 { 350 VM_BUG_ON(is_stable_node_dup(dup)); 351 dup->head = STABLE_NODE_DUP_HEAD; 352 VM_BUG_ON(!is_stable_node_chain(chain)); 353 hlist_add_head(&dup->hlist_dup, &chain->hlist); 354 ksm_stable_node_dups++; 355 } 356 357 static inline void __stable_node_dup_del(struct stable_node *dup) 358 { 359 VM_BUG_ON(!is_stable_node_dup(dup)); 360 hlist_del(&dup->hlist_dup); 361 ksm_stable_node_dups--; 362 } 363 364 static inline void stable_node_dup_del(struct stable_node *dup) 365 { 366 VM_BUG_ON(is_stable_node_chain(dup)); 367 if (is_stable_node_dup(dup)) 368 __stable_node_dup_del(dup); 369 else 370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 371 #ifdef CONFIG_DEBUG_VM 372 dup->head = NULL; 373 #endif 374 } 375 376 static inline struct rmap_item *alloc_rmap_item(void) 377 { 378 struct rmap_item *rmap_item; 379 380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 381 __GFP_NORETRY | __GFP_NOWARN); 382 if (rmap_item) 383 ksm_rmap_items++; 384 return rmap_item; 385 } 386 387 static inline void free_rmap_item(struct rmap_item *rmap_item) 388 { 389 ksm_rmap_items--; 390 rmap_item->mm = NULL; /* debug safety */ 391 kmem_cache_free(rmap_item_cache, rmap_item); 392 } 393 394 static inline struct stable_node *alloc_stable_node(void) 395 { 396 /* 397 * The allocation can take too long with GFP_KERNEL when memory is under 398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 399 * grants access to memory reserves, helping to avoid this problem. 400 */ 401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 402 } 403 404 static inline void free_stable_node(struct stable_node *stable_node) 405 { 406 VM_BUG_ON(stable_node->rmap_hlist_len && 407 !is_stable_node_chain(stable_node)); 408 kmem_cache_free(stable_node_cache, stable_node); 409 } 410 411 static inline struct mm_slot *alloc_mm_slot(void) 412 { 413 if (!mm_slot_cache) /* initialization failed */ 414 return NULL; 415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 416 } 417 418 static inline void free_mm_slot(struct mm_slot *mm_slot) 419 { 420 kmem_cache_free(mm_slot_cache, mm_slot); 421 } 422 423 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 424 { 425 struct mm_slot *slot; 426 427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 428 if (slot->mm == mm) 429 return slot; 430 431 return NULL; 432 } 433 434 static void insert_to_mm_slots_hash(struct mm_struct *mm, 435 struct mm_slot *mm_slot) 436 { 437 mm_slot->mm = mm; 438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 439 } 440 441 /* 442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 443 * page tables after it has passed through ksm_exit() - which, if necessary, 444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 445 * a special flag: they can just back out as soon as mm_users goes to zero. 446 * ksm_test_exit() is used throughout to make this test for exit: in some 447 * places for correctness, in some places just to avoid unnecessary work. 448 */ 449 static inline bool ksm_test_exit(struct mm_struct *mm) 450 { 451 return atomic_read(&mm->mm_users) == 0; 452 } 453 454 /* 455 * We use break_ksm to break COW on a ksm page: it's a stripped down 456 * 457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 458 * put_page(page); 459 * 460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 461 * in case the application has unmapped and remapped mm,addr meanwhile. 462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 463 * mmap of /dev/mem, where we would not want to touch it. 464 * 465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 466 * of the process that owns 'vma'. We also do not want to enforce 467 * protection keys here anyway. 468 */ 469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 470 { 471 struct page *page; 472 vm_fault_t ret = 0; 473 474 do { 475 cond_resched(); 476 page = follow_page(vma, addr, 477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 478 if (IS_ERR_OR_NULL(page)) 479 break; 480 if (PageKsm(page)) 481 ret = handle_mm_fault(vma, addr, 482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 483 NULL); 484 else 485 ret = VM_FAULT_WRITE; 486 put_page(page); 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 488 /* 489 * We must loop because handle_mm_fault() may back out if there's 490 * any difficulty e.g. if pte accessed bit gets updated concurrently. 491 * 492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 493 * COW has been broken, even if the vma does not permit VM_WRITE; 494 * but note that a concurrent fault might break PageKsm for us. 495 * 496 * VM_FAULT_SIGBUS could occur if we race with truncation of the 497 * backing file, which also invalidates anonymous pages: that's 498 * okay, that truncation will have unmapped the PageKsm for us. 499 * 500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 502 * current task has TIF_MEMDIE set, and will be OOM killed on return 503 * to user; and ksmd, having no mm, would never be chosen for that. 504 * 505 * But if the mm is in a limited mem_cgroup, then the fault may fail 506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 507 * even ksmd can fail in this way - though it's usually breaking ksm 508 * just to undo a merge it made a moment before, so unlikely to oom. 509 * 510 * That's a pity: we might therefore have more kernel pages allocated 511 * than we're counting as nodes in the stable tree; but ksm_do_scan 512 * will retry to break_cow on each pass, so should recover the page 513 * in due course. The important thing is to not let VM_MERGEABLE 514 * be cleared while any such pages might remain in the area. 515 */ 516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 517 } 518 519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 520 unsigned long addr) 521 { 522 struct vm_area_struct *vma; 523 if (ksm_test_exit(mm)) 524 return NULL; 525 vma = vma_lookup(mm, addr); 526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 527 return NULL; 528 return vma; 529 } 530 531 static void break_cow(struct rmap_item *rmap_item) 532 { 533 struct mm_struct *mm = rmap_item->mm; 534 unsigned long addr = rmap_item->address; 535 struct vm_area_struct *vma; 536 537 /* 538 * It is not an accident that whenever we want to break COW 539 * to undo, we also need to drop a reference to the anon_vma. 540 */ 541 put_anon_vma(rmap_item->anon_vma); 542 543 mmap_read_lock(mm); 544 vma = find_mergeable_vma(mm, addr); 545 if (vma) 546 break_ksm(vma, addr); 547 mmap_read_unlock(mm); 548 } 549 550 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 551 { 552 struct mm_struct *mm = rmap_item->mm; 553 unsigned long addr = rmap_item->address; 554 struct vm_area_struct *vma; 555 struct page *page; 556 557 mmap_read_lock(mm); 558 vma = find_mergeable_vma(mm, addr); 559 if (!vma) 560 goto out; 561 562 page = follow_page(vma, addr, FOLL_GET); 563 if (IS_ERR_OR_NULL(page)) 564 goto out; 565 if (PageAnon(page)) { 566 flush_anon_page(vma, page, addr); 567 flush_dcache_page(page); 568 } else { 569 put_page(page); 570 out: 571 page = NULL; 572 } 573 mmap_read_unlock(mm); 574 return page; 575 } 576 577 /* 578 * This helper is used for getting right index into array of tree roots. 579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 580 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 581 * every node has its own stable and unstable tree. 582 */ 583 static inline int get_kpfn_nid(unsigned long kpfn) 584 { 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 586 } 587 588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 589 struct rb_root *root) 590 { 591 struct stable_node *chain = alloc_stable_node(); 592 VM_BUG_ON(is_stable_node_chain(dup)); 593 if (likely(chain)) { 594 INIT_HLIST_HEAD(&chain->hlist); 595 chain->chain_prune_time = jiffies; 596 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 598 chain->nid = NUMA_NO_NODE; /* debug */ 599 #endif 600 ksm_stable_node_chains++; 601 602 /* 603 * Put the stable node chain in the first dimension of 604 * the stable tree and at the same time remove the old 605 * stable node. 606 */ 607 rb_replace_node(&dup->node, &chain->node, root); 608 609 /* 610 * Move the old stable node to the second dimension 611 * queued in the hlist_dup. The invariant is that all 612 * dup stable_nodes in the chain->hlist point to pages 613 * that are write protected and have the exact same 614 * content. 615 */ 616 stable_node_chain_add_dup(dup, chain); 617 } 618 return chain; 619 } 620 621 static inline void free_stable_node_chain(struct stable_node *chain, 622 struct rb_root *root) 623 { 624 rb_erase(&chain->node, root); 625 free_stable_node(chain); 626 ksm_stable_node_chains--; 627 } 628 629 static void remove_node_from_stable_tree(struct stable_node *stable_node) 630 { 631 struct rmap_item *rmap_item; 632 633 /* check it's not STABLE_NODE_CHAIN or negative */ 634 BUG_ON(stable_node->rmap_hlist_len < 0); 635 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 637 if (rmap_item->hlist.next) 638 ksm_pages_sharing--; 639 else 640 ksm_pages_shared--; 641 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 642 stable_node->rmap_hlist_len--; 643 put_anon_vma(rmap_item->anon_vma); 644 rmap_item->address &= PAGE_MASK; 645 cond_resched(); 646 } 647 648 /* 649 * We need the second aligned pointer of the migrate_nodes 650 * list_head to stay clear from the rb_parent_color union 651 * (aligned and different than any node) and also different 652 * from &migrate_nodes. This will verify that future list.h changes 653 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 654 */ 655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 656 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 657 658 if (stable_node->head == &migrate_nodes) 659 list_del(&stable_node->list); 660 else 661 stable_node_dup_del(stable_node); 662 free_stable_node(stable_node); 663 } 664 665 enum get_ksm_page_flags { 666 GET_KSM_PAGE_NOLOCK, 667 GET_KSM_PAGE_LOCK, 668 GET_KSM_PAGE_TRYLOCK 669 }; 670 671 /* 672 * get_ksm_page: checks if the page indicated by the stable node 673 * is still its ksm page, despite having held no reference to it. 674 * In which case we can trust the content of the page, and it 675 * returns the gotten page; but if the page has now been zapped, 676 * remove the stale node from the stable tree and return NULL. 677 * But beware, the stable node's page might be being migrated. 678 * 679 * You would expect the stable_node to hold a reference to the ksm page. 680 * But if it increments the page's count, swapping out has to wait for 681 * ksmd to come around again before it can free the page, which may take 682 * seconds or even minutes: much too unresponsive. So instead we use a 683 * "keyhole reference": access to the ksm page from the stable node peeps 684 * out through its keyhole to see if that page still holds the right key, 685 * pointing back to this stable node. This relies on freeing a PageAnon 686 * page to reset its page->mapping to NULL, and relies on no other use of 687 * a page to put something that might look like our key in page->mapping. 688 * is on its way to being freed; but it is an anomaly to bear in mind. 689 */ 690 static struct page *get_ksm_page(struct stable_node *stable_node, 691 enum get_ksm_page_flags flags) 692 { 693 struct page *page; 694 void *expected_mapping; 695 unsigned long kpfn; 696 697 expected_mapping = (void *)((unsigned long)stable_node | 698 PAGE_MAPPING_KSM); 699 again: 700 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 701 page = pfn_to_page(kpfn); 702 if (READ_ONCE(page->mapping) != expected_mapping) 703 goto stale; 704 705 /* 706 * We cannot do anything with the page while its refcount is 0. 707 * Usually 0 means free, or tail of a higher-order page: in which 708 * case this node is no longer referenced, and should be freed; 709 * however, it might mean that the page is under page_ref_freeze(). 710 * The __remove_mapping() case is easy, again the node is now stale; 711 * the same is in reuse_ksm_page() case; but if page is swapcache 712 * in migrate_page_move_mapping(), it might still be our page, 713 * in which case it's essential to keep the node. 714 */ 715 while (!get_page_unless_zero(page)) { 716 /* 717 * Another check for page->mapping != expected_mapping would 718 * work here too. We have chosen the !PageSwapCache test to 719 * optimize the common case, when the page is or is about to 720 * be freed: PageSwapCache is cleared (under spin_lock_irq) 721 * in the ref_freeze section of __remove_mapping(); but Anon 722 * page->mapping reset to NULL later, in free_pages_prepare(). 723 */ 724 if (!PageSwapCache(page)) 725 goto stale; 726 cpu_relax(); 727 } 728 729 if (READ_ONCE(page->mapping) != expected_mapping) { 730 put_page(page); 731 goto stale; 732 } 733 734 if (flags == GET_KSM_PAGE_TRYLOCK) { 735 if (!trylock_page(page)) { 736 put_page(page); 737 return ERR_PTR(-EBUSY); 738 } 739 } else if (flags == GET_KSM_PAGE_LOCK) 740 lock_page(page); 741 742 if (flags != GET_KSM_PAGE_NOLOCK) { 743 if (READ_ONCE(page->mapping) != expected_mapping) { 744 unlock_page(page); 745 put_page(page); 746 goto stale; 747 } 748 } 749 return page; 750 751 stale: 752 /* 753 * We come here from above when page->mapping or !PageSwapCache 754 * suggests that the node is stale; but it might be under migration. 755 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 756 * before checking whether node->kpfn has been changed. 757 */ 758 smp_rmb(); 759 if (READ_ONCE(stable_node->kpfn) != kpfn) 760 goto again; 761 remove_node_from_stable_tree(stable_node); 762 return NULL; 763 } 764 765 /* 766 * Removing rmap_item from stable or unstable tree. 767 * This function will clean the information from the stable/unstable tree. 768 */ 769 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 770 { 771 if (rmap_item->address & STABLE_FLAG) { 772 struct stable_node *stable_node; 773 struct page *page; 774 775 stable_node = rmap_item->head; 776 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 777 if (!page) 778 goto out; 779 780 hlist_del(&rmap_item->hlist); 781 unlock_page(page); 782 put_page(page); 783 784 if (!hlist_empty(&stable_node->hlist)) 785 ksm_pages_sharing--; 786 else 787 ksm_pages_shared--; 788 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 789 stable_node->rmap_hlist_len--; 790 791 put_anon_vma(rmap_item->anon_vma); 792 rmap_item->head = NULL; 793 rmap_item->address &= PAGE_MASK; 794 795 } else if (rmap_item->address & UNSTABLE_FLAG) { 796 unsigned char age; 797 /* 798 * Usually ksmd can and must skip the rb_erase, because 799 * root_unstable_tree was already reset to RB_ROOT. 800 * But be careful when an mm is exiting: do the rb_erase 801 * if this rmap_item was inserted by this scan, rather 802 * than left over from before. 803 */ 804 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 805 BUG_ON(age > 1); 806 if (!age) 807 rb_erase(&rmap_item->node, 808 root_unstable_tree + NUMA(rmap_item->nid)); 809 ksm_pages_unshared--; 810 rmap_item->address &= PAGE_MASK; 811 } 812 out: 813 cond_resched(); /* we're called from many long loops */ 814 } 815 816 static void remove_trailing_rmap_items(struct rmap_item **rmap_list) 817 { 818 while (*rmap_list) { 819 struct rmap_item *rmap_item = *rmap_list; 820 *rmap_list = rmap_item->rmap_list; 821 remove_rmap_item_from_tree(rmap_item); 822 free_rmap_item(rmap_item); 823 } 824 } 825 826 /* 827 * Though it's very tempting to unmerge rmap_items from stable tree rather 828 * than check every pte of a given vma, the locking doesn't quite work for 829 * that - an rmap_item is assigned to the stable tree after inserting ksm 830 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 831 * rmap_items from parent to child at fork time (so as not to waste time 832 * if exit comes before the next scan reaches it). 833 * 834 * Similarly, although we'd like to remove rmap_items (so updating counts 835 * and freeing memory) when unmerging an area, it's easier to leave that 836 * to the next pass of ksmd - consider, for example, how ksmd might be 837 * in cmp_and_merge_page on one of the rmap_items we would be removing. 838 */ 839 static int unmerge_ksm_pages(struct vm_area_struct *vma, 840 unsigned long start, unsigned long end) 841 { 842 unsigned long addr; 843 int err = 0; 844 845 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 846 if (ksm_test_exit(vma->vm_mm)) 847 break; 848 if (signal_pending(current)) 849 err = -ERESTARTSYS; 850 else 851 err = break_ksm(vma, addr); 852 } 853 return err; 854 } 855 856 static inline struct stable_node *folio_stable_node(struct folio *folio) 857 { 858 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 859 } 860 861 static inline struct stable_node *page_stable_node(struct page *page) 862 { 863 return folio_stable_node(page_folio(page)); 864 } 865 866 static inline void set_page_stable_node(struct page *page, 867 struct stable_node *stable_node) 868 { 869 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 870 } 871 872 #ifdef CONFIG_SYSFS 873 /* 874 * Only called through the sysfs control interface: 875 */ 876 static int remove_stable_node(struct stable_node *stable_node) 877 { 878 struct page *page; 879 int err; 880 881 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 882 if (!page) { 883 /* 884 * get_ksm_page did remove_node_from_stable_tree itself. 885 */ 886 return 0; 887 } 888 889 /* 890 * Page could be still mapped if this races with __mmput() running in 891 * between ksm_exit() and exit_mmap(). Just refuse to let 892 * merge_across_nodes/max_page_sharing be switched. 893 */ 894 err = -EBUSY; 895 if (!page_mapped(page)) { 896 /* 897 * The stable node did not yet appear stale to get_ksm_page(), 898 * since that allows for an unmapped ksm page to be recognized 899 * right up until it is freed; but the node is safe to remove. 900 * This page might be in a pagevec waiting to be freed, 901 * or it might be PageSwapCache (perhaps under writeback), 902 * or it might have been removed from swapcache a moment ago. 903 */ 904 set_page_stable_node(page, NULL); 905 remove_node_from_stable_tree(stable_node); 906 err = 0; 907 } 908 909 unlock_page(page); 910 put_page(page); 911 return err; 912 } 913 914 static int remove_stable_node_chain(struct stable_node *stable_node, 915 struct rb_root *root) 916 { 917 struct stable_node *dup; 918 struct hlist_node *hlist_safe; 919 920 if (!is_stable_node_chain(stable_node)) { 921 VM_BUG_ON(is_stable_node_dup(stable_node)); 922 if (remove_stable_node(stable_node)) 923 return true; 924 else 925 return false; 926 } 927 928 hlist_for_each_entry_safe(dup, hlist_safe, 929 &stable_node->hlist, hlist_dup) { 930 VM_BUG_ON(!is_stable_node_dup(dup)); 931 if (remove_stable_node(dup)) 932 return true; 933 } 934 BUG_ON(!hlist_empty(&stable_node->hlist)); 935 free_stable_node_chain(stable_node, root); 936 return false; 937 } 938 939 static int remove_all_stable_nodes(void) 940 { 941 struct stable_node *stable_node, *next; 942 int nid; 943 int err = 0; 944 945 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 946 while (root_stable_tree[nid].rb_node) { 947 stable_node = rb_entry(root_stable_tree[nid].rb_node, 948 struct stable_node, node); 949 if (remove_stable_node_chain(stable_node, 950 root_stable_tree + nid)) { 951 err = -EBUSY; 952 break; /* proceed to next nid */ 953 } 954 cond_resched(); 955 } 956 } 957 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 958 if (remove_stable_node(stable_node)) 959 err = -EBUSY; 960 cond_resched(); 961 } 962 return err; 963 } 964 965 static int unmerge_and_remove_all_rmap_items(void) 966 { 967 struct mm_slot *mm_slot; 968 struct mm_struct *mm; 969 struct vm_area_struct *vma; 970 int err = 0; 971 972 spin_lock(&ksm_mmlist_lock); 973 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 974 struct mm_slot, mm_list); 975 spin_unlock(&ksm_mmlist_lock); 976 977 for (mm_slot = ksm_scan.mm_slot; 978 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 979 mm = mm_slot->mm; 980 mmap_read_lock(mm); 981 for (vma = mm->mmap; vma; vma = vma->vm_next) { 982 if (ksm_test_exit(mm)) 983 break; 984 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 985 continue; 986 err = unmerge_ksm_pages(vma, 987 vma->vm_start, vma->vm_end); 988 if (err) 989 goto error; 990 } 991 992 remove_trailing_rmap_items(&mm_slot->rmap_list); 993 mmap_read_unlock(mm); 994 995 spin_lock(&ksm_mmlist_lock); 996 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 997 struct mm_slot, mm_list); 998 if (ksm_test_exit(mm)) { 999 hash_del(&mm_slot->link); 1000 list_del(&mm_slot->mm_list); 1001 spin_unlock(&ksm_mmlist_lock); 1002 1003 free_mm_slot(mm_slot); 1004 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1005 mmdrop(mm); 1006 } else 1007 spin_unlock(&ksm_mmlist_lock); 1008 } 1009 1010 /* Clean up stable nodes, but don't worry if some are still busy */ 1011 remove_all_stable_nodes(); 1012 ksm_scan.seqnr = 0; 1013 return 0; 1014 1015 error: 1016 mmap_read_unlock(mm); 1017 spin_lock(&ksm_mmlist_lock); 1018 ksm_scan.mm_slot = &ksm_mm_head; 1019 spin_unlock(&ksm_mmlist_lock); 1020 return err; 1021 } 1022 #endif /* CONFIG_SYSFS */ 1023 1024 static u32 calc_checksum(struct page *page) 1025 { 1026 u32 checksum; 1027 void *addr = kmap_atomic(page); 1028 checksum = xxhash(addr, PAGE_SIZE, 0); 1029 kunmap_atomic(addr); 1030 return checksum; 1031 } 1032 1033 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1034 pte_t *orig_pte) 1035 { 1036 struct mm_struct *mm = vma->vm_mm; 1037 struct page_vma_mapped_walk pvmw = { 1038 .page = page, 1039 .vma = vma, 1040 }; 1041 int swapped; 1042 int err = -EFAULT; 1043 struct mmu_notifier_range range; 1044 1045 pvmw.address = page_address_in_vma(page, vma); 1046 if (pvmw.address == -EFAULT) 1047 goto out; 1048 1049 BUG_ON(PageTransCompound(page)); 1050 1051 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1052 pvmw.address, 1053 pvmw.address + PAGE_SIZE); 1054 mmu_notifier_invalidate_range_start(&range); 1055 1056 if (!page_vma_mapped_walk(&pvmw)) 1057 goto out_mn; 1058 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1059 goto out_unlock; 1060 1061 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1062 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1063 mm_tlb_flush_pending(mm)) { 1064 pte_t entry; 1065 1066 swapped = PageSwapCache(page); 1067 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1068 /* 1069 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1070 * take any lock, therefore the check that we are going to make 1071 * with the pagecount against the mapcount is racy and 1072 * O_DIRECT can happen right after the check. 1073 * So we clear the pte and flush the tlb before the check 1074 * this assure us that no O_DIRECT can happen after the check 1075 * or in the middle of the check. 1076 * 1077 * No need to notify as we are downgrading page table to read 1078 * only not changing it to point to a new page. 1079 * 1080 * See Documentation/vm/mmu_notifier.rst 1081 */ 1082 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1083 /* 1084 * Check that no O_DIRECT or similar I/O is in progress on the 1085 * page 1086 */ 1087 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1088 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1089 goto out_unlock; 1090 } 1091 if (pte_dirty(entry)) 1092 set_page_dirty(page); 1093 1094 if (pte_protnone(entry)) 1095 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1096 else 1097 entry = pte_mkclean(pte_wrprotect(entry)); 1098 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1099 } 1100 *orig_pte = *pvmw.pte; 1101 err = 0; 1102 1103 out_unlock: 1104 page_vma_mapped_walk_done(&pvmw); 1105 out_mn: 1106 mmu_notifier_invalidate_range_end(&range); 1107 out: 1108 return err; 1109 } 1110 1111 /** 1112 * replace_page - replace page in vma by new ksm page 1113 * @vma: vma that holds the pte pointing to page 1114 * @page: the page we are replacing by kpage 1115 * @kpage: the ksm page we replace page by 1116 * @orig_pte: the original value of the pte 1117 * 1118 * Returns 0 on success, -EFAULT on failure. 1119 */ 1120 static int replace_page(struct vm_area_struct *vma, struct page *page, 1121 struct page *kpage, pte_t orig_pte) 1122 { 1123 struct mm_struct *mm = vma->vm_mm; 1124 pmd_t *pmd; 1125 pte_t *ptep; 1126 pte_t newpte; 1127 spinlock_t *ptl; 1128 unsigned long addr; 1129 int err = -EFAULT; 1130 struct mmu_notifier_range range; 1131 1132 addr = page_address_in_vma(page, vma); 1133 if (addr == -EFAULT) 1134 goto out; 1135 1136 pmd = mm_find_pmd(mm, addr); 1137 if (!pmd) 1138 goto out; 1139 1140 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1141 addr + PAGE_SIZE); 1142 mmu_notifier_invalidate_range_start(&range); 1143 1144 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1145 if (!pte_same(*ptep, orig_pte)) { 1146 pte_unmap_unlock(ptep, ptl); 1147 goto out_mn; 1148 } 1149 1150 /* 1151 * No need to check ksm_use_zero_pages here: we can only have a 1152 * zero_page here if ksm_use_zero_pages was enabled already. 1153 */ 1154 if (!is_zero_pfn(page_to_pfn(kpage))) { 1155 get_page(kpage); 1156 page_add_anon_rmap(kpage, vma, addr, false); 1157 newpte = mk_pte(kpage, vma->vm_page_prot); 1158 } else { 1159 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1160 vma->vm_page_prot)); 1161 /* 1162 * We're replacing an anonymous page with a zero page, which is 1163 * not anonymous. We need to do proper accounting otherwise we 1164 * will get wrong values in /proc, and a BUG message in dmesg 1165 * when tearing down the mm. 1166 */ 1167 dec_mm_counter(mm, MM_ANONPAGES); 1168 } 1169 1170 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1171 /* 1172 * No need to notify as we are replacing a read only page with another 1173 * read only page with the same content. 1174 * 1175 * See Documentation/vm/mmu_notifier.rst 1176 */ 1177 ptep_clear_flush(vma, addr, ptep); 1178 set_pte_at_notify(mm, addr, ptep, newpte); 1179 1180 page_remove_rmap(page, false); 1181 if (!page_mapped(page)) 1182 try_to_free_swap(page); 1183 put_page(page); 1184 1185 pte_unmap_unlock(ptep, ptl); 1186 err = 0; 1187 out_mn: 1188 mmu_notifier_invalidate_range_end(&range); 1189 out: 1190 return err; 1191 } 1192 1193 /* 1194 * try_to_merge_one_page - take two pages and merge them into one 1195 * @vma: the vma that holds the pte pointing to page 1196 * @page: the PageAnon page that we want to replace with kpage 1197 * @kpage: the PageKsm page that we want to map instead of page, 1198 * or NULL the first time when we want to use page as kpage. 1199 * 1200 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1201 */ 1202 static int try_to_merge_one_page(struct vm_area_struct *vma, 1203 struct page *page, struct page *kpage) 1204 { 1205 pte_t orig_pte = __pte(0); 1206 int err = -EFAULT; 1207 1208 if (page == kpage) /* ksm page forked */ 1209 return 0; 1210 1211 if (!PageAnon(page)) 1212 goto out; 1213 1214 /* 1215 * We need the page lock to read a stable PageSwapCache in 1216 * write_protect_page(). We use trylock_page() instead of 1217 * lock_page() because we don't want to wait here - we 1218 * prefer to continue scanning and merging different pages, 1219 * then come back to this page when it is unlocked. 1220 */ 1221 if (!trylock_page(page)) 1222 goto out; 1223 1224 if (PageTransCompound(page)) { 1225 if (split_huge_page(page)) 1226 goto out_unlock; 1227 } 1228 1229 /* 1230 * If this anonymous page is mapped only here, its pte may need 1231 * to be write-protected. If it's mapped elsewhere, all of its 1232 * ptes are necessarily already write-protected. But in either 1233 * case, we need to lock and check page_count is not raised. 1234 */ 1235 if (write_protect_page(vma, page, &orig_pte) == 0) { 1236 if (!kpage) { 1237 /* 1238 * While we hold page lock, upgrade page from 1239 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1240 * stable_tree_insert() will update stable_node. 1241 */ 1242 set_page_stable_node(page, NULL); 1243 mark_page_accessed(page); 1244 /* 1245 * Page reclaim just frees a clean page with no dirty 1246 * ptes: make sure that the ksm page would be swapped. 1247 */ 1248 if (!PageDirty(page)) 1249 SetPageDirty(page); 1250 err = 0; 1251 } else if (pages_identical(page, kpage)) 1252 err = replace_page(vma, page, kpage, orig_pte); 1253 } 1254 1255 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1256 munlock_vma_page(page); 1257 if (!PageMlocked(kpage)) { 1258 unlock_page(page); 1259 lock_page(kpage); 1260 mlock_vma_page(kpage); 1261 page = kpage; /* for final unlock */ 1262 } 1263 } 1264 1265 out_unlock: 1266 unlock_page(page); 1267 out: 1268 return err; 1269 } 1270 1271 /* 1272 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1273 * but no new kernel page is allocated: kpage must already be a ksm page. 1274 * 1275 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1276 */ 1277 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1278 struct page *page, struct page *kpage) 1279 { 1280 struct mm_struct *mm = rmap_item->mm; 1281 struct vm_area_struct *vma; 1282 int err = -EFAULT; 1283 1284 mmap_read_lock(mm); 1285 vma = find_mergeable_vma(mm, rmap_item->address); 1286 if (!vma) 1287 goto out; 1288 1289 err = try_to_merge_one_page(vma, page, kpage); 1290 if (err) 1291 goto out; 1292 1293 /* Unstable nid is in union with stable anon_vma: remove first */ 1294 remove_rmap_item_from_tree(rmap_item); 1295 1296 /* Must get reference to anon_vma while still holding mmap_lock */ 1297 rmap_item->anon_vma = vma->anon_vma; 1298 get_anon_vma(vma->anon_vma); 1299 out: 1300 mmap_read_unlock(mm); 1301 return err; 1302 } 1303 1304 /* 1305 * try_to_merge_two_pages - take two identical pages and prepare them 1306 * to be merged into one page. 1307 * 1308 * This function returns the kpage if we successfully merged two identical 1309 * pages into one ksm page, NULL otherwise. 1310 * 1311 * Note that this function upgrades page to ksm page: if one of the pages 1312 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1313 */ 1314 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1315 struct page *page, 1316 struct rmap_item *tree_rmap_item, 1317 struct page *tree_page) 1318 { 1319 int err; 1320 1321 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1322 if (!err) { 1323 err = try_to_merge_with_ksm_page(tree_rmap_item, 1324 tree_page, page); 1325 /* 1326 * If that fails, we have a ksm page with only one pte 1327 * pointing to it: so break it. 1328 */ 1329 if (err) 1330 break_cow(rmap_item); 1331 } 1332 return err ? NULL : page; 1333 } 1334 1335 static __always_inline 1336 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1337 { 1338 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1339 /* 1340 * Check that at least one mapping still exists, otherwise 1341 * there's no much point to merge and share with this 1342 * stable_node, as the underlying tree_page of the other 1343 * sharer is going to be freed soon. 1344 */ 1345 return stable_node->rmap_hlist_len && 1346 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1347 } 1348 1349 static __always_inline 1350 bool is_page_sharing_candidate(struct stable_node *stable_node) 1351 { 1352 return __is_page_sharing_candidate(stable_node, 0); 1353 } 1354 1355 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1356 struct stable_node **_stable_node, 1357 struct rb_root *root, 1358 bool prune_stale_stable_nodes) 1359 { 1360 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1361 struct hlist_node *hlist_safe; 1362 struct page *_tree_page, *tree_page = NULL; 1363 int nr = 0; 1364 int found_rmap_hlist_len; 1365 1366 if (!prune_stale_stable_nodes || 1367 time_before(jiffies, stable_node->chain_prune_time + 1368 msecs_to_jiffies( 1369 ksm_stable_node_chains_prune_millisecs))) 1370 prune_stale_stable_nodes = false; 1371 else 1372 stable_node->chain_prune_time = jiffies; 1373 1374 hlist_for_each_entry_safe(dup, hlist_safe, 1375 &stable_node->hlist, hlist_dup) { 1376 cond_resched(); 1377 /* 1378 * We must walk all stable_node_dup to prune the stale 1379 * stable nodes during lookup. 1380 * 1381 * get_ksm_page can drop the nodes from the 1382 * stable_node->hlist if they point to freed pages 1383 * (that's why we do a _safe walk). The "dup" 1384 * stable_node parameter itself will be freed from 1385 * under us if it returns NULL. 1386 */ 1387 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1388 if (!_tree_page) 1389 continue; 1390 nr += 1; 1391 if (is_page_sharing_candidate(dup)) { 1392 if (!found || 1393 dup->rmap_hlist_len > found_rmap_hlist_len) { 1394 if (found) 1395 put_page(tree_page); 1396 found = dup; 1397 found_rmap_hlist_len = found->rmap_hlist_len; 1398 tree_page = _tree_page; 1399 1400 /* skip put_page for found dup */ 1401 if (!prune_stale_stable_nodes) 1402 break; 1403 continue; 1404 } 1405 } 1406 put_page(_tree_page); 1407 } 1408 1409 if (found) { 1410 /* 1411 * nr is counting all dups in the chain only if 1412 * prune_stale_stable_nodes is true, otherwise we may 1413 * break the loop at nr == 1 even if there are 1414 * multiple entries. 1415 */ 1416 if (prune_stale_stable_nodes && nr == 1) { 1417 /* 1418 * If there's not just one entry it would 1419 * corrupt memory, better BUG_ON. In KSM 1420 * context with no lock held it's not even 1421 * fatal. 1422 */ 1423 BUG_ON(stable_node->hlist.first->next); 1424 1425 /* 1426 * There's just one entry and it is below the 1427 * deduplication limit so drop the chain. 1428 */ 1429 rb_replace_node(&stable_node->node, &found->node, 1430 root); 1431 free_stable_node(stable_node); 1432 ksm_stable_node_chains--; 1433 ksm_stable_node_dups--; 1434 /* 1435 * NOTE: the caller depends on the stable_node 1436 * to be equal to stable_node_dup if the chain 1437 * was collapsed. 1438 */ 1439 *_stable_node = found; 1440 /* 1441 * Just for robustness, as stable_node is 1442 * otherwise left as a stable pointer, the 1443 * compiler shall optimize it away at build 1444 * time. 1445 */ 1446 stable_node = NULL; 1447 } else if (stable_node->hlist.first != &found->hlist_dup && 1448 __is_page_sharing_candidate(found, 1)) { 1449 /* 1450 * If the found stable_node dup can accept one 1451 * more future merge (in addition to the one 1452 * that is underway) and is not at the head of 1453 * the chain, put it there so next search will 1454 * be quicker in the !prune_stale_stable_nodes 1455 * case. 1456 * 1457 * NOTE: it would be inaccurate to use nr > 1 1458 * instead of checking the hlist.first pointer 1459 * directly, because in the 1460 * prune_stale_stable_nodes case "nr" isn't 1461 * the position of the found dup in the chain, 1462 * but the total number of dups in the chain. 1463 */ 1464 hlist_del(&found->hlist_dup); 1465 hlist_add_head(&found->hlist_dup, 1466 &stable_node->hlist); 1467 } 1468 } 1469 1470 *_stable_node_dup = found; 1471 return tree_page; 1472 } 1473 1474 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1475 struct rb_root *root) 1476 { 1477 if (!is_stable_node_chain(stable_node)) 1478 return stable_node; 1479 if (hlist_empty(&stable_node->hlist)) { 1480 free_stable_node_chain(stable_node, root); 1481 return NULL; 1482 } 1483 return hlist_entry(stable_node->hlist.first, 1484 typeof(*stable_node), hlist_dup); 1485 } 1486 1487 /* 1488 * Like for get_ksm_page, this function can free the *_stable_node and 1489 * *_stable_node_dup if the returned tree_page is NULL. 1490 * 1491 * It can also free and overwrite *_stable_node with the found 1492 * stable_node_dup if the chain is collapsed (in which case 1493 * *_stable_node will be equal to *_stable_node_dup like if the chain 1494 * never existed). It's up to the caller to verify tree_page is not 1495 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1496 * 1497 * *_stable_node_dup is really a second output parameter of this 1498 * function and will be overwritten in all cases, the caller doesn't 1499 * need to initialize it. 1500 */ 1501 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1502 struct stable_node **_stable_node, 1503 struct rb_root *root, 1504 bool prune_stale_stable_nodes) 1505 { 1506 struct stable_node *stable_node = *_stable_node; 1507 if (!is_stable_node_chain(stable_node)) { 1508 if (is_page_sharing_candidate(stable_node)) { 1509 *_stable_node_dup = stable_node; 1510 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1511 } 1512 /* 1513 * _stable_node_dup set to NULL means the stable_node 1514 * reached the ksm_max_page_sharing limit. 1515 */ 1516 *_stable_node_dup = NULL; 1517 return NULL; 1518 } 1519 return stable_node_dup(_stable_node_dup, _stable_node, root, 1520 prune_stale_stable_nodes); 1521 } 1522 1523 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1524 struct stable_node **s_n, 1525 struct rb_root *root) 1526 { 1527 return __stable_node_chain(s_n_d, s_n, root, true); 1528 } 1529 1530 static __always_inline struct page *chain(struct stable_node **s_n_d, 1531 struct stable_node *s_n, 1532 struct rb_root *root) 1533 { 1534 struct stable_node *old_stable_node = s_n; 1535 struct page *tree_page; 1536 1537 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1538 /* not pruning dups so s_n cannot have changed */ 1539 VM_BUG_ON(s_n != old_stable_node); 1540 return tree_page; 1541 } 1542 1543 /* 1544 * stable_tree_search - search for page inside the stable tree 1545 * 1546 * This function checks if there is a page inside the stable tree 1547 * with identical content to the page that we are scanning right now. 1548 * 1549 * This function returns the stable tree node of identical content if found, 1550 * NULL otherwise. 1551 */ 1552 static struct page *stable_tree_search(struct page *page) 1553 { 1554 int nid; 1555 struct rb_root *root; 1556 struct rb_node **new; 1557 struct rb_node *parent; 1558 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1559 struct stable_node *page_node; 1560 1561 page_node = page_stable_node(page); 1562 if (page_node && page_node->head != &migrate_nodes) { 1563 /* ksm page forked */ 1564 get_page(page); 1565 return page; 1566 } 1567 1568 nid = get_kpfn_nid(page_to_pfn(page)); 1569 root = root_stable_tree + nid; 1570 again: 1571 new = &root->rb_node; 1572 parent = NULL; 1573 1574 while (*new) { 1575 struct page *tree_page; 1576 int ret; 1577 1578 cond_resched(); 1579 stable_node = rb_entry(*new, struct stable_node, node); 1580 stable_node_any = NULL; 1581 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1582 /* 1583 * NOTE: stable_node may have been freed by 1584 * chain_prune() if the returned stable_node_dup is 1585 * not NULL. stable_node_dup may have been inserted in 1586 * the rbtree instead as a regular stable_node (in 1587 * order to collapse the stable_node chain if a single 1588 * stable_node dup was found in it). In such case the 1589 * stable_node is overwritten by the calleee to point 1590 * to the stable_node_dup that was collapsed in the 1591 * stable rbtree and stable_node will be equal to 1592 * stable_node_dup like if the chain never existed. 1593 */ 1594 if (!stable_node_dup) { 1595 /* 1596 * Either all stable_node dups were full in 1597 * this stable_node chain, or this chain was 1598 * empty and should be rb_erased. 1599 */ 1600 stable_node_any = stable_node_dup_any(stable_node, 1601 root); 1602 if (!stable_node_any) { 1603 /* rb_erase just run */ 1604 goto again; 1605 } 1606 /* 1607 * Take any of the stable_node dups page of 1608 * this stable_node chain to let the tree walk 1609 * continue. All KSM pages belonging to the 1610 * stable_node dups in a stable_node chain 1611 * have the same content and they're 1612 * write protected at all times. Any will work 1613 * fine to continue the walk. 1614 */ 1615 tree_page = get_ksm_page(stable_node_any, 1616 GET_KSM_PAGE_NOLOCK); 1617 } 1618 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1619 if (!tree_page) { 1620 /* 1621 * If we walked over a stale stable_node, 1622 * get_ksm_page() will call rb_erase() and it 1623 * may rebalance the tree from under us. So 1624 * restart the search from scratch. Returning 1625 * NULL would be safe too, but we'd generate 1626 * false negative insertions just because some 1627 * stable_node was stale. 1628 */ 1629 goto again; 1630 } 1631 1632 ret = memcmp_pages(page, tree_page); 1633 put_page(tree_page); 1634 1635 parent = *new; 1636 if (ret < 0) 1637 new = &parent->rb_left; 1638 else if (ret > 0) 1639 new = &parent->rb_right; 1640 else { 1641 if (page_node) { 1642 VM_BUG_ON(page_node->head != &migrate_nodes); 1643 /* 1644 * Test if the migrated page should be merged 1645 * into a stable node dup. If the mapcount is 1646 * 1 we can migrate it with another KSM page 1647 * without adding it to the chain. 1648 */ 1649 if (page_mapcount(page) > 1) 1650 goto chain_append; 1651 } 1652 1653 if (!stable_node_dup) { 1654 /* 1655 * If the stable_node is a chain and 1656 * we got a payload match in memcmp 1657 * but we cannot merge the scanned 1658 * page in any of the existing 1659 * stable_node dups because they're 1660 * all full, we need to wait the 1661 * scanned page to find itself a match 1662 * in the unstable tree to create a 1663 * brand new KSM page to add later to 1664 * the dups of this stable_node. 1665 */ 1666 return NULL; 1667 } 1668 1669 /* 1670 * Lock and unlock the stable_node's page (which 1671 * might already have been migrated) so that page 1672 * migration is sure to notice its raised count. 1673 * It would be more elegant to return stable_node 1674 * than kpage, but that involves more changes. 1675 */ 1676 tree_page = get_ksm_page(stable_node_dup, 1677 GET_KSM_PAGE_TRYLOCK); 1678 1679 if (PTR_ERR(tree_page) == -EBUSY) 1680 return ERR_PTR(-EBUSY); 1681 1682 if (unlikely(!tree_page)) 1683 /* 1684 * The tree may have been rebalanced, 1685 * so re-evaluate parent and new. 1686 */ 1687 goto again; 1688 unlock_page(tree_page); 1689 1690 if (get_kpfn_nid(stable_node_dup->kpfn) != 1691 NUMA(stable_node_dup->nid)) { 1692 put_page(tree_page); 1693 goto replace; 1694 } 1695 return tree_page; 1696 } 1697 } 1698 1699 if (!page_node) 1700 return NULL; 1701 1702 list_del(&page_node->list); 1703 DO_NUMA(page_node->nid = nid); 1704 rb_link_node(&page_node->node, parent, new); 1705 rb_insert_color(&page_node->node, root); 1706 out: 1707 if (is_page_sharing_candidate(page_node)) { 1708 get_page(page); 1709 return page; 1710 } else 1711 return NULL; 1712 1713 replace: 1714 /* 1715 * If stable_node was a chain and chain_prune collapsed it, 1716 * stable_node has been updated to be the new regular 1717 * stable_node. A collapse of the chain is indistinguishable 1718 * from the case there was no chain in the stable 1719 * rbtree. Otherwise stable_node is the chain and 1720 * stable_node_dup is the dup to replace. 1721 */ 1722 if (stable_node_dup == stable_node) { 1723 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1724 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1725 /* there is no chain */ 1726 if (page_node) { 1727 VM_BUG_ON(page_node->head != &migrate_nodes); 1728 list_del(&page_node->list); 1729 DO_NUMA(page_node->nid = nid); 1730 rb_replace_node(&stable_node_dup->node, 1731 &page_node->node, 1732 root); 1733 if (is_page_sharing_candidate(page_node)) 1734 get_page(page); 1735 else 1736 page = NULL; 1737 } else { 1738 rb_erase(&stable_node_dup->node, root); 1739 page = NULL; 1740 } 1741 } else { 1742 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1743 __stable_node_dup_del(stable_node_dup); 1744 if (page_node) { 1745 VM_BUG_ON(page_node->head != &migrate_nodes); 1746 list_del(&page_node->list); 1747 DO_NUMA(page_node->nid = nid); 1748 stable_node_chain_add_dup(page_node, stable_node); 1749 if (is_page_sharing_candidate(page_node)) 1750 get_page(page); 1751 else 1752 page = NULL; 1753 } else { 1754 page = NULL; 1755 } 1756 } 1757 stable_node_dup->head = &migrate_nodes; 1758 list_add(&stable_node_dup->list, stable_node_dup->head); 1759 return page; 1760 1761 chain_append: 1762 /* stable_node_dup could be null if it reached the limit */ 1763 if (!stable_node_dup) 1764 stable_node_dup = stable_node_any; 1765 /* 1766 * If stable_node was a chain and chain_prune collapsed it, 1767 * stable_node has been updated to be the new regular 1768 * stable_node. A collapse of the chain is indistinguishable 1769 * from the case there was no chain in the stable 1770 * rbtree. Otherwise stable_node is the chain and 1771 * stable_node_dup is the dup to replace. 1772 */ 1773 if (stable_node_dup == stable_node) { 1774 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1775 /* chain is missing so create it */ 1776 stable_node = alloc_stable_node_chain(stable_node_dup, 1777 root); 1778 if (!stable_node) 1779 return NULL; 1780 } 1781 /* 1782 * Add this stable_node dup that was 1783 * migrated to the stable_node chain 1784 * of the current nid for this page 1785 * content. 1786 */ 1787 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1788 VM_BUG_ON(page_node->head != &migrate_nodes); 1789 list_del(&page_node->list); 1790 DO_NUMA(page_node->nid = nid); 1791 stable_node_chain_add_dup(page_node, stable_node); 1792 goto out; 1793 } 1794 1795 /* 1796 * stable_tree_insert - insert stable tree node pointing to new ksm page 1797 * into the stable tree. 1798 * 1799 * This function returns the stable tree node just allocated on success, 1800 * NULL otherwise. 1801 */ 1802 static struct stable_node *stable_tree_insert(struct page *kpage) 1803 { 1804 int nid; 1805 unsigned long kpfn; 1806 struct rb_root *root; 1807 struct rb_node **new; 1808 struct rb_node *parent; 1809 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1810 bool need_chain = false; 1811 1812 kpfn = page_to_pfn(kpage); 1813 nid = get_kpfn_nid(kpfn); 1814 root = root_stable_tree + nid; 1815 again: 1816 parent = NULL; 1817 new = &root->rb_node; 1818 1819 while (*new) { 1820 struct page *tree_page; 1821 int ret; 1822 1823 cond_resched(); 1824 stable_node = rb_entry(*new, struct stable_node, node); 1825 stable_node_any = NULL; 1826 tree_page = chain(&stable_node_dup, stable_node, root); 1827 if (!stable_node_dup) { 1828 /* 1829 * Either all stable_node dups were full in 1830 * this stable_node chain, or this chain was 1831 * empty and should be rb_erased. 1832 */ 1833 stable_node_any = stable_node_dup_any(stable_node, 1834 root); 1835 if (!stable_node_any) { 1836 /* rb_erase just run */ 1837 goto again; 1838 } 1839 /* 1840 * Take any of the stable_node dups page of 1841 * this stable_node chain to let the tree walk 1842 * continue. All KSM pages belonging to the 1843 * stable_node dups in a stable_node chain 1844 * have the same content and they're 1845 * write protected at all times. Any will work 1846 * fine to continue the walk. 1847 */ 1848 tree_page = get_ksm_page(stable_node_any, 1849 GET_KSM_PAGE_NOLOCK); 1850 } 1851 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1852 if (!tree_page) { 1853 /* 1854 * If we walked over a stale stable_node, 1855 * get_ksm_page() will call rb_erase() and it 1856 * may rebalance the tree from under us. So 1857 * restart the search from scratch. Returning 1858 * NULL would be safe too, but we'd generate 1859 * false negative insertions just because some 1860 * stable_node was stale. 1861 */ 1862 goto again; 1863 } 1864 1865 ret = memcmp_pages(kpage, tree_page); 1866 put_page(tree_page); 1867 1868 parent = *new; 1869 if (ret < 0) 1870 new = &parent->rb_left; 1871 else if (ret > 0) 1872 new = &parent->rb_right; 1873 else { 1874 need_chain = true; 1875 break; 1876 } 1877 } 1878 1879 stable_node_dup = alloc_stable_node(); 1880 if (!stable_node_dup) 1881 return NULL; 1882 1883 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1884 stable_node_dup->kpfn = kpfn; 1885 set_page_stable_node(kpage, stable_node_dup); 1886 stable_node_dup->rmap_hlist_len = 0; 1887 DO_NUMA(stable_node_dup->nid = nid); 1888 if (!need_chain) { 1889 rb_link_node(&stable_node_dup->node, parent, new); 1890 rb_insert_color(&stable_node_dup->node, root); 1891 } else { 1892 if (!is_stable_node_chain(stable_node)) { 1893 struct stable_node *orig = stable_node; 1894 /* chain is missing so create it */ 1895 stable_node = alloc_stable_node_chain(orig, root); 1896 if (!stable_node) { 1897 free_stable_node(stable_node_dup); 1898 return NULL; 1899 } 1900 } 1901 stable_node_chain_add_dup(stable_node_dup, stable_node); 1902 } 1903 1904 return stable_node_dup; 1905 } 1906 1907 /* 1908 * unstable_tree_search_insert - search for identical page, 1909 * else insert rmap_item into the unstable tree. 1910 * 1911 * This function searches for a page in the unstable tree identical to the 1912 * page currently being scanned; and if no identical page is found in the 1913 * tree, we insert rmap_item as a new object into the unstable tree. 1914 * 1915 * This function returns pointer to rmap_item found to be identical 1916 * to the currently scanned page, NULL otherwise. 1917 * 1918 * This function does both searching and inserting, because they share 1919 * the same walking algorithm in an rbtree. 1920 */ 1921 static 1922 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1923 struct page *page, 1924 struct page **tree_pagep) 1925 { 1926 struct rb_node **new; 1927 struct rb_root *root; 1928 struct rb_node *parent = NULL; 1929 int nid; 1930 1931 nid = get_kpfn_nid(page_to_pfn(page)); 1932 root = root_unstable_tree + nid; 1933 new = &root->rb_node; 1934 1935 while (*new) { 1936 struct rmap_item *tree_rmap_item; 1937 struct page *tree_page; 1938 int ret; 1939 1940 cond_resched(); 1941 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1942 tree_page = get_mergeable_page(tree_rmap_item); 1943 if (!tree_page) 1944 return NULL; 1945 1946 /* 1947 * Don't substitute a ksm page for a forked page. 1948 */ 1949 if (page == tree_page) { 1950 put_page(tree_page); 1951 return NULL; 1952 } 1953 1954 ret = memcmp_pages(page, tree_page); 1955 1956 parent = *new; 1957 if (ret < 0) { 1958 put_page(tree_page); 1959 new = &parent->rb_left; 1960 } else if (ret > 0) { 1961 put_page(tree_page); 1962 new = &parent->rb_right; 1963 } else if (!ksm_merge_across_nodes && 1964 page_to_nid(tree_page) != nid) { 1965 /* 1966 * If tree_page has been migrated to another NUMA node, 1967 * it will be flushed out and put in the right unstable 1968 * tree next time: only merge with it when across_nodes. 1969 */ 1970 put_page(tree_page); 1971 return NULL; 1972 } else { 1973 *tree_pagep = tree_page; 1974 return tree_rmap_item; 1975 } 1976 } 1977 1978 rmap_item->address |= UNSTABLE_FLAG; 1979 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1980 DO_NUMA(rmap_item->nid = nid); 1981 rb_link_node(&rmap_item->node, parent, new); 1982 rb_insert_color(&rmap_item->node, root); 1983 1984 ksm_pages_unshared++; 1985 return NULL; 1986 } 1987 1988 /* 1989 * stable_tree_append - add another rmap_item to the linked list of 1990 * rmap_items hanging off a given node of the stable tree, all sharing 1991 * the same ksm page. 1992 */ 1993 static void stable_tree_append(struct rmap_item *rmap_item, 1994 struct stable_node *stable_node, 1995 bool max_page_sharing_bypass) 1996 { 1997 /* 1998 * rmap won't find this mapping if we don't insert the 1999 * rmap_item in the right stable_node 2000 * duplicate. page_migration could break later if rmap breaks, 2001 * so we can as well crash here. We really need to check for 2002 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2003 * for other negative values as an underflow if detected here 2004 * for the first time (and not when decreasing rmap_hlist_len) 2005 * would be sign of memory corruption in the stable_node. 2006 */ 2007 BUG_ON(stable_node->rmap_hlist_len < 0); 2008 2009 stable_node->rmap_hlist_len++; 2010 if (!max_page_sharing_bypass) 2011 /* possibly non fatal but unexpected overflow, only warn */ 2012 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2013 ksm_max_page_sharing); 2014 2015 rmap_item->head = stable_node; 2016 rmap_item->address |= STABLE_FLAG; 2017 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2018 2019 if (rmap_item->hlist.next) 2020 ksm_pages_sharing++; 2021 else 2022 ksm_pages_shared++; 2023 } 2024 2025 /* 2026 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2027 * if not, compare checksum to previous and if it's the same, see if page can 2028 * be inserted into the unstable tree, or merged with a page already there and 2029 * both transferred to the stable tree. 2030 * 2031 * @page: the page that we are searching identical page to. 2032 * @rmap_item: the reverse mapping into the virtual address of this page 2033 */ 2034 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2035 { 2036 struct mm_struct *mm = rmap_item->mm; 2037 struct rmap_item *tree_rmap_item; 2038 struct page *tree_page = NULL; 2039 struct stable_node *stable_node; 2040 struct page *kpage; 2041 unsigned int checksum; 2042 int err; 2043 bool max_page_sharing_bypass = false; 2044 2045 stable_node = page_stable_node(page); 2046 if (stable_node) { 2047 if (stable_node->head != &migrate_nodes && 2048 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2049 NUMA(stable_node->nid)) { 2050 stable_node_dup_del(stable_node); 2051 stable_node->head = &migrate_nodes; 2052 list_add(&stable_node->list, stable_node->head); 2053 } 2054 if (stable_node->head != &migrate_nodes && 2055 rmap_item->head == stable_node) 2056 return; 2057 /* 2058 * If it's a KSM fork, allow it to go over the sharing limit 2059 * without warnings. 2060 */ 2061 if (!is_page_sharing_candidate(stable_node)) 2062 max_page_sharing_bypass = true; 2063 } 2064 2065 /* We first start with searching the page inside the stable tree */ 2066 kpage = stable_tree_search(page); 2067 if (kpage == page && rmap_item->head == stable_node) { 2068 put_page(kpage); 2069 return; 2070 } 2071 2072 remove_rmap_item_from_tree(rmap_item); 2073 2074 if (kpage) { 2075 if (PTR_ERR(kpage) == -EBUSY) 2076 return; 2077 2078 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2079 if (!err) { 2080 /* 2081 * The page was successfully merged: 2082 * add its rmap_item to the stable tree. 2083 */ 2084 lock_page(kpage); 2085 stable_tree_append(rmap_item, page_stable_node(kpage), 2086 max_page_sharing_bypass); 2087 unlock_page(kpage); 2088 } 2089 put_page(kpage); 2090 return; 2091 } 2092 2093 /* 2094 * If the hash value of the page has changed from the last time 2095 * we calculated it, this page is changing frequently: therefore we 2096 * don't want to insert it in the unstable tree, and we don't want 2097 * to waste our time searching for something identical to it there. 2098 */ 2099 checksum = calc_checksum(page); 2100 if (rmap_item->oldchecksum != checksum) { 2101 rmap_item->oldchecksum = checksum; 2102 return; 2103 } 2104 2105 /* 2106 * Same checksum as an empty page. We attempt to merge it with the 2107 * appropriate zero page if the user enabled this via sysfs. 2108 */ 2109 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2110 struct vm_area_struct *vma; 2111 2112 mmap_read_lock(mm); 2113 vma = find_mergeable_vma(mm, rmap_item->address); 2114 if (vma) { 2115 err = try_to_merge_one_page(vma, page, 2116 ZERO_PAGE(rmap_item->address)); 2117 } else { 2118 /* 2119 * If the vma is out of date, we do not need to 2120 * continue. 2121 */ 2122 err = 0; 2123 } 2124 mmap_read_unlock(mm); 2125 /* 2126 * In case of failure, the page was not really empty, so we 2127 * need to continue. Otherwise we're done. 2128 */ 2129 if (!err) 2130 return; 2131 } 2132 tree_rmap_item = 2133 unstable_tree_search_insert(rmap_item, page, &tree_page); 2134 if (tree_rmap_item) { 2135 bool split; 2136 2137 kpage = try_to_merge_two_pages(rmap_item, page, 2138 tree_rmap_item, tree_page); 2139 /* 2140 * If both pages we tried to merge belong to the same compound 2141 * page, then we actually ended up increasing the reference 2142 * count of the same compound page twice, and split_huge_page 2143 * failed. 2144 * Here we set a flag if that happened, and we use it later to 2145 * try split_huge_page again. Since we call put_page right 2146 * afterwards, the reference count will be correct and 2147 * split_huge_page should succeed. 2148 */ 2149 split = PageTransCompound(page) 2150 && compound_head(page) == compound_head(tree_page); 2151 put_page(tree_page); 2152 if (kpage) { 2153 /* 2154 * The pages were successfully merged: insert new 2155 * node in the stable tree and add both rmap_items. 2156 */ 2157 lock_page(kpage); 2158 stable_node = stable_tree_insert(kpage); 2159 if (stable_node) { 2160 stable_tree_append(tree_rmap_item, stable_node, 2161 false); 2162 stable_tree_append(rmap_item, stable_node, 2163 false); 2164 } 2165 unlock_page(kpage); 2166 2167 /* 2168 * If we fail to insert the page into the stable tree, 2169 * we will have 2 virtual addresses that are pointing 2170 * to a ksm page left outside the stable tree, 2171 * in which case we need to break_cow on both. 2172 */ 2173 if (!stable_node) { 2174 break_cow(tree_rmap_item); 2175 break_cow(rmap_item); 2176 } 2177 } else if (split) { 2178 /* 2179 * We are here if we tried to merge two pages and 2180 * failed because they both belonged to the same 2181 * compound page. We will split the page now, but no 2182 * merging will take place. 2183 * We do not want to add the cost of a full lock; if 2184 * the page is locked, it is better to skip it and 2185 * perhaps try again later. 2186 */ 2187 if (!trylock_page(page)) 2188 return; 2189 split_huge_page(page); 2190 unlock_page(page); 2191 } 2192 } 2193 } 2194 2195 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2196 struct rmap_item **rmap_list, 2197 unsigned long addr) 2198 { 2199 struct rmap_item *rmap_item; 2200 2201 while (*rmap_list) { 2202 rmap_item = *rmap_list; 2203 if ((rmap_item->address & PAGE_MASK) == addr) 2204 return rmap_item; 2205 if (rmap_item->address > addr) 2206 break; 2207 *rmap_list = rmap_item->rmap_list; 2208 remove_rmap_item_from_tree(rmap_item); 2209 free_rmap_item(rmap_item); 2210 } 2211 2212 rmap_item = alloc_rmap_item(); 2213 if (rmap_item) { 2214 /* It has already been zeroed */ 2215 rmap_item->mm = mm_slot->mm; 2216 rmap_item->address = addr; 2217 rmap_item->rmap_list = *rmap_list; 2218 *rmap_list = rmap_item; 2219 } 2220 return rmap_item; 2221 } 2222 2223 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2224 { 2225 struct mm_struct *mm; 2226 struct mm_slot *slot; 2227 struct vm_area_struct *vma; 2228 struct rmap_item *rmap_item; 2229 int nid; 2230 2231 if (list_empty(&ksm_mm_head.mm_list)) 2232 return NULL; 2233 2234 slot = ksm_scan.mm_slot; 2235 if (slot == &ksm_mm_head) { 2236 /* 2237 * A number of pages can hang around indefinitely on per-cpu 2238 * pagevecs, raised page count preventing write_protect_page 2239 * from merging them. Though it doesn't really matter much, 2240 * it is puzzling to see some stuck in pages_volatile until 2241 * other activity jostles them out, and they also prevented 2242 * LTP's KSM test from succeeding deterministically; so drain 2243 * them here (here rather than on entry to ksm_do_scan(), 2244 * so we don't IPI too often when pages_to_scan is set low). 2245 */ 2246 lru_add_drain_all(); 2247 2248 /* 2249 * Whereas stale stable_nodes on the stable_tree itself 2250 * get pruned in the regular course of stable_tree_search(), 2251 * those moved out to the migrate_nodes list can accumulate: 2252 * so prune them once before each full scan. 2253 */ 2254 if (!ksm_merge_across_nodes) { 2255 struct stable_node *stable_node, *next; 2256 struct page *page; 2257 2258 list_for_each_entry_safe(stable_node, next, 2259 &migrate_nodes, list) { 2260 page = get_ksm_page(stable_node, 2261 GET_KSM_PAGE_NOLOCK); 2262 if (page) 2263 put_page(page); 2264 cond_resched(); 2265 } 2266 } 2267 2268 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2269 root_unstable_tree[nid] = RB_ROOT; 2270 2271 spin_lock(&ksm_mmlist_lock); 2272 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2273 ksm_scan.mm_slot = slot; 2274 spin_unlock(&ksm_mmlist_lock); 2275 /* 2276 * Although we tested list_empty() above, a racing __ksm_exit 2277 * of the last mm on the list may have removed it since then. 2278 */ 2279 if (slot == &ksm_mm_head) 2280 return NULL; 2281 next_mm: 2282 ksm_scan.address = 0; 2283 ksm_scan.rmap_list = &slot->rmap_list; 2284 } 2285 2286 mm = slot->mm; 2287 mmap_read_lock(mm); 2288 if (ksm_test_exit(mm)) 2289 vma = NULL; 2290 else 2291 vma = find_vma(mm, ksm_scan.address); 2292 2293 for (; vma; vma = vma->vm_next) { 2294 if (!(vma->vm_flags & VM_MERGEABLE)) 2295 continue; 2296 if (ksm_scan.address < vma->vm_start) 2297 ksm_scan.address = vma->vm_start; 2298 if (!vma->anon_vma) 2299 ksm_scan.address = vma->vm_end; 2300 2301 while (ksm_scan.address < vma->vm_end) { 2302 if (ksm_test_exit(mm)) 2303 break; 2304 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2305 if (IS_ERR_OR_NULL(*page)) { 2306 ksm_scan.address += PAGE_SIZE; 2307 cond_resched(); 2308 continue; 2309 } 2310 if (PageAnon(*page)) { 2311 flush_anon_page(vma, *page, ksm_scan.address); 2312 flush_dcache_page(*page); 2313 rmap_item = get_next_rmap_item(slot, 2314 ksm_scan.rmap_list, ksm_scan.address); 2315 if (rmap_item) { 2316 ksm_scan.rmap_list = 2317 &rmap_item->rmap_list; 2318 ksm_scan.address += PAGE_SIZE; 2319 } else 2320 put_page(*page); 2321 mmap_read_unlock(mm); 2322 return rmap_item; 2323 } 2324 put_page(*page); 2325 ksm_scan.address += PAGE_SIZE; 2326 cond_resched(); 2327 } 2328 } 2329 2330 if (ksm_test_exit(mm)) { 2331 ksm_scan.address = 0; 2332 ksm_scan.rmap_list = &slot->rmap_list; 2333 } 2334 /* 2335 * Nuke all the rmap_items that are above this current rmap: 2336 * because there were no VM_MERGEABLE vmas with such addresses. 2337 */ 2338 remove_trailing_rmap_items(ksm_scan.rmap_list); 2339 2340 spin_lock(&ksm_mmlist_lock); 2341 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2342 struct mm_slot, mm_list); 2343 if (ksm_scan.address == 0) { 2344 /* 2345 * We've completed a full scan of all vmas, holding mmap_lock 2346 * throughout, and found no VM_MERGEABLE: so do the same as 2347 * __ksm_exit does to remove this mm from all our lists now. 2348 * This applies either when cleaning up after __ksm_exit 2349 * (but beware: we can reach here even before __ksm_exit), 2350 * or when all VM_MERGEABLE areas have been unmapped (and 2351 * mmap_lock then protects against race with MADV_MERGEABLE). 2352 */ 2353 hash_del(&slot->link); 2354 list_del(&slot->mm_list); 2355 spin_unlock(&ksm_mmlist_lock); 2356 2357 free_mm_slot(slot); 2358 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2359 mmap_read_unlock(mm); 2360 mmdrop(mm); 2361 } else { 2362 mmap_read_unlock(mm); 2363 /* 2364 * mmap_read_unlock(mm) first because after 2365 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2366 * already have been freed under us by __ksm_exit() 2367 * because the "mm_slot" is still hashed and 2368 * ksm_scan.mm_slot doesn't point to it anymore. 2369 */ 2370 spin_unlock(&ksm_mmlist_lock); 2371 } 2372 2373 /* Repeat until we've completed scanning the whole list */ 2374 slot = ksm_scan.mm_slot; 2375 if (slot != &ksm_mm_head) 2376 goto next_mm; 2377 2378 ksm_scan.seqnr++; 2379 return NULL; 2380 } 2381 2382 /** 2383 * ksm_do_scan - the ksm scanner main worker function. 2384 * @scan_npages: number of pages we want to scan before we return. 2385 */ 2386 static void ksm_do_scan(unsigned int scan_npages) 2387 { 2388 struct rmap_item *rmap_item; 2389 struct page *page; 2390 2391 while (scan_npages-- && likely(!freezing(current))) { 2392 cond_resched(); 2393 rmap_item = scan_get_next_rmap_item(&page); 2394 if (!rmap_item) 2395 return; 2396 cmp_and_merge_page(page, rmap_item); 2397 put_page(page); 2398 } 2399 } 2400 2401 static int ksmd_should_run(void) 2402 { 2403 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2404 } 2405 2406 static int ksm_scan_thread(void *nothing) 2407 { 2408 unsigned int sleep_ms; 2409 2410 set_freezable(); 2411 set_user_nice(current, 5); 2412 2413 while (!kthread_should_stop()) { 2414 mutex_lock(&ksm_thread_mutex); 2415 wait_while_offlining(); 2416 if (ksmd_should_run()) 2417 ksm_do_scan(ksm_thread_pages_to_scan); 2418 mutex_unlock(&ksm_thread_mutex); 2419 2420 try_to_freeze(); 2421 2422 if (ksmd_should_run()) { 2423 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2424 wait_event_interruptible_timeout(ksm_iter_wait, 2425 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2426 msecs_to_jiffies(sleep_ms)); 2427 } else { 2428 wait_event_freezable(ksm_thread_wait, 2429 ksmd_should_run() || kthread_should_stop()); 2430 } 2431 } 2432 return 0; 2433 } 2434 2435 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2436 unsigned long end, int advice, unsigned long *vm_flags) 2437 { 2438 struct mm_struct *mm = vma->vm_mm; 2439 int err; 2440 2441 switch (advice) { 2442 case MADV_MERGEABLE: 2443 /* 2444 * Be somewhat over-protective for now! 2445 */ 2446 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2447 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2448 VM_HUGETLB | VM_MIXEDMAP)) 2449 return 0; /* just ignore the advice */ 2450 2451 if (vma_is_dax(vma)) 2452 return 0; 2453 2454 #ifdef VM_SAO 2455 if (*vm_flags & VM_SAO) 2456 return 0; 2457 #endif 2458 #ifdef VM_SPARC_ADI 2459 if (*vm_flags & VM_SPARC_ADI) 2460 return 0; 2461 #endif 2462 2463 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2464 err = __ksm_enter(mm); 2465 if (err) 2466 return err; 2467 } 2468 2469 *vm_flags |= VM_MERGEABLE; 2470 break; 2471 2472 case MADV_UNMERGEABLE: 2473 if (!(*vm_flags & VM_MERGEABLE)) 2474 return 0; /* just ignore the advice */ 2475 2476 if (vma->anon_vma) { 2477 err = unmerge_ksm_pages(vma, start, end); 2478 if (err) 2479 return err; 2480 } 2481 2482 *vm_flags &= ~VM_MERGEABLE; 2483 break; 2484 } 2485 2486 return 0; 2487 } 2488 EXPORT_SYMBOL_GPL(ksm_madvise); 2489 2490 int __ksm_enter(struct mm_struct *mm) 2491 { 2492 struct mm_slot *mm_slot; 2493 int needs_wakeup; 2494 2495 mm_slot = alloc_mm_slot(); 2496 if (!mm_slot) 2497 return -ENOMEM; 2498 2499 /* Check ksm_run too? Would need tighter locking */ 2500 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2501 2502 spin_lock(&ksm_mmlist_lock); 2503 insert_to_mm_slots_hash(mm, mm_slot); 2504 /* 2505 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2506 * insert just behind the scanning cursor, to let the area settle 2507 * down a little; when fork is followed by immediate exec, we don't 2508 * want ksmd to waste time setting up and tearing down an rmap_list. 2509 * 2510 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2511 * scanning cursor, otherwise KSM pages in newly forked mms will be 2512 * missed: then we might as well insert at the end of the list. 2513 */ 2514 if (ksm_run & KSM_RUN_UNMERGE) 2515 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2516 else 2517 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2518 spin_unlock(&ksm_mmlist_lock); 2519 2520 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2521 mmgrab(mm); 2522 2523 if (needs_wakeup) 2524 wake_up_interruptible(&ksm_thread_wait); 2525 2526 return 0; 2527 } 2528 2529 void __ksm_exit(struct mm_struct *mm) 2530 { 2531 struct mm_slot *mm_slot; 2532 int easy_to_free = 0; 2533 2534 /* 2535 * This process is exiting: if it's straightforward (as is the 2536 * case when ksmd was never running), free mm_slot immediately. 2537 * But if it's at the cursor or has rmap_items linked to it, use 2538 * mmap_lock to synchronize with any break_cows before pagetables 2539 * are freed, and leave the mm_slot on the list for ksmd to free. 2540 * Beware: ksm may already have noticed it exiting and freed the slot. 2541 */ 2542 2543 spin_lock(&ksm_mmlist_lock); 2544 mm_slot = get_mm_slot(mm); 2545 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2546 if (!mm_slot->rmap_list) { 2547 hash_del(&mm_slot->link); 2548 list_del(&mm_slot->mm_list); 2549 easy_to_free = 1; 2550 } else { 2551 list_move(&mm_slot->mm_list, 2552 &ksm_scan.mm_slot->mm_list); 2553 } 2554 } 2555 spin_unlock(&ksm_mmlist_lock); 2556 2557 if (easy_to_free) { 2558 free_mm_slot(mm_slot); 2559 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2560 mmdrop(mm); 2561 } else if (mm_slot) { 2562 mmap_write_lock(mm); 2563 mmap_write_unlock(mm); 2564 } 2565 } 2566 2567 struct page *ksm_might_need_to_copy(struct page *page, 2568 struct vm_area_struct *vma, unsigned long address) 2569 { 2570 struct anon_vma *anon_vma = page_anon_vma(page); 2571 struct page *new_page; 2572 2573 if (PageKsm(page)) { 2574 if (page_stable_node(page) && 2575 !(ksm_run & KSM_RUN_UNMERGE)) 2576 return page; /* no need to copy it */ 2577 } else if (!anon_vma) { 2578 return page; /* no need to copy it */ 2579 } else if (page->index == linear_page_index(vma, address) && 2580 anon_vma->root == vma->anon_vma->root) { 2581 return page; /* still no need to copy it */ 2582 } 2583 if (!PageUptodate(page)) 2584 return page; /* let do_swap_page report the error */ 2585 2586 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2587 if (new_page && 2588 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2589 put_page(new_page); 2590 new_page = NULL; 2591 } 2592 if (new_page) { 2593 copy_user_highpage(new_page, page, address, vma); 2594 2595 SetPageDirty(new_page); 2596 __SetPageUptodate(new_page); 2597 __SetPageLocked(new_page); 2598 #ifdef CONFIG_SWAP 2599 count_vm_event(KSM_SWPIN_COPY); 2600 #endif 2601 } 2602 2603 return new_page; 2604 } 2605 2606 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2607 { 2608 struct stable_node *stable_node; 2609 struct rmap_item *rmap_item; 2610 int search_new_forks = 0; 2611 2612 VM_BUG_ON_PAGE(!PageKsm(page), page); 2613 2614 /* 2615 * Rely on the page lock to protect against concurrent modifications 2616 * to that page's node of the stable tree. 2617 */ 2618 VM_BUG_ON_PAGE(!PageLocked(page), page); 2619 2620 stable_node = page_stable_node(page); 2621 if (!stable_node) 2622 return; 2623 again: 2624 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2625 struct anon_vma *anon_vma = rmap_item->anon_vma; 2626 struct anon_vma_chain *vmac; 2627 struct vm_area_struct *vma; 2628 2629 cond_resched(); 2630 anon_vma_lock_read(anon_vma); 2631 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2632 0, ULONG_MAX) { 2633 unsigned long addr; 2634 2635 cond_resched(); 2636 vma = vmac->vma; 2637 2638 /* Ignore the stable/unstable/sqnr flags */ 2639 addr = rmap_item->address & PAGE_MASK; 2640 2641 if (addr < vma->vm_start || addr >= vma->vm_end) 2642 continue; 2643 /* 2644 * Initially we examine only the vma which covers this 2645 * rmap_item; but later, if there is still work to do, 2646 * we examine covering vmas in other mms: in case they 2647 * were forked from the original since ksmd passed. 2648 */ 2649 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2650 continue; 2651 2652 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2653 continue; 2654 2655 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2656 anon_vma_unlock_read(anon_vma); 2657 return; 2658 } 2659 if (rwc->done && rwc->done(page)) { 2660 anon_vma_unlock_read(anon_vma); 2661 return; 2662 } 2663 } 2664 anon_vma_unlock_read(anon_vma); 2665 } 2666 if (!search_new_forks++) 2667 goto again; 2668 } 2669 2670 #ifdef CONFIG_MIGRATION 2671 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2672 { 2673 struct stable_node *stable_node; 2674 2675 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2676 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2677 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2678 2679 stable_node = folio_stable_node(folio); 2680 if (stable_node) { 2681 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2682 stable_node->kpfn = folio_pfn(newfolio); 2683 /* 2684 * newfolio->mapping was set in advance; now we need smp_wmb() 2685 * to make sure that the new stable_node->kpfn is visible 2686 * to get_ksm_page() before it can see that folio->mapping 2687 * has gone stale (or that folio_test_swapcache has been cleared). 2688 */ 2689 smp_wmb(); 2690 set_page_stable_node(&folio->page, NULL); 2691 } 2692 } 2693 #endif /* CONFIG_MIGRATION */ 2694 2695 #ifdef CONFIG_MEMORY_HOTREMOVE 2696 static void wait_while_offlining(void) 2697 { 2698 while (ksm_run & KSM_RUN_OFFLINE) { 2699 mutex_unlock(&ksm_thread_mutex); 2700 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2701 TASK_UNINTERRUPTIBLE); 2702 mutex_lock(&ksm_thread_mutex); 2703 } 2704 } 2705 2706 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2707 unsigned long start_pfn, 2708 unsigned long end_pfn) 2709 { 2710 if (stable_node->kpfn >= start_pfn && 2711 stable_node->kpfn < end_pfn) { 2712 /* 2713 * Don't get_ksm_page, page has already gone: 2714 * which is why we keep kpfn instead of page* 2715 */ 2716 remove_node_from_stable_tree(stable_node); 2717 return true; 2718 } 2719 return false; 2720 } 2721 2722 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2723 unsigned long start_pfn, 2724 unsigned long end_pfn, 2725 struct rb_root *root) 2726 { 2727 struct stable_node *dup; 2728 struct hlist_node *hlist_safe; 2729 2730 if (!is_stable_node_chain(stable_node)) { 2731 VM_BUG_ON(is_stable_node_dup(stable_node)); 2732 return stable_node_dup_remove_range(stable_node, start_pfn, 2733 end_pfn); 2734 } 2735 2736 hlist_for_each_entry_safe(dup, hlist_safe, 2737 &stable_node->hlist, hlist_dup) { 2738 VM_BUG_ON(!is_stable_node_dup(dup)); 2739 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2740 } 2741 if (hlist_empty(&stable_node->hlist)) { 2742 free_stable_node_chain(stable_node, root); 2743 return true; /* notify caller that tree was rebalanced */ 2744 } else 2745 return false; 2746 } 2747 2748 static void ksm_check_stable_tree(unsigned long start_pfn, 2749 unsigned long end_pfn) 2750 { 2751 struct stable_node *stable_node, *next; 2752 struct rb_node *node; 2753 int nid; 2754 2755 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2756 node = rb_first(root_stable_tree + nid); 2757 while (node) { 2758 stable_node = rb_entry(node, struct stable_node, node); 2759 if (stable_node_chain_remove_range(stable_node, 2760 start_pfn, end_pfn, 2761 root_stable_tree + 2762 nid)) 2763 node = rb_first(root_stable_tree + nid); 2764 else 2765 node = rb_next(node); 2766 cond_resched(); 2767 } 2768 } 2769 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2770 if (stable_node->kpfn >= start_pfn && 2771 stable_node->kpfn < end_pfn) 2772 remove_node_from_stable_tree(stable_node); 2773 cond_resched(); 2774 } 2775 } 2776 2777 static int ksm_memory_callback(struct notifier_block *self, 2778 unsigned long action, void *arg) 2779 { 2780 struct memory_notify *mn = arg; 2781 2782 switch (action) { 2783 case MEM_GOING_OFFLINE: 2784 /* 2785 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2786 * and remove_all_stable_nodes() while memory is going offline: 2787 * it is unsafe for them to touch the stable tree at this time. 2788 * But unmerge_ksm_pages(), rmap lookups and other entry points 2789 * which do not need the ksm_thread_mutex are all safe. 2790 */ 2791 mutex_lock(&ksm_thread_mutex); 2792 ksm_run |= KSM_RUN_OFFLINE; 2793 mutex_unlock(&ksm_thread_mutex); 2794 break; 2795 2796 case MEM_OFFLINE: 2797 /* 2798 * Most of the work is done by page migration; but there might 2799 * be a few stable_nodes left over, still pointing to struct 2800 * pages which have been offlined: prune those from the tree, 2801 * otherwise get_ksm_page() might later try to access a 2802 * non-existent struct page. 2803 */ 2804 ksm_check_stable_tree(mn->start_pfn, 2805 mn->start_pfn + mn->nr_pages); 2806 fallthrough; 2807 case MEM_CANCEL_OFFLINE: 2808 mutex_lock(&ksm_thread_mutex); 2809 ksm_run &= ~KSM_RUN_OFFLINE; 2810 mutex_unlock(&ksm_thread_mutex); 2811 2812 smp_mb(); /* wake_up_bit advises this */ 2813 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2814 break; 2815 } 2816 return NOTIFY_OK; 2817 } 2818 #else 2819 static void wait_while_offlining(void) 2820 { 2821 } 2822 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2823 2824 #ifdef CONFIG_SYSFS 2825 /* 2826 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2827 */ 2828 2829 #define KSM_ATTR_RO(_name) \ 2830 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2831 #define KSM_ATTR(_name) \ 2832 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 2833 2834 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2835 struct kobj_attribute *attr, char *buf) 2836 { 2837 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2838 } 2839 2840 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2841 struct kobj_attribute *attr, 2842 const char *buf, size_t count) 2843 { 2844 unsigned int msecs; 2845 int err; 2846 2847 err = kstrtouint(buf, 10, &msecs); 2848 if (err) 2849 return -EINVAL; 2850 2851 ksm_thread_sleep_millisecs = msecs; 2852 wake_up_interruptible(&ksm_iter_wait); 2853 2854 return count; 2855 } 2856 KSM_ATTR(sleep_millisecs); 2857 2858 static ssize_t pages_to_scan_show(struct kobject *kobj, 2859 struct kobj_attribute *attr, char *buf) 2860 { 2861 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2862 } 2863 2864 static ssize_t pages_to_scan_store(struct kobject *kobj, 2865 struct kobj_attribute *attr, 2866 const char *buf, size_t count) 2867 { 2868 unsigned int nr_pages; 2869 int err; 2870 2871 err = kstrtouint(buf, 10, &nr_pages); 2872 if (err) 2873 return -EINVAL; 2874 2875 ksm_thread_pages_to_scan = nr_pages; 2876 2877 return count; 2878 } 2879 KSM_ATTR(pages_to_scan); 2880 2881 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2882 char *buf) 2883 { 2884 return sysfs_emit(buf, "%lu\n", ksm_run); 2885 } 2886 2887 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2888 const char *buf, size_t count) 2889 { 2890 unsigned int flags; 2891 int err; 2892 2893 err = kstrtouint(buf, 10, &flags); 2894 if (err) 2895 return -EINVAL; 2896 if (flags > KSM_RUN_UNMERGE) 2897 return -EINVAL; 2898 2899 /* 2900 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2901 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2902 * breaking COW to free the pages_shared (but leaves mm_slots 2903 * on the list for when ksmd may be set running again). 2904 */ 2905 2906 mutex_lock(&ksm_thread_mutex); 2907 wait_while_offlining(); 2908 if (ksm_run != flags) { 2909 ksm_run = flags; 2910 if (flags & KSM_RUN_UNMERGE) { 2911 set_current_oom_origin(); 2912 err = unmerge_and_remove_all_rmap_items(); 2913 clear_current_oom_origin(); 2914 if (err) { 2915 ksm_run = KSM_RUN_STOP; 2916 count = err; 2917 } 2918 } 2919 } 2920 mutex_unlock(&ksm_thread_mutex); 2921 2922 if (flags & KSM_RUN_MERGE) 2923 wake_up_interruptible(&ksm_thread_wait); 2924 2925 return count; 2926 } 2927 KSM_ATTR(run); 2928 2929 #ifdef CONFIG_NUMA 2930 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2931 struct kobj_attribute *attr, char *buf) 2932 { 2933 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2934 } 2935 2936 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2937 struct kobj_attribute *attr, 2938 const char *buf, size_t count) 2939 { 2940 int err; 2941 unsigned long knob; 2942 2943 err = kstrtoul(buf, 10, &knob); 2944 if (err) 2945 return err; 2946 if (knob > 1) 2947 return -EINVAL; 2948 2949 mutex_lock(&ksm_thread_mutex); 2950 wait_while_offlining(); 2951 if (ksm_merge_across_nodes != knob) { 2952 if (ksm_pages_shared || remove_all_stable_nodes()) 2953 err = -EBUSY; 2954 else if (root_stable_tree == one_stable_tree) { 2955 struct rb_root *buf; 2956 /* 2957 * This is the first time that we switch away from the 2958 * default of merging across nodes: must now allocate 2959 * a buffer to hold as many roots as may be needed. 2960 * Allocate stable and unstable together: 2961 * MAXSMP NODES_SHIFT 10 will use 16kB. 2962 */ 2963 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2964 GFP_KERNEL); 2965 /* Let us assume that RB_ROOT is NULL is zero */ 2966 if (!buf) 2967 err = -ENOMEM; 2968 else { 2969 root_stable_tree = buf; 2970 root_unstable_tree = buf + nr_node_ids; 2971 /* Stable tree is empty but not the unstable */ 2972 root_unstable_tree[0] = one_unstable_tree[0]; 2973 } 2974 } 2975 if (!err) { 2976 ksm_merge_across_nodes = knob; 2977 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2978 } 2979 } 2980 mutex_unlock(&ksm_thread_mutex); 2981 2982 return err ? err : count; 2983 } 2984 KSM_ATTR(merge_across_nodes); 2985 #endif 2986 2987 static ssize_t use_zero_pages_show(struct kobject *kobj, 2988 struct kobj_attribute *attr, char *buf) 2989 { 2990 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 2991 } 2992 static ssize_t use_zero_pages_store(struct kobject *kobj, 2993 struct kobj_attribute *attr, 2994 const char *buf, size_t count) 2995 { 2996 int err; 2997 bool value; 2998 2999 err = kstrtobool(buf, &value); 3000 if (err) 3001 return -EINVAL; 3002 3003 ksm_use_zero_pages = value; 3004 3005 return count; 3006 } 3007 KSM_ATTR(use_zero_pages); 3008 3009 static ssize_t max_page_sharing_show(struct kobject *kobj, 3010 struct kobj_attribute *attr, char *buf) 3011 { 3012 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3013 } 3014 3015 static ssize_t max_page_sharing_store(struct kobject *kobj, 3016 struct kobj_attribute *attr, 3017 const char *buf, size_t count) 3018 { 3019 int err; 3020 int knob; 3021 3022 err = kstrtoint(buf, 10, &knob); 3023 if (err) 3024 return err; 3025 /* 3026 * When a KSM page is created it is shared by 2 mappings. This 3027 * being a signed comparison, it implicitly verifies it's not 3028 * negative. 3029 */ 3030 if (knob < 2) 3031 return -EINVAL; 3032 3033 if (READ_ONCE(ksm_max_page_sharing) == knob) 3034 return count; 3035 3036 mutex_lock(&ksm_thread_mutex); 3037 wait_while_offlining(); 3038 if (ksm_max_page_sharing != knob) { 3039 if (ksm_pages_shared || remove_all_stable_nodes()) 3040 err = -EBUSY; 3041 else 3042 ksm_max_page_sharing = knob; 3043 } 3044 mutex_unlock(&ksm_thread_mutex); 3045 3046 return err ? err : count; 3047 } 3048 KSM_ATTR(max_page_sharing); 3049 3050 static ssize_t pages_shared_show(struct kobject *kobj, 3051 struct kobj_attribute *attr, char *buf) 3052 { 3053 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3054 } 3055 KSM_ATTR_RO(pages_shared); 3056 3057 static ssize_t pages_sharing_show(struct kobject *kobj, 3058 struct kobj_attribute *attr, char *buf) 3059 { 3060 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3061 } 3062 KSM_ATTR_RO(pages_sharing); 3063 3064 static ssize_t pages_unshared_show(struct kobject *kobj, 3065 struct kobj_attribute *attr, char *buf) 3066 { 3067 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3068 } 3069 KSM_ATTR_RO(pages_unshared); 3070 3071 static ssize_t pages_volatile_show(struct kobject *kobj, 3072 struct kobj_attribute *attr, char *buf) 3073 { 3074 long ksm_pages_volatile; 3075 3076 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3077 - ksm_pages_sharing - ksm_pages_unshared; 3078 /* 3079 * It was not worth any locking to calculate that statistic, 3080 * but it might therefore sometimes be negative: conceal that. 3081 */ 3082 if (ksm_pages_volatile < 0) 3083 ksm_pages_volatile = 0; 3084 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3085 } 3086 KSM_ATTR_RO(pages_volatile); 3087 3088 static ssize_t stable_node_dups_show(struct kobject *kobj, 3089 struct kobj_attribute *attr, char *buf) 3090 { 3091 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3092 } 3093 KSM_ATTR_RO(stable_node_dups); 3094 3095 static ssize_t stable_node_chains_show(struct kobject *kobj, 3096 struct kobj_attribute *attr, char *buf) 3097 { 3098 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3099 } 3100 KSM_ATTR_RO(stable_node_chains); 3101 3102 static ssize_t 3103 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3104 struct kobj_attribute *attr, 3105 char *buf) 3106 { 3107 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3108 } 3109 3110 static ssize_t 3111 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3112 struct kobj_attribute *attr, 3113 const char *buf, size_t count) 3114 { 3115 unsigned int msecs; 3116 int err; 3117 3118 err = kstrtouint(buf, 10, &msecs); 3119 if (err) 3120 return -EINVAL; 3121 3122 ksm_stable_node_chains_prune_millisecs = msecs; 3123 3124 return count; 3125 } 3126 KSM_ATTR(stable_node_chains_prune_millisecs); 3127 3128 static ssize_t full_scans_show(struct kobject *kobj, 3129 struct kobj_attribute *attr, char *buf) 3130 { 3131 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3132 } 3133 KSM_ATTR_RO(full_scans); 3134 3135 static struct attribute *ksm_attrs[] = { 3136 &sleep_millisecs_attr.attr, 3137 &pages_to_scan_attr.attr, 3138 &run_attr.attr, 3139 &pages_shared_attr.attr, 3140 &pages_sharing_attr.attr, 3141 &pages_unshared_attr.attr, 3142 &pages_volatile_attr.attr, 3143 &full_scans_attr.attr, 3144 #ifdef CONFIG_NUMA 3145 &merge_across_nodes_attr.attr, 3146 #endif 3147 &max_page_sharing_attr.attr, 3148 &stable_node_chains_attr.attr, 3149 &stable_node_dups_attr.attr, 3150 &stable_node_chains_prune_millisecs_attr.attr, 3151 &use_zero_pages_attr.attr, 3152 NULL, 3153 }; 3154 3155 static const struct attribute_group ksm_attr_group = { 3156 .attrs = ksm_attrs, 3157 .name = "ksm", 3158 }; 3159 #endif /* CONFIG_SYSFS */ 3160 3161 static int __init ksm_init(void) 3162 { 3163 struct task_struct *ksm_thread; 3164 int err; 3165 3166 /* The correct value depends on page size and endianness */ 3167 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3168 /* Default to false for backwards compatibility */ 3169 ksm_use_zero_pages = false; 3170 3171 err = ksm_slab_init(); 3172 if (err) 3173 goto out; 3174 3175 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3176 if (IS_ERR(ksm_thread)) { 3177 pr_err("ksm: creating kthread failed\n"); 3178 err = PTR_ERR(ksm_thread); 3179 goto out_free; 3180 } 3181 3182 #ifdef CONFIG_SYSFS 3183 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3184 if (err) { 3185 pr_err("ksm: register sysfs failed\n"); 3186 kthread_stop(ksm_thread); 3187 goto out_free; 3188 } 3189 #else 3190 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3191 3192 #endif /* CONFIG_SYSFS */ 3193 3194 #ifdef CONFIG_MEMORY_HOTREMOVE 3195 /* There is no significance to this priority 100 */ 3196 hotplug_memory_notifier(ksm_memory_callback, 100); 3197 #endif 3198 return 0; 3199 3200 out_free: 3201 ksm_slab_free(); 3202 out: 3203 return err; 3204 } 3205 subsys_initcall(ksm_init); 3206