1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/jhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /* 55 * A few notes about the KSM scanning process, 56 * to make it easier to understand the data structures below: 57 * 58 * In order to reduce excessive scanning, KSM sorts the memory pages by their 59 * contents into a data structure that holds pointers to the pages' locations. 60 * 61 * Since the contents of the pages may change at any moment, KSM cannot just 62 * insert the pages into a normal sorted tree and expect it to find anything. 63 * Therefore KSM uses two data structures - the stable and the unstable tree. 64 * 65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 66 * by their contents. Because each such page is write-protected, searching on 67 * this tree is fully assured to be working (except when pages are unmapped), 68 * and therefore this tree is called the stable tree. 69 * 70 * In addition to the stable tree, KSM uses a second data structure called the 71 * unstable tree: this tree holds pointers to pages which have been found to 72 * be "unchanged for a period of time". The unstable tree sorts these pages 73 * by their contents, but since they are not write-protected, KSM cannot rely 74 * upon the unstable tree to work correctly - the unstable tree is liable to 75 * be corrupted as its contents are modified, and so it is called unstable. 76 * 77 * KSM solves this problem by several techniques: 78 * 79 * 1) The unstable tree is flushed every time KSM completes scanning all 80 * memory areas, and then the tree is rebuilt again from the beginning. 81 * 2) KSM will only insert into the unstable tree, pages whose hash value 82 * has not changed since the previous scan of all memory areas. 83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 84 * colors of the nodes and not on their contents, assuring that even when 85 * the tree gets "corrupted" it won't get out of balance, so scanning time 86 * remains the same (also, searching and inserting nodes in an rbtree uses 87 * the same algorithm, so we have no overhead when we flush and rebuild). 88 * 4) KSM never flushes the stable tree, which means that even if it were to 89 * take 10 attempts to find a page in the unstable tree, once it is found, 90 * it is secured in the stable tree. (When we scan a new page, we first 91 * compare it against the stable tree, and then against the unstable tree.) 92 * 93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 94 * stable trees and multiple unstable trees: one of each for each NUMA node. 95 */ 96 97 /** 98 * struct mm_slot - ksm information per mm that is being scanned 99 * @link: link to the mm_slots hash list 100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 102 * @mm: the mm that this information is valid for 103 */ 104 struct mm_slot { 105 struct hlist_node link; 106 struct list_head mm_list; 107 struct rmap_item *rmap_list; 108 struct mm_struct *mm; 109 }; 110 111 /** 112 * struct ksm_scan - cursor for scanning 113 * @mm_slot: the current mm_slot we are scanning 114 * @address: the next address inside that to be scanned 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list 116 * @seqnr: count of completed full scans (needed when removing unstable node) 117 * 118 * There is only the one ksm_scan instance of this cursor structure. 119 */ 120 struct ksm_scan { 121 struct mm_slot *mm_slot; 122 unsigned long address; 123 struct rmap_item **rmap_list; 124 unsigned long seqnr; 125 }; 126 127 /** 128 * struct stable_node - node of the stable rbtree 129 * @node: rb node of this ksm page in the stable tree 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 132 * @list: linked into migrate_nodes, pending placement in the proper node tree 133 * @hlist: hlist head of rmap_items using this ksm page 134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 135 * @chain_prune_time: time of the last full garbage collection 136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 138 */ 139 struct stable_node { 140 union { 141 struct rb_node node; /* when node of stable tree */ 142 struct { /* when listed for migration */ 143 struct list_head *head; 144 struct { 145 struct hlist_node hlist_dup; 146 struct list_head list; 147 }; 148 }; 149 }; 150 struct hlist_head hlist; 151 union { 152 unsigned long kpfn; 153 unsigned long chain_prune_time; 154 }; 155 /* 156 * STABLE_NODE_CHAIN can be any negative number in 157 * rmap_hlist_len negative range, but better not -1 to be able 158 * to reliably detect underflows. 159 */ 160 #define STABLE_NODE_CHAIN -1024 161 int rmap_hlist_len; 162 #ifdef CONFIG_NUMA 163 int nid; 164 #endif 165 }; 166 167 /** 168 * struct rmap_item - reverse mapping item for virtual addresses 169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 171 * @nid: NUMA node id of unstable tree in which linked (may not match page) 172 * @mm: the memory structure this rmap_item is pointing into 173 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 174 * @oldchecksum: previous checksum of the page at that virtual address 175 * @node: rb node of this rmap_item in the unstable tree 176 * @head: pointer to stable_node heading this list in the stable tree 177 * @hlist: link into hlist of rmap_items hanging off that stable_node 178 */ 179 struct rmap_item { 180 struct rmap_item *rmap_list; 181 union { 182 struct anon_vma *anon_vma; /* when stable */ 183 #ifdef CONFIG_NUMA 184 int nid; /* when node of unstable tree */ 185 #endif 186 }; 187 struct mm_struct *mm; 188 unsigned long address; /* + low bits used for flags below */ 189 unsigned int oldchecksum; /* when unstable */ 190 union { 191 struct rb_node node; /* when node of unstable tree */ 192 struct { /* when listed from stable tree */ 193 struct stable_node *head; 194 struct hlist_node hlist; 195 }; 196 }; 197 }; 198 199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 202 203 /* The stable and unstable tree heads */ 204 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 205 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 206 static struct rb_root *root_stable_tree = one_stable_tree; 207 static struct rb_root *root_unstable_tree = one_unstable_tree; 208 209 /* Recently migrated nodes of stable tree, pending proper placement */ 210 static LIST_HEAD(migrate_nodes); 211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 212 213 #define MM_SLOTS_HASH_BITS 10 214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 215 216 static struct mm_slot ksm_mm_head = { 217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 218 }; 219 static struct ksm_scan ksm_scan = { 220 .mm_slot = &ksm_mm_head, 221 }; 222 223 static struct kmem_cache *rmap_item_cache; 224 static struct kmem_cache *stable_node_cache; 225 static struct kmem_cache *mm_slot_cache; 226 227 /* The number of nodes in the stable tree */ 228 static unsigned long ksm_pages_shared; 229 230 /* The number of page slots additionally sharing those nodes */ 231 static unsigned long ksm_pages_sharing; 232 233 /* The number of nodes in the unstable tree */ 234 static unsigned long ksm_pages_unshared; 235 236 /* The number of rmap_items in use: to calculate pages_volatile */ 237 static unsigned long ksm_rmap_items; 238 239 /* The number of stable_node chains */ 240 static unsigned long ksm_stable_node_chains; 241 242 /* The number of stable_node dups linked to the stable_node chains */ 243 static unsigned long ksm_stable_node_dups; 244 245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 246 static int ksm_stable_node_chains_prune_millisecs = 2000; 247 248 /* Maximum number of page slots sharing a stable node */ 249 static int ksm_max_page_sharing = 256; 250 251 /* Number of pages ksmd should scan in one batch */ 252 static unsigned int ksm_thread_pages_to_scan = 100; 253 254 /* Milliseconds ksmd should sleep between batches */ 255 static unsigned int ksm_thread_sleep_millisecs = 20; 256 257 /* Checksum of an empty (zeroed) page */ 258 static unsigned int zero_checksum __read_mostly; 259 260 /* Whether to merge empty (zeroed) pages with actual zero pages */ 261 static bool ksm_use_zero_pages __read_mostly; 262 263 #ifdef CONFIG_NUMA 264 /* Zeroed when merging across nodes is not allowed */ 265 static unsigned int ksm_merge_across_nodes = 1; 266 static int ksm_nr_node_ids = 1; 267 #else 268 #define ksm_merge_across_nodes 1U 269 #define ksm_nr_node_ids 1 270 #endif 271 272 #define KSM_RUN_STOP 0 273 #define KSM_RUN_MERGE 1 274 #define KSM_RUN_UNMERGE 2 275 #define KSM_RUN_OFFLINE 4 276 static unsigned long ksm_run = KSM_RUN_STOP; 277 static void wait_while_offlining(void); 278 279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 280 static DEFINE_MUTEX(ksm_thread_mutex); 281 static DEFINE_SPINLOCK(ksm_mmlist_lock); 282 283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 284 sizeof(struct __struct), __alignof__(struct __struct),\ 285 (__flags), NULL) 286 287 static int __init ksm_slab_init(void) 288 { 289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 290 if (!rmap_item_cache) 291 goto out; 292 293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 294 if (!stable_node_cache) 295 goto out_free1; 296 297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 298 if (!mm_slot_cache) 299 goto out_free2; 300 301 return 0; 302 303 out_free2: 304 kmem_cache_destroy(stable_node_cache); 305 out_free1: 306 kmem_cache_destroy(rmap_item_cache); 307 out: 308 return -ENOMEM; 309 } 310 311 static void __init ksm_slab_free(void) 312 { 313 kmem_cache_destroy(mm_slot_cache); 314 kmem_cache_destroy(stable_node_cache); 315 kmem_cache_destroy(rmap_item_cache); 316 mm_slot_cache = NULL; 317 } 318 319 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 320 { 321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 322 } 323 324 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 325 { 326 return dup->head == STABLE_NODE_DUP_HEAD; 327 } 328 329 static inline void stable_node_chain_add_dup(struct stable_node *dup, 330 struct stable_node *chain) 331 { 332 VM_BUG_ON(is_stable_node_dup(dup)); 333 dup->head = STABLE_NODE_DUP_HEAD; 334 VM_BUG_ON(!is_stable_node_chain(chain)); 335 hlist_add_head(&dup->hlist_dup, &chain->hlist); 336 ksm_stable_node_dups++; 337 } 338 339 static inline void __stable_node_dup_del(struct stable_node *dup) 340 { 341 VM_BUG_ON(!is_stable_node_dup(dup)); 342 hlist_del(&dup->hlist_dup); 343 ksm_stable_node_dups--; 344 } 345 346 static inline void stable_node_dup_del(struct stable_node *dup) 347 { 348 VM_BUG_ON(is_stable_node_chain(dup)); 349 if (is_stable_node_dup(dup)) 350 __stable_node_dup_del(dup); 351 else 352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 353 #ifdef CONFIG_DEBUG_VM 354 dup->head = NULL; 355 #endif 356 } 357 358 static inline struct rmap_item *alloc_rmap_item(void) 359 { 360 struct rmap_item *rmap_item; 361 362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 363 __GFP_NORETRY | __GFP_NOWARN); 364 if (rmap_item) 365 ksm_rmap_items++; 366 return rmap_item; 367 } 368 369 static inline void free_rmap_item(struct rmap_item *rmap_item) 370 { 371 ksm_rmap_items--; 372 rmap_item->mm = NULL; /* debug safety */ 373 kmem_cache_free(rmap_item_cache, rmap_item); 374 } 375 376 static inline struct stable_node *alloc_stable_node(void) 377 { 378 /* 379 * The allocation can take too long with GFP_KERNEL when memory is under 380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 381 * grants access to memory reserves, helping to avoid this problem. 382 */ 383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 384 } 385 386 static inline void free_stable_node(struct stable_node *stable_node) 387 { 388 VM_BUG_ON(stable_node->rmap_hlist_len && 389 !is_stable_node_chain(stable_node)); 390 kmem_cache_free(stable_node_cache, stable_node); 391 } 392 393 static inline struct mm_slot *alloc_mm_slot(void) 394 { 395 if (!mm_slot_cache) /* initialization failed */ 396 return NULL; 397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 398 } 399 400 static inline void free_mm_slot(struct mm_slot *mm_slot) 401 { 402 kmem_cache_free(mm_slot_cache, mm_slot); 403 } 404 405 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 406 { 407 struct mm_slot *slot; 408 409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 410 if (slot->mm == mm) 411 return slot; 412 413 return NULL; 414 } 415 416 static void insert_to_mm_slots_hash(struct mm_struct *mm, 417 struct mm_slot *mm_slot) 418 { 419 mm_slot->mm = mm; 420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 421 } 422 423 /* 424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 425 * page tables after it has passed through ksm_exit() - which, if necessary, 426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 427 * a special flag: they can just back out as soon as mm_users goes to zero. 428 * ksm_test_exit() is used throughout to make this test for exit: in some 429 * places for correctness, in some places just to avoid unnecessary work. 430 */ 431 static inline bool ksm_test_exit(struct mm_struct *mm) 432 { 433 return atomic_read(&mm->mm_users) == 0; 434 } 435 436 /* 437 * We use break_ksm to break COW on a ksm page: it's a stripped down 438 * 439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 440 * put_page(page); 441 * 442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 443 * in case the application has unmapped and remapped mm,addr meanwhile. 444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 446 * 447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 448 * of the process that owns 'vma'. We also do not want to enforce 449 * protection keys here anyway. 450 */ 451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 452 { 453 struct page *page; 454 int ret = 0; 455 456 do { 457 cond_resched(); 458 page = follow_page(vma, addr, 459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 460 if (IS_ERR_OR_NULL(page)) 461 break; 462 if (PageKsm(page)) 463 ret = handle_mm_fault(vma, addr, 464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 465 else 466 ret = VM_FAULT_WRITE; 467 put_page(page); 468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 469 /* 470 * We must loop because handle_mm_fault() may back out if there's 471 * any difficulty e.g. if pte accessed bit gets updated concurrently. 472 * 473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 474 * COW has been broken, even if the vma does not permit VM_WRITE; 475 * but note that a concurrent fault might break PageKsm for us. 476 * 477 * VM_FAULT_SIGBUS could occur if we race with truncation of the 478 * backing file, which also invalidates anonymous pages: that's 479 * okay, that truncation will have unmapped the PageKsm for us. 480 * 481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 483 * current task has TIF_MEMDIE set, and will be OOM killed on return 484 * to user; and ksmd, having no mm, would never be chosen for that. 485 * 486 * But if the mm is in a limited mem_cgroup, then the fault may fail 487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 488 * even ksmd can fail in this way - though it's usually breaking ksm 489 * just to undo a merge it made a moment before, so unlikely to oom. 490 * 491 * That's a pity: we might therefore have more kernel pages allocated 492 * than we're counting as nodes in the stable tree; but ksm_do_scan 493 * will retry to break_cow on each pass, so should recover the page 494 * in due course. The important thing is to not let VM_MERGEABLE 495 * be cleared while any such pages might remain in the area. 496 */ 497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 498 } 499 500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 501 unsigned long addr) 502 { 503 struct vm_area_struct *vma; 504 if (ksm_test_exit(mm)) 505 return NULL; 506 vma = find_vma(mm, addr); 507 if (!vma || vma->vm_start > addr) 508 return NULL; 509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 510 return NULL; 511 return vma; 512 } 513 514 static void break_cow(struct rmap_item *rmap_item) 515 { 516 struct mm_struct *mm = rmap_item->mm; 517 unsigned long addr = rmap_item->address; 518 struct vm_area_struct *vma; 519 520 /* 521 * It is not an accident that whenever we want to break COW 522 * to undo, we also need to drop a reference to the anon_vma. 523 */ 524 put_anon_vma(rmap_item->anon_vma); 525 526 down_read(&mm->mmap_sem); 527 vma = find_mergeable_vma(mm, addr); 528 if (vma) 529 break_ksm(vma, addr); 530 up_read(&mm->mmap_sem); 531 } 532 533 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 534 { 535 struct mm_struct *mm = rmap_item->mm; 536 unsigned long addr = rmap_item->address; 537 struct vm_area_struct *vma; 538 struct page *page; 539 540 down_read(&mm->mmap_sem); 541 vma = find_mergeable_vma(mm, addr); 542 if (!vma) 543 goto out; 544 545 page = follow_page(vma, addr, FOLL_GET); 546 if (IS_ERR_OR_NULL(page)) 547 goto out; 548 if (PageAnon(page)) { 549 flush_anon_page(vma, page, addr); 550 flush_dcache_page(page); 551 } else { 552 put_page(page); 553 out: 554 page = NULL; 555 } 556 up_read(&mm->mmap_sem); 557 return page; 558 } 559 560 /* 561 * This helper is used for getting right index into array of tree roots. 562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 563 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 564 * every node has its own stable and unstable tree. 565 */ 566 static inline int get_kpfn_nid(unsigned long kpfn) 567 { 568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 569 } 570 571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 572 struct rb_root *root) 573 { 574 struct stable_node *chain = alloc_stable_node(); 575 VM_BUG_ON(is_stable_node_chain(dup)); 576 if (likely(chain)) { 577 INIT_HLIST_HEAD(&chain->hlist); 578 chain->chain_prune_time = jiffies; 579 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 581 chain->nid = -1; /* debug */ 582 #endif 583 ksm_stable_node_chains++; 584 585 /* 586 * Put the stable node chain in the first dimension of 587 * the stable tree and at the same time remove the old 588 * stable node. 589 */ 590 rb_replace_node(&dup->node, &chain->node, root); 591 592 /* 593 * Move the old stable node to the second dimension 594 * queued in the hlist_dup. The invariant is that all 595 * dup stable_nodes in the chain->hlist point to pages 596 * that are wrprotected and have the exact same 597 * content. 598 */ 599 stable_node_chain_add_dup(dup, chain); 600 } 601 return chain; 602 } 603 604 static inline void free_stable_node_chain(struct stable_node *chain, 605 struct rb_root *root) 606 { 607 rb_erase(&chain->node, root); 608 free_stable_node(chain); 609 ksm_stable_node_chains--; 610 } 611 612 static void remove_node_from_stable_tree(struct stable_node *stable_node) 613 { 614 struct rmap_item *rmap_item; 615 616 /* check it's not STABLE_NODE_CHAIN or negative */ 617 BUG_ON(stable_node->rmap_hlist_len < 0); 618 619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 620 if (rmap_item->hlist.next) 621 ksm_pages_sharing--; 622 else 623 ksm_pages_shared--; 624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 625 stable_node->rmap_hlist_len--; 626 put_anon_vma(rmap_item->anon_vma); 627 rmap_item->address &= PAGE_MASK; 628 cond_resched(); 629 } 630 631 /* 632 * We need the second aligned pointer of the migrate_nodes 633 * list_head to stay clear from the rb_parent_color union 634 * (aligned and different than any node) and also different 635 * from &migrate_nodes. This will verify that future list.h changes 636 * don't break STABLE_NODE_DUP_HEAD. 637 */ 638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */ 639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 641 #endif 642 643 if (stable_node->head == &migrate_nodes) 644 list_del(&stable_node->list); 645 else 646 stable_node_dup_del(stable_node); 647 free_stable_node(stable_node); 648 } 649 650 /* 651 * get_ksm_page: checks if the page indicated by the stable node 652 * is still its ksm page, despite having held no reference to it. 653 * In which case we can trust the content of the page, and it 654 * returns the gotten page; but if the page has now been zapped, 655 * remove the stale node from the stable tree and return NULL. 656 * But beware, the stable node's page might be being migrated. 657 * 658 * You would expect the stable_node to hold a reference to the ksm page. 659 * But if it increments the page's count, swapping out has to wait for 660 * ksmd to come around again before it can free the page, which may take 661 * seconds or even minutes: much too unresponsive. So instead we use a 662 * "keyhole reference": access to the ksm page from the stable node peeps 663 * out through its keyhole to see if that page still holds the right key, 664 * pointing back to this stable node. This relies on freeing a PageAnon 665 * page to reset its page->mapping to NULL, and relies on no other use of 666 * a page to put something that might look like our key in page->mapping. 667 * is on its way to being freed; but it is an anomaly to bear in mind. 668 */ 669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 670 { 671 struct page *page; 672 void *expected_mapping; 673 unsigned long kpfn; 674 675 expected_mapping = (void *)((unsigned long)stable_node | 676 PAGE_MAPPING_KSM); 677 again: 678 kpfn = READ_ONCE(stable_node->kpfn); 679 page = pfn_to_page(kpfn); 680 681 /* 682 * page is computed from kpfn, so on most architectures reading 683 * page->mapping is naturally ordered after reading node->kpfn, 684 * but on Alpha we need to be more careful. 685 */ 686 smp_read_barrier_depends(); 687 if (READ_ONCE(page->mapping) != expected_mapping) 688 goto stale; 689 690 /* 691 * We cannot do anything with the page while its refcount is 0. 692 * Usually 0 means free, or tail of a higher-order page: in which 693 * case this node is no longer referenced, and should be freed; 694 * however, it might mean that the page is under page_freeze_refs(). 695 * The __remove_mapping() case is easy, again the node is now stale; 696 * but if page is swapcache in migrate_page_move_mapping(), it might 697 * still be our page, in which case it's essential to keep the node. 698 */ 699 while (!get_page_unless_zero(page)) { 700 /* 701 * Another check for page->mapping != expected_mapping would 702 * work here too. We have chosen the !PageSwapCache test to 703 * optimize the common case, when the page is or is about to 704 * be freed: PageSwapCache is cleared (under spin_lock_irq) 705 * in the freeze_refs section of __remove_mapping(); but Anon 706 * page->mapping reset to NULL later, in free_pages_prepare(). 707 */ 708 if (!PageSwapCache(page)) 709 goto stale; 710 cpu_relax(); 711 } 712 713 if (READ_ONCE(page->mapping) != expected_mapping) { 714 put_page(page); 715 goto stale; 716 } 717 718 if (lock_it) { 719 lock_page(page); 720 if (READ_ONCE(page->mapping) != expected_mapping) { 721 unlock_page(page); 722 put_page(page); 723 goto stale; 724 } 725 } 726 return page; 727 728 stale: 729 /* 730 * We come here from above when page->mapping or !PageSwapCache 731 * suggests that the node is stale; but it might be under migration. 732 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 733 * before checking whether node->kpfn has been changed. 734 */ 735 smp_rmb(); 736 if (READ_ONCE(stable_node->kpfn) != kpfn) 737 goto again; 738 remove_node_from_stable_tree(stable_node); 739 return NULL; 740 } 741 742 /* 743 * Removing rmap_item from stable or unstable tree. 744 * This function will clean the information from the stable/unstable tree. 745 */ 746 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 747 { 748 if (rmap_item->address & STABLE_FLAG) { 749 struct stable_node *stable_node; 750 struct page *page; 751 752 stable_node = rmap_item->head; 753 page = get_ksm_page(stable_node, true); 754 if (!page) 755 goto out; 756 757 hlist_del(&rmap_item->hlist); 758 unlock_page(page); 759 put_page(page); 760 761 if (!hlist_empty(&stable_node->hlist)) 762 ksm_pages_sharing--; 763 else 764 ksm_pages_shared--; 765 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 766 stable_node->rmap_hlist_len--; 767 768 put_anon_vma(rmap_item->anon_vma); 769 rmap_item->address &= PAGE_MASK; 770 771 } else if (rmap_item->address & UNSTABLE_FLAG) { 772 unsigned char age; 773 /* 774 * Usually ksmd can and must skip the rb_erase, because 775 * root_unstable_tree was already reset to RB_ROOT. 776 * But be careful when an mm is exiting: do the rb_erase 777 * if this rmap_item was inserted by this scan, rather 778 * than left over from before. 779 */ 780 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 781 BUG_ON(age > 1); 782 if (!age) 783 rb_erase(&rmap_item->node, 784 root_unstable_tree + NUMA(rmap_item->nid)); 785 ksm_pages_unshared--; 786 rmap_item->address &= PAGE_MASK; 787 } 788 out: 789 cond_resched(); /* we're called from many long loops */ 790 } 791 792 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 793 struct rmap_item **rmap_list) 794 { 795 while (*rmap_list) { 796 struct rmap_item *rmap_item = *rmap_list; 797 *rmap_list = rmap_item->rmap_list; 798 remove_rmap_item_from_tree(rmap_item); 799 free_rmap_item(rmap_item); 800 } 801 } 802 803 /* 804 * Though it's very tempting to unmerge rmap_items from stable tree rather 805 * than check every pte of a given vma, the locking doesn't quite work for 806 * that - an rmap_item is assigned to the stable tree after inserting ksm 807 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 808 * rmap_items from parent to child at fork time (so as not to waste time 809 * if exit comes before the next scan reaches it). 810 * 811 * Similarly, although we'd like to remove rmap_items (so updating counts 812 * and freeing memory) when unmerging an area, it's easier to leave that 813 * to the next pass of ksmd - consider, for example, how ksmd might be 814 * in cmp_and_merge_page on one of the rmap_items we would be removing. 815 */ 816 static int unmerge_ksm_pages(struct vm_area_struct *vma, 817 unsigned long start, unsigned long end) 818 { 819 unsigned long addr; 820 int err = 0; 821 822 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 823 if (ksm_test_exit(vma->vm_mm)) 824 break; 825 if (signal_pending(current)) 826 err = -ERESTARTSYS; 827 else 828 err = break_ksm(vma, addr); 829 } 830 return err; 831 } 832 833 #ifdef CONFIG_SYSFS 834 /* 835 * Only called through the sysfs control interface: 836 */ 837 static int remove_stable_node(struct stable_node *stable_node) 838 { 839 struct page *page; 840 int err; 841 842 page = get_ksm_page(stable_node, true); 843 if (!page) { 844 /* 845 * get_ksm_page did remove_node_from_stable_tree itself. 846 */ 847 return 0; 848 } 849 850 if (WARN_ON_ONCE(page_mapped(page))) { 851 /* 852 * This should not happen: but if it does, just refuse to let 853 * merge_across_nodes be switched - there is no need to panic. 854 */ 855 err = -EBUSY; 856 } else { 857 /* 858 * The stable node did not yet appear stale to get_ksm_page(), 859 * since that allows for an unmapped ksm page to be recognized 860 * right up until it is freed; but the node is safe to remove. 861 * This page might be in a pagevec waiting to be freed, 862 * or it might be PageSwapCache (perhaps under writeback), 863 * or it might have been removed from swapcache a moment ago. 864 */ 865 set_page_stable_node(page, NULL); 866 remove_node_from_stable_tree(stable_node); 867 err = 0; 868 } 869 870 unlock_page(page); 871 put_page(page); 872 return err; 873 } 874 875 static int remove_stable_node_chain(struct stable_node *stable_node, 876 struct rb_root *root) 877 { 878 struct stable_node *dup; 879 struct hlist_node *hlist_safe; 880 881 if (!is_stable_node_chain(stable_node)) { 882 VM_BUG_ON(is_stable_node_dup(stable_node)); 883 if (remove_stable_node(stable_node)) 884 return true; 885 else 886 return false; 887 } 888 889 hlist_for_each_entry_safe(dup, hlist_safe, 890 &stable_node->hlist, hlist_dup) { 891 VM_BUG_ON(!is_stable_node_dup(dup)); 892 if (remove_stable_node(dup)) 893 return true; 894 } 895 BUG_ON(!hlist_empty(&stable_node->hlist)); 896 free_stable_node_chain(stable_node, root); 897 return false; 898 } 899 900 static int remove_all_stable_nodes(void) 901 { 902 struct stable_node *stable_node, *next; 903 int nid; 904 int err = 0; 905 906 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 907 while (root_stable_tree[nid].rb_node) { 908 stable_node = rb_entry(root_stable_tree[nid].rb_node, 909 struct stable_node, node); 910 if (remove_stable_node_chain(stable_node, 911 root_stable_tree + nid)) { 912 err = -EBUSY; 913 break; /* proceed to next nid */ 914 } 915 cond_resched(); 916 } 917 } 918 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 919 if (remove_stable_node(stable_node)) 920 err = -EBUSY; 921 cond_resched(); 922 } 923 return err; 924 } 925 926 static int unmerge_and_remove_all_rmap_items(void) 927 { 928 struct mm_slot *mm_slot; 929 struct mm_struct *mm; 930 struct vm_area_struct *vma; 931 int err = 0; 932 933 spin_lock(&ksm_mmlist_lock); 934 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 935 struct mm_slot, mm_list); 936 spin_unlock(&ksm_mmlist_lock); 937 938 for (mm_slot = ksm_scan.mm_slot; 939 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 940 mm = mm_slot->mm; 941 down_read(&mm->mmap_sem); 942 for (vma = mm->mmap; vma; vma = vma->vm_next) { 943 if (ksm_test_exit(mm)) 944 break; 945 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 946 continue; 947 err = unmerge_ksm_pages(vma, 948 vma->vm_start, vma->vm_end); 949 if (err) 950 goto error; 951 } 952 953 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 954 up_read(&mm->mmap_sem); 955 956 spin_lock(&ksm_mmlist_lock); 957 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 958 struct mm_slot, mm_list); 959 if (ksm_test_exit(mm)) { 960 hash_del(&mm_slot->link); 961 list_del(&mm_slot->mm_list); 962 spin_unlock(&ksm_mmlist_lock); 963 964 free_mm_slot(mm_slot); 965 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 966 mmdrop(mm); 967 } else 968 spin_unlock(&ksm_mmlist_lock); 969 } 970 971 /* Clean up stable nodes, but don't worry if some are still busy */ 972 remove_all_stable_nodes(); 973 ksm_scan.seqnr = 0; 974 return 0; 975 976 error: 977 up_read(&mm->mmap_sem); 978 spin_lock(&ksm_mmlist_lock); 979 ksm_scan.mm_slot = &ksm_mm_head; 980 spin_unlock(&ksm_mmlist_lock); 981 return err; 982 } 983 #endif /* CONFIG_SYSFS */ 984 985 static u32 calc_checksum(struct page *page) 986 { 987 u32 checksum; 988 void *addr = kmap_atomic(page); 989 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 990 kunmap_atomic(addr); 991 return checksum; 992 } 993 994 static int memcmp_pages(struct page *page1, struct page *page2) 995 { 996 char *addr1, *addr2; 997 int ret; 998 999 addr1 = kmap_atomic(page1); 1000 addr2 = kmap_atomic(page2); 1001 ret = memcmp(addr1, addr2, PAGE_SIZE); 1002 kunmap_atomic(addr2); 1003 kunmap_atomic(addr1); 1004 return ret; 1005 } 1006 1007 static inline int pages_identical(struct page *page1, struct page *page2) 1008 { 1009 return !memcmp_pages(page1, page2); 1010 } 1011 1012 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1013 pte_t *orig_pte) 1014 { 1015 struct mm_struct *mm = vma->vm_mm; 1016 struct page_vma_mapped_walk pvmw = { 1017 .page = page, 1018 .vma = vma, 1019 }; 1020 int swapped; 1021 int err = -EFAULT; 1022 unsigned long mmun_start; /* For mmu_notifiers */ 1023 unsigned long mmun_end; /* For mmu_notifiers */ 1024 1025 pvmw.address = page_address_in_vma(page, vma); 1026 if (pvmw.address == -EFAULT) 1027 goto out; 1028 1029 BUG_ON(PageTransCompound(page)); 1030 1031 mmun_start = pvmw.address; 1032 mmun_end = pvmw.address + PAGE_SIZE; 1033 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1034 1035 if (!page_vma_mapped_walk(&pvmw)) 1036 goto out_mn; 1037 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1038 goto out_unlock; 1039 1040 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1041 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1042 mm_tlb_flush_pending(mm)) { 1043 pte_t entry; 1044 1045 swapped = PageSwapCache(page); 1046 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1047 /* 1048 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1049 * take any lock, therefore the check that we are going to make 1050 * with the pagecount against the mapcount is racey and 1051 * O_DIRECT can happen right after the check. 1052 * So we clear the pte and flush the tlb before the check 1053 * this assure us that no O_DIRECT can happen after the check 1054 * or in the middle of the check. 1055 */ 1056 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte); 1057 /* 1058 * Check that no O_DIRECT or similar I/O is in progress on the 1059 * page 1060 */ 1061 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1062 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1063 goto out_unlock; 1064 } 1065 if (pte_dirty(entry)) 1066 set_page_dirty(page); 1067 1068 if (pte_protnone(entry)) 1069 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1070 else 1071 entry = pte_mkclean(pte_wrprotect(entry)); 1072 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1073 } 1074 *orig_pte = *pvmw.pte; 1075 err = 0; 1076 1077 out_unlock: 1078 page_vma_mapped_walk_done(&pvmw); 1079 out_mn: 1080 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1081 out: 1082 return err; 1083 } 1084 1085 /** 1086 * replace_page - replace page in vma by new ksm page 1087 * @vma: vma that holds the pte pointing to page 1088 * @page: the page we are replacing by kpage 1089 * @kpage: the ksm page we replace page by 1090 * @orig_pte: the original value of the pte 1091 * 1092 * Returns 0 on success, -EFAULT on failure. 1093 */ 1094 static int replace_page(struct vm_area_struct *vma, struct page *page, 1095 struct page *kpage, pte_t orig_pte) 1096 { 1097 struct mm_struct *mm = vma->vm_mm; 1098 pmd_t *pmd; 1099 pte_t *ptep; 1100 pte_t newpte; 1101 spinlock_t *ptl; 1102 unsigned long addr; 1103 int err = -EFAULT; 1104 unsigned long mmun_start; /* For mmu_notifiers */ 1105 unsigned long mmun_end; /* For mmu_notifiers */ 1106 1107 addr = page_address_in_vma(page, vma); 1108 if (addr == -EFAULT) 1109 goto out; 1110 1111 pmd = mm_find_pmd(mm, addr); 1112 if (!pmd) 1113 goto out; 1114 1115 mmun_start = addr; 1116 mmun_end = addr + PAGE_SIZE; 1117 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1118 1119 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1120 if (!pte_same(*ptep, orig_pte)) { 1121 pte_unmap_unlock(ptep, ptl); 1122 goto out_mn; 1123 } 1124 1125 /* 1126 * No need to check ksm_use_zero_pages here: we can only have a 1127 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1128 */ 1129 if (!is_zero_pfn(page_to_pfn(kpage))) { 1130 get_page(kpage); 1131 page_add_anon_rmap(kpage, vma, addr, false); 1132 newpte = mk_pte(kpage, vma->vm_page_prot); 1133 } else { 1134 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1135 vma->vm_page_prot)); 1136 } 1137 1138 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1139 ptep_clear_flush_notify(vma, addr, ptep); 1140 set_pte_at_notify(mm, addr, ptep, newpte); 1141 1142 page_remove_rmap(page, false); 1143 if (!page_mapped(page)) 1144 try_to_free_swap(page); 1145 put_page(page); 1146 1147 pte_unmap_unlock(ptep, ptl); 1148 err = 0; 1149 out_mn: 1150 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1151 out: 1152 return err; 1153 } 1154 1155 /* 1156 * try_to_merge_one_page - take two pages and merge them into one 1157 * @vma: the vma that holds the pte pointing to page 1158 * @page: the PageAnon page that we want to replace with kpage 1159 * @kpage: the PageKsm page that we want to map instead of page, 1160 * or NULL the first time when we want to use page as kpage. 1161 * 1162 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1163 */ 1164 static int try_to_merge_one_page(struct vm_area_struct *vma, 1165 struct page *page, struct page *kpage) 1166 { 1167 pte_t orig_pte = __pte(0); 1168 int err = -EFAULT; 1169 1170 if (page == kpage) /* ksm page forked */ 1171 return 0; 1172 1173 if (!PageAnon(page)) 1174 goto out; 1175 1176 /* 1177 * We need the page lock to read a stable PageSwapCache in 1178 * write_protect_page(). We use trylock_page() instead of 1179 * lock_page() because we don't want to wait here - we 1180 * prefer to continue scanning and merging different pages, 1181 * then come back to this page when it is unlocked. 1182 */ 1183 if (!trylock_page(page)) 1184 goto out; 1185 1186 if (PageTransCompound(page)) { 1187 if (split_huge_page(page)) 1188 goto out_unlock; 1189 } 1190 1191 /* 1192 * If this anonymous page is mapped only here, its pte may need 1193 * to be write-protected. If it's mapped elsewhere, all of its 1194 * ptes are necessarily already write-protected. But in either 1195 * case, we need to lock and check page_count is not raised. 1196 */ 1197 if (write_protect_page(vma, page, &orig_pte) == 0) { 1198 if (!kpage) { 1199 /* 1200 * While we hold page lock, upgrade page from 1201 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1202 * stable_tree_insert() will update stable_node. 1203 */ 1204 set_page_stable_node(page, NULL); 1205 mark_page_accessed(page); 1206 /* 1207 * Page reclaim just frees a clean page with no dirty 1208 * ptes: make sure that the ksm page would be swapped. 1209 */ 1210 if (!PageDirty(page)) 1211 SetPageDirty(page); 1212 err = 0; 1213 } else if (pages_identical(page, kpage)) 1214 err = replace_page(vma, page, kpage, orig_pte); 1215 } 1216 1217 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1218 munlock_vma_page(page); 1219 if (!PageMlocked(kpage)) { 1220 unlock_page(page); 1221 lock_page(kpage); 1222 mlock_vma_page(kpage); 1223 page = kpage; /* for final unlock */ 1224 } 1225 } 1226 1227 out_unlock: 1228 unlock_page(page); 1229 out: 1230 return err; 1231 } 1232 1233 /* 1234 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1235 * but no new kernel page is allocated: kpage must already be a ksm page. 1236 * 1237 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1238 */ 1239 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1240 struct page *page, struct page *kpage) 1241 { 1242 struct mm_struct *mm = rmap_item->mm; 1243 struct vm_area_struct *vma; 1244 int err = -EFAULT; 1245 1246 down_read(&mm->mmap_sem); 1247 vma = find_mergeable_vma(mm, rmap_item->address); 1248 if (!vma) 1249 goto out; 1250 1251 err = try_to_merge_one_page(vma, page, kpage); 1252 if (err) 1253 goto out; 1254 1255 /* Unstable nid is in union with stable anon_vma: remove first */ 1256 remove_rmap_item_from_tree(rmap_item); 1257 1258 /* Must get reference to anon_vma while still holding mmap_sem */ 1259 rmap_item->anon_vma = vma->anon_vma; 1260 get_anon_vma(vma->anon_vma); 1261 out: 1262 up_read(&mm->mmap_sem); 1263 return err; 1264 } 1265 1266 /* 1267 * try_to_merge_two_pages - take two identical pages and prepare them 1268 * to be merged into one page. 1269 * 1270 * This function returns the kpage if we successfully merged two identical 1271 * pages into one ksm page, NULL otherwise. 1272 * 1273 * Note that this function upgrades page to ksm page: if one of the pages 1274 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1275 */ 1276 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1277 struct page *page, 1278 struct rmap_item *tree_rmap_item, 1279 struct page *tree_page) 1280 { 1281 int err; 1282 1283 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1284 if (!err) { 1285 err = try_to_merge_with_ksm_page(tree_rmap_item, 1286 tree_page, page); 1287 /* 1288 * If that fails, we have a ksm page with only one pte 1289 * pointing to it: so break it. 1290 */ 1291 if (err) 1292 break_cow(rmap_item); 1293 } 1294 return err ? NULL : page; 1295 } 1296 1297 static __always_inline 1298 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1299 { 1300 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1301 /* 1302 * Check that at least one mapping still exists, otherwise 1303 * there's no much point to merge and share with this 1304 * stable_node, as the underlying tree_page of the other 1305 * sharer is going to be freed soon. 1306 */ 1307 return stable_node->rmap_hlist_len && 1308 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1309 } 1310 1311 static __always_inline 1312 bool is_page_sharing_candidate(struct stable_node *stable_node) 1313 { 1314 return __is_page_sharing_candidate(stable_node, 0); 1315 } 1316 1317 struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1318 struct stable_node **_stable_node, 1319 struct rb_root *root, 1320 bool prune_stale_stable_nodes) 1321 { 1322 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1323 struct hlist_node *hlist_safe; 1324 struct page *_tree_page, *tree_page = NULL; 1325 int nr = 0; 1326 int found_rmap_hlist_len; 1327 1328 if (!prune_stale_stable_nodes || 1329 time_before(jiffies, stable_node->chain_prune_time + 1330 msecs_to_jiffies( 1331 ksm_stable_node_chains_prune_millisecs))) 1332 prune_stale_stable_nodes = false; 1333 else 1334 stable_node->chain_prune_time = jiffies; 1335 1336 hlist_for_each_entry_safe(dup, hlist_safe, 1337 &stable_node->hlist, hlist_dup) { 1338 cond_resched(); 1339 /* 1340 * We must walk all stable_node_dup to prune the stale 1341 * stable nodes during lookup. 1342 * 1343 * get_ksm_page can drop the nodes from the 1344 * stable_node->hlist if they point to freed pages 1345 * (that's why we do a _safe walk). The "dup" 1346 * stable_node parameter itself will be freed from 1347 * under us if it returns NULL. 1348 */ 1349 _tree_page = get_ksm_page(dup, false); 1350 if (!_tree_page) 1351 continue; 1352 nr += 1; 1353 if (is_page_sharing_candidate(dup)) { 1354 if (!found || 1355 dup->rmap_hlist_len > found_rmap_hlist_len) { 1356 if (found) 1357 put_page(tree_page); 1358 found = dup; 1359 found_rmap_hlist_len = found->rmap_hlist_len; 1360 tree_page = _tree_page; 1361 1362 /* skip put_page for found dup */ 1363 if (!prune_stale_stable_nodes) 1364 break; 1365 continue; 1366 } 1367 } 1368 put_page(_tree_page); 1369 } 1370 1371 if (found) { 1372 /* 1373 * nr is counting all dups in the chain only if 1374 * prune_stale_stable_nodes is true, otherwise we may 1375 * break the loop at nr == 1 even if there are 1376 * multiple entries. 1377 */ 1378 if (prune_stale_stable_nodes && nr == 1) { 1379 /* 1380 * If there's not just one entry it would 1381 * corrupt memory, better BUG_ON. In KSM 1382 * context with no lock held it's not even 1383 * fatal. 1384 */ 1385 BUG_ON(stable_node->hlist.first->next); 1386 1387 /* 1388 * There's just one entry and it is below the 1389 * deduplication limit so drop the chain. 1390 */ 1391 rb_replace_node(&stable_node->node, &found->node, 1392 root); 1393 free_stable_node(stable_node); 1394 ksm_stable_node_chains--; 1395 ksm_stable_node_dups--; 1396 /* 1397 * NOTE: the caller depends on the stable_node 1398 * to be equal to stable_node_dup if the chain 1399 * was collapsed. 1400 */ 1401 *_stable_node = found; 1402 /* 1403 * Just for robustneess as stable_node is 1404 * otherwise left as a stable pointer, the 1405 * compiler shall optimize it away at build 1406 * time. 1407 */ 1408 stable_node = NULL; 1409 } else if (stable_node->hlist.first != &found->hlist_dup && 1410 __is_page_sharing_candidate(found, 1)) { 1411 /* 1412 * If the found stable_node dup can accept one 1413 * more future merge (in addition to the one 1414 * that is underway) and is not at the head of 1415 * the chain, put it there so next search will 1416 * be quicker in the !prune_stale_stable_nodes 1417 * case. 1418 * 1419 * NOTE: it would be inaccurate to use nr > 1 1420 * instead of checking the hlist.first pointer 1421 * directly, because in the 1422 * prune_stale_stable_nodes case "nr" isn't 1423 * the position of the found dup in the chain, 1424 * but the total number of dups in the chain. 1425 */ 1426 hlist_del(&found->hlist_dup); 1427 hlist_add_head(&found->hlist_dup, 1428 &stable_node->hlist); 1429 } 1430 } 1431 1432 *_stable_node_dup = found; 1433 return tree_page; 1434 } 1435 1436 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1437 struct rb_root *root) 1438 { 1439 if (!is_stable_node_chain(stable_node)) 1440 return stable_node; 1441 if (hlist_empty(&stable_node->hlist)) { 1442 free_stable_node_chain(stable_node, root); 1443 return NULL; 1444 } 1445 return hlist_entry(stable_node->hlist.first, 1446 typeof(*stable_node), hlist_dup); 1447 } 1448 1449 /* 1450 * Like for get_ksm_page, this function can free the *_stable_node and 1451 * *_stable_node_dup if the returned tree_page is NULL. 1452 * 1453 * It can also free and overwrite *_stable_node with the found 1454 * stable_node_dup if the chain is collapsed (in which case 1455 * *_stable_node will be equal to *_stable_node_dup like if the chain 1456 * never existed). It's up to the caller to verify tree_page is not 1457 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1458 * 1459 * *_stable_node_dup is really a second output parameter of this 1460 * function and will be overwritten in all cases, the caller doesn't 1461 * need to initialize it. 1462 */ 1463 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1464 struct stable_node **_stable_node, 1465 struct rb_root *root, 1466 bool prune_stale_stable_nodes) 1467 { 1468 struct stable_node *stable_node = *_stable_node; 1469 if (!is_stable_node_chain(stable_node)) { 1470 if (is_page_sharing_candidate(stable_node)) { 1471 *_stable_node_dup = stable_node; 1472 return get_ksm_page(stable_node, false); 1473 } 1474 /* 1475 * _stable_node_dup set to NULL means the stable_node 1476 * reached the ksm_max_page_sharing limit. 1477 */ 1478 *_stable_node_dup = NULL; 1479 return NULL; 1480 } 1481 return stable_node_dup(_stable_node_dup, _stable_node, root, 1482 prune_stale_stable_nodes); 1483 } 1484 1485 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1486 struct stable_node **s_n, 1487 struct rb_root *root) 1488 { 1489 return __stable_node_chain(s_n_d, s_n, root, true); 1490 } 1491 1492 static __always_inline struct page *chain(struct stable_node **s_n_d, 1493 struct stable_node *s_n, 1494 struct rb_root *root) 1495 { 1496 struct stable_node *old_stable_node = s_n; 1497 struct page *tree_page; 1498 1499 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1500 /* not pruning dups so s_n cannot have changed */ 1501 VM_BUG_ON(s_n != old_stable_node); 1502 return tree_page; 1503 } 1504 1505 /* 1506 * stable_tree_search - search for page inside the stable tree 1507 * 1508 * This function checks if there is a page inside the stable tree 1509 * with identical content to the page that we are scanning right now. 1510 * 1511 * This function returns the stable tree node of identical content if found, 1512 * NULL otherwise. 1513 */ 1514 static struct page *stable_tree_search(struct page *page) 1515 { 1516 int nid; 1517 struct rb_root *root; 1518 struct rb_node **new; 1519 struct rb_node *parent; 1520 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1521 struct stable_node *page_node; 1522 1523 page_node = page_stable_node(page); 1524 if (page_node && page_node->head != &migrate_nodes) { 1525 /* ksm page forked */ 1526 get_page(page); 1527 return page; 1528 } 1529 1530 nid = get_kpfn_nid(page_to_pfn(page)); 1531 root = root_stable_tree + nid; 1532 again: 1533 new = &root->rb_node; 1534 parent = NULL; 1535 1536 while (*new) { 1537 struct page *tree_page; 1538 int ret; 1539 1540 cond_resched(); 1541 stable_node = rb_entry(*new, struct stable_node, node); 1542 stable_node_any = NULL; 1543 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1544 /* 1545 * NOTE: stable_node may have been freed by 1546 * chain_prune() if the returned stable_node_dup is 1547 * not NULL. stable_node_dup may have been inserted in 1548 * the rbtree instead as a regular stable_node (in 1549 * order to collapse the stable_node chain if a single 1550 * stable_node dup was found in it). In such case the 1551 * stable_node is overwritten by the calleee to point 1552 * to the stable_node_dup that was collapsed in the 1553 * stable rbtree and stable_node will be equal to 1554 * stable_node_dup like if the chain never existed. 1555 */ 1556 if (!stable_node_dup) { 1557 /* 1558 * Either all stable_node dups were full in 1559 * this stable_node chain, or this chain was 1560 * empty and should be rb_erased. 1561 */ 1562 stable_node_any = stable_node_dup_any(stable_node, 1563 root); 1564 if (!stable_node_any) { 1565 /* rb_erase just run */ 1566 goto again; 1567 } 1568 /* 1569 * Take any of the stable_node dups page of 1570 * this stable_node chain to let the tree walk 1571 * continue. All KSM pages belonging to the 1572 * stable_node dups in a stable_node chain 1573 * have the same content and they're 1574 * wrprotected at all times. Any will work 1575 * fine to continue the walk. 1576 */ 1577 tree_page = get_ksm_page(stable_node_any, false); 1578 } 1579 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1580 if (!tree_page) { 1581 /* 1582 * If we walked over a stale stable_node, 1583 * get_ksm_page() will call rb_erase() and it 1584 * may rebalance the tree from under us. So 1585 * restart the search from scratch. Returning 1586 * NULL would be safe too, but we'd generate 1587 * false negative insertions just because some 1588 * stable_node was stale. 1589 */ 1590 goto again; 1591 } 1592 1593 ret = memcmp_pages(page, tree_page); 1594 put_page(tree_page); 1595 1596 parent = *new; 1597 if (ret < 0) 1598 new = &parent->rb_left; 1599 else if (ret > 0) 1600 new = &parent->rb_right; 1601 else { 1602 if (page_node) { 1603 VM_BUG_ON(page_node->head != &migrate_nodes); 1604 /* 1605 * Test if the migrated page should be merged 1606 * into a stable node dup. If the mapcount is 1607 * 1 we can migrate it with another KSM page 1608 * without adding it to the chain. 1609 */ 1610 if (page_mapcount(page) > 1) 1611 goto chain_append; 1612 } 1613 1614 if (!stable_node_dup) { 1615 /* 1616 * If the stable_node is a chain and 1617 * we got a payload match in memcmp 1618 * but we cannot merge the scanned 1619 * page in any of the existing 1620 * stable_node dups because they're 1621 * all full, we need to wait the 1622 * scanned page to find itself a match 1623 * in the unstable tree to create a 1624 * brand new KSM page to add later to 1625 * the dups of this stable_node. 1626 */ 1627 return NULL; 1628 } 1629 1630 /* 1631 * Lock and unlock the stable_node's page (which 1632 * might already have been migrated) so that page 1633 * migration is sure to notice its raised count. 1634 * It would be more elegant to return stable_node 1635 * than kpage, but that involves more changes. 1636 */ 1637 tree_page = get_ksm_page(stable_node_dup, true); 1638 if (unlikely(!tree_page)) 1639 /* 1640 * The tree may have been rebalanced, 1641 * so re-evaluate parent and new. 1642 */ 1643 goto again; 1644 unlock_page(tree_page); 1645 1646 if (get_kpfn_nid(stable_node_dup->kpfn) != 1647 NUMA(stable_node_dup->nid)) { 1648 put_page(tree_page); 1649 goto replace; 1650 } 1651 return tree_page; 1652 } 1653 } 1654 1655 if (!page_node) 1656 return NULL; 1657 1658 list_del(&page_node->list); 1659 DO_NUMA(page_node->nid = nid); 1660 rb_link_node(&page_node->node, parent, new); 1661 rb_insert_color(&page_node->node, root); 1662 out: 1663 if (is_page_sharing_candidate(page_node)) { 1664 get_page(page); 1665 return page; 1666 } else 1667 return NULL; 1668 1669 replace: 1670 /* 1671 * If stable_node was a chain and chain_prune collapsed it, 1672 * stable_node has been updated to be the new regular 1673 * stable_node. A collapse of the chain is indistinguishable 1674 * from the case there was no chain in the stable 1675 * rbtree. Otherwise stable_node is the chain and 1676 * stable_node_dup is the dup to replace. 1677 */ 1678 if (stable_node_dup == stable_node) { 1679 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1680 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1681 /* there is no chain */ 1682 if (page_node) { 1683 VM_BUG_ON(page_node->head != &migrate_nodes); 1684 list_del(&page_node->list); 1685 DO_NUMA(page_node->nid = nid); 1686 rb_replace_node(&stable_node_dup->node, 1687 &page_node->node, 1688 root); 1689 if (is_page_sharing_candidate(page_node)) 1690 get_page(page); 1691 else 1692 page = NULL; 1693 } else { 1694 rb_erase(&stable_node_dup->node, root); 1695 page = NULL; 1696 } 1697 } else { 1698 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1699 __stable_node_dup_del(stable_node_dup); 1700 if (page_node) { 1701 VM_BUG_ON(page_node->head != &migrate_nodes); 1702 list_del(&page_node->list); 1703 DO_NUMA(page_node->nid = nid); 1704 stable_node_chain_add_dup(page_node, stable_node); 1705 if (is_page_sharing_candidate(page_node)) 1706 get_page(page); 1707 else 1708 page = NULL; 1709 } else { 1710 page = NULL; 1711 } 1712 } 1713 stable_node_dup->head = &migrate_nodes; 1714 list_add(&stable_node_dup->list, stable_node_dup->head); 1715 return page; 1716 1717 chain_append: 1718 /* stable_node_dup could be null if it reached the limit */ 1719 if (!stable_node_dup) 1720 stable_node_dup = stable_node_any; 1721 /* 1722 * If stable_node was a chain and chain_prune collapsed it, 1723 * stable_node has been updated to be the new regular 1724 * stable_node. A collapse of the chain is indistinguishable 1725 * from the case there was no chain in the stable 1726 * rbtree. Otherwise stable_node is the chain and 1727 * stable_node_dup is the dup to replace. 1728 */ 1729 if (stable_node_dup == stable_node) { 1730 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1731 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1732 /* chain is missing so create it */ 1733 stable_node = alloc_stable_node_chain(stable_node_dup, 1734 root); 1735 if (!stable_node) 1736 return NULL; 1737 } 1738 /* 1739 * Add this stable_node dup that was 1740 * migrated to the stable_node chain 1741 * of the current nid for this page 1742 * content. 1743 */ 1744 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1745 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1746 VM_BUG_ON(page_node->head != &migrate_nodes); 1747 list_del(&page_node->list); 1748 DO_NUMA(page_node->nid = nid); 1749 stable_node_chain_add_dup(page_node, stable_node); 1750 goto out; 1751 } 1752 1753 /* 1754 * stable_tree_insert - insert stable tree node pointing to new ksm page 1755 * into the stable tree. 1756 * 1757 * This function returns the stable tree node just allocated on success, 1758 * NULL otherwise. 1759 */ 1760 static struct stable_node *stable_tree_insert(struct page *kpage) 1761 { 1762 int nid; 1763 unsigned long kpfn; 1764 struct rb_root *root; 1765 struct rb_node **new; 1766 struct rb_node *parent; 1767 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1768 bool need_chain = false; 1769 1770 kpfn = page_to_pfn(kpage); 1771 nid = get_kpfn_nid(kpfn); 1772 root = root_stable_tree + nid; 1773 again: 1774 parent = NULL; 1775 new = &root->rb_node; 1776 1777 while (*new) { 1778 struct page *tree_page; 1779 int ret; 1780 1781 cond_resched(); 1782 stable_node = rb_entry(*new, struct stable_node, node); 1783 stable_node_any = NULL; 1784 tree_page = chain(&stable_node_dup, stable_node, root); 1785 if (!stable_node_dup) { 1786 /* 1787 * Either all stable_node dups were full in 1788 * this stable_node chain, or this chain was 1789 * empty and should be rb_erased. 1790 */ 1791 stable_node_any = stable_node_dup_any(stable_node, 1792 root); 1793 if (!stable_node_any) { 1794 /* rb_erase just run */ 1795 goto again; 1796 } 1797 /* 1798 * Take any of the stable_node dups page of 1799 * this stable_node chain to let the tree walk 1800 * continue. All KSM pages belonging to the 1801 * stable_node dups in a stable_node chain 1802 * have the same content and they're 1803 * wrprotected at all times. Any will work 1804 * fine to continue the walk. 1805 */ 1806 tree_page = get_ksm_page(stable_node_any, false); 1807 } 1808 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1809 if (!tree_page) { 1810 /* 1811 * If we walked over a stale stable_node, 1812 * get_ksm_page() will call rb_erase() and it 1813 * may rebalance the tree from under us. So 1814 * restart the search from scratch. Returning 1815 * NULL would be safe too, but we'd generate 1816 * false negative insertions just because some 1817 * stable_node was stale. 1818 */ 1819 goto again; 1820 } 1821 1822 ret = memcmp_pages(kpage, tree_page); 1823 put_page(tree_page); 1824 1825 parent = *new; 1826 if (ret < 0) 1827 new = &parent->rb_left; 1828 else if (ret > 0) 1829 new = &parent->rb_right; 1830 else { 1831 need_chain = true; 1832 break; 1833 } 1834 } 1835 1836 stable_node_dup = alloc_stable_node(); 1837 if (!stable_node_dup) 1838 return NULL; 1839 1840 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1841 stable_node_dup->kpfn = kpfn; 1842 set_page_stable_node(kpage, stable_node_dup); 1843 stable_node_dup->rmap_hlist_len = 0; 1844 DO_NUMA(stable_node_dup->nid = nid); 1845 if (!need_chain) { 1846 rb_link_node(&stable_node_dup->node, parent, new); 1847 rb_insert_color(&stable_node_dup->node, root); 1848 } else { 1849 if (!is_stable_node_chain(stable_node)) { 1850 struct stable_node *orig = stable_node; 1851 /* chain is missing so create it */ 1852 stable_node = alloc_stable_node_chain(orig, root); 1853 if (!stable_node) { 1854 free_stable_node(stable_node_dup); 1855 return NULL; 1856 } 1857 } 1858 stable_node_chain_add_dup(stable_node_dup, stable_node); 1859 } 1860 1861 return stable_node_dup; 1862 } 1863 1864 /* 1865 * unstable_tree_search_insert - search for identical page, 1866 * else insert rmap_item into the unstable tree. 1867 * 1868 * This function searches for a page in the unstable tree identical to the 1869 * page currently being scanned; and if no identical page is found in the 1870 * tree, we insert rmap_item as a new object into the unstable tree. 1871 * 1872 * This function returns pointer to rmap_item found to be identical 1873 * to the currently scanned page, NULL otherwise. 1874 * 1875 * This function does both searching and inserting, because they share 1876 * the same walking algorithm in an rbtree. 1877 */ 1878 static 1879 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1880 struct page *page, 1881 struct page **tree_pagep) 1882 { 1883 struct rb_node **new; 1884 struct rb_root *root; 1885 struct rb_node *parent = NULL; 1886 int nid; 1887 1888 nid = get_kpfn_nid(page_to_pfn(page)); 1889 root = root_unstable_tree + nid; 1890 new = &root->rb_node; 1891 1892 while (*new) { 1893 struct rmap_item *tree_rmap_item; 1894 struct page *tree_page; 1895 int ret; 1896 1897 cond_resched(); 1898 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1899 tree_page = get_mergeable_page(tree_rmap_item); 1900 if (!tree_page) 1901 return NULL; 1902 1903 /* 1904 * Don't substitute a ksm page for a forked page. 1905 */ 1906 if (page == tree_page) { 1907 put_page(tree_page); 1908 return NULL; 1909 } 1910 1911 ret = memcmp_pages(page, tree_page); 1912 1913 parent = *new; 1914 if (ret < 0) { 1915 put_page(tree_page); 1916 new = &parent->rb_left; 1917 } else if (ret > 0) { 1918 put_page(tree_page); 1919 new = &parent->rb_right; 1920 } else if (!ksm_merge_across_nodes && 1921 page_to_nid(tree_page) != nid) { 1922 /* 1923 * If tree_page has been migrated to another NUMA node, 1924 * it will be flushed out and put in the right unstable 1925 * tree next time: only merge with it when across_nodes. 1926 */ 1927 put_page(tree_page); 1928 return NULL; 1929 } else { 1930 *tree_pagep = tree_page; 1931 return tree_rmap_item; 1932 } 1933 } 1934 1935 rmap_item->address |= UNSTABLE_FLAG; 1936 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1937 DO_NUMA(rmap_item->nid = nid); 1938 rb_link_node(&rmap_item->node, parent, new); 1939 rb_insert_color(&rmap_item->node, root); 1940 1941 ksm_pages_unshared++; 1942 return NULL; 1943 } 1944 1945 /* 1946 * stable_tree_append - add another rmap_item to the linked list of 1947 * rmap_items hanging off a given node of the stable tree, all sharing 1948 * the same ksm page. 1949 */ 1950 static void stable_tree_append(struct rmap_item *rmap_item, 1951 struct stable_node *stable_node, 1952 bool max_page_sharing_bypass) 1953 { 1954 /* 1955 * rmap won't find this mapping if we don't insert the 1956 * rmap_item in the right stable_node 1957 * duplicate. page_migration could break later if rmap breaks, 1958 * so we can as well crash here. We really need to check for 1959 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1960 * for other negative values as an undeflow if detected here 1961 * for the first time (and not when decreasing rmap_hlist_len) 1962 * would be sign of memory corruption in the stable_node. 1963 */ 1964 BUG_ON(stable_node->rmap_hlist_len < 0); 1965 1966 stable_node->rmap_hlist_len++; 1967 if (!max_page_sharing_bypass) 1968 /* possibly non fatal but unexpected overflow, only warn */ 1969 WARN_ON_ONCE(stable_node->rmap_hlist_len > 1970 ksm_max_page_sharing); 1971 1972 rmap_item->head = stable_node; 1973 rmap_item->address |= STABLE_FLAG; 1974 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1975 1976 if (rmap_item->hlist.next) 1977 ksm_pages_sharing++; 1978 else 1979 ksm_pages_shared++; 1980 } 1981 1982 /* 1983 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1984 * if not, compare checksum to previous and if it's the same, see if page can 1985 * be inserted into the unstable tree, or merged with a page already there and 1986 * both transferred to the stable tree. 1987 * 1988 * @page: the page that we are searching identical page to. 1989 * @rmap_item: the reverse mapping into the virtual address of this page 1990 */ 1991 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1992 { 1993 struct rmap_item *tree_rmap_item; 1994 struct page *tree_page = NULL; 1995 struct stable_node *stable_node; 1996 struct page *kpage; 1997 unsigned int checksum; 1998 int err; 1999 bool max_page_sharing_bypass = false; 2000 2001 stable_node = page_stable_node(page); 2002 if (stable_node) { 2003 if (stable_node->head != &migrate_nodes && 2004 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2005 NUMA(stable_node->nid)) { 2006 stable_node_dup_del(stable_node); 2007 stable_node->head = &migrate_nodes; 2008 list_add(&stable_node->list, stable_node->head); 2009 } 2010 if (stable_node->head != &migrate_nodes && 2011 rmap_item->head == stable_node) 2012 return; 2013 /* 2014 * If it's a KSM fork, allow it to go over the sharing limit 2015 * without warnings. 2016 */ 2017 if (!is_page_sharing_candidate(stable_node)) 2018 max_page_sharing_bypass = true; 2019 } 2020 2021 /* We first start with searching the page inside the stable tree */ 2022 kpage = stable_tree_search(page); 2023 if (kpage == page && rmap_item->head == stable_node) { 2024 put_page(kpage); 2025 return; 2026 } 2027 2028 remove_rmap_item_from_tree(rmap_item); 2029 2030 if (kpage) { 2031 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2032 if (!err) { 2033 /* 2034 * The page was successfully merged: 2035 * add its rmap_item to the stable tree. 2036 */ 2037 lock_page(kpage); 2038 stable_tree_append(rmap_item, page_stable_node(kpage), 2039 max_page_sharing_bypass); 2040 unlock_page(kpage); 2041 } 2042 put_page(kpage); 2043 return; 2044 } 2045 2046 /* 2047 * If the hash value of the page has changed from the last time 2048 * we calculated it, this page is changing frequently: therefore we 2049 * don't want to insert it in the unstable tree, and we don't want 2050 * to waste our time searching for something identical to it there. 2051 */ 2052 checksum = calc_checksum(page); 2053 if (rmap_item->oldchecksum != checksum) { 2054 rmap_item->oldchecksum = checksum; 2055 return; 2056 } 2057 2058 /* 2059 * Same checksum as an empty page. We attempt to merge it with the 2060 * appropriate zero page if the user enabled this via sysfs. 2061 */ 2062 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2063 struct vm_area_struct *vma; 2064 2065 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address); 2066 err = try_to_merge_one_page(vma, page, 2067 ZERO_PAGE(rmap_item->address)); 2068 /* 2069 * In case of failure, the page was not really empty, so we 2070 * need to continue. Otherwise we're done. 2071 */ 2072 if (!err) 2073 return; 2074 } 2075 tree_rmap_item = 2076 unstable_tree_search_insert(rmap_item, page, &tree_page); 2077 if (tree_rmap_item) { 2078 kpage = try_to_merge_two_pages(rmap_item, page, 2079 tree_rmap_item, tree_page); 2080 put_page(tree_page); 2081 if (kpage) { 2082 /* 2083 * The pages were successfully merged: insert new 2084 * node in the stable tree and add both rmap_items. 2085 */ 2086 lock_page(kpage); 2087 stable_node = stable_tree_insert(kpage); 2088 if (stable_node) { 2089 stable_tree_append(tree_rmap_item, stable_node, 2090 false); 2091 stable_tree_append(rmap_item, stable_node, 2092 false); 2093 } 2094 unlock_page(kpage); 2095 2096 /* 2097 * If we fail to insert the page into the stable tree, 2098 * we will have 2 virtual addresses that are pointing 2099 * to a ksm page left outside the stable tree, 2100 * in which case we need to break_cow on both. 2101 */ 2102 if (!stable_node) { 2103 break_cow(tree_rmap_item); 2104 break_cow(rmap_item); 2105 } 2106 } 2107 } 2108 } 2109 2110 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2111 struct rmap_item **rmap_list, 2112 unsigned long addr) 2113 { 2114 struct rmap_item *rmap_item; 2115 2116 while (*rmap_list) { 2117 rmap_item = *rmap_list; 2118 if ((rmap_item->address & PAGE_MASK) == addr) 2119 return rmap_item; 2120 if (rmap_item->address > addr) 2121 break; 2122 *rmap_list = rmap_item->rmap_list; 2123 remove_rmap_item_from_tree(rmap_item); 2124 free_rmap_item(rmap_item); 2125 } 2126 2127 rmap_item = alloc_rmap_item(); 2128 if (rmap_item) { 2129 /* It has already been zeroed */ 2130 rmap_item->mm = mm_slot->mm; 2131 rmap_item->address = addr; 2132 rmap_item->rmap_list = *rmap_list; 2133 *rmap_list = rmap_item; 2134 } 2135 return rmap_item; 2136 } 2137 2138 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2139 { 2140 struct mm_struct *mm; 2141 struct mm_slot *slot; 2142 struct vm_area_struct *vma; 2143 struct rmap_item *rmap_item; 2144 int nid; 2145 2146 if (list_empty(&ksm_mm_head.mm_list)) 2147 return NULL; 2148 2149 slot = ksm_scan.mm_slot; 2150 if (slot == &ksm_mm_head) { 2151 /* 2152 * A number of pages can hang around indefinitely on per-cpu 2153 * pagevecs, raised page count preventing write_protect_page 2154 * from merging them. Though it doesn't really matter much, 2155 * it is puzzling to see some stuck in pages_volatile until 2156 * other activity jostles them out, and they also prevented 2157 * LTP's KSM test from succeeding deterministically; so drain 2158 * them here (here rather than on entry to ksm_do_scan(), 2159 * so we don't IPI too often when pages_to_scan is set low). 2160 */ 2161 lru_add_drain_all(); 2162 2163 /* 2164 * Whereas stale stable_nodes on the stable_tree itself 2165 * get pruned in the regular course of stable_tree_search(), 2166 * those moved out to the migrate_nodes list can accumulate: 2167 * so prune them once before each full scan. 2168 */ 2169 if (!ksm_merge_across_nodes) { 2170 struct stable_node *stable_node, *next; 2171 struct page *page; 2172 2173 list_for_each_entry_safe(stable_node, next, 2174 &migrate_nodes, list) { 2175 page = get_ksm_page(stable_node, false); 2176 if (page) 2177 put_page(page); 2178 cond_resched(); 2179 } 2180 } 2181 2182 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2183 root_unstable_tree[nid] = RB_ROOT; 2184 2185 spin_lock(&ksm_mmlist_lock); 2186 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2187 ksm_scan.mm_slot = slot; 2188 spin_unlock(&ksm_mmlist_lock); 2189 /* 2190 * Although we tested list_empty() above, a racing __ksm_exit 2191 * of the last mm on the list may have removed it since then. 2192 */ 2193 if (slot == &ksm_mm_head) 2194 return NULL; 2195 next_mm: 2196 ksm_scan.address = 0; 2197 ksm_scan.rmap_list = &slot->rmap_list; 2198 } 2199 2200 mm = slot->mm; 2201 down_read(&mm->mmap_sem); 2202 if (ksm_test_exit(mm)) 2203 vma = NULL; 2204 else 2205 vma = find_vma(mm, ksm_scan.address); 2206 2207 for (; vma; vma = vma->vm_next) { 2208 if (!(vma->vm_flags & VM_MERGEABLE)) 2209 continue; 2210 if (ksm_scan.address < vma->vm_start) 2211 ksm_scan.address = vma->vm_start; 2212 if (!vma->anon_vma) 2213 ksm_scan.address = vma->vm_end; 2214 2215 while (ksm_scan.address < vma->vm_end) { 2216 if (ksm_test_exit(mm)) 2217 break; 2218 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2219 if (IS_ERR_OR_NULL(*page)) { 2220 ksm_scan.address += PAGE_SIZE; 2221 cond_resched(); 2222 continue; 2223 } 2224 if (PageAnon(*page)) { 2225 flush_anon_page(vma, *page, ksm_scan.address); 2226 flush_dcache_page(*page); 2227 rmap_item = get_next_rmap_item(slot, 2228 ksm_scan.rmap_list, ksm_scan.address); 2229 if (rmap_item) { 2230 ksm_scan.rmap_list = 2231 &rmap_item->rmap_list; 2232 ksm_scan.address += PAGE_SIZE; 2233 } else 2234 put_page(*page); 2235 up_read(&mm->mmap_sem); 2236 return rmap_item; 2237 } 2238 put_page(*page); 2239 ksm_scan.address += PAGE_SIZE; 2240 cond_resched(); 2241 } 2242 } 2243 2244 if (ksm_test_exit(mm)) { 2245 ksm_scan.address = 0; 2246 ksm_scan.rmap_list = &slot->rmap_list; 2247 } 2248 /* 2249 * Nuke all the rmap_items that are above this current rmap: 2250 * because there were no VM_MERGEABLE vmas with such addresses. 2251 */ 2252 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2253 2254 spin_lock(&ksm_mmlist_lock); 2255 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2256 struct mm_slot, mm_list); 2257 if (ksm_scan.address == 0) { 2258 /* 2259 * We've completed a full scan of all vmas, holding mmap_sem 2260 * throughout, and found no VM_MERGEABLE: so do the same as 2261 * __ksm_exit does to remove this mm from all our lists now. 2262 * This applies either when cleaning up after __ksm_exit 2263 * (but beware: we can reach here even before __ksm_exit), 2264 * or when all VM_MERGEABLE areas have been unmapped (and 2265 * mmap_sem then protects against race with MADV_MERGEABLE). 2266 */ 2267 hash_del(&slot->link); 2268 list_del(&slot->mm_list); 2269 spin_unlock(&ksm_mmlist_lock); 2270 2271 free_mm_slot(slot); 2272 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2273 up_read(&mm->mmap_sem); 2274 mmdrop(mm); 2275 } else { 2276 up_read(&mm->mmap_sem); 2277 /* 2278 * up_read(&mm->mmap_sem) first because after 2279 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2280 * already have been freed under us by __ksm_exit() 2281 * because the "mm_slot" is still hashed and 2282 * ksm_scan.mm_slot doesn't point to it anymore. 2283 */ 2284 spin_unlock(&ksm_mmlist_lock); 2285 } 2286 2287 /* Repeat until we've completed scanning the whole list */ 2288 slot = ksm_scan.mm_slot; 2289 if (slot != &ksm_mm_head) 2290 goto next_mm; 2291 2292 ksm_scan.seqnr++; 2293 return NULL; 2294 } 2295 2296 /** 2297 * ksm_do_scan - the ksm scanner main worker function. 2298 * @scan_npages - number of pages we want to scan before we return. 2299 */ 2300 static void ksm_do_scan(unsigned int scan_npages) 2301 { 2302 struct rmap_item *rmap_item; 2303 struct page *uninitialized_var(page); 2304 2305 while (scan_npages-- && likely(!freezing(current))) { 2306 cond_resched(); 2307 rmap_item = scan_get_next_rmap_item(&page); 2308 if (!rmap_item) 2309 return; 2310 cmp_and_merge_page(page, rmap_item); 2311 put_page(page); 2312 } 2313 } 2314 2315 static int ksmd_should_run(void) 2316 { 2317 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2318 } 2319 2320 static int ksm_scan_thread(void *nothing) 2321 { 2322 set_freezable(); 2323 set_user_nice(current, 5); 2324 2325 while (!kthread_should_stop()) { 2326 mutex_lock(&ksm_thread_mutex); 2327 wait_while_offlining(); 2328 if (ksmd_should_run()) 2329 ksm_do_scan(ksm_thread_pages_to_scan); 2330 mutex_unlock(&ksm_thread_mutex); 2331 2332 try_to_freeze(); 2333 2334 if (ksmd_should_run()) { 2335 schedule_timeout_interruptible( 2336 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 2337 } else { 2338 wait_event_freezable(ksm_thread_wait, 2339 ksmd_should_run() || kthread_should_stop()); 2340 } 2341 } 2342 return 0; 2343 } 2344 2345 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2346 unsigned long end, int advice, unsigned long *vm_flags) 2347 { 2348 struct mm_struct *mm = vma->vm_mm; 2349 int err; 2350 2351 switch (advice) { 2352 case MADV_MERGEABLE: 2353 /* 2354 * Be somewhat over-protective for now! 2355 */ 2356 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2357 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2358 VM_HUGETLB | VM_MIXEDMAP)) 2359 return 0; /* just ignore the advice */ 2360 2361 #ifdef VM_SAO 2362 if (*vm_flags & VM_SAO) 2363 return 0; 2364 #endif 2365 2366 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2367 err = __ksm_enter(mm); 2368 if (err) 2369 return err; 2370 } 2371 2372 *vm_flags |= VM_MERGEABLE; 2373 break; 2374 2375 case MADV_UNMERGEABLE: 2376 if (!(*vm_flags & VM_MERGEABLE)) 2377 return 0; /* just ignore the advice */ 2378 2379 if (vma->anon_vma) { 2380 err = unmerge_ksm_pages(vma, start, end); 2381 if (err) 2382 return err; 2383 } 2384 2385 *vm_flags &= ~VM_MERGEABLE; 2386 break; 2387 } 2388 2389 return 0; 2390 } 2391 2392 int __ksm_enter(struct mm_struct *mm) 2393 { 2394 struct mm_slot *mm_slot; 2395 int needs_wakeup; 2396 2397 mm_slot = alloc_mm_slot(); 2398 if (!mm_slot) 2399 return -ENOMEM; 2400 2401 /* Check ksm_run too? Would need tighter locking */ 2402 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2403 2404 spin_lock(&ksm_mmlist_lock); 2405 insert_to_mm_slots_hash(mm, mm_slot); 2406 /* 2407 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2408 * insert just behind the scanning cursor, to let the area settle 2409 * down a little; when fork is followed by immediate exec, we don't 2410 * want ksmd to waste time setting up and tearing down an rmap_list. 2411 * 2412 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2413 * scanning cursor, otherwise KSM pages in newly forked mms will be 2414 * missed: then we might as well insert at the end of the list. 2415 */ 2416 if (ksm_run & KSM_RUN_UNMERGE) 2417 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2418 else 2419 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2420 spin_unlock(&ksm_mmlist_lock); 2421 2422 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2423 mmgrab(mm); 2424 2425 if (needs_wakeup) 2426 wake_up_interruptible(&ksm_thread_wait); 2427 2428 return 0; 2429 } 2430 2431 void __ksm_exit(struct mm_struct *mm) 2432 { 2433 struct mm_slot *mm_slot; 2434 int easy_to_free = 0; 2435 2436 /* 2437 * This process is exiting: if it's straightforward (as is the 2438 * case when ksmd was never running), free mm_slot immediately. 2439 * But if it's at the cursor or has rmap_items linked to it, use 2440 * mmap_sem to synchronize with any break_cows before pagetables 2441 * are freed, and leave the mm_slot on the list for ksmd to free. 2442 * Beware: ksm may already have noticed it exiting and freed the slot. 2443 */ 2444 2445 spin_lock(&ksm_mmlist_lock); 2446 mm_slot = get_mm_slot(mm); 2447 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2448 if (!mm_slot->rmap_list) { 2449 hash_del(&mm_slot->link); 2450 list_del(&mm_slot->mm_list); 2451 easy_to_free = 1; 2452 } else { 2453 list_move(&mm_slot->mm_list, 2454 &ksm_scan.mm_slot->mm_list); 2455 } 2456 } 2457 spin_unlock(&ksm_mmlist_lock); 2458 2459 if (easy_to_free) { 2460 free_mm_slot(mm_slot); 2461 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2462 mmdrop(mm); 2463 } else if (mm_slot) { 2464 down_write(&mm->mmap_sem); 2465 up_write(&mm->mmap_sem); 2466 } 2467 } 2468 2469 struct page *ksm_might_need_to_copy(struct page *page, 2470 struct vm_area_struct *vma, unsigned long address) 2471 { 2472 struct anon_vma *anon_vma = page_anon_vma(page); 2473 struct page *new_page; 2474 2475 if (PageKsm(page)) { 2476 if (page_stable_node(page) && 2477 !(ksm_run & KSM_RUN_UNMERGE)) 2478 return page; /* no need to copy it */ 2479 } else if (!anon_vma) { 2480 return page; /* no need to copy it */ 2481 } else if (anon_vma->root == vma->anon_vma->root && 2482 page->index == linear_page_index(vma, address)) { 2483 return page; /* still no need to copy it */ 2484 } 2485 if (!PageUptodate(page)) 2486 return page; /* let do_swap_page report the error */ 2487 2488 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2489 if (new_page) { 2490 copy_user_highpage(new_page, page, address, vma); 2491 2492 SetPageDirty(new_page); 2493 __SetPageUptodate(new_page); 2494 __SetPageLocked(new_page); 2495 } 2496 2497 return new_page; 2498 } 2499 2500 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2501 { 2502 struct stable_node *stable_node; 2503 struct rmap_item *rmap_item; 2504 int search_new_forks = 0; 2505 2506 VM_BUG_ON_PAGE(!PageKsm(page), page); 2507 2508 /* 2509 * Rely on the page lock to protect against concurrent modifications 2510 * to that page's node of the stable tree. 2511 */ 2512 VM_BUG_ON_PAGE(!PageLocked(page), page); 2513 2514 stable_node = page_stable_node(page); 2515 if (!stable_node) 2516 return; 2517 again: 2518 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2519 struct anon_vma *anon_vma = rmap_item->anon_vma; 2520 struct anon_vma_chain *vmac; 2521 struct vm_area_struct *vma; 2522 2523 cond_resched(); 2524 anon_vma_lock_read(anon_vma); 2525 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2526 0, ULONG_MAX) { 2527 cond_resched(); 2528 vma = vmac->vma; 2529 if (rmap_item->address < vma->vm_start || 2530 rmap_item->address >= vma->vm_end) 2531 continue; 2532 /* 2533 * Initially we examine only the vma which covers this 2534 * rmap_item; but later, if there is still work to do, 2535 * we examine covering vmas in other mms: in case they 2536 * were forked from the original since ksmd passed. 2537 */ 2538 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2539 continue; 2540 2541 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2542 continue; 2543 2544 if (!rwc->rmap_one(page, vma, 2545 rmap_item->address, rwc->arg)) { 2546 anon_vma_unlock_read(anon_vma); 2547 return; 2548 } 2549 if (rwc->done && rwc->done(page)) { 2550 anon_vma_unlock_read(anon_vma); 2551 return; 2552 } 2553 } 2554 anon_vma_unlock_read(anon_vma); 2555 } 2556 if (!search_new_forks++) 2557 goto again; 2558 } 2559 2560 #ifdef CONFIG_MIGRATION 2561 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2562 { 2563 struct stable_node *stable_node; 2564 2565 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2566 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2567 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2568 2569 stable_node = page_stable_node(newpage); 2570 if (stable_node) { 2571 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2572 stable_node->kpfn = page_to_pfn(newpage); 2573 /* 2574 * newpage->mapping was set in advance; now we need smp_wmb() 2575 * to make sure that the new stable_node->kpfn is visible 2576 * to get_ksm_page() before it can see that oldpage->mapping 2577 * has gone stale (or that PageSwapCache has been cleared). 2578 */ 2579 smp_wmb(); 2580 set_page_stable_node(oldpage, NULL); 2581 } 2582 } 2583 #endif /* CONFIG_MIGRATION */ 2584 2585 #ifdef CONFIG_MEMORY_HOTREMOVE 2586 static void wait_while_offlining(void) 2587 { 2588 while (ksm_run & KSM_RUN_OFFLINE) { 2589 mutex_unlock(&ksm_thread_mutex); 2590 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2591 TASK_UNINTERRUPTIBLE); 2592 mutex_lock(&ksm_thread_mutex); 2593 } 2594 } 2595 2596 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2597 unsigned long start_pfn, 2598 unsigned long end_pfn) 2599 { 2600 if (stable_node->kpfn >= start_pfn && 2601 stable_node->kpfn < end_pfn) { 2602 /* 2603 * Don't get_ksm_page, page has already gone: 2604 * which is why we keep kpfn instead of page* 2605 */ 2606 remove_node_from_stable_tree(stable_node); 2607 return true; 2608 } 2609 return false; 2610 } 2611 2612 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2613 unsigned long start_pfn, 2614 unsigned long end_pfn, 2615 struct rb_root *root) 2616 { 2617 struct stable_node *dup; 2618 struct hlist_node *hlist_safe; 2619 2620 if (!is_stable_node_chain(stable_node)) { 2621 VM_BUG_ON(is_stable_node_dup(stable_node)); 2622 return stable_node_dup_remove_range(stable_node, start_pfn, 2623 end_pfn); 2624 } 2625 2626 hlist_for_each_entry_safe(dup, hlist_safe, 2627 &stable_node->hlist, hlist_dup) { 2628 VM_BUG_ON(!is_stable_node_dup(dup)); 2629 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2630 } 2631 if (hlist_empty(&stable_node->hlist)) { 2632 free_stable_node_chain(stable_node, root); 2633 return true; /* notify caller that tree was rebalanced */ 2634 } else 2635 return false; 2636 } 2637 2638 static void ksm_check_stable_tree(unsigned long start_pfn, 2639 unsigned long end_pfn) 2640 { 2641 struct stable_node *stable_node, *next; 2642 struct rb_node *node; 2643 int nid; 2644 2645 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2646 node = rb_first(root_stable_tree + nid); 2647 while (node) { 2648 stable_node = rb_entry(node, struct stable_node, node); 2649 if (stable_node_chain_remove_range(stable_node, 2650 start_pfn, end_pfn, 2651 root_stable_tree + 2652 nid)) 2653 node = rb_first(root_stable_tree + nid); 2654 else 2655 node = rb_next(node); 2656 cond_resched(); 2657 } 2658 } 2659 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2660 if (stable_node->kpfn >= start_pfn && 2661 stable_node->kpfn < end_pfn) 2662 remove_node_from_stable_tree(stable_node); 2663 cond_resched(); 2664 } 2665 } 2666 2667 static int ksm_memory_callback(struct notifier_block *self, 2668 unsigned long action, void *arg) 2669 { 2670 struct memory_notify *mn = arg; 2671 2672 switch (action) { 2673 case MEM_GOING_OFFLINE: 2674 /* 2675 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2676 * and remove_all_stable_nodes() while memory is going offline: 2677 * it is unsafe for them to touch the stable tree at this time. 2678 * But unmerge_ksm_pages(), rmap lookups and other entry points 2679 * which do not need the ksm_thread_mutex are all safe. 2680 */ 2681 mutex_lock(&ksm_thread_mutex); 2682 ksm_run |= KSM_RUN_OFFLINE; 2683 mutex_unlock(&ksm_thread_mutex); 2684 break; 2685 2686 case MEM_OFFLINE: 2687 /* 2688 * Most of the work is done by page migration; but there might 2689 * be a few stable_nodes left over, still pointing to struct 2690 * pages which have been offlined: prune those from the tree, 2691 * otherwise get_ksm_page() might later try to access a 2692 * non-existent struct page. 2693 */ 2694 ksm_check_stable_tree(mn->start_pfn, 2695 mn->start_pfn + mn->nr_pages); 2696 /* fallthrough */ 2697 2698 case MEM_CANCEL_OFFLINE: 2699 mutex_lock(&ksm_thread_mutex); 2700 ksm_run &= ~KSM_RUN_OFFLINE; 2701 mutex_unlock(&ksm_thread_mutex); 2702 2703 smp_mb(); /* wake_up_bit advises this */ 2704 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2705 break; 2706 } 2707 return NOTIFY_OK; 2708 } 2709 #else 2710 static void wait_while_offlining(void) 2711 { 2712 } 2713 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2714 2715 #ifdef CONFIG_SYSFS 2716 /* 2717 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2718 */ 2719 2720 #define KSM_ATTR_RO(_name) \ 2721 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2722 #define KSM_ATTR(_name) \ 2723 static struct kobj_attribute _name##_attr = \ 2724 __ATTR(_name, 0644, _name##_show, _name##_store) 2725 2726 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2727 struct kobj_attribute *attr, char *buf) 2728 { 2729 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2730 } 2731 2732 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2733 struct kobj_attribute *attr, 2734 const char *buf, size_t count) 2735 { 2736 unsigned long msecs; 2737 int err; 2738 2739 err = kstrtoul(buf, 10, &msecs); 2740 if (err || msecs > UINT_MAX) 2741 return -EINVAL; 2742 2743 ksm_thread_sleep_millisecs = msecs; 2744 2745 return count; 2746 } 2747 KSM_ATTR(sleep_millisecs); 2748 2749 static ssize_t pages_to_scan_show(struct kobject *kobj, 2750 struct kobj_attribute *attr, char *buf) 2751 { 2752 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2753 } 2754 2755 static ssize_t pages_to_scan_store(struct kobject *kobj, 2756 struct kobj_attribute *attr, 2757 const char *buf, size_t count) 2758 { 2759 int err; 2760 unsigned long nr_pages; 2761 2762 err = kstrtoul(buf, 10, &nr_pages); 2763 if (err || nr_pages > UINT_MAX) 2764 return -EINVAL; 2765 2766 ksm_thread_pages_to_scan = nr_pages; 2767 2768 return count; 2769 } 2770 KSM_ATTR(pages_to_scan); 2771 2772 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2773 char *buf) 2774 { 2775 return sprintf(buf, "%lu\n", ksm_run); 2776 } 2777 2778 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2779 const char *buf, size_t count) 2780 { 2781 int err; 2782 unsigned long flags; 2783 2784 err = kstrtoul(buf, 10, &flags); 2785 if (err || flags > UINT_MAX) 2786 return -EINVAL; 2787 if (flags > KSM_RUN_UNMERGE) 2788 return -EINVAL; 2789 2790 /* 2791 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2792 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2793 * breaking COW to free the pages_shared (but leaves mm_slots 2794 * on the list for when ksmd may be set running again). 2795 */ 2796 2797 mutex_lock(&ksm_thread_mutex); 2798 wait_while_offlining(); 2799 if (ksm_run != flags) { 2800 ksm_run = flags; 2801 if (flags & KSM_RUN_UNMERGE) { 2802 set_current_oom_origin(); 2803 err = unmerge_and_remove_all_rmap_items(); 2804 clear_current_oom_origin(); 2805 if (err) { 2806 ksm_run = KSM_RUN_STOP; 2807 count = err; 2808 } 2809 } 2810 } 2811 mutex_unlock(&ksm_thread_mutex); 2812 2813 if (flags & KSM_RUN_MERGE) 2814 wake_up_interruptible(&ksm_thread_wait); 2815 2816 return count; 2817 } 2818 KSM_ATTR(run); 2819 2820 #ifdef CONFIG_NUMA 2821 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2822 struct kobj_attribute *attr, char *buf) 2823 { 2824 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2825 } 2826 2827 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2828 struct kobj_attribute *attr, 2829 const char *buf, size_t count) 2830 { 2831 int err; 2832 unsigned long knob; 2833 2834 err = kstrtoul(buf, 10, &knob); 2835 if (err) 2836 return err; 2837 if (knob > 1) 2838 return -EINVAL; 2839 2840 mutex_lock(&ksm_thread_mutex); 2841 wait_while_offlining(); 2842 if (ksm_merge_across_nodes != knob) { 2843 if (ksm_pages_shared || remove_all_stable_nodes()) 2844 err = -EBUSY; 2845 else if (root_stable_tree == one_stable_tree) { 2846 struct rb_root *buf; 2847 /* 2848 * This is the first time that we switch away from the 2849 * default of merging across nodes: must now allocate 2850 * a buffer to hold as many roots as may be needed. 2851 * Allocate stable and unstable together: 2852 * MAXSMP NODES_SHIFT 10 will use 16kB. 2853 */ 2854 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2855 GFP_KERNEL); 2856 /* Let us assume that RB_ROOT is NULL is zero */ 2857 if (!buf) 2858 err = -ENOMEM; 2859 else { 2860 root_stable_tree = buf; 2861 root_unstable_tree = buf + nr_node_ids; 2862 /* Stable tree is empty but not the unstable */ 2863 root_unstable_tree[0] = one_unstable_tree[0]; 2864 } 2865 } 2866 if (!err) { 2867 ksm_merge_across_nodes = knob; 2868 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2869 } 2870 } 2871 mutex_unlock(&ksm_thread_mutex); 2872 2873 return err ? err : count; 2874 } 2875 KSM_ATTR(merge_across_nodes); 2876 #endif 2877 2878 static ssize_t use_zero_pages_show(struct kobject *kobj, 2879 struct kobj_attribute *attr, char *buf) 2880 { 2881 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2882 } 2883 static ssize_t use_zero_pages_store(struct kobject *kobj, 2884 struct kobj_attribute *attr, 2885 const char *buf, size_t count) 2886 { 2887 int err; 2888 bool value; 2889 2890 err = kstrtobool(buf, &value); 2891 if (err) 2892 return -EINVAL; 2893 2894 ksm_use_zero_pages = value; 2895 2896 return count; 2897 } 2898 KSM_ATTR(use_zero_pages); 2899 2900 static ssize_t max_page_sharing_show(struct kobject *kobj, 2901 struct kobj_attribute *attr, char *buf) 2902 { 2903 return sprintf(buf, "%u\n", ksm_max_page_sharing); 2904 } 2905 2906 static ssize_t max_page_sharing_store(struct kobject *kobj, 2907 struct kobj_attribute *attr, 2908 const char *buf, size_t count) 2909 { 2910 int err; 2911 int knob; 2912 2913 err = kstrtoint(buf, 10, &knob); 2914 if (err) 2915 return err; 2916 /* 2917 * When a KSM page is created it is shared by 2 mappings. This 2918 * being a signed comparison, it implicitly verifies it's not 2919 * negative. 2920 */ 2921 if (knob < 2) 2922 return -EINVAL; 2923 2924 if (READ_ONCE(ksm_max_page_sharing) == knob) 2925 return count; 2926 2927 mutex_lock(&ksm_thread_mutex); 2928 wait_while_offlining(); 2929 if (ksm_max_page_sharing != knob) { 2930 if (ksm_pages_shared || remove_all_stable_nodes()) 2931 err = -EBUSY; 2932 else 2933 ksm_max_page_sharing = knob; 2934 } 2935 mutex_unlock(&ksm_thread_mutex); 2936 2937 return err ? err : count; 2938 } 2939 KSM_ATTR(max_page_sharing); 2940 2941 static ssize_t pages_shared_show(struct kobject *kobj, 2942 struct kobj_attribute *attr, char *buf) 2943 { 2944 return sprintf(buf, "%lu\n", ksm_pages_shared); 2945 } 2946 KSM_ATTR_RO(pages_shared); 2947 2948 static ssize_t pages_sharing_show(struct kobject *kobj, 2949 struct kobj_attribute *attr, char *buf) 2950 { 2951 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2952 } 2953 KSM_ATTR_RO(pages_sharing); 2954 2955 static ssize_t pages_unshared_show(struct kobject *kobj, 2956 struct kobj_attribute *attr, char *buf) 2957 { 2958 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2959 } 2960 KSM_ATTR_RO(pages_unshared); 2961 2962 static ssize_t pages_volatile_show(struct kobject *kobj, 2963 struct kobj_attribute *attr, char *buf) 2964 { 2965 long ksm_pages_volatile; 2966 2967 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2968 - ksm_pages_sharing - ksm_pages_unshared; 2969 /* 2970 * It was not worth any locking to calculate that statistic, 2971 * but it might therefore sometimes be negative: conceal that. 2972 */ 2973 if (ksm_pages_volatile < 0) 2974 ksm_pages_volatile = 0; 2975 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2976 } 2977 KSM_ATTR_RO(pages_volatile); 2978 2979 static ssize_t stable_node_dups_show(struct kobject *kobj, 2980 struct kobj_attribute *attr, char *buf) 2981 { 2982 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 2983 } 2984 KSM_ATTR_RO(stable_node_dups); 2985 2986 static ssize_t stable_node_chains_show(struct kobject *kobj, 2987 struct kobj_attribute *attr, char *buf) 2988 { 2989 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 2990 } 2991 KSM_ATTR_RO(stable_node_chains); 2992 2993 static ssize_t 2994 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 2995 struct kobj_attribute *attr, 2996 char *buf) 2997 { 2998 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 2999 } 3000 3001 static ssize_t 3002 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3003 struct kobj_attribute *attr, 3004 const char *buf, size_t count) 3005 { 3006 unsigned long msecs; 3007 int err; 3008 3009 err = kstrtoul(buf, 10, &msecs); 3010 if (err || msecs > UINT_MAX) 3011 return -EINVAL; 3012 3013 ksm_stable_node_chains_prune_millisecs = msecs; 3014 3015 return count; 3016 } 3017 KSM_ATTR(stable_node_chains_prune_millisecs); 3018 3019 static ssize_t full_scans_show(struct kobject *kobj, 3020 struct kobj_attribute *attr, char *buf) 3021 { 3022 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3023 } 3024 KSM_ATTR_RO(full_scans); 3025 3026 static struct attribute *ksm_attrs[] = { 3027 &sleep_millisecs_attr.attr, 3028 &pages_to_scan_attr.attr, 3029 &run_attr.attr, 3030 &pages_shared_attr.attr, 3031 &pages_sharing_attr.attr, 3032 &pages_unshared_attr.attr, 3033 &pages_volatile_attr.attr, 3034 &full_scans_attr.attr, 3035 #ifdef CONFIG_NUMA 3036 &merge_across_nodes_attr.attr, 3037 #endif 3038 &max_page_sharing_attr.attr, 3039 &stable_node_chains_attr.attr, 3040 &stable_node_dups_attr.attr, 3041 &stable_node_chains_prune_millisecs_attr.attr, 3042 &use_zero_pages_attr.attr, 3043 NULL, 3044 }; 3045 3046 static struct attribute_group ksm_attr_group = { 3047 .attrs = ksm_attrs, 3048 .name = "ksm", 3049 }; 3050 #endif /* CONFIG_SYSFS */ 3051 3052 static int __init ksm_init(void) 3053 { 3054 struct task_struct *ksm_thread; 3055 int err; 3056 3057 /* The correct value depends on page size and endianness */ 3058 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3059 /* Default to false for backwards compatibility */ 3060 ksm_use_zero_pages = false; 3061 3062 err = ksm_slab_init(); 3063 if (err) 3064 goto out; 3065 3066 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3067 if (IS_ERR(ksm_thread)) { 3068 pr_err("ksm: creating kthread failed\n"); 3069 err = PTR_ERR(ksm_thread); 3070 goto out_free; 3071 } 3072 3073 #ifdef CONFIG_SYSFS 3074 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3075 if (err) { 3076 pr_err("ksm: register sysfs failed\n"); 3077 kthread_stop(ksm_thread); 3078 goto out_free; 3079 } 3080 #else 3081 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3082 3083 #endif /* CONFIG_SYSFS */ 3084 3085 #ifdef CONFIG_MEMORY_HOTREMOVE 3086 /* There is no significance to this priority 100 */ 3087 hotplug_memory_notifier(ksm_memory_callback, 100); 3088 #endif 3089 return 0; 3090 3091 out_free: 3092 ksm_slab_free(); 3093 out: 3094 return err; 3095 } 3096 subsys_initcall(ksm_init); 3097