xref: /openbmc/linux/mm/ksm.c (revision c1e0230e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118 
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125 	struct mm_slot slot;
126 	struct ksm_rmap_item *rmap_list;
127 };
128 
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139 	struct ksm_mm_slot *mm_slot;
140 	unsigned long address;
141 	struct ksm_rmap_item **rmap_list;
142 	unsigned long seqnr;
143 };
144 
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158 	union {
159 		struct rb_node node;	/* when node of stable tree */
160 		struct {		/* when listed for migration */
161 			struct list_head *head;
162 			struct {
163 				struct hlist_node hlist_dup;
164 				struct list_head list;
165 			};
166 		};
167 	};
168 	struct hlist_head hlist;
169 	union {
170 		unsigned long kpfn;
171 		unsigned long chain_prune_time;
172 	};
173 	/*
174 	 * STABLE_NODE_CHAIN can be any negative number in
175 	 * rmap_hlist_len negative range, but better not -1 to be able
176 	 * to reliably detect underflows.
177 	 */
178 #define STABLE_NODE_CHAIN -1024
179 	int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181 	int nid;
182 #endif
183 };
184 
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198 	struct ksm_rmap_item *rmap_list;
199 	union {
200 		struct anon_vma *anon_vma;	/* when stable */
201 #ifdef CONFIG_NUMA
202 		int nid;		/* when node of unstable tree */
203 #endif
204 	};
205 	struct mm_struct *mm;
206 	unsigned long address;		/* + low bits used for flags below */
207 	unsigned int oldchecksum;	/* when unstable */
208 	union {
209 		struct rb_node node;	/* when node of unstable tree */
210 		struct {		/* when listed from stable tree */
211 			struct ksm_stable_node *head;
212 			struct hlist_node hlist;
213 		};
214 	};
215 };
216 
217 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
219 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct ksm_mm_slot ksm_mm_head = {
235 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247 
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250 
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253 
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256 
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259 
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262 
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265 
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268 
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271 
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274 
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277 
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280 
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes	1U
287 #define ksm_nr_node_ids		1
288 #endif
289 
290 #define KSM_RUN_STOP	0
291 #define KSM_RUN_MERGE	1
292 #define KSM_RUN_UNMERGE	2
293 #define KSM_RUN_OFFLINE	4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296 
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301 
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303 		sizeof(struct __struct), __alignof__(struct __struct),\
304 		(__flags), NULL)
305 
306 static int __init ksm_slab_init(void)
307 {
308 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309 	if (!rmap_item_cache)
310 		goto out;
311 
312 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313 	if (!stable_node_cache)
314 		goto out_free1;
315 
316 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
317 	if (!mm_slot_cache)
318 		goto out_free2;
319 
320 	return 0;
321 
322 out_free2:
323 	kmem_cache_destroy(stable_node_cache);
324 out_free1:
325 	kmem_cache_destroy(rmap_item_cache);
326 out:
327 	return -ENOMEM;
328 }
329 
330 static void __init ksm_slab_free(void)
331 {
332 	kmem_cache_destroy(mm_slot_cache);
333 	kmem_cache_destroy(stable_node_cache);
334 	kmem_cache_destroy(rmap_item_cache);
335 	mm_slot_cache = NULL;
336 }
337 
338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
339 {
340 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342 
343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
344 {
345 	return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347 
348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349 					     struct ksm_stable_node *chain)
350 {
351 	VM_BUG_ON(is_stable_node_dup(dup));
352 	dup->head = STABLE_NODE_DUP_HEAD;
353 	VM_BUG_ON(!is_stable_node_chain(chain));
354 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 	ksm_stable_node_dups++;
356 }
357 
358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
359 {
360 	VM_BUG_ON(!is_stable_node_dup(dup));
361 	hlist_del(&dup->hlist_dup);
362 	ksm_stable_node_dups--;
363 }
364 
365 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
366 {
367 	VM_BUG_ON(is_stable_node_chain(dup));
368 	if (is_stable_node_dup(dup))
369 		__stable_node_dup_del(dup);
370 	else
371 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373 	dup->head = NULL;
374 #endif
375 }
376 
377 static inline struct ksm_rmap_item *alloc_rmap_item(void)
378 {
379 	struct ksm_rmap_item *rmap_item;
380 
381 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 						__GFP_NORETRY | __GFP_NOWARN);
383 	if (rmap_item)
384 		ksm_rmap_items++;
385 	return rmap_item;
386 }
387 
388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
389 {
390 	ksm_rmap_items--;
391 	rmap_item->mm->ksm_rmap_items--;
392 	rmap_item->mm = NULL;	/* debug safety */
393 	kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395 
396 static inline struct ksm_stable_node *alloc_stable_node(void)
397 {
398 	/*
399 	 * The allocation can take too long with GFP_KERNEL when memory is under
400 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401 	 * grants access to memory reserves, helping to avoid this problem.
402 	 */
403 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405 
406 static inline void free_stable_node(struct ksm_stable_node *stable_node)
407 {
408 	VM_BUG_ON(stable_node->rmap_hlist_len &&
409 		  !is_stable_node_chain(stable_node));
410 	kmem_cache_free(stable_node_cache, stable_node);
411 }
412 
413 /*
414  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415  * page tables after it has passed through ksm_exit() - which, if necessary,
416  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
417  * a special flag: they can just back out as soon as mm_users goes to zero.
418  * ksm_test_exit() is used throughout to make this test for exit: in some
419  * places for correctness, in some places just to avoid unnecessary work.
420  */
421 static inline bool ksm_test_exit(struct mm_struct *mm)
422 {
423 	return atomic_read(&mm->mm_users) == 0;
424 }
425 
426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427 			struct mm_walk *walk)
428 {
429 	struct page *page = NULL;
430 	spinlock_t *ptl;
431 	pte_t *pte;
432 	pte_t ptent;
433 	int ret;
434 
435 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
436 	if (!pte)
437 		return 0;
438 	ptent = ptep_get(pte);
439 	if (pte_present(ptent)) {
440 		page = vm_normal_page(walk->vma, addr, ptent);
441 	} else if (!pte_none(ptent)) {
442 		swp_entry_t entry = pte_to_swp_entry(ptent);
443 
444 		/*
445 		 * As KSM pages remain KSM pages until freed, no need to wait
446 		 * here for migration to end.
447 		 */
448 		if (is_migration_entry(entry))
449 			page = pfn_swap_entry_to_page(entry);
450 	}
451 	ret = page && PageKsm(page);
452 	pte_unmap_unlock(pte, ptl);
453 	return ret;
454 }
455 
456 static const struct mm_walk_ops break_ksm_ops = {
457 	.pmd_entry = break_ksm_pmd_entry,
458 };
459 
460 /*
461  * We use break_ksm to break COW on a ksm page by triggering unsharing,
462  * such that the ksm page will get replaced by an exclusive anonymous page.
463  *
464  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
465  * in case the application has unmapped and remapped mm,addr meanwhile.
466  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
467  * mmap of /dev/mem, where we would not want to touch it.
468  *
469  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
470  * of the process that owns 'vma'.  We also do not want to enforce
471  * protection keys here anyway.
472  */
473 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
474 {
475 	vm_fault_t ret = 0;
476 
477 	do {
478 		int ksm_page;
479 
480 		cond_resched();
481 		ksm_page = walk_page_range_vma(vma, addr, addr + 1,
482 					       &break_ksm_ops, NULL);
483 		if (WARN_ON_ONCE(ksm_page < 0))
484 			return ksm_page;
485 		if (!ksm_page)
486 			return 0;
487 		ret = handle_mm_fault(vma, addr,
488 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
489 				      NULL);
490 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
491 	/*
492 	 * We must loop until we no longer find a KSM page because
493 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
494 	 * pte accessed bit gets updated concurrently.
495 	 *
496 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 	 * backing file, which also invalidates anonymous pages: that's
498 	 * okay, that truncation will have unmapped the PageKsm for us.
499 	 *
500 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 	 * to user; and ksmd, having no mm, would never be chosen for that.
504 	 *
505 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 	 * even ksmd can fail in this way - though it's usually breaking ksm
508 	 * just to undo a merge it made a moment before, so unlikely to oom.
509 	 *
510 	 * That's a pity: we might therefore have more kernel pages allocated
511 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 	 * will retry to break_cow on each pass, so should recover the page
513 	 * in due course.  The important thing is to not let VM_MERGEABLE
514 	 * be cleared while any such pages might remain in the area.
515 	 */
516 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518 
519 static bool vma_ksm_compatible(struct vm_area_struct *vma)
520 {
521 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
522 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
523 			     VM_MIXEDMAP))
524 		return false;		/* just ignore the advice */
525 
526 	if (vma_is_dax(vma))
527 		return false;
528 
529 #ifdef VM_SAO
530 	if (vma->vm_flags & VM_SAO)
531 		return false;
532 #endif
533 #ifdef VM_SPARC_ADI
534 	if (vma->vm_flags & VM_SPARC_ADI)
535 		return false;
536 #endif
537 
538 	return true;
539 }
540 
541 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
542 		unsigned long addr)
543 {
544 	struct vm_area_struct *vma;
545 	if (ksm_test_exit(mm))
546 		return NULL;
547 	vma = vma_lookup(mm, addr);
548 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
549 		return NULL;
550 	return vma;
551 }
552 
553 static void break_cow(struct ksm_rmap_item *rmap_item)
554 {
555 	struct mm_struct *mm = rmap_item->mm;
556 	unsigned long addr = rmap_item->address;
557 	struct vm_area_struct *vma;
558 
559 	/*
560 	 * It is not an accident that whenever we want to break COW
561 	 * to undo, we also need to drop a reference to the anon_vma.
562 	 */
563 	put_anon_vma(rmap_item->anon_vma);
564 
565 	mmap_read_lock(mm);
566 	vma = find_mergeable_vma(mm, addr);
567 	if (vma)
568 		break_ksm(vma, addr);
569 	mmap_read_unlock(mm);
570 }
571 
572 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
573 {
574 	struct mm_struct *mm = rmap_item->mm;
575 	unsigned long addr = rmap_item->address;
576 	struct vm_area_struct *vma;
577 	struct page *page;
578 
579 	mmap_read_lock(mm);
580 	vma = find_mergeable_vma(mm, addr);
581 	if (!vma)
582 		goto out;
583 
584 	page = follow_page(vma, addr, FOLL_GET);
585 	if (IS_ERR_OR_NULL(page))
586 		goto out;
587 	if (is_zone_device_page(page))
588 		goto out_putpage;
589 	if (PageAnon(page)) {
590 		flush_anon_page(vma, page, addr);
591 		flush_dcache_page(page);
592 	} else {
593 out_putpage:
594 		put_page(page);
595 out:
596 		page = NULL;
597 	}
598 	mmap_read_unlock(mm);
599 	return page;
600 }
601 
602 /*
603  * This helper is used for getting right index into array of tree roots.
604  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
605  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
606  * every node has its own stable and unstable tree.
607  */
608 static inline int get_kpfn_nid(unsigned long kpfn)
609 {
610 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
611 }
612 
613 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
614 						   struct rb_root *root)
615 {
616 	struct ksm_stable_node *chain = alloc_stable_node();
617 	VM_BUG_ON(is_stable_node_chain(dup));
618 	if (likely(chain)) {
619 		INIT_HLIST_HEAD(&chain->hlist);
620 		chain->chain_prune_time = jiffies;
621 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
622 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
623 		chain->nid = NUMA_NO_NODE; /* debug */
624 #endif
625 		ksm_stable_node_chains++;
626 
627 		/*
628 		 * Put the stable node chain in the first dimension of
629 		 * the stable tree and at the same time remove the old
630 		 * stable node.
631 		 */
632 		rb_replace_node(&dup->node, &chain->node, root);
633 
634 		/*
635 		 * Move the old stable node to the second dimension
636 		 * queued in the hlist_dup. The invariant is that all
637 		 * dup stable_nodes in the chain->hlist point to pages
638 		 * that are write protected and have the exact same
639 		 * content.
640 		 */
641 		stable_node_chain_add_dup(dup, chain);
642 	}
643 	return chain;
644 }
645 
646 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
647 					  struct rb_root *root)
648 {
649 	rb_erase(&chain->node, root);
650 	free_stable_node(chain);
651 	ksm_stable_node_chains--;
652 }
653 
654 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
655 {
656 	struct ksm_rmap_item *rmap_item;
657 
658 	/* check it's not STABLE_NODE_CHAIN or negative */
659 	BUG_ON(stable_node->rmap_hlist_len < 0);
660 
661 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
662 		if (rmap_item->hlist.next) {
663 			ksm_pages_sharing--;
664 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
665 		} else {
666 			ksm_pages_shared--;
667 		}
668 
669 		rmap_item->mm->ksm_merging_pages--;
670 
671 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
672 		stable_node->rmap_hlist_len--;
673 		put_anon_vma(rmap_item->anon_vma);
674 		rmap_item->address &= PAGE_MASK;
675 		cond_resched();
676 	}
677 
678 	/*
679 	 * We need the second aligned pointer of the migrate_nodes
680 	 * list_head to stay clear from the rb_parent_color union
681 	 * (aligned and different than any node) and also different
682 	 * from &migrate_nodes. This will verify that future list.h changes
683 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
684 	 */
685 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
686 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
687 
688 	trace_ksm_remove_ksm_page(stable_node->kpfn);
689 	if (stable_node->head == &migrate_nodes)
690 		list_del(&stable_node->list);
691 	else
692 		stable_node_dup_del(stable_node);
693 	free_stable_node(stable_node);
694 }
695 
696 enum get_ksm_page_flags {
697 	GET_KSM_PAGE_NOLOCK,
698 	GET_KSM_PAGE_LOCK,
699 	GET_KSM_PAGE_TRYLOCK
700 };
701 
702 /*
703  * get_ksm_page: checks if the page indicated by the stable node
704  * is still its ksm page, despite having held no reference to it.
705  * In which case we can trust the content of the page, and it
706  * returns the gotten page; but if the page has now been zapped,
707  * remove the stale node from the stable tree and return NULL.
708  * But beware, the stable node's page might be being migrated.
709  *
710  * You would expect the stable_node to hold a reference to the ksm page.
711  * But if it increments the page's count, swapping out has to wait for
712  * ksmd to come around again before it can free the page, which may take
713  * seconds or even minutes: much too unresponsive.  So instead we use a
714  * "keyhole reference": access to the ksm page from the stable node peeps
715  * out through its keyhole to see if that page still holds the right key,
716  * pointing back to this stable node.  This relies on freeing a PageAnon
717  * page to reset its page->mapping to NULL, and relies on no other use of
718  * a page to put something that might look like our key in page->mapping.
719  * is on its way to being freed; but it is an anomaly to bear in mind.
720  */
721 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
722 				 enum get_ksm_page_flags flags)
723 {
724 	struct page *page;
725 	void *expected_mapping;
726 	unsigned long kpfn;
727 
728 	expected_mapping = (void *)((unsigned long)stable_node |
729 					PAGE_MAPPING_KSM);
730 again:
731 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
732 	page = pfn_to_page(kpfn);
733 	if (READ_ONCE(page->mapping) != expected_mapping)
734 		goto stale;
735 
736 	/*
737 	 * We cannot do anything with the page while its refcount is 0.
738 	 * Usually 0 means free, or tail of a higher-order page: in which
739 	 * case this node is no longer referenced, and should be freed;
740 	 * however, it might mean that the page is under page_ref_freeze().
741 	 * The __remove_mapping() case is easy, again the node is now stale;
742 	 * the same is in reuse_ksm_page() case; but if page is swapcache
743 	 * in folio_migrate_mapping(), it might still be our page,
744 	 * in which case it's essential to keep the node.
745 	 */
746 	while (!get_page_unless_zero(page)) {
747 		/*
748 		 * Another check for page->mapping != expected_mapping would
749 		 * work here too.  We have chosen the !PageSwapCache test to
750 		 * optimize the common case, when the page is or is about to
751 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
752 		 * in the ref_freeze section of __remove_mapping(); but Anon
753 		 * page->mapping reset to NULL later, in free_pages_prepare().
754 		 */
755 		if (!PageSwapCache(page))
756 			goto stale;
757 		cpu_relax();
758 	}
759 
760 	if (READ_ONCE(page->mapping) != expected_mapping) {
761 		put_page(page);
762 		goto stale;
763 	}
764 
765 	if (flags == GET_KSM_PAGE_TRYLOCK) {
766 		if (!trylock_page(page)) {
767 			put_page(page);
768 			return ERR_PTR(-EBUSY);
769 		}
770 	} else if (flags == GET_KSM_PAGE_LOCK)
771 		lock_page(page);
772 
773 	if (flags != GET_KSM_PAGE_NOLOCK) {
774 		if (READ_ONCE(page->mapping) != expected_mapping) {
775 			unlock_page(page);
776 			put_page(page);
777 			goto stale;
778 		}
779 	}
780 	return page;
781 
782 stale:
783 	/*
784 	 * We come here from above when page->mapping or !PageSwapCache
785 	 * suggests that the node is stale; but it might be under migration.
786 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
787 	 * before checking whether node->kpfn has been changed.
788 	 */
789 	smp_rmb();
790 	if (READ_ONCE(stable_node->kpfn) != kpfn)
791 		goto again;
792 	remove_node_from_stable_tree(stable_node);
793 	return NULL;
794 }
795 
796 /*
797  * Removing rmap_item from stable or unstable tree.
798  * This function will clean the information from the stable/unstable tree.
799  */
800 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
801 {
802 	if (rmap_item->address & STABLE_FLAG) {
803 		struct ksm_stable_node *stable_node;
804 		struct page *page;
805 
806 		stable_node = rmap_item->head;
807 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
808 		if (!page)
809 			goto out;
810 
811 		hlist_del(&rmap_item->hlist);
812 		unlock_page(page);
813 		put_page(page);
814 
815 		if (!hlist_empty(&stable_node->hlist))
816 			ksm_pages_sharing--;
817 		else
818 			ksm_pages_shared--;
819 
820 		rmap_item->mm->ksm_merging_pages--;
821 
822 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
823 		stable_node->rmap_hlist_len--;
824 
825 		put_anon_vma(rmap_item->anon_vma);
826 		rmap_item->head = NULL;
827 		rmap_item->address &= PAGE_MASK;
828 
829 	} else if (rmap_item->address & UNSTABLE_FLAG) {
830 		unsigned char age;
831 		/*
832 		 * Usually ksmd can and must skip the rb_erase, because
833 		 * root_unstable_tree was already reset to RB_ROOT.
834 		 * But be careful when an mm is exiting: do the rb_erase
835 		 * if this rmap_item was inserted by this scan, rather
836 		 * than left over from before.
837 		 */
838 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
839 		BUG_ON(age > 1);
840 		if (!age)
841 			rb_erase(&rmap_item->node,
842 				 root_unstable_tree + NUMA(rmap_item->nid));
843 		ksm_pages_unshared--;
844 		rmap_item->address &= PAGE_MASK;
845 	}
846 out:
847 	cond_resched();		/* we're called from many long loops */
848 }
849 
850 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
851 {
852 	while (*rmap_list) {
853 		struct ksm_rmap_item *rmap_item = *rmap_list;
854 		*rmap_list = rmap_item->rmap_list;
855 		remove_rmap_item_from_tree(rmap_item);
856 		free_rmap_item(rmap_item);
857 	}
858 }
859 
860 /*
861  * Though it's very tempting to unmerge rmap_items from stable tree rather
862  * than check every pte of a given vma, the locking doesn't quite work for
863  * that - an rmap_item is assigned to the stable tree after inserting ksm
864  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
865  * rmap_items from parent to child at fork time (so as not to waste time
866  * if exit comes before the next scan reaches it).
867  *
868  * Similarly, although we'd like to remove rmap_items (so updating counts
869  * and freeing memory) when unmerging an area, it's easier to leave that
870  * to the next pass of ksmd - consider, for example, how ksmd might be
871  * in cmp_and_merge_page on one of the rmap_items we would be removing.
872  */
873 static int unmerge_ksm_pages(struct vm_area_struct *vma,
874 			     unsigned long start, unsigned long end)
875 {
876 	unsigned long addr;
877 	int err = 0;
878 
879 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
880 		if (ksm_test_exit(vma->vm_mm))
881 			break;
882 		if (signal_pending(current))
883 			err = -ERESTARTSYS;
884 		else
885 			err = break_ksm(vma, addr);
886 	}
887 	return err;
888 }
889 
890 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
891 {
892 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
893 }
894 
895 static inline struct ksm_stable_node *page_stable_node(struct page *page)
896 {
897 	return folio_stable_node(page_folio(page));
898 }
899 
900 static inline void set_page_stable_node(struct page *page,
901 					struct ksm_stable_node *stable_node)
902 {
903 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
904 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
905 }
906 
907 #ifdef CONFIG_SYSFS
908 /*
909  * Only called through the sysfs control interface:
910  */
911 static int remove_stable_node(struct ksm_stable_node *stable_node)
912 {
913 	struct page *page;
914 	int err;
915 
916 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
917 	if (!page) {
918 		/*
919 		 * get_ksm_page did remove_node_from_stable_tree itself.
920 		 */
921 		return 0;
922 	}
923 
924 	/*
925 	 * Page could be still mapped if this races with __mmput() running in
926 	 * between ksm_exit() and exit_mmap(). Just refuse to let
927 	 * merge_across_nodes/max_page_sharing be switched.
928 	 */
929 	err = -EBUSY;
930 	if (!page_mapped(page)) {
931 		/*
932 		 * The stable node did not yet appear stale to get_ksm_page(),
933 		 * since that allows for an unmapped ksm page to be recognized
934 		 * right up until it is freed; but the node is safe to remove.
935 		 * This page might be in an LRU cache waiting to be freed,
936 		 * or it might be PageSwapCache (perhaps under writeback),
937 		 * or it might have been removed from swapcache a moment ago.
938 		 */
939 		set_page_stable_node(page, NULL);
940 		remove_node_from_stable_tree(stable_node);
941 		err = 0;
942 	}
943 
944 	unlock_page(page);
945 	put_page(page);
946 	return err;
947 }
948 
949 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
950 				    struct rb_root *root)
951 {
952 	struct ksm_stable_node *dup;
953 	struct hlist_node *hlist_safe;
954 
955 	if (!is_stable_node_chain(stable_node)) {
956 		VM_BUG_ON(is_stable_node_dup(stable_node));
957 		if (remove_stable_node(stable_node))
958 			return true;
959 		else
960 			return false;
961 	}
962 
963 	hlist_for_each_entry_safe(dup, hlist_safe,
964 				  &stable_node->hlist, hlist_dup) {
965 		VM_BUG_ON(!is_stable_node_dup(dup));
966 		if (remove_stable_node(dup))
967 			return true;
968 	}
969 	BUG_ON(!hlist_empty(&stable_node->hlist));
970 	free_stable_node_chain(stable_node, root);
971 	return false;
972 }
973 
974 static int remove_all_stable_nodes(void)
975 {
976 	struct ksm_stable_node *stable_node, *next;
977 	int nid;
978 	int err = 0;
979 
980 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
981 		while (root_stable_tree[nid].rb_node) {
982 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
983 						struct ksm_stable_node, node);
984 			if (remove_stable_node_chain(stable_node,
985 						     root_stable_tree + nid)) {
986 				err = -EBUSY;
987 				break;	/* proceed to next nid */
988 			}
989 			cond_resched();
990 		}
991 	}
992 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
993 		if (remove_stable_node(stable_node))
994 			err = -EBUSY;
995 		cond_resched();
996 	}
997 	return err;
998 }
999 
1000 static int unmerge_and_remove_all_rmap_items(void)
1001 {
1002 	struct ksm_mm_slot *mm_slot;
1003 	struct mm_slot *slot;
1004 	struct mm_struct *mm;
1005 	struct vm_area_struct *vma;
1006 	int err = 0;
1007 
1008 	spin_lock(&ksm_mmlist_lock);
1009 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1010 			  struct mm_slot, mm_node);
1011 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1012 	spin_unlock(&ksm_mmlist_lock);
1013 
1014 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1015 	     mm_slot = ksm_scan.mm_slot) {
1016 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1017 
1018 		mm = mm_slot->slot.mm;
1019 		mmap_read_lock(mm);
1020 
1021 		/*
1022 		 * Exit right away if mm is exiting to avoid lockdep issue in
1023 		 * the maple tree
1024 		 */
1025 		if (ksm_test_exit(mm))
1026 			goto mm_exiting;
1027 
1028 		for_each_vma(vmi, vma) {
1029 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1030 				continue;
1031 			err = unmerge_ksm_pages(vma,
1032 						vma->vm_start, vma->vm_end);
1033 			if (err)
1034 				goto error;
1035 		}
1036 
1037 mm_exiting:
1038 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1039 		mmap_read_unlock(mm);
1040 
1041 		spin_lock(&ksm_mmlist_lock);
1042 		slot = list_entry(mm_slot->slot.mm_node.next,
1043 				  struct mm_slot, mm_node);
1044 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1045 		if (ksm_test_exit(mm)) {
1046 			hash_del(&mm_slot->slot.hash);
1047 			list_del(&mm_slot->slot.mm_node);
1048 			spin_unlock(&ksm_mmlist_lock);
1049 
1050 			mm_slot_free(mm_slot_cache, mm_slot);
1051 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1052 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1053 			mmdrop(mm);
1054 		} else
1055 			spin_unlock(&ksm_mmlist_lock);
1056 	}
1057 
1058 	/* Clean up stable nodes, but don't worry if some are still busy */
1059 	remove_all_stable_nodes();
1060 	ksm_scan.seqnr = 0;
1061 	return 0;
1062 
1063 error:
1064 	mmap_read_unlock(mm);
1065 	spin_lock(&ksm_mmlist_lock);
1066 	ksm_scan.mm_slot = &ksm_mm_head;
1067 	spin_unlock(&ksm_mmlist_lock);
1068 	return err;
1069 }
1070 #endif /* CONFIG_SYSFS */
1071 
1072 static u32 calc_checksum(struct page *page)
1073 {
1074 	u32 checksum;
1075 	void *addr = kmap_atomic(page);
1076 	checksum = xxhash(addr, PAGE_SIZE, 0);
1077 	kunmap_atomic(addr);
1078 	return checksum;
1079 }
1080 
1081 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1082 			      pte_t *orig_pte)
1083 {
1084 	struct mm_struct *mm = vma->vm_mm;
1085 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1086 	int swapped;
1087 	int err = -EFAULT;
1088 	struct mmu_notifier_range range;
1089 	bool anon_exclusive;
1090 	pte_t entry;
1091 
1092 	pvmw.address = page_address_in_vma(page, vma);
1093 	if (pvmw.address == -EFAULT)
1094 		goto out;
1095 
1096 	BUG_ON(PageTransCompound(page));
1097 
1098 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1099 				pvmw.address + PAGE_SIZE);
1100 	mmu_notifier_invalidate_range_start(&range);
1101 
1102 	if (!page_vma_mapped_walk(&pvmw))
1103 		goto out_mn;
1104 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1105 		goto out_unlock;
1106 
1107 	anon_exclusive = PageAnonExclusive(page);
1108 	entry = ptep_get(pvmw.pte);
1109 	if (pte_write(entry) || pte_dirty(entry) ||
1110 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1111 		swapped = PageSwapCache(page);
1112 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1113 		/*
1114 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1115 		 * take any lock, therefore the check that we are going to make
1116 		 * with the pagecount against the mapcount is racy and
1117 		 * O_DIRECT can happen right after the check.
1118 		 * So we clear the pte and flush the tlb before the check
1119 		 * this assure us that no O_DIRECT can happen after the check
1120 		 * or in the middle of the check.
1121 		 *
1122 		 * No need to notify as we are downgrading page table to read
1123 		 * only not changing it to point to a new page.
1124 		 *
1125 		 * See Documentation/mm/mmu_notifier.rst
1126 		 */
1127 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1128 		/*
1129 		 * Check that no O_DIRECT or similar I/O is in progress on the
1130 		 * page
1131 		 */
1132 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1133 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1134 			goto out_unlock;
1135 		}
1136 
1137 		/* See page_try_share_anon_rmap(): clear PTE first. */
1138 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1139 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1140 			goto out_unlock;
1141 		}
1142 
1143 		if (pte_dirty(entry))
1144 			set_page_dirty(page);
1145 		entry = pte_mkclean(entry);
1146 
1147 		if (pte_write(entry))
1148 			entry = pte_wrprotect(entry);
1149 
1150 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1151 	}
1152 	*orig_pte = entry;
1153 	err = 0;
1154 
1155 out_unlock:
1156 	page_vma_mapped_walk_done(&pvmw);
1157 out_mn:
1158 	mmu_notifier_invalidate_range_end(&range);
1159 out:
1160 	return err;
1161 }
1162 
1163 /**
1164  * replace_page - replace page in vma by new ksm page
1165  * @vma:      vma that holds the pte pointing to page
1166  * @page:     the page we are replacing by kpage
1167  * @kpage:    the ksm page we replace page by
1168  * @orig_pte: the original value of the pte
1169  *
1170  * Returns 0 on success, -EFAULT on failure.
1171  */
1172 static int replace_page(struct vm_area_struct *vma, struct page *page,
1173 			struct page *kpage, pte_t orig_pte)
1174 {
1175 	struct mm_struct *mm = vma->vm_mm;
1176 	struct folio *folio;
1177 	pmd_t *pmd;
1178 	pmd_t pmde;
1179 	pte_t *ptep;
1180 	pte_t newpte;
1181 	spinlock_t *ptl;
1182 	unsigned long addr;
1183 	int err = -EFAULT;
1184 	struct mmu_notifier_range range;
1185 
1186 	addr = page_address_in_vma(page, vma);
1187 	if (addr == -EFAULT)
1188 		goto out;
1189 
1190 	pmd = mm_find_pmd(mm, addr);
1191 	if (!pmd)
1192 		goto out;
1193 	/*
1194 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1195 	 * without holding anon_vma lock for write.  So when looking for a
1196 	 * genuine pmde (in which to find pte), test present and !THP together.
1197 	 */
1198 	pmde = pmdp_get_lockless(pmd);
1199 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1200 		goto out;
1201 
1202 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1203 				addr + PAGE_SIZE);
1204 	mmu_notifier_invalidate_range_start(&range);
1205 
1206 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1207 	if (!ptep)
1208 		goto out_mn;
1209 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1210 		pte_unmap_unlock(ptep, ptl);
1211 		goto out_mn;
1212 	}
1213 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1214 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1215 
1216 	/*
1217 	 * No need to check ksm_use_zero_pages here: we can only have a
1218 	 * zero_page here if ksm_use_zero_pages was enabled already.
1219 	 */
1220 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1221 		get_page(kpage);
1222 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1223 		newpte = mk_pte(kpage, vma->vm_page_prot);
1224 	} else {
1225 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1226 					       vma->vm_page_prot));
1227 		/*
1228 		 * We're replacing an anonymous page with a zero page, which is
1229 		 * not anonymous. We need to do proper accounting otherwise we
1230 		 * will get wrong values in /proc, and a BUG message in dmesg
1231 		 * when tearing down the mm.
1232 		 */
1233 		dec_mm_counter(mm, MM_ANONPAGES);
1234 	}
1235 
1236 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1237 	/*
1238 	 * No need to notify as we are replacing a read only page with another
1239 	 * read only page with the same content.
1240 	 *
1241 	 * See Documentation/mm/mmu_notifier.rst
1242 	 */
1243 	ptep_clear_flush(vma, addr, ptep);
1244 	set_pte_at_notify(mm, addr, ptep, newpte);
1245 
1246 	folio = page_folio(page);
1247 	page_remove_rmap(page, vma, false);
1248 	if (!folio_mapped(folio))
1249 		folio_free_swap(folio);
1250 	folio_put(folio);
1251 
1252 	pte_unmap_unlock(ptep, ptl);
1253 	err = 0;
1254 out_mn:
1255 	mmu_notifier_invalidate_range_end(&range);
1256 out:
1257 	return err;
1258 }
1259 
1260 /*
1261  * try_to_merge_one_page - take two pages and merge them into one
1262  * @vma: the vma that holds the pte pointing to page
1263  * @page: the PageAnon page that we want to replace with kpage
1264  * @kpage: the PageKsm page that we want to map instead of page,
1265  *         or NULL the first time when we want to use page as kpage.
1266  *
1267  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1268  */
1269 static int try_to_merge_one_page(struct vm_area_struct *vma,
1270 				 struct page *page, struct page *kpage)
1271 {
1272 	pte_t orig_pte = __pte(0);
1273 	int err = -EFAULT;
1274 
1275 	if (page == kpage)			/* ksm page forked */
1276 		return 0;
1277 
1278 	if (!PageAnon(page))
1279 		goto out;
1280 
1281 	/*
1282 	 * We need the page lock to read a stable PageSwapCache in
1283 	 * write_protect_page().  We use trylock_page() instead of
1284 	 * lock_page() because we don't want to wait here - we
1285 	 * prefer to continue scanning and merging different pages,
1286 	 * then come back to this page when it is unlocked.
1287 	 */
1288 	if (!trylock_page(page))
1289 		goto out;
1290 
1291 	if (PageTransCompound(page)) {
1292 		if (split_huge_page(page))
1293 			goto out_unlock;
1294 	}
1295 
1296 	/*
1297 	 * If this anonymous page is mapped only here, its pte may need
1298 	 * to be write-protected.  If it's mapped elsewhere, all of its
1299 	 * ptes are necessarily already write-protected.  But in either
1300 	 * case, we need to lock and check page_count is not raised.
1301 	 */
1302 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1303 		if (!kpage) {
1304 			/*
1305 			 * While we hold page lock, upgrade page from
1306 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1307 			 * stable_tree_insert() will update stable_node.
1308 			 */
1309 			set_page_stable_node(page, NULL);
1310 			mark_page_accessed(page);
1311 			/*
1312 			 * Page reclaim just frees a clean page with no dirty
1313 			 * ptes: make sure that the ksm page would be swapped.
1314 			 */
1315 			if (!PageDirty(page))
1316 				SetPageDirty(page);
1317 			err = 0;
1318 		} else if (pages_identical(page, kpage))
1319 			err = replace_page(vma, page, kpage, orig_pte);
1320 	}
1321 
1322 out_unlock:
1323 	unlock_page(page);
1324 out:
1325 	return err;
1326 }
1327 
1328 /*
1329  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1330  * but no new kernel page is allocated: kpage must already be a ksm page.
1331  *
1332  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1333  */
1334 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1335 				      struct page *page, struct page *kpage)
1336 {
1337 	struct mm_struct *mm = rmap_item->mm;
1338 	struct vm_area_struct *vma;
1339 	int err = -EFAULT;
1340 
1341 	mmap_read_lock(mm);
1342 	vma = find_mergeable_vma(mm, rmap_item->address);
1343 	if (!vma)
1344 		goto out;
1345 
1346 	err = try_to_merge_one_page(vma, page, kpage);
1347 	if (err)
1348 		goto out;
1349 
1350 	/* Unstable nid is in union with stable anon_vma: remove first */
1351 	remove_rmap_item_from_tree(rmap_item);
1352 
1353 	/* Must get reference to anon_vma while still holding mmap_lock */
1354 	rmap_item->anon_vma = vma->anon_vma;
1355 	get_anon_vma(vma->anon_vma);
1356 out:
1357 	mmap_read_unlock(mm);
1358 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1359 				rmap_item, mm, err);
1360 	return err;
1361 }
1362 
1363 /*
1364  * try_to_merge_two_pages - take two identical pages and prepare them
1365  * to be merged into one page.
1366  *
1367  * This function returns the kpage if we successfully merged two identical
1368  * pages into one ksm page, NULL otherwise.
1369  *
1370  * Note that this function upgrades page to ksm page: if one of the pages
1371  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1372  */
1373 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1374 					   struct page *page,
1375 					   struct ksm_rmap_item *tree_rmap_item,
1376 					   struct page *tree_page)
1377 {
1378 	int err;
1379 
1380 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1381 	if (!err) {
1382 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1383 							tree_page, page);
1384 		/*
1385 		 * If that fails, we have a ksm page with only one pte
1386 		 * pointing to it: so break it.
1387 		 */
1388 		if (err)
1389 			break_cow(rmap_item);
1390 	}
1391 	return err ? NULL : page;
1392 }
1393 
1394 static __always_inline
1395 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1396 {
1397 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1398 	/*
1399 	 * Check that at least one mapping still exists, otherwise
1400 	 * there's no much point to merge and share with this
1401 	 * stable_node, as the underlying tree_page of the other
1402 	 * sharer is going to be freed soon.
1403 	 */
1404 	return stable_node->rmap_hlist_len &&
1405 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1406 }
1407 
1408 static __always_inline
1409 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1410 {
1411 	return __is_page_sharing_candidate(stable_node, 0);
1412 }
1413 
1414 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1415 				    struct ksm_stable_node **_stable_node,
1416 				    struct rb_root *root,
1417 				    bool prune_stale_stable_nodes)
1418 {
1419 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1420 	struct hlist_node *hlist_safe;
1421 	struct page *_tree_page, *tree_page = NULL;
1422 	int nr = 0;
1423 	int found_rmap_hlist_len;
1424 
1425 	if (!prune_stale_stable_nodes ||
1426 	    time_before(jiffies, stable_node->chain_prune_time +
1427 			msecs_to_jiffies(
1428 				ksm_stable_node_chains_prune_millisecs)))
1429 		prune_stale_stable_nodes = false;
1430 	else
1431 		stable_node->chain_prune_time = jiffies;
1432 
1433 	hlist_for_each_entry_safe(dup, hlist_safe,
1434 				  &stable_node->hlist, hlist_dup) {
1435 		cond_resched();
1436 		/*
1437 		 * We must walk all stable_node_dup to prune the stale
1438 		 * stable nodes during lookup.
1439 		 *
1440 		 * get_ksm_page can drop the nodes from the
1441 		 * stable_node->hlist if they point to freed pages
1442 		 * (that's why we do a _safe walk). The "dup"
1443 		 * stable_node parameter itself will be freed from
1444 		 * under us if it returns NULL.
1445 		 */
1446 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1447 		if (!_tree_page)
1448 			continue;
1449 		nr += 1;
1450 		if (is_page_sharing_candidate(dup)) {
1451 			if (!found ||
1452 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1453 				if (found)
1454 					put_page(tree_page);
1455 				found = dup;
1456 				found_rmap_hlist_len = found->rmap_hlist_len;
1457 				tree_page = _tree_page;
1458 
1459 				/* skip put_page for found dup */
1460 				if (!prune_stale_stable_nodes)
1461 					break;
1462 				continue;
1463 			}
1464 		}
1465 		put_page(_tree_page);
1466 	}
1467 
1468 	if (found) {
1469 		/*
1470 		 * nr is counting all dups in the chain only if
1471 		 * prune_stale_stable_nodes is true, otherwise we may
1472 		 * break the loop at nr == 1 even if there are
1473 		 * multiple entries.
1474 		 */
1475 		if (prune_stale_stable_nodes && nr == 1) {
1476 			/*
1477 			 * If there's not just one entry it would
1478 			 * corrupt memory, better BUG_ON. In KSM
1479 			 * context with no lock held it's not even
1480 			 * fatal.
1481 			 */
1482 			BUG_ON(stable_node->hlist.first->next);
1483 
1484 			/*
1485 			 * There's just one entry and it is below the
1486 			 * deduplication limit so drop the chain.
1487 			 */
1488 			rb_replace_node(&stable_node->node, &found->node,
1489 					root);
1490 			free_stable_node(stable_node);
1491 			ksm_stable_node_chains--;
1492 			ksm_stable_node_dups--;
1493 			/*
1494 			 * NOTE: the caller depends on the stable_node
1495 			 * to be equal to stable_node_dup if the chain
1496 			 * was collapsed.
1497 			 */
1498 			*_stable_node = found;
1499 			/*
1500 			 * Just for robustness, as stable_node is
1501 			 * otherwise left as a stable pointer, the
1502 			 * compiler shall optimize it away at build
1503 			 * time.
1504 			 */
1505 			stable_node = NULL;
1506 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1507 			   __is_page_sharing_candidate(found, 1)) {
1508 			/*
1509 			 * If the found stable_node dup can accept one
1510 			 * more future merge (in addition to the one
1511 			 * that is underway) and is not at the head of
1512 			 * the chain, put it there so next search will
1513 			 * be quicker in the !prune_stale_stable_nodes
1514 			 * case.
1515 			 *
1516 			 * NOTE: it would be inaccurate to use nr > 1
1517 			 * instead of checking the hlist.first pointer
1518 			 * directly, because in the
1519 			 * prune_stale_stable_nodes case "nr" isn't
1520 			 * the position of the found dup in the chain,
1521 			 * but the total number of dups in the chain.
1522 			 */
1523 			hlist_del(&found->hlist_dup);
1524 			hlist_add_head(&found->hlist_dup,
1525 				       &stable_node->hlist);
1526 		}
1527 	}
1528 
1529 	*_stable_node_dup = found;
1530 	return tree_page;
1531 }
1532 
1533 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1534 					       struct rb_root *root)
1535 {
1536 	if (!is_stable_node_chain(stable_node))
1537 		return stable_node;
1538 	if (hlist_empty(&stable_node->hlist)) {
1539 		free_stable_node_chain(stable_node, root);
1540 		return NULL;
1541 	}
1542 	return hlist_entry(stable_node->hlist.first,
1543 			   typeof(*stable_node), hlist_dup);
1544 }
1545 
1546 /*
1547  * Like for get_ksm_page, this function can free the *_stable_node and
1548  * *_stable_node_dup if the returned tree_page is NULL.
1549  *
1550  * It can also free and overwrite *_stable_node with the found
1551  * stable_node_dup if the chain is collapsed (in which case
1552  * *_stable_node will be equal to *_stable_node_dup like if the chain
1553  * never existed). It's up to the caller to verify tree_page is not
1554  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1555  *
1556  * *_stable_node_dup is really a second output parameter of this
1557  * function and will be overwritten in all cases, the caller doesn't
1558  * need to initialize it.
1559  */
1560 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1561 					struct ksm_stable_node **_stable_node,
1562 					struct rb_root *root,
1563 					bool prune_stale_stable_nodes)
1564 {
1565 	struct ksm_stable_node *stable_node = *_stable_node;
1566 	if (!is_stable_node_chain(stable_node)) {
1567 		if (is_page_sharing_candidate(stable_node)) {
1568 			*_stable_node_dup = stable_node;
1569 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1570 		}
1571 		/*
1572 		 * _stable_node_dup set to NULL means the stable_node
1573 		 * reached the ksm_max_page_sharing limit.
1574 		 */
1575 		*_stable_node_dup = NULL;
1576 		return NULL;
1577 	}
1578 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1579 			       prune_stale_stable_nodes);
1580 }
1581 
1582 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1583 						struct ksm_stable_node **s_n,
1584 						struct rb_root *root)
1585 {
1586 	return __stable_node_chain(s_n_d, s_n, root, true);
1587 }
1588 
1589 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1590 					  struct ksm_stable_node *s_n,
1591 					  struct rb_root *root)
1592 {
1593 	struct ksm_stable_node *old_stable_node = s_n;
1594 	struct page *tree_page;
1595 
1596 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1597 	/* not pruning dups so s_n cannot have changed */
1598 	VM_BUG_ON(s_n != old_stable_node);
1599 	return tree_page;
1600 }
1601 
1602 /*
1603  * stable_tree_search - search for page inside the stable tree
1604  *
1605  * This function checks if there is a page inside the stable tree
1606  * with identical content to the page that we are scanning right now.
1607  *
1608  * This function returns the stable tree node of identical content if found,
1609  * NULL otherwise.
1610  */
1611 static struct page *stable_tree_search(struct page *page)
1612 {
1613 	int nid;
1614 	struct rb_root *root;
1615 	struct rb_node **new;
1616 	struct rb_node *parent;
1617 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1618 	struct ksm_stable_node *page_node;
1619 
1620 	page_node = page_stable_node(page);
1621 	if (page_node && page_node->head != &migrate_nodes) {
1622 		/* ksm page forked */
1623 		get_page(page);
1624 		return page;
1625 	}
1626 
1627 	nid = get_kpfn_nid(page_to_pfn(page));
1628 	root = root_stable_tree + nid;
1629 again:
1630 	new = &root->rb_node;
1631 	parent = NULL;
1632 
1633 	while (*new) {
1634 		struct page *tree_page;
1635 		int ret;
1636 
1637 		cond_resched();
1638 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1639 		stable_node_any = NULL;
1640 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1641 		/*
1642 		 * NOTE: stable_node may have been freed by
1643 		 * chain_prune() if the returned stable_node_dup is
1644 		 * not NULL. stable_node_dup may have been inserted in
1645 		 * the rbtree instead as a regular stable_node (in
1646 		 * order to collapse the stable_node chain if a single
1647 		 * stable_node dup was found in it). In such case the
1648 		 * stable_node is overwritten by the callee to point
1649 		 * to the stable_node_dup that was collapsed in the
1650 		 * stable rbtree and stable_node will be equal to
1651 		 * stable_node_dup like if the chain never existed.
1652 		 */
1653 		if (!stable_node_dup) {
1654 			/*
1655 			 * Either all stable_node dups were full in
1656 			 * this stable_node chain, or this chain was
1657 			 * empty and should be rb_erased.
1658 			 */
1659 			stable_node_any = stable_node_dup_any(stable_node,
1660 							      root);
1661 			if (!stable_node_any) {
1662 				/* rb_erase just run */
1663 				goto again;
1664 			}
1665 			/*
1666 			 * Take any of the stable_node dups page of
1667 			 * this stable_node chain to let the tree walk
1668 			 * continue. All KSM pages belonging to the
1669 			 * stable_node dups in a stable_node chain
1670 			 * have the same content and they're
1671 			 * write protected at all times. Any will work
1672 			 * fine to continue the walk.
1673 			 */
1674 			tree_page = get_ksm_page(stable_node_any,
1675 						 GET_KSM_PAGE_NOLOCK);
1676 		}
1677 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1678 		if (!tree_page) {
1679 			/*
1680 			 * If we walked over a stale stable_node,
1681 			 * get_ksm_page() will call rb_erase() and it
1682 			 * may rebalance the tree from under us. So
1683 			 * restart the search from scratch. Returning
1684 			 * NULL would be safe too, but we'd generate
1685 			 * false negative insertions just because some
1686 			 * stable_node was stale.
1687 			 */
1688 			goto again;
1689 		}
1690 
1691 		ret = memcmp_pages(page, tree_page);
1692 		put_page(tree_page);
1693 
1694 		parent = *new;
1695 		if (ret < 0)
1696 			new = &parent->rb_left;
1697 		else if (ret > 0)
1698 			new = &parent->rb_right;
1699 		else {
1700 			if (page_node) {
1701 				VM_BUG_ON(page_node->head != &migrate_nodes);
1702 				/*
1703 				 * Test if the migrated page should be merged
1704 				 * into a stable node dup. If the mapcount is
1705 				 * 1 we can migrate it with another KSM page
1706 				 * without adding it to the chain.
1707 				 */
1708 				if (page_mapcount(page) > 1)
1709 					goto chain_append;
1710 			}
1711 
1712 			if (!stable_node_dup) {
1713 				/*
1714 				 * If the stable_node is a chain and
1715 				 * we got a payload match in memcmp
1716 				 * but we cannot merge the scanned
1717 				 * page in any of the existing
1718 				 * stable_node dups because they're
1719 				 * all full, we need to wait the
1720 				 * scanned page to find itself a match
1721 				 * in the unstable tree to create a
1722 				 * brand new KSM page to add later to
1723 				 * the dups of this stable_node.
1724 				 */
1725 				return NULL;
1726 			}
1727 
1728 			/*
1729 			 * Lock and unlock the stable_node's page (which
1730 			 * might already have been migrated) so that page
1731 			 * migration is sure to notice its raised count.
1732 			 * It would be more elegant to return stable_node
1733 			 * than kpage, but that involves more changes.
1734 			 */
1735 			tree_page = get_ksm_page(stable_node_dup,
1736 						 GET_KSM_PAGE_TRYLOCK);
1737 
1738 			if (PTR_ERR(tree_page) == -EBUSY)
1739 				return ERR_PTR(-EBUSY);
1740 
1741 			if (unlikely(!tree_page))
1742 				/*
1743 				 * The tree may have been rebalanced,
1744 				 * so re-evaluate parent and new.
1745 				 */
1746 				goto again;
1747 			unlock_page(tree_page);
1748 
1749 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1750 			    NUMA(stable_node_dup->nid)) {
1751 				put_page(tree_page);
1752 				goto replace;
1753 			}
1754 			return tree_page;
1755 		}
1756 	}
1757 
1758 	if (!page_node)
1759 		return NULL;
1760 
1761 	list_del(&page_node->list);
1762 	DO_NUMA(page_node->nid = nid);
1763 	rb_link_node(&page_node->node, parent, new);
1764 	rb_insert_color(&page_node->node, root);
1765 out:
1766 	if (is_page_sharing_candidate(page_node)) {
1767 		get_page(page);
1768 		return page;
1769 	} else
1770 		return NULL;
1771 
1772 replace:
1773 	/*
1774 	 * If stable_node was a chain and chain_prune collapsed it,
1775 	 * stable_node has been updated to be the new regular
1776 	 * stable_node. A collapse of the chain is indistinguishable
1777 	 * from the case there was no chain in the stable
1778 	 * rbtree. Otherwise stable_node is the chain and
1779 	 * stable_node_dup is the dup to replace.
1780 	 */
1781 	if (stable_node_dup == stable_node) {
1782 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1783 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1784 		/* there is no chain */
1785 		if (page_node) {
1786 			VM_BUG_ON(page_node->head != &migrate_nodes);
1787 			list_del(&page_node->list);
1788 			DO_NUMA(page_node->nid = nid);
1789 			rb_replace_node(&stable_node_dup->node,
1790 					&page_node->node,
1791 					root);
1792 			if (is_page_sharing_candidate(page_node))
1793 				get_page(page);
1794 			else
1795 				page = NULL;
1796 		} else {
1797 			rb_erase(&stable_node_dup->node, root);
1798 			page = NULL;
1799 		}
1800 	} else {
1801 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1802 		__stable_node_dup_del(stable_node_dup);
1803 		if (page_node) {
1804 			VM_BUG_ON(page_node->head != &migrate_nodes);
1805 			list_del(&page_node->list);
1806 			DO_NUMA(page_node->nid = nid);
1807 			stable_node_chain_add_dup(page_node, stable_node);
1808 			if (is_page_sharing_candidate(page_node))
1809 				get_page(page);
1810 			else
1811 				page = NULL;
1812 		} else {
1813 			page = NULL;
1814 		}
1815 	}
1816 	stable_node_dup->head = &migrate_nodes;
1817 	list_add(&stable_node_dup->list, stable_node_dup->head);
1818 	return page;
1819 
1820 chain_append:
1821 	/* stable_node_dup could be null if it reached the limit */
1822 	if (!stable_node_dup)
1823 		stable_node_dup = stable_node_any;
1824 	/*
1825 	 * If stable_node was a chain and chain_prune collapsed it,
1826 	 * stable_node has been updated to be the new regular
1827 	 * stable_node. A collapse of the chain is indistinguishable
1828 	 * from the case there was no chain in the stable
1829 	 * rbtree. Otherwise stable_node is the chain and
1830 	 * stable_node_dup is the dup to replace.
1831 	 */
1832 	if (stable_node_dup == stable_node) {
1833 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1834 		/* chain is missing so create it */
1835 		stable_node = alloc_stable_node_chain(stable_node_dup,
1836 						      root);
1837 		if (!stable_node)
1838 			return NULL;
1839 	}
1840 	/*
1841 	 * Add this stable_node dup that was
1842 	 * migrated to the stable_node chain
1843 	 * of the current nid for this page
1844 	 * content.
1845 	 */
1846 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1847 	VM_BUG_ON(page_node->head != &migrate_nodes);
1848 	list_del(&page_node->list);
1849 	DO_NUMA(page_node->nid = nid);
1850 	stable_node_chain_add_dup(page_node, stable_node);
1851 	goto out;
1852 }
1853 
1854 /*
1855  * stable_tree_insert - insert stable tree node pointing to new ksm page
1856  * into the stable tree.
1857  *
1858  * This function returns the stable tree node just allocated on success,
1859  * NULL otherwise.
1860  */
1861 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1862 {
1863 	int nid;
1864 	unsigned long kpfn;
1865 	struct rb_root *root;
1866 	struct rb_node **new;
1867 	struct rb_node *parent;
1868 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1869 	bool need_chain = false;
1870 
1871 	kpfn = page_to_pfn(kpage);
1872 	nid = get_kpfn_nid(kpfn);
1873 	root = root_stable_tree + nid;
1874 again:
1875 	parent = NULL;
1876 	new = &root->rb_node;
1877 
1878 	while (*new) {
1879 		struct page *tree_page;
1880 		int ret;
1881 
1882 		cond_resched();
1883 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1884 		stable_node_any = NULL;
1885 		tree_page = chain(&stable_node_dup, stable_node, root);
1886 		if (!stable_node_dup) {
1887 			/*
1888 			 * Either all stable_node dups were full in
1889 			 * this stable_node chain, or this chain was
1890 			 * empty and should be rb_erased.
1891 			 */
1892 			stable_node_any = stable_node_dup_any(stable_node,
1893 							      root);
1894 			if (!stable_node_any) {
1895 				/* rb_erase just run */
1896 				goto again;
1897 			}
1898 			/*
1899 			 * Take any of the stable_node dups page of
1900 			 * this stable_node chain to let the tree walk
1901 			 * continue. All KSM pages belonging to the
1902 			 * stable_node dups in a stable_node chain
1903 			 * have the same content and they're
1904 			 * write protected at all times. Any will work
1905 			 * fine to continue the walk.
1906 			 */
1907 			tree_page = get_ksm_page(stable_node_any,
1908 						 GET_KSM_PAGE_NOLOCK);
1909 		}
1910 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1911 		if (!tree_page) {
1912 			/*
1913 			 * If we walked over a stale stable_node,
1914 			 * get_ksm_page() will call rb_erase() and it
1915 			 * may rebalance the tree from under us. So
1916 			 * restart the search from scratch. Returning
1917 			 * NULL would be safe too, but we'd generate
1918 			 * false negative insertions just because some
1919 			 * stable_node was stale.
1920 			 */
1921 			goto again;
1922 		}
1923 
1924 		ret = memcmp_pages(kpage, tree_page);
1925 		put_page(tree_page);
1926 
1927 		parent = *new;
1928 		if (ret < 0)
1929 			new = &parent->rb_left;
1930 		else if (ret > 0)
1931 			new = &parent->rb_right;
1932 		else {
1933 			need_chain = true;
1934 			break;
1935 		}
1936 	}
1937 
1938 	stable_node_dup = alloc_stable_node();
1939 	if (!stable_node_dup)
1940 		return NULL;
1941 
1942 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1943 	stable_node_dup->kpfn = kpfn;
1944 	set_page_stable_node(kpage, stable_node_dup);
1945 	stable_node_dup->rmap_hlist_len = 0;
1946 	DO_NUMA(stable_node_dup->nid = nid);
1947 	if (!need_chain) {
1948 		rb_link_node(&stable_node_dup->node, parent, new);
1949 		rb_insert_color(&stable_node_dup->node, root);
1950 	} else {
1951 		if (!is_stable_node_chain(stable_node)) {
1952 			struct ksm_stable_node *orig = stable_node;
1953 			/* chain is missing so create it */
1954 			stable_node = alloc_stable_node_chain(orig, root);
1955 			if (!stable_node) {
1956 				free_stable_node(stable_node_dup);
1957 				return NULL;
1958 			}
1959 		}
1960 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1961 	}
1962 
1963 	return stable_node_dup;
1964 }
1965 
1966 /*
1967  * unstable_tree_search_insert - search for identical page,
1968  * else insert rmap_item into the unstable tree.
1969  *
1970  * This function searches for a page in the unstable tree identical to the
1971  * page currently being scanned; and if no identical page is found in the
1972  * tree, we insert rmap_item as a new object into the unstable tree.
1973  *
1974  * This function returns pointer to rmap_item found to be identical
1975  * to the currently scanned page, NULL otherwise.
1976  *
1977  * This function does both searching and inserting, because they share
1978  * the same walking algorithm in an rbtree.
1979  */
1980 static
1981 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1982 					      struct page *page,
1983 					      struct page **tree_pagep)
1984 {
1985 	struct rb_node **new;
1986 	struct rb_root *root;
1987 	struct rb_node *parent = NULL;
1988 	int nid;
1989 
1990 	nid = get_kpfn_nid(page_to_pfn(page));
1991 	root = root_unstable_tree + nid;
1992 	new = &root->rb_node;
1993 
1994 	while (*new) {
1995 		struct ksm_rmap_item *tree_rmap_item;
1996 		struct page *tree_page;
1997 		int ret;
1998 
1999 		cond_resched();
2000 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2001 		tree_page = get_mergeable_page(tree_rmap_item);
2002 		if (!tree_page)
2003 			return NULL;
2004 
2005 		/*
2006 		 * Don't substitute a ksm page for a forked page.
2007 		 */
2008 		if (page == tree_page) {
2009 			put_page(tree_page);
2010 			return NULL;
2011 		}
2012 
2013 		ret = memcmp_pages(page, tree_page);
2014 
2015 		parent = *new;
2016 		if (ret < 0) {
2017 			put_page(tree_page);
2018 			new = &parent->rb_left;
2019 		} else if (ret > 0) {
2020 			put_page(tree_page);
2021 			new = &parent->rb_right;
2022 		} else if (!ksm_merge_across_nodes &&
2023 			   page_to_nid(tree_page) != nid) {
2024 			/*
2025 			 * If tree_page has been migrated to another NUMA node,
2026 			 * it will be flushed out and put in the right unstable
2027 			 * tree next time: only merge with it when across_nodes.
2028 			 */
2029 			put_page(tree_page);
2030 			return NULL;
2031 		} else {
2032 			*tree_pagep = tree_page;
2033 			return tree_rmap_item;
2034 		}
2035 	}
2036 
2037 	rmap_item->address |= UNSTABLE_FLAG;
2038 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2039 	DO_NUMA(rmap_item->nid = nid);
2040 	rb_link_node(&rmap_item->node, parent, new);
2041 	rb_insert_color(&rmap_item->node, root);
2042 
2043 	ksm_pages_unshared++;
2044 	return NULL;
2045 }
2046 
2047 /*
2048  * stable_tree_append - add another rmap_item to the linked list of
2049  * rmap_items hanging off a given node of the stable tree, all sharing
2050  * the same ksm page.
2051  */
2052 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2053 			       struct ksm_stable_node *stable_node,
2054 			       bool max_page_sharing_bypass)
2055 {
2056 	/*
2057 	 * rmap won't find this mapping if we don't insert the
2058 	 * rmap_item in the right stable_node
2059 	 * duplicate. page_migration could break later if rmap breaks,
2060 	 * so we can as well crash here. We really need to check for
2061 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2062 	 * for other negative values as an underflow if detected here
2063 	 * for the first time (and not when decreasing rmap_hlist_len)
2064 	 * would be sign of memory corruption in the stable_node.
2065 	 */
2066 	BUG_ON(stable_node->rmap_hlist_len < 0);
2067 
2068 	stable_node->rmap_hlist_len++;
2069 	if (!max_page_sharing_bypass)
2070 		/* possibly non fatal but unexpected overflow, only warn */
2071 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2072 			     ksm_max_page_sharing);
2073 
2074 	rmap_item->head = stable_node;
2075 	rmap_item->address |= STABLE_FLAG;
2076 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2077 
2078 	if (rmap_item->hlist.next)
2079 		ksm_pages_sharing++;
2080 	else
2081 		ksm_pages_shared++;
2082 
2083 	rmap_item->mm->ksm_merging_pages++;
2084 }
2085 
2086 /*
2087  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2088  * if not, compare checksum to previous and if it's the same, see if page can
2089  * be inserted into the unstable tree, or merged with a page already there and
2090  * both transferred to the stable tree.
2091  *
2092  * @page: the page that we are searching identical page to.
2093  * @rmap_item: the reverse mapping into the virtual address of this page
2094  */
2095 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2096 {
2097 	struct mm_struct *mm = rmap_item->mm;
2098 	struct ksm_rmap_item *tree_rmap_item;
2099 	struct page *tree_page = NULL;
2100 	struct ksm_stable_node *stable_node;
2101 	struct page *kpage;
2102 	unsigned int checksum;
2103 	int err;
2104 	bool max_page_sharing_bypass = false;
2105 
2106 	stable_node = page_stable_node(page);
2107 	if (stable_node) {
2108 		if (stable_node->head != &migrate_nodes &&
2109 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2110 		    NUMA(stable_node->nid)) {
2111 			stable_node_dup_del(stable_node);
2112 			stable_node->head = &migrate_nodes;
2113 			list_add(&stable_node->list, stable_node->head);
2114 		}
2115 		if (stable_node->head != &migrate_nodes &&
2116 		    rmap_item->head == stable_node)
2117 			return;
2118 		/*
2119 		 * If it's a KSM fork, allow it to go over the sharing limit
2120 		 * without warnings.
2121 		 */
2122 		if (!is_page_sharing_candidate(stable_node))
2123 			max_page_sharing_bypass = true;
2124 	}
2125 
2126 	/* We first start with searching the page inside the stable tree */
2127 	kpage = stable_tree_search(page);
2128 	if (kpage == page && rmap_item->head == stable_node) {
2129 		put_page(kpage);
2130 		return;
2131 	}
2132 
2133 	remove_rmap_item_from_tree(rmap_item);
2134 
2135 	if (kpage) {
2136 		if (PTR_ERR(kpage) == -EBUSY)
2137 			return;
2138 
2139 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2140 		if (!err) {
2141 			/*
2142 			 * The page was successfully merged:
2143 			 * add its rmap_item to the stable tree.
2144 			 */
2145 			lock_page(kpage);
2146 			stable_tree_append(rmap_item, page_stable_node(kpage),
2147 					   max_page_sharing_bypass);
2148 			unlock_page(kpage);
2149 		}
2150 		put_page(kpage);
2151 		return;
2152 	}
2153 
2154 	/*
2155 	 * If the hash value of the page has changed from the last time
2156 	 * we calculated it, this page is changing frequently: therefore we
2157 	 * don't want to insert it in the unstable tree, and we don't want
2158 	 * to waste our time searching for something identical to it there.
2159 	 */
2160 	checksum = calc_checksum(page);
2161 	if (rmap_item->oldchecksum != checksum) {
2162 		rmap_item->oldchecksum = checksum;
2163 		return;
2164 	}
2165 
2166 	/*
2167 	 * Same checksum as an empty page. We attempt to merge it with the
2168 	 * appropriate zero page if the user enabled this via sysfs.
2169 	 */
2170 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2171 		struct vm_area_struct *vma;
2172 
2173 		mmap_read_lock(mm);
2174 		vma = find_mergeable_vma(mm, rmap_item->address);
2175 		if (vma) {
2176 			err = try_to_merge_one_page(vma, page,
2177 					ZERO_PAGE(rmap_item->address));
2178 			trace_ksm_merge_one_page(
2179 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2180 				rmap_item, mm, err);
2181 		} else {
2182 			/*
2183 			 * If the vma is out of date, we do not need to
2184 			 * continue.
2185 			 */
2186 			err = 0;
2187 		}
2188 		mmap_read_unlock(mm);
2189 		/*
2190 		 * In case of failure, the page was not really empty, so we
2191 		 * need to continue. Otherwise we're done.
2192 		 */
2193 		if (!err)
2194 			return;
2195 	}
2196 	tree_rmap_item =
2197 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2198 	if (tree_rmap_item) {
2199 		bool split;
2200 
2201 		kpage = try_to_merge_two_pages(rmap_item, page,
2202 						tree_rmap_item, tree_page);
2203 		/*
2204 		 * If both pages we tried to merge belong to the same compound
2205 		 * page, then we actually ended up increasing the reference
2206 		 * count of the same compound page twice, and split_huge_page
2207 		 * failed.
2208 		 * Here we set a flag if that happened, and we use it later to
2209 		 * try split_huge_page again. Since we call put_page right
2210 		 * afterwards, the reference count will be correct and
2211 		 * split_huge_page should succeed.
2212 		 */
2213 		split = PageTransCompound(page)
2214 			&& compound_head(page) == compound_head(tree_page);
2215 		put_page(tree_page);
2216 		if (kpage) {
2217 			/*
2218 			 * The pages were successfully merged: insert new
2219 			 * node in the stable tree and add both rmap_items.
2220 			 */
2221 			lock_page(kpage);
2222 			stable_node = stable_tree_insert(kpage);
2223 			if (stable_node) {
2224 				stable_tree_append(tree_rmap_item, stable_node,
2225 						   false);
2226 				stable_tree_append(rmap_item, stable_node,
2227 						   false);
2228 			}
2229 			unlock_page(kpage);
2230 
2231 			/*
2232 			 * If we fail to insert the page into the stable tree,
2233 			 * we will have 2 virtual addresses that are pointing
2234 			 * to a ksm page left outside the stable tree,
2235 			 * in which case we need to break_cow on both.
2236 			 */
2237 			if (!stable_node) {
2238 				break_cow(tree_rmap_item);
2239 				break_cow(rmap_item);
2240 			}
2241 		} else if (split) {
2242 			/*
2243 			 * We are here if we tried to merge two pages and
2244 			 * failed because they both belonged to the same
2245 			 * compound page. We will split the page now, but no
2246 			 * merging will take place.
2247 			 * We do not want to add the cost of a full lock; if
2248 			 * the page is locked, it is better to skip it and
2249 			 * perhaps try again later.
2250 			 */
2251 			if (!trylock_page(page))
2252 				return;
2253 			split_huge_page(page);
2254 			unlock_page(page);
2255 		}
2256 	}
2257 }
2258 
2259 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2260 					    struct ksm_rmap_item **rmap_list,
2261 					    unsigned long addr)
2262 {
2263 	struct ksm_rmap_item *rmap_item;
2264 
2265 	while (*rmap_list) {
2266 		rmap_item = *rmap_list;
2267 		if ((rmap_item->address & PAGE_MASK) == addr)
2268 			return rmap_item;
2269 		if (rmap_item->address > addr)
2270 			break;
2271 		*rmap_list = rmap_item->rmap_list;
2272 		remove_rmap_item_from_tree(rmap_item);
2273 		free_rmap_item(rmap_item);
2274 	}
2275 
2276 	rmap_item = alloc_rmap_item();
2277 	if (rmap_item) {
2278 		/* It has already been zeroed */
2279 		rmap_item->mm = mm_slot->slot.mm;
2280 		rmap_item->mm->ksm_rmap_items++;
2281 		rmap_item->address = addr;
2282 		rmap_item->rmap_list = *rmap_list;
2283 		*rmap_list = rmap_item;
2284 	}
2285 	return rmap_item;
2286 }
2287 
2288 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2289 {
2290 	struct mm_struct *mm;
2291 	struct ksm_mm_slot *mm_slot;
2292 	struct mm_slot *slot;
2293 	struct vm_area_struct *vma;
2294 	struct ksm_rmap_item *rmap_item;
2295 	struct vma_iterator vmi;
2296 	int nid;
2297 
2298 	if (list_empty(&ksm_mm_head.slot.mm_node))
2299 		return NULL;
2300 
2301 	mm_slot = ksm_scan.mm_slot;
2302 	if (mm_slot == &ksm_mm_head) {
2303 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2304 
2305 		/*
2306 		 * A number of pages can hang around indefinitely in per-cpu
2307 		 * LRU cache, raised page count preventing write_protect_page
2308 		 * from merging them.  Though it doesn't really matter much,
2309 		 * it is puzzling to see some stuck in pages_volatile until
2310 		 * other activity jostles them out, and they also prevented
2311 		 * LTP's KSM test from succeeding deterministically; so drain
2312 		 * them here (here rather than on entry to ksm_do_scan(),
2313 		 * so we don't IPI too often when pages_to_scan is set low).
2314 		 */
2315 		lru_add_drain_all();
2316 
2317 		/*
2318 		 * Whereas stale stable_nodes on the stable_tree itself
2319 		 * get pruned in the regular course of stable_tree_search(),
2320 		 * those moved out to the migrate_nodes list can accumulate:
2321 		 * so prune them once before each full scan.
2322 		 */
2323 		if (!ksm_merge_across_nodes) {
2324 			struct ksm_stable_node *stable_node, *next;
2325 			struct page *page;
2326 
2327 			list_for_each_entry_safe(stable_node, next,
2328 						 &migrate_nodes, list) {
2329 				page = get_ksm_page(stable_node,
2330 						    GET_KSM_PAGE_NOLOCK);
2331 				if (page)
2332 					put_page(page);
2333 				cond_resched();
2334 			}
2335 		}
2336 
2337 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2338 			root_unstable_tree[nid] = RB_ROOT;
2339 
2340 		spin_lock(&ksm_mmlist_lock);
2341 		slot = list_entry(mm_slot->slot.mm_node.next,
2342 				  struct mm_slot, mm_node);
2343 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2344 		ksm_scan.mm_slot = mm_slot;
2345 		spin_unlock(&ksm_mmlist_lock);
2346 		/*
2347 		 * Although we tested list_empty() above, a racing __ksm_exit
2348 		 * of the last mm on the list may have removed it since then.
2349 		 */
2350 		if (mm_slot == &ksm_mm_head)
2351 			return NULL;
2352 next_mm:
2353 		ksm_scan.address = 0;
2354 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2355 	}
2356 
2357 	slot = &mm_slot->slot;
2358 	mm = slot->mm;
2359 	vma_iter_init(&vmi, mm, ksm_scan.address);
2360 
2361 	mmap_read_lock(mm);
2362 	if (ksm_test_exit(mm))
2363 		goto no_vmas;
2364 
2365 	for_each_vma(vmi, vma) {
2366 		if (!(vma->vm_flags & VM_MERGEABLE))
2367 			continue;
2368 		if (ksm_scan.address < vma->vm_start)
2369 			ksm_scan.address = vma->vm_start;
2370 		if (!vma->anon_vma)
2371 			ksm_scan.address = vma->vm_end;
2372 
2373 		while (ksm_scan.address < vma->vm_end) {
2374 			if (ksm_test_exit(mm))
2375 				break;
2376 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2377 			if (IS_ERR_OR_NULL(*page)) {
2378 				ksm_scan.address += PAGE_SIZE;
2379 				cond_resched();
2380 				continue;
2381 			}
2382 			if (is_zone_device_page(*page))
2383 				goto next_page;
2384 			if (PageAnon(*page)) {
2385 				flush_anon_page(vma, *page, ksm_scan.address);
2386 				flush_dcache_page(*page);
2387 				rmap_item = get_next_rmap_item(mm_slot,
2388 					ksm_scan.rmap_list, ksm_scan.address);
2389 				if (rmap_item) {
2390 					ksm_scan.rmap_list =
2391 							&rmap_item->rmap_list;
2392 					ksm_scan.address += PAGE_SIZE;
2393 				} else
2394 					put_page(*page);
2395 				mmap_read_unlock(mm);
2396 				return rmap_item;
2397 			}
2398 next_page:
2399 			put_page(*page);
2400 			ksm_scan.address += PAGE_SIZE;
2401 			cond_resched();
2402 		}
2403 	}
2404 
2405 	if (ksm_test_exit(mm)) {
2406 no_vmas:
2407 		ksm_scan.address = 0;
2408 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2409 	}
2410 	/*
2411 	 * Nuke all the rmap_items that are above this current rmap:
2412 	 * because there were no VM_MERGEABLE vmas with such addresses.
2413 	 */
2414 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2415 
2416 	spin_lock(&ksm_mmlist_lock);
2417 	slot = list_entry(mm_slot->slot.mm_node.next,
2418 			  struct mm_slot, mm_node);
2419 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2420 	if (ksm_scan.address == 0) {
2421 		/*
2422 		 * We've completed a full scan of all vmas, holding mmap_lock
2423 		 * throughout, and found no VM_MERGEABLE: so do the same as
2424 		 * __ksm_exit does to remove this mm from all our lists now.
2425 		 * This applies either when cleaning up after __ksm_exit
2426 		 * (but beware: we can reach here even before __ksm_exit),
2427 		 * or when all VM_MERGEABLE areas have been unmapped (and
2428 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2429 		 */
2430 		hash_del(&mm_slot->slot.hash);
2431 		list_del(&mm_slot->slot.mm_node);
2432 		spin_unlock(&ksm_mmlist_lock);
2433 
2434 		mm_slot_free(mm_slot_cache, mm_slot);
2435 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2436 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2437 		mmap_read_unlock(mm);
2438 		mmdrop(mm);
2439 	} else {
2440 		mmap_read_unlock(mm);
2441 		/*
2442 		 * mmap_read_unlock(mm) first because after
2443 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2444 		 * already have been freed under us by __ksm_exit()
2445 		 * because the "mm_slot" is still hashed and
2446 		 * ksm_scan.mm_slot doesn't point to it anymore.
2447 		 */
2448 		spin_unlock(&ksm_mmlist_lock);
2449 	}
2450 
2451 	/* Repeat until we've completed scanning the whole list */
2452 	mm_slot = ksm_scan.mm_slot;
2453 	if (mm_slot != &ksm_mm_head)
2454 		goto next_mm;
2455 
2456 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2457 	ksm_scan.seqnr++;
2458 	return NULL;
2459 }
2460 
2461 /**
2462  * ksm_do_scan  - the ksm scanner main worker function.
2463  * @scan_npages:  number of pages we want to scan before we return.
2464  */
2465 static void ksm_do_scan(unsigned int scan_npages)
2466 {
2467 	struct ksm_rmap_item *rmap_item;
2468 	struct page *page;
2469 
2470 	while (scan_npages-- && likely(!freezing(current))) {
2471 		cond_resched();
2472 		rmap_item = scan_get_next_rmap_item(&page);
2473 		if (!rmap_item)
2474 			return;
2475 		cmp_and_merge_page(page, rmap_item);
2476 		put_page(page);
2477 	}
2478 }
2479 
2480 static int ksmd_should_run(void)
2481 {
2482 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2483 }
2484 
2485 static int ksm_scan_thread(void *nothing)
2486 {
2487 	unsigned int sleep_ms;
2488 
2489 	set_freezable();
2490 	set_user_nice(current, 5);
2491 
2492 	while (!kthread_should_stop()) {
2493 		mutex_lock(&ksm_thread_mutex);
2494 		wait_while_offlining();
2495 		if (ksmd_should_run())
2496 			ksm_do_scan(ksm_thread_pages_to_scan);
2497 		mutex_unlock(&ksm_thread_mutex);
2498 
2499 		try_to_freeze();
2500 
2501 		if (ksmd_should_run()) {
2502 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2503 			wait_event_interruptible_timeout(ksm_iter_wait,
2504 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2505 				msecs_to_jiffies(sleep_ms));
2506 		} else {
2507 			wait_event_freezable(ksm_thread_wait,
2508 				ksmd_should_run() || kthread_should_stop());
2509 		}
2510 	}
2511 	return 0;
2512 }
2513 
2514 static void __ksm_add_vma(struct vm_area_struct *vma)
2515 {
2516 	unsigned long vm_flags = vma->vm_flags;
2517 
2518 	if (vm_flags & VM_MERGEABLE)
2519 		return;
2520 
2521 	if (vma_ksm_compatible(vma))
2522 		vm_flags_set(vma, VM_MERGEABLE);
2523 }
2524 
2525 static int __ksm_del_vma(struct vm_area_struct *vma)
2526 {
2527 	int err;
2528 
2529 	if (!(vma->vm_flags & VM_MERGEABLE))
2530 		return 0;
2531 
2532 	if (vma->anon_vma) {
2533 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2534 		if (err)
2535 			return err;
2536 	}
2537 
2538 	vm_flags_clear(vma, VM_MERGEABLE);
2539 	return 0;
2540 }
2541 /**
2542  * ksm_add_vma - Mark vma as mergeable if compatible
2543  *
2544  * @vma:  Pointer to vma
2545  */
2546 void ksm_add_vma(struct vm_area_struct *vma)
2547 {
2548 	struct mm_struct *mm = vma->vm_mm;
2549 
2550 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2551 		__ksm_add_vma(vma);
2552 }
2553 
2554 static void ksm_add_vmas(struct mm_struct *mm)
2555 {
2556 	struct vm_area_struct *vma;
2557 
2558 	VMA_ITERATOR(vmi, mm, 0);
2559 	for_each_vma(vmi, vma)
2560 		__ksm_add_vma(vma);
2561 }
2562 
2563 static int ksm_del_vmas(struct mm_struct *mm)
2564 {
2565 	struct vm_area_struct *vma;
2566 	int err;
2567 
2568 	VMA_ITERATOR(vmi, mm, 0);
2569 	for_each_vma(vmi, vma) {
2570 		err = __ksm_del_vma(vma);
2571 		if (err)
2572 			return err;
2573 	}
2574 	return 0;
2575 }
2576 
2577 /**
2578  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2579  *                        compatible VMA's
2580  *
2581  * @mm:  Pointer to mm
2582  *
2583  * Returns 0 on success, otherwise error code
2584  */
2585 int ksm_enable_merge_any(struct mm_struct *mm)
2586 {
2587 	int err;
2588 
2589 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2590 		return 0;
2591 
2592 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2593 		err = __ksm_enter(mm);
2594 		if (err)
2595 			return err;
2596 	}
2597 
2598 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2599 	ksm_add_vmas(mm);
2600 
2601 	return 0;
2602 }
2603 
2604 /**
2605  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2606  *			   previously enabled via ksm_enable_merge_any().
2607  *
2608  * Disabling merging implies unmerging any merged pages, like setting
2609  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2610  * merging on all compatible VMA's remains enabled.
2611  *
2612  * @mm: Pointer to mm
2613  *
2614  * Returns 0 on success, otherwise error code
2615  */
2616 int ksm_disable_merge_any(struct mm_struct *mm)
2617 {
2618 	int err;
2619 
2620 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2621 		return 0;
2622 
2623 	err = ksm_del_vmas(mm);
2624 	if (err) {
2625 		ksm_add_vmas(mm);
2626 		return err;
2627 	}
2628 
2629 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2630 	return 0;
2631 }
2632 
2633 int ksm_disable(struct mm_struct *mm)
2634 {
2635 	mmap_assert_write_locked(mm);
2636 
2637 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2638 		return 0;
2639 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2640 		return ksm_disable_merge_any(mm);
2641 	return ksm_del_vmas(mm);
2642 }
2643 
2644 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2645 		unsigned long end, int advice, unsigned long *vm_flags)
2646 {
2647 	struct mm_struct *mm = vma->vm_mm;
2648 	int err;
2649 
2650 	switch (advice) {
2651 	case MADV_MERGEABLE:
2652 		if (vma->vm_flags & VM_MERGEABLE)
2653 			return 0;
2654 		if (!vma_ksm_compatible(vma))
2655 			return 0;
2656 
2657 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2658 			err = __ksm_enter(mm);
2659 			if (err)
2660 				return err;
2661 		}
2662 
2663 		*vm_flags |= VM_MERGEABLE;
2664 		break;
2665 
2666 	case MADV_UNMERGEABLE:
2667 		if (!(*vm_flags & VM_MERGEABLE))
2668 			return 0;		/* just ignore the advice */
2669 
2670 		if (vma->anon_vma) {
2671 			err = unmerge_ksm_pages(vma, start, end);
2672 			if (err)
2673 				return err;
2674 		}
2675 
2676 		*vm_flags &= ~VM_MERGEABLE;
2677 		break;
2678 	}
2679 
2680 	return 0;
2681 }
2682 EXPORT_SYMBOL_GPL(ksm_madvise);
2683 
2684 int __ksm_enter(struct mm_struct *mm)
2685 {
2686 	struct ksm_mm_slot *mm_slot;
2687 	struct mm_slot *slot;
2688 	int needs_wakeup;
2689 
2690 	mm_slot = mm_slot_alloc(mm_slot_cache);
2691 	if (!mm_slot)
2692 		return -ENOMEM;
2693 
2694 	slot = &mm_slot->slot;
2695 
2696 	/* Check ksm_run too?  Would need tighter locking */
2697 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2698 
2699 	spin_lock(&ksm_mmlist_lock);
2700 	mm_slot_insert(mm_slots_hash, mm, slot);
2701 	/*
2702 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2703 	 * insert just behind the scanning cursor, to let the area settle
2704 	 * down a little; when fork is followed by immediate exec, we don't
2705 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2706 	 *
2707 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2708 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2709 	 * missed: then we might as well insert at the end of the list.
2710 	 */
2711 	if (ksm_run & KSM_RUN_UNMERGE)
2712 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2713 	else
2714 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2715 	spin_unlock(&ksm_mmlist_lock);
2716 
2717 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2718 	mmgrab(mm);
2719 
2720 	if (needs_wakeup)
2721 		wake_up_interruptible(&ksm_thread_wait);
2722 
2723 	trace_ksm_enter(mm);
2724 	return 0;
2725 }
2726 
2727 void __ksm_exit(struct mm_struct *mm)
2728 {
2729 	struct ksm_mm_slot *mm_slot;
2730 	struct mm_slot *slot;
2731 	int easy_to_free = 0;
2732 
2733 	/*
2734 	 * This process is exiting: if it's straightforward (as is the
2735 	 * case when ksmd was never running), free mm_slot immediately.
2736 	 * But if it's at the cursor or has rmap_items linked to it, use
2737 	 * mmap_lock to synchronize with any break_cows before pagetables
2738 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2739 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2740 	 */
2741 
2742 	spin_lock(&ksm_mmlist_lock);
2743 	slot = mm_slot_lookup(mm_slots_hash, mm);
2744 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2745 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2746 		if (!mm_slot->rmap_list) {
2747 			hash_del(&slot->hash);
2748 			list_del(&slot->mm_node);
2749 			easy_to_free = 1;
2750 		} else {
2751 			list_move(&slot->mm_node,
2752 				  &ksm_scan.mm_slot->slot.mm_node);
2753 		}
2754 	}
2755 	spin_unlock(&ksm_mmlist_lock);
2756 
2757 	if (easy_to_free) {
2758 		mm_slot_free(mm_slot_cache, mm_slot);
2759 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2760 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2761 		mmdrop(mm);
2762 	} else if (mm_slot) {
2763 		mmap_write_lock(mm);
2764 		mmap_write_unlock(mm);
2765 	}
2766 
2767 	trace_ksm_exit(mm);
2768 }
2769 
2770 struct page *ksm_might_need_to_copy(struct page *page,
2771 			struct vm_area_struct *vma, unsigned long address)
2772 {
2773 	struct folio *folio = page_folio(page);
2774 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2775 	struct page *new_page;
2776 
2777 	if (PageKsm(page)) {
2778 		if (page_stable_node(page) &&
2779 		    !(ksm_run & KSM_RUN_UNMERGE))
2780 			return page;	/* no need to copy it */
2781 	} else if (!anon_vma) {
2782 		return page;		/* no need to copy it */
2783 	} else if (page->index == linear_page_index(vma, address) &&
2784 			anon_vma->root == vma->anon_vma->root) {
2785 		return page;		/* still no need to copy it */
2786 	}
2787 	if (PageHWPoison(page))
2788 		return ERR_PTR(-EHWPOISON);
2789 	if (!PageUptodate(page))
2790 		return page;		/* let do_swap_page report the error */
2791 
2792 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2793 	if (new_page &&
2794 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2795 		put_page(new_page);
2796 		new_page = NULL;
2797 	}
2798 	if (new_page) {
2799 		if (copy_mc_user_highpage(new_page, page, address, vma)) {
2800 			put_page(new_page);
2801 			memory_failure_queue(page_to_pfn(page), 0);
2802 			return ERR_PTR(-EHWPOISON);
2803 		}
2804 		SetPageDirty(new_page);
2805 		__SetPageUptodate(new_page);
2806 		__SetPageLocked(new_page);
2807 #ifdef CONFIG_SWAP
2808 		count_vm_event(KSM_SWPIN_COPY);
2809 #endif
2810 	}
2811 
2812 	return new_page;
2813 }
2814 
2815 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2816 {
2817 	struct ksm_stable_node *stable_node;
2818 	struct ksm_rmap_item *rmap_item;
2819 	int search_new_forks = 0;
2820 
2821 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2822 
2823 	/*
2824 	 * Rely on the page lock to protect against concurrent modifications
2825 	 * to that page's node of the stable tree.
2826 	 */
2827 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2828 
2829 	stable_node = folio_stable_node(folio);
2830 	if (!stable_node)
2831 		return;
2832 again:
2833 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2834 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2835 		struct anon_vma_chain *vmac;
2836 		struct vm_area_struct *vma;
2837 
2838 		cond_resched();
2839 		if (!anon_vma_trylock_read(anon_vma)) {
2840 			if (rwc->try_lock) {
2841 				rwc->contended = true;
2842 				return;
2843 			}
2844 			anon_vma_lock_read(anon_vma);
2845 		}
2846 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2847 					       0, ULONG_MAX) {
2848 			unsigned long addr;
2849 
2850 			cond_resched();
2851 			vma = vmac->vma;
2852 
2853 			/* Ignore the stable/unstable/sqnr flags */
2854 			addr = rmap_item->address & PAGE_MASK;
2855 
2856 			if (addr < vma->vm_start || addr >= vma->vm_end)
2857 				continue;
2858 			/*
2859 			 * Initially we examine only the vma which covers this
2860 			 * rmap_item; but later, if there is still work to do,
2861 			 * we examine covering vmas in other mms: in case they
2862 			 * were forked from the original since ksmd passed.
2863 			 */
2864 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2865 				continue;
2866 
2867 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2868 				continue;
2869 
2870 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2871 				anon_vma_unlock_read(anon_vma);
2872 				return;
2873 			}
2874 			if (rwc->done && rwc->done(folio)) {
2875 				anon_vma_unlock_read(anon_vma);
2876 				return;
2877 			}
2878 		}
2879 		anon_vma_unlock_read(anon_vma);
2880 	}
2881 	if (!search_new_forks++)
2882 		goto again;
2883 }
2884 
2885 #ifdef CONFIG_MEMORY_FAILURE
2886 /*
2887  * Collect processes when the error hit an ksm page.
2888  */
2889 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2890 		       int force_early)
2891 {
2892 	struct ksm_stable_node *stable_node;
2893 	struct ksm_rmap_item *rmap_item;
2894 	struct folio *folio = page_folio(page);
2895 	struct vm_area_struct *vma;
2896 	struct task_struct *tsk;
2897 
2898 	stable_node = folio_stable_node(folio);
2899 	if (!stable_node)
2900 		return;
2901 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2902 		struct anon_vma *av = rmap_item->anon_vma;
2903 
2904 		anon_vma_lock_read(av);
2905 		read_lock(&tasklist_lock);
2906 		for_each_process(tsk) {
2907 			struct anon_vma_chain *vmac;
2908 			unsigned long addr;
2909 			struct task_struct *t =
2910 				task_early_kill(tsk, force_early);
2911 			if (!t)
2912 				continue;
2913 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2914 						       ULONG_MAX)
2915 			{
2916 				vma = vmac->vma;
2917 				if (vma->vm_mm == t->mm) {
2918 					addr = rmap_item->address & PAGE_MASK;
2919 					add_to_kill_ksm(t, page, vma, to_kill,
2920 							addr);
2921 				}
2922 			}
2923 		}
2924 		read_unlock(&tasklist_lock);
2925 		anon_vma_unlock_read(av);
2926 	}
2927 }
2928 #endif
2929 
2930 #ifdef CONFIG_MIGRATION
2931 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2932 {
2933 	struct ksm_stable_node *stable_node;
2934 
2935 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2936 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2937 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2938 
2939 	stable_node = folio_stable_node(folio);
2940 	if (stable_node) {
2941 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2942 		stable_node->kpfn = folio_pfn(newfolio);
2943 		/*
2944 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2945 		 * to make sure that the new stable_node->kpfn is visible
2946 		 * to get_ksm_page() before it can see that folio->mapping
2947 		 * has gone stale (or that folio_test_swapcache has been cleared).
2948 		 */
2949 		smp_wmb();
2950 		set_page_stable_node(&folio->page, NULL);
2951 	}
2952 }
2953 #endif /* CONFIG_MIGRATION */
2954 
2955 #ifdef CONFIG_MEMORY_HOTREMOVE
2956 static void wait_while_offlining(void)
2957 {
2958 	while (ksm_run & KSM_RUN_OFFLINE) {
2959 		mutex_unlock(&ksm_thread_mutex);
2960 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2961 			    TASK_UNINTERRUPTIBLE);
2962 		mutex_lock(&ksm_thread_mutex);
2963 	}
2964 }
2965 
2966 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2967 					 unsigned long start_pfn,
2968 					 unsigned long end_pfn)
2969 {
2970 	if (stable_node->kpfn >= start_pfn &&
2971 	    stable_node->kpfn < end_pfn) {
2972 		/*
2973 		 * Don't get_ksm_page, page has already gone:
2974 		 * which is why we keep kpfn instead of page*
2975 		 */
2976 		remove_node_from_stable_tree(stable_node);
2977 		return true;
2978 	}
2979 	return false;
2980 }
2981 
2982 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2983 					   unsigned long start_pfn,
2984 					   unsigned long end_pfn,
2985 					   struct rb_root *root)
2986 {
2987 	struct ksm_stable_node *dup;
2988 	struct hlist_node *hlist_safe;
2989 
2990 	if (!is_stable_node_chain(stable_node)) {
2991 		VM_BUG_ON(is_stable_node_dup(stable_node));
2992 		return stable_node_dup_remove_range(stable_node, start_pfn,
2993 						    end_pfn);
2994 	}
2995 
2996 	hlist_for_each_entry_safe(dup, hlist_safe,
2997 				  &stable_node->hlist, hlist_dup) {
2998 		VM_BUG_ON(!is_stable_node_dup(dup));
2999 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3000 	}
3001 	if (hlist_empty(&stable_node->hlist)) {
3002 		free_stable_node_chain(stable_node, root);
3003 		return true; /* notify caller that tree was rebalanced */
3004 	} else
3005 		return false;
3006 }
3007 
3008 static void ksm_check_stable_tree(unsigned long start_pfn,
3009 				  unsigned long end_pfn)
3010 {
3011 	struct ksm_stable_node *stable_node, *next;
3012 	struct rb_node *node;
3013 	int nid;
3014 
3015 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3016 		node = rb_first(root_stable_tree + nid);
3017 		while (node) {
3018 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3019 			if (stable_node_chain_remove_range(stable_node,
3020 							   start_pfn, end_pfn,
3021 							   root_stable_tree +
3022 							   nid))
3023 				node = rb_first(root_stable_tree + nid);
3024 			else
3025 				node = rb_next(node);
3026 			cond_resched();
3027 		}
3028 	}
3029 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3030 		if (stable_node->kpfn >= start_pfn &&
3031 		    stable_node->kpfn < end_pfn)
3032 			remove_node_from_stable_tree(stable_node);
3033 		cond_resched();
3034 	}
3035 }
3036 
3037 static int ksm_memory_callback(struct notifier_block *self,
3038 			       unsigned long action, void *arg)
3039 {
3040 	struct memory_notify *mn = arg;
3041 
3042 	switch (action) {
3043 	case MEM_GOING_OFFLINE:
3044 		/*
3045 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3046 		 * and remove_all_stable_nodes() while memory is going offline:
3047 		 * it is unsafe for them to touch the stable tree at this time.
3048 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3049 		 * which do not need the ksm_thread_mutex are all safe.
3050 		 */
3051 		mutex_lock(&ksm_thread_mutex);
3052 		ksm_run |= KSM_RUN_OFFLINE;
3053 		mutex_unlock(&ksm_thread_mutex);
3054 		break;
3055 
3056 	case MEM_OFFLINE:
3057 		/*
3058 		 * Most of the work is done by page migration; but there might
3059 		 * be a few stable_nodes left over, still pointing to struct
3060 		 * pages which have been offlined: prune those from the tree,
3061 		 * otherwise get_ksm_page() might later try to access a
3062 		 * non-existent struct page.
3063 		 */
3064 		ksm_check_stable_tree(mn->start_pfn,
3065 				      mn->start_pfn + mn->nr_pages);
3066 		fallthrough;
3067 	case MEM_CANCEL_OFFLINE:
3068 		mutex_lock(&ksm_thread_mutex);
3069 		ksm_run &= ~KSM_RUN_OFFLINE;
3070 		mutex_unlock(&ksm_thread_mutex);
3071 
3072 		smp_mb();	/* wake_up_bit advises this */
3073 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3074 		break;
3075 	}
3076 	return NOTIFY_OK;
3077 }
3078 #else
3079 static void wait_while_offlining(void)
3080 {
3081 }
3082 #endif /* CONFIG_MEMORY_HOTREMOVE */
3083 
3084 #ifdef CONFIG_PROC_FS
3085 long ksm_process_profit(struct mm_struct *mm)
3086 {
3087 	return mm->ksm_merging_pages * PAGE_SIZE -
3088 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3089 }
3090 #endif /* CONFIG_PROC_FS */
3091 
3092 #ifdef CONFIG_SYSFS
3093 /*
3094  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3095  */
3096 
3097 #define KSM_ATTR_RO(_name) \
3098 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3099 #define KSM_ATTR(_name) \
3100 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3101 
3102 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3103 				    struct kobj_attribute *attr, char *buf)
3104 {
3105 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3106 }
3107 
3108 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3109 				     struct kobj_attribute *attr,
3110 				     const char *buf, size_t count)
3111 {
3112 	unsigned int msecs;
3113 	int err;
3114 
3115 	err = kstrtouint(buf, 10, &msecs);
3116 	if (err)
3117 		return -EINVAL;
3118 
3119 	ksm_thread_sleep_millisecs = msecs;
3120 	wake_up_interruptible(&ksm_iter_wait);
3121 
3122 	return count;
3123 }
3124 KSM_ATTR(sleep_millisecs);
3125 
3126 static ssize_t pages_to_scan_show(struct kobject *kobj,
3127 				  struct kobj_attribute *attr, char *buf)
3128 {
3129 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3130 }
3131 
3132 static ssize_t pages_to_scan_store(struct kobject *kobj,
3133 				   struct kobj_attribute *attr,
3134 				   const char *buf, size_t count)
3135 {
3136 	unsigned int nr_pages;
3137 	int err;
3138 
3139 	err = kstrtouint(buf, 10, &nr_pages);
3140 	if (err)
3141 		return -EINVAL;
3142 
3143 	ksm_thread_pages_to_scan = nr_pages;
3144 
3145 	return count;
3146 }
3147 KSM_ATTR(pages_to_scan);
3148 
3149 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3150 			char *buf)
3151 {
3152 	return sysfs_emit(buf, "%lu\n", ksm_run);
3153 }
3154 
3155 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3156 			 const char *buf, size_t count)
3157 {
3158 	unsigned int flags;
3159 	int err;
3160 
3161 	err = kstrtouint(buf, 10, &flags);
3162 	if (err)
3163 		return -EINVAL;
3164 	if (flags > KSM_RUN_UNMERGE)
3165 		return -EINVAL;
3166 
3167 	/*
3168 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3169 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3170 	 * breaking COW to free the pages_shared (but leaves mm_slots
3171 	 * on the list for when ksmd may be set running again).
3172 	 */
3173 
3174 	mutex_lock(&ksm_thread_mutex);
3175 	wait_while_offlining();
3176 	if (ksm_run != flags) {
3177 		ksm_run = flags;
3178 		if (flags & KSM_RUN_UNMERGE) {
3179 			set_current_oom_origin();
3180 			err = unmerge_and_remove_all_rmap_items();
3181 			clear_current_oom_origin();
3182 			if (err) {
3183 				ksm_run = KSM_RUN_STOP;
3184 				count = err;
3185 			}
3186 		}
3187 	}
3188 	mutex_unlock(&ksm_thread_mutex);
3189 
3190 	if (flags & KSM_RUN_MERGE)
3191 		wake_up_interruptible(&ksm_thread_wait);
3192 
3193 	return count;
3194 }
3195 KSM_ATTR(run);
3196 
3197 #ifdef CONFIG_NUMA
3198 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3199 				       struct kobj_attribute *attr, char *buf)
3200 {
3201 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3202 }
3203 
3204 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3205 				   struct kobj_attribute *attr,
3206 				   const char *buf, size_t count)
3207 {
3208 	int err;
3209 	unsigned long knob;
3210 
3211 	err = kstrtoul(buf, 10, &knob);
3212 	if (err)
3213 		return err;
3214 	if (knob > 1)
3215 		return -EINVAL;
3216 
3217 	mutex_lock(&ksm_thread_mutex);
3218 	wait_while_offlining();
3219 	if (ksm_merge_across_nodes != knob) {
3220 		if (ksm_pages_shared || remove_all_stable_nodes())
3221 			err = -EBUSY;
3222 		else if (root_stable_tree == one_stable_tree) {
3223 			struct rb_root *buf;
3224 			/*
3225 			 * This is the first time that we switch away from the
3226 			 * default of merging across nodes: must now allocate
3227 			 * a buffer to hold as many roots as may be needed.
3228 			 * Allocate stable and unstable together:
3229 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3230 			 */
3231 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3232 				      GFP_KERNEL);
3233 			/* Let us assume that RB_ROOT is NULL is zero */
3234 			if (!buf)
3235 				err = -ENOMEM;
3236 			else {
3237 				root_stable_tree = buf;
3238 				root_unstable_tree = buf + nr_node_ids;
3239 				/* Stable tree is empty but not the unstable */
3240 				root_unstable_tree[0] = one_unstable_tree[0];
3241 			}
3242 		}
3243 		if (!err) {
3244 			ksm_merge_across_nodes = knob;
3245 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3246 		}
3247 	}
3248 	mutex_unlock(&ksm_thread_mutex);
3249 
3250 	return err ? err : count;
3251 }
3252 KSM_ATTR(merge_across_nodes);
3253 #endif
3254 
3255 static ssize_t use_zero_pages_show(struct kobject *kobj,
3256 				   struct kobj_attribute *attr, char *buf)
3257 {
3258 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3259 }
3260 static ssize_t use_zero_pages_store(struct kobject *kobj,
3261 				   struct kobj_attribute *attr,
3262 				   const char *buf, size_t count)
3263 {
3264 	int err;
3265 	bool value;
3266 
3267 	err = kstrtobool(buf, &value);
3268 	if (err)
3269 		return -EINVAL;
3270 
3271 	ksm_use_zero_pages = value;
3272 
3273 	return count;
3274 }
3275 KSM_ATTR(use_zero_pages);
3276 
3277 static ssize_t max_page_sharing_show(struct kobject *kobj,
3278 				     struct kobj_attribute *attr, char *buf)
3279 {
3280 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3281 }
3282 
3283 static ssize_t max_page_sharing_store(struct kobject *kobj,
3284 				      struct kobj_attribute *attr,
3285 				      const char *buf, size_t count)
3286 {
3287 	int err;
3288 	int knob;
3289 
3290 	err = kstrtoint(buf, 10, &knob);
3291 	if (err)
3292 		return err;
3293 	/*
3294 	 * When a KSM page is created it is shared by 2 mappings. This
3295 	 * being a signed comparison, it implicitly verifies it's not
3296 	 * negative.
3297 	 */
3298 	if (knob < 2)
3299 		return -EINVAL;
3300 
3301 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3302 		return count;
3303 
3304 	mutex_lock(&ksm_thread_mutex);
3305 	wait_while_offlining();
3306 	if (ksm_max_page_sharing != knob) {
3307 		if (ksm_pages_shared || remove_all_stable_nodes())
3308 			err = -EBUSY;
3309 		else
3310 			ksm_max_page_sharing = knob;
3311 	}
3312 	mutex_unlock(&ksm_thread_mutex);
3313 
3314 	return err ? err : count;
3315 }
3316 KSM_ATTR(max_page_sharing);
3317 
3318 static ssize_t pages_shared_show(struct kobject *kobj,
3319 				 struct kobj_attribute *attr, char *buf)
3320 {
3321 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3322 }
3323 KSM_ATTR_RO(pages_shared);
3324 
3325 static ssize_t pages_sharing_show(struct kobject *kobj,
3326 				  struct kobj_attribute *attr, char *buf)
3327 {
3328 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3329 }
3330 KSM_ATTR_RO(pages_sharing);
3331 
3332 static ssize_t pages_unshared_show(struct kobject *kobj,
3333 				   struct kobj_attribute *attr, char *buf)
3334 {
3335 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3336 }
3337 KSM_ATTR_RO(pages_unshared);
3338 
3339 static ssize_t pages_volatile_show(struct kobject *kobj,
3340 				   struct kobj_attribute *attr, char *buf)
3341 {
3342 	long ksm_pages_volatile;
3343 
3344 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3345 				- ksm_pages_sharing - ksm_pages_unshared;
3346 	/*
3347 	 * It was not worth any locking to calculate that statistic,
3348 	 * but it might therefore sometimes be negative: conceal that.
3349 	 */
3350 	if (ksm_pages_volatile < 0)
3351 		ksm_pages_volatile = 0;
3352 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3353 }
3354 KSM_ATTR_RO(pages_volatile);
3355 
3356 static ssize_t general_profit_show(struct kobject *kobj,
3357 				   struct kobj_attribute *attr, char *buf)
3358 {
3359 	long general_profit;
3360 
3361 	general_profit = ksm_pages_sharing * PAGE_SIZE -
3362 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3363 
3364 	return sysfs_emit(buf, "%ld\n", general_profit);
3365 }
3366 KSM_ATTR_RO(general_profit);
3367 
3368 static ssize_t stable_node_dups_show(struct kobject *kobj,
3369 				     struct kobj_attribute *attr, char *buf)
3370 {
3371 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3372 }
3373 KSM_ATTR_RO(stable_node_dups);
3374 
3375 static ssize_t stable_node_chains_show(struct kobject *kobj,
3376 				       struct kobj_attribute *attr, char *buf)
3377 {
3378 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3379 }
3380 KSM_ATTR_RO(stable_node_chains);
3381 
3382 static ssize_t
3383 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3384 					struct kobj_attribute *attr,
3385 					char *buf)
3386 {
3387 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3388 }
3389 
3390 static ssize_t
3391 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3392 					 struct kobj_attribute *attr,
3393 					 const char *buf, size_t count)
3394 {
3395 	unsigned int msecs;
3396 	int err;
3397 
3398 	err = kstrtouint(buf, 10, &msecs);
3399 	if (err)
3400 		return -EINVAL;
3401 
3402 	ksm_stable_node_chains_prune_millisecs = msecs;
3403 
3404 	return count;
3405 }
3406 KSM_ATTR(stable_node_chains_prune_millisecs);
3407 
3408 static ssize_t full_scans_show(struct kobject *kobj,
3409 			       struct kobj_attribute *attr, char *buf)
3410 {
3411 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3412 }
3413 KSM_ATTR_RO(full_scans);
3414 
3415 static struct attribute *ksm_attrs[] = {
3416 	&sleep_millisecs_attr.attr,
3417 	&pages_to_scan_attr.attr,
3418 	&run_attr.attr,
3419 	&pages_shared_attr.attr,
3420 	&pages_sharing_attr.attr,
3421 	&pages_unshared_attr.attr,
3422 	&pages_volatile_attr.attr,
3423 	&full_scans_attr.attr,
3424 #ifdef CONFIG_NUMA
3425 	&merge_across_nodes_attr.attr,
3426 #endif
3427 	&max_page_sharing_attr.attr,
3428 	&stable_node_chains_attr.attr,
3429 	&stable_node_dups_attr.attr,
3430 	&stable_node_chains_prune_millisecs_attr.attr,
3431 	&use_zero_pages_attr.attr,
3432 	&general_profit_attr.attr,
3433 	NULL,
3434 };
3435 
3436 static const struct attribute_group ksm_attr_group = {
3437 	.attrs = ksm_attrs,
3438 	.name = "ksm",
3439 };
3440 #endif /* CONFIG_SYSFS */
3441 
3442 static int __init ksm_init(void)
3443 {
3444 	struct task_struct *ksm_thread;
3445 	int err;
3446 
3447 	/* The correct value depends on page size and endianness */
3448 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3449 	/* Default to false for backwards compatibility */
3450 	ksm_use_zero_pages = false;
3451 
3452 	err = ksm_slab_init();
3453 	if (err)
3454 		goto out;
3455 
3456 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3457 	if (IS_ERR(ksm_thread)) {
3458 		pr_err("ksm: creating kthread failed\n");
3459 		err = PTR_ERR(ksm_thread);
3460 		goto out_free;
3461 	}
3462 
3463 #ifdef CONFIG_SYSFS
3464 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3465 	if (err) {
3466 		pr_err("ksm: register sysfs failed\n");
3467 		kthread_stop(ksm_thread);
3468 		goto out_free;
3469 	}
3470 #else
3471 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3472 
3473 #endif /* CONFIG_SYSFS */
3474 
3475 #ifdef CONFIG_MEMORY_HOTREMOVE
3476 	/* There is no significance to this priority 100 */
3477 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3478 #endif
3479 	return 0;
3480 
3481 out_free:
3482 	ksm_slab_free();
3483 out:
3484 	return err;
3485 }
3486 subsys_initcall(ksm_init);
3487