1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/ksm.h> 50 51 #ifdef CONFIG_NUMA 52 #define NUMA(x) (x) 53 #define DO_NUMA(x) do { (x); } while (0) 54 #else 55 #define NUMA(x) (0) 56 #define DO_NUMA(x) do { } while (0) 57 #endif 58 59 /** 60 * DOC: Overview 61 * 62 * A few notes about the KSM scanning process, 63 * to make it easier to understand the data structures below: 64 * 65 * In order to reduce excessive scanning, KSM sorts the memory pages by their 66 * contents into a data structure that holds pointers to the pages' locations. 67 * 68 * Since the contents of the pages may change at any moment, KSM cannot just 69 * insert the pages into a normal sorted tree and expect it to find anything. 70 * Therefore KSM uses two data structures - the stable and the unstable tree. 71 * 72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 73 * by their contents. Because each such page is write-protected, searching on 74 * this tree is fully assured to be working (except when pages are unmapped), 75 * and therefore this tree is called the stable tree. 76 * 77 * The stable tree node includes information required for reverse 78 * mapping from a KSM page to virtual addresses that map this page. 79 * 80 * In order to avoid large latencies of the rmap walks on KSM pages, 81 * KSM maintains two types of nodes in the stable tree: 82 * 83 * * the regular nodes that keep the reverse mapping structures in a 84 * linked list 85 * * the "chains" that link nodes ("dups") that represent the same 86 * write protected memory content, but each "dup" corresponds to a 87 * different KSM page copy of that content 88 * 89 * Internally, the regular nodes, "dups" and "chains" are represented 90 * using the same struct ksm_stable_node structure. 91 * 92 * In addition to the stable tree, KSM uses a second data structure called the 93 * unstable tree: this tree holds pointers to pages which have been found to 94 * be "unchanged for a period of time". The unstable tree sorts these pages 95 * by their contents, but since they are not write-protected, KSM cannot rely 96 * upon the unstable tree to work correctly - the unstable tree is liable to 97 * be corrupted as its contents are modified, and so it is called unstable. 98 * 99 * KSM solves this problem by several techniques: 100 * 101 * 1) The unstable tree is flushed every time KSM completes scanning all 102 * memory areas, and then the tree is rebuilt again from the beginning. 103 * 2) KSM will only insert into the unstable tree, pages whose hash value 104 * has not changed since the previous scan of all memory areas. 105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 106 * colors of the nodes and not on their contents, assuring that even when 107 * the tree gets "corrupted" it won't get out of balance, so scanning time 108 * remains the same (also, searching and inserting nodes in an rbtree uses 109 * the same algorithm, so we have no overhead when we flush and rebuild). 110 * 4) KSM never flushes the stable tree, which means that even if it were to 111 * take 10 attempts to find a page in the unstable tree, once it is found, 112 * it is secured in the stable tree. (When we scan a new page, we first 113 * compare it against the stable tree, and then against the unstable tree.) 114 * 115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 116 * stable trees and multiple unstable trees: one of each for each NUMA node. 117 */ 118 119 /** 120 * struct ksm_mm_slot - ksm information per mm that is being scanned 121 * @slot: hash lookup from mm to mm_slot 122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 123 */ 124 struct ksm_mm_slot { 125 struct mm_slot slot; 126 struct ksm_rmap_item *rmap_list; 127 }; 128 129 /** 130 * struct ksm_scan - cursor for scanning 131 * @mm_slot: the current mm_slot we are scanning 132 * @address: the next address inside that to be scanned 133 * @rmap_list: link to the next rmap to be scanned in the rmap_list 134 * @seqnr: count of completed full scans (needed when removing unstable node) 135 * 136 * There is only the one ksm_scan instance of this cursor structure. 137 */ 138 struct ksm_scan { 139 struct ksm_mm_slot *mm_slot; 140 unsigned long address; 141 struct ksm_rmap_item **rmap_list; 142 unsigned long seqnr; 143 }; 144 145 /** 146 * struct ksm_stable_node - node of the stable rbtree 147 * @node: rb node of this ksm page in the stable tree 148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 150 * @list: linked into migrate_nodes, pending placement in the proper node tree 151 * @hlist: hlist head of rmap_items using this ksm page 152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 153 * @chain_prune_time: time of the last full garbage collection 154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 156 */ 157 struct ksm_stable_node { 158 union { 159 struct rb_node node; /* when node of stable tree */ 160 struct { /* when listed for migration */ 161 struct list_head *head; 162 struct { 163 struct hlist_node hlist_dup; 164 struct list_head list; 165 }; 166 }; 167 }; 168 struct hlist_head hlist; 169 union { 170 unsigned long kpfn; 171 unsigned long chain_prune_time; 172 }; 173 /* 174 * STABLE_NODE_CHAIN can be any negative number in 175 * rmap_hlist_len negative range, but better not -1 to be able 176 * to reliably detect underflows. 177 */ 178 #define STABLE_NODE_CHAIN -1024 179 int rmap_hlist_len; 180 #ifdef CONFIG_NUMA 181 int nid; 182 #endif 183 }; 184 185 /** 186 * struct ksm_rmap_item - reverse mapping item for virtual addresses 187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 189 * @nid: NUMA node id of unstable tree in which linked (may not match page) 190 * @mm: the memory structure this rmap_item is pointing into 191 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 192 * @oldchecksum: previous checksum of the page at that virtual address 193 * @node: rb node of this rmap_item in the unstable tree 194 * @head: pointer to stable_node heading this list in the stable tree 195 * @hlist: link into hlist of rmap_items hanging off that stable_node 196 */ 197 struct ksm_rmap_item { 198 struct ksm_rmap_item *rmap_list; 199 union { 200 struct anon_vma *anon_vma; /* when stable */ 201 #ifdef CONFIG_NUMA 202 int nid; /* when node of unstable tree */ 203 #endif 204 }; 205 struct mm_struct *mm; 206 unsigned long address; /* + low bits used for flags below */ 207 unsigned int oldchecksum; /* when unstable */ 208 union { 209 struct rb_node node; /* when node of unstable tree */ 210 struct { /* when listed from stable tree */ 211 struct ksm_stable_node *head; 212 struct hlist_node hlist; 213 }; 214 }; 215 }; 216 217 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 218 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 219 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 220 221 /* The stable and unstable tree heads */ 222 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 223 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 224 static struct rb_root *root_stable_tree = one_stable_tree; 225 static struct rb_root *root_unstable_tree = one_unstable_tree; 226 227 /* Recently migrated nodes of stable tree, pending proper placement */ 228 static LIST_HEAD(migrate_nodes); 229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 230 231 #define MM_SLOTS_HASH_BITS 10 232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 233 234 static struct ksm_mm_slot ksm_mm_head = { 235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 236 }; 237 static struct ksm_scan ksm_scan = { 238 .mm_slot = &ksm_mm_head, 239 }; 240 241 static struct kmem_cache *rmap_item_cache; 242 static struct kmem_cache *stable_node_cache; 243 static struct kmem_cache *mm_slot_cache; 244 245 /* The number of nodes in the stable tree */ 246 static unsigned long ksm_pages_shared; 247 248 /* The number of page slots additionally sharing those nodes */ 249 static unsigned long ksm_pages_sharing; 250 251 /* The number of nodes in the unstable tree */ 252 static unsigned long ksm_pages_unshared; 253 254 /* The number of rmap_items in use: to calculate pages_volatile */ 255 static unsigned long ksm_rmap_items; 256 257 /* The number of stable_node chains */ 258 static unsigned long ksm_stable_node_chains; 259 260 /* The number of stable_node dups linked to the stable_node chains */ 261 static unsigned long ksm_stable_node_dups; 262 263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 265 266 /* Maximum number of page slots sharing a stable node */ 267 static int ksm_max_page_sharing = 256; 268 269 /* Number of pages ksmd should scan in one batch */ 270 static unsigned int ksm_thread_pages_to_scan = 100; 271 272 /* Milliseconds ksmd should sleep between batches */ 273 static unsigned int ksm_thread_sleep_millisecs = 20; 274 275 /* Checksum of an empty (zeroed) page */ 276 static unsigned int zero_checksum __read_mostly; 277 278 /* Whether to merge empty (zeroed) pages with actual zero pages */ 279 static bool ksm_use_zero_pages __read_mostly; 280 281 #ifdef CONFIG_NUMA 282 /* Zeroed when merging across nodes is not allowed */ 283 static unsigned int ksm_merge_across_nodes = 1; 284 static int ksm_nr_node_ids = 1; 285 #else 286 #define ksm_merge_across_nodes 1U 287 #define ksm_nr_node_ids 1 288 #endif 289 290 #define KSM_RUN_STOP 0 291 #define KSM_RUN_MERGE 1 292 #define KSM_RUN_UNMERGE 2 293 #define KSM_RUN_OFFLINE 4 294 static unsigned long ksm_run = KSM_RUN_STOP; 295 static void wait_while_offlining(void); 296 297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 299 static DEFINE_MUTEX(ksm_thread_mutex); 300 static DEFINE_SPINLOCK(ksm_mmlist_lock); 301 302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 303 sizeof(struct __struct), __alignof__(struct __struct),\ 304 (__flags), NULL) 305 306 static int __init ksm_slab_init(void) 307 { 308 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 309 if (!rmap_item_cache) 310 goto out; 311 312 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 313 if (!stable_node_cache) 314 goto out_free1; 315 316 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 317 if (!mm_slot_cache) 318 goto out_free2; 319 320 return 0; 321 322 out_free2: 323 kmem_cache_destroy(stable_node_cache); 324 out_free1: 325 kmem_cache_destroy(rmap_item_cache); 326 out: 327 return -ENOMEM; 328 } 329 330 static void __init ksm_slab_free(void) 331 { 332 kmem_cache_destroy(mm_slot_cache); 333 kmem_cache_destroy(stable_node_cache); 334 kmem_cache_destroy(rmap_item_cache); 335 mm_slot_cache = NULL; 336 } 337 338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 339 { 340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 341 } 342 343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 344 { 345 return dup->head == STABLE_NODE_DUP_HEAD; 346 } 347 348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 349 struct ksm_stable_node *chain) 350 { 351 VM_BUG_ON(is_stable_node_dup(dup)); 352 dup->head = STABLE_NODE_DUP_HEAD; 353 VM_BUG_ON(!is_stable_node_chain(chain)); 354 hlist_add_head(&dup->hlist_dup, &chain->hlist); 355 ksm_stable_node_dups++; 356 } 357 358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 359 { 360 VM_BUG_ON(!is_stable_node_dup(dup)); 361 hlist_del(&dup->hlist_dup); 362 ksm_stable_node_dups--; 363 } 364 365 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 366 { 367 VM_BUG_ON(is_stable_node_chain(dup)); 368 if (is_stable_node_dup(dup)) 369 __stable_node_dup_del(dup); 370 else 371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 372 #ifdef CONFIG_DEBUG_VM 373 dup->head = NULL; 374 #endif 375 } 376 377 static inline struct ksm_rmap_item *alloc_rmap_item(void) 378 { 379 struct ksm_rmap_item *rmap_item; 380 381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 382 __GFP_NORETRY | __GFP_NOWARN); 383 if (rmap_item) 384 ksm_rmap_items++; 385 return rmap_item; 386 } 387 388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 389 { 390 ksm_rmap_items--; 391 rmap_item->mm->ksm_rmap_items--; 392 rmap_item->mm = NULL; /* debug safety */ 393 kmem_cache_free(rmap_item_cache, rmap_item); 394 } 395 396 static inline struct ksm_stable_node *alloc_stable_node(void) 397 { 398 /* 399 * The allocation can take too long with GFP_KERNEL when memory is under 400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 401 * grants access to memory reserves, helping to avoid this problem. 402 */ 403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 404 } 405 406 static inline void free_stable_node(struct ksm_stable_node *stable_node) 407 { 408 VM_BUG_ON(stable_node->rmap_hlist_len && 409 !is_stable_node_chain(stable_node)); 410 kmem_cache_free(stable_node_cache, stable_node); 411 } 412 413 /* 414 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 415 * page tables after it has passed through ksm_exit() - which, if necessary, 416 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 417 * a special flag: they can just back out as soon as mm_users goes to zero. 418 * ksm_test_exit() is used throughout to make this test for exit: in some 419 * places for correctness, in some places just to avoid unnecessary work. 420 */ 421 static inline bool ksm_test_exit(struct mm_struct *mm) 422 { 423 return atomic_read(&mm->mm_users) == 0; 424 } 425 426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 427 struct mm_walk *walk) 428 { 429 struct page *page = NULL; 430 spinlock_t *ptl; 431 pte_t *pte; 432 int ret; 433 434 if (pmd_leaf(*pmd) || !pmd_present(*pmd)) 435 return 0; 436 437 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 438 if (pte_present(*pte)) { 439 page = vm_normal_page(walk->vma, addr, *pte); 440 } else if (!pte_none(*pte)) { 441 swp_entry_t entry = pte_to_swp_entry(*pte); 442 443 /* 444 * As KSM pages remain KSM pages until freed, no need to wait 445 * here for migration to end. 446 */ 447 if (is_migration_entry(entry)) 448 page = pfn_swap_entry_to_page(entry); 449 } 450 ret = page && PageKsm(page); 451 pte_unmap_unlock(pte, ptl); 452 return ret; 453 } 454 455 static const struct mm_walk_ops break_ksm_ops = { 456 .pmd_entry = break_ksm_pmd_entry, 457 }; 458 459 /* 460 * We use break_ksm to break COW on a ksm page by triggering unsharing, 461 * such that the ksm page will get replaced by an exclusive anonymous page. 462 * 463 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 464 * in case the application has unmapped and remapped mm,addr meanwhile. 465 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 466 * mmap of /dev/mem, where we would not want to touch it. 467 * 468 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 469 * of the process that owns 'vma'. We also do not want to enforce 470 * protection keys here anyway. 471 */ 472 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 473 { 474 vm_fault_t ret = 0; 475 476 do { 477 int ksm_page; 478 479 cond_resched(); 480 ksm_page = walk_page_range_vma(vma, addr, addr + 1, 481 &break_ksm_ops, NULL); 482 if (WARN_ON_ONCE(ksm_page < 0)) 483 return ksm_page; 484 if (!ksm_page) 485 return 0; 486 ret = handle_mm_fault(vma, addr, 487 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 488 NULL); 489 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 490 /* 491 * We must loop until we no longer find a KSM page because 492 * handle_mm_fault() may back out if there's any difficulty e.g. if 493 * pte accessed bit gets updated concurrently. 494 * 495 * VM_FAULT_SIGBUS could occur if we race with truncation of the 496 * backing file, which also invalidates anonymous pages: that's 497 * okay, that truncation will have unmapped the PageKsm for us. 498 * 499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 501 * current task has TIF_MEMDIE set, and will be OOM killed on return 502 * to user; and ksmd, having no mm, would never be chosen for that. 503 * 504 * But if the mm is in a limited mem_cgroup, then the fault may fail 505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 506 * even ksmd can fail in this way - though it's usually breaking ksm 507 * just to undo a merge it made a moment before, so unlikely to oom. 508 * 509 * That's a pity: we might therefore have more kernel pages allocated 510 * than we're counting as nodes in the stable tree; but ksm_do_scan 511 * will retry to break_cow on each pass, so should recover the page 512 * in due course. The important thing is to not let VM_MERGEABLE 513 * be cleared while any such pages might remain in the area. 514 */ 515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 516 } 517 518 static bool vma_ksm_compatible(struct vm_area_struct *vma) 519 { 520 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | 521 VM_IO | VM_DONTEXPAND | VM_HUGETLB | 522 VM_MIXEDMAP)) 523 return false; /* just ignore the advice */ 524 525 if (vma_is_dax(vma)) 526 return false; 527 528 #ifdef VM_SAO 529 if (vma->vm_flags & VM_SAO) 530 return false; 531 #endif 532 #ifdef VM_SPARC_ADI 533 if (vma->vm_flags & VM_SPARC_ADI) 534 return false; 535 #endif 536 537 return true; 538 } 539 540 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 541 unsigned long addr) 542 { 543 struct vm_area_struct *vma; 544 if (ksm_test_exit(mm)) 545 return NULL; 546 vma = vma_lookup(mm, addr); 547 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 548 return NULL; 549 return vma; 550 } 551 552 static void break_cow(struct ksm_rmap_item *rmap_item) 553 { 554 struct mm_struct *mm = rmap_item->mm; 555 unsigned long addr = rmap_item->address; 556 struct vm_area_struct *vma; 557 558 /* 559 * It is not an accident that whenever we want to break COW 560 * to undo, we also need to drop a reference to the anon_vma. 561 */ 562 put_anon_vma(rmap_item->anon_vma); 563 564 mmap_read_lock(mm); 565 vma = find_mergeable_vma(mm, addr); 566 if (vma) 567 break_ksm(vma, addr); 568 mmap_read_unlock(mm); 569 } 570 571 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 572 { 573 struct mm_struct *mm = rmap_item->mm; 574 unsigned long addr = rmap_item->address; 575 struct vm_area_struct *vma; 576 struct page *page; 577 578 mmap_read_lock(mm); 579 vma = find_mergeable_vma(mm, addr); 580 if (!vma) 581 goto out; 582 583 page = follow_page(vma, addr, FOLL_GET); 584 if (IS_ERR_OR_NULL(page)) 585 goto out; 586 if (is_zone_device_page(page)) 587 goto out_putpage; 588 if (PageAnon(page)) { 589 flush_anon_page(vma, page, addr); 590 flush_dcache_page(page); 591 } else { 592 out_putpage: 593 put_page(page); 594 out: 595 page = NULL; 596 } 597 mmap_read_unlock(mm); 598 return page; 599 } 600 601 /* 602 * This helper is used for getting right index into array of tree roots. 603 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 604 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 605 * every node has its own stable and unstable tree. 606 */ 607 static inline int get_kpfn_nid(unsigned long kpfn) 608 { 609 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 610 } 611 612 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 613 struct rb_root *root) 614 { 615 struct ksm_stable_node *chain = alloc_stable_node(); 616 VM_BUG_ON(is_stable_node_chain(dup)); 617 if (likely(chain)) { 618 INIT_HLIST_HEAD(&chain->hlist); 619 chain->chain_prune_time = jiffies; 620 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 621 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 622 chain->nid = NUMA_NO_NODE; /* debug */ 623 #endif 624 ksm_stable_node_chains++; 625 626 /* 627 * Put the stable node chain in the first dimension of 628 * the stable tree and at the same time remove the old 629 * stable node. 630 */ 631 rb_replace_node(&dup->node, &chain->node, root); 632 633 /* 634 * Move the old stable node to the second dimension 635 * queued in the hlist_dup. The invariant is that all 636 * dup stable_nodes in the chain->hlist point to pages 637 * that are write protected and have the exact same 638 * content. 639 */ 640 stable_node_chain_add_dup(dup, chain); 641 } 642 return chain; 643 } 644 645 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 646 struct rb_root *root) 647 { 648 rb_erase(&chain->node, root); 649 free_stable_node(chain); 650 ksm_stable_node_chains--; 651 } 652 653 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 654 { 655 struct ksm_rmap_item *rmap_item; 656 657 /* check it's not STABLE_NODE_CHAIN or negative */ 658 BUG_ON(stable_node->rmap_hlist_len < 0); 659 660 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 661 if (rmap_item->hlist.next) { 662 ksm_pages_sharing--; 663 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 664 } else { 665 ksm_pages_shared--; 666 } 667 668 rmap_item->mm->ksm_merging_pages--; 669 670 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 671 stable_node->rmap_hlist_len--; 672 put_anon_vma(rmap_item->anon_vma); 673 rmap_item->address &= PAGE_MASK; 674 cond_resched(); 675 } 676 677 /* 678 * We need the second aligned pointer of the migrate_nodes 679 * list_head to stay clear from the rb_parent_color union 680 * (aligned and different than any node) and also different 681 * from &migrate_nodes. This will verify that future list.h changes 682 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 683 */ 684 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 685 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 686 687 trace_ksm_remove_ksm_page(stable_node->kpfn); 688 if (stable_node->head == &migrate_nodes) 689 list_del(&stable_node->list); 690 else 691 stable_node_dup_del(stable_node); 692 free_stable_node(stable_node); 693 } 694 695 enum get_ksm_page_flags { 696 GET_KSM_PAGE_NOLOCK, 697 GET_KSM_PAGE_LOCK, 698 GET_KSM_PAGE_TRYLOCK 699 }; 700 701 /* 702 * get_ksm_page: checks if the page indicated by the stable node 703 * is still its ksm page, despite having held no reference to it. 704 * In which case we can trust the content of the page, and it 705 * returns the gotten page; but if the page has now been zapped, 706 * remove the stale node from the stable tree and return NULL. 707 * But beware, the stable node's page might be being migrated. 708 * 709 * You would expect the stable_node to hold a reference to the ksm page. 710 * But if it increments the page's count, swapping out has to wait for 711 * ksmd to come around again before it can free the page, which may take 712 * seconds or even minutes: much too unresponsive. So instead we use a 713 * "keyhole reference": access to the ksm page from the stable node peeps 714 * out through its keyhole to see if that page still holds the right key, 715 * pointing back to this stable node. This relies on freeing a PageAnon 716 * page to reset its page->mapping to NULL, and relies on no other use of 717 * a page to put something that might look like our key in page->mapping. 718 * is on its way to being freed; but it is an anomaly to bear in mind. 719 */ 720 static struct page *get_ksm_page(struct ksm_stable_node *stable_node, 721 enum get_ksm_page_flags flags) 722 { 723 struct page *page; 724 void *expected_mapping; 725 unsigned long kpfn; 726 727 expected_mapping = (void *)((unsigned long)stable_node | 728 PAGE_MAPPING_KSM); 729 again: 730 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 731 page = pfn_to_page(kpfn); 732 if (READ_ONCE(page->mapping) != expected_mapping) 733 goto stale; 734 735 /* 736 * We cannot do anything with the page while its refcount is 0. 737 * Usually 0 means free, or tail of a higher-order page: in which 738 * case this node is no longer referenced, and should be freed; 739 * however, it might mean that the page is under page_ref_freeze(). 740 * The __remove_mapping() case is easy, again the node is now stale; 741 * the same is in reuse_ksm_page() case; but if page is swapcache 742 * in folio_migrate_mapping(), it might still be our page, 743 * in which case it's essential to keep the node. 744 */ 745 while (!get_page_unless_zero(page)) { 746 /* 747 * Another check for page->mapping != expected_mapping would 748 * work here too. We have chosen the !PageSwapCache test to 749 * optimize the common case, when the page is or is about to 750 * be freed: PageSwapCache is cleared (under spin_lock_irq) 751 * in the ref_freeze section of __remove_mapping(); but Anon 752 * page->mapping reset to NULL later, in free_pages_prepare(). 753 */ 754 if (!PageSwapCache(page)) 755 goto stale; 756 cpu_relax(); 757 } 758 759 if (READ_ONCE(page->mapping) != expected_mapping) { 760 put_page(page); 761 goto stale; 762 } 763 764 if (flags == GET_KSM_PAGE_TRYLOCK) { 765 if (!trylock_page(page)) { 766 put_page(page); 767 return ERR_PTR(-EBUSY); 768 } 769 } else if (flags == GET_KSM_PAGE_LOCK) 770 lock_page(page); 771 772 if (flags != GET_KSM_PAGE_NOLOCK) { 773 if (READ_ONCE(page->mapping) != expected_mapping) { 774 unlock_page(page); 775 put_page(page); 776 goto stale; 777 } 778 } 779 return page; 780 781 stale: 782 /* 783 * We come here from above when page->mapping or !PageSwapCache 784 * suggests that the node is stale; but it might be under migration. 785 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 786 * before checking whether node->kpfn has been changed. 787 */ 788 smp_rmb(); 789 if (READ_ONCE(stable_node->kpfn) != kpfn) 790 goto again; 791 remove_node_from_stable_tree(stable_node); 792 return NULL; 793 } 794 795 /* 796 * Removing rmap_item from stable or unstable tree. 797 * This function will clean the information from the stable/unstable tree. 798 */ 799 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 800 { 801 if (rmap_item->address & STABLE_FLAG) { 802 struct ksm_stable_node *stable_node; 803 struct page *page; 804 805 stable_node = rmap_item->head; 806 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 807 if (!page) 808 goto out; 809 810 hlist_del(&rmap_item->hlist); 811 unlock_page(page); 812 put_page(page); 813 814 if (!hlist_empty(&stable_node->hlist)) 815 ksm_pages_sharing--; 816 else 817 ksm_pages_shared--; 818 819 rmap_item->mm->ksm_merging_pages--; 820 821 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 822 stable_node->rmap_hlist_len--; 823 824 put_anon_vma(rmap_item->anon_vma); 825 rmap_item->head = NULL; 826 rmap_item->address &= PAGE_MASK; 827 828 } else if (rmap_item->address & UNSTABLE_FLAG) { 829 unsigned char age; 830 /* 831 * Usually ksmd can and must skip the rb_erase, because 832 * root_unstable_tree was already reset to RB_ROOT. 833 * But be careful when an mm is exiting: do the rb_erase 834 * if this rmap_item was inserted by this scan, rather 835 * than left over from before. 836 */ 837 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 838 BUG_ON(age > 1); 839 if (!age) 840 rb_erase(&rmap_item->node, 841 root_unstable_tree + NUMA(rmap_item->nid)); 842 ksm_pages_unshared--; 843 rmap_item->address &= PAGE_MASK; 844 } 845 out: 846 cond_resched(); /* we're called from many long loops */ 847 } 848 849 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 850 { 851 while (*rmap_list) { 852 struct ksm_rmap_item *rmap_item = *rmap_list; 853 *rmap_list = rmap_item->rmap_list; 854 remove_rmap_item_from_tree(rmap_item); 855 free_rmap_item(rmap_item); 856 } 857 } 858 859 /* 860 * Though it's very tempting to unmerge rmap_items from stable tree rather 861 * than check every pte of a given vma, the locking doesn't quite work for 862 * that - an rmap_item is assigned to the stable tree after inserting ksm 863 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 864 * rmap_items from parent to child at fork time (so as not to waste time 865 * if exit comes before the next scan reaches it). 866 * 867 * Similarly, although we'd like to remove rmap_items (so updating counts 868 * and freeing memory) when unmerging an area, it's easier to leave that 869 * to the next pass of ksmd - consider, for example, how ksmd might be 870 * in cmp_and_merge_page on one of the rmap_items we would be removing. 871 */ 872 static int unmerge_ksm_pages(struct vm_area_struct *vma, 873 unsigned long start, unsigned long end) 874 { 875 unsigned long addr; 876 int err = 0; 877 878 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 879 if (ksm_test_exit(vma->vm_mm)) 880 break; 881 if (signal_pending(current)) 882 err = -ERESTARTSYS; 883 else 884 err = break_ksm(vma, addr); 885 } 886 return err; 887 } 888 889 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 890 { 891 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 892 } 893 894 static inline struct ksm_stable_node *page_stable_node(struct page *page) 895 { 896 return folio_stable_node(page_folio(page)); 897 } 898 899 static inline void set_page_stable_node(struct page *page, 900 struct ksm_stable_node *stable_node) 901 { 902 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 903 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 904 } 905 906 #ifdef CONFIG_SYSFS 907 /* 908 * Only called through the sysfs control interface: 909 */ 910 static int remove_stable_node(struct ksm_stable_node *stable_node) 911 { 912 struct page *page; 913 int err; 914 915 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 916 if (!page) { 917 /* 918 * get_ksm_page did remove_node_from_stable_tree itself. 919 */ 920 return 0; 921 } 922 923 /* 924 * Page could be still mapped if this races with __mmput() running in 925 * between ksm_exit() and exit_mmap(). Just refuse to let 926 * merge_across_nodes/max_page_sharing be switched. 927 */ 928 err = -EBUSY; 929 if (!page_mapped(page)) { 930 /* 931 * The stable node did not yet appear stale to get_ksm_page(), 932 * since that allows for an unmapped ksm page to be recognized 933 * right up until it is freed; but the node is safe to remove. 934 * This page might be in a pagevec waiting to be freed, 935 * or it might be PageSwapCache (perhaps under writeback), 936 * or it might have been removed from swapcache a moment ago. 937 */ 938 set_page_stable_node(page, NULL); 939 remove_node_from_stable_tree(stable_node); 940 err = 0; 941 } 942 943 unlock_page(page); 944 put_page(page); 945 return err; 946 } 947 948 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 949 struct rb_root *root) 950 { 951 struct ksm_stable_node *dup; 952 struct hlist_node *hlist_safe; 953 954 if (!is_stable_node_chain(stable_node)) { 955 VM_BUG_ON(is_stable_node_dup(stable_node)); 956 if (remove_stable_node(stable_node)) 957 return true; 958 else 959 return false; 960 } 961 962 hlist_for_each_entry_safe(dup, hlist_safe, 963 &stable_node->hlist, hlist_dup) { 964 VM_BUG_ON(!is_stable_node_dup(dup)); 965 if (remove_stable_node(dup)) 966 return true; 967 } 968 BUG_ON(!hlist_empty(&stable_node->hlist)); 969 free_stable_node_chain(stable_node, root); 970 return false; 971 } 972 973 static int remove_all_stable_nodes(void) 974 { 975 struct ksm_stable_node *stable_node, *next; 976 int nid; 977 int err = 0; 978 979 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 980 while (root_stable_tree[nid].rb_node) { 981 stable_node = rb_entry(root_stable_tree[nid].rb_node, 982 struct ksm_stable_node, node); 983 if (remove_stable_node_chain(stable_node, 984 root_stable_tree + nid)) { 985 err = -EBUSY; 986 break; /* proceed to next nid */ 987 } 988 cond_resched(); 989 } 990 } 991 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 992 if (remove_stable_node(stable_node)) 993 err = -EBUSY; 994 cond_resched(); 995 } 996 return err; 997 } 998 999 static int unmerge_and_remove_all_rmap_items(void) 1000 { 1001 struct ksm_mm_slot *mm_slot; 1002 struct mm_slot *slot; 1003 struct mm_struct *mm; 1004 struct vm_area_struct *vma; 1005 int err = 0; 1006 1007 spin_lock(&ksm_mmlist_lock); 1008 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1009 struct mm_slot, mm_node); 1010 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1011 spin_unlock(&ksm_mmlist_lock); 1012 1013 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1014 mm_slot = ksm_scan.mm_slot) { 1015 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1016 1017 mm = mm_slot->slot.mm; 1018 mmap_read_lock(mm); 1019 1020 /* 1021 * Exit right away if mm is exiting to avoid lockdep issue in 1022 * the maple tree 1023 */ 1024 if (ksm_test_exit(mm)) 1025 goto mm_exiting; 1026 1027 for_each_vma(vmi, vma) { 1028 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1029 continue; 1030 err = unmerge_ksm_pages(vma, 1031 vma->vm_start, vma->vm_end); 1032 if (err) 1033 goto error; 1034 } 1035 1036 mm_exiting: 1037 remove_trailing_rmap_items(&mm_slot->rmap_list); 1038 mmap_read_unlock(mm); 1039 1040 spin_lock(&ksm_mmlist_lock); 1041 slot = list_entry(mm_slot->slot.mm_node.next, 1042 struct mm_slot, mm_node); 1043 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1044 if (ksm_test_exit(mm)) { 1045 hash_del(&mm_slot->slot.hash); 1046 list_del(&mm_slot->slot.mm_node); 1047 spin_unlock(&ksm_mmlist_lock); 1048 1049 mm_slot_free(mm_slot_cache, mm_slot); 1050 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1051 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1052 mmdrop(mm); 1053 } else 1054 spin_unlock(&ksm_mmlist_lock); 1055 } 1056 1057 /* Clean up stable nodes, but don't worry if some are still busy */ 1058 remove_all_stable_nodes(); 1059 ksm_scan.seqnr = 0; 1060 return 0; 1061 1062 error: 1063 mmap_read_unlock(mm); 1064 spin_lock(&ksm_mmlist_lock); 1065 ksm_scan.mm_slot = &ksm_mm_head; 1066 spin_unlock(&ksm_mmlist_lock); 1067 return err; 1068 } 1069 #endif /* CONFIG_SYSFS */ 1070 1071 static u32 calc_checksum(struct page *page) 1072 { 1073 u32 checksum; 1074 void *addr = kmap_atomic(page); 1075 checksum = xxhash(addr, PAGE_SIZE, 0); 1076 kunmap_atomic(addr); 1077 return checksum; 1078 } 1079 1080 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1081 pte_t *orig_pte) 1082 { 1083 struct mm_struct *mm = vma->vm_mm; 1084 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1085 int swapped; 1086 int err = -EFAULT; 1087 struct mmu_notifier_range range; 1088 bool anon_exclusive; 1089 1090 pvmw.address = page_address_in_vma(page, vma); 1091 if (pvmw.address == -EFAULT) 1092 goto out; 1093 1094 BUG_ON(PageTransCompound(page)); 1095 1096 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1097 pvmw.address + PAGE_SIZE); 1098 mmu_notifier_invalidate_range_start(&range); 1099 1100 if (!page_vma_mapped_walk(&pvmw)) 1101 goto out_mn; 1102 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1103 goto out_unlock; 1104 1105 anon_exclusive = PageAnonExclusive(page); 1106 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1107 anon_exclusive || mm_tlb_flush_pending(mm)) { 1108 pte_t entry; 1109 1110 swapped = PageSwapCache(page); 1111 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1112 /* 1113 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1114 * take any lock, therefore the check that we are going to make 1115 * with the pagecount against the mapcount is racy and 1116 * O_DIRECT can happen right after the check. 1117 * So we clear the pte and flush the tlb before the check 1118 * this assure us that no O_DIRECT can happen after the check 1119 * or in the middle of the check. 1120 * 1121 * No need to notify as we are downgrading page table to read 1122 * only not changing it to point to a new page. 1123 * 1124 * See Documentation/mm/mmu_notifier.rst 1125 */ 1126 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1127 /* 1128 * Check that no O_DIRECT or similar I/O is in progress on the 1129 * page 1130 */ 1131 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1132 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1133 goto out_unlock; 1134 } 1135 1136 /* See page_try_share_anon_rmap(): clear PTE first. */ 1137 if (anon_exclusive && page_try_share_anon_rmap(page)) { 1138 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1139 goto out_unlock; 1140 } 1141 1142 if (pte_dirty(entry)) 1143 set_page_dirty(page); 1144 entry = pte_mkclean(entry); 1145 1146 if (pte_write(entry)) 1147 entry = pte_wrprotect(entry); 1148 1149 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1150 } 1151 *orig_pte = *pvmw.pte; 1152 err = 0; 1153 1154 out_unlock: 1155 page_vma_mapped_walk_done(&pvmw); 1156 out_mn: 1157 mmu_notifier_invalidate_range_end(&range); 1158 out: 1159 return err; 1160 } 1161 1162 /** 1163 * replace_page - replace page in vma by new ksm page 1164 * @vma: vma that holds the pte pointing to page 1165 * @page: the page we are replacing by kpage 1166 * @kpage: the ksm page we replace page by 1167 * @orig_pte: the original value of the pte 1168 * 1169 * Returns 0 on success, -EFAULT on failure. 1170 */ 1171 static int replace_page(struct vm_area_struct *vma, struct page *page, 1172 struct page *kpage, pte_t orig_pte) 1173 { 1174 struct mm_struct *mm = vma->vm_mm; 1175 struct folio *folio; 1176 pmd_t *pmd; 1177 pmd_t pmde; 1178 pte_t *ptep; 1179 pte_t newpte; 1180 spinlock_t *ptl; 1181 unsigned long addr; 1182 int err = -EFAULT; 1183 struct mmu_notifier_range range; 1184 1185 addr = page_address_in_vma(page, vma); 1186 if (addr == -EFAULT) 1187 goto out; 1188 1189 pmd = mm_find_pmd(mm, addr); 1190 if (!pmd) 1191 goto out; 1192 /* 1193 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1194 * without holding anon_vma lock for write. So when looking for a 1195 * genuine pmde (in which to find pte), test present and !THP together. 1196 */ 1197 pmde = *pmd; 1198 barrier(); 1199 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1200 goto out; 1201 1202 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1203 addr + PAGE_SIZE); 1204 mmu_notifier_invalidate_range_start(&range); 1205 1206 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1207 if (!pte_same(*ptep, orig_pte)) { 1208 pte_unmap_unlock(ptep, ptl); 1209 goto out_mn; 1210 } 1211 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1212 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); 1213 1214 /* 1215 * No need to check ksm_use_zero_pages here: we can only have a 1216 * zero_page here if ksm_use_zero_pages was enabled already. 1217 */ 1218 if (!is_zero_pfn(page_to_pfn(kpage))) { 1219 get_page(kpage); 1220 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); 1221 newpte = mk_pte(kpage, vma->vm_page_prot); 1222 } else { 1223 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1224 vma->vm_page_prot)); 1225 /* 1226 * We're replacing an anonymous page with a zero page, which is 1227 * not anonymous. We need to do proper accounting otherwise we 1228 * will get wrong values in /proc, and a BUG message in dmesg 1229 * when tearing down the mm. 1230 */ 1231 dec_mm_counter(mm, MM_ANONPAGES); 1232 } 1233 1234 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1235 /* 1236 * No need to notify as we are replacing a read only page with another 1237 * read only page with the same content. 1238 * 1239 * See Documentation/mm/mmu_notifier.rst 1240 */ 1241 ptep_clear_flush(vma, addr, ptep); 1242 set_pte_at_notify(mm, addr, ptep, newpte); 1243 1244 folio = page_folio(page); 1245 page_remove_rmap(page, vma, false); 1246 if (!folio_mapped(folio)) 1247 folio_free_swap(folio); 1248 folio_put(folio); 1249 1250 pte_unmap_unlock(ptep, ptl); 1251 err = 0; 1252 out_mn: 1253 mmu_notifier_invalidate_range_end(&range); 1254 out: 1255 return err; 1256 } 1257 1258 /* 1259 * try_to_merge_one_page - take two pages and merge them into one 1260 * @vma: the vma that holds the pte pointing to page 1261 * @page: the PageAnon page that we want to replace with kpage 1262 * @kpage: the PageKsm page that we want to map instead of page, 1263 * or NULL the first time when we want to use page as kpage. 1264 * 1265 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1266 */ 1267 static int try_to_merge_one_page(struct vm_area_struct *vma, 1268 struct page *page, struct page *kpage) 1269 { 1270 pte_t orig_pte = __pte(0); 1271 int err = -EFAULT; 1272 1273 if (page == kpage) /* ksm page forked */ 1274 return 0; 1275 1276 if (!PageAnon(page)) 1277 goto out; 1278 1279 /* 1280 * We need the page lock to read a stable PageSwapCache in 1281 * write_protect_page(). We use trylock_page() instead of 1282 * lock_page() because we don't want to wait here - we 1283 * prefer to continue scanning and merging different pages, 1284 * then come back to this page when it is unlocked. 1285 */ 1286 if (!trylock_page(page)) 1287 goto out; 1288 1289 if (PageTransCompound(page)) { 1290 if (split_huge_page(page)) 1291 goto out_unlock; 1292 } 1293 1294 /* 1295 * If this anonymous page is mapped only here, its pte may need 1296 * to be write-protected. If it's mapped elsewhere, all of its 1297 * ptes are necessarily already write-protected. But in either 1298 * case, we need to lock and check page_count is not raised. 1299 */ 1300 if (write_protect_page(vma, page, &orig_pte) == 0) { 1301 if (!kpage) { 1302 /* 1303 * While we hold page lock, upgrade page from 1304 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1305 * stable_tree_insert() will update stable_node. 1306 */ 1307 set_page_stable_node(page, NULL); 1308 mark_page_accessed(page); 1309 /* 1310 * Page reclaim just frees a clean page with no dirty 1311 * ptes: make sure that the ksm page would be swapped. 1312 */ 1313 if (!PageDirty(page)) 1314 SetPageDirty(page); 1315 err = 0; 1316 } else if (pages_identical(page, kpage)) 1317 err = replace_page(vma, page, kpage, orig_pte); 1318 } 1319 1320 out_unlock: 1321 unlock_page(page); 1322 out: 1323 return err; 1324 } 1325 1326 /* 1327 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1328 * but no new kernel page is allocated: kpage must already be a ksm page. 1329 * 1330 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1331 */ 1332 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1333 struct page *page, struct page *kpage) 1334 { 1335 struct mm_struct *mm = rmap_item->mm; 1336 struct vm_area_struct *vma; 1337 int err = -EFAULT; 1338 1339 mmap_read_lock(mm); 1340 vma = find_mergeable_vma(mm, rmap_item->address); 1341 if (!vma) 1342 goto out; 1343 1344 err = try_to_merge_one_page(vma, page, kpage); 1345 if (err) 1346 goto out; 1347 1348 /* Unstable nid is in union with stable anon_vma: remove first */ 1349 remove_rmap_item_from_tree(rmap_item); 1350 1351 /* Must get reference to anon_vma while still holding mmap_lock */ 1352 rmap_item->anon_vma = vma->anon_vma; 1353 get_anon_vma(vma->anon_vma); 1354 out: 1355 mmap_read_unlock(mm); 1356 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1357 rmap_item, mm, err); 1358 return err; 1359 } 1360 1361 /* 1362 * try_to_merge_two_pages - take two identical pages and prepare them 1363 * to be merged into one page. 1364 * 1365 * This function returns the kpage if we successfully merged two identical 1366 * pages into one ksm page, NULL otherwise. 1367 * 1368 * Note that this function upgrades page to ksm page: if one of the pages 1369 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1370 */ 1371 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1372 struct page *page, 1373 struct ksm_rmap_item *tree_rmap_item, 1374 struct page *tree_page) 1375 { 1376 int err; 1377 1378 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1379 if (!err) { 1380 err = try_to_merge_with_ksm_page(tree_rmap_item, 1381 tree_page, page); 1382 /* 1383 * If that fails, we have a ksm page with only one pte 1384 * pointing to it: so break it. 1385 */ 1386 if (err) 1387 break_cow(rmap_item); 1388 } 1389 return err ? NULL : page; 1390 } 1391 1392 static __always_inline 1393 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1394 { 1395 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1396 /* 1397 * Check that at least one mapping still exists, otherwise 1398 * there's no much point to merge and share with this 1399 * stable_node, as the underlying tree_page of the other 1400 * sharer is going to be freed soon. 1401 */ 1402 return stable_node->rmap_hlist_len && 1403 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1404 } 1405 1406 static __always_inline 1407 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1408 { 1409 return __is_page_sharing_candidate(stable_node, 0); 1410 } 1411 1412 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1413 struct ksm_stable_node **_stable_node, 1414 struct rb_root *root, 1415 bool prune_stale_stable_nodes) 1416 { 1417 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1418 struct hlist_node *hlist_safe; 1419 struct page *_tree_page, *tree_page = NULL; 1420 int nr = 0; 1421 int found_rmap_hlist_len; 1422 1423 if (!prune_stale_stable_nodes || 1424 time_before(jiffies, stable_node->chain_prune_time + 1425 msecs_to_jiffies( 1426 ksm_stable_node_chains_prune_millisecs))) 1427 prune_stale_stable_nodes = false; 1428 else 1429 stable_node->chain_prune_time = jiffies; 1430 1431 hlist_for_each_entry_safe(dup, hlist_safe, 1432 &stable_node->hlist, hlist_dup) { 1433 cond_resched(); 1434 /* 1435 * We must walk all stable_node_dup to prune the stale 1436 * stable nodes during lookup. 1437 * 1438 * get_ksm_page can drop the nodes from the 1439 * stable_node->hlist if they point to freed pages 1440 * (that's why we do a _safe walk). The "dup" 1441 * stable_node parameter itself will be freed from 1442 * under us if it returns NULL. 1443 */ 1444 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1445 if (!_tree_page) 1446 continue; 1447 nr += 1; 1448 if (is_page_sharing_candidate(dup)) { 1449 if (!found || 1450 dup->rmap_hlist_len > found_rmap_hlist_len) { 1451 if (found) 1452 put_page(tree_page); 1453 found = dup; 1454 found_rmap_hlist_len = found->rmap_hlist_len; 1455 tree_page = _tree_page; 1456 1457 /* skip put_page for found dup */ 1458 if (!prune_stale_stable_nodes) 1459 break; 1460 continue; 1461 } 1462 } 1463 put_page(_tree_page); 1464 } 1465 1466 if (found) { 1467 /* 1468 * nr is counting all dups in the chain only if 1469 * prune_stale_stable_nodes is true, otherwise we may 1470 * break the loop at nr == 1 even if there are 1471 * multiple entries. 1472 */ 1473 if (prune_stale_stable_nodes && nr == 1) { 1474 /* 1475 * If there's not just one entry it would 1476 * corrupt memory, better BUG_ON. In KSM 1477 * context with no lock held it's not even 1478 * fatal. 1479 */ 1480 BUG_ON(stable_node->hlist.first->next); 1481 1482 /* 1483 * There's just one entry and it is below the 1484 * deduplication limit so drop the chain. 1485 */ 1486 rb_replace_node(&stable_node->node, &found->node, 1487 root); 1488 free_stable_node(stable_node); 1489 ksm_stable_node_chains--; 1490 ksm_stable_node_dups--; 1491 /* 1492 * NOTE: the caller depends on the stable_node 1493 * to be equal to stable_node_dup if the chain 1494 * was collapsed. 1495 */ 1496 *_stable_node = found; 1497 /* 1498 * Just for robustness, as stable_node is 1499 * otherwise left as a stable pointer, the 1500 * compiler shall optimize it away at build 1501 * time. 1502 */ 1503 stable_node = NULL; 1504 } else if (stable_node->hlist.first != &found->hlist_dup && 1505 __is_page_sharing_candidate(found, 1)) { 1506 /* 1507 * If the found stable_node dup can accept one 1508 * more future merge (in addition to the one 1509 * that is underway) and is not at the head of 1510 * the chain, put it there so next search will 1511 * be quicker in the !prune_stale_stable_nodes 1512 * case. 1513 * 1514 * NOTE: it would be inaccurate to use nr > 1 1515 * instead of checking the hlist.first pointer 1516 * directly, because in the 1517 * prune_stale_stable_nodes case "nr" isn't 1518 * the position of the found dup in the chain, 1519 * but the total number of dups in the chain. 1520 */ 1521 hlist_del(&found->hlist_dup); 1522 hlist_add_head(&found->hlist_dup, 1523 &stable_node->hlist); 1524 } 1525 } 1526 1527 *_stable_node_dup = found; 1528 return tree_page; 1529 } 1530 1531 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1532 struct rb_root *root) 1533 { 1534 if (!is_stable_node_chain(stable_node)) 1535 return stable_node; 1536 if (hlist_empty(&stable_node->hlist)) { 1537 free_stable_node_chain(stable_node, root); 1538 return NULL; 1539 } 1540 return hlist_entry(stable_node->hlist.first, 1541 typeof(*stable_node), hlist_dup); 1542 } 1543 1544 /* 1545 * Like for get_ksm_page, this function can free the *_stable_node and 1546 * *_stable_node_dup if the returned tree_page is NULL. 1547 * 1548 * It can also free and overwrite *_stable_node with the found 1549 * stable_node_dup if the chain is collapsed (in which case 1550 * *_stable_node will be equal to *_stable_node_dup like if the chain 1551 * never existed). It's up to the caller to verify tree_page is not 1552 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1553 * 1554 * *_stable_node_dup is really a second output parameter of this 1555 * function and will be overwritten in all cases, the caller doesn't 1556 * need to initialize it. 1557 */ 1558 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1559 struct ksm_stable_node **_stable_node, 1560 struct rb_root *root, 1561 bool prune_stale_stable_nodes) 1562 { 1563 struct ksm_stable_node *stable_node = *_stable_node; 1564 if (!is_stable_node_chain(stable_node)) { 1565 if (is_page_sharing_candidate(stable_node)) { 1566 *_stable_node_dup = stable_node; 1567 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1568 } 1569 /* 1570 * _stable_node_dup set to NULL means the stable_node 1571 * reached the ksm_max_page_sharing limit. 1572 */ 1573 *_stable_node_dup = NULL; 1574 return NULL; 1575 } 1576 return stable_node_dup(_stable_node_dup, _stable_node, root, 1577 prune_stale_stable_nodes); 1578 } 1579 1580 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, 1581 struct ksm_stable_node **s_n, 1582 struct rb_root *root) 1583 { 1584 return __stable_node_chain(s_n_d, s_n, root, true); 1585 } 1586 1587 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, 1588 struct ksm_stable_node *s_n, 1589 struct rb_root *root) 1590 { 1591 struct ksm_stable_node *old_stable_node = s_n; 1592 struct page *tree_page; 1593 1594 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1595 /* not pruning dups so s_n cannot have changed */ 1596 VM_BUG_ON(s_n != old_stable_node); 1597 return tree_page; 1598 } 1599 1600 /* 1601 * stable_tree_search - search for page inside the stable tree 1602 * 1603 * This function checks if there is a page inside the stable tree 1604 * with identical content to the page that we are scanning right now. 1605 * 1606 * This function returns the stable tree node of identical content if found, 1607 * NULL otherwise. 1608 */ 1609 static struct page *stable_tree_search(struct page *page) 1610 { 1611 int nid; 1612 struct rb_root *root; 1613 struct rb_node **new; 1614 struct rb_node *parent; 1615 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1616 struct ksm_stable_node *page_node; 1617 1618 page_node = page_stable_node(page); 1619 if (page_node && page_node->head != &migrate_nodes) { 1620 /* ksm page forked */ 1621 get_page(page); 1622 return page; 1623 } 1624 1625 nid = get_kpfn_nid(page_to_pfn(page)); 1626 root = root_stable_tree + nid; 1627 again: 1628 new = &root->rb_node; 1629 parent = NULL; 1630 1631 while (*new) { 1632 struct page *tree_page; 1633 int ret; 1634 1635 cond_resched(); 1636 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1637 stable_node_any = NULL; 1638 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1639 /* 1640 * NOTE: stable_node may have been freed by 1641 * chain_prune() if the returned stable_node_dup is 1642 * not NULL. stable_node_dup may have been inserted in 1643 * the rbtree instead as a regular stable_node (in 1644 * order to collapse the stable_node chain if a single 1645 * stable_node dup was found in it). In such case the 1646 * stable_node is overwritten by the callee to point 1647 * to the stable_node_dup that was collapsed in the 1648 * stable rbtree and stable_node will be equal to 1649 * stable_node_dup like if the chain never existed. 1650 */ 1651 if (!stable_node_dup) { 1652 /* 1653 * Either all stable_node dups were full in 1654 * this stable_node chain, or this chain was 1655 * empty and should be rb_erased. 1656 */ 1657 stable_node_any = stable_node_dup_any(stable_node, 1658 root); 1659 if (!stable_node_any) { 1660 /* rb_erase just run */ 1661 goto again; 1662 } 1663 /* 1664 * Take any of the stable_node dups page of 1665 * this stable_node chain to let the tree walk 1666 * continue. All KSM pages belonging to the 1667 * stable_node dups in a stable_node chain 1668 * have the same content and they're 1669 * write protected at all times. Any will work 1670 * fine to continue the walk. 1671 */ 1672 tree_page = get_ksm_page(stable_node_any, 1673 GET_KSM_PAGE_NOLOCK); 1674 } 1675 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1676 if (!tree_page) { 1677 /* 1678 * If we walked over a stale stable_node, 1679 * get_ksm_page() will call rb_erase() and it 1680 * may rebalance the tree from under us. So 1681 * restart the search from scratch. Returning 1682 * NULL would be safe too, but we'd generate 1683 * false negative insertions just because some 1684 * stable_node was stale. 1685 */ 1686 goto again; 1687 } 1688 1689 ret = memcmp_pages(page, tree_page); 1690 put_page(tree_page); 1691 1692 parent = *new; 1693 if (ret < 0) 1694 new = &parent->rb_left; 1695 else if (ret > 0) 1696 new = &parent->rb_right; 1697 else { 1698 if (page_node) { 1699 VM_BUG_ON(page_node->head != &migrate_nodes); 1700 /* 1701 * Test if the migrated page should be merged 1702 * into a stable node dup. If the mapcount is 1703 * 1 we can migrate it with another KSM page 1704 * without adding it to the chain. 1705 */ 1706 if (page_mapcount(page) > 1) 1707 goto chain_append; 1708 } 1709 1710 if (!stable_node_dup) { 1711 /* 1712 * If the stable_node is a chain and 1713 * we got a payload match in memcmp 1714 * but we cannot merge the scanned 1715 * page in any of the existing 1716 * stable_node dups because they're 1717 * all full, we need to wait the 1718 * scanned page to find itself a match 1719 * in the unstable tree to create a 1720 * brand new KSM page to add later to 1721 * the dups of this stable_node. 1722 */ 1723 return NULL; 1724 } 1725 1726 /* 1727 * Lock and unlock the stable_node's page (which 1728 * might already have been migrated) so that page 1729 * migration is sure to notice its raised count. 1730 * It would be more elegant to return stable_node 1731 * than kpage, but that involves more changes. 1732 */ 1733 tree_page = get_ksm_page(stable_node_dup, 1734 GET_KSM_PAGE_TRYLOCK); 1735 1736 if (PTR_ERR(tree_page) == -EBUSY) 1737 return ERR_PTR(-EBUSY); 1738 1739 if (unlikely(!tree_page)) 1740 /* 1741 * The tree may have been rebalanced, 1742 * so re-evaluate parent and new. 1743 */ 1744 goto again; 1745 unlock_page(tree_page); 1746 1747 if (get_kpfn_nid(stable_node_dup->kpfn) != 1748 NUMA(stable_node_dup->nid)) { 1749 put_page(tree_page); 1750 goto replace; 1751 } 1752 return tree_page; 1753 } 1754 } 1755 1756 if (!page_node) 1757 return NULL; 1758 1759 list_del(&page_node->list); 1760 DO_NUMA(page_node->nid = nid); 1761 rb_link_node(&page_node->node, parent, new); 1762 rb_insert_color(&page_node->node, root); 1763 out: 1764 if (is_page_sharing_candidate(page_node)) { 1765 get_page(page); 1766 return page; 1767 } else 1768 return NULL; 1769 1770 replace: 1771 /* 1772 * If stable_node was a chain and chain_prune collapsed it, 1773 * stable_node has been updated to be the new regular 1774 * stable_node. A collapse of the chain is indistinguishable 1775 * from the case there was no chain in the stable 1776 * rbtree. Otherwise stable_node is the chain and 1777 * stable_node_dup is the dup to replace. 1778 */ 1779 if (stable_node_dup == stable_node) { 1780 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1781 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1782 /* there is no chain */ 1783 if (page_node) { 1784 VM_BUG_ON(page_node->head != &migrate_nodes); 1785 list_del(&page_node->list); 1786 DO_NUMA(page_node->nid = nid); 1787 rb_replace_node(&stable_node_dup->node, 1788 &page_node->node, 1789 root); 1790 if (is_page_sharing_candidate(page_node)) 1791 get_page(page); 1792 else 1793 page = NULL; 1794 } else { 1795 rb_erase(&stable_node_dup->node, root); 1796 page = NULL; 1797 } 1798 } else { 1799 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1800 __stable_node_dup_del(stable_node_dup); 1801 if (page_node) { 1802 VM_BUG_ON(page_node->head != &migrate_nodes); 1803 list_del(&page_node->list); 1804 DO_NUMA(page_node->nid = nid); 1805 stable_node_chain_add_dup(page_node, stable_node); 1806 if (is_page_sharing_candidate(page_node)) 1807 get_page(page); 1808 else 1809 page = NULL; 1810 } else { 1811 page = NULL; 1812 } 1813 } 1814 stable_node_dup->head = &migrate_nodes; 1815 list_add(&stable_node_dup->list, stable_node_dup->head); 1816 return page; 1817 1818 chain_append: 1819 /* stable_node_dup could be null if it reached the limit */ 1820 if (!stable_node_dup) 1821 stable_node_dup = stable_node_any; 1822 /* 1823 * If stable_node was a chain and chain_prune collapsed it, 1824 * stable_node has been updated to be the new regular 1825 * stable_node. A collapse of the chain is indistinguishable 1826 * from the case there was no chain in the stable 1827 * rbtree. Otherwise stable_node is the chain and 1828 * stable_node_dup is the dup to replace. 1829 */ 1830 if (stable_node_dup == stable_node) { 1831 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1832 /* chain is missing so create it */ 1833 stable_node = alloc_stable_node_chain(stable_node_dup, 1834 root); 1835 if (!stable_node) 1836 return NULL; 1837 } 1838 /* 1839 * Add this stable_node dup that was 1840 * migrated to the stable_node chain 1841 * of the current nid for this page 1842 * content. 1843 */ 1844 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1845 VM_BUG_ON(page_node->head != &migrate_nodes); 1846 list_del(&page_node->list); 1847 DO_NUMA(page_node->nid = nid); 1848 stable_node_chain_add_dup(page_node, stable_node); 1849 goto out; 1850 } 1851 1852 /* 1853 * stable_tree_insert - insert stable tree node pointing to new ksm page 1854 * into the stable tree. 1855 * 1856 * This function returns the stable tree node just allocated on success, 1857 * NULL otherwise. 1858 */ 1859 static struct ksm_stable_node *stable_tree_insert(struct page *kpage) 1860 { 1861 int nid; 1862 unsigned long kpfn; 1863 struct rb_root *root; 1864 struct rb_node **new; 1865 struct rb_node *parent; 1866 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1867 bool need_chain = false; 1868 1869 kpfn = page_to_pfn(kpage); 1870 nid = get_kpfn_nid(kpfn); 1871 root = root_stable_tree + nid; 1872 again: 1873 parent = NULL; 1874 new = &root->rb_node; 1875 1876 while (*new) { 1877 struct page *tree_page; 1878 int ret; 1879 1880 cond_resched(); 1881 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1882 stable_node_any = NULL; 1883 tree_page = chain(&stable_node_dup, stable_node, root); 1884 if (!stable_node_dup) { 1885 /* 1886 * Either all stable_node dups were full in 1887 * this stable_node chain, or this chain was 1888 * empty and should be rb_erased. 1889 */ 1890 stable_node_any = stable_node_dup_any(stable_node, 1891 root); 1892 if (!stable_node_any) { 1893 /* rb_erase just run */ 1894 goto again; 1895 } 1896 /* 1897 * Take any of the stable_node dups page of 1898 * this stable_node chain to let the tree walk 1899 * continue. All KSM pages belonging to the 1900 * stable_node dups in a stable_node chain 1901 * have the same content and they're 1902 * write protected at all times. Any will work 1903 * fine to continue the walk. 1904 */ 1905 tree_page = get_ksm_page(stable_node_any, 1906 GET_KSM_PAGE_NOLOCK); 1907 } 1908 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1909 if (!tree_page) { 1910 /* 1911 * If we walked over a stale stable_node, 1912 * get_ksm_page() will call rb_erase() and it 1913 * may rebalance the tree from under us. So 1914 * restart the search from scratch. Returning 1915 * NULL would be safe too, but we'd generate 1916 * false negative insertions just because some 1917 * stable_node was stale. 1918 */ 1919 goto again; 1920 } 1921 1922 ret = memcmp_pages(kpage, tree_page); 1923 put_page(tree_page); 1924 1925 parent = *new; 1926 if (ret < 0) 1927 new = &parent->rb_left; 1928 else if (ret > 0) 1929 new = &parent->rb_right; 1930 else { 1931 need_chain = true; 1932 break; 1933 } 1934 } 1935 1936 stable_node_dup = alloc_stable_node(); 1937 if (!stable_node_dup) 1938 return NULL; 1939 1940 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1941 stable_node_dup->kpfn = kpfn; 1942 set_page_stable_node(kpage, stable_node_dup); 1943 stable_node_dup->rmap_hlist_len = 0; 1944 DO_NUMA(stable_node_dup->nid = nid); 1945 if (!need_chain) { 1946 rb_link_node(&stable_node_dup->node, parent, new); 1947 rb_insert_color(&stable_node_dup->node, root); 1948 } else { 1949 if (!is_stable_node_chain(stable_node)) { 1950 struct ksm_stable_node *orig = stable_node; 1951 /* chain is missing so create it */ 1952 stable_node = alloc_stable_node_chain(orig, root); 1953 if (!stable_node) { 1954 free_stable_node(stable_node_dup); 1955 return NULL; 1956 } 1957 } 1958 stable_node_chain_add_dup(stable_node_dup, stable_node); 1959 } 1960 1961 return stable_node_dup; 1962 } 1963 1964 /* 1965 * unstable_tree_search_insert - search for identical page, 1966 * else insert rmap_item into the unstable tree. 1967 * 1968 * This function searches for a page in the unstable tree identical to the 1969 * page currently being scanned; and if no identical page is found in the 1970 * tree, we insert rmap_item as a new object into the unstable tree. 1971 * 1972 * This function returns pointer to rmap_item found to be identical 1973 * to the currently scanned page, NULL otherwise. 1974 * 1975 * This function does both searching and inserting, because they share 1976 * the same walking algorithm in an rbtree. 1977 */ 1978 static 1979 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 1980 struct page *page, 1981 struct page **tree_pagep) 1982 { 1983 struct rb_node **new; 1984 struct rb_root *root; 1985 struct rb_node *parent = NULL; 1986 int nid; 1987 1988 nid = get_kpfn_nid(page_to_pfn(page)); 1989 root = root_unstable_tree + nid; 1990 new = &root->rb_node; 1991 1992 while (*new) { 1993 struct ksm_rmap_item *tree_rmap_item; 1994 struct page *tree_page; 1995 int ret; 1996 1997 cond_resched(); 1998 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 1999 tree_page = get_mergeable_page(tree_rmap_item); 2000 if (!tree_page) 2001 return NULL; 2002 2003 /* 2004 * Don't substitute a ksm page for a forked page. 2005 */ 2006 if (page == tree_page) { 2007 put_page(tree_page); 2008 return NULL; 2009 } 2010 2011 ret = memcmp_pages(page, tree_page); 2012 2013 parent = *new; 2014 if (ret < 0) { 2015 put_page(tree_page); 2016 new = &parent->rb_left; 2017 } else if (ret > 0) { 2018 put_page(tree_page); 2019 new = &parent->rb_right; 2020 } else if (!ksm_merge_across_nodes && 2021 page_to_nid(tree_page) != nid) { 2022 /* 2023 * If tree_page has been migrated to another NUMA node, 2024 * it will be flushed out and put in the right unstable 2025 * tree next time: only merge with it when across_nodes. 2026 */ 2027 put_page(tree_page); 2028 return NULL; 2029 } else { 2030 *tree_pagep = tree_page; 2031 return tree_rmap_item; 2032 } 2033 } 2034 2035 rmap_item->address |= UNSTABLE_FLAG; 2036 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2037 DO_NUMA(rmap_item->nid = nid); 2038 rb_link_node(&rmap_item->node, parent, new); 2039 rb_insert_color(&rmap_item->node, root); 2040 2041 ksm_pages_unshared++; 2042 return NULL; 2043 } 2044 2045 /* 2046 * stable_tree_append - add another rmap_item to the linked list of 2047 * rmap_items hanging off a given node of the stable tree, all sharing 2048 * the same ksm page. 2049 */ 2050 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2051 struct ksm_stable_node *stable_node, 2052 bool max_page_sharing_bypass) 2053 { 2054 /* 2055 * rmap won't find this mapping if we don't insert the 2056 * rmap_item in the right stable_node 2057 * duplicate. page_migration could break later if rmap breaks, 2058 * so we can as well crash here. We really need to check for 2059 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2060 * for other negative values as an underflow if detected here 2061 * for the first time (and not when decreasing rmap_hlist_len) 2062 * would be sign of memory corruption in the stable_node. 2063 */ 2064 BUG_ON(stable_node->rmap_hlist_len < 0); 2065 2066 stable_node->rmap_hlist_len++; 2067 if (!max_page_sharing_bypass) 2068 /* possibly non fatal but unexpected overflow, only warn */ 2069 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2070 ksm_max_page_sharing); 2071 2072 rmap_item->head = stable_node; 2073 rmap_item->address |= STABLE_FLAG; 2074 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2075 2076 if (rmap_item->hlist.next) 2077 ksm_pages_sharing++; 2078 else 2079 ksm_pages_shared++; 2080 2081 rmap_item->mm->ksm_merging_pages++; 2082 } 2083 2084 /* 2085 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2086 * if not, compare checksum to previous and if it's the same, see if page can 2087 * be inserted into the unstable tree, or merged with a page already there and 2088 * both transferred to the stable tree. 2089 * 2090 * @page: the page that we are searching identical page to. 2091 * @rmap_item: the reverse mapping into the virtual address of this page 2092 */ 2093 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2094 { 2095 struct mm_struct *mm = rmap_item->mm; 2096 struct ksm_rmap_item *tree_rmap_item; 2097 struct page *tree_page = NULL; 2098 struct ksm_stable_node *stable_node; 2099 struct page *kpage; 2100 unsigned int checksum; 2101 int err; 2102 bool max_page_sharing_bypass = false; 2103 2104 stable_node = page_stable_node(page); 2105 if (stable_node) { 2106 if (stable_node->head != &migrate_nodes && 2107 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2108 NUMA(stable_node->nid)) { 2109 stable_node_dup_del(stable_node); 2110 stable_node->head = &migrate_nodes; 2111 list_add(&stable_node->list, stable_node->head); 2112 } 2113 if (stable_node->head != &migrate_nodes && 2114 rmap_item->head == stable_node) 2115 return; 2116 /* 2117 * If it's a KSM fork, allow it to go over the sharing limit 2118 * without warnings. 2119 */ 2120 if (!is_page_sharing_candidate(stable_node)) 2121 max_page_sharing_bypass = true; 2122 } 2123 2124 /* We first start with searching the page inside the stable tree */ 2125 kpage = stable_tree_search(page); 2126 if (kpage == page && rmap_item->head == stable_node) { 2127 put_page(kpage); 2128 return; 2129 } 2130 2131 remove_rmap_item_from_tree(rmap_item); 2132 2133 if (kpage) { 2134 if (PTR_ERR(kpage) == -EBUSY) 2135 return; 2136 2137 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2138 if (!err) { 2139 /* 2140 * The page was successfully merged: 2141 * add its rmap_item to the stable tree. 2142 */ 2143 lock_page(kpage); 2144 stable_tree_append(rmap_item, page_stable_node(kpage), 2145 max_page_sharing_bypass); 2146 unlock_page(kpage); 2147 } 2148 put_page(kpage); 2149 return; 2150 } 2151 2152 /* 2153 * If the hash value of the page has changed from the last time 2154 * we calculated it, this page is changing frequently: therefore we 2155 * don't want to insert it in the unstable tree, and we don't want 2156 * to waste our time searching for something identical to it there. 2157 */ 2158 checksum = calc_checksum(page); 2159 if (rmap_item->oldchecksum != checksum) { 2160 rmap_item->oldchecksum = checksum; 2161 return; 2162 } 2163 2164 /* 2165 * Same checksum as an empty page. We attempt to merge it with the 2166 * appropriate zero page if the user enabled this via sysfs. 2167 */ 2168 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2169 struct vm_area_struct *vma; 2170 2171 mmap_read_lock(mm); 2172 vma = find_mergeable_vma(mm, rmap_item->address); 2173 if (vma) { 2174 err = try_to_merge_one_page(vma, page, 2175 ZERO_PAGE(rmap_item->address)); 2176 trace_ksm_merge_one_page( 2177 page_to_pfn(ZERO_PAGE(rmap_item->address)), 2178 rmap_item, mm, err); 2179 } else { 2180 /* 2181 * If the vma is out of date, we do not need to 2182 * continue. 2183 */ 2184 err = 0; 2185 } 2186 mmap_read_unlock(mm); 2187 /* 2188 * In case of failure, the page was not really empty, so we 2189 * need to continue. Otherwise we're done. 2190 */ 2191 if (!err) 2192 return; 2193 } 2194 tree_rmap_item = 2195 unstable_tree_search_insert(rmap_item, page, &tree_page); 2196 if (tree_rmap_item) { 2197 bool split; 2198 2199 kpage = try_to_merge_two_pages(rmap_item, page, 2200 tree_rmap_item, tree_page); 2201 /* 2202 * If both pages we tried to merge belong to the same compound 2203 * page, then we actually ended up increasing the reference 2204 * count of the same compound page twice, and split_huge_page 2205 * failed. 2206 * Here we set a flag if that happened, and we use it later to 2207 * try split_huge_page again. Since we call put_page right 2208 * afterwards, the reference count will be correct and 2209 * split_huge_page should succeed. 2210 */ 2211 split = PageTransCompound(page) 2212 && compound_head(page) == compound_head(tree_page); 2213 put_page(tree_page); 2214 if (kpage) { 2215 /* 2216 * The pages were successfully merged: insert new 2217 * node in the stable tree and add both rmap_items. 2218 */ 2219 lock_page(kpage); 2220 stable_node = stable_tree_insert(kpage); 2221 if (stable_node) { 2222 stable_tree_append(tree_rmap_item, stable_node, 2223 false); 2224 stable_tree_append(rmap_item, stable_node, 2225 false); 2226 } 2227 unlock_page(kpage); 2228 2229 /* 2230 * If we fail to insert the page into the stable tree, 2231 * we will have 2 virtual addresses that are pointing 2232 * to a ksm page left outside the stable tree, 2233 * in which case we need to break_cow on both. 2234 */ 2235 if (!stable_node) { 2236 break_cow(tree_rmap_item); 2237 break_cow(rmap_item); 2238 } 2239 } else if (split) { 2240 /* 2241 * We are here if we tried to merge two pages and 2242 * failed because they both belonged to the same 2243 * compound page. We will split the page now, but no 2244 * merging will take place. 2245 * We do not want to add the cost of a full lock; if 2246 * the page is locked, it is better to skip it and 2247 * perhaps try again later. 2248 */ 2249 if (!trylock_page(page)) 2250 return; 2251 split_huge_page(page); 2252 unlock_page(page); 2253 } 2254 } 2255 } 2256 2257 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2258 struct ksm_rmap_item **rmap_list, 2259 unsigned long addr) 2260 { 2261 struct ksm_rmap_item *rmap_item; 2262 2263 while (*rmap_list) { 2264 rmap_item = *rmap_list; 2265 if ((rmap_item->address & PAGE_MASK) == addr) 2266 return rmap_item; 2267 if (rmap_item->address > addr) 2268 break; 2269 *rmap_list = rmap_item->rmap_list; 2270 remove_rmap_item_from_tree(rmap_item); 2271 free_rmap_item(rmap_item); 2272 } 2273 2274 rmap_item = alloc_rmap_item(); 2275 if (rmap_item) { 2276 /* It has already been zeroed */ 2277 rmap_item->mm = mm_slot->slot.mm; 2278 rmap_item->mm->ksm_rmap_items++; 2279 rmap_item->address = addr; 2280 rmap_item->rmap_list = *rmap_list; 2281 *rmap_list = rmap_item; 2282 } 2283 return rmap_item; 2284 } 2285 2286 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2287 { 2288 struct mm_struct *mm; 2289 struct ksm_mm_slot *mm_slot; 2290 struct mm_slot *slot; 2291 struct vm_area_struct *vma; 2292 struct ksm_rmap_item *rmap_item; 2293 struct vma_iterator vmi; 2294 int nid; 2295 2296 if (list_empty(&ksm_mm_head.slot.mm_node)) 2297 return NULL; 2298 2299 mm_slot = ksm_scan.mm_slot; 2300 if (mm_slot == &ksm_mm_head) { 2301 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2302 2303 /* 2304 * A number of pages can hang around indefinitely on per-cpu 2305 * pagevecs, raised page count preventing write_protect_page 2306 * from merging them. Though it doesn't really matter much, 2307 * it is puzzling to see some stuck in pages_volatile until 2308 * other activity jostles them out, and they also prevented 2309 * LTP's KSM test from succeeding deterministically; so drain 2310 * them here (here rather than on entry to ksm_do_scan(), 2311 * so we don't IPI too often when pages_to_scan is set low). 2312 */ 2313 lru_add_drain_all(); 2314 2315 /* 2316 * Whereas stale stable_nodes on the stable_tree itself 2317 * get pruned in the regular course of stable_tree_search(), 2318 * those moved out to the migrate_nodes list can accumulate: 2319 * so prune them once before each full scan. 2320 */ 2321 if (!ksm_merge_across_nodes) { 2322 struct ksm_stable_node *stable_node, *next; 2323 struct page *page; 2324 2325 list_for_each_entry_safe(stable_node, next, 2326 &migrate_nodes, list) { 2327 page = get_ksm_page(stable_node, 2328 GET_KSM_PAGE_NOLOCK); 2329 if (page) 2330 put_page(page); 2331 cond_resched(); 2332 } 2333 } 2334 2335 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2336 root_unstable_tree[nid] = RB_ROOT; 2337 2338 spin_lock(&ksm_mmlist_lock); 2339 slot = list_entry(mm_slot->slot.mm_node.next, 2340 struct mm_slot, mm_node); 2341 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2342 ksm_scan.mm_slot = mm_slot; 2343 spin_unlock(&ksm_mmlist_lock); 2344 /* 2345 * Although we tested list_empty() above, a racing __ksm_exit 2346 * of the last mm on the list may have removed it since then. 2347 */ 2348 if (mm_slot == &ksm_mm_head) 2349 return NULL; 2350 next_mm: 2351 ksm_scan.address = 0; 2352 ksm_scan.rmap_list = &mm_slot->rmap_list; 2353 } 2354 2355 slot = &mm_slot->slot; 2356 mm = slot->mm; 2357 vma_iter_init(&vmi, mm, ksm_scan.address); 2358 2359 mmap_read_lock(mm); 2360 if (ksm_test_exit(mm)) 2361 goto no_vmas; 2362 2363 for_each_vma(vmi, vma) { 2364 if (!(vma->vm_flags & VM_MERGEABLE)) 2365 continue; 2366 if (ksm_scan.address < vma->vm_start) 2367 ksm_scan.address = vma->vm_start; 2368 if (!vma->anon_vma) 2369 ksm_scan.address = vma->vm_end; 2370 2371 while (ksm_scan.address < vma->vm_end) { 2372 if (ksm_test_exit(mm)) 2373 break; 2374 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2375 if (IS_ERR_OR_NULL(*page)) { 2376 ksm_scan.address += PAGE_SIZE; 2377 cond_resched(); 2378 continue; 2379 } 2380 if (is_zone_device_page(*page)) 2381 goto next_page; 2382 if (PageAnon(*page)) { 2383 flush_anon_page(vma, *page, ksm_scan.address); 2384 flush_dcache_page(*page); 2385 rmap_item = get_next_rmap_item(mm_slot, 2386 ksm_scan.rmap_list, ksm_scan.address); 2387 if (rmap_item) { 2388 ksm_scan.rmap_list = 2389 &rmap_item->rmap_list; 2390 ksm_scan.address += PAGE_SIZE; 2391 } else 2392 put_page(*page); 2393 mmap_read_unlock(mm); 2394 return rmap_item; 2395 } 2396 next_page: 2397 put_page(*page); 2398 ksm_scan.address += PAGE_SIZE; 2399 cond_resched(); 2400 } 2401 } 2402 2403 if (ksm_test_exit(mm)) { 2404 no_vmas: 2405 ksm_scan.address = 0; 2406 ksm_scan.rmap_list = &mm_slot->rmap_list; 2407 } 2408 /* 2409 * Nuke all the rmap_items that are above this current rmap: 2410 * because there were no VM_MERGEABLE vmas with such addresses. 2411 */ 2412 remove_trailing_rmap_items(ksm_scan.rmap_list); 2413 2414 spin_lock(&ksm_mmlist_lock); 2415 slot = list_entry(mm_slot->slot.mm_node.next, 2416 struct mm_slot, mm_node); 2417 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2418 if (ksm_scan.address == 0) { 2419 /* 2420 * We've completed a full scan of all vmas, holding mmap_lock 2421 * throughout, and found no VM_MERGEABLE: so do the same as 2422 * __ksm_exit does to remove this mm from all our lists now. 2423 * This applies either when cleaning up after __ksm_exit 2424 * (but beware: we can reach here even before __ksm_exit), 2425 * or when all VM_MERGEABLE areas have been unmapped (and 2426 * mmap_lock then protects against race with MADV_MERGEABLE). 2427 */ 2428 hash_del(&mm_slot->slot.hash); 2429 list_del(&mm_slot->slot.mm_node); 2430 spin_unlock(&ksm_mmlist_lock); 2431 2432 mm_slot_free(mm_slot_cache, mm_slot); 2433 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2434 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2435 mmap_read_unlock(mm); 2436 mmdrop(mm); 2437 } else { 2438 mmap_read_unlock(mm); 2439 /* 2440 * mmap_read_unlock(mm) first because after 2441 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2442 * already have been freed under us by __ksm_exit() 2443 * because the "mm_slot" is still hashed and 2444 * ksm_scan.mm_slot doesn't point to it anymore. 2445 */ 2446 spin_unlock(&ksm_mmlist_lock); 2447 } 2448 2449 /* Repeat until we've completed scanning the whole list */ 2450 mm_slot = ksm_scan.mm_slot; 2451 if (mm_slot != &ksm_mm_head) 2452 goto next_mm; 2453 2454 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2455 ksm_scan.seqnr++; 2456 return NULL; 2457 } 2458 2459 /** 2460 * ksm_do_scan - the ksm scanner main worker function. 2461 * @scan_npages: number of pages we want to scan before we return. 2462 */ 2463 static void ksm_do_scan(unsigned int scan_npages) 2464 { 2465 struct ksm_rmap_item *rmap_item; 2466 struct page *page; 2467 2468 while (scan_npages-- && likely(!freezing(current))) { 2469 cond_resched(); 2470 rmap_item = scan_get_next_rmap_item(&page); 2471 if (!rmap_item) 2472 return; 2473 cmp_and_merge_page(page, rmap_item); 2474 put_page(page); 2475 } 2476 } 2477 2478 static int ksmd_should_run(void) 2479 { 2480 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2481 } 2482 2483 static int ksm_scan_thread(void *nothing) 2484 { 2485 unsigned int sleep_ms; 2486 2487 set_freezable(); 2488 set_user_nice(current, 5); 2489 2490 while (!kthread_should_stop()) { 2491 mutex_lock(&ksm_thread_mutex); 2492 wait_while_offlining(); 2493 if (ksmd_should_run()) 2494 ksm_do_scan(ksm_thread_pages_to_scan); 2495 mutex_unlock(&ksm_thread_mutex); 2496 2497 try_to_freeze(); 2498 2499 if (ksmd_should_run()) { 2500 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2501 wait_event_interruptible_timeout(ksm_iter_wait, 2502 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2503 msecs_to_jiffies(sleep_ms)); 2504 } else { 2505 wait_event_freezable(ksm_thread_wait, 2506 ksmd_should_run() || kthread_should_stop()); 2507 } 2508 } 2509 return 0; 2510 } 2511 2512 static void __ksm_add_vma(struct vm_area_struct *vma) 2513 { 2514 unsigned long vm_flags = vma->vm_flags; 2515 2516 if (vm_flags & VM_MERGEABLE) 2517 return; 2518 2519 if (vma_ksm_compatible(vma)) 2520 vm_flags_set(vma, VM_MERGEABLE); 2521 } 2522 2523 static int __ksm_del_vma(struct vm_area_struct *vma) 2524 { 2525 int err; 2526 2527 if (!(vma->vm_flags & VM_MERGEABLE)) 2528 return 0; 2529 2530 if (vma->anon_vma) { 2531 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end); 2532 if (err) 2533 return err; 2534 } 2535 2536 vm_flags_clear(vma, VM_MERGEABLE); 2537 return 0; 2538 } 2539 /** 2540 * ksm_add_vma - Mark vma as mergeable if compatible 2541 * 2542 * @vma: Pointer to vma 2543 */ 2544 void ksm_add_vma(struct vm_area_struct *vma) 2545 { 2546 struct mm_struct *mm = vma->vm_mm; 2547 2548 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2549 __ksm_add_vma(vma); 2550 } 2551 2552 static void ksm_add_vmas(struct mm_struct *mm) 2553 { 2554 struct vm_area_struct *vma; 2555 2556 VMA_ITERATOR(vmi, mm, 0); 2557 for_each_vma(vmi, vma) 2558 __ksm_add_vma(vma); 2559 } 2560 2561 static int ksm_del_vmas(struct mm_struct *mm) 2562 { 2563 struct vm_area_struct *vma; 2564 int err; 2565 2566 VMA_ITERATOR(vmi, mm, 0); 2567 for_each_vma(vmi, vma) { 2568 err = __ksm_del_vma(vma); 2569 if (err) 2570 return err; 2571 } 2572 return 0; 2573 } 2574 2575 /** 2576 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2577 * compatible VMA's 2578 * 2579 * @mm: Pointer to mm 2580 * 2581 * Returns 0 on success, otherwise error code 2582 */ 2583 int ksm_enable_merge_any(struct mm_struct *mm) 2584 { 2585 int err; 2586 2587 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2588 return 0; 2589 2590 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2591 err = __ksm_enter(mm); 2592 if (err) 2593 return err; 2594 } 2595 2596 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2597 ksm_add_vmas(mm); 2598 2599 return 0; 2600 } 2601 2602 /** 2603 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2604 * previously enabled via ksm_enable_merge_any(). 2605 * 2606 * Disabling merging implies unmerging any merged pages, like setting 2607 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2608 * merging on all compatible VMA's remains enabled. 2609 * 2610 * @mm: Pointer to mm 2611 * 2612 * Returns 0 on success, otherwise error code 2613 */ 2614 int ksm_disable_merge_any(struct mm_struct *mm) 2615 { 2616 int err; 2617 2618 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2619 return 0; 2620 2621 err = ksm_del_vmas(mm); 2622 if (err) { 2623 ksm_add_vmas(mm); 2624 return err; 2625 } 2626 2627 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2628 return 0; 2629 } 2630 2631 int ksm_disable(struct mm_struct *mm) 2632 { 2633 mmap_assert_write_locked(mm); 2634 2635 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2636 return 0; 2637 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2638 return ksm_disable_merge_any(mm); 2639 return ksm_del_vmas(mm); 2640 } 2641 2642 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2643 unsigned long end, int advice, unsigned long *vm_flags) 2644 { 2645 struct mm_struct *mm = vma->vm_mm; 2646 int err; 2647 2648 switch (advice) { 2649 case MADV_MERGEABLE: 2650 if (vma->vm_flags & VM_MERGEABLE) 2651 return 0; 2652 if (!vma_ksm_compatible(vma)) 2653 return 0; 2654 2655 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2656 err = __ksm_enter(mm); 2657 if (err) 2658 return err; 2659 } 2660 2661 *vm_flags |= VM_MERGEABLE; 2662 break; 2663 2664 case MADV_UNMERGEABLE: 2665 if (!(*vm_flags & VM_MERGEABLE)) 2666 return 0; /* just ignore the advice */ 2667 2668 if (vma->anon_vma) { 2669 err = unmerge_ksm_pages(vma, start, end); 2670 if (err) 2671 return err; 2672 } 2673 2674 *vm_flags &= ~VM_MERGEABLE; 2675 break; 2676 } 2677 2678 return 0; 2679 } 2680 EXPORT_SYMBOL_GPL(ksm_madvise); 2681 2682 int __ksm_enter(struct mm_struct *mm) 2683 { 2684 struct ksm_mm_slot *mm_slot; 2685 struct mm_slot *slot; 2686 int needs_wakeup; 2687 2688 mm_slot = mm_slot_alloc(mm_slot_cache); 2689 if (!mm_slot) 2690 return -ENOMEM; 2691 2692 slot = &mm_slot->slot; 2693 2694 /* Check ksm_run too? Would need tighter locking */ 2695 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2696 2697 spin_lock(&ksm_mmlist_lock); 2698 mm_slot_insert(mm_slots_hash, mm, slot); 2699 /* 2700 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2701 * insert just behind the scanning cursor, to let the area settle 2702 * down a little; when fork is followed by immediate exec, we don't 2703 * want ksmd to waste time setting up and tearing down an rmap_list. 2704 * 2705 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2706 * scanning cursor, otherwise KSM pages in newly forked mms will be 2707 * missed: then we might as well insert at the end of the list. 2708 */ 2709 if (ksm_run & KSM_RUN_UNMERGE) 2710 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2711 else 2712 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2713 spin_unlock(&ksm_mmlist_lock); 2714 2715 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2716 mmgrab(mm); 2717 2718 if (needs_wakeup) 2719 wake_up_interruptible(&ksm_thread_wait); 2720 2721 trace_ksm_enter(mm); 2722 return 0; 2723 } 2724 2725 void __ksm_exit(struct mm_struct *mm) 2726 { 2727 struct ksm_mm_slot *mm_slot; 2728 struct mm_slot *slot; 2729 int easy_to_free = 0; 2730 2731 /* 2732 * This process is exiting: if it's straightforward (as is the 2733 * case when ksmd was never running), free mm_slot immediately. 2734 * But if it's at the cursor or has rmap_items linked to it, use 2735 * mmap_lock to synchronize with any break_cows before pagetables 2736 * are freed, and leave the mm_slot on the list for ksmd to free. 2737 * Beware: ksm may already have noticed it exiting and freed the slot. 2738 */ 2739 2740 spin_lock(&ksm_mmlist_lock); 2741 slot = mm_slot_lookup(mm_slots_hash, mm); 2742 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2743 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2744 if (!mm_slot->rmap_list) { 2745 hash_del(&slot->hash); 2746 list_del(&slot->mm_node); 2747 easy_to_free = 1; 2748 } else { 2749 list_move(&slot->mm_node, 2750 &ksm_scan.mm_slot->slot.mm_node); 2751 } 2752 } 2753 spin_unlock(&ksm_mmlist_lock); 2754 2755 if (easy_to_free) { 2756 mm_slot_free(mm_slot_cache, mm_slot); 2757 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2758 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2759 mmdrop(mm); 2760 } else if (mm_slot) { 2761 mmap_write_lock(mm); 2762 mmap_write_unlock(mm); 2763 } 2764 2765 trace_ksm_exit(mm); 2766 } 2767 2768 struct page *ksm_might_need_to_copy(struct page *page, 2769 struct vm_area_struct *vma, unsigned long address) 2770 { 2771 struct folio *folio = page_folio(page); 2772 struct anon_vma *anon_vma = folio_anon_vma(folio); 2773 struct page *new_page; 2774 2775 if (PageKsm(page)) { 2776 if (page_stable_node(page) && 2777 !(ksm_run & KSM_RUN_UNMERGE)) 2778 return page; /* no need to copy it */ 2779 } else if (!anon_vma) { 2780 return page; /* no need to copy it */ 2781 } else if (page->index == linear_page_index(vma, address) && 2782 anon_vma->root == vma->anon_vma->root) { 2783 return page; /* still no need to copy it */ 2784 } 2785 if (!PageUptodate(page)) 2786 return page; /* let do_swap_page report the error */ 2787 2788 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2789 if (new_page && 2790 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2791 put_page(new_page); 2792 new_page = NULL; 2793 } 2794 if (new_page) { 2795 if (copy_mc_user_highpage(new_page, page, address, vma)) { 2796 put_page(new_page); 2797 memory_failure_queue(page_to_pfn(page), 0); 2798 return ERR_PTR(-EHWPOISON); 2799 } 2800 SetPageDirty(new_page); 2801 __SetPageUptodate(new_page); 2802 __SetPageLocked(new_page); 2803 #ifdef CONFIG_SWAP 2804 count_vm_event(KSM_SWPIN_COPY); 2805 #endif 2806 } 2807 2808 return new_page; 2809 } 2810 2811 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2812 { 2813 struct ksm_stable_node *stable_node; 2814 struct ksm_rmap_item *rmap_item; 2815 int search_new_forks = 0; 2816 2817 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2818 2819 /* 2820 * Rely on the page lock to protect against concurrent modifications 2821 * to that page's node of the stable tree. 2822 */ 2823 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2824 2825 stable_node = folio_stable_node(folio); 2826 if (!stable_node) 2827 return; 2828 again: 2829 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2830 struct anon_vma *anon_vma = rmap_item->anon_vma; 2831 struct anon_vma_chain *vmac; 2832 struct vm_area_struct *vma; 2833 2834 cond_resched(); 2835 if (!anon_vma_trylock_read(anon_vma)) { 2836 if (rwc->try_lock) { 2837 rwc->contended = true; 2838 return; 2839 } 2840 anon_vma_lock_read(anon_vma); 2841 } 2842 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2843 0, ULONG_MAX) { 2844 unsigned long addr; 2845 2846 cond_resched(); 2847 vma = vmac->vma; 2848 2849 /* Ignore the stable/unstable/sqnr flags */ 2850 addr = rmap_item->address & PAGE_MASK; 2851 2852 if (addr < vma->vm_start || addr >= vma->vm_end) 2853 continue; 2854 /* 2855 * Initially we examine only the vma which covers this 2856 * rmap_item; but later, if there is still work to do, 2857 * we examine covering vmas in other mms: in case they 2858 * were forked from the original since ksmd passed. 2859 */ 2860 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2861 continue; 2862 2863 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2864 continue; 2865 2866 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2867 anon_vma_unlock_read(anon_vma); 2868 return; 2869 } 2870 if (rwc->done && rwc->done(folio)) { 2871 anon_vma_unlock_read(anon_vma); 2872 return; 2873 } 2874 } 2875 anon_vma_unlock_read(anon_vma); 2876 } 2877 if (!search_new_forks++) 2878 goto again; 2879 } 2880 2881 #ifdef CONFIG_MEMORY_FAILURE 2882 /* 2883 * Collect processes when the error hit an ksm page. 2884 */ 2885 void collect_procs_ksm(struct page *page, struct list_head *to_kill, 2886 int force_early) 2887 { 2888 struct ksm_stable_node *stable_node; 2889 struct ksm_rmap_item *rmap_item; 2890 struct folio *folio = page_folio(page); 2891 struct vm_area_struct *vma; 2892 struct task_struct *tsk; 2893 2894 stable_node = folio_stable_node(folio); 2895 if (!stable_node) 2896 return; 2897 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2898 struct anon_vma *av = rmap_item->anon_vma; 2899 2900 anon_vma_lock_read(av); 2901 read_lock(&tasklist_lock); 2902 for_each_process(tsk) { 2903 struct anon_vma_chain *vmac; 2904 unsigned long addr; 2905 struct task_struct *t = 2906 task_early_kill(tsk, force_early); 2907 if (!t) 2908 continue; 2909 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 2910 ULONG_MAX) 2911 { 2912 vma = vmac->vma; 2913 if (vma->vm_mm == t->mm) { 2914 addr = rmap_item->address & PAGE_MASK; 2915 add_to_kill_ksm(t, page, vma, to_kill, 2916 addr); 2917 } 2918 } 2919 } 2920 read_unlock(&tasklist_lock); 2921 anon_vma_unlock_read(av); 2922 } 2923 } 2924 #endif 2925 2926 #ifdef CONFIG_MIGRATION 2927 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2928 { 2929 struct ksm_stable_node *stable_node; 2930 2931 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2932 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2933 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2934 2935 stable_node = folio_stable_node(folio); 2936 if (stable_node) { 2937 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2938 stable_node->kpfn = folio_pfn(newfolio); 2939 /* 2940 * newfolio->mapping was set in advance; now we need smp_wmb() 2941 * to make sure that the new stable_node->kpfn is visible 2942 * to get_ksm_page() before it can see that folio->mapping 2943 * has gone stale (or that folio_test_swapcache has been cleared). 2944 */ 2945 smp_wmb(); 2946 set_page_stable_node(&folio->page, NULL); 2947 } 2948 } 2949 #endif /* CONFIG_MIGRATION */ 2950 2951 #ifdef CONFIG_MEMORY_HOTREMOVE 2952 static void wait_while_offlining(void) 2953 { 2954 while (ksm_run & KSM_RUN_OFFLINE) { 2955 mutex_unlock(&ksm_thread_mutex); 2956 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2957 TASK_UNINTERRUPTIBLE); 2958 mutex_lock(&ksm_thread_mutex); 2959 } 2960 } 2961 2962 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 2963 unsigned long start_pfn, 2964 unsigned long end_pfn) 2965 { 2966 if (stable_node->kpfn >= start_pfn && 2967 stable_node->kpfn < end_pfn) { 2968 /* 2969 * Don't get_ksm_page, page has already gone: 2970 * which is why we keep kpfn instead of page* 2971 */ 2972 remove_node_from_stable_tree(stable_node); 2973 return true; 2974 } 2975 return false; 2976 } 2977 2978 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 2979 unsigned long start_pfn, 2980 unsigned long end_pfn, 2981 struct rb_root *root) 2982 { 2983 struct ksm_stable_node *dup; 2984 struct hlist_node *hlist_safe; 2985 2986 if (!is_stable_node_chain(stable_node)) { 2987 VM_BUG_ON(is_stable_node_dup(stable_node)); 2988 return stable_node_dup_remove_range(stable_node, start_pfn, 2989 end_pfn); 2990 } 2991 2992 hlist_for_each_entry_safe(dup, hlist_safe, 2993 &stable_node->hlist, hlist_dup) { 2994 VM_BUG_ON(!is_stable_node_dup(dup)); 2995 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2996 } 2997 if (hlist_empty(&stable_node->hlist)) { 2998 free_stable_node_chain(stable_node, root); 2999 return true; /* notify caller that tree was rebalanced */ 3000 } else 3001 return false; 3002 } 3003 3004 static void ksm_check_stable_tree(unsigned long start_pfn, 3005 unsigned long end_pfn) 3006 { 3007 struct ksm_stable_node *stable_node, *next; 3008 struct rb_node *node; 3009 int nid; 3010 3011 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3012 node = rb_first(root_stable_tree + nid); 3013 while (node) { 3014 stable_node = rb_entry(node, struct ksm_stable_node, node); 3015 if (stable_node_chain_remove_range(stable_node, 3016 start_pfn, end_pfn, 3017 root_stable_tree + 3018 nid)) 3019 node = rb_first(root_stable_tree + nid); 3020 else 3021 node = rb_next(node); 3022 cond_resched(); 3023 } 3024 } 3025 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3026 if (stable_node->kpfn >= start_pfn && 3027 stable_node->kpfn < end_pfn) 3028 remove_node_from_stable_tree(stable_node); 3029 cond_resched(); 3030 } 3031 } 3032 3033 static int ksm_memory_callback(struct notifier_block *self, 3034 unsigned long action, void *arg) 3035 { 3036 struct memory_notify *mn = arg; 3037 3038 switch (action) { 3039 case MEM_GOING_OFFLINE: 3040 /* 3041 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3042 * and remove_all_stable_nodes() while memory is going offline: 3043 * it is unsafe for them to touch the stable tree at this time. 3044 * But unmerge_ksm_pages(), rmap lookups and other entry points 3045 * which do not need the ksm_thread_mutex are all safe. 3046 */ 3047 mutex_lock(&ksm_thread_mutex); 3048 ksm_run |= KSM_RUN_OFFLINE; 3049 mutex_unlock(&ksm_thread_mutex); 3050 break; 3051 3052 case MEM_OFFLINE: 3053 /* 3054 * Most of the work is done by page migration; but there might 3055 * be a few stable_nodes left over, still pointing to struct 3056 * pages which have been offlined: prune those from the tree, 3057 * otherwise get_ksm_page() might later try to access a 3058 * non-existent struct page. 3059 */ 3060 ksm_check_stable_tree(mn->start_pfn, 3061 mn->start_pfn + mn->nr_pages); 3062 fallthrough; 3063 case MEM_CANCEL_OFFLINE: 3064 mutex_lock(&ksm_thread_mutex); 3065 ksm_run &= ~KSM_RUN_OFFLINE; 3066 mutex_unlock(&ksm_thread_mutex); 3067 3068 smp_mb(); /* wake_up_bit advises this */ 3069 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3070 break; 3071 } 3072 return NOTIFY_OK; 3073 } 3074 #else 3075 static void wait_while_offlining(void) 3076 { 3077 } 3078 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3079 3080 #ifdef CONFIG_PROC_FS 3081 long ksm_process_profit(struct mm_struct *mm) 3082 { 3083 return mm->ksm_merging_pages * PAGE_SIZE - 3084 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3085 } 3086 #endif /* CONFIG_PROC_FS */ 3087 3088 #ifdef CONFIG_SYSFS 3089 /* 3090 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3091 */ 3092 3093 #define KSM_ATTR_RO(_name) \ 3094 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3095 #define KSM_ATTR(_name) \ 3096 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3097 3098 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3099 struct kobj_attribute *attr, char *buf) 3100 { 3101 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3102 } 3103 3104 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3105 struct kobj_attribute *attr, 3106 const char *buf, size_t count) 3107 { 3108 unsigned int msecs; 3109 int err; 3110 3111 err = kstrtouint(buf, 10, &msecs); 3112 if (err) 3113 return -EINVAL; 3114 3115 ksm_thread_sleep_millisecs = msecs; 3116 wake_up_interruptible(&ksm_iter_wait); 3117 3118 return count; 3119 } 3120 KSM_ATTR(sleep_millisecs); 3121 3122 static ssize_t pages_to_scan_show(struct kobject *kobj, 3123 struct kobj_attribute *attr, char *buf) 3124 { 3125 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3126 } 3127 3128 static ssize_t pages_to_scan_store(struct kobject *kobj, 3129 struct kobj_attribute *attr, 3130 const char *buf, size_t count) 3131 { 3132 unsigned int nr_pages; 3133 int err; 3134 3135 err = kstrtouint(buf, 10, &nr_pages); 3136 if (err) 3137 return -EINVAL; 3138 3139 ksm_thread_pages_to_scan = nr_pages; 3140 3141 return count; 3142 } 3143 KSM_ATTR(pages_to_scan); 3144 3145 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3146 char *buf) 3147 { 3148 return sysfs_emit(buf, "%lu\n", ksm_run); 3149 } 3150 3151 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3152 const char *buf, size_t count) 3153 { 3154 unsigned int flags; 3155 int err; 3156 3157 err = kstrtouint(buf, 10, &flags); 3158 if (err) 3159 return -EINVAL; 3160 if (flags > KSM_RUN_UNMERGE) 3161 return -EINVAL; 3162 3163 /* 3164 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3165 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3166 * breaking COW to free the pages_shared (but leaves mm_slots 3167 * on the list for when ksmd may be set running again). 3168 */ 3169 3170 mutex_lock(&ksm_thread_mutex); 3171 wait_while_offlining(); 3172 if (ksm_run != flags) { 3173 ksm_run = flags; 3174 if (flags & KSM_RUN_UNMERGE) { 3175 set_current_oom_origin(); 3176 err = unmerge_and_remove_all_rmap_items(); 3177 clear_current_oom_origin(); 3178 if (err) { 3179 ksm_run = KSM_RUN_STOP; 3180 count = err; 3181 } 3182 } 3183 } 3184 mutex_unlock(&ksm_thread_mutex); 3185 3186 if (flags & KSM_RUN_MERGE) 3187 wake_up_interruptible(&ksm_thread_wait); 3188 3189 return count; 3190 } 3191 KSM_ATTR(run); 3192 3193 #ifdef CONFIG_NUMA 3194 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3195 struct kobj_attribute *attr, char *buf) 3196 { 3197 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3198 } 3199 3200 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3201 struct kobj_attribute *attr, 3202 const char *buf, size_t count) 3203 { 3204 int err; 3205 unsigned long knob; 3206 3207 err = kstrtoul(buf, 10, &knob); 3208 if (err) 3209 return err; 3210 if (knob > 1) 3211 return -EINVAL; 3212 3213 mutex_lock(&ksm_thread_mutex); 3214 wait_while_offlining(); 3215 if (ksm_merge_across_nodes != knob) { 3216 if (ksm_pages_shared || remove_all_stable_nodes()) 3217 err = -EBUSY; 3218 else if (root_stable_tree == one_stable_tree) { 3219 struct rb_root *buf; 3220 /* 3221 * This is the first time that we switch away from the 3222 * default of merging across nodes: must now allocate 3223 * a buffer to hold as many roots as may be needed. 3224 * Allocate stable and unstable together: 3225 * MAXSMP NODES_SHIFT 10 will use 16kB. 3226 */ 3227 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3228 GFP_KERNEL); 3229 /* Let us assume that RB_ROOT is NULL is zero */ 3230 if (!buf) 3231 err = -ENOMEM; 3232 else { 3233 root_stable_tree = buf; 3234 root_unstable_tree = buf + nr_node_ids; 3235 /* Stable tree is empty but not the unstable */ 3236 root_unstable_tree[0] = one_unstable_tree[0]; 3237 } 3238 } 3239 if (!err) { 3240 ksm_merge_across_nodes = knob; 3241 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3242 } 3243 } 3244 mutex_unlock(&ksm_thread_mutex); 3245 3246 return err ? err : count; 3247 } 3248 KSM_ATTR(merge_across_nodes); 3249 #endif 3250 3251 static ssize_t use_zero_pages_show(struct kobject *kobj, 3252 struct kobj_attribute *attr, char *buf) 3253 { 3254 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3255 } 3256 static ssize_t use_zero_pages_store(struct kobject *kobj, 3257 struct kobj_attribute *attr, 3258 const char *buf, size_t count) 3259 { 3260 int err; 3261 bool value; 3262 3263 err = kstrtobool(buf, &value); 3264 if (err) 3265 return -EINVAL; 3266 3267 ksm_use_zero_pages = value; 3268 3269 return count; 3270 } 3271 KSM_ATTR(use_zero_pages); 3272 3273 static ssize_t max_page_sharing_show(struct kobject *kobj, 3274 struct kobj_attribute *attr, char *buf) 3275 { 3276 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3277 } 3278 3279 static ssize_t max_page_sharing_store(struct kobject *kobj, 3280 struct kobj_attribute *attr, 3281 const char *buf, size_t count) 3282 { 3283 int err; 3284 int knob; 3285 3286 err = kstrtoint(buf, 10, &knob); 3287 if (err) 3288 return err; 3289 /* 3290 * When a KSM page is created it is shared by 2 mappings. This 3291 * being a signed comparison, it implicitly verifies it's not 3292 * negative. 3293 */ 3294 if (knob < 2) 3295 return -EINVAL; 3296 3297 if (READ_ONCE(ksm_max_page_sharing) == knob) 3298 return count; 3299 3300 mutex_lock(&ksm_thread_mutex); 3301 wait_while_offlining(); 3302 if (ksm_max_page_sharing != knob) { 3303 if (ksm_pages_shared || remove_all_stable_nodes()) 3304 err = -EBUSY; 3305 else 3306 ksm_max_page_sharing = knob; 3307 } 3308 mutex_unlock(&ksm_thread_mutex); 3309 3310 return err ? err : count; 3311 } 3312 KSM_ATTR(max_page_sharing); 3313 3314 static ssize_t pages_shared_show(struct kobject *kobj, 3315 struct kobj_attribute *attr, char *buf) 3316 { 3317 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3318 } 3319 KSM_ATTR_RO(pages_shared); 3320 3321 static ssize_t pages_sharing_show(struct kobject *kobj, 3322 struct kobj_attribute *attr, char *buf) 3323 { 3324 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3325 } 3326 KSM_ATTR_RO(pages_sharing); 3327 3328 static ssize_t pages_unshared_show(struct kobject *kobj, 3329 struct kobj_attribute *attr, char *buf) 3330 { 3331 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3332 } 3333 KSM_ATTR_RO(pages_unshared); 3334 3335 static ssize_t pages_volatile_show(struct kobject *kobj, 3336 struct kobj_attribute *attr, char *buf) 3337 { 3338 long ksm_pages_volatile; 3339 3340 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3341 - ksm_pages_sharing - ksm_pages_unshared; 3342 /* 3343 * It was not worth any locking to calculate that statistic, 3344 * but it might therefore sometimes be negative: conceal that. 3345 */ 3346 if (ksm_pages_volatile < 0) 3347 ksm_pages_volatile = 0; 3348 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3349 } 3350 KSM_ATTR_RO(pages_volatile); 3351 3352 static ssize_t general_profit_show(struct kobject *kobj, 3353 struct kobj_attribute *attr, char *buf) 3354 { 3355 long general_profit; 3356 3357 general_profit = ksm_pages_sharing * PAGE_SIZE - 3358 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3359 3360 return sysfs_emit(buf, "%ld\n", general_profit); 3361 } 3362 KSM_ATTR_RO(general_profit); 3363 3364 static ssize_t stable_node_dups_show(struct kobject *kobj, 3365 struct kobj_attribute *attr, char *buf) 3366 { 3367 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3368 } 3369 KSM_ATTR_RO(stable_node_dups); 3370 3371 static ssize_t stable_node_chains_show(struct kobject *kobj, 3372 struct kobj_attribute *attr, char *buf) 3373 { 3374 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3375 } 3376 KSM_ATTR_RO(stable_node_chains); 3377 3378 static ssize_t 3379 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3380 struct kobj_attribute *attr, 3381 char *buf) 3382 { 3383 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3384 } 3385 3386 static ssize_t 3387 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3388 struct kobj_attribute *attr, 3389 const char *buf, size_t count) 3390 { 3391 unsigned int msecs; 3392 int err; 3393 3394 err = kstrtouint(buf, 10, &msecs); 3395 if (err) 3396 return -EINVAL; 3397 3398 ksm_stable_node_chains_prune_millisecs = msecs; 3399 3400 return count; 3401 } 3402 KSM_ATTR(stable_node_chains_prune_millisecs); 3403 3404 static ssize_t full_scans_show(struct kobject *kobj, 3405 struct kobj_attribute *attr, char *buf) 3406 { 3407 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3408 } 3409 KSM_ATTR_RO(full_scans); 3410 3411 static struct attribute *ksm_attrs[] = { 3412 &sleep_millisecs_attr.attr, 3413 &pages_to_scan_attr.attr, 3414 &run_attr.attr, 3415 &pages_shared_attr.attr, 3416 &pages_sharing_attr.attr, 3417 &pages_unshared_attr.attr, 3418 &pages_volatile_attr.attr, 3419 &full_scans_attr.attr, 3420 #ifdef CONFIG_NUMA 3421 &merge_across_nodes_attr.attr, 3422 #endif 3423 &max_page_sharing_attr.attr, 3424 &stable_node_chains_attr.attr, 3425 &stable_node_dups_attr.attr, 3426 &stable_node_chains_prune_millisecs_attr.attr, 3427 &use_zero_pages_attr.attr, 3428 &general_profit_attr.attr, 3429 NULL, 3430 }; 3431 3432 static const struct attribute_group ksm_attr_group = { 3433 .attrs = ksm_attrs, 3434 .name = "ksm", 3435 }; 3436 #endif /* CONFIG_SYSFS */ 3437 3438 static int __init ksm_init(void) 3439 { 3440 struct task_struct *ksm_thread; 3441 int err; 3442 3443 /* The correct value depends on page size and endianness */ 3444 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3445 /* Default to false for backwards compatibility */ 3446 ksm_use_zero_pages = false; 3447 3448 err = ksm_slab_init(); 3449 if (err) 3450 goto out; 3451 3452 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3453 if (IS_ERR(ksm_thread)) { 3454 pr_err("ksm: creating kthread failed\n"); 3455 err = PTR_ERR(ksm_thread); 3456 goto out_free; 3457 } 3458 3459 #ifdef CONFIG_SYSFS 3460 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3461 if (err) { 3462 pr_err("ksm: register sysfs failed\n"); 3463 kthread_stop(ksm_thread); 3464 goto out_free; 3465 } 3466 #else 3467 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3468 3469 #endif /* CONFIG_SYSFS */ 3470 3471 #ifdef CONFIG_MEMORY_HOTREMOVE 3472 /* There is no significance to this priority 100 */ 3473 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3474 #endif 3475 return 0; 3476 3477 out_free: 3478 ksm_slab_free(); 3479 out: 3480 return err; 3481 } 3482 subsys_initcall(ksm_init); 3483