xref: /openbmc/linux/mm/ksm.c (revision bc5aa3a0)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)		(x)
46 #define DO_NUMA(x)	do { (x); } while (0)
47 #else
48 #define NUMA(x)		(0)
49 #define DO_NUMA(x)	do { } while (0)
50 #endif
51 
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94 
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103 	struct hlist_node link;
104 	struct list_head mm_list;
105 	struct rmap_item *rmap_list;
106 	struct mm_struct *mm;
107 };
108 
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119 	struct mm_slot *mm_slot;
120 	unsigned long address;
121 	struct rmap_item **rmap_list;
122 	unsigned long seqnr;
123 };
124 
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135 	union {
136 		struct rb_node node;	/* when node of stable tree */
137 		struct {		/* when listed for migration */
138 			struct list_head *head;
139 			struct list_head list;
140 		};
141 	};
142 	struct hlist_head hlist;
143 	unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 	int nid;
146 #endif
147 };
148 
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162 	struct rmap_item *rmap_list;
163 	union {
164 		struct anon_vma *anon_vma;	/* when stable */
165 #ifdef CONFIG_NUMA
166 		int nid;		/* when node of unstable tree */
167 #endif
168 	};
169 	struct mm_struct *mm;
170 	unsigned long address;		/* + low bits used for flags below */
171 	unsigned int oldchecksum;	/* when unstable */
172 	union {
173 		struct rb_node node;	/* when node of unstable tree */
174 		struct {		/* when listed from stable tree */
175 			struct stable_node *head;
176 			struct hlist_node hlist;
177 		};
178 	};
179 };
180 
181 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
184 
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190 
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193 
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196 
197 static struct mm_slot ksm_mm_head = {
198 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 	.mm_slot = &ksm_mm_head,
202 };
203 
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207 
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210 
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213 
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216 
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219 
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222 
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225 
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes	1U
232 #define ksm_nr_node_ids		1
233 #endif
234 
235 #define KSM_RUN_STOP	0
236 #define KSM_RUN_MERGE	1
237 #define KSM_RUN_UNMERGE	2
238 #define KSM_RUN_OFFLINE	4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241 
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245 
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 		sizeof(struct __struct), __alignof__(struct __struct),\
248 		(__flags), NULL)
249 
250 static int __init ksm_slab_init(void)
251 {
252 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 	if (!rmap_item_cache)
254 		goto out;
255 
256 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 	if (!stable_node_cache)
258 		goto out_free1;
259 
260 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 	if (!mm_slot_cache)
262 		goto out_free2;
263 
264 	return 0;
265 
266 out_free2:
267 	kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 	kmem_cache_destroy(rmap_item_cache);
270 out:
271 	return -ENOMEM;
272 }
273 
274 static void __init ksm_slab_free(void)
275 {
276 	kmem_cache_destroy(mm_slot_cache);
277 	kmem_cache_destroy(stable_node_cache);
278 	kmem_cache_destroy(rmap_item_cache);
279 	mm_slot_cache = NULL;
280 }
281 
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 	struct rmap_item *rmap_item;
285 
286 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 	if (rmap_item)
288 		ksm_rmap_items++;
289 	return rmap_item;
290 }
291 
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294 	ksm_rmap_items--;
295 	rmap_item->mm = NULL;	/* debug safety */
296 	kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298 
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303 
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306 	kmem_cache_free(stable_node_cache, stable_node);
307 }
308 
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311 	if (!mm_slot_cache)	/* initialization failed */
312 		return NULL;
313 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315 
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318 	kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320 
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323 	struct mm_slot *slot;
324 
325 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326 		if (slot->mm == mm)
327 			return slot;
328 
329 	return NULL;
330 }
331 
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 				    struct mm_slot *mm_slot)
334 {
335 	mm_slot->mm = mm;
336 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338 
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349 	return atomic_read(&mm->mm_users) == 0;
350 }
351 
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
356  *		put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  *
363  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
364  * of the process that owns 'vma'.  We also do not want to enforce
365  * protection keys here anyway.
366  */
367 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
368 {
369 	struct page *page;
370 	int ret = 0;
371 
372 	do {
373 		cond_resched();
374 		page = follow_page(vma, addr,
375 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
376 		if (IS_ERR_OR_NULL(page))
377 			break;
378 		if (PageKsm(page))
379 			ret = handle_mm_fault(vma, addr,
380 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
381 		else
382 			ret = VM_FAULT_WRITE;
383 		put_page(page);
384 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
385 	/*
386 	 * We must loop because handle_mm_fault() may back out if there's
387 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
388 	 *
389 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
390 	 * COW has been broken, even if the vma does not permit VM_WRITE;
391 	 * but note that a concurrent fault might break PageKsm for us.
392 	 *
393 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
394 	 * backing file, which also invalidates anonymous pages: that's
395 	 * okay, that truncation will have unmapped the PageKsm for us.
396 	 *
397 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
398 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
399 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
400 	 * to user; and ksmd, having no mm, would never be chosen for that.
401 	 *
402 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
403 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
404 	 * even ksmd can fail in this way - though it's usually breaking ksm
405 	 * just to undo a merge it made a moment before, so unlikely to oom.
406 	 *
407 	 * That's a pity: we might therefore have more kernel pages allocated
408 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
409 	 * will retry to break_cow on each pass, so should recover the page
410 	 * in due course.  The important thing is to not let VM_MERGEABLE
411 	 * be cleared while any such pages might remain in the area.
412 	 */
413 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
414 }
415 
416 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
417 		unsigned long addr)
418 {
419 	struct vm_area_struct *vma;
420 	if (ksm_test_exit(mm))
421 		return NULL;
422 	vma = find_vma(mm, addr);
423 	if (!vma || vma->vm_start > addr)
424 		return NULL;
425 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
426 		return NULL;
427 	return vma;
428 }
429 
430 static void break_cow(struct rmap_item *rmap_item)
431 {
432 	struct mm_struct *mm = rmap_item->mm;
433 	unsigned long addr = rmap_item->address;
434 	struct vm_area_struct *vma;
435 
436 	/*
437 	 * It is not an accident that whenever we want to break COW
438 	 * to undo, we also need to drop a reference to the anon_vma.
439 	 */
440 	put_anon_vma(rmap_item->anon_vma);
441 
442 	down_read(&mm->mmap_sem);
443 	vma = find_mergeable_vma(mm, addr);
444 	if (vma)
445 		break_ksm(vma, addr);
446 	up_read(&mm->mmap_sem);
447 }
448 
449 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
450 {
451 	struct mm_struct *mm = rmap_item->mm;
452 	unsigned long addr = rmap_item->address;
453 	struct vm_area_struct *vma;
454 	struct page *page;
455 
456 	down_read(&mm->mmap_sem);
457 	vma = find_mergeable_vma(mm, addr);
458 	if (!vma)
459 		goto out;
460 
461 	page = follow_page(vma, addr, FOLL_GET);
462 	if (IS_ERR_OR_NULL(page))
463 		goto out;
464 	if (PageAnon(page)) {
465 		flush_anon_page(vma, page, addr);
466 		flush_dcache_page(page);
467 	} else {
468 		put_page(page);
469 out:
470 		page = NULL;
471 	}
472 	up_read(&mm->mmap_sem);
473 	return page;
474 }
475 
476 /*
477  * This helper is used for getting right index into array of tree roots.
478  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
479  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
480  * every node has its own stable and unstable tree.
481  */
482 static inline int get_kpfn_nid(unsigned long kpfn)
483 {
484 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
485 }
486 
487 static void remove_node_from_stable_tree(struct stable_node *stable_node)
488 {
489 	struct rmap_item *rmap_item;
490 
491 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
492 		if (rmap_item->hlist.next)
493 			ksm_pages_sharing--;
494 		else
495 			ksm_pages_shared--;
496 		put_anon_vma(rmap_item->anon_vma);
497 		rmap_item->address &= PAGE_MASK;
498 		cond_resched();
499 	}
500 
501 	if (stable_node->head == &migrate_nodes)
502 		list_del(&stable_node->list);
503 	else
504 		rb_erase(&stable_node->node,
505 			 root_stable_tree + NUMA(stable_node->nid));
506 	free_stable_node(stable_node);
507 }
508 
509 /*
510  * get_ksm_page: checks if the page indicated by the stable node
511  * is still its ksm page, despite having held no reference to it.
512  * In which case we can trust the content of the page, and it
513  * returns the gotten page; but if the page has now been zapped,
514  * remove the stale node from the stable tree and return NULL.
515  * But beware, the stable node's page might be being migrated.
516  *
517  * You would expect the stable_node to hold a reference to the ksm page.
518  * But if it increments the page's count, swapping out has to wait for
519  * ksmd to come around again before it can free the page, which may take
520  * seconds or even minutes: much too unresponsive.  So instead we use a
521  * "keyhole reference": access to the ksm page from the stable node peeps
522  * out through its keyhole to see if that page still holds the right key,
523  * pointing back to this stable node.  This relies on freeing a PageAnon
524  * page to reset its page->mapping to NULL, and relies on no other use of
525  * a page to put something that might look like our key in page->mapping.
526  * is on its way to being freed; but it is an anomaly to bear in mind.
527  */
528 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
529 {
530 	struct page *page;
531 	void *expected_mapping;
532 	unsigned long kpfn;
533 
534 	expected_mapping = (void *)((unsigned long)stable_node |
535 					PAGE_MAPPING_KSM);
536 again:
537 	kpfn = READ_ONCE(stable_node->kpfn);
538 	page = pfn_to_page(kpfn);
539 
540 	/*
541 	 * page is computed from kpfn, so on most architectures reading
542 	 * page->mapping is naturally ordered after reading node->kpfn,
543 	 * but on Alpha we need to be more careful.
544 	 */
545 	smp_read_barrier_depends();
546 	if (READ_ONCE(page->mapping) != expected_mapping)
547 		goto stale;
548 
549 	/*
550 	 * We cannot do anything with the page while its refcount is 0.
551 	 * Usually 0 means free, or tail of a higher-order page: in which
552 	 * case this node is no longer referenced, and should be freed;
553 	 * however, it might mean that the page is under page_freeze_refs().
554 	 * The __remove_mapping() case is easy, again the node is now stale;
555 	 * but if page is swapcache in migrate_page_move_mapping(), it might
556 	 * still be our page, in which case it's essential to keep the node.
557 	 */
558 	while (!get_page_unless_zero(page)) {
559 		/*
560 		 * Another check for page->mapping != expected_mapping would
561 		 * work here too.  We have chosen the !PageSwapCache test to
562 		 * optimize the common case, when the page is or is about to
563 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
564 		 * in the freeze_refs section of __remove_mapping(); but Anon
565 		 * page->mapping reset to NULL later, in free_pages_prepare().
566 		 */
567 		if (!PageSwapCache(page))
568 			goto stale;
569 		cpu_relax();
570 	}
571 
572 	if (READ_ONCE(page->mapping) != expected_mapping) {
573 		put_page(page);
574 		goto stale;
575 	}
576 
577 	if (lock_it) {
578 		lock_page(page);
579 		if (READ_ONCE(page->mapping) != expected_mapping) {
580 			unlock_page(page);
581 			put_page(page);
582 			goto stale;
583 		}
584 	}
585 	return page;
586 
587 stale:
588 	/*
589 	 * We come here from above when page->mapping or !PageSwapCache
590 	 * suggests that the node is stale; but it might be under migration.
591 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
592 	 * before checking whether node->kpfn has been changed.
593 	 */
594 	smp_rmb();
595 	if (READ_ONCE(stable_node->kpfn) != kpfn)
596 		goto again;
597 	remove_node_from_stable_tree(stable_node);
598 	return NULL;
599 }
600 
601 /*
602  * Removing rmap_item from stable or unstable tree.
603  * This function will clean the information from the stable/unstable tree.
604  */
605 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
606 {
607 	if (rmap_item->address & STABLE_FLAG) {
608 		struct stable_node *stable_node;
609 		struct page *page;
610 
611 		stable_node = rmap_item->head;
612 		page = get_ksm_page(stable_node, true);
613 		if (!page)
614 			goto out;
615 
616 		hlist_del(&rmap_item->hlist);
617 		unlock_page(page);
618 		put_page(page);
619 
620 		if (!hlist_empty(&stable_node->hlist))
621 			ksm_pages_sharing--;
622 		else
623 			ksm_pages_shared--;
624 
625 		put_anon_vma(rmap_item->anon_vma);
626 		rmap_item->address &= PAGE_MASK;
627 
628 	} else if (rmap_item->address & UNSTABLE_FLAG) {
629 		unsigned char age;
630 		/*
631 		 * Usually ksmd can and must skip the rb_erase, because
632 		 * root_unstable_tree was already reset to RB_ROOT.
633 		 * But be careful when an mm is exiting: do the rb_erase
634 		 * if this rmap_item was inserted by this scan, rather
635 		 * than left over from before.
636 		 */
637 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
638 		BUG_ON(age > 1);
639 		if (!age)
640 			rb_erase(&rmap_item->node,
641 				 root_unstable_tree + NUMA(rmap_item->nid));
642 		ksm_pages_unshared--;
643 		rmap_item->address &= PAGE_MASK;
644 	}
645 out:
646 	cond_resched();		/* we're called from many long loops */
647 }
648 
649 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
650 				       struct rmap_item **rmap_list)
651 {
652 	while (*rmap_list) {
653 		struct rmap_item *rmap_item = *rmap_list;
654 		*rmap_list = rmap_item->rmap_list;
655 		remove_rmap_item_from_tree(rmap_item);
656 		free_rmap_item(rmap_item);
657 	}
658 }
659 
660 /*
661  * Though it's very tempting to unmerge rmap_items from stable tree rather
662  * than check every pte of a given vma, the locking doesn't quite work for
663  * that - an rmap_item is assigned to the stable tree after inserting ksm
664  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
665  * rmap_items from parent to child at fork time (so as not to waste time
666  * if exit comes before the next scan reaches it).
667  *
668  * Similarly, although we'd like to remove rmap_items (so updating counts
669  * and freeing memory) when unmerging an area, it's easier to leave that
670  * to the next pass of ksmd - consider, for example, how ksmd might be
671  * in cmp_and_merge_page on one of the rmap_items we would be removing.
672  */
673 static int unmerge_ksm_pages(struct vm_area_struct *vma,
674 			     unsigned long start, unsigned long end)
675 {
676 	unsigned long addr;
677 	int err = 0;
678 
679 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
680 		if (ksm_test_exit(vma->vm_mm))
681 			break;
682 		if (signal_pending(current))
683 			err = -ERESTARTSYS;
684 		else
685 			err = break_ksm(vma, addr);
686 	}
687 	return err;
688 }
689 
690 #ifdef CONFIG_SYSFS
691 /*
692  * Only called through the sysfs control interface:
693  */
694 static int remove_stable_node(struct stable_node *stable_node)
695 {
696 	struct page *page;
697 	int err;
698 
699 	page = get_ksm_page(stable_node, true);
700 	if (!page) {
701 		/*
702 		 * get_ksm_page did remove_node_from_stable_tree itself.
703 		 */
704 		return 0;
705 	}
706 
707 	if (WARN_ON_ONCE(page_mapped(page))) {
708 		/*
709 		 * This should not happen: but if it does, just refuse to let
710 		 * merge_across_nodes be switched - there is no need to panic.
711 		 */
712 		err = -EBUSY;
713 	} else {
714 		/*
715 		 * The stable node did not yet appear stale to get_ksm_page(),
716 		 * since that allows for an unmapped ksm page to be recognized
717 		 * right up until it is freed; but the node is safe to remove.
718 		 * This page might be in a pagevec waiting to be freed,
719 		 * or it might be PageSwapCache (perhaps under writeback),
720 		 * or it might have been removed from swapcache a moment ago.
721 		 */
722 		set_page_stable_node(page, NULL);
723 		remove_node_from_stable_tree(stable_node);
724 		err = 0;
725 	}
726 
727 	unlock_page(page);
728 	put_page(page);
729 	return err;
730 }
731 
732 static int remove_all_stable_nodes(void)
733 {
734 	struct stable_node *stable_node, *next;
735 	int nid;
736 	int err = 0;
737 
738 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
739 		while (root_stable_tree[nid].rb_node) {
740 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
741 						struct stable_node, node);
742 			if (remove_stable_node(stable_node)) {
743 				err = -EBUSY;
744 				break;	/* proceed to next nid */
745 			}
746 			cond_resched();
747 		}
748 	}
749 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
750 		if (remove_stable_node(stable_node))
751 			err = -EBUSY;
752 		cond_resched();
753 	}
754 	return err;
755 }
756 
757 static int unmerge_and_remove_all_rmap_items(void)
758 {
759 	struct mm_slot *mm_slot;
760 	struct mm_struct *mm;
761 	struct vm_area_struct *vma;
762 	int err = 0;
763 
764 	spin_lock(&ksm_mmlist_lock);
765 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
766 						struct mm_slot, mm_list);
767 	spin_unlock(&ksm_mmlist_lock);
768 
769 	for (mm_slot = ksm_scan.mm_slot;
770 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
771 		mm = mm_slot->mm;
772 		down_read(&mm->mmap_sem);
773 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
774 			if (ksm_test_exit(mm))
775 				break;
776 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
777 				continue;
778 			err = unmerge_ksm_pages(vma,
779 						vma->vm_start, vma->vm_end);
780 			if (err)
781 				goto error;
782 		}
783 
784 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
785 		up_read(&mm->mmap_sem);
786 
787 		spin_lock(&ksm_mmlist_lock);
788 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
789 						struct mm_slot, mm_list);
790 		if (ksm_test_exit(mm)) {
791 			hash_del(&mm_slot->link);
792 			list_del(&mm_slot->mm_list);
793 			spin_unlock(&ksm_mmlist_lock);
794 
795 			free_mm_slot(mm_slot);
796 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
797 			mmdrop(mm);
798 		} else
799 			spin_unlock(&ksm_mmlist_lock);
800 	}
801 
802 	/* Clean up stable nodes, but don't worry if some are still busy */
803 	remove_all_stable_nodes();
804 	ksm_scan.seqnr = 0;
805 	return 0;
806 
807 error:
808 	up_read(&mm->mmap_sem);
809 	spin_lock(&ksm_mmlist_lock);
810 	ksm_scan.mm_slot = &ksm_mm_head;
811 	spin_unlock(&ksm_mmlist_lock);
812 	return err;
813 }
814 #endif /* CONFIG_SYSFS */
815 
816 static u32 calc_checksum(struct page *page)
817 {
818 	u32 checksum;
819 	void *addr = kmap_atomic(page);
820 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
821 	kunmap_atomic(addr);
822 	return checksum;
823 }
824 
825 static int memcmp_pages(struct page *page1, struct page *page2)
826 {
827 	char *addr1, *addr2;
828 	int ret;
829 
830 	addr1 = kmap_atomic(page1);
831 	addr2 = kmap_atomic(page2);
832 	ret = memcmp(addr1, addr2, PAGE_SIZE);
833 	kunmap_atomic(addr2);
834 	kunmap_atomic(addr1);
835 	return ret;
836 }
837 
838 static inline int pages_identical(struct page *page1, struct page *page2)
839 {
840 	return !memcmp_pages(page1, page2);
841 }
842 
843 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
844 			      pte_t *orig_pte)
845 {
846 	struct mm_struct *mm = vma->vm_mm;
847 	unsigned long addr;
848 	pte_t *ptep;
849 	spinlock_t *ptl;
850 	int swapped;
851 	int err = -EFAULT;
852 	unsigned long mmun_start;	/* For mmu_notifiers */
853 	unsigned long mmun_end;		/* For mmu_notifiers */
854 
855 	addr = page_address_in_vma(page, vma);
856 	if (addr == -EFAULT)
857 		goto out;
858 
859 	BUG_ON(PageTransCompound(page));
860 
861 	mmun_start = addr;
862 	mmun_end   = addr + PAGE_SIZE;
863 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
864 
865 	ptep = page_check_address(page, mm, addr, &ptl, 0);
866 	if (!ptep)
867 		goto out_mn;
868 
869 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
870 		pte_t entry;
871 
872 		swapped = PageSwapCache(page);
873 		flush_cache_page(vma, addr, page_to_pfn(page));
874 		/*
875 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
876 		 * take any lock, therefore the check that we are going to make
877 		 * with the pagecount against the mapcount is racey and
878 		 * O_DIRECT can happen right after the check.
879 		 * So we clear the pte and flush the tlb before the check
880 		 * this assure us that no O_DIRECT can happen after the check
881 		 * or in the middle of the check.
882 		 */
883 		entry = ptep_clear_flush_notify(vma, addr, ptep);
884 		/*
885 		 * Check that no O_DIRECT or similar I/O is in progress on the
886 		 * page
887 		 */
888 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
889 			set_pte_at(mm, addr, ptep, entry);
890 			goto out_unlock;
891 		}
892 		if (pte_dirty(entry))
893 			set_page_dirty(page);
894 		entry = pte_mkclean(pte_wrprotect(entry));
895 		set_pte_at_notify(mm, addr, ptep, entry);
896 	}
897 	*orig_pte = *ptep;
898 	err = 0;
899 
900 out_unlock:
901 	pte_unmap_unlock(ptep, ptl);
902 out_mn:
903 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
904 out:
905 	return err;
906 }
907 
908 /**
909  * replace_page - replace page in vma by new ksm page
910  * @vma:      vma that holds the pte pointing to page
911  * @page:     the page we are replacing by kpage
912  * @kpage:    the ksm page we replace page by
913  * @orig_pte: the original value of the pte
914  *
915  * Returns 0 on success, -EFAULT on failure.
916  */
917 static int replace_page(struct vm_area_struct *vma, struct page *page,
918 			struct page *kpage, pte_t orig_pte)
919 {
920 	struct mm_struct *mm = vma->vm_mm;
921 	pmd_t *pmd;
922 	pte_t *ptep;
923 	spinlock_t *ptl;
924 	unsigned long addr;
925 	int err = -EFAULT;
926 	unsigned long mmun_start;	/* For mmu_notifiers */
927 	unsigned long mmun_end;		/* For mmu_notifiers */
928 
929 	addr = page_address_in_vma(page, vma);
930 	if (addr == -EFAULT)
931 		goto out;
932 
933 	pmd = mm_find_pmd(mm, addr);
934 	if (!pmd)
935 		goto out;
936 
937 	mmun_start = addr;
938 	mmun_end   = addr + PAGE_SIZE;
939 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
940 
941 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
942 	if (!pte_same(*ptep, orig_pte)) {
943 		pte_unmap_unlock(ptep, ptl);
944 		goto out_mn;
945 	}
946 
947 	get_page(kpage);
948 	page_add_anon_rmap(kpage, vma, addr, false);
949 
950 	flush_cache_page(vma, addr, pte_pfn(*ptep));
951 	ptep_clear_flush_notify(vma, addr, ptep);
952 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
953 
954 	page_remove_rmap(page, false);
955 	if (!page_mapped(page))
956 		try_to_free_swap(page);
957 	put_page(page);
958 
959 	pte_unmap_unlock(ptep, ptl);
960 	err = 0;
961 out_mn:
962 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
963 out:
964 	return err;
965 }
966 
967 /*
968  * try_to_merge_one_page - take two pages and merge them into one
969  * @vma: the vma that holds the pte pointing to page
970  * @page: the PageAnon page that we want to replace with kpage
971  * @kpage: the PageKsm page that we want to map instead of page,
972  *         or NULL the first time when we want to use page as kpage.
973  *
974  * This function returns 0 if the pages were merged, -EFAULT otherwise.
975  */
976 static int try_to_merge_one_page(struct vm_area_struct *vma,
977 				 struct page *page, struct page *kpage)
978 {
979 	pte_t orig_pte = __pte(0);
980 	int err = -EFAULT;
981 
982 	if (page == kpage)			/* ksm page forked */
983 		return 0;
984 
985 	if (!PageAnon(page))
986 		goto out;
987 
988 	/*
989 	 * We need the page lock to read a stable PageSwapCache in
990 	 * write_protect_page().  We use trylock_page() instead of
991 	 * lock_page() because we don't want to wait here - we
992 	 * prefer to continue scanning and merging different pages,
993 	 * then come back to this page when it is unlocked.
994 	 */
995 	if (!trylock_page(page))
996 		goto out;
997 
998 	if (PageTransCompound(page)) {
999 		err = split_huge_page(page);
1000 		if (err)
1001 			goto out_unlock;
1002 	}
1003 
1004 	/*
1005 	 * If this anonymous page is mapped only here, its pte may need
1006 	 * to be write-protected.  If it's mapped elsewhere, all of its
1007 	 * ptes are necessarily already write-protected.  But in either
1008 	 * case, we need to lock and check page_count is not raised.
1009 	 */
1010 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1011 		if (!kpage) {
1012 			/*
1013 			 * While we hold page lock, upgrade page from
1014 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1015 			 * stable_tree_insert() will update stable_node.
1016 			 */
1017 			set_page_stable_node(page, NULL);
1018 			mark_page_accessed(page);
1019 			/*
1020 			 * Page reclaim just frees a clean page with no dirty
1021 			 * ptes: make sure that the ksm page would be swapped.
1022 			 */
1023 			if (!PageDirty(page))
1024 				SetPageDirty(page);
1025 			err = 0;
1026 		} else if (pages_identical(page, kpage))
1027 			err = replace_page(vma, page, kpage, orig_pte);
1028 	}
1029 
1030 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1031 		munlock_vma_page(page);
1032 		if (!PageMlocked(kpage)) {
1033 			unlock_page(page);
1034 			lock_page(kpage);
1035 			mlock_vma_page(kpage);
1036 			page = kpage;		/* for final unlock */
1037 		}
1038 	}
1039 
1040 out_unlock:
1041 	unlock_page(page);
1042 out:
1043 	return err;
1044 }
1045 
1046 /*
1047  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1048  * but no new kernel page is allocated: kpage must already be a ksm page.
1049  *
1050  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1051  */
1052 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1053 				      struct page *page, struct page *kpage)
1054 {
1055 	struct mm_struct *mm = rmap_item->mm;
1056 	struct vm_area_struct *vma;
1057 	int err = -EFAULT;
1058 
1059 	down_read(&mm->mmap_sem);
1060 	vma = find_mergeable_vma(mm, rmap_item->address);
1061 	if (!vma)
1062 		goto out;
1063 
1064 	err = try_to_merge_one_page(vma, page, kpage);
1065 	if (err)
1066 		goto out;
1067 
1068 	/* Unstable nid is in union with stable anon_vma: remove first */
1069 	remove_rmap_item_from_tree(rmap_item);
1070 
1071 	/* Must get reference to anon_vma while still holding mmap_sem */
1072 	rmap_item->anon_vma = vma->anon_vma;
1073 	get_anon_vma(vma->anon_vma);
1074 out:
1075 	up_read(&mm->mmap_sem);
1076 	return err;
1077 }
1078 
1079 /*
1080  * try_to_merge_two_pages - take two identical pages and prepare them
1081  * to be merged into one page.
1082  *
1083  * This function returns the kpage if we successfully merged two identical
1084  * pages into one ksm page, NULL otherwise.
1085  *
1086  * Note that this function upgrades page to ksm page: if one of the pages
1087  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1088  */
1089 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1090 					   struct page *page,
1091 					   struct rmap_item *tree_rmap_item,
1092 					   struct page *tree_page)
1093 {
1094 	int err;
1095 
1096 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1097 	if (!err) {
1098 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1099 							tree_page, page);
1100 		/*
1101 		 * If that fails, we have a ksm page with only one pte
1102 		 * pointing to it: so break it.
1103 		 */
1104 		if (err)
1105 			break_cow(rmap_item);
1106 	}
1107 	return err ? NULL : page;
1108 }
1109 
1110 /*
1111  * stable_tree_search - search for page inside the stable tree
1112  *
1113  * This function checks if there is a page inside the stable tree
1114  * with identical content to the page that we are scanning right now.
1115  *
1116  * This function returns the stable tree node of identical content if found,
1117  * NULL otherwise.
1118  */
1119 static struct page *stable_tree_search(struct page *page)
1120 {
1121 	int nid;
1122 	struct rb_root *root;
1123 	struct rb_node **new;
1124 	struct rb_node *parent;
1125 	struct stable_node *stable_node;
1126 	struct stable_node *page_node;
1127 
1128 	page_node = page_stable_node(page);
1129 	if (page_node && page_node->head != &migrate_nodes) {
1130 		/* ksm page forked */
1131 		get_page(page);
1132 		return page;
1133 	}
1134 
1135 	nid = get_kpfn_nid(page_to_pfn(page));
1136 	root = root_stable_tree + nid;
1137 again:
1138 	new = &root->rb_node;
1139 	parent = NULL;
1140 
1141 	while (*new) {
1142 		struct page *tree_page;
1143 		int ret;
1144 
1145 		cond_resched();
1146 		stable_node = rb_entry(*new, struct stable_node, node);
1147 		tree_page = get_ksm_page(stable_node, false);
1148 		if (!tree_page) {
1149 			/*
1150 			 * If we walked over a stale stable_node,
1151 			 * get_ksm_page() will call rb_erase() and it
1152 			 * may rebalance the tree from under us. So
1153 			 * restart the search from scratch. Returning
1154 			 * NULL would be safe too, but we'd generate
1155 			 * false negative insertions just because some
1156 			 * stable_node was stale.
1157 			 */
1158 			goto again;
1159 		}
1160 
1161 		ret = memcmp_pages(page, tree_page);
1162 		put_page(tree_page);
1163 
1164 		parent = *new;
1165 		if (ret < 0)
1166 			new = &parent->rb_left;
1167 		else if (ret > 0)
1168 			new = &parent->rb_right;
1169 		else {
1170 			/*
1171 			 * Lock and unlock the stable_node's page (which
1172 			 * might already have been migrated) so that page
1173 			 * migration is sure to notice its raised count.
1174 			 * It would be more elegant to return stable_node
1175 			 * than kpage, but that involves more changes.
1176 			 */
1177 			tree_page = get_ksm_page(stable_node, true);
1178 			if (tree_page) {
1179 				unlock_page(tree_page);
1180 				if (get_kpfn_nid(stable_node->kpfn) !=
1181 						NUMA(stable_node->nid)) {
1182 					put_page(tree_page);
1183 					goto replace;
1184 				}
1185 				return tree_page;
1186 			}
1187 			/*
1188 			 * There is now a place for page_node, but the tree may
1189 			 * have been rebalanced, so re-evaluate parent and new.
1190 			 */
1191 			if (page_node)
1192 				goto again;
1193 			return NULL;
1194 		}
1195 	}
1196 
1197 	if (!page_node)
1198 		return NULL;
1199 
1200 	list_del(&page_node->list);
1201 	DO_NUMA(page_node->nid = nid);
1202 	rb_link_node(&page_node->node, parent, new);
1203 	rb_insert_color(&page_node->node, root);
1204 	get_page(page);
1205 	return page;
1206 
1207 replace:
1208 	if (page_node) {
1209 		list_del(&page_node->list);
1210 		DO_NUMA(page_node->nid = nid);
1211 		rb_replace_node(&stable_node->node, &page_node->node, root);
1212 		get_page(page);
1213 	} else {
1214 		rb_erase(&stable_node->node, root);
1215 		page = NULL;
1216 	}
1217 	stable_node->head = &migrate_nodes;
1218 	list_add(&stable_node->list, stable_node->head);
1219 	return page;
1220 }
1221 
1222 /*
1223  * stable_tree_insert - insert stable tree node pointing to new ksm page
1224  * into the stable tree.
1225  *
1226  * This function returns the stable tree node just allocated on success,
1227  * NULL otherwise.
1228  */
1229 static struct stable_node *stable_tree_insert(struct page *kpage)
1230 {
1231 	int nid;
1232 	unsigned long kpfn;
1233 	struct rb_root *root;
1234 	struct rb_node **new;
1235 	struct rb_node *parent;
1236 	struct stable_node *stable_node;
1237 
1238 	kpfn = page_to_pfn(kpage);
1239 	nid = get_kpfn_nid(kpfn);
1240 	root = root_stable_tree + nid;
1241 again:
1242 	parent = NULL;
1243 	new = &root->rb_node;
1244 
1245 	while (*new) {
1246 		struct page *tree_page;
1247 		int ret;
1248 
1249 		cond_resched();
1250 		stable_node = rb_entry(*new, struct stable_node, node);
1251 		tree_page = get_ksm_page(stable_node, false);
1252 		if (!tree_page) {
1253 			/*
1254 			 * If we walked over a stale stable_node,
1255 			 * get_ksm_page() will call rb_erase() and it
1256 			 * may rebalance the tree from under us. So
1257 			 * restart the search from scratch. Returning
1258 			 * NULL would be safe too, but we'd generate
1259 			 * false negative insertions just because some
1260 			 * stable_node was stale.
1261 			 */
1262 			goto again;
1263 		}
1264 
1265 		ret = memcmp_pages(kpage, tree_page);
1266 		put_page(tree_page);
1267 
1268 		parent = *new;
1269 		if (ret < 0)
1270 			new = &parent->rb_left;
1271 		else if (ret > 0)
1272 			new = &parent->rb_right;
1273 		else {
1274 			/*
1275 			 * It is not a bug that stable_tree_search() didn't
1276 			 * find this node: because at that time our page was
1277 			 * not yet write-protected, so may have changed since.
1278 			 */
1279 			return NULL;
1280 		}
1281 	}
1282 
1283 	stable_node = alloc_stable_node();
1284 	if (!stable_node)
1285 		return NULL;
1286 
1287 	INIT_HLIST_HEAD(&stable_node->hlist);
1288 	stable_node->kpfn = kpfn;
1289 	set_page_stable_node(kpage, stable_node);
1290 	DO_NUMA(stable_node->nid = nid);
1291 	rb_link_node(&stable_node->node, parent, new);
1292 	rb_insert_color(&stable_node->node, root);
1293 
1294 	return stable_node;
1295 }
1296 
1297 /*
1298  * unstable_tree_search_insert - search for identical page,
1299  * else insert rmap_item into the unstable tree.
1300  *
1301  * This function searches for a page in the unstable tree identical to the
1302  * page currently being scanned; and if no identical page is found in the
1303  * tree, we insert rmap_item as a new object into the unstable tree.
1304  *
1305  * This function returns pointer to rmap_item found to be identical
1306  * to the currently scanned page, NULL otherwise.
1307  *
1308  * This function does both searching and inserting, because they share
1309  * the same walking algorithm in an rbtree.
1310  */
1311 static
1312 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1313 					      struct page *page,
1314 					      struct page **tree_pagep)
1315 {
1316 	struct rb_node **new;
1317 	struct rb_root *root;
1318 	struct rb_node *parent = NULL;
1319 	int nid;
1320 
1321 	nid = get_kpfn_nid(page_to_pfn(page));
1322 	root = root_unstable_tree + nid;
1323 	new = &root->rb_node;
1324 
1325 	while (*new) {
1326 		struct rmap_item *tree_rmap_item;
1327 		struct page *tree_page;
1328 		int ret;
1329 
1330 		cond_resched();
1331 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1332 		tree_page = get_mergeable_page(tree_rmap_item);
1333 		if (!tree_page)
1334 			return NULL;
1335 
1336 		/*
1337 		 * Don't substitute a ksm page for a forked page.
1338 		 */
1339 		if (page == tree_page) {
1340 			put_page(tree_page);
1341 			return NULL;
1342 		}
1343 
1344 		ret = memcmp_pages(page, tree_page);
1345 
1346 		parent = *new;
1347 		if (ret < 0) {
1348 			put_page(tree_page);
1349 			new = &parent->rb_left;
1350 		} else if (ret > 0) {
1351 			put_page(tree_page);
1352 			new = &parent->rb_right;
1353 		} else if (!ksm_merge_across_nodes &&
1354 			   page_to_nid(tree_page) != nid) {
1355 			/*
1356 			 * If tree_page has been migrated to another NUMA node,
1357 			 * it will be flushed out and put in the right unstable
1358 			 * tree next time: only merge with it when across_nodes.
1359 			 */
1360 			put_page(tree_page);
1361 			return NULL;
1362 		} else {
1363 			*tree_pagep = tree_page;
1364 			return tree_rmap_item;
1365 		}
1366 	}
1367 
1368 	rmap_item->address |= UNSTABLE_FLAG;
1369 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1370 	DO_NUMA(rmap_item->nid = nid);
1371 	rb_link_node(&rmap_item->node, parent, new);
1372 	rb_insert_color(&rmap_item->node, root);
1373 
1374 	ksm_pages_unshared++;
1375 	return NULL;
1376 }
1377 
1378 /*
1379  * stable_tree_append - add another rmap_item to the linked list of
1380  * rmap_items hanging off a given node of the stable tree, all sharing
1381  * the same ksm page.
1382  */
1383 static void stable_tree_append(struct rmap_item *rmap_item,
1384 			       struct stable_node *stable_node)
1385 {
1386 	rmap_item->head = stable_node;
1387 	rmap_item->address |= STABLE_FLAG;
1388 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1389 
1390 	if (rmap_item->hlist.next)
1391 		ksm_pages_sharing++;
1392 	else
1393 		ksm_pages_shared++;
1394 }
1395 
1396 /*
1397  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1398  * if not, compare checksum to previous and if it's the same, see if page can
1399  * be inserted into the unstable tree, or merged with a page already there and
1400  * both transferred to the stable tree.
1401  *
1402  * @page: the page that we are searching identical page to.
1403  * @rmap_item: the reverse mapping into the virtual address of this page
1404  */
1405 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1406 {
1407 	struct rmap_item *tree_rmap_item;
1408 	struct page *tree_page = NULL;
1409 	struct stable_node *stable_node;
1410 	struct page *kpage;
1411 	unsigned int checksum;
1412 	int err;
1413 
1414 	stable_node = page_stable_node(page);
1415 	if (stable_node) {
1416 		if (stable_node->head != &migrate_nodes &&
1417 		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1418 			rb_erase(&stable_node->node,
1419 				 root_stable_tree + NUMA(stable_node->nid));
1420 			stable_node->head = &migrate_nodes;
1421 			list_add(&stable_node->list, stable_node->head);
1422 		}
1423 		if (stable_node->head != &migrate_nodes &&
1424 		    rmap_item->head == stable_node)
1425 			return;
1426 	}
1427 
1428 	/* We first start with searching the page inside the stable tree */
1429 	kpage = stable_tree_search(page);
1430 	if (kpage == page && rmap_item->head == stable_node) {
1431 		put_page(kpage);
1432 		return;
1433 	}
1434 
1435 	remove_rmap_item_from_tree(rmap_item);
1436 
1437 	if (kpage) {
1438 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1439 		if (!err) {
1440 			/*
1441 			 * The page was successfully merged:
1442 			 * add its rmap_item to the stable tree.
1443 			 */
1444 			lock_page(kpage);
1445 			stable_tree_append(rmap_item, page_stable_node(kpage));
1446 			unlock_page(kpage);
1447 		}
1448 		put_page(kpage);
1449 		return;
1450 	}
1451 
1452 	/*
1453 	 * If the hash value of the page has changed from the last time
1454 	 * we calculated it, this page is changing frequently: therefore we
1455 	 * don't want to insert it in the unstable tree, and we don't want
1456 	 * to waste our time searching for something identical to it there.
1457 	 */
1458 	checksum = calc_checksum(page);
1459 	if (rmap_item->oldchecksum != checksum) {
1460 		rmap_item->oldchecksum = checksum;
1461 		return;
1462 	}
1463 
1464 	tree_rmap_item =
1465 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1466 	if (tree_rmap_item) {
1467 		kpage = try_to_merge_two_pages(rmap_item, page,
1468 						tree_rmap_item, tree_page);
1469 		put_page(tree_page);
1470 		if (kpage) {
1471 			/*
1472 			 * The pages were successfully merged: insert new
1473 			 * node in the stable tree and add both rmap_items.
1474 			 */
1475 			lock_page(kpage);
1476 			stable_node = stable_tree_insert(kpage);
1477 			if (stable_node) {
1478 				stable_tree_append(tree_rmap_item, stable_node);
1479 				stable_tree_append(rmap_item, stable_node);
1480 			}
1481 			unlock_page(kpage);
1482 
1483 			/*
1484 			 * If we fail to insert the page into the stable tree,
1485 			 * we will have 2 virtual addresses that are pointing
1486 			 * to a ksm page left outside the stable tree,
1487 			 * in which case we need to break_cow on both.
1488 			 */
1489 			if (!stable_node) {
1490 				break_cow(tree_rmap_item);
1491 				break_cow(rmap_item);
1492 			}
1493 		}
1494 	}
1495 }
1496 
1497 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1498 					    struct rmap_item **rmap_list,
1499 					    unsigned long addr)
1500 {
1501 	struct rmap_item *rmap_item;
1502 
1503 	while (*rmap_list) {
1504 		rmap_item = *rmap_list;
1505 		if ((rmap_item->address & PAGE_MASK) == addr)
1506 			return rmap_item;
1507 		if (rmap_item->address > addr)
1508 			break;
1509 		*rmap_list = rmap_item->rmap_list;
1510 		remove_rmap_item_from_tree(rmap_item);
1511 		free_rmap_item(rmap_item);
1512 	}
1513 
1514 	rmap_item = alloc_rmap_item();
1515 	if (rmap_item) {
1516 		/* It has already been zeroed */
1517 		rmap_item->mm = mm_slot->mm;
1518 		rmap_item->address = addr;
1519 		rmap_item->rmap_list = *rmap_list;
1520 		*rmap_list = rmap_item;
1521 	}
1522 	return rmap_item;
1523 }
1524 
1525 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1526 {
1527 	struct mm_struct *mm;
1528 	struct mm_slot *slot;
1529 	struct vm_area_struct *vma;
1530 	struct rmap_item *rmap_item;
1531 	int nid;
1532 
1533 	if (list_empty(&ksm_mm_head.mm_list))
1534 		return NULL;
1535 
1536 	slot = ksm_scan.mm_slot;
1537 	if (slot == &ksm_mm_head) {
1538 		/*
1539 		 * A number of pages can hang around indefinitely on per-cpu
1540 		 * pagevecs, raised page count preventing write_protect_page
1541 		 * from merging them.  Though it doesn't really matter much,
1542 		 * it is puzzling to see some stuck in pages_volatile until
1543 		 * other activity jostles them out, and they also prevented
1544 		 * LTP's KSM test from succeeding deterministically; so drain
1545 		 * them here (here rather than on entry to ksm_do_scan(),
1546 		 * so we don't IPI too often when pages_to_scan is set low).
1547 		 */
1548 		lru_add_drain_all();
1549 
1550 		/*
1551 		 * Whereas stale stable_nodes on the stable_tree itself
1552 		 * get pruned in the regular course of stable_tree_search(),
1553 		 * those moved out to the migrate_nodes list can accumulate:
1554 		 * so prune them once before each full scan.
1555 		 */
1556 		if (!ksm_merge_across_nodes) {
1557 			struct stable_node *stable_node, *next;
1558 			struct page *page;
1559 
1560 			list_for_each_entry_safe(stable_node, next,
1561 						 &migrate_nodes, list) {
1562 				page = get_ksm_page(stable_node, false);
1563 				if (page)
1564 					put_page(page);
1565 				cond_resched();
1566 			}
1567 		}
1568 
1569 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1570 			root_unstable_tree[nid] = RB_ROOT;
1571 
1572 		spin_lock(&ksm_mmlist_lock);
1573 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1574 		ksm_scan.mm_slot = slot;
1575 		spin_unlock(&ksm_mmlist_lock);
1576 		/*
1577 		 * Although we tested list_empty() above, a racing __ksm_exit
1578 		 * of the last mm on the list may have removed it since then.
1579 		 */
1580 		if (slot == &ksm_mm_head)
1581 			return NULL;
1582 next_mm:
1583 		ksm_scan.address = 0;
1584 		ksm_scan.rmap_list = &slot->rmap_list;
1585 	}
1586 
1587 	mm = slot->mm;
1588 	down_read(&mm->mmap_sem);
1589 	if (ksm_test_exit(mm))
1590 		vma = NULL;
1591 	else
1592 		vma = find_vma(mm, ksm_scan.address);
1593 
1594 	for (; vma; vma = vma->vm_next) {
1595 		if (!(vma->vm_flags & VM_MERGEABLE))
1596 			continue;
1597 		if (ksm_scan.address < vma->vm_start)
1598 			ksm_scan.address = vma->vm_start;
1599 		if (!vma->anon_vma)
1600 			ksm_scan.address = vma->vm_end;
1601 
1602 		while (ksm_scan.address < vma->vm_end) {
1603 			if (ksm_test_exit(mm))
1604 				break;
1605 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1606 			if (IS_ERR_OR_NULL(*page)) {
1607 				ksm_scan.address += PAGE_SIZE;
1608 				cond_resched();
1609 				continue;
1610 			}
1611 			if (PageAnon(*page)) {
1612 				flush_anon_page(vma, *page, ksm_scan.address);
1613 				flush_dcache_page(*page);
1614 				rmap_item = get_next_rmap_item(slot,
1615 					ksm_scan.rmap_list, ksm_scan.address);
1616 				if (rmap_item) {
1617 					ksm_scan.rmap_list =
1618 							&rmap_item->rmap_list;
1619 					ksm_scan.address += PAGE_SIZE;
1620 				} else
1621 					put_page(*page);
1622 				up_read(&mm->mmap_sem);
1623 				return rmap_item;
1624 			}
1625 			put_page(*page);
1626 			ksm_scan.address += PAGE_SIZE;
1627 			cond_resched();
1628 		}
1629 	}
1630 
1631 	if (ksm_test_exit(mm)) {
1632 		ksm_scan.address = 0;
1633 		ksm_scan.rmap_list = &slot->rmap_list;
1634 	}
1635 	/*
1636 	 * Nuke all the rmap_items that are above this current rmap:
1637 	 * because there were no VM_MERGEABLE vmas with such addresses.
1638 	 */
1639 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1640 
1641 	spin_lock(&ksm_mmlist_lock);
1642 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1643 						struct mm_slot, mm_list);
1644 	if (ksm_scan.address == 0) {
1645 		/*
1646 		 * We've completed a full scan of all vmas, holding mmap_sem
1647 		 * throughout, and found no VM_MERGEABLE: so do the same as
1648 		 * __ksm_exit does to remove this mm from all our lists now.
1649 		 * This applies either when cleaning up after __ksm_exit
1650 		 * (but beware: we can reach here even before __ksm_exit),
1651 		 * or when all VM_MERGEABLE areas have been unmapped (and
1652 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1653 		 */
1654 		hash_del(&slot->link);
1655 		list_del(&slot->mm_list);
1656 		spin_unlock(&ksm_mmlist_lock);
1657 
1658 		free_mm_slot(slot);
1659 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1660 		up_read(&mm->mmap_sem);
1661 		mmdrop(mm);
1662 	} else {
1663 		up_read(&mm->mmap_sem);
1664 		/*
1665 		 * up_read(&mm->mmap_sem) first because after
1666 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1667 		 * already have been freed under us by __ksm_exit()
1668 		 * because the "mm_slot" is still hashed and
1669 		 * ksm_scan.mm_slot doesn't point to it anymore.
1670 		 */
1671 		spin_unlock(&ksm_mmlist_lock);
1672 	}
1673 
1674 	/* Repeat until we've completed scanning the whole list */
1675 	slot = ksm_scan.mm_slot;
1676 	if (slot != &ksm_mm_head)
1677 		goto next_mm;
1678 
1679 	ksm_scan.seqnr++;
1680 	return NULL;
1681 }
1682 
1683 /**
1684  * ksm_do_scan  - the ksm scanner main worker function.
1685  * @scan_npages - number of pages we want to scan before we return.
1686  */
1687 static void ksm_do_scan(unsigned int scan_npages)
1688 {
1689 	struct rmap_item *rmap_item;
1690 	struct page *uninitialized_var(page);
1691 
1692 	while (scan_npages-- && likely(!freezing(current))) {
1693 		cond_resched();
1694 		rmap_item = scan_get_next_rmap_item(&page);
1695 		if (!rmap_item)
1696 			return;
1697 		cmp_and_merge_page(page, rmap_item);
1698 		put_page(page);
1699 	}
1700 }
1701 
1702 static int ksmd_should_run(void)
1703 {
1704 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1705 }
1706 
1707 static int ksm_scan_thread(void *nothing)
1708 {
1709 	set_freezable();
1710 	set_user_nice(current, 5);
1711 
1712 	while (!kthread_should_stop()) {
1713 		mutex_lock(&ksm_thread_mutex);
1714 		wait_while_offlining();
1715 		if (ksmd_should_run())
1716 			ksm_do_scan(ksm_thread_pages_to_scan);
1717 		mutex_unlock(&ksm_thread_mutex);
1718 
1719 		try_to_freeze();
1720 
1721 		if (ksmd_should_run()) {
1722 			schedule_timeout_interruptible(
1723 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1724 		} else {
1725 			wait_event_freezable(ksm_thread_wait,
1726 				ksmd_should_run() || kthread_should_stop());
1727 		}
1728 	}
1729 	return 0;
1730 }
1731 
1732 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1733 		unsigned long end, int advice, unsigned long *vm_flags)
1734 {
1735 	struct mm_struct *mm = vma->vm_mm;
1736 	int err;
1737 
1738 	switch (advice) {
1739 	case MADV_MERGEABLE:
1740 		/*
1741 		 * Be somewhat over-protective for now!
1742 		 */
1743 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1744 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1745 				 VM_HUGETLB | VM_MIXEDMAP))
1746 			return 0;		/* just ignore the advice */
1747 
1748 #ifdef VM_SAO
1749 		if (*vm_flags & VM_SAO)
1750 			return 0;
1751 #endif
1752 
1753 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1754 			err = __ksm_enter(mm);
1755 			if (err)
1756 				return err;
1757 		}
1758 
1759 		*vm_flags |= VM_MERGEABLE;
1760 		break;
1761 
1762 	case MADV_UNMERGEABLE:
1763 		if (!(*vm_flags & VM_MERGEABLE))
1764 			return 0;		/* just ignore the advice */
1765 
1766 		if (vma->anon_vma) {
1767 			err = unmerge_ksm_pages(vma, start, end);
1768 			if (err)
1769 				return err;
1770 		}
1771 
1772 		*vm_flags &= ~VM_MERGEABLE;
1773 		break;
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 int __ksm_enter(struct mm_struct *mm)
1780 {
1781 	struct mm_slot *mm_slot;
1782 	int needs_wakeup;
1783 
1784 	mm_slot = alloc_mm_slot();
1785 	if (!mm_slot)
1786 		return -ENOMEM;
1787 
1788 	/* Check ksm_run too?  Would need tighter locking */
1789 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1790 
1791 	spin_lock(&ksm_mmlist_lock);
1792 	insert_to_mm_slots_hash(mm, mm_slot);
1793 	/*
1794 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1795 	 * insert just behind the scanning cursor, to let the area settle
1796 	 * down a little; when fork is followed by immediate exec, we don't
1797 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1798 	 *
1799 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1800 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1801 	 * missed: then we might as well insert at the end of the list.
1802 	 */
1803 	if (ksm_run & KSM_RUN_UNMERGE)
1804 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1805 	else
1806 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1807 	spin_unlock(&ksm_mmlist_lock);
1808 
1809 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1810 	atomic_inc(&mm->mm_count);
1811 
1812 	if (needs_wakeup)
1813 		wake_up_interruptible(&ksm_thread_wait);
1814 
1815 	return 0;
1816 }
1817 
1818 void __ksm_exit(struct mm_struct *mm)
1819 {
1820 	struct mm_slot *mm_slot;
1821 	int easy_to_free = 0;
1822 
1823 	/*
1824 	 * This process is exiting: if it's straightforward (as is the
1825 	 * case when ksmd was never running), free mm_slot immediately.
1826 	 * But if it's at the cursor or has rmap_items linked to it, use
1827 	 * mmap_sem to synchronize with any break_cows before pagetables
1828 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1829 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1830 	 */
1831 
1832 	spin_lock(&ksm_mmlist_lock);
1833 	mm_slot = get_mm_slot(mm);
1834 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1835 		if (!mm_slot->rmap_list) {
1836 			hash_del(&mm_slot->link);
1837 			list_del(&mm_slot->mm_list);
1838 			easy_to_free = 1;
1839 		} else {
1840 			list_move(&mm_slot->mm_list,
1841 				  &ksm_scan.mm_slot->mm_list);
1842 		}
1843 	}
1844 	spin_unlock(&ksm_mmlist_lock);
1845 
1846 	if (easy_to_free) {
1847 		free_mm_slot(mm_slot);
1848 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1849 		mmdrop(mm);
1850 	} else if (mm_slot) {
1851 		down_write(&mm->mmap_sem);
1852 		up_write(&mm->mmap_sem);
1853 	}
1854 }
1855 
1856 struct page *ksm_might_need_to_copy(struct page *page,
1857 			struct vm_area_struct *vma, unsigned long address)
1858 {
1859 	struct anon_vma *anon_vma = page_anon_vma(page);
1860 	struct page *new_page;
1861 
1862 	if (PageKsm(page)) {
1863 		if (page_stable_node(page) &&
1864 		    !(ksm_run & KSM_RUN_UNMERGE))
1865 			return page;	/* no need to copy it */
1866 	} else if (!anon_vma) {
1867 		return page;		/* no need to copy it */
1868 	} else if (anon_vma->root == vma->anon_vma->root &&
1869 		 page->index == linear_page_index(vma, address)) {
1870 		return page;		/* still no need to copy it */
1871 	}
1872 	if (!PageUptodate(page))
1873 		return page;		/* let do_swap_page report the error */
1874 
1875 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1876 	if (new_page) {
1877 		copy_user_highpage(new_page, page, address, vma);
1878 
1879 		SetPageDirty(new_page);
1880 		__SetPageUptodate(new_page);
1881 		__SetPageLocked(new_page);
1882 	}
1883 
1884 	return new_page;
1885 }
1886 
1887 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1888 {
1889 	struct stable_node *stable_node;
1890 	struct rmap_item *rmap_item;
1891 	int ret = SWAP_AGAIN;
1892 	int search_new_forks = 0;
1893 
1894 	VM_BUG_ON_PAGE(!PageKsm(page), page);
1895 
1896 	/*
1897 	 * Rely on the page lock to protect against concurrent modifications
1898 	 * to that page's node of the stable tree.
1899 	 */
1900 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1901 
1902 	stable_node = page_stable_node(page);
1903 	if (!stable_node)
1904 		return ret;
1905 again:
1906 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1907 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1908 		struct anon_vma_chain *vmac;
1909 		struct vm_area_struct *vma;
1910 
1911 		cond_resched();
1912 		anon_vma_lock_read(anon_vma);
1913 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1914 					       0, ULONG_MAX) {
1915 			cond_resched();
1916 			vma = vmac->vma;
1917 			if (rmap_item->address < vma->vm_start ||
1918 			    rmap_item->address >= vma->vm_end)
1919 				continue;
1920 			/*
1921 			 * Initially we examine only the vma which covers this
1922 			 * rmap_item; but later, if there is still work to do,
1923 			 * we examine covering vmas in other mms: in case they
1924 			 * were forked from the original since ksmd passed.
1925 			 */
1926 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1927 				continue;
1928 
1929 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1930 				continue;
1931 
1932 			ret = rwc->rmap_one(page, vma,
1933 					rmap_item->address, rwc->arg);
1934 			if (ret != SWAP_AGAIN) {
1935 				anon_vma_unlock_read(anon_vma);
1936 				goto out;
1937 			}
1938 			if (rwc->done && rwc->done(page)) {
1939 				anon_vma_unlock_read(anon_vma);
1940 				goto out;
1941 			}
1942 		}
1943 		anon_vma_unlock_read(anon_vma);
1944 	}
1945 	if (!search_new_forks++)
1946 		goto again;
1947 out:
1948 	return ret;
1949 }
1950 
1951 #ifdef CONFIG_MIGRATION
1952 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1953 {
1954 	struct stable_node *stable_node;
1955 
1956 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1957 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1958 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1959 
1960 	stable_node = page_stable_node(newpage);
1961 	if (stable_node) {
1962 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1963 		stable_node->kpfn = page_to_pfn(newpage);
1964 		/*
1965 		 * newpage->mapping was set in advance; now we need smp_wmb()
1966 		 * to make sure that the new stable_node->kpfn is visible
1967 		 * to get_ksm_page() before it can see that oldpage->mapping
1968 		 * has gone stale (or that PageSwapCache has been cleared).
1969 		 */
1970 		smp_wmb();
1971 		set_page_stable_node(oldpage, NULL);
1972 	}
1973 }
1974 #endif /* CONFIG_MIGRATION */
1975 
1976 #ifdef CONFIG_MEMORY_HOTREMOVE
1977 static void wait_while_offlining(void)
1978 {
1979 	while (ksm_run & KSM_RUN_OFFLINE) {
1980 		mutex_unlock(&ksm_thread_mutex);
1981 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1982 			    TASK_UNINTERRUPTIBLE);
1983 		mutex_lock(&ksm_thread_mutex);
1984 	}
1985 }
1986 
1987 static void ksm_check_stable_tree(unsigned long start_pfn,
1988 				  unsigned long end_pfn)
1989 {
1990 	struct stable_node *stable_node, *next;
1991 	struct rb_node *node;
1992 	int nid;
1993 
1994 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1995 		node = rb_first(root_stable_tree + nid);
1996 		while (node) {
1997 			stable_node = rb_entry(node, struct stable_node, node);
1998 			if (stable_node->kpfn >= start_pfn &&
1999 			    stable_node->kpfn < end_pfn) {
2000 				/*
2001 				 * Don't get_ksm_page, page has already gone:
2002 				 * which is why we keep kpfn instead of page*
2003 				 */
2004 				remove_node_from_stable_tree(stable_node);
2005 				node = rb_first(root_stable_tree + nid);
2006 			} else
2007 				node = rb_next(node);
2008 			cond_resched();
2009 		}
2010 	}
2011 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2012 		if (stable_node->kpfn >= start_pfn &&
2013 		    stable_node->kpfn < end_pfn)
2014 			remove_node_from_stable_tree(stable_node);
2015 		cond_resched();
2016 	}
2017 }
2018 
2019 static int ksm_memory_callback(struct notifier_block *self,
2020 			       unsigned long action, void *arg)
2021 {
2022 	struct memory_notify *mn = arg;
2023 
2024 	switch (action) {
2025 	case MEM_GOING_OFFLINE:
2026 		/*
2027 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2028 		 * and remove_all_stable_nodes() while memory is going offline:
2029 		 * it is unsafe for them to touch the stable tree at this time.
2030 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2031 		 * which do not need the ksm_thread_mutex are all safe.
2032 		 */
2033 		mutex_lock(&ksm_thread_mutex);
2034 		ksm_run |= KSM_RUN_OFFLINE;
2035 		mutex_unlock(&ksm_thread_mutex);
2036 		break;
2037 
2038 	case MEM_OFFLINE:
2039 		/*
2040 		 * Most of the work is done by page migration; but there might
2041 		 * be a few stable_nodes left over, still pointing to struct
2042 		 * pages which have been offlined: prune those from the tree,
2043 		 * otherwise get_ksm_page() might later try to access a
2044 		 * non-existent struct page.
2045 		 */
2046 		ksm_check_stable_tree(mn->start_pfn,
2047 				      mn->start_pfn + mn->nr_pages);
2048 		/* fallthrough */
2049 
2050 	case MEM_CANCEL_OFFLINE:
2051 		mutex_lock(&ksm_thread_mutex);
2052 		ksm_run &= ~KSM_RUN_OFFLINE;
2053 		mutex_unlock(&ksm_thread_mutex);
2054 
2055 		smp_mb();	/* wake_up_bit advises this */
2056 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2057 		break;
2058 	}
2059 	return NOTIFY_OK;
2060 }
2061 #else
2062 static void wait_while_offlining(void)
2063 {
2064 }
2065 #endif /* CONFIG_MEMORY_HOTREMOVE */
2066 
2067 #ifdef CONFIG_SYSFS
2068 /*
2069  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2070  */
2071 
2072 #define KSM_ATTR_RO(_name) \
2073 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2074 #define KSM_ATTR(_name) \
2075 	static struct kobj_attribute _name##_attr = \
2076 		__ATTR(_name, 0644, _name##_show, _name##_store)
2077 
2078 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2079 				    struct kobj_attribute *attr, char *buf)
2080 {
2081 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2082 }
2083 
2084 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2085 				     struct kobj_attribute *attr,
2086 				     const char *buf, size_t count)
2087 {
2088 	unsigned long msecs;
2089 	int err;
2090 
2091 	err = kstrtoul(buf, 10, &msecs);
2092 	if (err || msecs > UINT_MAX)
2093 		return -EINVAL;
2094 
2095 	ksm_thread_sleep_millisecs = msecs;
2096 
2097 	return count;
2098 }
2099 KSM_ATTR(sleep_millisecs);
2100 
2101 static ssize_t pages_to_scan_show(struct kobject *kobj,
2102 				  struct kobj_attribute *attr, char *buf)
2103 {
2104 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2105 }
2106 
2107 static ssize_t pages_to_scan_store(struct kobject *kobj,
2108 				   struct kobj_attribute *attr,
2109 				   const char *buf, size_t count)
2110 {
2111 	int err;
2112 	unsigned long nr_pages;
2113 
2114 	err = kstrtoul(buf, 10, &nr_pages);
2115 	if (err || nr_pages > UINT_MAX)
2116 		return -EINVAL;
2117 
2118 	ksm_thread_pages_to_scan = nr_pages;
2119 
2120 	return count;
2121 }
2122 KSM_ATTR(pages_to_scan);
2123 
2124 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2125 			char *buf)
2126 {
2127 	return sprintf(buf, "%lu\n", ksm_run);
2128 }
2129 
2130 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2131 			 const char *buf, size_t count)
2132 {
2133 	int err;
2134 	unsigned long flags;
2135 
2136 	err = kstrtoul(buf, 10, &flags);
2137 	if (err || flags > UINT_MAX)
2138 		return -EINVAL;
2139 	if (flags > KSM_RUN_UNMERGE)
2140 		return -EINVAL;
2141 
2142 	/*
2143 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2144 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2145 	 * breaking COW to free the pages_shared (but leaves mm_slots
2146 	 * on the list for when ksmd may be set running again).
2147 	 */
2148 
2149 	mutex_lock(&ksm_thread_mutex);
2150 	wait_while_offlining();
2151 	if (ksm_run != flags) {
2152 		ksm_run = flags;
2153 		if (flags & KSM_RUN_UNMERGE) {
2154 			set_current_oom_origin();
2155 			err = unmerge_and_remove_all_rmap_items();
2156 			clear_current_oom_origin();
2157 			if (err) {
2158 				ksm_run = KSM_RUN_STOP;
2159 				count = err;
2160 			}
2161 		}
2162 	}
2163 	mutex_unlock(&ksm_thread_mutex);
2164 
2165 	if (flags & KSM_RUN_MERGE)
2166 		wake_up_interruptible(&ksm_thread_wait);
2167 
2168 	return count;
2169 }
2170 KSM_ATTR(run);
2171 
2172 #ifdef CONFIG_NUMA
2173 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2174 				struct kobj_attribute *attr, char *buf)
2175 {
2176 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2177 }
2178 
2179 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2180 				   struct kobj_attribute *attr,
2181 				   const char *buf, size_t count)
2182 {
2183 	int err;
2184 	unsigned long knob;
2185 
2186 	err = kstrtoul(buf, 10, &knob);
2187 	if (err)
2188 		return err;
2189 	if (knob > 1)
2190 		return -EINVAL;
2191 
2192 	mutex_lock(&ksm_thread_mutex);
2193 	wait_while_offlining();
2194 	if (ksm_merge_across_nodes != knob) {
2195 		if (ksm_pages_shared || remove_all_stable_nodes())
2196 			err = -EBUSY;
2197 		else if (root_stable_tree == one_stable_tree) {
2198 			struct rb_root *buf;
2199 			/*
2200 			 * This is the first time that we switch away from the
2201 			 * default of merging across nodes: must now allocate
2202 			 * a buffer to hold as many roots as may be needed.
2203 			 * Allocate stable and unstable together:
2204 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2205 			 */
2206 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2207 				      GFP_KERNEL);
2208 			/* Let us assume that RB_ROOT is NULL is zero */
2209 			if (!buf)
2210 				err = -ENOMEM;
2211 			else {
2212 				root_stable_tree = buf;
2213 				root_unstable_tree = buf + nr_node_ids;
2214 				/* Stable tree is empty but not the unstable */
2215 				root_unstable_tree[0] = one_unstable_tree[0];
2216 			}
2217 		}
2218 		if (!err) {
2219 			ksm_merge_across_nodes = knob;
2220 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2221 		}
2222 	}
2223 	mutex_unlock(&ksm_thread_mutex);
2224 
2225 	return err ? err : count;
2226 }
2227 KSM_ATTR(merge_across_nodes);
2228 #endif
2229 
2230 static ssize_t pages_shared_show(struct kobject *kobj,
2231 				 struct kobj_attribute *attr, char *buf)
2232 {
2233 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2234 }
2235 KSM_ATTR_RO(pages_shared);
2236 
2237 static ssize_t pages_sharing_show(struct kobject *kobj,
2238 				  struct kobj_attribute *attr, char *buf)
2239 {
2240 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2241 }
2242 KSM_ATTR_RO(pages_sharing);
2243 
2244 static ssize_t pages_unshared_show(struct kobject *kobj,
2245 				   struct kobj_attribute *attr, char *buf)
2246 {
2247 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2248 }
2249 KSM_ATTR_RO(pages_unshared);
2250 
2251 static ssize_t pages_volatile_show(struct kobject *kobj,
2252 				   struct kobj_attribute *attr, char *buf)
2253 {
2254 	long ksm_pages_volatile;
2255 
2256 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2257 				- ksm_pages_sharing - ksm_pages_unshared;
2258 	/*
2259 	 * It was not worth any locking to calculate that statistic,
2260 	 * but it might therefore sometimes be negative: conceal that.
2261 	 */
2262 	if (ksm_pages_volatile < 0)
2263 		ksm_pages_volatile = 0;
2264 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2265 }
2266 KSM_ATTR_RO(pages_volatile);
2267 
2268 static ssize_t full_scans_show(struct kobject *kobj,
2269 			       struct kobj_attribute *attr, char *buf)
2270 {
2271 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2272 }
2273 KSM_ATTR_RO(full_scans);
2274 
2275 static struct attribute *ksm_attrs[] = {
2276 	&sleep_millisecs_attr.attr,
2277 	&pages_to_scan_attr.attr,
2278 	&run_attr.attr,
2279 	&pages_shared_attr.attr,
2280 	&pages_sharing_attr.attr,
2281 	&pages_unshared_attr.attr,
2282 	&pages_volatile_attr.attr,
2283 	&full_scans_attr.attr,
2284 #ifdef CONFIG_NUMA
2285 	&merge_across_nodes_attr.attr,
2286 #endif
2287 	NULL,
2288 };
2289 
2290 static struct attribute_group ksm_attr_group = {
2291 	.attrs = ksm_attrs,
2292 	.name = "ksm",
2293 };
2294 #endif /* CONFIG_SYSFS */
2295 
2296 static int __init ksm_init(void)
2297 {
2298 	struct task_struct *ksm_thread;
2299 	int err;
2300 
2301 	err = ksm_slab_init();
2302 	if (err)
2303 		goto out;
2304 
2305 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2306 	if (IS_ERR(ksm_thread)) {
2307 		pr_err("ksm: creating kthread failed\n");
2308 		err = PTR_ERR(ksm_thread);
2309 		goto out_free;
2310 	}
2311 
2312 #ifdef CONFIG_SYSFS
2313 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2314 	if (err) {
2315 		pr_err("ksm: register sysfs failed\n");
2316 		kthread_stop(ksm_thread);
2317 		goto out_free;
2318 	}
2319 #else
2320 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2321 
2322 #endif /* CONFIG_SYSFS */
2323 
2324 #ifdef CONFIG_MEMORY_HOTREMOVE
2325 	/* There is no significance to this priority 100 */
2326 	hotplug_memory_notifier(ksm_memory_callback, 100);
2327 #endif
2328 	return 0;
2329 
2330 out_free:
2331 	ksm_slab_free();
2332 out:
2333 	return err;
2334 }
2335 subsys_initcall(ksm_init);
2336