1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/memory.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/swap.h> 35 #include <linux/ksm.h> 36 #include <linux/hashtable.h> 37 #include <linux/freezer.h> 38 #include <linux/oom.h> 39 #include <linux/numa.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 #ifdef CONFIG_NUMA 45 #define NUMA(x) (x) 46 #define DO_NUMA(x) do { (x); } while (0) 47 #else 48 #define NUMA(x) (0) 49 #define DO_NUMA(x) do { } while (0) 50 #endif 51 52 /* 53 * A few notes about the KSM scanning process, 54 * to make it easier to understand the data structures below: 55 * 56 * In order to reduce excessive scanning, KSM sorts the memory pages by their 57 * contents into a data structure that holds pointers to the pages' locations. 58 * 59 * Since the contents of the pages may change at any moment, KSM cannot just 60 * insert the pages into a normal sorted tree and expect it to find anything. 61 * Therefore KSM uses two data structures - the stable and the unstable tree. 62 * 63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 64 * by their contents. Because each such page is write-protected, searching on 65 * this tree is fully assured to be working (except when pages are unmapped), 66 * and therefore this tree is called the stable tree. 67 * 68 * In addition to the stable tree, KSM uses a second data structure called the 69 * unstable tree: this tree holds pointers to pages which have been found to 70 * be "unchanged for a period of time". The unstable tree sorts these pages 71 * by their contents, but since they are not write-protected, KSM cannot rely 72 * upon the unstable tree to work correctly - the unstable tree is liable to 73 * be corrupted as its contents are modified, and so it is called unstable. 74 * 75 * KSM solves this problem by several techniques: 76 * 77 * 1) The unstable tree is flushed every time KSM completes scanning all 78 * memory areas, and then the tree is rebuilt again from the beginning. 79 * 2) KSM will only insert into the unstable tree, pages whose hash value 80 * has not changed since the previous scan of all memory areas. 81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 82 * colors of the nodes and not on their contents, assuring that even when 83 * the tree gets "corrupted" it won't get out of balance, so scanning time 84 * remains the same (also, searching and inserting nodes in an rbtree uses 85 * the same algorithm, so we have no overhead when we flush and rebuild). 86 * 4) KSM never flushes the stable tree, which means that even if it were to 87 * take 10 attempts to find a page in the unstable tree, once it is found, 88 * it is secured in the stable tree. (When we scan a new page, we first 89 * compare it against the stable tree, and then against the unstable tree.) 90 * 91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 92 * stable trees and multiple unstable trees: one of each for each NUMA node. 93 */ 94 95 /** 96 * struct mm_slot - ksm information per mm that is being scanned 97 * @link: link to the mm_slots hash list 98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 100 * @mm: the mm that this information is valid for 101 */ 102 struct mm_slot { 103 struct hlist_node link; 104 struct list_head mm_list; 105 struct rmap_item *rmap_list; 106 struct mm_struct *mm; 107 }; 108 109 /** 110 * struct ksm_scan - cursor for scanning 111 * @mm_slot: the current mm_slot we are scanning 112 * @address: the next address inside that to be scanned 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list 114 * @seqnr: count of completed full scans (needed when removing unstable node) 115 * 116 * There is only the one ksm_scan instance of this cursor structure. 117 */ 118 struct ksm_scan { 119 struct mm_slot *mm_slot; 120 unsigned long address; 121 struct rmap_item **rmap_list; 122 unsigned long seqnr; 123 }; 124 125 /** 126 * struct stable_node - node of the stable rbtree 127 * @node: rb node of this ksm page in the stable tree 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 129 * @list: linked into migrate_nodes, pending placement in the proper node tree 130 * @hlist: hlist head of rmap_items using this ksm page 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 133 */ 134 struct stable_node { 135 union { 136 struct rb_node node; /* when node of stable tree */ 137 struct { /* when listed for migration */ 138 struct list_head *head; 139 struct list_head list; 140 }; 141 }; 142 struct hlist_head hlist; 143 unsigned long kpfn; 144 #ifdef CONFIG_NUMA 145 int nid; 146 #endif 147 }; 148 149 /** 150 * struct rmap_item - reverse mapping item for virtual addresses 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 153 * @nid: NUMA node id of unstable tree in which linked (may not match page) 154 * @mm: the memory structure this rmap_item is pointing into 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 156 * @oldchecksum: previous checksum of the page at that virtual address 157 * @node: rb node of this rmap_item in the unstable tree 158 * @head: pointer to stable_node heading this list in the stable tree 159 * @hlist: link into hlist of rmap_items hanging off that stable_node 160 */ 161 struct rmap_item { 162 struct rmap_item *rmap_list; 163 union { 164 struct anon_vma *anon_vma; /* when stable */ 165 #ifdef CONFIG_NUMA 166 int nid; /* when node of unstable tree */ 167 #endif 168 }; 169 struct mm_struct *mm; 170 unsigned long address; /* + low bits used for flags below */ 171 unsigned int oldchecksum; /* when unstable */ 172 union { 173 struct rb_node node; /* when node of unstable tree */ 174 struct { /* when listed from stable tree */ 175 struct stable_node *head; 176 struct hlist_node hlist; 177 }; 178 }; 179 }; 180 181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 184 185 /* The stable and unstable tree heads */ 186 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 187 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 188 static struct rb_root *root_stable_tree = one_stable_tree; 189 static struct rb_root *root_unstable_tree = one_unstable_tree; 190 191 /* Recently migrated nodes of stable tree, pending proper placement */ 192 static LIST_HEAD(migrate_nodes); 193 194 #define MM_SLOTS_HASH_BITS 10 195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 196 197 static struct mm_slot ksm_mm_head = { 198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 199 }; 200 static struct ksm_scan ksm_scan = { 201 .mm_slot = &ksm_mm_head, 202 }; 203 204 static struct kmem_cache *rmap_item_cache; 205 static struct kmem_cache *stable_node_cache; 206 static struct kmem_cache *mm_slot_cache; 207 208 /* The number of nodes in the stable tree */ 209 static unsigned long ksm_pages_shared; 210 211 /* The number of page slots additionally sharing those nodes */ 212 static unsigned long ksm_pages_sharing; 213 214 /* The number of nodes in the unstable tree */ 215 static unsigned long ksm_pages_unshared; 216 217 /* The number of rmap_items in use: to calculate pages_volatile */ 218 static unsigned long ksm_rmap_items; 219 220 /* Number of pages ksmd should scan in one batch */ 221 static unsigned int ksm_thread_pages_to_scan = 100; 222 223 /* Milliseconds ksmd should sleep between batches */ 224 static unsigned int ksm_thread_sleep_millisecs = 20; 225 226 #ifdef CONFIG_NUMA 227 /* Zeroed when merging across nodes is not allowed */ 228 static unsigned int ksm_merge_across_nodes = 1; 229 static int ksm_nr_node_ids = 1; 230 #else 231 #define ksm_merge_across_nodes 1U 232 #define ksm_nr_node_ids 1 233 #endif 234 235 #define KSM_RUN_STOP 0 236 #define KSM_RUN_MERGE 1 237 #define KSM_RUN_UNMERGE 2 238 #define KSM_RUN_OFFLINE 4 239 static unsigned long ksm_run = KSM_RUN_STOP; 240 static void wait_while_offlining(void); 241 242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 243 static DEFINE_MUTEX(ksm_thread_mutex); 244 static DEFINE_SPINLOCK(ksm_mmlist_lock); 245 246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 247 sizeof(struct __struct), __alignof__(struct __struct),\ 248 (__flags), NULL) 249 250 static int __init ksm_slab_init(void) 251 { 252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 253 if (!rmap_item_cache) 254 goto out; 255 256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 257 if (!stable_node_cache) 258 goto out_free1; 259 260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 261 if (!mm_slot_cache) 262 goto out_free2; 263 264 return 0; 265 266 out_free2: 267 kmem_cache_destroy(stable_node_cache); 268 out_free1: 269 kmem_cache_destroy(rmap_item_cache); 270 out: 271 return -ENOMEM; 272 } 273 274 static void __init ksm_slab_free(void) 275 { 276 kmem_cache_destroy(mm_slot_cache); 277 kmem_cache_destroy(stable_node_cache); 278 kmem_cache_destroy(rmap_item_cache); 279 mm_slot_cache = NULL; 280 } 281 282 static inline struct rmap_item *alloc_rmap_item(void) 283 { 284 struct rmap_item *rmap_item; 285 286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); 287 if (rmap_item) 288 ksm_rmap_items++; 289 return rmap_item; 290 } 291 292 static inline void free_rmap_item(struct rmap_item *rmap_item) 293 { 294 ksm_rmap_items--; 295 rmap_item->mm = NULL; /* debug safety */ 296 kmem_cache_free(rmap_item_cache, rmap_item); 297 } 298 299 static inline struct stable_node *alloc_stable_node(void) 300 { 301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL); 302 } 303 304 static inline void free_stable_node(struct stable_node *stable_node) 305 { 306 kmem_cache_free(stable_node_cache, stable_node); 307 } 308 309 static inline struct mm_slot *alloc_mm_slot(void) 310 { 311 if (!mm_slot_cache) /* initialization failed */ 312 return NULL; 313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 314 } 315 316 static inline void free_mm_slot(struct mm_slot *mm_slot) 317 { 318 kmem_cache_free(mm_slot_cache, mm_slot); 319 } 320 321 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 322 { 323 struct mm_slot *slot; 324 325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 326 if (slot->mm == mm) 327 return slot; 328 329 return NULL; 330 } 331 332 static void insert_to_mm_slots_hash(struct mm_struct *mm, 333 struct mm_slot *mm_slot) 334 { 335 mm_slot->mm = mm; 336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 337 } 338 339 /* 340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 341 * page tables after it has passed through ksm_exit() - which, if necessary, 342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 343 * a special flag: they can just back out as soon as mm_users goes to zero. 344 * ksm_test_exit() is used throughout to make this test for exit: in some 345 * places for correctness, in some places just to avoid unnecessary work. 346 */ 347 static inline bool ksm_test_exit(struct mm_struct *mm) 348 { 349 return atomic_read(&mm->mm_users) == 0; 350 } 351 352 /* 353 * We use break_ksm to break COW on a ksm page: it's a stripped down 354 * 355 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 356 * put_page(page); 357 * 358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 359 * in case the application has unmapped and remapped mm,addr meanwhile. 360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 362 * 363 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 364 * of the process that owns 'vma'. We also do not want to enforce 365 * protection keys here anyway. 366 */ 367 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 368 { 369 struct page *page; 370 int ret = 0; 371 372 do { 373 cond_resched(); 374 page = follow_page(vma, addr, 375 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 376 if (IS_ERR_OR_NULL(page)) 377 break; 378 if (PageKsm(page)) 379 ret = handle_mm_fault(vma, addr, 380 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 381 else 382 ret = VM_FAULT_WRITE; 383 put_page(page); 384 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 385 /* 386 * We must loop because handle_mm_fault() may back out if there's 387 * any difficulty e.g. if pte accessed bit gets updated concurrently. 388 * 389 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 390 * COW has been broken, even if the vma does not permit VM_WRITE; 391 * but note that a concurrent fault might break PageKsm for us. 392 * 393 * VM_FAULT_SIGBUS could occur if we race with truncation of the 394 * backing file, which also invalidates anonymous pages: that's 395 * okay, that truncation will have unmapped the PageKsm for us. 396 * 397 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 398 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 399 * current task has TIF_MEMDIE set, and will be OOM killed on return 400 * to user; and ksmd, having no mm, would never be chosen for that. 401 * 402 * But if the mm is in a limited mem_cgroup, then the fault may fail 403 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 404 * even ksmd can fail in this way - though it's usually breaking ksm 405 * just to undo a merge it made a moment before, so unlikely to oom. 406 * 407 * That's a pity: we might therefore have more kernel pages allocated 408 * than we're counting as nodes in the stable tree; but ksm_do_scan 409 * will retry to break_cow on each pass, so should recover the page 410 * in due course. The important thing is to not let VM_MERGEABLE 411 * be cleared while any such pages might remain in the area. 412 */ 413 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 414 } 415 416 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 417 unsigned long addr) 418 { 419 struct vm_area_struct *vma; 420 if (ksm_test_exit(mm)) 421 return NULL; 422 vma = find_vma(mm, addr); 423 if (!vma || vma->vm_start > addr) 424 return NULL; 425 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 426 return NULL; 427 return vma; 428 } 429 430 static void break_cow(struct rmap_item *rmap_item) 431 { 432 struct mm_struct *mm = rmap_item->mm; 433 unsigned long addr = rmap_item->address; 434 struct vm_area_struct *vma; 435 436 /* 437 * It is not an accident that whenever we want to break COW 438 * to undo, we also need to drop a reference to the anon_vma. 439 */ 440 put_anon_vma(rmap_item->anon_vma); 441 442 down_read(&mm->mmap_sem); 443 vma = find_mergeable_vma(mm, addr); 444 if (vma) 445 break_ksm(vma, addr); 446 up_read(&mm->mmap_sem); 447 } 448 449 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 450 { 451 struct mm_struct *mm = rmap_item->mm; 452 unsigned long addr = rmap_item->address; 453 struct vm_area_struct *vma; 454 struct page *page; 455 456 down_read(&mm->mmap_sem); 457 vma = find_mergeable_vma(mm, addr); 458 if (!vma) 459 goto out; 460 461 page = follow_page(vma, addr, FOLL_GET); 462 if (IS_ERR_OR_NULL(page)) 463 goto out; 464 if (PageAnon(page)) { 465 flush_anon_page(vma, page, addr); 466 flush_dcache_page(page); 467 } else { 468 put_page(page); 469 out: 470 page = NULL; 471 } 472 up_read(&mm->mmap_sem); 473 return page; 474 } 475 476 /* 477 * This helper is used for getting right index into array of tree roots. 478 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 479 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 480 * every node has its own stable and unstable tree. 481 */ 482 static inline int get_kpfn_nid(unsigned long kpfn) 483 { 484 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 485 } 486 487 static void remove_node_from_stable_tree(struct stable_node *stable_node) 488 { 489 struct rmap_item *rmap_item; 490 491 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 492 if (rmap_item->hlist.next) 493 ksm_pages_sharing--; 494 else 495 ksm_pages_shared--; 496 put_anon_vma(rmap_item->anon_vma); 497 rmap_item->address &= PAGE_MASK; 498 cond_resched(); 499 } 500 501 if (stable_node->head == &migrate_nodes) 502 list_del(&stable_node->list); 503 else 504 rb_erase(&stable_node->node, 505 root_stable_tree + NUMA(stable_node->nid)); 506 free_stable_node(stable_node); 507 } 508 509 /* 510 * get_ksm_page: checks if the page indicated by the stable node 511 * is still its ksm page, despite having held no reference to it. 512 * In which case we can trust the content of the page, and it 513 * returns the gotten page; but if the page has now been zapped, 514 * remove the stale node from the stable tree and return NULL. 515 * But beware, the stable node's page might be being migrated. 516 * 517 * You would expect the stable_node to hold a reference to the ksm page. 518 * But if it increments the page's count, swapping out has to wait for 519 * ksmd to come around again before it can free the page, which may take 520 * seconds or even minutes: much too unresponsive. So instead we use a 521 * "keyhole reference": access to the ksm page from the stable node peeps 522 * out through its keyhole to see if that page still holds the right key, 523 * pointing back to this stable node. This relies on freeing a PageAnon 524 * page to reset its page->mapping to NULL, and relies on no other use of 525 * a page to put something that might look like our key in page->mapping. 526 * is on its way to being freed; but it is an anomaly to bear in mind. 527 */ 528 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 529 { 530 struct page *page; 531 void *expected_mapping; 532 unsigned long kpfn; 533 534 expected_mapping = (void *)((unsigned long)stable_node | 535 PAGE_MAPPING_KSM); 536 again: 537 kpfn = READ_ONCE(stable_node->kpfn); 538 page = pfn_to_page(kpfn); 539 540 /* 541 * page is computed from kpfn, so on most architectures reading 542 * page->mapping is naturally ordered after reading node->kpfn, 543 * but on Alpha we need to be more careful. 544 */ 545 smp_read_barrier_depends(); 546 if (READ_ONCE(page->mapping) != expected_mapping) 547 goto stale; 548 549 /* 550 * We cannot do anything with the page while its refcount is 0. 551 * Usually 0 means free, or tail of a higher-order page: in which 552 * case this node is no longer referenced, and should be freed; 553 * however, it might mean that the page is under page_freeze_refs(). 554 * The __remove_mapping() case is easy, again the node is now stale; 555 * but if page is swapcache in migrate_page_move_mapping(), it might 556 * still be our page, in which case it's essential to keep the node. 557 */ 558 while (!get_page_unless_zero(page)) { 559 /* 560 * Another check for page->mapping != expected_mapping would 561 * work here too. We have chosen the !PageSwapCache test to 562 * optimize the common case, when the page is or is about to 563 * be freed: PageSwapCache is cleared (under spin_lock_irq) 564 * in the freeze_refs section of __remove_mapping(); but Anon 565 * page->mapping reset to NULL later, in free_pages_prepare(). 566 */ 567 if (!PageSwapCache(page)) 568 goto stale; 569 cpu_relax(); 570 } 571 572 if (READ_ONCE(page->mapping) != expected_mapping) { 573 put_page(page); 574 goto stale; 575 } 576 577 if (lock_it) { 578 lock_page(page); 579 if (READ_ONCE(page->mapping) != expected_mapping) { 580 unlock_page(page); 581 put_page(page); 582 goto stale; 583 } 584 } 585 return page; 586 587 stale: 588 /* 589 * We come here from above when page->mapping or !PageSwapCache 590 * suggests that the node is stale; but it might be under migration. 591 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 592 * before checking whether node->kpfn has been changed. 593 */ 594 smp_rmb(); 595 if (READ_ONCE(stable_node->kpfn) != kpfn) 596 goto again; 597 remove_node_from_stable_tree(stable_node); 598 return NULL; 599 } 600 601 /* 602 * Removing rmap_item from stable or unstable tree. 603 * This function will clean the information from the stable/unstable tree. 604 */ 605 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 606 { 607 if (rmap_item->address & STABLE_FLAG) { 608 struct stable_node *stable_node; 609 struct page *page; 610 611 stable_node = rmap_item->head; 612 page = get_ksm_page(stable_node, true); 613 if (!page) 614 goto out; 615 616 hlist_del(&rmap_item->hlist); 617 unlock_page(page); 618 put_page(page); 619 620 if (!hlist_empty(&stable_node->hlist)) 621 ksm_pages_sharing--; 622 else 623 ksm_pages_shared--; 624 625 put_anon_vma(rmap_item->anon_vma); 626 rmap_item->address &= PAGE_MASK; 627 628 } else if (rmap_item->address & UNSTABLE_FLAG) { 629 unsigned char age; 630 /* 631 * Usually ksmd can and must skip the rb_erase, because 632 * root_unstable_tree was already reset to RB_ROOT. 633 * But be careful when an mm is exiting: do the rb_erase 634 * if this rmap_item was inserted by this scan, rather 635 * than left over from before. 636 */ 637 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 638 BUG_ON(age > 1); 639 if (!age) 640 rb_erase(&rmap_item->node, 641 root_unstable_tree + NUMA(rmap_item->nid)); 642 ksm_pages_unshared--; 643 rmap_item->address &= PAGE_MASK; 644 } 645 out: 646 cond_resched(); /* we're called from many long loops */ 647 } 648 649 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 650 struct rmap_item **rmap_list) 651 { 652 while (*rmap_list) { 653 struct rmap_item *rmap_item = *rmap_list; 654 *rmap_list = rmap_item->rmap_list; 655 remove_rmap_item_from_tree(rmap_item); 656 free_rmap_item(rmap_item); 657 } 658 } 659 660 /* 661 * Though it's very tempting to unmerge rmap_items from stable tree rather 662 * than check every pte of a given vma, the locking doesn't quite work for 663 * that - an rmap_item is assigned to the stable tree after inserting ksm 664 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 665 * rmap_items from parent to child at fork time (so as not to waste time 666 * if exit comes before the next scan reaches it). 667 * 668 * Similarly, although we'd like to remove rmap_items (so updating counts 669 * and freeing memory) when unmerging an area, it's easier to leave that 670 * to the next pass of ksmd - consider, for example, how ksmd might be 671 * in cmp_and_merge_page on one of the rmap_items we would be removing. 672 */ 673 static int unmerge_ksm_pages(struct vm_area_struct *vma, 674 unsigned long start, unsigned long end) 675 { 676 unsigned long addr; 677 int err = 0; 678 679 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 680 if (ksm_test_exit(vma->vm_mm)) 681 break; 682 if (signal_pending(current)) 683 err = -ERESTARTSYS; 684 else 685 err = break_ksm(vma, addr); 686 } 687 return err; 688 } 689 690 #ifdef CONFIG_SYSFS 691 /* 692 * Only called through the sysfs control interface: 693 */ 694 static int remove_stable_node(struct stable_node *stable_node) 695 { 696 struct page *page; 697 int err; 698 699 page = get_ksm_page(stable_node, true); 700 if (!page) { 701 /* 702 * get_ksm_page did remove_node_from_stable_tree itself. 703 */ 704 return 0; 705 } 706 707 if (WARN_ON_ONCE(page_mapped(page))) { 708 /* 709 * This should not happen: but if it does, just refuse to let 710 * merge_across_nodes be switched - there is no need to panic. 711 */ 712 err = -EBUSY; 713 } else { 714 /* 715 * The stable node did not yet appear stale to get_ksm_page(), 716 * since that allows for an unmapped ksm page to be recognized 717 * right up until it is freed; but the node is safe to remove. 718 * This page might be in a pagevec waiting to be freed, 719 * or it might be PageSwapCache (perhaps under writeback), 720 * or it might have been removed from swapcache a moment ago. 721 */ 722 set_page_stable_node(page, NULL); 723 remove_node_from_stable_tree(stable_node); 724 err = 0; 725 } 726 727 unlock_page(page); 728 put_page(page); 729 return err; 730 } 731 732 static int remove_all_stable_nodes(void) 733 { 734 struct stable_node *stable_node, *next; 735 int nid; 736 int err = 0; 737 738 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 739 while (root_stable_tree[nid].rb_node) { 740 stable_node = rb_entry(root_stable_tree[nid].rb_node, 741 struct stable_node, node); 742 if (remove_stable_node(stable_node)) { 743 err = -EBUSY; 744 break; /* proceed to next nid */ 745 } 746 cond_resched(); 747 } 748 } 749 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 750 if (remove_stable_node(stable_node)) 751 err = -EBUSY; 752 cond_resched(); 753 } 754 return err; 755 } 756 757 static int unmerge_and_remove_all_rmap_items(void) 758 { 759 struct mm_slot *mm_slot; 760 struct mm_struct *mm; 761 struct vm_area_struct *vma; 762 int err = 0; 763 764 spin_lock(&ksm_mmlist_lock); 765 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 766 struct mm_slot, mm_list); 767 spin_unlock(&ksm_mmlist_lock); 768 769 for (mm_slot = ksm_scan.mm_slot; 770 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 771 mm = mm_slot->mm; 772 down_read(&mm->mmap_sem); 773 for (vma = mm->mmap; vma; vma = vma->vm_next) { 774 if (ksm_test_exit(mm)) 775 break; 776 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 777 continue; 778 err = unmerge_ksm_pages(vma, 779 vma->vm_start, vma->vm_end); 780 if (err) 781 goto error; 782 } 783 784 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 785 up_read(&mm->mmap_sem); 786 787 spin_lock(&ksm_mmlist_lock); 788 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 789 struct mm_slot, mm_list); 790 if (ksm_test_exit(mm)) { 791 hash_del(&mm_slot->link); 792 list_del(&mm_slot->mm_list); 793 spin_unlock(&ksm_mmlist_lock); 794 795 free_mm_slot(mm_slot); 796 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 797 mmdrop(mm); 798 } else 799 spin_unlock(&ksm_mmlist_lock); 800 } 801 802 /* Clean up stable nodes, but don't worry if some are still busy */ 803 remove_all_stable_nodes(); 804 ksm_scan.seqnr = 0; 805 return 0; 806 807 error: 808 up_read(&mm->mmap_sem); 809 spin_lock(&ksm_mmlist_lock); 810 ksm_scan.mm_slot = &ksm_mm_head; 811 spin_unlock(&ksm_mmlist_lock); 812 return err; 813 } 814 #endif /* CONFIG_SYSFS */ 815 816 static u32 calc_checksum(struct page *page) 817 { 818 u32 checksum; 819 void *addr = kmap_atomic(page); 820 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 821 kunmap_atomic(addr); 822 return checksum; 823 } 824 825 static int memcmp_pages(struct page *page1, struct page *page2) 826 { 827 char *addr1, *addr2; 828 int ret; 829 830 addr1 = kmap_atomic(page1); 831 addr2 = kmap_atomic(page2); 832 ret = memcmp(addr1, addr2, PAGE_SIZE); 833 kunmap_atomic(addr2); 834 kunmap_atomic(addr1); 835 return ret; 836 } 837 838 static inline int pages_identical(struct page *page1, struct page *page2) 839 { 840 return !memcmp_pages(page1, page2); 841 } 842 843 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 844 pte_t *orig_pte) 845 { 846 struct mm_struct *mm = vma->vm_mm; 847 unsigned long addr; 848 pte_t *ptep; 849 spinlock_t *ptl; 850 int swapped; 851 int err = -EFAULT; 852 unsigned long mmun_start; /* For mmu_notifiers */ 853 unsigned long mmun_end; /* For mmu_notifiers */ 854 855 addr = page_address_in_vma(page, vma); 856 if (addr == -EFAULT) 857 goto out; 858 859 BUG_ON(PageTransCompound(page)); 860 861 mmun_start = addr; 862 mmun_end = addr + PAGE_SIZE; 863 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 864 865 ptep = page_check_address(page, mm, addr, &ptl, 0); 866 if (!ptep) 867 goto out_mn; 868 869 if (pte_write(*ptep) || pte_dirty(*ptep)) { 870 pte_t entry; 871 872 swapped = PageSwapCache(page); 873 flush_cache_page(vma, addr, page_to_pfn(page)); 874 /* 875 * Ok this is tricky, when get_user_pages_fast() run it doesn't 876 * take any lock, therefore the check that we are going to make 877 * with the pagecount against the mapcount is racey and 878 * O_DIRECT can happen right after the check. 879 * So we clear the pte and flush the tlb before the check 880 * this assure us that no O_DIRECT can happen after the check 881 * or in the middle of the check. 882 */ 883 entry = ptep_clear_flush_notify(vma, addr, ptep); 884 /* 885 * Check that no O_DIRECT or similar I/O is in progress on the 886 * page 887 */ 888 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 889 set_pte_at(mm, addr, ptep, entry); 890 goto out_unlock; 891 } 892 if (pte_dirty(entry)) 893 set_page_dirty(page); 894 entry = pte_mkclean(pte_wrprotect(entry)); 895 set_pte_at_notify(mm, addr, ptep, entry); 896 } 897 *orig_pte = *ptep; 898 err = 0; 899 900 out_unlock: 901 pte_unmap_unlock(ptep, ptl); 902 out_mn: 903 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 904 out: 905 return err; 906 } 907 908 /** 909 * replace_page - replace page in vma by new ksm page 910 * @vma: vma that holds the pte pointing to page 911 * @page: the page we are replacing by kpage 912 * @kpage: the ksm page we replace page by 913 * @orig_pte: the original value of the pte 914 * 915 * Returns 0 on success, -EFAULT on failure. 916 */ 917 static int replace_page(struct vm_area_struct *vma, struct page *page, 918 struct page *kpage, pte_t orig_pte) 919 { 920 struct mm_struct *mm = vma->vm_mm; 921 pmd_t *pmd; 922 pte_t *ptep; 923 spinlock_t *ptl; 924 unsigned long addr; 925 int err = -EFAULT; 926 unsigned long mmun_start; /* For mmu_notifiers */ 927 unsigned long mmun_end; /* For mmu_notifiers */ 928 929 addr = page_address_in_vma(page, vma); 930 if (addr == -EFAULT) 931 goto out; 932 933 pmd = mm_find_pmd(mm, addr); 934 if (!pmd) 935 goto out; 936 937 mmun_start = addr; 938 mmun_end = addr + PAGE_SIZE; 939 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 940 941 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 942 if (!pte_same(*ptep, orig_pte)) { 943 pte_unmap_unlock(ptep, ptl); 944 goto out_mn; 945 } 946 947 get_page(kpage); 948 page_add_anon_rmap(kpage, vma, addr, false); 949 950 flush_cache_page(vma, addr, pte_pfn(*ptep)); 951 ptep_clear_flush_notify(vma, addr, ptep); 952 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 953 954 page_remove_rmap(page, false); 955 if (!page_mapped(page)) 956 try_to_free_swap(page); 957 put_page(page); 958 959 pte_unmap_unlock(ptep, ptl); 960 err = 0; 961 out_mn: 962 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 963 out: 964 return err; 965 } 966 967 /* 968 * try_to_merge_one_page - take two pages and merge them into one 969 * @vma: the vma that holds the pte pointing to page 970 * @page: the PageAnon page that we want to replace with kpage 971 * @kpage: the PageKsm page that we want to map instead of page, 972 * or NULL the first time when we want to use page as kpage. 973 * 974 * This function returns 0 if the pages were merged, -EFAULT otherwise. 975 */ 976 static int try_to_merge_one_page(struct vm_area_struct *vma, 977 struct page *page, struct page *kpage) 978 { 979 pte_t orig_pte = __pte(0); 980 int err = -EFAULT; 981 982 if (page == kpage) /* ksm page forked */ 983 return 0; 984 985 if (!PageAnon(page)) 986 goto out; 987 988 /* 989 * We need the page lock to read a stable PageSwapCache in 990 * write_protect_page(). We use trylock_page() instead of 991 * lock_page() because we don't want to wait here - we 992 * prefer to continue scanning and merging different pages, 993 * then come back to this page when it is unlocked. 994 */ 995 if (!trylock_page(page)) 996 goto out; 997 998 if (PageTransCompound(page)) { 999 err = split_huge_page(page); 1000 if (err) 1001 goto out_unlock; 1002 } 1003 1004 /* 1005 * If this anonymous page is mapped only here, its pte may need 1006 * to be write-protected. If it's mapped elsewhere, all of its 1007 * ptes are necessarily already write-protected. But in either 1008 * case, we need to lock and check page_count is not raised. 1009 */ 1010 if (write_protect_page(vma, page, &orig_pte) == 0) { 1011 if (!kpage) { 1012 /* 1013 * While we hold page lock, upgrade page from 1014 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1015 * stable_tree_insert() will update stable_node. 1016 */ 1017 set_page_stable_node(page, NULL); 1018 mark_page_accessed(page); 1019 /* 1020 * Page reclaim just frees a clean page with no dirty 1021 * ptes: make sure that the ksm page would be swapped. 1022 */ 1023 if (!PageDirty(page)) 1024 SetPageDirty(page); 1025 err = 0; 1026 } else if (pages_identical(page, kpage)) 1027 err = replace_page(vma, page, kpage, orig_pte); 1028 } 1029 1030 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1031 munlock_vma_page(page); 1032 if (!PageMlocked(kpage)) { 1033 unlock_page(page); 1034 lock_page(kpage); 1035 mlock_vma_page(kpage); 1036 page = kpage; /* for final unlock */ 1037 } 1038 } 1039 1040 out_unlock: 1041 unlock_page(page); 1042 out: 1043 return err; 1044 } 1045 1046 /* 1047 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1048 * but no new kernel page is allocated: kpage must already be a ksm page. 1049 * 1050 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1051 */ 1052 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1053 struct page *page, struct page *kpage) 1054 { 1055 struct mm_struct *mm = rmap_item->mm; 1056 struct vm_area_struct *vma; 1057 int err = -EFAULT; 1058 1059 down_read(&mm->mmap_sem); 1060 vma = find_mergeable_vma(mm, rmap_item->address); 1061 if (!vma) 1062 goto out; 1063 1064 err = try_to_merge_one_page(vma, page, kpage); 1065 if (err) 1066 goto out; 1067 1068 /* Unstable nid is in union with stable anon_vma: remove first */ 1069 remove_rmap_item_from_tree(rmap_item); 1070 1071 /* Must get reference to anon_vma while still holding mmap_sem */ 1072 rmap_item->anon_vma = vma->anon_vma; 1073 get_anon_vma(vma->anon_vma); 1074 out: 1075 up_read(&mm->mmap_sem); 1076 return err; 1077 } 1078 1079 /* 1080 * try_to_merge_two_pages - take two identical pages and prepare them 1081 * to be merged into one page. 1082 * 1083 * This function returns the kpage if we successfully merged two identical 1084 * pages into one ksm page, NULL otherwise. 1085 * 1086 * Note that this function upgrades page to ksm page: if one of the pages 1087 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1088 */ 1089 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1090 struct page *page, 1091 struct rmap_item *tree_rmap_item, 1092 struct page *tree_page) 1093 { 1094 int err; 1095 1096 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1097 if (!err) { 1098 err = try_to_merge_with_ksm_page(tree_rmap_item, 1099 tree_page, page); 1100 /* 1101 * If that fails, we have a ksm page with only one pte 1102 * pointing to it: so break it. 1103 */ 1104 if (err) 1105 break_cow(rmap_item); 1106 } 1107 return err ? NULL : page; 1108 } 1109 1110 /* 1111 * stable_tree_search - search for page inside the stable tree 1112 * 1113 * This function checks if there is a page inside the stable tree 1114 * with identical content to the page that we are scanning right now. 1115 * 1116 * This function returns the stable tree node of identical content if found, 1117 * NULL otherwise. 1118 */ 1119 static struct page *stable_tree_search(struct page *page) 1120 { 1121 int nid; 1122 struct rb_root *root; 1123 struct rb_node **new; 1124 struct rb_node *parent; 1125 struct stable_node *stable_node; 1126 struct stable_node *page_node; 1127 1128 page_node = page_stable_node(page); 1129 if (page_node && page_node->head != &migrate_nodes) { 1130 /* ksm page forked */ 1131 get_page(page); 1132 return page; 1133 } 1134 1135 nid = get_kpfn_nid(page_to_pfn(page)); 1136 root = root_stable_tree + nid; 1137 again: 1138 new = &root->rb_node; 1139 parent = NULL; 1140 1141 while (*new) { 1142 struct page *tree_page; 1143 int ret; 1144 1145 cond_resched(); 1146 stable_node = rb_entry(*new, struct stable_node, node); 1147 tree_page = get_ksm_page(stable_node, false); 1148 if (!tree_page) { 1149 /* 1150 * If we walked over a stale stable_node, 1151 * get_ksm_page() will call rb_erase() and it 1152 * may rebalance the tree from under us. So 1153 * restart the search from scratch. Returning 1154 * NULL would be safe too, but we'd generate 1155 * false negative insertions just because some 1156 * stable_node was stale. 1157 */ 1158 goto again; 1159 } 1160 1161 ret = memcmp_pages(page, tree_page); 1162 put_page(tree_page); 1163 1164 parent = *new; 1165 if (ret < 0) 1166 new = &parent->rb_left; 1167 else if (ret > 0) 1168 new = &parent->rb_right; 1169 else { 1170 /* 1171 * Lock and unlock the stable_node's page (which 1172 * might already have been migrated) so that page 1173 * migration is sure to notice its raised count. 1174 * It would be more elegant to return stable_node 1175 * than kpage, but that involves more changes. 1176 */ 1177 tree_page = get_ksm_page(stable_node, true); 1178 if (tree_page) { 1179 unlock_page(tree_page); 1180 if (get_kpfn_nid(stable_node->kpfn) != 1181 NUMA(stable_node->nid)) { 1182 put_page(tree_page); 1183 goto replace; 1184 } 1185 return tree_page; 1186 } 1187 /* 1188 * There is now a place for page_node, but the tree may 1189 * have been rebalanced, so re-evaluate parent and new. 1190 */ 1191 if (page_node) 1192 goto again; 1193 return NULL; 1194 } 1195 } 1196 1197 if (!page_node) 1198 return NULL; 1199 1200 list_del(&page_node->list); 1201 DO_NUMA(page_node->nid = nid); 1202 rb_link_node(&page_node->node, parent, new); 1203 rb_insert_color(&page_node->node, root); 1204 get_page(page); 1205 return page; 1206 1207 replace: 1208 if (page_node) { 1209 list_del(&page_node->list); 1210 DO_NUMA(page_node->nid = nid); 1211 rb_replace_node(&stable_node->node, &page_node->node, root); 1212 get_page(page); 1213 } else { 1214 rb_erase(&stable_node->node, root); 1215 page = NULL; 1216 } 1217 stable_node->head = &migrate_nodes; 1218 list_add(&stable_node->list, stable_node->head); 1219 return page; 1220 } 1221 1222 /* 1223 * stable_tree_insert - insert stable tree node pointing to new ksm page 1224 * into the stable tree. 1225 * 1226 * This function returns the stable tree node just allocated on success, 1227 * NULL otherwise. 1228 */ 1229 static struct stable_node *stable_tree_insert(struct page *kpage) 1230 { 1231 int nid; 1232 unsigned long kpfn; 1233 struct rb_root *root; 1234 struct rb_node **new; 1235 struct rb_node *parent; 1236 struct stable_node *stable_node; 1237 1238 kpfn = page_to_pfn(kpage); 1239 nid = get_kpfn_nid(kpfn); 1240 root = root_stable_tree + nid; 1241 again: 1242 parent = NULL; 1243 new = &root->rb_node; 1244 1245 while (*new) { 1246 struct page *tree_page; 1247 int ret; 1248 1249 cond_resched(); 1250 stable_node = rb_entry(*new, struct stable_node, node); 1251 tree_page = get_ksm_page(stable_node, false); 1252 if (!tree_page) { 1253 /* 1254 * If we walked over a stale stable_node, 1255 * get_ksm_page() will call rb_erase() and it 1256 * may rebalance the tree from under us. So 1257 * restart the search from scratch. Returning 1258 * NULL would be safe too, but we'd generate 1259 * false negative insertions just because some 1260 * stable_node was stale. 1261 */ 1262 goto again; 1263 } 1264 1265 ret = memcmp_pages(kpage, tree_page); 1266 put_page(tree_page); 1267 1268 parent = *new; 1269 if (ret < 0) 1270 new = &parent->rb_left; 1271 else if (ret > 0) 1272 new = &parent->rb_right; 1273 else { 1274 /* 1275 * It is not a bug that stable_tree_search() didn't 1276 * find this node: because at that time our page was 1277 * not yet write-protected, so may have changed since. 1278 */ 1279 return NULL; 1280 } 1281 } 1282 1283 stable_node = alloc_stable_node(); 1284 if (!stable_node) 1285 return NULL; 1286 1287 INIT_HLIST_HEAD(&stable_node->hlist); 1288 stable_node->kpfn = kpfn; 1289 set_page_stable_node(kpage, stable_node); 1290 DO_NUMA(stable_node->nid = nid); 1291 rb_link_node(&stable_node->node, parent, new); 1292 rb_insert_color(&stable_node->node, root); 1293 1294 return stable_node; 1295 } 1296 1297 /* 1298 * unstable_tree_search_insert - search for identical page, 1299 * else insert rmap_item into the unstable tree. 1300 * 1301 * This function searches for a page in the unstable tree identical to the 1302 * page currently being scanned; and if no identical page is found in the 1303 * tree, we insert rmap_item as a new object into the unstable tree. 1304 * 1305 * This function returns pointer to rmap_item found to be identical 1306 * to the currently scanned page, NULL otherwise. 1307 * 1308 * This function does both searching and inserting, because they share 1309 * the same walking algorithm in an rbtree. 1310 */ 1311 static 1312 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1313 struct page *page, 1314 struct page **tree_pagep) 1315 { 1316 struct rb_node **new; 1317 struct rb_root *root; 1318 struct rb_node *parent = NULL; 1319 int nid; 1320 1321 nid = get_kpfn_nid(page_to_pfn(page)); 1322 root = root_unstable_tree + nid; 1323 new = &root->rb_node; 1324 1325 while (*new) { 1326 struct rmap_item *tree_rmap_item; 1327 struct page *tree_page; 1328 int ret; 1329 1330 cond_resched(); 1331 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1332 tree_page = get_mergeable_page(tree_rmap_item); 1333 if (!tree_page) 1334 return NULL; 1335 1336 /* 1337 * Don't substitute a ksm page for a forked page. 1338 */ 1339 if (page == tree_page) { 1340 put_page(tree_page); 1341 return NULL; 1342 } 1343 1344 ret = memcmp_pages(page, tree_page); 1345 1346 parent = *new; 1347 if (ret < 0) { 1348 put_page(tree_page); 1349 new = &parent->rb_left; 1350 } else if (ret > 0) { 1351 put_page(tree_page); 1352 new = &parent->rb_right; 1353 } else if (!ksm_merge_across_nodes && 1354 page_to_nid(tree_page) != nid) { 1355 /* 1356 * If tree_page has been migrated to another NUMA node, 1357 * it will be flushed out and put in the right unstable 1358 * tree next time: only merge with it when across_nodes. 1359 */ 1360 put_page(tree_page); 1361 return NULL; 1362 } else { 1363 *tree_pagep = tree_page; 1364 return tree_rmap_item; 1365 } 1366 } 1367 1368 rmap_item->address |= UNSTABLE_FLAG; 1369 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1370 DO_NUMA(rmap_item->nid = nid); 1371 rb_link_node(&rmap_item->node, parent, new); 1372 rb_insert_color(&rmap_item->node, root); 1373 1374 ksm_pages_unshared++; 1375 return NULL; 1376 } 1377 1378 /* 1379 * stable_tree_append - add another rmap_item to the linked list of 1380 * rmap_items hanging off a given node of the stable tree, all sharing 1381 * the same ksm page. 1382 */ 1383 static void stable_tree_append(struct rmap_item *rmap_item, 1384 struct stable_node *stable_node) 1385 { 1386 rmap_item->head = stable_node; 1387 rmap_item->address |= STABLE_FLAG; 1388 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1389 1390 if (rmap_item->hlist.next) 1391 ksm_pages_sharing++; 1392 else 1393 ksm_pages_shared++; 1394 } 1395 1396 /* 1397 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1398 * if not, compare checksum to previous and if it's the same, see if page can 1399 * be inserted into the unstable tree, or merged with a page already there and 1400 * both transferred to the stable tree. 1401 * 1402 * @page: the page that we are searching identical page to. 1403 * @rmap_item: the reverse mapping into the virtual address of this page 1404 */ 1405 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1406 { 1407 struct rmap_item *tree_rmap_item; 1408 struct page *tree_page = NULL; 1409 struct stable_node *stable_node; 1410 struct page *kpage; 1411 unsigned int checksum; 1412 int err; 1413 1414 stable_node = page_stable_node(page); 1415 if (stable_node) { 1416 if (stable_node->head != &migrate_nodes && 1417 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) { 1418 rb_erase(&stable_node->node, 1419 root_stable_tree + NUMA(stable_node->nid)); 1420 stable_node->head = &migrate_nodes; 1421 list_add(&stable_node->list, stable_node->head); 1422 } 1423 if (stable_node->head != &migrate_nodes && 1424 rmap_item->head == stable_node) 1425 return; 1426 } 1427 1428 /* We first start with searching the page inside the stable tree */ 1429 kpage = stable_tree_search(page); 1430 if (kpage == page && rmap_item->head == stable_node) { 1431 put_page(kpage); 1432 return; 1433 } 1434 1435 remove_rmap_item_from_tree(rmap_item); 1436 1437 if (kpage) { 1438 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1439 if (!err) { 1440 /* 1441 * The page was successfully merged: 1442 * add its rmap_item to the stable tree. 1443 */ 1444 lock_page(kpage); 1445 stable_tree_append(rmap_item, page_stable_node(kpage)); 1446 unlock_page(kpage); 1447 } 1448 put_page(kpage); 1449 return; 1450 } 1451 1452 /* 1453 * If the hash value of the page has changed from the last time 1454 * we calculated it, this page is changing frequently: therefore we 1455 * don't want to insert it in the unstable tree, and we don't want 1456 * to waste our time searching for something identical to it there. 1457 */ 1458 checksum = calc_checksum(page); 1459 if (rmap_item->oldchecksum != checksum) { 1460 rmap_item->oldchecksum = checksum; 1461 return; 1462 } 1463 1464 tree_rmap_item = 1465 unstable_tree_search_insert(rmap_item, page, &tree_page); 1466 if (tree_rmap_item) { 1467 kpage = try_to_merge_two_pages(rmap_item, page, 1468 tree_rmap_item, tree_page); 1469 put_page(tree_page); 1470 if (kpage) { 1471 /* 1472 * The pages were successfully merged: insert new 1473 * node in the stable tree and add both rmap_items. 1474 */ 1475 lock_page(kpage); 1476 stable_node = stable_tree_insert(kpage); 1477 if (stable_node) { 1478 stable_tree_append(tree_rmap_item, stable_node); 1479 stable_tree_append(rmap_item, stable_node); 1480 } 1481 unlock_page(kpage); 1482 1483 /* 1484 * If we fail to insert the page into the stable tree, 1485 * we will have 2 virtual addresses that are pointing 1486 * to a ksm page left outside the stable tree, 1487 * in which case we need to break_cow on both. 1488 */ 1489 if (!stable_node) { 1490 break_cow(tree_rmap_item); 1491 break_cow(rmap_item); 1492 } 1493 } 1494 } 1495 } 1496 1497 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1498 struct rmap_item **rmap_list, 1499 unsigned long addr) 1500 { 1501 struct rmap_item *rmap_item; 1502 1503 while (*rmap_list) { 1504 rmap_item = *rmap_list; 1505 if ((rmap_item->address & PAGE_MASK) == addr) 1506 return rmap_item; 1507 if (rmap_item->address > addr) 1508 break; 1509 *rmap_list = rmap_item->rmap_list; 1510 remove_rmap_item_from_tree(rmap_item); 1511 free_rmap_item(rmap_item); 1512 } 1513 1514 rmap_item = alloc_rmap_item(); 1515 if (rmap_item) { 1516 /* It has already been zeroed */ 1517 rmap_item->mm = mm_slot->mm; 1518 rmap_item->address = addr; 1519 rmap_item->rmap_list = *rmap_list; 1520 *rmap_list = rmap_item; 1521 } 1522 return rmap_item; 1523 } 1524 1525 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1526 { 1527 struct mm_struct *mm; 1528 struct mm_slot *slot; 1529 struct vm_area_struct *vma; 1530 struct rmap_item *rmap_item; 1531 int nid; 1532 1533 if (list_empty(&ksm_mm_head.mm_list)) 1534 return NULL; 1535 1536 slot = ksm_scan.mm_slot; 1537 if (slot == &ksm_mm_head) { 1538 /* 1539 * A number of pages can hang around indefinitely on per-cpu 1540 * pagevecs, raised page count preventing write_protect_page 1541 * from merging them. Though it doesn't really matter much, 1542 * it is puzzling to see some stuck in pages_volatile until 1543 * other activity jostles them out, and they also prevented 1544 * LTP's KSM test from succeeding deterministically; so drain 1545 * them here (here rather than on entry to ksm_do_scan(), 1546 * so we don't IPI too often when pages_to_scan is set low). 1547 */ 1548 lru_add_drain_all(); 1549 1550 /* 1551 * Whereas stale stable_nodes on the stable_tree itself 1552 * get pruned in the regular course of stable_tree_search(), 1553 * those moved out to the migrate_nodes list can accumulate: 1554 * so prune them once before each full scan. 1555 */ 1556 if (!ksm_merge_across_nodes) { 1557 struct stable_node *stable_node, *next; 1558 struct page *page; 1559 1560 list_for_each_entry_safe(stable_node, next, 1561 &migrate_nodes, list) { 1562 page = get_ksm_page(stable_node, false); 1563 if (page) 1564 put_page(page); 1565 cond_resched(); 1566 } 1567 } 1568 1569 for (nid = 0; nid < ksm_nr_node_ids; nid++) 1570 root_unstable_tree[nid] = RB_ROOT; 1571 1572 spin_lock(&ksm_mmlist_lock); 1573 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1574 ksm_scan.mm_slot = slot; 1575 spin_unlock(&ksm_mmlist_lock); 1576 /* 1577 * Although we tested list_empty() above, a racing __ksm_exit 1578 * of the last mm on the list may have removed it since then. 1579 */ 1580 if (slot == &ksm_mm_head) 1581 return NULL; 1582 next_mm: 1583 ksm_scan.address = 0; 1584 ksm_scan.rmap_list = &slot->rmap_list; 1585 } 1586 1587 mm = slot->mm; 1588 down_read(&mm->mmap_sem); 1589 if (ksm_test_exit(mm)) 1590 vma = NULL; 1591 else 1592 vma = find_vma(mm, ksm_scan.address); 1593 1594 for (; vma; vma = vma->vm_next) { 1595 if (!(vma->vm_flags & VM_MERGEABLE)) 1596 continue; 1597 if (ksm_scan.address < vma->vm_start) 1598 ksm_scan.address = vma->vm_start; 1599 if (!vma->anon_vma) 1600 ksm_scan.address = vma->vm_end; 1601 1602 while (ksm_scan.address < vma->vm_end) { 1603 if (ksm_test_exit(mm)) 1604 break; 1605 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1606 if (IS_ERR_OR_NULL(*page)) { 1607 ksm_scan.address += PAGE_SIZE; 1608 cond_resched(); 1609 continue; 1610 } 1611 if (PageAnon(*page)) { 1612 flush_anon_page(vma, *page, ksm_scan.address); 1613 flush_dcache_page(*page); 1614 rmap_item = get_next_rmap_item(slot, 1615 ksm_scan.rmap_list, ksm_scan.address); 1616 if (rmap_item) { 1617 ksm_scan.rmap_list = 1618 &rmap_item->rmap_list; 1619 ksm_scan.address += PAGE_SIZE; 1620 } else 1621 put_page(*page); 1622 up_read(&mm->mmap_sem); 1623 return rmap_item; 1624 } 1625 put_page(*page); 1626 ksm_scan.address += PAGE_SIZE; 1627 cond_resched(); 1628 } 1629 } 1630 1631 if (ksm_test_exit(mm)) { 1632 ksm_scan.address = 0; 1633 ksm_scan.rmap_list = &slot->rmap_list; 1634 } 1635 /* 1636 * Nuke all the rmap_items that are above this current rmap: 1637 * because there were no VM_MERGEABLE vmas with such addresses. 1638 */ 1639 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1640 1641 spin_lock(&ksm_mmlist_lock); 1642 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1643 struct mm_slot, mm_list); 1644 if (ksm_scan.address == 0) { 1645 /* 1646 * We've completed a full scan of all vmas, holding mmap_sem 1647 * throughout, and found no VM_MERGEABLE: so do the same as 1648 * __ksm_exit does to remove this mm from all our lists now. 1649 * This applies either when cleaning up after __ksm_exit 1650 * (but beware: we can reach here even before __ksm_exit), 1651 * or when all VM_MERGEABLE areas have been unmapped (and 1652 * mmap_sem then protects against race with MADV_MERGEABLE). 1653 */ 1654 hash_del(&slot->link); 1655 list_del(&slot->mm_list); 1656 spin_unlock(&ksm_mmlist_lock); 1657 1658 free_mm_slot(slot); 1659 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1660 up_read(&mm->mmap_sem); 1661 mmdrop(mm); 1662 } else { 1663 up_read(&mm->mmap_sem); 1664 /* 1665 * up_read(&mm->mmap_sem) first because after 1666 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 1667 * already have been freed under us by __ksm_exit() 1668 * because the "mm_slot" is still hashed and 1669 * ksm_scan.mm_slot doesn't point to it anymore. 1670 */ 1671 spin_unlock(&ksm_mmlist_lock); 1672 } 1673 1674 /* Repeat until we've completed scanning the whole list */ 1675 slot = ksm_scan.mm_slot; 1676 if (slot != &ksm_mm_head) 1677 goto next_mm; 1678 1679 ksm_scan.seqnr++; 1680 return NULL; 1681 } 1682 1683 /** 1684 * ksm_do_scan - the ksm scanner main worker function. 1685 * @scan_npages - number of pages we want to scan before we return. 1686 */ 1687 static void ksm_do_scan(unsigned int scan_npages) 1688 { 1689 struct rmap_item *rmap_item; 1690 struct page *uninitialized_var(page); 1691 1692 while (scan_npages-- && likely(!freezing(current))) { 1693 cond_resched(); 1694 rmap_item = scan_get_next_rmap_item(&page); 1695 if (!rmap_item) 1696 return; 1697 cmp_and_merge_page(page, rmap_item); 1698 put_page(page); 1699 } 1700 } 1701 1702 static int ksmd_should_run(void) 1703 { 1704 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1705 } 1706 1707 static int ksm_scan_thread(void *nothing) 1708 { 1709 set_freezable(); 1710 set_user_nice(current, 5); 1711 1712 while (!kthread_should_stop()) { 1713 mutex_lock(&ksm_thread_mutex); 1714 wait_while_offlining(); 1715 if (ksmd_should_run()) 1716 ksm_do_scan(ksm_thread_pages_to_scan); 1717 mutex_unlock(&ksm_thread_mutex); 1718 1719 try_to_freeze(); 1720 1721 if (ksmd_should_run()) { 1722 schedule_timeout_interruptible( 1723 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1724 } else { 1725 wait_event_freezable(ksm_thread_wait, 1726 ksmd_should_run() || kthread_should_stop()); 1727 } 1728 } 1729 return 0; 1730 } 1731 1732 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1733 unsigned long end, int advice, unsigned long *vm_flags) 1734 { 1735 struct mm_struct *mm = vma->vm_mm; 1736 int err; 1737 1738 switch (advice) { 1739 case MADV_MERGEABLE: 1740 /* 1741 * Be somewhat over-protective for now! 1742 */ 1743 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1744 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1745 VM_HUGETLB | VM_MIXEDMAP)) 1746 return 0; /* just ignore the advice */ 1747 1748 #ifdef VM_SAO 1749 if (*vm_flags & VM_SAO) 1750 return 0; 1751 #endif 1752 1753 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1754 err = __ksm_enter(mm); 1755 if (err) 1756 return err; 1757 } 1758 1759 *vm_flags |= VM_MERGEABLE; 1760 break; 1761 1762 case MADV_UNMERGEABLE: 1763 if (!(*vm_flags & VM_MERGEABLE)) 1764 return 0; /* just ignore the advice */ 1765 1766 if (vma->anon_vma) { 1767 err = unmerge_ksm_pages(vma, start, end); 1768 if (err) 1769 return err; 1770 } 1771 1772 *vm_flags &= ~VM_MERGEABLE; 1773 break; 1774 } 1775 1776 return 0; 1777 } 1778 1779 int __ksm_enter(struct mm_struct *mm) 1780 { 1781 struct mm_slot *mm_slot; 1782 int needs_wakeup; 1783 1784 mm_slot = alloc_mm_slot(); 1785 if (!mm_slot) 1786 return -ENOMEM; 1787 1788 /* Check ksm_run too? Would need tighter locking */ 1789 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1790 1791 spin_lock(&ksm_mmlist_lock); 1792 insert_to_mm_slots_hash(mm, mm_slot); 1793 /* 1794 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 1795 * insert just behind the scanning cursor, to let the area settle 1796 * down a little; when fork is followed by immediate exec, we don't 1797 * want ksmd to waste time setting up and tearing down an rmap_list. 1798 * 1799 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 1800 * scanning cursor, otherwise KSM pages in newly forked mms will be 1801 * missed: then we might as well insert at the end of the list. 1802 */ 1803 if (ksm_run & KSM_RUN_UNMERGE) 1804 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 1805 else 1806 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1807 spin_unlock(&ksm_mmlist_lock); 1808 1809 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1810 atomic_inc(&mm->mm_count); 1811 1812 if (needs_wakeup) 1813 wake_up_interruptible(&ksm_thread_wait); 1814 1815 return 0; 1816 } 1817 1818 void __ksm_exit(struct mm_struct *mm) 1819 { 1820 struct mm_slot *mm_slot; 1821 int easy_to_free = 0; 1822 1823 /* 1824 * This process is exiting: if it's straightforward (as is the 1825 * case when ksmd was never running), free mm_slot immediately. 1826 * But if it's at the cursor or has rmap_items linked to it, use 1827 * mmap_sem to synchronize with any break_cows before pagetables 1828 * are freed, and leave the mm_slot on the list for ksmd to free. 1829 * Beware: ksm may already have noticed it exiting and freed the slot. 1830 */ 1831 1832 spin_lock(&ksm_mmlist_lock); 1833 mm_slot = get_mm_slot(mm); 1834 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1835 if (!mm_slot->rmap_list) { 1836 hash_del(&mm_slot->link); 1837 list_del(&mm_slot->mm_list); 1838 easy_to_free = 1; 1839 } else { 1840 list_move(&mm_slot->mm_list, 1841 &ksm_scan.mm_slot->mm_list); 1842 } 1843 } 1844 spin_unlock(&ksm_mmlist_lock); 1845 1846 if (easy_to_free) { 1847 free_mm_slot(mm_slot); 1848 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1849 mmdrop(mm); 1850 } else if (mm_slot) { 1851 down_write(&mm->mmap_sem); 1852 up_write(&mm->mmap_sem); 1853 } 1854 } 1855 1856 struct page *ksm_might_need_to_copy(struct page *page, 1857 struct vm_area_struct *vma, unsigned long address) 1858 { 1859 struct anon_vma *anon_vma = page_anon_vma(page); 1860 struct page *new_page; 1861 1862 if (PageKsm(page)) { 1863 if (page_stable_node(page) && 1864 !(ksm_run & KSM_RUN_UNMERGE)) 1865 return page; /* no need to copy it */ 1866 } else if (!anon_vma) { 1867 return page; /* no need to copy it */ 1868 } else if (anon_vma->root == vma->anon_vma->root && 1869 page->index == linear_page_index(vma, address)) { 1870 return page; /* still no need to copy it */ 1871 } 1872 if (!PageUptodate(page)) 1873 return page; /* let do_swap_page report the error */ 1874 1875 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1876 if (new_page) { 1877 copy_user_highpage(new_page, page, address, vma); 1878 1879 SetPageDirty(new_page); 1880 __SetPageUptodate(new_page); 1881 __SetPageLocked(new_page); 1882 } 1883 1884 return new_page; 1885 } 1886 1887 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 1888 { 1889 struct stable_node *stable_node; 1890 struct rmap_item *rmap_item; 1891 int ret = SWAP_AGAIN; 1892 int search_new_forks = 0; 1893 1894 VM_BUG_ON_PAGE(!PageKsm(page), page); 1895 1896 /* 1897 * Rely on the page lock to protect against concurrent modifications 1898 * to that page's node of the stable tree. 1899 */ 1900 VM_BUG_ON_PAGE(!PageLocked(page), page); 1901 1902 stable_node = page_stable_node(page); 1903 if (!stable_node) 1904 return ret; 1905 again: 1906 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 1907 struct anon_vma *anon_vma = rmap_item->anon_vma; 1908 struct anon_vma_chain *vmac; 1909 struct vm_area_struct *vma; 1910 1911 cond_resched(); 1912 anon_vma_lock_read(anon_vma); 1913 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 1914 0, ULONG_MAX) { 1915 cond_resched(); 1916 vma = vmac->vma; 1917 if (rmap_item->address < vma->vm_start || 1918 rmap_item->address >= vma->vm_end) 1919 continue; 1920 /* 1921 * Initially we examine only the vma which covers this 1922 * rmap_item; but later, if there is still work to do, 1923 * we examine covering vmas in other mms: in case they 1924 * were forked from the original since ksmd passed. 1925 */ 1926 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1927 continue; 1928 1929 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1930 continue; 1931 1932 ret = rwc->rmap_one(page, vma, 1933 rmap_item->address, rwc->arg); 1934 if (ret != SWAP_AGAIN) { 1935 anon_vma_unlock_read(anon_vma); 1936 goto out; 1937 } 1938 if (rwc->done && rwc->done(page)) { 1939 anon_vma_unlock_read(anon_vma); 1940 goto out; 1941 } 1942 } 1943 anon_vma_unlock_read(anon_vma); 1944 } 1945 if (!search_new_forks++) 1946 goto again; 1947 out: 1948 return ret; 1949 } 1950 1951 #ifdef CONFIG_MIGRATION 1952 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 1953 { 1954 struct stable_node *stable_node; 1955 1956 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 1957 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1958 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 1959 1960 stable_node = page_stable_node(newpage); 1961 if (stable_node) { 1962 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 1963 stable_node->kpfn = page_to_pfn(newpage); 1964 /* 1965 * newpage->mapping was set in advance; now we need smp_wmb() 1966 * to make sure that the new stable_node->kpfn is visible 1967 * to get_ksm_page() before it can see that oldpage->mapping 1968 * has gone stale (or that PageSwapCache has been cleared). 1969 */ 1970 smp_wmb(); 1971 set_page_stable_node(oldpage, NULL); 1972 } 1973 } 1974 #endif /* CONFIG_MIGRATION */ 1975 1976 #ifdef CONFIG_MEMORY_HOTREMOVE 1977 static void wait_while_offlining(void) 1978 { 1979 while (ksm_run & KSM_RUN_OFFLINE) { 1980 mutex_unlock(&ksm_thread_mutex); 1981 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 1982 TASK_UNINTERRUPTIBLE); 1983 mutex_lock(&ksm_thread_mutex); 1984 } 1985 } 1986 1987 static void ksm_check_stable_tree(unsigned long start_pfn, 1988 unsigned long end_pfn) 1989 { 1990 struct stable_node *stable_node, *next; 1991 struct rb_node *node; 1992 int nid; 1993 1994 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1995 node = rb_first(root_stable_tree + nid); 1996 while (node) { 1997 stable_node = rb_entry(node, struct stable_node, node); 1998 if (stable_node->kpfn >= start_pfn && 1999 stable_node->kpfn < end_pfn) { 2000 /* 2001 * Don't get_ksm_page, page has already gone: 2002 * which is why we keep kpfn instead of page* 2003 */ 2004 remove_node_from_stable_tree(stable_node); 2005 node = rb_first(root_stable_tree + nid); 2006 } else 2007 node = rb_next(node); 2008 cond_resched(); 2009 } 2010 } 2011 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2012 if (stable_node->kpfn >= start_pfn && 2013 stable_node->kpfn < end_pfn) 2014 remove_node_from_stable_tree(stable_node); 2015 cond_resched(); 2016 } 2017 } 2018 2019 static int ksm_memory_callback(struct notifier_block *self, 2020 unsigned long action, void *arg) 2021 { 2022 struct memory_notify *mn = arg; 2023 2024 switch (action) { 2025 case MEM_GOING_OFFLINE: 2026 /* 2027 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2028 * and remove_all_stable_nodes() while memory is going offline: 2029 * it is unsafe for them to touch the stable tree at this time. 2030 * But unmerge_ksm_pages(), rmap lookups and other entry points 2031 * which do not need the ksm_thread_mutex are all safe. 2032 */ 2033 mutex_lock(&ksm_thread_mutex); 2034 ksm_run |= KSM_RUN_OFFLINE; 2035 mutex_unlock(&ksm_thread_mutex); 2036 break; 2037 2038 case MEM_OFFLINE: 2039 /* 2040 * Most of the work is done by page migration; but there might 2041 * be a few stable_nodes left over, still pointing to struct 2042 * pages which have been offlined: prune those from the tree, 2043 * otherwise get_ksm_page() might later try to access a 2044 * non-existent struct page. 2045 */ 2046 ksm_check_stable_tree(mn->start_pfn, 2047 mn->start_pfn + mn->nr_pages); 2048 /* fallthrough */ 2049 2050 case MEM_CANCEL_OFFLINE: 2051 mutex_lock(&ksm_thread_mutex); 2052 ksm_run &= ~KSM_RUN_OFFLINE; 2053 mutex_unlock(&ksm_thread_mutex); 2054 2055 smp_mb(); /* wake_up_bit advises this */ 2056 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2057 break; 2058 } 2059 return NOTIFY_OK; 2060 } 2061 #else 2062 static void wait_while_offlining(void) 2063 { 2064 } 2065 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2066 2067 #ifdef CONFIG_SYSFS 2068 /* 2069 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2070 */ 2071 2072 #define KSM_ATTR_RO(_name) \ 2073 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2074 #define KSM_ATTR(_name) \ 2075 static struct kobj_attribute _name##_attr = \ 2076 __ATTR(_name, 0644, _name##_show, _name##_store) 2077 2078 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2079 struct kobj_attribute *attr, char *buf) 2080 { 2081 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2082 } 2083 2084 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2085 struct kobj_attribute *attr, 2086 const char *buf, size_t count) 2087 { 2088 unsigned long msecs; 2089 int err; 2090 2091 err = kstrtoul(buf, 10, &msecs); 2092 if (err || msecs > UINT_MAX) 2093 return -EINVAL; 2094 2095 ksm_thread_sleep_millisecs = msecs; 2096 2097 return count; 2098 } 2099 KSM_ATTR(sleep_millisecs); 2100 2101 static ssize_t pages_to_scan_show(struct kobject *kobj, 2102 struct kobj_attribute *attr, char *buf) 2103 { 2104 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2105 } 2106 2107 static ssize_t pages_to_scan_store(struct kobject *kobj, 2108 struct kobj_attribute *attr, 2109 const char *buf, size_t count) 2110 { 2111 int err; 2112 unsigned long nr_pages; 2113 2114 err = kstrtoul(buf, 10, &nr_pages); 2115 if (err || nr_pages > UINT_MAX) 2116 return -EINVAL; 2117 2118 ksm_thread_pages_to_scan = nr_pages; 2119 2120 return count; 2121 } 2122 KSM_ATTR(pages_to_scan); 2123 2124 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2125 char *buf) 2126 { 2127 return sprintf(buf, "%lu\n", ksm_run); 2128 } 2129 2130 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2131 const char *buf, size_t count) 2132 { 2133 int err; 2134 unsigned long flags; 2135 2136 err = kstrtoul(buf, 10, &flags); 2137 if (err || flags > UINT_MAX) 2138 return -EINVAL; 2139 if (flags > KSM_RUN_UNMERGE) 2140 return -EINVAL; 2141 2142 /* 2143 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2144 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2145 * breaking COW to free the pages_shared (but leaves mm_slots 2146 * on the list for when ksmd may be set running again). 2147 */ 2148 2149 mutex_lock(&ksm_thread_mutex); 2150 wait_while_offlining(); 2151 if (ksm_run != flags) { 2152 ksm_run = flags; 2153 if (flags & KSM_RUN_UNMERGE) { 2154 set_current_oom_origin(); 2155 err = unmerge_and_remove_all_rmap_items(); 2156 clear_current_oom_origin(); 2157 if (err) { 2158 ksm_run = KSM_RUN_STOP; 2159 count = err; 2160 } 2161 } 2162 } 2163 mutex_unlock(&ksm_thread_mutex); 2164 2165 if (flags & KSM_RUN_MERGE) 2166 wake_up_interruptible(&ksm_thread_wait); 2167 2168 return count; 2169 } 2170 KSM_ATTR(run); 2171 2172 #ifdef CONFIG_NUMA 2173 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2174 struct kobj_attribute *attr, char *buf) 2175 { 2176 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2177 } 2178 2179 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2180 struct kobj_attribute *attr, 2181 const char *buf, size_t count) 2182 { 2183 int err; 2184 unsigned long knob; 2185 2186 err = kstrtoul(buf, 10, &knob); 2187 if (err) 2188 return err; 2189 if (knob > 1) 2190 return -EINVAL; 2191 2192 mutex_lock(&ksm_thread_mutex); 2193 wait_while_offlining(); 2194 if (ksm_merge_across_nodes != knob) { 2195 if (ksm_pages_shared || remove_all_stable_nodes()) 2196 err = -EBUSY; 2197 else if (root_stable_tree == one_stable_tree) { 2198 struct rb_root *buf; 2199 /* 2200 * This is the first time that we switch away from the 2201 * default of merging across nodes: must now allocate 2202 * a buffer to hold as many roots as may be needed. 2203 * Allocate stable and unstable together: 2204 * MAXSMP NODES_SHIFT 10 will use 16kB. 2205 */ 2206 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2207 GFP_KERNEL); 2208 /* Let us assume that RB_ROOT is NULL is zero */ 2209 if (!buf) 2210 err = -ENOMEM; 2211 else { 2212 root_stable_tree = buf; 2213 root_unstable_tree = buf + nr_node_ids; 2214 /* Stable tree is empty but not the unstable */ 2215 root_unstable_tree[0] = one_unstable_tree[0]; 2216 } 2217 } 2218 if (!err) { 2219 ksm_merge_across_nodes = knob; 2220 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2221 } 2222 } 2223 mutex_unlock(&ksm_thread_mutex); 2224 2225 return err ? err : count; 2226 } 2227 KSM_ATTR(merge_across_nodes); 2228 #endif 2229 2230 static ssize_t pages_shared_show(struct kobject *kobj, 2231 struct kobj_attribute *attr, char *buf) 2232 { 2233 return sprintf(buf, "%lu\n", ksm_pages_shared); 2234 } 2235 KSM_ATTR_RO(pages_shared); 2236 2237 static ssize_t pages_sharing_show(struct kobject *kobj, 2238 struct kobj_attribute *attr, char *buf) 2239 { 2240 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2241 } 2242 KSM_ATTR_RO(pages_sharing); 2243 2244 static ssize_t pages_unshared_show(struct kobject *kobj, 2245 struct kobj_attribute *attr, char *buf) 2246 { 2247 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2248 } 2249 KSM_ATTR_RO(pages_unshared); 2250 2251 static ssize_t pages_volatile_show(struct kobject *kobj, 2252 struct kobj_attribute *attr, char *buf) 2253 { 2254 long ksm_pages_volatile; 2255 2256 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2257 - ksm_pages_sharing - ksm_pages_unshared; 2258 /* 2259 * It was not worth any locking to calculate that statistic, 2260 * but it might therefore sometimes be negative: conceal that. 2261 */ 2262 if (ksm_pages_volatile < 0) 2263 ksm_pages_volatile = 0; 2264 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2265 } 2266 KSM_ATTR_RO(pages_volatile); 2267 2268 static ssize_t full_scans_show(struct kobject *kobj, 2269 struct kobj_attribute *attr, char *buf) 2270 { 2271 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 2272 } 2273 KSM_ATTR_RO(full_scans); 2274 2275 static struct attribute *ksm_attrs[] = { 2276 &sleep_millisecs_attr.attr, 2277 &pages_to_scan_attr.attr, 2278 &run_attr.attr, 2279 &pages_shared_attr.attr, 2280 &pages_sharing_attr.attr, 2281 &pages_unshared_attr.attr, 2282 &pages_volatile_attr.attr, 2283 &full_scans_attr.attr, 2284 #ifdef CONFIG_NUMA 2285 &merge_across_nodes_attr.attr, 2286 #endif 2287 NULL, 2288 }; 2289 2290 static struct attribute_group ksm_attr_group = { 2291 .attrs = ksm_attrs, 2292 .name = "ksm", 2293 }; 2294 #endif /* CONFIG_SYSFS */ 2295 2296 static int __init ksm_init(void) 2297 { 2298 struct task_struct *ksm_thread; 2299 int err; 2300 2301 err = ksm_slab_init(); 2302 if (err) 2303 goto out; 2304 2305 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 2306 if (IS_ERR(ksm_thread)) { 2307 pr_err("ksm: creating kthread failed\n"); 2308 err = PTR_ERR(ksm_thread); 2309 goto out_free; 2310 } 2311 2312 #ifdef CONFIG_SYSFS 2313 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 2314 if (err) { 2315 pr_err("ksm: register sysfs failed\n"); 2316 kthread_stop(ksm_thread); 2317 goto out_free; 2318 } 2319 #else 2320 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2321 2322 #endif /* CONFIG_SYSFS */ 2323 2324 #ifdef CONFIG_MEMORY_HOTREMOVE 2325 /* There is no significance to this priority 100 */ 2326 hotplug_memory_notifier(ksm_memory_callback, 100); 2327 #endif 2328 return 0; 2329 2330 out_free: 2331 ksm_slab_free(); 2332 out: 2333 return err; 2334 } 2335 subsys_initcall(ksm_init); 2336