xref: /openbmc/linux/mm/ksm.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)		(x)
46 #define DO_NUMA(x)	do { (x); } while (0)
47 #else
48 #define NUMA(x)		(0)
49 #define DO_NUMA(x)	do { } while (0)
50 #endif
51 
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94 
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103 	struct hlist_node link;
104 	struct list_head mm_list;
105 	struct rmap_item *rmap_list;
106 	struct mm_struct *mm;
107 };
108 
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119 	struct mm_slot *mm_slot;
120 	unsigned long address;
121 	struct rmap_item **rmap_list;
122 	unsigned long seqnr;
123 };
124 
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135 	union {
136 		struct rb_node node;	/* when node of stable tree */
137 		struct {		/* when listed for migration */
138 			struct list_head *head;
139 			struct list_head list;
140 		};
141 	};
142 	struct hlist_head hlist;
143 	unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 	int nid;
146 #endif
147 };
148 
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162 	struct rmap_item *rmap_list;
163 	union {
164 		struct anon_vma *anon_vma;	/* when stable */
165 #ifdef CONFIG_NUMA
166 		int nid;		/* when node of unstable tree */
167 #endif
168 	};
169 	struct mm_struct *mm;
170 	unsigned long address;		/* + low bits used for flags below */
171 	unsigned int oldchecksum;	/* when unstable */
172 	union {
173 		struct rb_node node;	/* when node of unstable tree */
174 		struct {		/* when listed from stable tree */
175 			struct stable_node *head;
176 			struct hlist_node hlist;
177 		};
178 	};
179 };
180 
181 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
184 
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190 
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193 
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196 
197 static struct mm_slot ksm_mm_head = {
198 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 	.mm_slot = &ksm_mm_head,
202 };
203 
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207 
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210 
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213 
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216 
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219 
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222 
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225 
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes	1U
232 #define ksm_nr_node_ids		1
233 #endif
234 
235 #define KSM_RUN_STOP	0
236 #define KSM_RUN_MERGE	1
237 #define KSM_RUN_UNMERGE	2
238 #define KSM_RUN_OFFLINE	4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241 
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245 
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 		sizeof(struct __struct), __alignof__(struct __struct),\
248 		(__flags), NULL)
249 
250 static int __init ksm_slab_init(void)
251 {
252 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 	if (!rmap_item_cache)
254 		goto out;
255 
256 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 	if (!stable_node_cache)
258 		goto out_free1;
259 
260 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 	if (!mm_slot_cache)
262 		goto out_free2;
263 
264 	return 0;
265 
266 out_free2:
267 	kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 	kmem_cache_destroy(rmap_item_cache);
270 out:
271 	return -ENOMEM;
272 }
273 
274 static void __init ksm_slab_free(void)
275 {
276 	kmem_cache_destroy(mm_slot_cache);
277 	kmem_cache_destroy(stable_node_cache);
278 	kmem_cache_destroy(rmap_item_cache);
279 	mm_slot_cache = NULL;
280 }
281 
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 	struct rmap_item *rmap_item;
285 
286 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 	if (rmap_item)
288 		ksm_rmap_items++;
289 	return rmap_item;
290 }
291 
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294 	ksm_rmap_items--;
295 	rmap_item->mm = NULL;	/* debug safety */
296 	kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298 
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303 
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306 	kmem_cache_free(stable_node_cache, stable_node);
307 }
308 
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311 	if (!mm_slot_cache)	/* initialization failed */
312 		return NULL;
313 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315 
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318 	kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320 
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323 	struct mm_slot *slot;
324 
325 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326 		if (slot->mm == mm)
327 			return slot;
328 
329 	return NULL;
330 }
331 
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 				    struct mm_slot *mm_slot)
334 {
335 	mm_slot->mm = mm;
336 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338 
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349 	return atomic_read(&mm->mm_users) == 0;
350 }
351 
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356  *		put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  */
363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
364 {
365 	struct page *page;
366 	int ret = 0;
367 
368 	do {
369 		cond_resched();
370 		page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
371 		if (IS_ERR_OR_NULL(page))
372 			break;
373 		if (PageKsm(page))
374 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
375 							FAULT_FLAG_WRITE);
376 		else
377 			ret = VM_FAULT_WRITE;
378 		put_page(page);
379 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
380 	/*
381 	 * We must loop because handle_mm_fault() may back out if there's
382 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
383 	 *
384 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385 	 * COW has been broken, even if the vma does not permit VM_WRITE;
386 	 * but note that a concurrent fault might break PageKsm for us.
387 	 *
388 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389 	 * backing file, which also invalidates anonymous pages: that's
390 	 * okay, that truncation will have unmapped the PageKsm for us.
391 	 *
392 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
395 	 * to user; and ksmd, having no mm, would never be chosen for that.
396 	 *
397 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
398 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399 	 * even ksmd can fail in this way - though it's usually breaking ksm
400 	 * just to undo a merge it made a moment before, so unlikely to oom.
401 	 *
402 	 * That's a pity: we might therefore have more kernel pages allocated
403 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
404 	 * will retry to break_cow on each pass, so should recover the page
405 	 * in due course.  The important thing is to not let VM_MERGEABLE
406 	 * be cleared while any such pages might remain in the area.
407 	 */
408 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
409 }
410 
411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412 		unsigned long addr)
413 {
414 	struct vm_area_struct *vma;
415 	if (ksm_test_exit(mm))
416 		return NULL;
417 	vma = find_vma(mm, addr);
418 	if (!vma || vma->vm_start > addr)
419 		return NULL;
420 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421 		return NULL;
422 	return vma;
423 }
424 
425 static void break_cow(struct rmap_item *rmap_item)
426 {
427 	struct mm_struct *mm = rmap_item->mm;
428 	unsigned long addr = rmap_item->address;
429 	struct vm_area_struct *vma;
430 
431 	/*
432 	 * It is not an accident that whenever we want to break COW
433 	 * to undo, we also need to drop a reference to the anon_vma.
434 	 */
435 	put_anon_vma(rmap_item->anon_vma);
436 
437 	down_read(&mm->mmap_sem);
438 	vma = find_mergeable_vma(mm, addr);
439 	if (vma)
440 		break_ksm(vma, addr);
441 	up_read(&mm->mmap_sem);
442 }
443 
444 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
445 {
446 	struct mm_struct *mm = rmap_item->mm;
447 	unsigned long addr = rmap_item->address;
448 	struct vm_area_struct *vma;
449 	struct page *page;
450 
451 	down_read(&mm->mmap_sem);
452 	vma = find_mergeable_vma(mm, addr);
453 	if (!vma)
454 		goto out;
455 
456 	page = follow_page(vma, addr, FOLL_GET);
457 	if (IS_ERR_OR_NULL(page))
458 		goto out;
459 	if (PageAnon(page)) {
460 		flush_anon_page(vma, page, addr);
461 		flush_dcache_page(page);
462 	} else {
463 		put_page(page);
464 out:
465 		page = NULL;
466 	}
467 	up_read(&mm->mmap_sem);
468 	return page;
469 }
470 
471 /*
472  * This helper is used for getting right index into array of tree roots.
473  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
474  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
475  * every node has its own stable and unstable tree.
476  */
477 static inline int get_kpfn_nid(unsigned long kpfn)
478 {
479 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
480 }
481 
482 static void remove_node_from_stable_tree(struct stable_node *stable_node)
483 {
484 	struct rmap_item *rmap_item;
485 
486 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
487 		if (rmap_item->hlist.next)
488 			ksm_pages_sharing--;
489 		else
490 			ksm_pages_shared--;
491 		put_anon_vma(rmap_item->anon_vma);
492 		rmap_item->address &= PAGE_MASK;
493 		cond_resched();
494 	}
495 
496 	if (stable_node->head == &migrate_nodes)
497 		list_del(&stable_node->list);
498 	else
499 		rb_erase(&stable_node->node,
500 			 root_stable_tree + NUMA(stable_node->nid));
501 	free_stable_node(stable_node);
502 }
503 
504 /*
505  * get_ksm_page: checks if the page indicated by the stable node
506  * is still its ksm page, despite having held no reference to it.
507  * In which case we can trust the content of the page, and it
508  * returns the gotten page; but if the page has now been zapped,
509  * remove the stale node from the stable tree and return NULL.
510  * But beware, the stable node's page might be being migrated.
511  *
512  * You would expect the stable_node to hold a reference to the ksm page.
513  * But if it increments the page's count, swapping out has to wait for
514  * ksmd to come around again before it can free the page, which may take
515  * seconds or even minutes: much too unresponsive.  So instead we use a
516  * "keyhole reference": access to the ksm page from the stable node peeps
517  * out through its keyhole to see if that page still holds the right key,
518  * pointing back to this stable node.  This relies on freeing a PageAnon
519  * page to reset its page->mapping to NULL, and relies on no other use of
520  * a page to put something that might look like our key in page->mapping.
521  * is on its way to being freed; but it is an anomaly to bear in mind.
522  */
523 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
524 {
525 	struct page *page;
526 	void *expected_mapping;
527 	unsigned long kpfn;
528 
529 	expected_mapping = (void *)stable_node +
530 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
531 again:
532 	kpfn = READ_ONCE(stable_node->kpfn);
533 	page = pfn_to_page(kpfn);
534 
535 	/*
536 	 * page is computed from kpfn, so on most architectures reading
537 	 * page->mapping is naturally ordered after reading node->kpfn,
538 	 * but on Alpha we need to be more careful.
539 	 */
540 	smp_read_barrier_depends();
541 	if (READ_ONCE(page->mapping) != expected_mapping)
542 		goto stale;
543 
544 	/*
545 	 * We cannot do anything with the page while its refcount is 0.
546 	 * Usually 0 means free, or tail of a higher-order page: in which
547 	 * case this node is no longer referenced, and should be freed;
548 	 * however, it might mean that the page is under page_freeze_refs().
549 	 * The __remove_mapping() case is easy, again the node is now stale;
550 	 * but if page is swapcache in migrate_page_move_mapping(), it might
551 	 * still be our page, in which case it's essential to keep the node.
552 	 */
553 	while (!get_page_unless_zero(page)) {
554 		/*
555 		 * Another check for page->mapping != expected_mapping would
556 		 * work here too.  We have chosen the !PageSwapCache test to
557 		 * optimize the common case, when the page is or is about to
558 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
559 		 * in the freeze_refs section of __remove_mapping(); but Anon
560 		 * page->mapping reset to NULL later, in free_pages_prepare().
561 		 */
562 		if (!PageSwapCache(page))
563 			goto stale;
564 		cpu_relax();
565 	}
566 
567 	if (READ_ONCE(page->mapping) != expected_mapping) {
568 		put_page(page);
569 		goto stale;
570 	}
571 
572 	if (lock_it) {
573 		lock_page(page);
574 		if (READ_ONCE(page->mapping) != expected_mapping) {
575 			unlock_page(page);
576 			put_page(page);
577 			goto stale;
578 		}
579 	}
580 	return page;
581 
582 stale:
583 	/*
584 	 * We come here from above when page->mapping or !PageSwapCache
585 	 * suggests that the node is stale; but it might be under migration.
586 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
587 	 * before checking whether node->kpfn has been changed.
588 	 */
589 	smp_rmb();
590 	if (READ_ONCE(stable_node->kpfn) != kpfn)
591 		goto again;
592 	remove_node_from_stable_tree(stable_node);
593 	return NULL;
594 }
595 
596 /*
597  * Removing rmap_item from stable or unstable tree.
598  * This function will clean the information from the stable/unstable tree.
599  */
600 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
601 {
602 	if (rmap_item->address & STABLE_FLAG) {
603 		struct stable_node *stable_node;
604 		struct page *page;
605 
606 		stable_node = rmap_item->head;
607 		page = get_ksm_page(stable_node, true);
608 		if (!page)
609 			goto out;
610 
611 		hlist_del(&rmap_item->hlist);
612 		unlock_page(page);
613 		put_page(page);
614 
615 		if (!hlist_empty(&stable_node->hlist))
616 			ksm_pages_sharing--;
617 		else
618 			ksm_pages_shared--;
619 
620 		put_anon_vma(rmap_item->anon_vma);
621 		rmap_item->address &= PAGE_MASK;
622 
623 	} else if (rmap_item->address & UNSTABLE_FLAG) {
624 		unsigned char age;
625 		/*
626 		 * Usually ksmd can and must skip the rb_erase, because
627 		 * root_unstable_tree was already reset to RB_ROOT.
628 		 * But be careful when an mm is exiting: do the rb_erase
629 		 * if this rmap_item was inserted by this scan, rather
630 		 * than left over from before.
631 		 */
632 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
633 		BUG_ON(age > 1);
634 		if (!age)
635 			rb_erase(&rmap_item->node,
636 				 root_unstable_tree + NUMA(rmap_item->nid));
637 		ksm_pages_unshared--;
638 		rmap_item->address &= PAGE_MASK;
639 	}
640 out:
641 	cond_resched();		/* we're called from many long loops */
642 }
643 
644 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
645 				       struct rmap_item **rmap_list)
646 {
647 	while (*rmap_list) {
648 		struct rmap_item *rmap_item = *rmap_list;
649 		*rmap_list = rmap_item->rmap_list;
650 		remove_rmap_item_from_tree(rmap_item);
651 		free_rmap_item(rmap_item);
652 	}
653 }
654 
655 /*
656  * Though it's very tempting to unmerge rmap_items from stable tree rather
657  * than check every pte of a given vma, the locking doesn't quite work for
658  * that - an rmap_item is assigned to the stable tree after inserting ksm
659  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
660  * rmap_items from parent to child at fork time (so as not to waste time
661  * if exit comes before the next scan reaches it).
662  *
663  * Similarly, although we'd like to remove rmap_items (so updating counts
664  * and freeing memory) when unmerging an area, it's easier to leave that
665  * to the next pass of ksmd - consider, for example, how ksmd might be
666  * in cmp_and_merge_page on one of the rmap_items we would be removing.
667  */
668 static int unmerge_ksm_pages(struct vm_area_struct *vma,
669 			     unsigned long start, unsigned long end)
670 {
671 	unsigned long addr;
672 	int err = 0;
673 
674 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
675 		if (ksm_test_exit(vma->vm_mm))
676 			break;
677 		if (signal_pending(current))
678 			err = -ERESTARTSYS;
679 		else
680 			err = break_ksm(vma, addr);
681 	}
682 	return err;
683 }
684 
685 #ifdef CONFIG_SYSFS
686 /*
687  * Only called through the sysfs control interface:
688  */
689 static int remove_stable_node(struct stable_node *stable_node)
690 {
691 	struct page *page;
692 	int err;
693 
694 	page = get_ksm_page(stable_node, true);
695 	if (!page) {
696 		/*
697 		 * get_ksm_page did remove_node_from_stable_tree itself.
698 		 */
699 		return 0;
700 	}
701 
702 	if (WARN_ON_ONCE(page_mapped(page))) {
703 		/*
704 		 * This should not happen: but if it does, just refuse to let
705 		 * merge_across_nodes be switched - there is no need to panic.
706 		 */
707 		err = -EBUSY;
708 	} else {
709 		/*
710 		 * The stable node did not yet appear stale to get_ksm_page(),
711 		 * since that allows for an unmapped ksm page to be recognized
712 		 * right up until it is freed; but the node is safe to remove.
713 		 * This page might be in a pagevec waiting to be freed,
714 		 * or it might be PageSwapCache (perhaps under writeback),
715 		 * or it might have been removed from swapcache a moment ago.
716 		 */
717 		set_page_stable_node(page, NULL);
718 		remove_node_from_stable_tree(stable_node);
719 		err = 0;
720 	}
721 
722 	unlock_page(page);
723 	put_page(page);
724 	return err;
725 }
726 
727 static int remove_all_stable_nodes(void)
728 {
729 	struct stable_node *stable_node, *next;
730 	int nid;
731 	int err = 0;
732 
733 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
734 		while (root_stable_tree[nid].rb_node) {
735 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
736 						struct stable_node, node);
737 			if (remove_stable_node(stable_node)) {
738 				err = -EBUSY;
739 				break;	/* proceed to next nid */
740 			}
741 			cond_resched();
742 		}
743 	}
744 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
745 		if (remove_stable_node(stable_node))
746 			err = -EBUSY;
747 		cond_resched();
748 	}
749 	return err;
750 }
751 
752 static int unmerge_and_remove_all_rmap_items(void)
753 {
754 	struct mm_slot *mm_slot;
755 	struct mm_struct *mm;
756 	struct vm_area_struct *vma;
757 	int err = 0;
758 
759 	spin_lock(&ksm_mmlist_lock);
760 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
761 						struct mm_slot, mm_list);
762 	spin_unlock(&ksm_mmlist_lock);
763 
764 	for (mm_slot = ksm_scan.mm_slot;
765 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
766 		mm = mm_slot->mm;
767 		down_read(&mm->mmap_sem);
768 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
769 			if (ksm_test_exit(mm))
770 				break;
771 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
772 				continue;
773 			err = unmerge_ksm_pages(vma,
774 						vma->vm_start, vma->vm_end);
775 			if (err)
776 				goto error;
777 		}
778 
779 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
780 
781 		spin_lock(&ksm_mmlist_lock);
782 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
783 						struct mm_slot, mm_list);
784 		if (ksm_test_exit(mm)) {
785 			hash_del(&mm_slot->link);
786 			list_del(&mm_slot->mm_list);
787 			spin_unlock(&ksm_mmlist_lock);
788 
789 			free_mm_slot(mm_slot);
790 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
791 			up_read(&mm->mmap_sem);
792 			mmdrop(mm);
793 		} else {
794 			spin_unlock(&ksm_mmlist_lock);
795 			up_read(&mm->mmap_sem);
796 		}
797 	}
798 
799 	/* Clean up stable nodes, but don't worry if some are still busy */
800 	remove_all_stable_nodes();
801 	ksm_scan.seqnr = 0;
802 	return 0;
803 
804 error:
805 	up_read(&mm->mmap_sem);
806 	spin_lock(&ksm_mmlist_lock);
807 	ksm_scan.mm_slot = &ksm_mm_head;
808 	spin_unlock(&ksm_mmlist_lock);
809 	return err;
810 }
811 #endif /* CONFIG_SYSFS */
812 
813 static u32 calc_checksum(struct page *page)
814 {
815 	u32 checksum;
816 	void *addr = kmap_atomic(page);
817 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
818 	kunmap_atomic(addr);
819 	return checksum;
820 }
821 
822 static int memcmp_pages(struct page *page1, struct page *page2)
823 {
824 	char *addr1, *addr2;
825 	int ret;
826 
827 	addr1 = kmap_atomic(page1);
828 	addr2 = kmap_atomic(page2);
829 	ret = memcmp(addr1, addr2, PAGE_SIZE);
830 	kunmap_atomic(addr2);
831 	kunmap_atomic(addr1);
832 	return ret;
833 }
834 
835 static inline int pages_identical(struct page *page1, struct page *page2)
836 {
837 	return !memcmp_pages(page1, page2);
838 }
839 
840 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
841 			      pte_t *orig_pte)
842 {
843 	struct mm_struct *mm = vma->vm_mm;
844 	unsigned long addr;
845 	pte_t *ptep;
846 	spinlock_t *ptl;
847 	int swapped;
848 	int err = -EFAULT;
849 	unsigned long mmun_start;	/* For mmu_notifiers */
850 	unsigned long mmun_end;		/* For mmu_notifiers */
851 
852 	addr = page_address_in_vma(page, vma);
853 	if (addr == -EFAULT)
854 		goto out;
855 
856 	BUG_ON(PageTransCompound(page));
857 
858 	mmun_start = addr;
859 	mmun_end   = addr + PAGE_SIZE;
860 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
861 
862 	ptep = page_check_address(page, mm, addr, &ptl, 0);
863 	if (!ptep)
864 		goto out_mn;
865 
866 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
867 		pte_t entry;
868 
869 		swapped = PageSwapCache(page);
870 		flush_cache_page(vma, addr, page_to_pfn(page));
871 		/*
872 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
873 		 * take any lock, therefore the check that we are going to make
874 		 * with the pagecount against the mapcount is racey and
875 		 * O_DIRECT can happen right after the check.
876 		 * So we clear the pte and flush the tlb before the check
877 		 * this assure us that no O_DIRECT can happen after the check
878 		 * or in the middle of the check.
879 		 */
880 		entry = ptep_clear_flush_notify(vma, addr, ptep);
881 		/*
882 		 * Check that no O_DIRECT or similar I/O is in progress on the
883 		 * page
884 		 */
885 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
886 			set_pte_at(mm, addr, ptep, entry);
887 			goto out_unlock;
888 		}
889 		if (pte_dirty(entry))
890 			set_page_dirty(page);
891 		entry = pte_mkclean(pte_wrprotect(entry));
892 		set_pte_at_notify(mm, addr, ptep, entry);
893 	}
894 	*orig_pte = *ptep;
895 	err = 0;
896 
897 out_unlock:
898 	pte_unmap_unlock(ptep, ptl);
899 out_mn:
900 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
901 out:
902 	return err;
903 }
904 
905 /**
906  * replace_page - replace page in vma by new ksm page
907  * @vma:      vma that holds the pte pointing to page
908  * @page:     the page we are replacing by kpage
909  * @kpage:    the ksm page we replace page by
910  * @orig_pte: the original value of the pte
911  *
912  * Returns 0 on success, -EFAULT on failure.
913  */
914 static int replace_page(struct vm_area_struct *vma, struct page *page,
915 			struct page *kpage, pte_t orig_pte)
916 {
917 	struct mm_struct *mm = vma->vm_mm;
918 	pmd_t *pmd;
919 	pte_t *ptep;
920 	spinlock_t *ptl;
921 	unsigned long addr;
922 	int err = -EFAULT;
923 	unsigned long mmun_start;	/* For mmu_notifiers */
924 	unsigned long mmun_end;		/* For mmu_notifiers */
925 
926 	addr = page_address_in_vma(page, vma);
927 	if (addr == -EFAULT)
928 		goto out;
929 
930 	pmd = mm_find_pmd(mm, addr);
931 	if (!pmd)
932 		goto out;
933 
934 	mmun_start = addr;
935 	mmun_end   = addr + PAGE_SIZE;
936 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
937 
938 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
939 	if (!pte_same(*ptep, orig_pte)) {
940 		pte_unmap_unlock(ptep, ptl);
941 		goto out_mn;
942 	}
943 
944 	get_page(kpage);
945 	page_add_anon_rmap(kpage, vma, addr, false);
946 
947 	flush_cache_page(vma, addr, pte_pfn(*ptep));
948 	ptep_clear_flush_notify(vma, addr, ptep);
949 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
950 
951 	page_remove_rmap(page, false);
952 	if (!page_mapped(page))
953 		try_to_free_swap(page);
954 	put_page(page);
955 
956 	pte_unmap_unlock(ptep, ptl);
957 	err = 0;
958 out_mn:
959 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
960 out:
961 	return err;
962 }
963 
964 /*
965  * try_to_merge_one_page - take two pages and merge them into one
966  * @vma: the vma that holds the pte pointing to page
967  * @page: the PageAnon page that we want to replace with kpage
968  * @kpage: the PageKsm page that we want to map instead of page,
969  *         or NULL the first time when we want to use page as kpage.
970  *
971  * This function returns 0 if the pages were merged, -EFAULT otherwise.
972  */
973 static int try_to_merge_one_page(struct vm_area_struct *vma,
974 				 struct page *page, struct page *kpage)
975 {
976 	pte_t orig_pte = __pte(0);
977 	int err = -EFAULT;
978 
979 	if (page == kpage)			/* ksm page forked */
980 		return 0;
981 
982 	if (!PageAnon(page))
983 		goto out;
984 
985 	/*
986 	 * We need the page lock to read a stable PageSwapCache in
987 	 * write_protect_page().  We use trylock_page() instead of
988 	 * lock_page() because we don't want to wait here - we
989 	 * prefer to continue scanning and merging different pages,
990 	 * then come back to this page when it is unlocked.
991 	 */
992 	if (!trylock_page(page))
993 		goto out;
994 
995 	if (PageTransCompound(page)) {
996 		err = split_huge_page(page);
997 		if (err)
998 			goto out_unlock;
999 	}
1000 
1001 	/*
1002 	 * If this anonymous page is mapped only here, its pte may need
1003 	 * to be write-protected.  If it's mapped elsewhere, all of its
1004 	 * ptes are necessarily already write-protected.  But in either
1005 	 * case, we need to lock and check page_count is not raised.
1006 	 */
1007 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1008 		if (!kpage) {
1009 			/*
1010 			 * While we hold page lock, upgrade page from
1011 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1012 			 * stable_tree_insert() will update stable_node.
1013 			 */
1014 			set_page_stable_node(page, NULL);
1015 			mark_page_accessed(page);
1016 			/*
1017 			 * Page reclaim just frees a clean page with no dirty
1018 			 * ptes: make sure that the ksm page would be swapped.
1019 			 */
1020 			if (!PageDirty(page))
1021 				SetPageDirty(page);
1022 			err = 0;
1023 		} else if (pages_identical(page, kpage))
1024 			err = replace_page(vma, page, kpage, orig_pte);
1025 	}
1026 
1027 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1028 		munlock_vma_page(page);
1029 		if (!PageMlocked(kpage)) {
1030 			unlock_page(page);
1031 			lock_page(kpage);
1032 			mlock_vma_page(kpage);
1033 			page = kpage;		/* for final unlock */
1034 		}
1035 	}
1036 
1037 out_unlock:
1038 	unlock_page(page);
1039 out:
1040 	return err;
1041 }
1042 
1043 /*
1044  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1045  * but no new kernel page is allocated: kpage must already be a ksm page.
1046  *
1047  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1048  */
1049 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1050 				      struct page *page, struct page *kpage)
1051 {
1052 	struct mm_struct *mm = rmap_item->mm;
1053 	struct vm_area_struct *vma;
1054 	int err = -EFAULT;
1055 
1056 	down_read(&mm->mmap_sem);
1057 	vma = find_mergeable_vma(mm, rmap_item->address);
1058 	if (!vma)
1059 		goto out;
1060 
1061 	err = try_to_merge_one_page(vma, page, kpage);
1062 	if (err)
1063 		goto out;
1064 
1065 	/* Unstable nid is in union with stable anon_vma: remove first */
1066 	remove_rmap_item_from_tree(rmap_item);
1067 
1068 	/* Must get reference to anon_vma while still holding mmap_sem */
1069 	rmap_item->anon_vma = vma->anon_vma;
1070 	get_anon_vma(vma->anon_vma);
1071 out:
1072 	up_read(&mm->mmap_sem);
1073 	return err;
1074 }
1075 
1076 /*
1077  * try_to_merge_two_pages - take two identical pages and prepare them
1078  * to be merged into one page.
1079  *
1080  * This function returns the kpage if we successfully merged two identical
1081  * pages into one ksm page, NULL otherwise.
1082  *
1083  * Note that this function upgrades page to ksm page: if one of the pages
1084  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1085  */
1086 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1087 					   struct page *page,
1088 					   struct rmap_item *tree_rmap_item,
1089 					   struct page *tree_page)
1090 {
1091 	int err;
1092 
1093 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1094 	if (!err) {
1095 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1096 							tree_page, page);
1097 		/*
1098 		 * If that fails, we have a ksm page with only one pte
1099 		 * pointing to it: so break it.
1100 		 */
1101 		if (err)
1102 			break_cow(rmap_item);
1103 	}
1104 	return err ? NULL : page;
1105 }
1106 
1107 /*
1108  * stable_tree_search - search for page inside the stable tree
1109  *
1110  * This function checks if there is a page inside the stable tree
1111  * with identical content to the page that we are scanning right now.
1112  *
1113  * This function returns the stable tree node of identical content if found,
1114  * NULL otherwise.
1115  */
1116 static struct page *stable_tree_search(struct page *page)
1117 {
1118 	int nid;
1119 	struct rb_root *root;
1120 	struct rb_node **new;
1121 	struct rb_node *parent;
1122 	struct stable_node *stable_node;
1123 	struct stable_node *page_node;
1124 
1125 	page_node = page_stable_node(page);
1126 	if (page_node && page_node->head != &migrate_nodes) {
1127 		/* ksm page forked */
1128 		get_page(page);
1129 		return page;
1130 	}
1131 
1132 	nid = get_kpfn_nid(page_to_pfn(page));
1133 	root = root_stable_tree + nid;
1134 again:
1135 	new = &root->rb_node;
1136 	parent = NULL;
1137 
1138 	while (*new) {
1139 		struct page *tree_page;
1140 		int ret;
1141 
1142 		cond_resched();
1143 		stable_node = rb_entry(*new, struct stable_node, node);
1144 		tree_page = get_ksm_page(stable_node, false);
1145 		if (!tree_page) {
1146 			/*
1147 			 * If we walked over a stale stable_node,
1148 			 * get_ksm_page() will call rb_erase() and it
1149 			 * may rebalance the tree from under us. So
1150 			 * restart the search from scratch. Returning
1151 			 * NULL would be safe too, but we'd generate
1152 			 * false negative insertions just because some
1153 			 * stable_node was stale.
1154 			 */
1155 			goto again;
1156 		}
1157 
1158 		ret = memcmp_pages(page, tree_page);
1159 		put_page(tree_page);
1160 
1161 		parent = *new;
1162 		if (ret < 0)
1163 			new = &parent->rb_left;
1164 		else if (ret > 0)
1165 			new = &parent->rb_right;
1166 		else {
1167 			/*
1168 			 * Lock and unlock the stable_node's page (which
1169 			 * might already have been migrated) so that page
1170 			 * migration is sure to notice its raised count.
1171 			 * It would be more elegant to return stable_node
1172 			 * than kpage, but that involves more changes.
1173 			 */
1174 			tree_page = get_ksm_page(stable_node, true);
1175 			if (tree_page) {
1176 				unlock_page(tree_page);
1177 				if (get_kpfn_nid(stable_node->kpfn) !=
1178 						NUMA(stable_node->nid)) {
1179 					put_page(tree_page);
1180 					goto replace;
1181 				}
1182 				return tree_page;
1183 			}
1184 			/*
1185 			 * There is now a place for page_node, but the tree may
1186 			 * have been rebalanced, so re-evaluate parent and new.
1187 			 */
1188 			if (page_node)
1189 				goto again;
1190 			return NULL;
1191 		}
1192 	}
1193 
1194 	if (!page_node)
1195 		return NULL;
1196 
1197 	list_del(&page_node->list);
1198 	DO_NUMA(page_node->nid = nid);
1199 	rb_link_node(&page_node->node, parent, new);
1200 	rb_insert_color(&page_node->node, root);
1201 	get_page(page);
1202 	return page;
1203 
1204 replace:
1205 	if (page_node) {
1206 		list_del(&page_node->list);
1207 		DO_NUMA(page_node->nid = nid);
1208 		rb_replace_node(&stable_node->node, &page_node->node, root);
1209 		get_page(page);
1210 	} else {
1211 		rb_erase(&stable_node->node, root);
1212 		page = NULL;
1213 	}
1214 	stable_node->head = &migrate_nodes;
1215 	list_add(&stable_node->list, stable_node->head);
1216 	return page;
1217 }
1218 
1219 /*
1220  * stable_tree_insert - insert stable tree node pointing to new ksm page
1221  * into the stable tree.
1222  *
1223  * This function returns the stable tree node just allocated on success,
1224  * NULL otherwise.
1225  */
1226 static struct stable_node *stable_tree_insert(struct page *kpage)
1227 {
1228 	int nid;
1229 	unsigned long kpfn;
1230 	struct rb_root *root;
1231 	struct rb_node **new;
1232 	struct rb_node *parent;
1233 	struct stable_node *stable_node;
1234 
1235 	kpfn = page_to_pfn(kpage);
1236 	nid = get_kpfn_nid(kpfn);
1237 	root = root_stable_tree + nid;
1238 again:
1239 	parent = NULL;
1240 	new = &root->rb_node;
1241 
1242 	while (*new) {
1243 		struct page *tree_page;
1244 		int ret;
1245 
1246 		cond_resched();
1247 		stable_node = rb_entry(*new, struct stable_node, node);
1248 		tree_page = get_ksm_page(stable_node, false);
1249 		if (!tree_page) {
1250 			/*
1251 			 * If we walked over a stale stable_node,
1252 			 * get_ksm_page() will call rb_erase() and it
1253 			 * may rebalance the tree from under us. So
1254 			 * restart the search from scratch. Returning
1255 			 * NULL would be safe too, but we'd generate
1256 			 * false negative insertions just because some
1257 			 * stable_node was stale.
1258 			 */
1259 			goto again;
1260 		}
1261 
1262 		ret = memcmp_pages(kpage, tree_page);
1263 		put_page(tree_page);
1264 
1265 		parent = *new;
1266 		if (ret < 0)
1267 			new = &parent->rb_left;
1268 		else if (ret > 0)
1269 			new = &parent->rb_right;
1270 		else {
1271 			/*
1272 			 * It is not a bug that stable_tree_search() didn't
1273 			 * find this node: because at that time our page was
1274 			 * not yet write-protected, so may have changed since.
1275 			 */
1276 			return NULL;
1277 		}
1278 	}
1279 
1280 	stable_node = alloc_stable_node();
1281 	if (!stable_node)
1282 		return NULL;
1283 
1284 	INIT_HLIST_HEAD(&stable_node->hlist);
1285 	stable_node->kpfn = kpfn;
1286 	set_page_stable_node(kpage, stable_node);
1287 	DO_NUMA(stable_node->nid = nid);
1288 	rb_link_node(&stable_node->node, parent, new);
1289 	rb_insert_color(&stable_node->node, root);
1290 
1291 	return stable_node;
1292 }
1293 
1294 /*
1295  * unstable_tree_search_insert - search for identical page,
1296  * else insert rmap_item into the unstable tree.
1297  *
1298  * This function searches for a page in the unstable tree identical to the
1299  * page currently being scanned; and if no identical page is found in the
1300  * tree, we insert rmap_item as a new object into the unstable tree.
1301  *
1302  * This function returns pointer to rmap_item found to be identical
1303  * to the currently scanned page, NULL otherwise.
1304  *
1305  * This function does both searching and inserting, because they share
1306  * the same walking algorithm in an rbtree.
1307  */
1308 static
1309 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1310 					      struct page *page,
1311 					      struct page **tree_pagep)
1312 {
1313 	struct rb_node **new;
1314 	struct rb_root *root;
1315 	struct rb_node *parent = NULL;
1316 	int nid;
1317 
1318 	nid = get_kpfn_nid(page_to_pfn(page));
1319 	root = root_unstable_tree + nid;
1320 	new = &root->rb_node;
1321 
1322 	while (*new) {
1323 		struct rmap_item *tree_rmap_item;
1324 		struct page *tree_page;
1325 		int ret;
1326 
1327 		cond_resched();
1328 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1329 		tree_page = get_mergeable_page(tree_rmap_item);
1330 		if (!tree_page)
1331 			return NULL;
1332 
1333 		/*
1334 		 * Don't substitute a ksm page for a forked page.
1335 		 */
1336 		if (page == tree_page) {
1337 			put_page(tree_page);
1338 			return NULL;
1339 		}
1340 
1341 		ret = memcmp_pages(page, tree_page);
1342 
1343 		parent = *new;
1344 		if (ret < 0) {
1345 			put_page(tree_page);
1346 			new = &parent->rb_left;
1347 		} else if (ret > 0) {
1348 			put_page(tree_page);
1349 			new = &parent->rb_right;
1350 		} else if (!ksm_merge_across_nodes &&
1351 			   page_to_nid(tree_page) != nid) {
1352 			/*
1353 			 * If tree_page has been migrated to another NUMA node,
1354 			 * it will be flushed out and put in the right unstable
1355 			 * tree next time: only merge with it when across_nodes.
1356 			 */
1357 			put_page(tree_page);
1358 			return NULL;
1359 		} else {
1360 			*tree_pagep = tree_page;
1361 			return tree_rmap_item;
1362 		}
1363 	}
1364 
1365 	rmap_item->address |= UNSTABLE_FLAG;
1366 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1367 	DO_NUMA(rmap_item->nid = nid);
1368 	rb_link_node(&rmap_item->node, parent, new);
1369 	rb_insert_color(&rmap_item->node, root);
1370 
1371 	ksm_pages_unshared++;
1372 	return NULL;
1373 }
1374 
1375 /*
1376  * stable_tree_append - add another rmap_item to the linked list of
1377  * rmap_items hanging off a given node of the stable tree, all sharing
1378  * the same ksm page.
1379  */
1380 static void stable_tree_append(struct rmap_item *rmap_item,
1381 			       struct stable_node *stable_node)
1382 {
1383 	rmap_item->head = stable_node;
1384 	rmap_item->address |= STABLE_FLAG;
1385 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1386 
1387 	if (rmap_item->hlist.next)
1388 		ksm_pages_sharing++;
1389 	else
1390 		ksm_pages_shared++;
1391 }
1392 
1393 /*
1394  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1395  * if not, compare checksum to previous and if it's the same, see if page can
1396  * be inserted into the unstable tree, or merged with a page already there and
1397  * both transferred to the stable tree.
1398  *
1399  * @page: the page that we are searching identical page to.
1400  * @rmap_item: the reverse mapping into the virtual address of this page
1401  */
1402 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1403 {
1404 	struct rmap_item *tree_rmap_item;
1405 	struct page *tree_page = NULL;
1406 	struct stable_node *stable_node;
1407 	struct page *kpage;
1408 	unsigned int checksum;
1409 	int err;
1410 
1411 	stable_node = page_stable_node(page);
1412 	if (stable_node) {
1413 		if (stable_node->head != &migrate_nodes &&
1414 		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1415 			rb_erase(&stable_node->node,
1416 				 root_stable_tree + NUMA(stable_node->nid));
1417 			stable_node->head = &migrate_nodes;
1418 			list_add(&stable_node->list, stable_node->head);
1419 		}
1420 		if (stable_node->head != &migrate_nodes &&
1421 		    rmap_item->head == stable_node)
1422 			return;
1423 	}
1424 
1425 	/* We first start with searching the page inside the stable tree */
1426 	kpage = stable_tree_search(page);
1427 	if (kpage == page && rmap_item->head == stable_node) {
1428 		put_page(kpage);
1429 		return;
1430 	}
1431 
1432 	remove_rmap_item_from_tree(rmap_item);
1433 
1434 	if (kpage) {
1435 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1436 		if (!err) {
1437 			/*
1438 			 * The page was successfully merged:
1439 			 * add its rmap_item to the stable tree.
1440 			 */
1441 			lock_page(kpage);
1442 			stable_tree_append(rmap_item, page_stable_node(kpage));
1443 			unlock_page(kpage);
1444 		}
1445 		put_page(kpage);
1446 		return;
1447 	}
1448 
1449 	/*
1450 	 * If the hash value of the page has changed from the last time
1451 	 * we calculated it, this page is changing frequently: therefore we
1452 	 * don't want to insert it in the unstable tree, and we don't want
1453 	 * to waste our time searching for something identical to it there.
1454 	 */
1455 	checksum = calc_checksum(page);
1456 	if (rmap_item->oldchecksum != checksum) {
1457 		rmap_item->oldchecksum = checksum;
1458 		return;
1459 	}
1460 
1461 	tree_rmap_item =
1462 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1463 	if (tree_rmap_item) {
1464 		kpage = try_to_merge_two_pages(rmap_item, page,
1465 						tree_rmap_item, tree_page);
1466 		put_page(tree_page);
1467 		if (kpage) {
1468 			/*
1469 			 * The pages were successfully merged: insert new
1470 			 * node in the stable tree and add both rmap_items.
1471 			 */
1472 			lock_page(kpage);
1473 			stable_node = stable_tree_insert(kpage);
1474 			if (stable_node) {
1475 				stable_tree_append(tree_rmap_item, stable_node);
1476 				stable_tree_append(rmap_item, stable_node);
1477 			}
1478 			unlock_page(kpage);
1479 
1480 			/*
1481 			 * If we fail to insert the page into the stable tree,
1482 			 * we will have 2 virtual addresses that are pointing
1483 			 * to a ksm page left outside the stable tree,
1484 			 * in which case we need to break_cow on both.
1485 			 */
1486 			if (!stable_node) {
1487 				break_cow(tree_rmap_item);
1488 				break_cow(rmap_item);
1489 			}
1490 		}
1491 	}
1492 }
1493 
1494 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1495 					    struct rmap_item **rmap_list,
1496 					    unsigned long addr)
1497 {
1498 	struct rmap_item *rmap_item;
1499 
1500 	while (*rmap_list) {
1501 		rmap_item = *rmap_list;
1502 		if ((rmap_item->address & PAGE_MASK) == addr)
1503 			return rmap_item;
1504 		if (rmap_item->address > addr)
1505 			break;
1506 		*rmap_list = rmap_item->rmap_list;
1507 		remove_rmap_item_from_tree(rmap_item);
1508 		free_rmap_item(rmap_item);
1509 	}
1510 
1511 	rmap_item = alloc_rmap_item();
1512 	if (rmap_item) {
1513 		/* It has already been zeroed */
1514 		rmap_item->mm = mm_slot->mm;
1515 		rmap_item->address = addr;
1516 		rmap_item->rmap_list = *rmap_list;
1517 		*rmap_list = rmap_item;
1518 	}
1519 	return rmap_item;
1520 }
1521 
1522 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1523 {
1524 	struct mm_struct *mm;
1525 	struct mm_slot *slot;
1526 	struct vm_area_struct *vma;
1527 	struct rmap_item *rmap_item;
1528 	int nid;
1529 
1530 	if (list_empty(&ksm_mm_head.mm_list))
1531 		return NULL;
1532 
1533 	slot = ksm_scan.mm_slot;
1534 	if (slot == &ksm_mm_head) {
1535 		/*
1536 		 * A number of pages can hang around indefinitely on per-cpu
1537 		 * pagevecs, raised page count preventing write_protect_page
1538 		 * from merging them.  Though it doesn't really matter much,
1539 		 * it is puzzling to see some stuck in pages_volatile until
1540 		 * other activity jostles them out, and they also prevented
1541 		 * LTP's KSM test from succeeding deterministically; so drain
1542 		 * them here (here rather than on entry to ksm_do_scan(),
1543 		 * so we don't IPI too often when pages_to_scan is set low).
1544 		 */
1545 		lru_add_drain_all();
1546 
1547 		/*
1548 		 * Whereas stale stable_nodes on the stable_tree itself
1549 		 * get pruned in the regular course of stable_tree_search(),
1550 		 * those moved out to the migrate_nodes list can accumulate:
1551 		 * so prune them once before each full scan.
1552 		 */
1553 		if (!ksm_merge_across_nodes) {
1554 			struct stable_node *stable_node, *next;
1555 			struct page *page;
1556 
1557 			list_for_each_entry_safe(stable_node, next,
1558 						 &migrate_nodes, list) {
1559 				page = get_ksm_page(stable_node, false);
1560 				if (page)
1561 					put_page(page);
1562 				cond_resched();
1563 			}
1564 		}
1565 
1566 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1567 			root_unstable_tree[nid] = RB_ROOT;
1568 
1569 		spin_lock(&ksm_mmlist_lock);
1570 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1571 		ksm_scan.mm_slot = slot;
1572 		spin_unlock(&ksm_mmlist_lock);
1573 		/*
1574 		 * Although we tested list_empty() above, a racing __ksm_exit
1575 		 * of the last mm on the list may have removed it since then.
1576 		 */
1577 		if (slot == &ksm_mm_head)
1578 			return NULL;
1579 next_mm:
1580 		ksm_scan.address = 0;
1581 		ksm_scan.rmap_list = &slot->rmap_list;
1582 	}
1583 
1584 	mm = slot->mm;
1585 	down_read(&mm->mmap_sem);
1586 	if (ksm_test_exit(mm))
1587 		vma = NULL;
1588 	else
1589 		vma = find_vma(mm, ksm_scan.address);
1590 
1591 	for (; vma; vma = vma->vm_next) {
1592 		if (!(vma->vm_flags & VM_MERGEABLE))
1593 			continue;
1594 		if (ksm_scan.address < vma->vm_start)
1595 			ksm_scan.address = vma->vm_start;
1596 		if (!vma->anon_vma)
1597 			ksm_scan.address = vma->vm_end;
1598 
1599 		while (ksm_scan.address < vma->vm_end) {
1600 			if (ksm_test_exit(mm))
1601 				break;
1602 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1603 			if (IS_ERR_OR_NULL(*page)) {
1604 				ksm_scan.address += PAGE_SIZE;
1605 				cond_resched();
1606 				continue;
1607 			}
1608 			if (PageAnon(*page)) {
1609 				flush_anon_page(vma, *page, ksm_scan.address);
1610 				flush_dcache_page(*page);
1611 				rmap_item = get_next_rmap_item(slot,
1612 					ksm_scan.rmap_list, ksm_scan.address);
1613 				if (rmap_item) {
1614 					ksm_scan.rmap_list =
1615 							&rmap_item->rmap_list;
1616 					ksm_scan.address += PAGE_SIZE;
1617 				} else
1618 					put_page(*page);
1619 				up_read(&mm->mmap_sem);
1620 				return rmap_item;
1621 			}
1622 			put_page(*page);
1623 			ksm_scan.address += PAGE_SIZE;
1624 			cond_resched();
1625 		}
1626 	}
1627 
1628 	if (ksm_test_exit(mm)) {
1629 		ksm_scan.address = 0;
1630 		ksm_scan.rmap_list = &slot->rmap_list;
1631 	}
1632 	/*
1633 	 * Nuke all the rmap_items that are above this current rmap:
1634 	 * because there were no VM_MERGEABLE vmas with such addresses.
1635 	 */
1636 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1637 
1638 	spin_lock(&ksm_mmlist_lock);
1639 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1640 						struct mm_slot, mm_list);
1641 	if (ksm_scan.address == 0) {
1642 		/*
1643 		 * We've completed a full scan of all vmas, holding mmap_sem
1644 		 * throughout, and found no VM_MERGEABLE: so do the same as
1645 		 * __ksm_exit does to remove this mm from all our lists now.
1646 		 * This applies either when cleaning up after __ksm_exit
1647 		 * (but beware: we can reach here even before __ksm_exit),
1648 		 * or when all VM_MERGEABLE areas have been unmapped (and
1649 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1650 		 */
1651 		hash_del(&slot->link);
1652 		list_del(&slot->mm_list);
1653 		spin_unlock(&ksm_mmlist_lock);
1654 
1655 		free_mm_slot(slot);
1656 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1657 		up_read(&mm->mmap_sem);
1658 		mmdrop(mm);
1659 	} else {
1660 		spin_unlock(&ksm_mmlist_lock);
1661 		up_read(&mm->mmap_sem);
1662 	}
1663 
1664 	/* Repeat until we've completed scanning the whole list */
1665 	slot = ksm_scan.mm_slot;
1666 	if (slot != &ksm_mm_head)
1667 		goto next_mm;
1668 
1669 	ksm_scan.seqnr++;
1670 	return NULL;
1671 }
1672 
1673 /**
1674  * ksm_do_scan  - the ksm scanner main worker function.
1675  * @scan_npages - number of pages we want to scan before we return.
1676  */
1677 static void ksm_do_scan(unsigned int scan_npages)
1678 {
1679 	struct rmap_item *rmap_item;
1680 	struct page *uninitialized_var(page);
1681 
1682 	while (scan_npages-- && likely(!freezing(current))) {
1683 		cond_resched();
1684 		rmap_item = scan_get_next_rmap_item(&page);
1685 		if (!rmap_item)
1686 			return;
1687 		cmp_and_merge_page(page, rmap_item);
1688 		put_page(page);
1689 	}
1690 }
1691 
1692 static int ksmd_should_run(void)
1693 {
1694 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1695 }
1696 
1697 static int ksm_scan_thread(void *nothing)
1698 {
1699 	set_freezable();
1700 	set_user_nice(current, 5);
1701 
1702 	while (!kthread_should_stop()) {
1703 		mutex_lock(&ksm_thread_mutex);
1704 		wait_while_offlining();
1705 		if (ksmd_should_run())
1706 			ksm_do_scan(ksm_thread_pages_to_scan);
1707 		mutex_unlock(&ksm_thread_mutex);
1708 
1709 		try_to_freeze();
1710 
1711 		if (ksmd_should_run()) {
1712 			schedule_timeout_interruptible(
1713 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1714 		} else {
1715 			wait_event_freezable(ksm_thread_wait,
1716 				ksmd_should_run() || kthread_should_stop());
1717 		}
1718 	}
1719 	return 0;
1720 }
1721 
1722 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1723 		unsigned long end, int advice, unsigned long *vm_flags)
1724 {
1725 	struct mm_struct *mm = vma->vm_mm;
1726 	int err;
1727 
1728 	switch (advice) {
1729 	case MADV_MERGEABLE:
1730 		/*
1731 		 * Be somewhat over-protective for now!
1732 		 */
1733 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1734 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1735 				 VM_HUGETLB | VM_MIXEDMAP))
1736 			return 0;		/* just ignore the advice */
1737 
1738 #ifdef VM_SAO
1739 		if (*vm_flags & VM_SAO)
1740 			return 0;
1741 #endif
1742 
1743 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1744 			err = __ksm_enter(mm);
1745 			if (err)
1746 				return err;
1747 		}
1748 
1749 		*vm_flags |= VM_MERGEABLE;
1750 		break;
1751 
1752 	case MADV_UNMERGEABLE:
1753 		if (!(*vm_flags & VM_MERGEABLE))
1754 			return 0;		/* just ignore the advice */
1755 
1756 		if (vma->anon_vma) {
1757 			err = unmerge_ksm_pages(vma, start, end);
1758 			if (err)
1759 				return err;
1760 		}
1761 
1762 		*vm_flags &= ~VM_MERGEABLE;
1763 		break;
1764 	}
1765 
1766 	return 0;
1767 }
1768 
1769 int __ksm_enter(struct mm_struct *mm)
1770 {
1771 	struct mm_slot *mm_slot;
1772 	int needs_wakeup;
1773 
1774 	mm_slot = alloc_mm_slot();
1775 	if (!mm_slot)
1776 		return -ENOMEM;
1777 
1778 	/* Check ksm_run too?  Would need tighter locking */
1779 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1780 
1781 	spin_lock(&ksm_mmlist_lock);
1782 	insert_to_mm_slots_hash(mm, mm_slot);
1783 	/*
1784 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1785 	 * insert just behind the scanning cursor, to let the area settle
1786 	 * down a little; when fork is followed by immediate exec, we don't
1787 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1788 	 *
1789 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1790 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1791 	 * missed: then we might as well insert at the end of the list.
1792 	 */
1793 	if (ksm_run & KSM_RUN_UNMERGE)
1794 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1795 	else
1796 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1797 	spin_unlock(&ksm_mmlist_lock);
1798 
1799 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1800 	atomic_inc(&mm->mm_count);
1801 
1802 	if (needs_wakeup)
1803 		wake_up_interruptible(&ksm_thread_wait);
1804 
1805 	return 0;
1806 }
1807 
1808 void __ksm_exit(struct mm_struct *mm)
1809 {
1810 	struct mm_slot *mm_slot;
1811 	int easy_to_free = 0;
1812 
1813 	/*
1814 	 * This process is exiting: if it's straightforward (as is the
1815 	 * case when ksmd was never running), free mm_slot immediately.
1816 	 * But if it's at the cursor or has rmap_items linked to it, use
1817 	 * mmap_sem to synchronize with any break_cows before pagetables
1818 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1819 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1820 	 */
1821 
1822 	spin_lock(&ksm_mmlist_lock);
1823 	mm_slot = get_mm_slot(mm);
1824 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1825 		if (!mm_slot->rmap_list) {
1826 			hash_del(&mm_slot->link);
1827 			list_del(&mm_slot->mm_list);
1828 			easy_to_free = 1;
1829 		} else {
1830 			list_move(&mm_slot->mm_list,
1831 				  &ksm_scan.mm_slot->mm_list);
1832 		}
1833 	}
1834 	spin_unlock(&ksm_mmlist_lock);
1835 
1836 	if (easy_to_free) {
1837 		free_mm_slot(mm_slot);
1838 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1839 		mmdrop(mm);
1840 	} else if (mm_slot) {
1841 		down_write(&mm->mmap_sem);
1842 		up_write(&mm->mmap_sem);
1843 	}
1844 }
1845 
1846 struct page *ksm_might_need_to_copy(struct page *page,
1847 			struct vm_area_struct *vma, unsigned long address)
1848 {
1849 	struct anon_vma *anon_vma = page_anon_vma(page);
1850 	struct page *new_page;
1851 
1852 	if (PageKsm(page)) {
1853 		if (page_stable_node(page) &&
1854 		    !(ksm_run & KSM_RUN_UNMERGE))
1855 			return page;	/* no need to copy it */
1856 	} else if (!anon_vma) {
1857 		return page;		/* no need to copy it */
1858 	} else if (anon_vma->root == vma->anon_vma->root &&
1859 		 page->index == linear_page_index(vma, address)) {
1860 		return page;		/* still no need to copy it */
1861 	}
1862 	if (!PageUptodate(page))
1863 		return page;		/* let do_swap_page report the error */
1864 
1865 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1866 	if (new_page) {
1867 		copy_user_highpage(new_page, page, address, vma);
1868 
1869 		SetPageDirty(new_page);
1870 		__SetPageUptodate(new_page);
1871 		__SetPageLocked(new_page);
1872 	}
1873 
1874 	return new_page;
1875 }
1876 
1877 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1878 {
1879 	struct stable_node *stable_node;
1880 	struct rmap_item *rmap_item;
1881 	int ret = SWAP_AGAIN;
1882 	int search_new_forks = 0;
1883 
1884 	VM_BUG_ON_PAGE(!PageKsm(page), page);
1885 
1886 	/*
1887 	 * Rely on the page lock to protect against concurrent modifications
1888 	 * to that page's node of the stable tree.
1889 	 */
1890 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1891 
1892 	stable_node = page_stable_node(page);
1893 	if (!stable_node)
1894 		return ret;
1895 again:
1896 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1897 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1898 		struct anon_vma_chain *vmac;
1899 		struct vm_area_struct *vma;
1900 
1901 		cond_resched();
1902 		anon_vma_lock_read(anon_vma);
1903 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1904 					       0, ULONG_MAX) {
1905 			cond_resched();
1906 			vma = vmac->vma;
1907 			if (rmap_item->address < vma->vm_start ||
1908 			    rmap_item->address >= vma->vm_end)
1909 				continue;
1910 			/*
1911 			 * Initially we examine only the vma which covers this
1912 			 * rmap_item; but later, if there is still work to do,
1913 			 * we examine covering vmas in other mms: in case they
1914 			 * were forked from the original since ksmd passed.
1915 			 */
1916 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1917 				continue;
1918 
1919 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1920 				continue;
1921 
1922 			ret = rwc->rmap_one(page, vma,
1923 					rmap_item->address, rwc->arg);
1924 			if (ret != SWAP_AGAIN) {
1925 				anon_vma_unlock_read(anon_vma);
1926 				goto out;
1927 			}
1928 			if (rwc->done && rwc->done(page)) {
1929 				anon_vma_unlock_read(anon_vma);
1930 				goto out;
1931 			}
1932 		}
1933 		anon_vma_unlock_read(anon_vma);
1934 	}
1935 	if (!search_new_forks++)
1936 		goto again;
1937 out:
1938 	return ret;
1939 }
1940 
1941 #ifdef CONFIG_MIGRATION
1942 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1943 {
1944 	struct stable_node *stable_node;
1945 
1946 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1947 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1948 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1949 
1950 	stable_node = page_stable_node(newpage);
1951 	if (stable_node) {
1952 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1953 		stable_node->kpfn = page_to_pfn(newpage);
1954 		/*
1955 		 * newpage->mapping was set in advance; now we need smp_wmb()
1956 		 * to make sure that the new stable_node->kpfn is visible
1957 		 * to get_ksm_page() before it can see that oldpage->mapping
1958 		 * has gone stale (or that PageSwapCache has been cleared).
1959 		 */
1960 		smp_wmb();
1961 		set_page_stable_node(oldpage, NULL);
1962 	}
1963 }
1964 #endif /* CONFIG_MIGRATION */
1965 
1966 #ifdef CONFIG_MEMORY_HOTREMOVE
1967 static void wait_while_offlining(void)
1968 {
1969 	while (ksm_run & KSM_RUN_OFFLINE) {
1970 		mutex_unlock(&ksm_thread_mutex);
1971 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1972 			    TASK_UNINTERRUPTIBLE);
1973 		mutex_lock(&ksm_thread_mutex);
1974 	}
1975 }
1976 
1977 static void ksm_check_stable_tree(unsigned long start_pfn,
1978 				  unsigned long end_pfn)
1979 {
1980 	struct stable_node *stable_node, *next;
1981 	struct rb_node *node;
1982 	int nid;
1983 
1984 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1985 		node = rb_first(root_stable_tree + nid);
1986 		while (node) {
1987 			stable_node = rb_entry(node, struct stable_node, node);
1988 			if (stable_node->kpfn >= start_pfn &&
1989 			    stable_node->kpfn < end_pfn) {
1990 				/*
1991 				 * Don't get_ksm_page, page has already gone:
1992 				 * which is why we keep kpfn instead of page*
1993 				 */
1994 				remove_node_from_stable_tree(stable_node);
1995 				node = rb_first(root_stable_tree + nid);
1996 			} else
1997 				node = rb_next(node);
1998 			cond_resched();
1999 		}
2000 	}
2001 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2002 		if (stable_node->kpfn >= start_pfn &&
2003 		    stable_node->kpfn < end_pfn)
2004 			remove_node_from_stable_tree(stable_node);
2005 		cond_resched();
2006 	}
2007 }
2008 
2009 static int ksm_memory_callback(struct notifier_block *self,
2010 			       unsigned long action, void *arg)
2011 {
2012 	struct memory_notify *mn = arg;
2013 
2014 	switch (action) {
2015 	case MEM_GOING_OFFLINE:
2016 		/*
2017 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2018 		 * and remove_all_stable_nodes() while memory is going offline:
2019 		 * it is unsafe for them to touch the stable tree at this time.
2020 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2021 		 * which do not need the ksm_thread_mutex are all safe.
2022 		 */
2023 		mutex_lock(&ksm_thread_mutex);
2024 		ksm_run |= KSM_RUN_OFFLINE;
2025 		mutex_unlock(&ksm_thread_mutex);
2026 		break;
2027 
2028 	case MEM_OFFLINE:
2029 		/*
2030 		 * Most of the work is done by page migration; but there might
2031 		 * be a few stable_nodes left over, still pointing to struct
2032 		 * pages which have been offlined: prune those from the tree,
2033 		 * otherwise get_ksm_page() might later try to access a
2034 		 * non-existent struct page.
2035 		 */
2036 		ksm_check_stable_tree(mn->start_pfn,
2037 				      mn->start_pfn + mn->nr_pages);
2038 		/* fallthrough */
2039 
2040 	case MEM_CANCEL_OFFLINE:
2041 		mutex_lock(&ksm_thread_mutex);
2042 		ksm_run &= ~KSM_RUN_OFFLINE;
2043 		mutex_unlock(&ksm_thread_mutex);
2044 
2045 		smp_mb();	/* wake_up_bit advises this */
2046 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2047 		break;
2048 	}
2049 	return NOTIFY_OK;
2050 }
2051 #else
2052 static void wait_while_offlining(void)
2053 {
2054 }
2055 #endif /* CONFIG_MEMORY_HOTREMOVE */
2056 
2057 #ifdef CONFIG_SYSFS
2058 /*
2059  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2060  */
2061 
2062 #define KSM_ATTR_RO(_name) \
2063 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2064 #define KSM_ATTR(_name) \
2065 	static struct kobj_attribute _name##_attr = \
2066 		__ATTR(_name, 0644, _name##_show, _name##_store)
2067 
2068 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2069 				    struct kobj_attribute *attr, char *buf)
2070 {
2071 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2072 }
2073 
2074 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2075 				     struct kobj_attribute *attr,
2076 				     const char *buf, size_t count)
2077 {
2078 	unsigned long msecs;
2079 	int err;
2080 
2081 	err = kstrtoul(buf, 10, &msecs);
2082 	if (err || msecs > UINT_MAX)
2083 		return -EINVAL;
2084 
2085 	ksm_thread_sleep_millisecs = msecs;
2086 
2087 	return count;
2088 }
2089 KSM_ATTR(sleep_millisecs);
2090 
2091 static ssize_t pages_to_scan_show(struct kobject *kobj,
2092 				  struct kobj_attribute *attr, char *buf)
2093 {
2094 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2095 }
2096 
2097 static ssize_t pages_to_scan_store(struct kobject *kobj,
2098 				   struct kobj_attribute *attr,
2099 				   const char *buf, size_t count)
2100 {
2101 	int err;
2102 	unsigned long nr_pages;
2103 
2104 	err = kstrtoul(buf, 10, &nr_pages);
2105 	if (err || nr_pages > UINT_MAX)
2106 		return -EINVAL;
2107 
2108 	ksm_thread_pages_to_scan = nr_pages;
2109 
2110 	return count;
2111 }
2112 KSM_ATTR(pages_to_scan);
2113 
2114 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2115 			char *buf)
2116 {
2117 	return sprintf(buf, "%lu\n", ksm_run);
2118 }
2119 
2120 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2121 			 const char *buf, size_t count)
2122 {
2123 	int err;
2124 	unsigned long flags;
2125 
2126 	err = kstrtoul(buf, 10, &flags);
2127 	if (err || flags > UINT_MAX)
2128 		return -EINVAL;
2129 	if (flags > KSM_RUN_UNMERGE)
2130 		return -EINVAL;
2131 
2132 	/*
2133 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2134 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2135 	 * breaking COW to free the pages_shared (but leaves mm_slots
2136 	 * on the list for when ksmd may be set running again).
2137 	 */
2138 
2139 	mutex_lock(&ksm_thread_mutex);
2140 	wait_while_offlining();
2141 	if (ksm_run != flags) {
2142 		ksm_run = flags;
2143 		if (flags & KSM_RUN_UNMERGE) {
2144 			set_current_oom_origin();
2145 			err = unmerge_and_remove_all_rmap_items();
2146 			clear_current_oom_origin();
2147 			if (err) {
2148 				ksm_run = KSM_RUN_STOP;
2149 				count = err;
2150 			}
2151 		}
2152 	}
2153 	mutex_unlock(&ksm_thread_mutex);
2154 
2155 	if (flags & KSM_RUN_MERGE)
2156 		wake_up_interruptible(&ksm_thread_wait);
2157 
2158 	return count;
2159 }
2160 KSM_ATTR(run);
2161 
2162 #ifdef CONFIG_NUMA
2163 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2164 				struct kobj_attribute *attr, char *buf)
2165 {
2166 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2167 }
2168 
2169 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2170 				   struct kobj_attribute *attr,
2171 				   const char *buf, size_t count)
2172 {
2173 	int err;
2174 	unsigned long knob;
2175 
2176 	err = kstrtoul(buf, 10, &knob);
2177 	if (err)
2178 		return err;
2179 	if (knob > 1)
2180 		return -EINVAL;
2181 
2182 	mutex_lock(&ksm_thread_mutex);
2183 	wait_while_offlining();
2184 	if (ksm_merge_across_nodes != knob) {
2185 		if (ksm_pages_shared || remove_all_stable_nodes())
2186 			err = -EBUSY;
2187 		else if (root_stable_tree == one_stable_tree) {
2188 			struct rb_root *buf;
2189 			/*
2190 			 * This is the first time that we switch away from the
2191 			 * default of merging across nodes: must now allocate
2192 			 * a buffer to hold as many roots as may be needed.
2193 			 * Allocate stable and unstable together:
2194 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2195 			 */
2196 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2197 				      GFP_KERNEL);
2198 			/* Let us assume that RB_ROOT is NULL is zero */
2199 			if (!buf)
2200 				err = -ENOMEM;
2201 			else {
2202 				root_stable_tree = buf;
2203 				root_unstable_tree = buf + nr_node_ids;
2204 				/* Stable tree is empty but not the unstable */
2205 				root_unstable_tree[0] = one_unstable_tree[0];
2206 			}
2207 		}
2208 		if (!err) {
2209 			ksm_merge_across_nodes = knob;
2210 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2211 		}
2212 	}
2213 	mutex_unlock(&ksm_thread_mutex);
2214 
2215 	return err ? err : count;
2216 }
2217 KSM_ATTR(merge_across_nodes);
2218 #endif
2219 
2220 static ssize_t pages_shared_show(struct kobject *kobj,
2221 				 struct kobj_attribute *attr, char *buf)
2222 {
2223 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2224 }
2225 KSM_ATTR_RO(pages_shared);
2226 
2227 static ssize_t pages_sharing_show(struct kobject *kobj,
2228 				  struct kobj_attribute *attr, char *buf)
2229 {
2230 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2231 }
2232 KSM_ATTR_RO(pages_sharing);
2233 
2234 static ssize_t pages_unshared_show(struct kobject *kobj,
2235 				   struct kobj_attribute *attr, char *buf)
2236 {
2237 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2238 }
2239 KSM_ATTR_RO(pages_unshared);
2240 
2241 static ssize_t pages_volatile_show(struct kobject *kobj,
2242 				   struct kobj_attribute *attr, char *buf)
2243 {
2244 	long ksm_pages_volatile;
2245 
2246 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2247 				- ksm_pages_sharing - ksm_pages_unshared;
2248 	/*
2249 	 * It was not worth any locking to calculate that statistic,
2250 	 * but it might therefore sometimes be negative: conceal that.
2251 	 */
2252 	if (ksm_pages_volatile < 0)
2253 		ksm_pages_volatile = 0;
2254 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2255 }
2256 KSM_ATTR_RO(pages_volatile);
2257 
2258 static ssize_t full_scans_show(struct kobject *kobj,
2259 			       struct kobj_attribute *attr, char *buf)
2260 {
2261 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2262 }
2263 KSM_ATTR_RO(full_scans);
2264 
2265 static struct attribute *ksm_attrs[] = {
2266 	&sleep_millisecs_attr.attr,
2267 	&pages_to_scan_attr.attr,
2268 	&run_attr.attr,
2269 	&pages_shared_attr.attr,
2270 	&pages_sharing_attr.attr,
2271 	&pages_unshared_attr.attr,
2272 	&pages_volatile_attr.attr,
2273 	&full_scans_attr.attr,
2274 #ifdef CONFIG_NUMA
2275 	&merge_across_nodes_attr.attr,
2276 #endif
2277 	NULL,
2278 };
2279 
2280 static struct attribute_group ksm_attr_group = {
2281 	.attrs = ksm_attrs,
2282 	.name = "ksm",
2283 };
2284 #endif /* CONFIG_SYSFS */
2285 
2286 static int __init ksm_init(void)
2287 {
2288 	struct task_struct *ksm_thread;
2289 	int err;
2290 
2291 	err = ksm_slab_init();
2292 	if (err)
2293 		goto out;
2294 
2295 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2296 	if (IS_ERR(ksm_thread)) {
2297 		pr_err("ksm: creating kthread failed\n");
2298 		err = PTR_ERR(ksm_thread);
2299 		goto out_free;
2300 	}
2301 
2302 #ifdef CONFIG_SYSFS
2303 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2304 	if (err) {
2305 		pr_err("ksm: register sysfs failed\n");
2306 		kthread_stop(ksm_thread);
2307 		goto out_free;
2308 	}
2309 #else
2310 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2311 
2312 #endif /* CONFIG_SYSFS */
2313 
2314 #ifdef CONFIG_MEMORY_HOTREMOVE
2315 	/* There is no significance to this priority 100 */
2316 	hotplug_memory_notifier(ksm_memory_callback, 100);
2317 #endif
2318 	return 0;
2319 
2320 out_free:
2321 	ksm_slab_free();
2322 out:
2323 	return err;
2324 }
2325 subsys_initcall(ksm_init);
2326