1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/ksm.h> 50 51 #ifdef CONFIG_NUMA 52 #define NUMA(x) (x) 53 #define DO_NUMA(x) do { (x); } while (0) 54 #else 55 #define NUMA(x) (0) 56 #define DO_NUMA(x) do { } while (0) 57 #endif 58 59 /** 60 * DOC: Overview 61 * 62 * A few notes about the KSM scanning process, 63 * to make it easier to understand the data structures below: 64 * 65 * In order to reduce excessive scanning, KSM sorts the memory pages by their 66 * contents into a data structure that holds pointers to the pages' locations. 67 * 68 * Since the contents of the pages may change at any moment, KSM cannot just 69 * insert the pages into a normal sorted tree and expect it to find anything. 70 * Therefore KSM uses two data structures - the stable and the unstable tree. 71 * 72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 73 * by their contents. Because each such page is write-protected, searching on 74 * this tree is fully assured to be working (except when pages are unmapped), 75 * and therefore this tree is called the stable tree. 76 * 77 * The stable tree node includes information required for reverse 78 * mapping from a KSM page to virtual addresses that map this page. 79 * 80 * In order to avoid large latencies of the rmap walks on KSM pages, 81 * KSM maintains two types of nodes in the stable tree: 82 * 83 * * the regular nodes that keep the reverse mapping structures in a 84 * linked list 85 * * the "chains" that link nodes ("dups") that represent the same 86 * write protected memory content, but each "dup" corresponds to a 87 * different KSM page copy of that content 88 * 89 * Internally, the regular nodes, "dups" and "chains" are represented 90 * using the same struct ksm_stable_node structure. 91 * 92 * In addition to the stable tree, KSM uses a second data structure called the 93 * unstable tree: this tree holds pointers to pages which have been found to 94 * be "unchanged for a period of time". The unstable tree sorts these pages 95 * by their contents, but since they are not write-protected, KSM cannot rely 96 * upon the unstable tree to work correctly - the unstable tree is liable to 97 * be corrupted as its contents are modified, and so it is called unstable. 98 * 99 * KSM solves this problem by several techniques: 100 * 101 * 1) The unstable tree is flushed every time KSM completes scanning all 102 * memory areas, and then the tree is rebuilt again from the beginning. 103 * 2) KSM will only insert into the unstable tree, pages whose hash value 104 * has not changed since the previous scan of all memory areas. 105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 106 * colors of the nodes and not on their contents, assuring that even when 107 * the tree gets "corrupted" it won't get out of balance, so scanning time 108 * remains the same (also, searching and inserting nodes in an rbtree uses 109 * the same algorithm, so we have no overhead when we flush and rebuild). 110 * 4) KSM never flushes the stable tree, which means that even if it were to 111 * take 10 attempts to find a page in the unstable tree, once it is found, 112 * it is secured in the stable tree. (When we scan a new page, we first 113 * compare it against the stable tree, and then against the unstable tree.) 114 * 115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 116 * stable trees and multiple unstable trees: one of each for each NUMA node. 117 */ 118 119 /** 120 * struct ksm_mm_slot - ksm information per mm that is being scanned 121 * @slot: hash lookup from mm to mm_slot 122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 123 */ 124 struct ksm_mm_slot { 125 struct mm_slot slot; 126 struct ksm_rmap_item *rmap_list; 127 }; 128 129 /** 130 * struct ksm_scan - cursor for scanning 131 * @mm_slot: the current mm_slot we are scanning 132 * @address: the next address inside that to be scanned 133 * @rmap_list: link to the next rmap to be scanned in the rmap_list 134 * @seqnr: count of completed full scans (needed when removing unstable node) 135 * 136 * There is only the one ksm_scan instance of this cursor structure. 137 */ 138 struct ksm_scan { 139 struct ksm_mm_slot *mm_slot; 140 unsigned long address; 141 struct ksm_rmap_item **rmap_list; 142 unsigned long seqnr; 143 }; 144 145 /** 146 * struct ksm_stable_node - node of the stable rbtree 147 * @node: rb node of this ksm page in the stable tree 148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 150 * @list: linked into migrate_nodes, pending placement in the proper node tree 151 * @hlist: hlist head of rmap_items using this ksm page 152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 153 * @chain_prune_time: time of the last full garbage collection 154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 156 */ 157 struct ksm_stable_node { 158 union { 159 struct rb_node node; /* when node of stable tree */ 160 struct { /* when listed for migration */ 161 struct list_head *head; 162 struct { 163 struct hlist_node hlist_dup; 164 struct list_head list; 165 }; 166 }; 167 }; 168 struct hlist_head hlist; 169 union { 170 unsigned long kpfn; 171 unsigned long chain_prune_time; 172 }; 173 /* 174 * STABLE_NODE_CHAIN can be any negative number in 175 * rmap_hlist_len negative range, but better not -1 to be able 176 * to reliably detect underflows. 177 */ 178 #define STABLE_NODE_CHAIN -1024 179 int rmap_hlist_len; 180 #ifdef CONFIG_NUMA 181 int nid; 182 #endif 183 }; 184 185 /** 186 * struct ksm_rmap_item - reverse mapping item for virtual addresses 187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 189 * @nid: NUMA node id of unstable tree in which linked (may not match page) 190 * @mm: the memory structure this rmap_item is pointing into 191 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 192 * @oldchecksum: previous checksum of the page at that virtual address 193 * @node: rb node of this rmap_item in the unstable tree 194 * @head: pointer to stable_node heading this list in the stable tree 195 * @hlist: link into hlist of rmap_items hanging off that stable_node 196 */ 197 struct ksm_rmap_item { 198 struct ksm_rmap_item *rmap_list; 199 union { 200 struct anon_vma *anon_vma; /* when stable */ 201 #ifdef CONFIG_NUMA 202 int nid; /* when node of unstable tree */ 203 #endif 204 }; 205 struct mm_struct *mm; 206 unsigned long address; /* + low bits used for flags below */ 207 unsigned int oldchecksum; /* when unstable */ 208 union { 209 struct rb_node node; /* when node of unstable tree */ 210 struct { /* when listed from stable tree */ 211 struct ksm_stable_node *head; 212 struct hlist_node hlist; 213 }; 214 }; 215 }; 216 217 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 218 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 219 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 220 221 /* The stable and unstable tree heads */ 222 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 223 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 224 static struct rb_root *root_stable_tree = one_stable_tree; 225 static struct rb_root *root_unstable_tree = one_unstable_tree; 226 227 /* Recently migrated nodes of stable tree, pending proper placement */ 228 static LIST_HEAD(migrate_nodes); 229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 230 231 #define MM_SLOTS_HASH_BITS 10 232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 233 234 static struct ksm_mm_slot ksm_mm_head = { 235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 236 }; 237 static struct ksm_scan ksm_scan = { 238 .mm_slot = &ksm_mm_head, 239 }; 240 241 static struct kmem_cache *rmap_item_cache; 242 static struct kmem_cache *stable_node_cache; 243 static struct kmem_cache *mm_slot_cache; 244 245 /* The number of pages scanned */ 246 static unsigned long ksm_pages_scanned; 247 248 /* The number of nodes in the stable tree */ 249 static unsigned long ksm_pages_shared; 250 251 /* The number of page slots additionally sharing those nodes */ 252 static unsigned long ksm_pages_sharing; 253 254 /* The number of nodes in the unstable tree */ 255 static unsigned long ksm_pages_unshared; 256 257 /* The number of rmap_items in use: to calculate pages_volatile */ 258 static unsigned long ksm_rmap_items; 259 260 /* The number of stable_node chains */ 261 static unsigned long ksm_stable_node_chains; 262 263 /* The number of stable_node dups linked to the stable_node chains */ 264 static unsigned long ksm_stable_node_dups; 265 266 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 267 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 268 269 /* Maximum number of page slots sharing a stable node */ 270 static int ksm_max_page_sharing = 256; 271 272 /* Number of pages ksmd should scan in one batch */ 273 static unsigned int ksm_thread_pages_to_scan = 100; 274 275 /* Milliseconds ksmd should sleep between batches */ 276 static unsigned int ksm_thread_sleep_millisecs = 20; 277 278 /* Checksum of an empty (zeroed) page */ 279 static unsigned int zero_checksum __read_mostly; 280 281 /* Whether to merge empty (zeroed) pages with actual zero pages */ 282 static bool ksm_use_zero_pages __read_mostly; 283 284 /* The number of zero pages which is placed by KSM */ 285 unsigned long ksm_zero_pages; 286 287 #ifdef CONFIG_NUMA 288 /* Zeroed when merging across nodes is not allowed */ 289 static unsigned int ksm_merge_across_nodes = 1; 290 static int ksm_nr_node_ids = 1; 291 #else 292 #define ksm_merge_across_nodes 1U 293 #define ksm_nr_node_ids 1 294 #endif 295 296 #define KSM_RUN_STOP 0 297 #define KSM_RUN_MERGE 1 298 #define KSM_RUN_UNMERGE 2 299 #define KSM_RUN_OFFLINE 4 300 static unsigned long ksm_run = KSM_RUN_STOP; 301 static void wait_while_offlining(void); 302 303 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 304 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 305 static DEFINE_MUTEX(ksm_thread_mutex); 306 static DEFINE_SPINLOCK(ksm_mmlist_lock); 307 308 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 309 sizeof(struct __struct), __alignof__(struct __struct),\ 310 (__flags), NULL) 311 312 static int __init ksm_slab_init(void) 313 { 314 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 315 if (!rmap_item_cache) 316 goto out; 317 318 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 319 if (!stable_node_cache) 320 goto out_free1; 321 322 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 323 if (!mm_slot_cache) 324 goto out_free2; 325 326 return 0; 327 328 out_free2: 329 kmem_cache_destroy(stable_node_cache); 330 out_free1: 331 kmem_cache_destroy(rmap_item_cache); 332 out: 333 return -ENOMEM; 334 } 335 336 static void __init ksm_slab_free(void) 337 { 338 kmem_cache_destroy(mm_slot_cache); 339 kmem_cache_destroy(stable_node_cache); 340 kmem_cache_destroy(rmap_item_cache); 341 mm_slot_cache = NULL; 342 } 343 344 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 345 { 346 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 347 } 348 349 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 350 { 351 return dup->head == STABLE_NODE_DUP_HEAD; 352 } 353 354 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 355 struct ksm_stable_node *chain) 356 { 357 VM_BUG_ON(is_stable_node_dup(dup)); 358 dup->head = STABLE_NODE_DUP_HEAD; 359 VM_BUG_ON(!is_stable_node_chain(chain)); 360 hlist_add_head(&dup->hlist_dup, &chain->hlist); 361 ksm_stable_node_dups++; 362 } 363 364 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 365 { 366 VM_BUG_ON(!is_stable_node_dup(dup)); 367 hlist_del(&dup->hlist_dup); 368 ksm_stable_node_dups--; 369 } 370 371 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 372 { 373 VM_BUG_ON(is_stable_node_chain(dup)); 374 if (is_stable_node_dup(dup)) 375 __stable_node_dup_del(dup); 376 else 377 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 378 #ifdef CONFIG_DEBUG_VM 379 dup->head = NULL; 380 #endif 381 } 382 383 static inline struct ksm_rmap_item *alloc_rmap_item(void) 384 { 385 struct ksm_rmap_item *rmap_item; 386 387 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 388 __GFP_NORETRY | __GFP_NOWARN); 389 if (rmap_item) 390 ksm_rmap_items++; 391 return rmap_item; 392 } 393 394 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 395 { 396 ksm_rmap_items--; 397 rmap_item->mm->ksm_rmap_items--; 398 rmap_item->mm = NULL; /* debug safety */ 399 kmem_cache_free(rmap_item_cache, rmap_item); 400 } 401 402 static inline struct ksm_stable_node *alloc_stable_node(void) 403 { 404 /* 405 * The allocation can take too long with GFP_KERNEL when memory is under 406 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 407 * grants access to memory reserves, helping to avoid this problem. 408 */ 409 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 410 } 411 412 static inline void free_stable_node(struct ksm_stable_node *stable_node) 413 { 414 VM_BUG_ON(stable_node->rmap_hlist_len && 415 !is_stable_node_chain(stable_node)); 416 kmem_cache_free(stable_node_cache, stable_node); 417 } 418 419 /* 420 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 421 * page tables after it has passed through ksm_exit() - which, if necessary, 422 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 423 * a special flag: they can just back out as soon as mm_users goes to zero. 424 * ksm_test_exit() is used throughout to make this test for exit: in some 425 * places for correctness, in some places just to avoid unnecessary work. 426 */ 427 static inline bool ksm_test_exit(struct mm_struct *mm) 428 { 429 return atomic_read(&mm->mm_users) == 0; 430 } 431 432 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 433 struct mm_walk *walk) 434 { 435 struct page *page = NULL; 436 spinlock_t *ptl; 437 pte_t *pte; 438 pte_t ptent; 439 int ret; 440 441 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 442 if (!pte) 443 return 0; 444 ptent = ptep_get(pte); 445 if (pte_present(ptent)) { 446 page = vm_normal_page(walk->vma, addr, ptent); 447 } else if (!pte_none(ptent)) { 448 swp_entry_t entry = pte_to_swp_entry(ptent); 449 450 /* 451 * As KSM pages remain KSM pages until freed, no need to wait 452 * here for migration to end. 453 */ 454 if (is_migration_entry(entry)) 455 page = pfn_swap_entry_to_page(entry); 456 } 457 /* return 1 if the page is an normal ksm page or KSM-placed zero page */ 458 ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte); 459 pte_unmap_unlock(pte, ptl); 460 return ret; 461 } 462 463 static const struct mm_walk_ops break_ksm_ops = { 464 .pmd_entry = break_ksm_pmd_entry, 465 }; 466 467 /* 468 * We use break_ksm to break COW on a ksm page by triggering unsharing, 469 * such that the ksm page will get replaced by an exclusive anonymous page. 470 * 471 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 472 * in case the application has unmapped and remapped mm,addr meanwhile. 473 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 474 * mmap of /dev/mem, where we would not want to touch it. 475 * 476 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 477 * of the process that owns 'vma'. We also do not want to enforce 478 * protection keys here anyway. 479 */ 480 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 481 { 482 vm_fault_t ret = 0; 483 484 do { 485 int ksm_page; 486 487 cond_resched(); 488 ksm_page = walk_page_range_vma(vma, addr, addr + 1, 489 &break_ksm_ops, NULL); 490 if (WARN_ON_ONCE(ksm_page < 0)) 491 return ksm_page; 492 if (!ksm_page) 493 return 0; 494 ret = handle_mm_fault(vma, addr, 495 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 496 NULL); 497 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 498 /* 499 * We must loop until we no longer find a KSM page because 500 * handle_mm_fault() may back out if there's any difficulty e.g. if 501 * pte accessed bit gets updated concurrently. 502 * 503 * VM_FAULT_SIGBUS could occur if we race with truncation of the 504 * backing file, which also invalidates anonymous pages: that's 505 * okay, that truncation will have unmapped the PageKsm for us. 506 * 507 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 508 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 509 * current task has TIF_MEMDIE set, and will be OOM killed on return 510 * to user; and ksmd, having no mm, would never be chosen for that. 511 * 512 * But if the mm is in a limited mem_cgroup, then the fault may fail 513 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 514 * even ksmd can fail in this way - though it's usually breaking ksm 515 * just to undo a merge it made a moment before, so unlikely to oom. 516 * 517 * That's a pity: we might therefore have more kernel pages allocated 518 * than we're counting as nodes in the stable tree; but ksm_do_scan 519 * will retry to break_cow on each pass, so should recover the page 520 * in due course. The important thing is to not let VM_MERGEABLE 521 * be cleared while any such pages might remain in the area. 522 */ 523 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 524 } 525 526 static bool vma_ksm_compatible(struct vm_area_struct *vma) 527 { 528 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | 529 VM_IO | VM_DONTEXPAND | VM_HUGETLB | 530 VM_MIXEDMAP)) 531 return false; /* just ignore the advice */ 532 533 if (vma_is_dax(vma)) 534 return false; 535 536 #ifdef VM_SAO 537 if (vma->vm_flags & VM_SAO) 538 return false; 539 #endif 540 #ifdef VM_SPARC_ADI 541 if (vma->vm_flags & VM_SPARC_ADI) 542 return false; 543 #endif 544 545 return true; 546 } 547 548 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 549 unsigned long addr) 550 { 551 struct vm_area_struct *vma; 552 if (ksm_test_exit(mm)) 553 return NULL; 554 vma = vma_lookup(mm, addr); 555 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 556 return NULL; 557 return vma; 558 } 559 560 static void break_cow(struct ksm_rmap_item *rmap_item) 561 { 562 struct mm_struct *mm = rmap_item->mm; 563 unsigned long addr = rmap_item->address; 564 struct vm_area_struct *vma; 565 566 /* 567 * It is not an accident that whenever we want to break COW 568 * to undo, we also need to drop a reference to the anon_vma. 569 */ 570 put_anon_vma(rmap_item->anon_vma); 571 572 mmap_read_lock(mm); 573 vma = find_mergeable_vma(mm, addr); 574 if (vma) 575 break_ksm(vma, addr); 576 mmap_read_unlock(mm); 577 } 578 579 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 580 { 581 struct mm_struct *mm = rmap_item->mm; 582 unsigned long addr = rmap_item->address; 583 struct vm_area_struct *vma; 584 struct page *page; 585 586 mmap_read_lock(mm); 587 vma = find_mergeable_vma(mm, addr); 588 if (!vma) 589 goto out; 590 591 page = follow_page(vma, addr, FOLL_GET); 592 if (IS_ERR_OR_NULL(page)) 593 goto out; 594 if (is_zone_device_page(page)) 595 goto out_putpage; 596 if (PageAnon(page)) { 597 flush_anon_page(vma, page, addr); 598 flush_dcache_page(page); 599 } else { 600 out_putpage: 601 put_page(page); 602 out: 603 page = NULL; 604 } 605 mmap_read_unlock(mm); 606 return page; 607 } 608 609 /* 610 * This helper is used for getting right index into array of tree roots. 611 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 612 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 613 * every node has its own stable and unstable tree. 614 */ 615 static inline int get_kpfn_nid(unsigned long kpfn) 616 { 617 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 618 } 619 620 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 621 struct rb_root *root) 622 { 623 struct ksm_stable_node *chain = alloc_stable_node(); 624 VM_BUG_ON(is_stable_node_chain(dup)); 625 if (likely(chain)) { 626 INIT_HLIST_HEAD(&chain->hlist); 627 chain->chain_prune_time = jiffies; 628 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 629 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 630 chain->nid = NUMA_NO_NODE; /* debug */ 631 #endif 632 ksm_stable_node_chains++; 633 634 /* 635 * Put the stable node chain in the first dimension of 636 * the stable tree and at the same time remove the old 637 * stable node. 638 */ 639 rb_replace_node(&dup->node, &chain->node, root); 640 641 /* 642 * Move the old stable node to the second dimension 643 * queued in the hlist_dup. The invariant is that all 644 * dup stable_nodes in the chain->hlist point to pages 645 * that are write protected and have the exact same 646 * content. 647 */ 648 stable_node_chain_add_dup(dup, chain); 649 } 650 return chain; 651 } 652 653 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 654 struct rb_root *root) 655 { 656 rb_erase(&chain->node, root); 657 free_stable_node(chain); 658 ksm_stable_node_chains--; 659 } 660 661 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 662 { 663 struct ksm_rmap_item *rmap_item; 664 665 /* check it's not STABLE_NODE_CHAIN or negative */ 666 BUG_ON(stable_node->rmap_hlist_len < 0); 667 668 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 669 if (rmap_item->hlist.next) { 670 ksm_pages_sharing--; 671 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 672 } else { 673 ksm_pages_shared--; 674 } 675 676 rmap_item->mm->ksm_merging_pages--; 677 678 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 679 stable_node->rmap_hlist_len--; 680 put_anon_vma(rmap_item->anon_vma); 681 rmap_item->address &= PAGE_MASK; 682 cond_resched(); 683 } 684 685 /* 686 * We need the second aligned pointer of the migrate_nodes 687 * list_head to stay clear from the rb_parent_color union 688 * (aligned and different than any node) and also different 689 * from &migrate_nodes. This will verify that future list.h changes 690 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 691 */ 692 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 693 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 694 695 trace_ksm_remove_ksm_page(stable_node->kpfn); 696 if (stable_node->head == &migrate_nodes) 697 list_del(&stable_node->list); 698 else 699 stable_node_dup_del(stable_node); 700 free_stable_node(stable_node); 701 } 702 703 enum get_ksm_page_flags { 704 GET_KSM_PAGE_NOLOCK, 705 GET_KSM_PAGE_LOCK, 706 GET_KSM_PAGE_TRYLOCK 707 }; 708 709 /* 710 * get_ksm_page: checks if the page indicated by the stable node 711 * is still its ksm page, despite having held no reference to it. 712 * In which case we can trust the content of the page, and it 713 * returns the gotten page; but if the page has now been zapped, 714 * remove the stale node from the stable tree and return NULL. 715 * But beware, the stable node's page might be being migrated. 716 * 717 * You would expect the stable_node to hold a reference to the ksm page. 718 * But if it increments the page's count, swapping out has to wait for 719 * ksmd to come around again before it can free the page, which may take 720 * seconds or even minutes: much too unresponsive. So instead we use a 721 * "keyhole reference": access to the ksm page from the stable node peeps 722 * out through its keyhole to see if that page still holds the right key, 723 * pointing back to this stable node. This relies on freeing a PageAnon 724 * page to reset its page->mapping to NULL, and relies on no other use of 725 * a page to put something that might look like our key in page->mapping. 726 * is on its way to being freed; but it is an anomaly to bear in mind. 727 */ 728 static struct page *get_ksm_page(struct ksm_stable_node *stable_node, 729 enum get_ksm_page_flags flags) 730 { 731 struct page *page; 732 void *expected_mapping; 733 unsigned long kpfn; 734 735 expected_mapping = (void *)((unsigned long)stable_node | 736 PAGE_MAPPING_KSM); 737 again: 738 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 739 page = pfn_to_page(kpfn); 740 if (READ_ONCE(page->mapping) != expected_mapping) 741 goto stale; 742 743 /* 744 * We cannot do anything with the page while its refcount is 0. 745 * Usually 0 means free, or tail of a higher-order page: in which 746 * case this node is no longer referenced, and should be freed; 747 * however, it might mean that the page is under page_ref_freeze(). 748 * The __remove_mapping() case is easy, again the node is now stale; 749 * the same is in reuse_ksm_page() case; but if page is swapcache 750 * in folio_migrate_mapping(), it might still be our page, 751 * in which case it's essential to keep the node. 752 */ 753 while (!get_page_unless_zero(page)) { 754 /* 755 * Another check for page->mapping != expected_mapping would 756 * work here too. We have chosen the !PageSwapCache test to 757 * optimize the common case, when the page is or is about to 758 * be freed: PageSwapCache is cleared (under spin_lock_irq) 759 * in the ref_freeze section of __remove_mapping(); but Anon 760 * page->mapping reset to NULL later, in free_pages_prepare(). 761 */ 762 if (!PageSwapCache(page)) 763 goto stale; 764 cpu_relax(); 765 } 766 767 if (READ_ONCE(page->mapping) != expected_mapping) { 768 put_page(page); 769 goto stale; 770 } 771 772 if (flags == GET_KSM_PAGE_TRYLOCK) { 773 if (!trylock_page(page)) { 774 put_page(page); 775 return ERR_PTR(-EBUSY); 776 } 777 } else if (flags == GET_KSM_PAGE_LOCK) 778 lock_page(page); 779 780 if (flags != GET_KSM_PAGE_NOLOCK) { 781 if (READ_ONCE(page->mapping) != expected_mapping) { 782 unlock_page(page); 783 put_page(page); 784 goto stale; 785 } 786 } 787 return page; 788 789 stale: 790 /* 791 * We come here from above when page->mapping or !PageSwapCache 792 * suggests that the node is stale; but it might be under migration. 793 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 794 * before checking whether node->kpfn has been changed. 795 */ 796 smp_rmb(); 797 if (READ_ONCE(stable_node->kpfn) != kpfn) 798 goto again; 799 remove_node_from_stable_tree(stable_node); 800 return NULL; 801 } 802 803 /* 804 * Removing rmap_item from stable or unstable tree. 805 * This function will clean the information from the stable/unstable tree. 806 */ 807 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 808 { 809 if (rmap_item->address & STABLE_FLAG) { 810 struct ksm_stable_node *stable_node; 811 struct page *page; 812 813 stable_node = rmap_item->head; 814 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 815 if (!page) 816 goto out; 817 818 hlist_del(&rmap_item->hlist); 819 unlock_page(page); 820 put_page(page); 821 822 if (!hlist_empty(&stable_node->hlist)) 823 ksm_pages_sharing--; 824 else 825 ksm_pages_shared--; 826 827 rmap_item->mm->ksm_merging_pages--; 828 829 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 830 stable_node->rmap_hlist_len--; 831 832 put_anon_vma(rmap_item->anon_vma); 833 rmap_item->head = NULL; 834 rmap_item->address &= PAGE_MASK; 835 836 } else if (rmap_item->address & UNSTABLE_FLAG) { 837 unsigned char age; 838 /* 839 * Usually ksmd can and must skip the rb_erase, because 840 * root_unstable_tree was already reset to RB_ROOT. 841 * But be careful when an mm is exiting: do the rb_erase 842 * if this rmap_item was inserted by this scan, rather 843 * than left over from before. 844 */ 845 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 846 BUG_ON(age > 1); 847 if (!age) 848 rb_erase(&rmap_item->node, 849 root_unstable_tree + NUMA(rmap_item->nid)); 850 ksm_pages_unshared--; 851 rmap_item->address &= PAGE_MASK; 852 } 853 out: 854 cond_resched(); /* we're called from many long loops */ 855 } 856 857 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 858 { 859 while (*rmap_list) { 860 struct ksm_rmap_item *rmap_item = *rmap_list; 861 *rmap_list = rmap_item->rmap_list; 862 remove_rmap_item_from_tree(rmap_item); 863 free_rmap_item(rmap_item); 864 } 865 } 866 867 /* 868 * Though it's very tempting to unmerge rmap_items from stable tree rather 869 * than check every pte of a given vma, the locking doesn't quite work for 870 * that - an rmap_item is assigned to the stable tree after inserting ksm 871 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 872 * rmap_items from parent to child at fork time (so as not to waste time 873 * if exit comes before the next scan reaches it). 874 * 875 * Similarly, although we'd like to remove rmap_items (so updating counts 876 * and freeing memory) when unmerging an area, it's easier to leave that 877 * to the next pass of ksmd - consider, for example, how ksmd might be 878 * in cmp_and_merge_page on one of the rmap_items we would be removing. 879 */ 880 static int unmerge_ksm_pages(struct vm_area_struct *vma, 881 unsigned long start, unsigned long end) 882 { 883 unsigned long addr; 884 int err = 0; 885 886 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 887 if (ksm_test_exit(vma->vm_mm)) 888 break; 889 if (signal_pending(current)) 890 err = -ERESTARTSYS; 891 else 892 err = break_ksm(vma, addr); 893 } 894 return err; 895 } 896 897 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 898 { 899 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 900 } 901 902 static inline struct ksm_stable_node *page_stable_node(struct page *page) 903 { 904 return folio_stable_node(page_folio(page)); 905 } 906 907 static inline void set_page_stable_node(struct page *page, 908 struct ksm_stable_node *stable_node) 909 { 910 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 911 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 912 } 913 914 #ifdef CONFIG_SYSFS 915 /* 916 * Only called through the sysfs control interface: 917 */ 918 static int remove_stable_node(struct ksm_stable_node *stable_node) 919 { 920 struct page *page; 921 int err; 922 923 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 924 if (!page) { 925 /* 926 * get_ksm_page did remove_node_from_stable_tree itself. 927 */ 928 return 0; 929 } 930 931 /* 932 * Page could be still mapped if this races with __mmput() running in 933 * between ksm_exit() and exit_mmap(). Just refuse to let 934 * merge_across_nodes/max_page_sharing be switched. 935 */ 936 err = -EBUSY; 937 if (!page_mapped(page)) { 938 /* 939 * The stable node did not yet appear stale to get_ksm_page(), 940 * since that allows for an unmapped ksm page to be recognized 941 * right up until it is freed; but the node is safe to remove. 942 * This page might be in an LRU cache waiting to be freed, 943 * or it might be PageSwapCache (perhaps under writeback), 944 * or it might have been removed from swapcache a moment ago. 945 */ 946 set_page_stable_node(page, NULL); 947 remove_node_from_stable_tree(stable_node); 948 err = 0; 949 } 950 951 unlock_page(page); 952 put_page(page); 953 return err; 954 } 955 956 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 957 struct rb_root *root) 958 { 959 struct ksm_stable_node *dup; 960 struct hlist_node *hlist_safe; 961 962 if (!is_stable_node_chain(stable_node)) { 963 VM_BUG_ON(is_stable_node_dup(stable_node)); 964 if (remove_stable_node(stable_node)) 965 return true; 966 else 967 return false; 968 } 969 970 hlist_for_each_entry_safe(dup, hlist_safe, 971 &stable_node->hlist, hlist_dup) { 972 VM_BUG_ON(!is_stable_node_dup(dup)); 973 if (remove_stable_node(dup)) 974 return true; 975 } 976 BUG_ON(!hlist_empty(&stable_node->hlist)); 977 free_stable_node_chain(stable_node, root); 978 return false; 979 } 980 981 static int remove_all_stable_nodes(void) 982 { 983 struct ksm_stable_node *stable_node, *next; 984 int nid; 985 int err = 0; 986 987 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 988 while (root_stable_tree[nid].rb_node) { 989 stable_node = rb_entry(root_stable_tree[nid].rb_node, 990 struct ksm_stable_node, node); 991 if (remove_stable_node_chain(stable_node, 992 root_stable_tree + nid)) { 993 err = -EBUSY; 994 break; /* proceed to next nid */ 995 } 996 cond_resched(); 997 } 998 } 999 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 1000 if (remove_stable_node(stable_node)) 1001 err = -EBUSY; 1002 cond_resched(); 1003 } 1004 return err; 1005 } 1006 1007 static int unmerge_and_remove_all_rmap_items(void) 1008 { 1009 struct ksm_mm_slot *mm_slot; 1010 struct mm_slot *slot; 1011 struct mm_struct *mm; 1012 struct vm_area_struct *vma; 1013 int err = 0; 1014 1015 spin_lock(&ksm_mmlist_lock); 1016 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1017 struct mm_slot, mm_node); 1018 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1019 spin_unlock(&ksm_mmlist_lock); 1020 1021 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1022 mm_slot = ksm_scan.mm_slot) { 1023 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1024 1025 mm = mm_slot->slot.mm; 1026 mmap_read_lock(mm); 1027 1028 /* 1029 * Exit right away if mm is exiting to avoid lockdep issue in 1030 * the maple tree 1031 */ 1032 if (ksm_test_exit(mm)) 1033 goto mm_exiting; 1034 1035 for_each_vma(vmi, vma) { 1036 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1037 continue; 1038 err = unmerge_ksm_pages(vma, 1039 vma->vm_start, vma->vm_end); 1040 if (err) 1041 goto error; 1042 } 1043 1044 mm_exiting: 1045 remove_trailing_rmap_items(&mm_slot->rmap_list); 1046 mmap_read_unlock(mm); 1047 1048 spin_lock(&ksm_mmlist_lock); 1049 slot = list_entry(mm_slot->slot.mm_node.next, 1050 struct mm_slot, mm_node); 1051 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1052 if (ksm_test_exit(mm)) { 1053 hash_del(&mm_slot->slot.hash); 1054 list_del(&mm_slot->slot.mm_node); 1055 spin_unlock(&ksm_mmlist_lock); 1056 1057 mm_slot_free(mm_slot_cache, mm_slot); 1058 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1059 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1060 mmdrop(mm); 1061 } else 1062 spin_unlock(&ksm_mmlist_lock); 1063 } 1064 1065 /* Clean up stable nodes, but don't worry if some are still busy */ 1066 remove_all_stable_nodes(); 1067 ksm_scan.seqnr = 0; 1068 return 0; 1069 1070 error: 1071 mmap_read_unlock(mm); 1072 spin_lock(&ksm_mmlist_lock); 1073 ksm_scan.mm_slot = &ksm_mm_head; 1074 spin_unlock(&ksm_mmlist_lock); 1075 return err; 1076 } 1077 #endif /* CONFIG_SYSFS */ 1078 1079 static u32 calc_checksum(struct page *page) 1080 { 1081 u32 checksum; 1082 void *addr = kmap_atomic(page); 1083 checksum = xxhash(addr, PAGE_SIZE, 0); 1084 kunmap_atomic(addr); 1085 return checksum; 1086 } 1087 1088 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1089 pte_t *orig_pte) 1090 { 1091 struct mm_struct *mm = vma->vm_mm; 1092 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1093 int swapped; 1094 int err = -EFAULT; 1095 struct mmu_notifier_range range; 1096 bool anon_exclusive; 1097 pte_t entry; 1098 1099 pvmw.address = page_address_in_vma(page, vma); 1100 if (pvmw.address == -EFAULT) 1101 goto out; 1102 1103 BUG_ON(PageTransCompound(page)); 1104 1105 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1106 pvmw.address + PAGE_SIZE); 1107 mmu_notifier_invalidate_range_start(&range); 1108 1109 if (!page_vma_mapped_walk(&pvmw)) 1110 goto out_mn; 1111 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1112 goto out_unlock; 1113 1114 anon_exclusive = PageAnonExclusive(page); 1115 entry = ptep_get(pvmw.pte); 1116 if (pte_write(entry) || pte_dirty(entry) || 1117 anon_exclusive || mm_tlb_flush_pending(mm)) { 1118 swapped = PageSwapCache(page); 1119 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1120 /* 1121 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1122 * take any lock, therefore the check that we are going to make 1123 * with the pagecount against the mapcount is racy and 1124 * O_DIRECT can happen right after the check. 1125 * So we clear the pte and flush the tlb before the check 1126 * this assure us that no O_DIRECT can happen after the check 1127 * or in the middle of the check. 1128 * 1129 * No need to notify as we are downgrading page table to read 1130 * only not changing it to point to a new page. 1131 * 1132 * See Documentation/mm/mmu_notifier.rst 1133 */ 1134 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1135 /* 1136 * Check that no O_DIRECT or similar I/O is in progress on the 1137 * page 1138 */ 1139 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1140 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1141 goto out_unlock; 1142 } 1143 1144 /* See page_try_share_anon_rmap(): clear PTE first. */ 1145 if (anon_exclusive && page_try_share_anon_rmap(page)) { 1146 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1147 goto out_unlock; 1148 } 1149 1150 if (pte_dirty(entry)) 1151 set_page_dirty(page); 1152 entry = pte_mkclean(entry); 1153 1154 if (pte_write(entry)) 1155 entry = pte_wrprotect(entry); 1156 1157 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1158 } 1159 *orig_pte = entry; 1160 err = 0; 1161 1162 out_unlock: 1163 page_vma_mapped_walk_done(&pvmw); 1164 out_mn: 1165 mmu_notifier_invalidate_range_end(&range); 1166 out: 1167 return err; 1168 } 1169 1170 /** 1171 * replace_page - replace page in vma by new ksm page 1172 * @vma: vma that holds the pte pointing to page 1173 * @page: the page we are replacing by kpage 1174 * @kpage: the ksm page we replace page by 1175 * @orig_pte: the original value of the pte 1176 * 1177 * Returns 0 on success, -EFAULT on failure. 1178 */ 1179 static int replace_page(struct vm_area_struct *vma, struct page *page, 1180 struct page *kpage, pte_t orig_pte) 1181 { 1182 struct mm_struct *mm = vma->vm_mm; 1183 struct folio *folio; 1184 pmd_t *pmd; 1185 pmd_t pmde; 1186 pte_t *ptep; 1187 pte_t newpte; 1188 spinlock_t *ptl; 1189 unsigned long addr; 1190 int err = -EFAULT; 1191 struct mmu_notifier_range range; 1192 1193 addr = page_address_in_vma(page, vma); 1194 if (addr == -EFAULT) 1195 goto out; 1196 1197 pmd = mm_find_pmd(mm, addr); 1198 if (!pmd) 1199 goto out; 1200 /* 1201 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1202 * without holding anon_vma lock for write. So when looking for a 1203 * genuine pmde (in which to find pte), test present and !THP together. 1204 */ 1205 pmde = pmdp_get_lockless(pmd); 1206 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1207 goto out; 1208 1209 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1210 addr + PAGE_SIZE); 1211 mmu_notifier_invalidate_range_start(&range); 1212 1213 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1214 if (!ptep) 1215 goto out_mn; 1216 if (!pte_same(ptep_get(ptep), orig_pte)) { 1217 pte_unmap_unlock(ptep, ptl); 1218 goto out_mn; 1219 } 1220 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1221 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); 1222 1223 /* 1224 * No need to check ksm_use_zero_pages here: we can only have a 1225 * zero_page here if ksm_use_zero_pages was enabled already. 1226 */ 1227 if (!is_zero_pfn(page_to_pfn(kpage))) { 1228 get_page(kpage); 1229 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); 1230 newpte = mk_pte(kpage, vma->vm_page_prot); 1231 } else { 1232 /* 1233 * Use pte_mkdirty to mark the zero page mapped by KSM, and then 1234 * we can easily track all KSM-placed zero pages by checking if 1235 * the dirty bit in zero page's PTE is set. 1236 */ 1237 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); 1238 ksm_zero_pages++; 1239 mm->ksm_zero_pages++; 1240 /* 1241 * We're replacing an anonymous page with a zero page, which is 1242 * not anonymous. We need to do proper accounting otherwise we 1243 * will get wrong values in /proc, and a BUG message in dmesg 1244 * when tearing down the mm. 1245 */ 1246 dec_mm_counter(mm, MM_ANONPAGES); 1247 } 1248 1249 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1250 /* 1251 * No need to notify as we are replacing a read only page with another 1252 * read only page with the same content. 1253 * 1254 * See Documentation/mm/mmu_notifier.rst 1255 */ 1256 ptep_clear_flush(vma, addr, ptep); 1257 set_pte_at_notify(mm, addr, ptep, newpte); 1258 1259 folio = page_folio(page); 1260 page_remove_rmap(page, vma, false); 1261 if (!folio_mapped(folio)) 1262 folio_free_swap(folio); 1263 folio_put(folio); 1264 1265 pte_unmap_unlock(ptep, ptl); 1266 err = 0; 1267 out_mn: 1268 mmu_notifier_invalidate_range_end(&range); 1269 out: 1270 return err; 1271 } 1272 1273 /* 1274 * try_to_merge_one_page - take two pages and merge them into one 1275 * @vma: the vma that holds the pte pointing to page 1276 * @page: the PageAnon page that we want to replace with kpage 1277 * @kpage: the PageKsm page that we want to map instead of page, 1278 * or NULL the first time when we want to use page as kpage. 1279 * 1280 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1281 */ 1282 static int try_to_merge_one_page(struct vm_area_struct *vma, 1283 struct page *page, struct page *kpage) 1284 { 1285 pte_t orig_pte = __pte(0); 1286 int err = -EFAULT; 1287 1288 if (page == kpage) /* ksm page forked */ 1289 return 0; 1290 1291 if (!PageAnon(page)) 1292 goto out; 1293 1294 /* 1295 * We need the page lock to read a stable PageSwapCache in 1296 * write_protect_page(). We use trylock_page() instead of 1297 * lock_page() because we don't want to wait here - we 1298 * prefer to continue scanning and merging different pages, 1299 * then come back to this page when it is unlocked. 1300 */ 1301 if (!trylock_page(page)) 1302 goto out; 1303 1304 if (PageTransCompound(page)) { 1305 if (split_huge_page(page)) 1306 goto out_unlock; 1307 } 1308 1309 /* 1310 * If this anonymous page is mapped only here, its pte may need 1311 * to be write-protected. If it's mapped elsewhere, all of its 1312 * ptes are necessarily already write-protected. But in either 1313 * case, we need to lock and check page_count is not raised. 1314 */ 1315 if (write_protect_page(vma, page, &orig_pte) == 0) { 1316 if (!kpage) { 1317 /* 1318 * While we hold page lock, upgrade page from 1319 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1320 * stable_tree_insert() will update stable_node. 1321 */ 1322 set_page_stable_node(page, NULL); 1323 mark_page_accessed(page); 1324 /* 1325 * Page reclaim just frees a clean page with no dirty 1326 * ptes: make sure that the ksm page would be swapped. 1327 */ 1328 if (!PageDirty(page)) 1329 SetPageDirty(page); 1330 err = 0; 1331 } else if (pages_identical(page, kpage)) 1332 err = replace_page(vma, page, kpage, orig_pte); 1333 } 1334 1335 out_unlock: 1336 unlock_page(page); 1337 out: 1338 return err; 1339 } 1340 1341 /* 1342 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1343 * but no new kernel page is allocated: kpage must already be a ksm page. 1344 * 1345 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1346 */ 1347 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1348 struct page *page, struct page *kpage) 1349 { 1350 struct mm_struct *mm = rmap_item->mm; 1351 struct vm_area_struct *vma; 1352 int err = -EFAULT; 1353 1354 mmap_read_lock(mm); 1355 vma = find_mergeable_vma(mm, rmap_item->address); 1356 if (!vma) 1357 goto out; 1358 1359 err = try_to_merge_one_page(vma, page, kpage); 1360 if (err) 1361 goto out; 1362 1363 /* Unstable nid is in union with stable anon_vma: remove first */ 1364 remove_rmap_item_from_tree(rmap_item); 1365 1366 /* Must get reference to anon_vma while still holding mmap_lock */ 1367 rmap_item->anon_vma = vma->anon_vma; 1368 get_anon_vma(vma->anon_vma); 1369 out: 1370 mmap_read_unlock(mm); 1371 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1372 rmap_item, mm, err); 1373 return err; 1374 } 1375 1376 /* 1377 * try_to_merge_two_pages - take two identical pages and prepare them 1378 * to be merged into one page. 1379 * 1380 * This function returns the kpage if we successfully merged two identical 1381 * pages into one ksm page, NULL otherwise. 1382 * 1383 * Note that this function upgrades page to ksm page: if one of the pages 1384 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1385 */ 1386 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1387 struct page *page, 1388 struct ksm_rmap_item *tree_rmap_item, 1389 struct page *tree_page) 1390 { 1391 int err; 1392 1393 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1394 if (!err) { 1395 err = try_to_merge_with_ksm_page(tree_rmap_item, 1396 tree_page, page); 1397 /* 1398 * If that fails, we have a ksm page with only one pte 1399 * pointing to it: so break it. 1400 */ 1401 if (err) 1402 break_cow(rmap_item); 1403 } 1404 return err ? NULL : page; 1405 } 1406 1407 static __always_inline 1408 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1409 { 1410 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1411 /* 1412 * Check that at least one mapping still exists, otherwise 1413 * there's no much point to merge and share with this 1414 * stable_node, as the underlying tree_page of the other 1415 * sharer is going to be freed soon. 1416 */ 1417 return stable_node->rmap_hlist_len && 1418 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1419 } 1420 1421 static __always_inline 1422 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1423 { 1424 return __is_page_sharing_candidate(stable_node, 0); 1425 } 1426 1427 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1428 struct ksm_stable_node **_stable_node, 1429 struct rb_root *root, 1430 bool prune_stale_stable_nodes) 1431 { 1432 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1433 struct hlist_node *hlist_safe; 1434 struct page *_tree_page, *tree_page = NULL; 1435 int nr = 0; 1436 int found_rmap_hlist_len; 1437 1438 if (!prune_stale_stable_nodes || 1439 time_before(jiffies, stable_node->chain_prune_time + 1440 msecs_to_jiffies( 1441 ksm_stable_node_chains_prune_millisecs))) 1442 prune_stale_stable_nodes = false; 1443 else 1444 stable_node->chain_prune_time = jiffies; 1445 1446 hlist_for_each_entry_safe(dup, hlist_safe, 1447 &stable_node->hlist, hlist_dup) { 1448 cond_resched(); 1449 /* 1450 * We must walk all stable_node_dup to prune the stale 1451 * stable nodes during lookup. 1452 * 1453 * get_ksm_page can drop the nodes from the 1454 * stable_node->hlist if they point to freed pages 1455 * (that's why we do a _safe walk). The "dup" 1456 * stable_node parameter itself will be freed from 1457 * under us if it returns NULL. 1458 */ 1459 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1460 if (!_tree_page) 1461 continue; 1462 nr += 1; 1463 if (is_page_sharing_candidate(dup)) { 1464 if (!found || 1465 dup->rmap_hlist_len > found_rmap_hlist_len) { 1466 if (found) 1467 put_page(tree_page); 1468 found = dup; 1469 found_rmap_hlist_len = found->rmap_hlist_len; 1470 tree_page = _tree_page; 1471 1472 /* skip put_page for found dup */ 1473 if (!prune_stale_stable_nodes) 1474 break; 1475 continue; 1476 } 1477 } 1478 put_page(_tree_page); 1479 } 1480 1481 if (found) { 1482 /* 1483 * nr is counting all dups in the chain only if 1484 * prune_stale_stable_nodes is true, otherwise we may 1485 * break the loop at nr == 1 even if there are 1486 * multiple entries. 1487 */ 1488 if (prune_stale_stable_nodes && nr == 1) { 1489 /* 1490 * If there's not just one entry it would 1491 * corrupt memory, better BUG_ON. In KSM 1492 * context with no lock held it's not even 1493 * fatal. 1494 */ 1495 BUG_ON(stable_node->hlist.first->next); 1496 1497 /* 1498 * There's just one entry and it is below the 1499 * deduplication limit so drop the chain. 1500 */ 1501 rb_replace_node(&stable_node->node, &found->node, 1502 root); 1503 free_stable_node(stable_node); 1504 ksm_stable_node_chains--; 1505 ksm_stable_node_dups--; 1506 /* 1507 * NOTE: the caller depends on the stable_node 1508 * to be equal to stable_node_dup if the chain 1509 * was collapsed. 1510 */ 1511 *_stable_node = found; 1512 /* 1513 * Just for robustness, as stable_node is 1514 * otherwise left as a stable pointer, the 1515 * compiler shall optimize it away at build 1516 * time. 1517 */ 1518 stable_node = NULL; 1519 } else if (stable_node->hlist.first != &found->hlist_dup && 1520 __is_page_sharing_candidate(found, 1)) { 1521 /* 1522 * If the found stable_node dup can accept one 1523 * more future merge (in addition to the one 1524 * that is underway) and is not at the head of 1525 * the chain, put it there so next search will 1526 * be quicker in the !prune_stale_stable_nodes 1527 * case. 1528 * 1529 * NOTE: it would be inaccurate to use nr > 1 1530 * instead of checking the hlist.first pointer 1531 * directly, because in the 1532 * prune_stale_stable_nodes case "nr" isn't 1533 * the position of the found dup in the chain, 1534 * but the total number of dups in the chain. 1535 */ 1536 hlist_del(&found->hlist_dup); 1537 hlist_add_head(&found->hlist_dup, 1538 &stable_node->hlist); 1539 } 1540 } 1541 1542 *_stable_node_dup = found; 1543 return tree_page; 1544 } 1545 1546 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1547 struct rb_root *root) 1548 { 1549 if (!is_stable_node_chain(stable_node)) 1550 return stable_node; 1551 if (hlist_empty(&stable_node->hlist)) { 1552 free_stable_node_chain(stable_node, root); 1553 return NULL; 1554 } 1555 return hlist_entry(stable_node->hlist.first, 1556 typeof(*stable_node), hlist_dup); 1557 } 1558 1559 /* 1560 * Like for get_ksm_page, this function can free the *_stable_node and 1561 * *_stable_node_dup if the returned tree_page is NULL. 1562 * 1563 * It can also free and overwrite *_stable_node with the found 1564 * stable_node_dup if the chain is collapsed (in which case 1565 * *_stable_node will be equal to *_stable_node_dup like if the chain 1566 * never existed). It's up to the caller to verify tree_page is not 1567 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1568 * 1569 * *_stable_node_dup is really a second output parameter of this 1570 * function and will be overwritten in all cases, the caller doesn't 1571 * need to initialize it. 1572 */ 1573 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1574 struct ksm_stable_node **_stable_node, 1575 struct rb_root *root, 1576 bool prune_stale_stable_nodes) 1577 { 1578 struct ksm_stable_node *stable_node = *_stable_node; 1579 if (!is_stable_node_chain(stable_node)) { 1580 if (is_page_sharing_candidate(stable_node)) { 1581 *_stable_node_dup = stable_node; 1582 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1583 } 1584 /* 1585 * _stable_node_dup set to NULL means the stable_node 1586 * reached the ksm_max_page_sharing limit. 1587 */ 1588 *_stable_node_dup = NULL; 1589 return NULL; 1590 } 1591 return stable_node_dup(_stable_node_dup, _stable_node, root, 1592 prune_stale_stable_nodes); 1593 } 1594 1595 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, 1596 struct ksm_stable_node **s_n, 1597 struct rb_root *root) 1598 { 1599 return __stable_node_chain(s_n_d, s_n, root, true); 1600 } 1601 1602 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, 1603 struct ksm_stable_node *s_n, 1604 struct rb_root *root) 1605 { 1606 struct ksm_stable_node *old_stable_node = s_n; 1607 struct page *tree_page; 1608 1609 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1610 /* not pruning dups so s_n cannot have changed */ 1611 VM_BUG_ON(s_n != old_stable_node); 1612 return tree_page; 1613 } 1614 1615 /* 1616 * stable_tree_search - search for page inside the stable tree 1617 * 1618 * This function checks if there is a page inside the stable tree 1619 * with identical content to the page that we are scanning right now. 1620 * 1621 * This function returns the stable tree node of identical content if found, 1622 * NULL otherwise. 1623 */ 1624 static struct page *stable_tree_search(struct page *page) 1625 { 1626 int nid; 1627 struct rb_root *root; 1628 struct rb_node **new; 1629 struct rb_node *parent; 1630 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1631 struct ksm_stable_node *page_node; 1632 1633 page_node = page_stable_node(page); 1634 if (page_node && page_node->head != &migrate_nodes) { 1635 /* ksm page forked */ 1636 get_page(page); 1637 return page; 1638 } 1639 1640 nid = get_kpfn_nid(page_to_pfn(page)); 1641 root = root_stable_tree + nid; 1642 again: 1643 new = &root->rb_node; 1644 parent = NULL; 1645 1646 while (*new) { 1647 struct page *tree_page; 1648 int ret; 1649 1650 cond_resched(); 1651 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1652 stable_node_any = NULL; 1653 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1654 /* 1655 * NOTE: stable_node may have been freed by 1656 * chain_prune() if the returned stable_node_dup is 1657 * not NULL. stable_node_dup may have been inserted in 1658 * the rbtree instead as a regular stable_node (in 1659 * order to collapse the stable_node chain if a single 1660 * stable_node dup was found in it). In such case the 1661 * stable_node is overwritten by the callee to point 1662 * to the stable_node_dup that was collapsed in the 1663 * stable rbtree and stable_node will be equal to 1664 * stable_node_dup like if the chain never existed. 1665 */ 1666 if (!stable_node_dup) { 1667 /* 1668 * Either all stable_node dups were full in 1669 * this stable_node chain, or this chain was 1670 * empty and should be rb_erased. 1671 */ 1672 stable_node_any = stable_node_dup_any(stable_node, 1673 root); 1674 if (!stable_node_any) { 1675 /* rb_erase just run */ 1676 goto again; 1677 } 1678 /* 1679 * Take any of the stable_node dups page of 1680 * this stable_node chain to let the tree walk 1681 * continue. All KSM pages belonging to the 1682 * stable_node dups in a stable_node chain 1683 * have the same content and they're 1684 * write protected at all times. Any will work 1685 * fine to continue the walk. 1686 */ 1687 tree_page = get_ksm_page(stable_node_any, 1688 GET_KSM_PAGE_NOLOCK); 1689 } 1690 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1691 if (!tree_page) { 1692 /* 1693 * If we walked over a stale stable_node, 1694 * get_ksm_page() will call rb_erase() and it 1695 * may rebalance the tree from under us. So 1696 * restart the search from scratch. Returning 1697 * NULL would be safe too, but we'd generate 1698 * false negative insertions just because some 1699 * stable_node was stale. 1700 */ 1701 goto again; 1702 } 1703 1704 ret = memcmp_pages(page, tree_page); 1705 put_page(tree_page); 1706 1707 parent = *new; 1708 if (ret < 0) 1709 new = &parent->rb_left; 1710 else if (ret > 0) 1711 new = &parent->rb_right; 1712 else { 1713 if (page_node) { 1714 VM_BUG_ON(page_node->head != &migrate_nodes); 1715 /* 1716 * Test if the migrated page should be merged 1717 * into a stable node dup. If the mapcount is 1718 * 1 we can migrate it with another KSM page 1719 * without adding it to the chain. 1720 */ 1721 if (page_mapcount(page) > 1) 1722 goto chain_append; 1723 } 1724 1725 if (!stable_node_dup) { 1726 /* 1727 * If the stable_node is a chain and 1728 * we got a payload match in memcmp 1729 * but we cannot merge the scanned 1730 * page in any of the existing 1731 * stable_node dups because they're 1732 * all full, we need to wait the 1733 * scanned page to find itself a match 1734 * in the unstable tree to create a 1735 * brand new KSM page to add later to 1736 * the dups of this stable_node. 1737 */ 1738 return NULL; 1739 } 1740 1741 /* 1742 * Lock and unlock the stable_node's page (which 1743 * might already have been migrated) so that page 1744 * migration is sure to notice its raised count. 1745 * It would be more elegant to return stable_node 1746 * than kpage, but that involves more changes. 1747 */ 1748 tree_page = get_ksm_page(stable_node_dup, 1749 GET_KSM_PAGE_TRYLOCK); 1750 1751 if (PTR_ERR(tree_page) == -EBUSY) 1752 return ERR_PTR(-EBUSY); 1753 1754 if (unlikely(!tree_page)) 1755 /* 1756 * The tree may have been rebalanced, 1757 * so re-evaluate parent and new. 1758 */ 1759 goto again; 1760 unlock_page(tree_page); 1761 1762 if (get_kpfn_nid(stable_node_dup->kpfn) != 1763 NUMA(stable_node_dup->nid)) { 1764 put_page(tree_page); 1765 goto replace; 1766 } 1767 return tree_page; 1768 } 1769 } 1770 1771 if (!page_node) 1772 return NULL; 1773 1774 list_del(&page_node->list); 1775 DO_NUMA(page_node->nid = nid); 1776 rb_link_node(&page_node->node, parent, new); 1777 rb_insert_color(&page_node->node, root); 1778 out: 1779 if (is_page_sharing_candidate(page_node)) { 1780 get_page(page); 1781 return page; 1782 } else 1783 return NULL; 1784 1785 replace: 1786 /* 1787 * If stable_node was a chain and chain_prune collapsed it, 1788 * stable_node has been updated to be the new regular 1789 * stable_node. A collapse of the chain is indistinguishable 1790 * from the case there was no chain in the stable 1791 * rbtree. Otherwise stable_node is the chain and 1792 * stable_node_dup is the dup to replace. 1793 */ 1794 if (stable_node_dup == stable_node) { 1795 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1796 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1797 /* there is no chain */ 1798 if (page_node) { 1799 VM_BUG_ON(page_node->head != &migrate_nodes); 1800 list_del(&page_node->list); 1801 DO_NUMA(page_node->nid = nid); 1802 rb_replace_node(&stable_node_dup->node, 1803 &page_node->node, 1804 root); 1805 if (is_page_sharing_candidate(page_node)) 1806 get_page(page); 1807 else 1808 page = NULL; 1809 } else { 1810 rb_erase(&stable_node_dup->node, root); 1811 page = NULL; 1812 } 1813 } else { 1814 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1815 __stable_node_dup_del(stable_node_dup); 1816 if (page_node) { 1817 VM_BUG_ON(page_node->head != &migrate_nodes); 1818 list_del(&page_node->list); 1819 DO_NUMA(page_node->nid = nid); 1820 stable_node_chain_add_dup(page_node, stable_node); 1821 if (is_page_sharing_candidate(page_node)) 1822 get_page(page); 1823 else 1824 page = NULL; 1825 } else { 1826 page = NULL; 1827 } 1828 } 1829 stable_node_dup->head = &migrate_nodes; 1830 list_add(&stable_node_dup->list, stable_node_dup->head); 1831 return page; 1832 1833 chain_append: 1834 /* stable_node_dup could be null if it reached the limit */ 1835 if (!stable_node_dup) 1836 stable_node_dup = stable_node_any; 1837 /* 1838 * If stable_node was a chain and chain_prune collapsed it, 1839 * stable_node has been updated to be the new regular 1840 * stable_node. A collapse of the chain is indistinguishable 1841 * from the case there was no chain in the stable 1842 * rbtree. Otherwise stable_node is the chain and 1843 * stable_node_dup is the dup to replace. 1844 */ 1845 if (stable_node_dup == stable_node) { 1846 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1847 /* chain is missing so create it */ 1848 stable_node = alloc_stable_node_chain(stable_node_dup, 1849 root); 1850 if (!stable_node) 1851 return NULL; 1852 } 1853 /* 1854 * Add this stable_node dup that was 1855 * migrated to the stable_node chain 1856 * of the current nid for this page 1857 * content. 1858 */ 1859 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1860 VM_BUG_ON(page_node->head != &migrate_nodes); 1861 list_del(&page_node->list); 1862 DO_NUMA(page_node->nid = nid); 1863 stable_node_chain_add_dup(page_node, stable_node); 1864 goto out; 1865 } 1866 1867 /* 1868 * stable_tree_insert - insert stable tree node pointing to new ksm page 1869 * into the stable tree. 1870 * 1871 * This function returns the stable tree node just allocated on success, 1872 * NULL otherwise. 1873 */ 1874 static struct ksm_stable_node *stable_tree_insert(struct page *kpage) 1875 { 1876 int nid; 1877 unsigned long kpfn; 1878 struct rb_root *root; 1879 struct rb_node **new; 1880 struct rb_node *parent; 1881 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1882 bool need_chain = false; 1883 1884 kpfn = page_to_pfn(kpage); 1885 nid = get_kpfn_nid(kpfn); 1886 root = root_stable_tree + nid; 1887 again: 1888 parent = NULL; 1889 new = &root->rb_node; 1890 1891 while (*new) { 1892 struct page *tree_page; 1893 int ret; 1894 1895 cond_resched(); 1896 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1897 stable_node_any = NULL; 1898 tree_page = chain(&stable_node_dup, stable_node, root); 1899 if (!stable_node_dup) { 1900 /* 1901 * Either all stable_node dups were full in 1902 * this stable_node chain, or this chain was 1903 * empty and should be rb_erased. 1904 */ 1905 stable_node_any = stable_node_dup_any(stable_node, 1906 root); 1907 if (!stable_node_any) { 1908 /* rb_erase just run */ 1909 goto again; 1910 } 1911 /* 1912 * Take any of the stable_node dups page of 1913 * this stable_node chain to let the tree walk 1914 * continue. All KSM pages belonging to the 1915 * stable_node dups in a stable_node chain 1916 * have the same content and they're 1917 * write protected at all times. Any will work 1918 * fine to continue the walk. 1919 */ 1920 tree_page = get_ksm_page(stable_node_any, 1921 GET_KSM_PAGE_NOLOCK); 1922 } 1923 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1924 if (!tree_page) { 1925 /* 1926 * If we walked over a stale stable_node, 1927 * get_ksm_page() will call rb_erase() and it 1928 * may rebalance the tree from under us. So 1929 * restart the search from scratch. Returning 1930 * NULL would be safe too, but we'd generate 1931 * false negative insertions just because some 1932 * stable_node was stale. 1933 */ 1934 goto again; 1935 } 1936 1937 ret = memcmp_pages(kpage, tree_page); 1938 put_page(tree_page); 1939 1940 parent = *new; 1941 if (ret < 0) 1942 new = &parent->rb_left; 1943 else if (ret > 0) 1944 new = &parent->rb_right; 1945 else { 1946 need_chain = true; 1947 break; 1948 } 1949 } 1950 1951 stable_node_dup = alloc_stable_node(); 1952 if (!stable_node_dup) 1953 return NULL; 1954 1955 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1956 stable_node_dup->kpfn = kpfn; 1957 set_page_stable_node(kpage, stable_node_dup); 1958 stable_node_dup->rmap_hlist_len = 0; 1959 DO_NUMA(stable_node_dup->nid = nid); 1960 if (!need_chain) { 1961 rb_link_node(&stable_node_dup->node, parent, new); 1962 rb_insert_color(&stable_node_dup->node, root); 1963 } else { 1964 if (!is_stable_node_chain(stable_node)) { 1965 struct ksm_stable_node *orig = stable_node; 1966 /* chain is missing so create it */ 1967 stable_node = alloc_stable_node_chain(orig, root); 1968 if (!stable_node) { 1969 free_stable_node(stable_node_dup); 1970 return NULL; 1971 } 1972 } 1973 stable_node_chain_add_dup(stable_node_dup, stable_node); 1974 } 1975 1976 return stable_node_dup; 1977 } 1978 1979 /* 1980 * unstable_tree_search_insert - search for identical page, 1981 * else insert rmap_item into the unstable tree. 1982 * 1983 * This function searches for a page in the unstable tree identical to the 1984 * page currently being scanned; and if no identical page is found in the 1985 * tree, we insert rmap_item as a new object into the unstable tree. 1986 * 1987 * This function returns pointer to rmap_item found to be identical 1988 * to the currently scanned page, NULL otherwise. 1989 * 1990 * This function does both searching and inserting, because they share 1991 * the same walking algorithm in an rbtree. 1992 */ 1993 static 1994 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 1995 struct page *page, 1996 struct page **tree_pagep) 1997 { 1998 struct rb_node **new; 1999 struct rb_root *root; 2000 struct rb_node *parent = NULL; 2001 int nid; 2002 2003 nid = get_kpfn_nid(page_to_pfn(page)); 2004 root = root_unstable_tree + nid; 2005 new = &root->rb_node; 2006 2007 while (*new) { 2008 struct ksm_rmap_item *tree_rmap_item; 2009 struct page *tree_page; 2010 int ret; 2011 2012 cond_resched(); 2013 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2014 tree_page = get_mergeable_page(tree_rmap_item); 2015 if (!tree_page) 2016 return NULL; 2017 2018 /* 2019 * Don't substitute a ksm page for a forked page. 2020 */ 2021 if (page == tree_page) { 2022 put_page(tree_page); 2023 return NULL; 2024 } 2025 2026 ret = memcmp_pages(page, tree_page); 2027 2028 parent = *new; 2029 if (ret < 0) { 2030 put_page(tree_page); 2031 new = &parent->rb_left; 2032 } else if (ret > 0) { 2033 put_page(tree_page); 2034 new = &parent->rb_right; 2035 } else if (!ksm_merge_across_nodes && 2036 page_to_nid(tree_page) != nid) { 2037 /* 2038 * If tree_page has been migrated to another NUMA node, 2039 * it will be flushed out and put in the right unstable 2040 * tree next time: only merge with it when across_nodes. 2041 */ 2042 put_page(tree_page); 2043 return NULL; 2044 } else { 2045 *tree_pagep = tree_page; 2046 return tree_rmap_item; 2047 } 2048 } 2049 2050 rmap_item->address |= UNSTABLE_FLAG; 2051 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2052 DO_NUMA(rmap_item->nid = nid); 2053 rb_link_node(&rmap_item->node, parent, new); 2054 rb_insert_color(&rmap_item->node, root); 2055 2056 ksm_pages_unshared++; 2057 return NULL; 2058 } 2059 2060 /* 2061 * stable_tree_append - add another rmap_item to the linked list of 2062 * rmap_items hanging off a given node of the stable tree, all sharing 2063 * the same ksm page. 2064 */ 2065 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2066 struct ksm_stable_node *stable_node, 2067 bool max_page_sharing_bypass) 2068 { 2069 /* 2070 * rmap won't find this mapping if we don't insert the 2071 * rmap_item in the right stable_node 2072 * duplicate. page_migration could break later if rmap breaks, 2073 * so we can as well crash here. We really need to check for 2074 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2075 * for other negative values as an underflow if detected here 2076 * for the first time (and not when decreasing rmap_hlist_len) 2077 * would be sign of memory corruption in the stable_node. 2078 */ 2079 BUG_ON(stable_node->rmap_hlist_len < 0); 2080 2081 stable_node->rmap_hlist_len++; 2082 if (!max_page_sharing_bypass) 2083 /* possibly non fatal but unexpected overflow, only warn */ 2084 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2085 ksm_max_page_sharing); 2086 2087 rmap_item->head = stable_node; 2088 rmap_item->address |= STABLE_FLAG; 2089 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2090 2091 if (rmap_item->hlist.next) 2092 ksm_pages_sharing++; 2093 else 2094 ksm_pages_shared++; 2095 2096 rmap_item->mm->ksm_merging_pages++; 2097 } 2098 2099 /* 2100 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2101 * if not, compare checksum to previous and if it's the same, see if page can 2102 * be inserted into the unstable tree, or merged with a page already there and 2103 * both transferred to the stable tree. 2104 * 2105 * @page: the page that we are searching identical page to. 2106 * @rmap_item: the reverse mapping into the virtual address of this page 2107 */ 2108 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2109 { 2110 struct mm_struct *mm = rmap_item->mm; 2111 struct ksm_rmap_item *tree_rmap_item; 2112 struct page *tree_page = NULL; 2113 struct ksm_stable_node *stable_node; 2114 struct page *kpage; 2115 unsigned int checksum; 2116 int err; 2117 bool max_page_sharing_bypass = false; 2118 2119 stable_node = page_stable_node(page); 2120 if (stable_node) { 2121 if (stable_node->head != &migrate_nodes && 2122 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2123 NUMA(stable_node->nid)) { 2124 stable_node_dup_del(stable_node); 2125 stable_node->head = &migrate_nodes; 2126 list_add(&stable_node->list, stable_node->head); 2127 } 2128 if (stable_node->head != &migrate_nodes && 2129 rmap_item->head == stable_node) 2130 return; 2131 /* 2132 * If it's a KSM fork, allow it to go over the sharing limit 2133 * without warnings. 2134 */ 2135 if (!is_page_sharing_candidate(stable_node)) 2136 max_page_sharing_bypass = true; 2137 } 2138 2139 /* We first start with searching the page inside the stable tree */ 2140 kpage = stable_tree_search(page); 2141 if (kpage == page && rmap_item->head == stable_node) { 2142 put_page(kpage); 2143 return; 2144 } 2145 2146 remove_rmap_item_from_tree(rmap_item); 2147 2148 if (kpage) { 2149 if (PTR_ERR(kpage) == -EBUSY) 2150 return; 2151 2152 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2153 if (!err) { 2154 /* 2155 * The page was successfully merged: 2156 * add its rmap_item to the stable tree. 2157 */ 2158 lock_page(kpage); 2159 stable_tree_append(rmap_item, page_stable_node(kpage), 2160 max_page_sharing_bypass); 2161 unlock_page(kpage); 2162 } 2163 put_page(kpage); 2164 return; 2165 } 2166 2167 /* 2168 * If the hash value of the page has changed from the last time 2169 * we calculated it, this page is changing frequently: therefore we 2170 * don't want to insert it in the unstable tree, and we don't want 2171 * to waste our time searching for something identical to it there. 2172 */ 2173 checksum = calc_checksum(page); 2174 if (rmap_item->oldchecksum != checksum) { 2175 rmap_item->oldchecksum = checksum; 2176 return; 2177 } 2178 2179 /* 2180 * Same checksum as an empty page. We attempt to merge it with the 2181 * appropriate zero page if the user enabled this via sysfs. 2182 */ 2183 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2184 struct vm_area_struct *vma; 2185 2186 mmap_read_lock(mm); 2187 vma = find_mergeable_vma(mm, rmap_item->address); 2188 if (vma) { 2189 err = try_to_merge_one_page(vma, page, 2190 ZERO_PAGE(rmap_item->address)); 2191 trace_ksm_merge_one_page( 2192 page_to_pfn(ZERO_PAGE(rmap_item->address)), 2193 rmap_item, mm, err); 2194 } else { 2195 /* 2196 * If the vma is out of date, we do not need to 2197 * continue. 2198 */ 2199 err = 0; 2200 } 2201 mmap_read_unlock(mm); 2202 /* 2203 * In case of failure, the page was not really empty, so we 2204 * need to continue. Otherwise we're done. 2205 */ 2206 if (!err) 2207 return; 2208 } 2209 tree_rmap_item = 2210 unstable_tree_search_insert(rmap_item, page, &tree_page); 2211 if (tree_rmap_item) { 2212 bool split; 2213 2214 kpage = try_to_merge_two_pages(rmap_item, page, 2215 tree_rmap_item, tree_page); 2216 /* 2217 * If both pages we tried to merge belong to the same compound 2218 * page, then we actually ended up increasing the reference 2219 * count of the same compound page twice, and split_huge_page 2220 * failed. 2221 * Here we set a flag if that happened, and we use it later to 2222 * try split_huge_page again. Since we call put_page right 2223 * afterwards, the reference count will be correct and 2224 * split_huge_page should succeed. 2225 */ 2226 split = PageTransCompound(page) 2227 && compound_head(page) == compound_head(tree_page); 2228 put_page(tree_page); 2229 if (kpage) { 2230 /* 2231 * The pages were successfully merged: insert new 2232 * node in the stable tree and add both rmap_items. 2233 */ 2234 lock_page(kpage); 2235 stable_node = stable_tree_insert(kpage); 2236 if (stable_node) { 2237 stable_tree_append(tree_rmap_item, stable_node, 2238 false); 2239 stable_tree_append(rmap_item, stable_node, 2240 false); 2241 } 2242 unlock_page(kpage); 2243 2244 /* 2245 * If we fail to insert the page into the stable tree, 2246 * we will have 2 virtual addresses that are pointing 2247 * to a ksm page left outside the stable tree, 2248 * in which case we need to break_cow on both. 2249 */ 2250 if (!stable_node) { 2251 break_cow(tree_rmap_item); 2252 break_cow(rmap_item); 2253 } 2254 } else if (split) { 2255 /* 2256 * We are here if we tried to merge two pages and 2257 * failed because they both belonged to the same 2258 * compound page. We will split the page now, but no 2259 * merging will take place. 2260 * We do not want to add the cost of a full lock; if 2261 * the page is locked, it is better to skip it and 2262 * perhaps try again later. 2263 */ 2264 if (!trylock_page(page)) 2265 return; 2266 split_huge_page(page); 2267 unlock_page(page); 2268 } 2269 } 2270 } 2271 2272 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2273 struct ksm_rmap_item **rmap_list, 2274 unsigned long addr) 2275 { 2276 struct ksm_rmap_item *rmap_item; 2277 2278 while (*rmap_list) { 2279 rmap_item = *rmap_list; 2280 if ((rmap_item->address & PAGE_MASK) == addr) 2281 return rmap_item; 2282 if (rmap_item->address > addr) 2283 break; 2284 *rmap_list = rmap_item->rmap_list; 2285 remove_rmap_item_from_tree(rmap_item); 2286 free_rmap_item(rmap_item); 2287 } 2288 2289 rmap_item = alloc_rmap_item(); 2290 if (rmap_item) { 2291 /* It has already been zeroed */ 2292 rmap_item->mm = mm_slot->slot.mm; 2293 rmap_item->mm->ksm_rmap_items++; 2294 rmap_item->address = addr; 2295 rmap_item->rmap_list = *rmap_list; 2296 *rmap_list = rmap_item; 2297 } 2298 return rmap_item; 2299 } 2300 2301 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2302 { 2303 struct mm_struct *mm; 2304 struct ksm_mm_slot *mm_slot; 2305 struct mm_slot *slot; 2306 struct vm_area_struct *vma; 2307 struct ksm_rmap_item *rmap_item; 2308 struct vma_iterator vmi; 2309 int nid; 2310 2311 if (list_empty(&ksm_mm_head.slot.mm_node)) 2312 return NULL; 2313 2314 mm_slot = ksm_scan.mm_slot; 2315 if (mm_slot == &ksm_mm_head) { 2316 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2317 2318 /* 2319 * A number of pages can hang around indefinitely in per-cpu 2320 * LRU cache, raised page count preventing write_protect_page 2321 * from merging them. Though it doesn't really matter much, 2322 * it is puzzling to see some stuck in pages_volatile until 2323 * other activity jostles them out, and they also prevented 2324 * LTP's KSM test from succeeding deterministically; so drain 2325 * them here (here rather than on entry to ksm_do_scan(), 2326 * so we don't IPI too often when pages_to_scan is set low). 2327 */ 2328 lru_add_drain_all(); 2329 2330 /* 2331 * Whereas stale stable_nodes on the stable_tree itself 2332 * get pruned in the regular course of stable_tree_search(), 2333 * those moved out to the migrate_nodes list can accumulate: 2334 * so prune them once before each full scan. 2335 */ 2336 if (!ksm_merge_across_nodes) { 2337 struct ksm_stable_node *stable_node, *next; 2338 struct page *page; 2339 2340 list_for_each_entry_safe(stable_node, next, 2341 &migrate_nodes, list) { 2342 page = get_ksm_page(stable_node, 2343 GET_KSM_PAGE_NOLOCK); 2344 if (page) 2345 put_page(page); 2346 cond_resched(); 2347 } 2348 } 2349 2350 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2351 root_unstable_tree[nid] = RB_ROOT; 2352 2353 spin_lock(&ksm_mmlist_lock); 2354 slot = list_entry(mm_slot->slot.mm_node.next, 2355 struct mm_slot, mm_node); 2356 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2357 ksm_scan.mm_slot = mm_slot; 2358 spin_unlock(&ksm_mmlist_lock); 2359 /* 2360 * Although we tested list_empty() above, a racing __ksm_exit 2361 * of the last mm on the list may have removed it since then. 2362 */ 2363 if (mm_slot == &ksm_mm_head) 2364 return NULL; 2365 next_mm: 2366 ksm_scan.address = 0; 2367 ksm_scan.rmap_list = &mm_slot->rmap_list; 2368 } 2369 2370 slot = &mm_slot->slot; 2371 mm = slot->mm; 2372 vma_iter_init(&vmi, mm, ksm_scan.address); 2373 2374 mmap_read_lock(mm); 2375 if (ksm_test_exit(mm)) 2376 goto no_vmas; 2377 2378 for_each_vma(vmi, vma) { 2379 if (!(vma->vm_flags & VM_MERGEABLE)) 2380 continue; 2381 if (ksm_scan.address < vma->vm_start) 2382 ksm_scan.address = vma->vm_start; 2383 if (!vma->anon_vma) 2384 ksm_scan.address = vma->vm_end; 2385 2386 while (ksm_scan.address < vma->vm_end) { 2387 if (ksm_test_exit(mm)) 2388 break; 2389 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2390 if (IS_ERR_OR_NULL(*page)) { 2391 ksm_scan.address += PAGE_SIZE; 2392 cond_resched(); 2393 continue; 2394 } 2395 if (is_zone_device_page(*page)) 2396 goto next_page; 2397 if (PageAnon(*page)) { 2398 flush_anon_page(vma, *page, ksm_scan.address); 2399 flush_dcache_page(*page); 2400 rmap_item = get_next_rmap_item(mm_slot, 2401 ksm_scan.rmap_list, ksm_scan.address); 2402 if (rmap_item) { 2403 ksm_scan.rmap_list = 2404 &rmap_item->rmap_list; 2405 ksm_scan.address += PAGE_SIZE; 2406 } else 2407 put_page(*page); 2408 mmap_read_unlock(mm); 2409 return rmap_item; 2410 } 2411 next_page: 2412 put_page(*page); 2413 ksm_scan.address += PAGE_SIZE; 2414 cond_resched(); 2415 } 2416 } 2417 2418 if (ksm_test_exit(mm)) { 2419 no_vmas: 2420 ksm_scan.address = 0; 2421 ksm_scan.rmap_list = &mm_slot->rmap_list; 2422 } 2423 /* 2424 * Nuke all the rmap_items that are above this current rmap: 2425 * because there were no VM_MERGEABLE vmas with such addresses. 2426 */ 2427 remove_trailing_rmap_items(ksm_scan.rmap_list); 2428 2429 spin_lock(&ksm_mmlist_lock); 2430 slot = list_entry(mm_slot->slot.mm_node.next, 2431 struct mm_slot, mm_node); 2432 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2433 if (ksm_scan.address == 0) { 2434 /* 2435 * We've completed a full scan of all vmas, holding mmap_lock 2436 * throughout, and found no VM_MERGEABLE: so do the same as 2437 * __ksm_exit does to remove this mm from all our lists now. 2438 * This applies either when cleaning up after __ksm_exit 2439 * (but beware: we can reach here even before __ksm_exit), 2440 * or when all VM_MERGEABLE areas have been unmapped (and 2441 * mmap_lock then protects against race with MADV_MERGEABLE). 2442 */ 2443 hash_del(&mm_slot->slot.hash); 2444 list_del(&mm_slot->slot.mm_node); 2445 spin_unlock(&ksm_mmlist_lock); 2446 2447 mm_slot_free(mm_slot_cache, mm_slot); 2448 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2449 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2450 mmap_read_unlock(mm); 2451 mmdrop(mm); 2452 } else { 2453 mmap_read_unlock(mm); 2454 /* 2455 * mmap_read_unlock(mm) first because after 2456 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2457 * already have been freed under us by __ksm_exit() 2458 * because the "mm_slot" is still hashed and 2459 * ksm_scan.mm_slot doesn't point to it anymore. 2460 */ 2461 spin_unlock(&ksm_mmlist_lock); 2462 } 2463 2464 /* Repeat until we've completed scanning the whole list */ 2465 mm_slot = ksm_scan.mm_slot; 2466 if (mm_slot != &ksm_mm_head) 2467 goto next_mm; 2468 2469 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2470 ksm_scan.seqnr++; 2471 return NULL; 2472 } 2473 2474 /** 2475 * ksm_do_scan - the ksm scanner main worker function. 2476 * @scan_npages: number of pages we want to scan before we return. 2477 */ 2478 static void ksm_do_scan(unsigned int scan_npages) 2479 { 2480 struct ksm_rmap_item *rmap_item; 2481 struct page *page; 2482 unsigned int npages = scan_npages; 2483 2484 while (npages-- && likely(!freezing(current))) { 2485 cond_resched(); 2486 rmap_item = scan_get_next_rmap_item(&page); 2487 if (!rmap_item) 2488 return; 2489 cmp_and_merge_page(page, rmap_item); 2490 put_page(page); 2491 } 2492 2493 ksm_pages_scanned += scan_npages - npages; 2494 } 2495 2496 static int ksmd_should_run(void) 2497 { 2498 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2499 } 2500 2501 static int ksm_scan_thread(void *nothing) 2502 { 2503 unsigned int sleep_ms; 2504 2505 set_freezable(); 2506 set_user_nice(current, 5); 2507 2508 while (!kthread_should_stop()) { 2509 mutex_lock(&ksm_thread_mutex); 2510 wait_while_offlining(); 2511 if (ksmd_should_run()) 2512 ksm_do_scan(ksm_thread_pages_to_scan); 2513 mutex_unlock(&ksm_thread_mutex); 2514 2515 try_to_freeze(); 2516 2517 if (ksmd_should_run()) { 2518 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2519 wait_event_interruptible_timeout(ksm_iter_wait, 2520 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2521 msecs_to_jiffies(sleep_ms)); 2522 } else { 2523 wait_event_freezable(ksm_thread_wait, 2524 ksmd_should_run() || kthread_should_stop()); 2525 } 2526 } 2527 return 0; 2528 } 2529 2530 static void __ksm_add_vma(struct vm_area_struct *vma) 2531 { 2532 unsigned long vm_flags = vma->vm_flags; 2533 2534 if (vm_flags & VM_MERGEABLE) 2535 return; 2536 2537 if (vma_ksm_compatible(vma)) 2538 vm_flags_set(vma, VM_MERGEABLE); 2539 } 2540 2541 static int __ksm_del_vma(struct vm_area_struct *vma) 2542 { 2543 int err; 2544 2545 if (!(vma->vm_flags & VM_MERGEABLE)) 2546 return 0; 2547 2548 if (vma->anon_vma) { 2549 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end); 2550 if (err) 2551 return err; 2552 } 2553 2554 vm_flags_clear(vma, VM_MERGEABLE); 2555 return 0; 2556 } 2557 /** 2558 * ksm_add_vma - Mark vma as mergeable if compatible 2559 * 2560 * @vma: Pointer to vma 2561 */ 2562 void ksm_add_vma(struct vm_area_struct *vma) 2563 { 2564 struct mm_struct *mm = vma->vm_mm; 2565 2566 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2567 __ksm_add_vma(vma); 2568 } 2569 2570 static void ksm_add_vmas(struct mm_struct *mm) 2571 { 2572 struct vm_area_struct *vma; 2573 2574 VMA_ITERATOR(vmi, mm, 0); 2575 for_each_vma(vmi, vma) 2576 __ksm_add_vma(vma); 2577 } 2578 2579 static int ksm_del_vmas(struct mm_struct *mm) 2580 { 2581 struct vm_area_struct *vma; 2582 int err; 2583 2584 VMA_ITERATOR(vmi, mm, 0); 2585 for_each_vma(vmi, vma) { 2586 err = __ksm_del_vma(vma); 2587 if (err) 2588 return err; 2589 } 2590 return 0; 2591 } 2592 2593 /** 2594 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2595 * compatible VMA's 2596 * 2597 * @mm: Pointer to mm 2598 * 2599 * Returns 0 on success, otherwise error code 2600 */ 2601 int ksm_enable_merge_any(struct mm_struct *mm) 2602 { 2603 int err; 2604 2605 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2606 return 0; 2607 2608 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2609 err = __ksm_enter(mm); 2610 if (err) 2611 return err; 2612 } 2613 2614 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2615 ksm_add_vmas(mm); 2616 2617 return 0; 2618 } 2619 2620 /** 2621 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2622 * previously enabled via ksm_enable_merge_any(). 2623 * 2624 * Disabling merging implies unmerging any merged pages, like setting 2625 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2626 * merging on all compatible VMA's remains enabled. 2627 * 2628 * @mm: Pointer to mm 2629 * 2630 * Returns 0 on success, otherwise error code 2631 */ 2632 int ksm_disable_merge_any(struct mm_struct *mm) 2633 { 2634 int err; 2635 2636 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2637 return 0; 2638 2639 err = ksm_del_vmas(mm); 2640 if (err) { 2641 ksm_add_vmas(mm); 2642 return err; 2643 } 2644 2645 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2646 return 0; 2647 } 2648 2649 int ksm_disable(struct mm_struct *mm) 2650 { 2651 mmap_assert_write_locked(mm); 2652 2653 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2654 return 0; 2655 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2656 return ksm_disable_merge_any(mm); 2657 return ksm_del_vmas(mm); 2658 } 2659 2660 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2661 unsigned long end, int advice, unsigned long *vm_flags) 2662 { 2663 struct mm_struct *mm = vma->vm_mm; 2664 int err; 2665 2666 switch (advice) { 2667 case MADV_MERGEABLE: 2668 if (vma->vm_flags & VM_MERGEABLE) 2669 return 0; 2670 if (!vma_ksm_compatible(vma)) 2671 return 0; 2672 2673 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2674 err = __ksm_enter(mm); 2675 if (err) 2676 return err; 2677 } 2678 2679 *vm_flags |= VM_MERGEABLE; 2680 break; 2681 2682 case MADV_UNMERGEABLE: 2683 if (!(*vm_flags & VM_MERGEABLE)) 2684 return 0; /* just ignore the advice */ 2685 2686 if (vma->anon_vma) { 2687 err = unmerge_ksm_pages(vma, start, end); 2688 if (err) 2689 return err; 2690 } 2691 2692 *vm_flags &= ~VM_MERGEABLE; 2693 break; 2694 } 2695 2696 return 0; 2697 } 2698 EXPORT_SYMBOL_GPL(ksm_madvise); 2699 2700 int __ksm_enter(struct mm_struct *mm) 2701 { 2702 struct ksm_mm_slot *mm_slot; 2703 struct mm_slot *slot; 2704 int needs_wakeup; 2705 2706 mm_slot = mm_slot_alloc(mm_slot_cache); 2707 if (!mm_slot) 2708 return -ENOMEM; 2709 2710 slot = &mm_slot->slot; 2711 2712 /* Check ksm_run too? Would need tighter locking */ 2713 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2714 2715 spin_lock(&ksm_mmlist_lock); 2716 mm_slot_insert(mm_slots_hash, mm, slot); 2717 /* 2718 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2719 * insert just behind the scanning cursor, to let the area settle 2720 * down a little; when fork is followed by immediate exec, we don't 2721 * want ksmd to waste time setting up and tearing down an rmap_list. 2722 * 2723 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2724 * scanning cursor, otherwise KSM pages in newly forked mms will be 2725 * missed: then we might as well insert at the end of the list. 2726 */ 2727 if (ksm_run & KSM_RUN_UNMERGE) 2728 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2729 else 2730 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2731 spin_unlock(&ksm_mmlist_lock); 2732 2733 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2734 mmgrab(mm); 2735 2736 if (needs_wakeup) 2737 wake_up_interruptible(&ksm_thread_wait); 2738 2739 trace_ksm_enter(mm); 2740 return 0; 2741 } 2742 2743 void __ksm_exit(struct mm_struct *mm) 2744 { 2745 struct ksm_mm_slot *mm_slot; 2746 struct mm_slot *slot; 2747 int easy_to_free = 0; 2748 2749 /* 2750 * This process is exiting: if it's straightforward (as is the 2751 * case when ksmd was never running), free mm_slot immediately. 2752 * But if it's at the cursor or has rmap_items linked to it, use 2753 * mmap_lock to synchronize with any break_cows before pagetables 2754 * are freed, and leave the mm_slot on the list for ksmd to free. 2755 * Beware: ksm may already have noticed it exiting and freed the slot. 2756 */ 2757 2758 spin_lock(&ksm_mmlist_lock); 2759 slot = mm_slot_lookup(mm_slots_hash, mm); 2760 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2761 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2762 if (!mm_slot->rmap_list) { 2763 hash_del(&slot->hash); 2764 list_del(&slot->mm_node); 2765 easy_to_free = 1; 2766 } else { 2767 list_move(&slot->mm_node, 2768 &ksm_scan.mm_slot->slot.mm_node); 2769 } 2770 } 2771 spin_unlock(&ksm_mmlist_lock); 2772 2773 if (easy_to_free) { 2774 mm_slot_free(mm_slot_cache, mm_slot); 2775 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2776 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2777 mmdrop(mm); 2778 } else if (mm_slot) { 2779 mmap_write_lock(mm); 2780 mmap_write_unlock(mm); 2781 } 2782 2783 trace_ksm_exit(mm); 2784 } 2785 2786 struct page *ksm_might_need_to_copy(struct page *page, 2787 struct vm_area_struct *vma, unsigned long address) 2788 { 2789 struct folio *folio = page_folio(page); 2790 struct anon_vma *anon_vma = folio_anon_vma(folio); 2791 struct page *new_page; 2792 2793 if (PageKsm(page)) { 2794 if (page_stable_node(page) && 2795 !(ksm_run & KSM_RUN_UNMERGE)) 2796 return page; /* no need to copy it */ 2797 } else if (!anon_vma) { 2798 return page; /* no need to copy it */ 2799 } else if (page->index == linear_page_index(vma, address) && 2800 anon_vma->root == vma->anon_vma->root) { 2801 return page; /* still no need to copy it */ 2802 } 2803 if (!PageUptodate(page)) 2804 return page; /* let do_swap_page report the error */ 2805 2806 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2807 if (new_page && 2808 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2809 put_page(new_page); 2810 new_page = NULL; 2811 } 2812 if (new_page) { 2813 if (copy_mc_user_highpage(new_page, page, address, vma)) { 2814 put_page(new_page); 2815 memory_failure_queue(page_to_pfn(page), 0); 2816 return ERR_PTR(-EHWPOISON); 2817 } 2818 SetPageDirty(new_page); 2819 __SetPageUptodate(new_page); 2820 __SetPageLocked(new_page); 2821 #ifdef CONFIG_SWAP 2822 count_vm_event(KSM_SWPIN_COPY); 2823 #endif 2824 } 2825 2826 return new_page; 2827 } 2828 2829 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2830 { 2831 struct ksm_stable_node *stable_node; 2832 struct ksm_rmap_item *rmap_item; 2833 int search_new_forks = 0; 2834 2835 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2836 2837 /* 2838 * Rely on the page lock to protect against concurrent modifications 2839 * to that page's node of the stable tree. 2840 */ 2841 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2842 2843 stable_node = folio_stable_node(folio); 2844 if (!stable_node) 2845 return; 2846 again: 2847 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2848 struct anon_vma *anon_vma = rmap_item->anon_vma; 2849 struct anon_vma_chain *vmac; 2850 struct vm_area_struct *vma; 2851 2852 cond_resched(); 2853 if (!anon_vma_trylock_read(anon_vma)) { 2854 if (rwc->try_lock) { 2855 rwc->contended = true; 2856 return; 2857 } 2858 anon_vma_lock_read(anon_vma); 2859 } 2860 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2861 0, ULONG_MAX) { 2862 unsigned long addr; 2863 2864 cond_resched(); 2865 vma = vmac->vma; 2866 2867 /* Ignore the stable/unstable/sqnr flags */ 2868 addr = rmap_item->address & PAGE_MASK; 2869 2870 if (addr < vma->vm_start || addr >= vma->vm_end) 2871 continue; 2872 /* 2873 * Initially we examine only the vma which covers this 2874 * rmap_item; but later, if there is still work to do, 2875 * we examine covering vmas in other mms: in case they 2876 * were forked from the original since ksmd passed. 2877 */ 2878 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2879 continue; 2880 2881 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2882 continue; 2883 2884 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2885 anon_vma_unlock_read(anon_vma); 2886 return; 2887 } 2888 if (rwc->done && rwc->done(folio)) { 2889 anon_vma_unlock_read(anon_vma); 2890 return; 2891 } 2892 } 2893 anon_vma_unlock_read(anon_vma); 2894 } 2895 if (!search_new_forks++) 2896 goto again; 2897 } 2898 2899 #ifdef CONFIG_MEMORY_FAILURE 2900 /* 2901 * Collect processes when the error hit an ksm page. 2902 */ 2903 void collect_procs_ksm(struct page *page, struct list_head *to_kill, 2904 int force_early) 2905 { 2906 struct ksm_stable_node *stable_node; 2907 struct ksm_rmap_item *rmap_item; 2908 struct folio *folio = page_folio(page); 2909 struct vm_area_struct *vma; 2910 struct task_struct *tsk; 2911 2912 stable_node = folio_stable_node(folio); 2913 if (!stable_node) 2914 return; 2915 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2916 struct anon_vma *av = rmap_item->anon_vma; 2917 2918 anon_vma_lock_read(av); 2919 read_lock(&tasklist_lock); 2920 for_each_process(tsk) { 2921 struct anon_vma_chain *vmac; 2922 unsigned long addr; 2923 struct task_struct *t = 2924 task_early_kill(tsk, force_early); 2925 if (!t) 2926 continue; 2927 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 2928 ULONG_MAX) 2929 { 2930 vma = vmac->vma; 2931 if (vma->vm_mm == t->mm) { 2932 addr = rmap_item->address & PAGE_MASK; 2933 add_to_kill_ksm(t, page, vma, to_kill, 2934 addr); 2935 } 2936 } 2937 } 2938 read_unlock(&tasklist_lock); 2939 anon_vma_unlock_read(av); 2940 } 2941 } 2942 #endif 2943 2944 #ifdef CONFIG_MIGRATION 2945 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2946 { 2947 struct ksm_stable_node *stable_node; 2948 2949 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2950 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2951 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2952 2953 stable_node = folio_stable_node(folio); 2954 if (stable_node) { 2955 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2956 stable_node->kpfn = folio_pfn(newfolio); 2957 /* 2958 * newfolio->mapping was set in advance; now we need smp_wmb() 2959 * to make sure that the new stable_node->kpfn is visible 2960 * to get_ksm_page() before it can see that folio->mapping 2961 * has gone stale (or that folio_test_swapcache has been cleared). 2962 */ 2963 smp_wmb(); 2964 set_page_stable_node(&folio->page, NULL); 2965 } 2966 } 2967 #endif /* CONFIG_MIGRATION */ 2968 2969 #ifdef CONFIG_MEMORY_HOTREMOVE 2970 static void wait_while_offlining(void) 2971 { 2972 while (ksm_run & KSM_RUN_OFFLINE) { 2973 mutex_unlock(&ksm_thread_mutex); 2974 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2975 TASK_UNINTERRUPTIBLE); 2976 mutex_lock(&ksm_thread_mutex); 2977 } 2978 } 2979 2980 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 2981 unsigned long start_pfn, 2982 unsigned long end_pfn) 2983 { 2984 if (stable_node->kpfn >= start_pfn && 2985 stable_node->kpfn < end_pfn) { 2986 /* 2987 * Don't get_ksm_page, page has already gone: 2988 * which is why we keep kpfn instead of page* 2989 */ 2990 remove_node_from_stable_tree(stable_node); 2991 return true; 2992 } 2993 return false; 2994 } 2995 2996 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 2997 unsigned long start_pfn, 2998 unsigned long end_pfn, 2999 struct rb_root *root) 3000 { 3001 struct ksm_stable_node *dup; 3002 struct hlist_node *hlist_safe; 3003 3004 if (!is_stable_node_chain(stable_node)) { 3005 VM_BUG_ON(is_stable_node_dup(stable_node)); 3006 return stable_node_dup_remove_range(stable_node, start_pfn, 3007 end_pfn); 3008 } 3009 3010 hlist_for_each_entry_safe(dup, hlist_safe, 3011 &stable_node->hlist, hlist_dup) { 3012 VM_BUG_ON(!is_stable_node_dup(dup)); 3013 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 3014 } 3015 if (hlist_empty(&stable_node->hlist)) { 3016 free_stable_node_chain(stable_node, root); 3017 return true; /* notify caller that tree was rebalanced */ 3018 } else 3019 return false; 3020 } 3021 3022 static void ksm_check_stable_tree(unsigned long start_pfn, 3023 unsigned long end_pfn) 3024 { 3025 struct ksm_stable_node *stable_node, *next; 3026 struct rb_node *node; 3027 int nid; 3028 3029 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3030 node = rb_first(root_stable_tree + nid); 3031 while (node) { 3032 stable_node = rb_entry(node, struct ksm_stable_node, node); 3033 if (stable_node_chain_remove_range(stable_node, 3034 start_pfn, end_pfn, 3035 root_stable_tree + 3036 nid)) 3037 node = rb_first(root_stable_tree + nid); 3038 else 3039 node = rb_next(node); 3040 cond_resched(); 3041 } 3042 } 3043 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3044 if (stable_node->kpfn >= start_pfn && 3045 stable_node->kpfn < end_pfn) 3046 remove_node_from_stable_tree(stable_node); 3047 cond_resched(); 3048 } 3049 } 3050 3051 static int ksm_memory_callback(struct notifier_block *self, 3052 unsigned long action, void *arg) 3053 { 3054 struct memory_notify *mn = arg; 3055 3056 switch (action) { 3057 case MEM_GOING_OFFLINE: 3058 /* 3059 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3060 * and remove_all_stable_nodes() while memory is going offline: 3061 * it is unsafe for them to touch the stable tree at this time. 3062 * But unmerge_ksm_pages(), rmap lookups and other entry points 3063 * which do not need the ksm_thread_mutex are all safe. 3064 */ 3065 mutex_lock(&ksm_thread_mutex); 3066 ksm_run |= KSM_RUN_OFFLINE; 3067 mutex_unlock(&ksm_thread_mutex); 3068 break; 3069 3070 case MEM_OFFLINE: 3071 /* 3072 * Most of the work is done by page migration; but there might 3073 * be a few stable_nodes left over, still pointing to struct 3074 * pages which have been offlined: prune those from the tree, 3075 * otherwise get_ksm_page() might later try to access a 3076 * non-existent struct page. 3077 */ 3078 ksm_check_stable_tree(mn->start_pfn, 3079 mn->start_pfn + mn->nr_pages); 3080 fallthrough; 3081 case MEM_CANCEL_OFFLINE: 3082 mutex_lock(&ksm_thread_mutex); 3083 ksm_run &= ~KSM_RUN_OFFLINE; 3084 mutex_unlock(&ksm_thread_mutex); 3085 3086 smp_mb(); /* wake_up_bit advises this */ 3087 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3088 break; 3089 } 3090 return NOTIFY_OK; 3091 } 3092 #else 3093 static void wait_while_offlining(void) 3094 { 3095 } 3096 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3097 3098 #ifdef CONFIG_PROC_FS 3099 long ksm_process_profit(struct mm_struct *mm) 3100 { 3101 return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE - 3102 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3103 } 3104 #endif /* CONFIG_PROC_FS */ 3105 3106 #ifdef CONFIG_SYSFS 3107 /* 3108 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3109 */ 3110 3111 #define KSM_ATTR_RO(_name) \ 3112 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3113 #define KSM_ATTR(_name) \ 3114 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3115 3116 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3117 struct kobj_attribute *attr, char *buf) 3118 { 3119 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3120 } 3121 3122 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3123 struct kobj_attribute *attr, 3124 const char *buf, size_t count) 3125 { 3126 unsigned int msecs; 3127 int err; 3128 3129 err = kstrtouint(buf, 10, &msecs); 3130 if (err) 3131 return -EINVAL; 3132 3133 ksm_thread_sleep_millisecs = msecs; 3134 wake_up_interruptible(&ksm_iter_wait); 3135 3136 return count; 3137 } 3138 KSM_ATTR(sleep_millisecs); 3139 3140 static ssize_t pages_to_scan_show(struct kobject *kobj, 3141 struct kobj_attribute *attr, char *buf) 3142 { 3143 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3144 } 3145 3146 static ssize_t pages_to_scan_store(struct kobject *kobj, 3147 struct kobj_attribute *attr, 3148 const char *buf, size_t count) 3149 { 3150 unsigned int nr_pages; 3151 int err; 3152 3153 err = kstrtouint(buf, 10, &nr_pages); 3154 if (err) 3155 return -EINVAL; 3156 3157 ksm_thread_pages_to_scan = nr_pages; 3158 3159 return count; 3160 } 3161 KSM_ATTR(pages_to_scan); 3162 3163 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3164 char *buf) 3165 { 3166 return sysfs_emit(buf, "%lu\n", ksm_run); 3167 } 3168 3169 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3170 const char *buf, size_t count) 3171 { 3172 unsigned int flags; 3173 int err; 3174 3175 err = kstrtouint(buf, 10, &flags); 3176 if (err) 3177 return -EINVAL; 3178 if (flags > KSM_RUN_UNMERGE) 3179 return -EINVAL; 3180 3181 /* 3182 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3183 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3184 * breaking COW to free the pages_shared (but leaves mm_slots 3185 * on the list for when ksmd may be set running again). 3186 */ 3187 3188 mutex_lock(&ksm_thread_mutex); 3189 wait_while_offlining(); 3190 if (ksm_run != flags) { 3191 ksm_run = flags; 3192 if (flags & KSM_RUN_UNMERGE) { 3193 set_current_oom_origin(); 3194 err = unmerge_and_remove_all_rmap_items(); 3195 clear_current_oom_origin(); 3196 if (err) { 3197 ksm_run = KSM_RUN_STOP; 3198 count = err; 3199 } 3200 } 3201 } 3202 mutex_unlock(&ksm_thread_mutex); 3203 3204 if (flags & KSM_RUN_MERGE) 3205 wake_up_interruptible(&ksm_thread_wait); 3206 3207 return count; 3208 } 3209 KSM_ATTR(run); 3210 3211 #ifdef CONFIG_NUMA 3212 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3213 struct kobj_attribute *attr, char *buf) 3214 { 3215 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3216 } 3217 3218 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3219 struct kobj_attribute *attr, 3220 const char *buf, size_t count) 3221 { 3222 int err; 3223 unsigned long knob; 3224 3225 err = kstrtoul(buf, 10, &knob); 3226 if (err) 3227 return err; 3228 if (knob > 1) 3229 return -EINVAL; 3230 3231 mutex_lock(&ksm_thread_mutex); 3232 wait_while_offlining(); 3233 if (ksm_merge_across_nodes != knob) { 3234 if (ksm_pages_shared || remove_all_stable_nodes()) 3235 err = -EBUSY; 3236 else if (root_stable_tree == one_stable_tree) { 3237 struct rb_root *buf; 3238 /* 3239 * This is the first time that we switch away from the 3240 * default of merging across nodes: must now allocate 3241 * a buffer to hold as many roots as may be needed. 3242 * Allocate stable and unstable together: 3243 * MAXSMP NODES_SHIFT 10 will use 16kB. 3244 */ 3245 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3246 GFP_KERNEL); 3247 /* Let us assume that RB_ROOT is NULL is zero */ 3248 if (!buf) 3249 err = -ENOMEM; 3250 else { 3251 root_stable_tree = buf; 3252 root_unstable_tree = buf + nr_node_ids; 3253 /* Stable tree is empty but not the unstable */ 3254 root_unstable_tree[0] = one_unstable_tree[0]; 3255 } 3256 } 3257 if (!err) { 3258 ksm_merge_across_nodes = knob; 3259 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3260 } 3261 } 3262 mutex_unlock(&ksm_thread_mutex); 3263 3264 return err ? err : count; 3265 } 3266 KSM_ATTR(merge_across_nodes); 3267 #endif 3268 3269 static ssize_t use_zero_pages_show(struct kobject *kobj, 3270 struct kobj_attribute *attr, char *buf) 3271 { 3272 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3273 } 3274 static ssize_t use_zero_pages_store(struct kobject *kobj, 3275 struct kobj_attribute *attr, 3276 const char *buf, size_t count) 3277 { 3278 int err; 3279 bool value; 3280 3281 err = kstrtobool(buf, &value); 3282 if (err) 3283 return -EINVAL; 3284 3285 ksm_use_zero_pages = value; 3286 3287 return count; 3288 } 3289 KSM_ATTR(use_zero_pages); 3290 3291 static ssize_t max_page_sharing_show(struct kobject *kobj, 3292 struct kobj_attribute *attr, char *buf) 3293 { 3294 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3295 } 3296 3297 static ssize_t max_page_sharing_store(struct kobject *kobj, 3298 struct kobj_attribute *attr, 3299 const char *buf, size_t count) 3300 { 3301 int err; 3302 int knob; 3303 3304 err = kstrtoint(buf, 10, &knob); 3305 if (err) 3306 return err; 3307 /* 3308 * When a KSM page is created it is shared by 2 mappings. This 3309 * being a signed comparison, it implicitly verifies it's not 3310 * negative. 3311 */ 3312 if (knob < 2) 3313 return -EINVAL; 3314 3315 if (READ_ONCE(ksm_max_page_sharing) == knob) 3316 return count; 3317 3318 mutex_lock(&ksm_thread_mutex); 3319 wait_while_offlining(); 3320 if (ksm_max_page_sharing != knob) { 3321 if (ksm_pages_shared || remove_all_stable_nodes()) 3322 err = -EBUSY; 3323 else 3324 ksm_max_page_sharing = knob; 3325 } 3326 mutex_unlock(&ksm_thread_mutex); 3327 3328 return err ? err : count; 3329 } 3330 KSM_ATTR(max_page_sharing); 3331 3332 static ssize_t pages_scanned_show(struct kobject *kobj, 3333 struct kobj_attribute *attr, char *buf) 3334 { 3335 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); 3336 } 3337 KSM_ATTR_RO(pages_scanned); 3338 3339 static ssize_t pages_shared_show(struct kobject *kobj, 3340 struct kobj_attribute *attr, char *buf) 3341 { 3342 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3343 } 3344 KSM_ATTR_RO(pages_shared); 3345 3346 static ssize_t pages_sharing_show(struct kobject *kobj, 3347 struct kobj_attribute *attr, char *buf) 3348 { 3349 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3350 } 3351 KSM_ATTR_RO(pages_sharing); 3352 3353 static ssize_t pages_unshared_show(struct kobject *kobj, 3354 struct kobj_attribute *attr, char *buf) 3355 { 3356 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3357 } 3358 KSM_ATTR_RO(pages_unshared); 3359 3360 static ssize_t pages_volatile_show(struct kobject *kobj, 3361 struct kobj_attribute *attr, char *buf) 3362 { 3363 long ksm_pages_volatile; 3364 3365 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3366 - ksm_pages_sharing - ksm_pages_unshared; 3367 /* 3368 * It was not worth any locking to calculate that statistic, 3369 * but it might therefore sometimes be negative: conceal that. 3370 */ 3371 if (ksm_pages_volatile < 0) 3372 ksm_pages_volatile = 0; 3373 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3374 } 3375 KSM_ATTR_RO(pages_volatile); 3376 3377 static ssize_t ksm_zero_pages_show(struct kobject *kobj, 3378 struct kobj_attribute *attr, char *buf) 3379 { 3380 return sysfs_emit(buf, "%ld\n", ksm_zero_pages); 3381 } 3382 KSM_ATTR_RO(ksm_zero_pages); 3383 3384 static ssize_t general_profit_show(struct kobject *kobj, 3385 struct kobj_attribute *attr, char *buf) 3386 { 3387 long general_profit; 3388 3389 general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE - 3390 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3391 3392 return sysfs_emit(buf, "%ld\n", general_profit); 3393 } 3394 KSM_ATTR_RO(general_profit); 3395 3396 static ssize_t stable_node_dups_show(struct kobject *kobj, 3397 struct kobj_attribute *attr, char *buf) 3398 { 3399 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3400 } 3401 KSM_ATTR_RO(stable_node_dups); 3402 3403 static ssize_t stable_node_chains_show(struct kobject *kobj, 3404 struct kobj_attribute *attr, char *buf) 3405 { 3406 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3407 } 3408 KSM_ATTR_RO(stable_node_chains); 3409 3410 static ssize_t 3411 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3412 struct kobj_attribute *attr, 3413 char *buf) 3414 { 3415 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3416 } 3417 3418 static ssize_t 3419 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3420 struct kobj_attribute *attr, 3421 const char *buf, size_t count) 3422 { 3423 unsigned int msecs; 3424 int err; 3425 3426 err = kstrtouint(buf, 10, &msecs); 3427 if (err) 3428 return -EINVAL; 3429 3430 ksm_stable_node_chains_prune_millisecs = msecs; 3431 3432 return count; 3433 } 3434 KSM_ATTR(stable_node_chains_prune_millisecs); 3435 3436 static ssize_t full_scans_show(struct kobject *kobj, 3437 struct kobj_attribute *attr, char *buf) 3438 { 3439 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3440 } 3441 KSM_ATTR_RO(full_scans); 3442 3443 static struct attribute *ksm_attrs[] = { 3444 &sleep_millisecs_attr.attr, 3445 &pages_to_scan_attr.attr, 3446 &run_attr.attr, 3447 &pages_scanned_attr.attr, 3448 &pages_shared_attr.attr, 3449 &pages_sharing_attr.attr, 3450 &pages_unshared_attr.attr, 3451 &pages_volatile_attr.attr, 3452 &ksm_zero_pages_attr.attr, 3453 &full_scans_attr.attr, 3454 #ifdef CONFIG_NUMA 3455 &merge_across_nodes_attr.attr, 3456 #endif 3457 &max_page_sharing_attr.attr, 3458 &stable_node_chains_attr.attr, 3459 &stable_node_dups_attr.attr, 3460 &stable_node_chains_prune_millisecs_attr.attr, 3461 &use_zero_pages_attr.attr, 3462 &general_profit_attr.attr, 3463 NULL, 3464 }; 3465 3466 static const struct attribute_group ksm_attr_group = { 3467 .attrs = ksm_attrs, 3468 .name = "ksm", 3469 }; 3470 #endif /* CONFIG_SYSFS */ 3471 3472 static int __init ksm_init(void) 3473 { 3474 struct task_struct *ksm_thread; 3475 int err; 3476 3477 /* The correct value depends on page size and endianness */ 3478 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3479 /* Default to false for backwards compatibility */ 3480 ksm_use_zero_pages = false; 3481 3482 err = ksm_slab_init(); 3483 if (err) 3484 goto out; 3485 3486 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3487 if (IS_ERR(ksm_thread)) { 3488 pr_err("ksm: creating kthread failed\n"); 3489 err = PTR_ERR(ksm_thread); 3490 goto out_free; 3491 } 3492 3493 #ifdef CONFIG_SYSFS 3494 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3495 if (err) { 3496 pr_err("ksm: register sysfs failed\n"); 3497 kthread_stop(ksm_thread); 3498 goto out_free; 3499 } 3500 #else 3501 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3502 3503 #endif /* CONFIG_SYSFS */ 3504 3505 #ifdef CONFIG_MEMORY_HOTREMOVE 3506 /* There is no significance to this priority 100 */ 3507 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3508 #endif 3509 return 0; 3510 3511 out_free: 3512 ksm_slab_free(); 3513 out: 3514 return err; 3515 } 3516 subsys_initcall(ksm_init); 3517