xref: /openbmc/linux/mm/ksm.c (revision b348b5fe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118 
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125 	struct mm_slot slot;
126 	struct ksm_rmap_item *rmap_list;
127 };
128 
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139 	struct ksm_mm_slot *mm_slot;
140 	unsigned long address;
141 	struct ksm_rmap_item **rmap_list;
142 	unsigned long seqnr;
143 };
144 
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158 	union {
159 		struct rb_node node;	/* when node of stable tree */
160 		struct {		/* when listed for migration */
161 			struct list_head *head;
162 			struct {
163 				struct hlist_node hlist_dup;
164 				struct list_head list;
165 			};
166 		};
167 	};
168 	struct hlist_head hlist;
169 	union {
170 		unsigned long kpfn;
171 		unsigned long chain_prune_time;
172 	};
173 	/*
174 	 * STABLE_NODE_CHAIN can be any negative number in
175 	 * rmap_hlist_len negative range, but better not -1 to be able
176 	 * to reliably detect underflows.
177 	 */
178 #define STABLE_NODE_CHAIN -1024
179 	int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181 	int nid;
182 #endif
183 };
184 
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198 	struct ksm_rmap_item *rmap_list;
199 	union {
200 		struct anon_vma *anon_vma;	/* when stable */
201 #ifdef CONFIG_NUMA
202 		int nid;		/* when node of unstable tree */
203 #endif
204 	};
205 	struct mm_struct *mm;
206 	unsigned long address;		/* + low bits used for flags below */
207 	unsigned int oldchecksum;	/* when unstable */
208 	union {
209 		struct rb_node node;	/* when node of unstable tree */
210 		struct {		/* when listed from stable tree */
211 			struct ksm_stable_node *head;
212 			struct hlist_node hlist;
213 		};
214 	};
215 };
216 
217 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
219 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct ksm_mm_slot ksm_mm_head = {
235 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of pages scanned */
246 static unsigned long ksm_pages_scanned;
247 
248 /* The number of nodes in the stable tree */
249 static unsigned long ksm_pages_shared;
250 
251 /* The number of page slots additionally sharing those nodes */
252 static unsigned long ksm_pages_sharing;
253 
254 /* The number of nodes in the unstable tree */
255 static unsigned long ksm_pages_unshared;
256 
257 /* The number of rmap_items in use: to calculate pages_volatile */
258 static unsigned long ksm_rmap_items;
259 
260 /* The number of stable_node chains */
261 static unsigned long ksm_stable_node_chains;
262 
263 /* The number of stable_node dups linked to the stable_node chains */
264 static unsigned long ksm_stable_node_dups;
265 
266 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
267 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
268 
269 /* Maximum number of page slots sharing a stable node */
270 static int ksm_max_page_sharing = 256;
271 
272 /* Number of pages ksmd should scan in one batch */
273 static unsigned int ksm_thread_pages_to_scan = 100;
274 
275 /* Milliseconds ksmd should sleep between batches */
276 static unsigned int ksm_thread_sleep_millisecs = 20;
277 
278 /* Checksum of an empty (zeroed) page */
279 static unsigned int zero_checksum __read_mostly;
280 
281 /* Whether to merge empty (zeroed) pages with actual zero pages */
282 static bool ksm_use_zero_pages __read_mostly;
283 
284 /* The number of zero pages which is placed by KSM */
285 unsigned long ksm_zero_pages;
286 
287 #ifdef CONFIG_NUMA
288 /* Zeroed when merging across nodes is not allowed */
289 static unsigned int ksm_merge_across_nodes = 1;
290 static int ksm_nr_node_ids = 1;
291 #else
292 #define ksm_merge_across_nodes	1U
293 #define ksm_nr_node_ids		1
294 #endif
295 
296 #define KSM_RUN_STOP	0
297 #define KSM_RUN_MERGE	1
298 #define KSM_RUN_UNMERGE	2
299 #define KSM_RUN_OFFLINE	4
300 static unsigned long ksm_run = KSM_RUN_STOP;
301 static void wait_while_offlining(void);
302 
303 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
304 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
305 static DEFINE_MUTEX(ksm_thread_mutex);
306 static DEFINE_SPINLOCK(ksm_mmlist_lock);
307 
308 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
309 		sizeof(struct __struct), __alignof__(struct __struct),\
310 		(__flags), NULL)
311 
312 static int __init ksm_slab_init(void)
313 {
314 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
315 	if (!rmap_item_cache)
316 		goto out;
317 
318 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
319 	if (!stable_node_cache)
320 		goto out_free1;
321 
322 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
323 	if (!mm_slot_cache)
324 		goto out_free2;
325 
326 	return 0;
327 
328 out_free2:
329 	kmem_cache_destroy(stable_node_cache);
330 out_free1:
331 	kmem_cache_destroy(rmap_item_cache);
332 out:
333 	return -ENOMEM;
334 }
335 
336 static void __init ksm_slab_free(void)
337 {
338 	kmem_cache_destroy(mm_slot_cache);
339 	kmem_cache_destroy(stable_node_cache);
340 	kmem_cache_destroy(rmap_item_cache);
341 	mm_slot_cache = NULL;
342 }
343 
344 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
345 {
346 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
347 }
348 
349 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
350 {
351 	return dup->head == STABLE_NODE_DUP_HEAD;
352 }
353 
354 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
355 					     struct ksm_stable_node *chain)
356 {
357 	VM_BUG_ON(is_stable_node_dup(dup));
358 	dup->head = STABLE_NODE_DUP_HEAD;
359 	VM_BUG_ON(!is_stable_node_chain(chain));
360 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
361 	ksm_stable_node_dups++;
362 }
363 
364 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
365 {
366 	VM_BUG_ON(!is_stable_node_dup(dup));
367 	hlist_del(&dup->hlist_dup);
368 	ksm_stable_node_dups--;
369 }
370 
371 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
372 {
373 	VM_BUG_ON(is_stable_node_chain(dup));
374 	if (is_stable_node_dup(dup))
375 		__stable_node_dup_del(dup);
376 	else
377 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
378 #ifdef CONFIG_DEBUG_VM
379 	dup->head = NULL;
380 #endif
381 }
382 
383 static inline struct ksm_rmap_item *alloc_rmap_item(void)
384 {
385 	struct ksm_rmap_item *rmap_item;
386 
387 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
388 						__GFP_NORETRY | __GFP_NOWARN);
389 	if (rmap_item)
390 		ksm_rmap_items++;
391 	return rmap_item;
392 }
393 
394 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
395 {
396 	ksm_rmap_items--;
397 	rmap_item->mm->ksm_rmap_items--;
398 	rmap_item->mm = NULL;	/* debug safety */
399 	kmem_cache_free(rmap_item_cache, rmap_item);
400 }
401 
402 static inline struct ksm_stable_node *alloc_stable_node(void)
403 {
404 	/*
405 	 * The allocation can take too long with GFP_KERNEL when memory is under
406 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
407 	 * grants access to memory reserves, helping to avoid this problem.
408 	 */
409 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
410 }
411 
412 static inline void free_stable_node(struct ksm_stable_node *stable_node)
413 {
414 	VM_BUG_ON(stable_node->rmap_hlist_len &&
415 		  !is_stable_node_chain(stable_node));
416 	kmem_cache_free(stable_node_cache, stable_node);
417 }
418 
419 /*
420  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
421  * page tables after it has passed through ksm_exit() - which, if necessary,
422  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
423  * a special flag: they can just back out as soon as mm_users goes to zero.
424  * ksm_test_exit() is used throughout to make this test for exit: in some
425  * places for correctness, in some places just to avoid unnecessary work.
426  */
427 static inline bool ksm_test_exit(struct mm_struct *mm)
428 {
429 	return atomic_read(&mm->mm_users) == 0;
430 }
431 
432 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
433 			struct mm_walk *walk)
434 {
435 	struct page *page = NULL;
436 	spinlock_t *ptl;
437 	pte_t *pte;
438 	pte_t ptent;
439 	int ret;
440 
441 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
442 	if (!pte)
443 		return 0;
444 	ptent = ptep_get(pte);
445 	if (pte_present(ptent)) {
446 		page = vm_normal_page(walk->vma, addr, ptent);
447 	} else if (!pte_none(ptent)) {
448 		swp_entry_t entry = pte_to_swp_entry(ptent);
449 
450 		/*
451 		 * As KSM pages remain KSM pages until freed, no need to wait
452 		 * here for migration to end.
453 		 */
454 		if (is_migration_entry(entry))
455 			page = pfn_swap_entry_to_page(entry);
456 	}
457 	/* return 1 if the page is an normal ksm page or KSM-placed zero page */
458 	ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte);
459 	pte_unmap_unlock(pte, ptl);
460 	return ret;
461 }
462 
463 static const struct mm_walk_ops break_ksm_ops = {
464 	.pmd_entry = break_ksm_pmd_entry,
465 };
466 
467 /*
468  * We use break_ksm to break COW on a ksm page by triggering unsharing,
469  * such that the ksm page will get replaced by an exclusive anonymous page.
470  *
471  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
472  * in case the application has unmapped and remapped mm,addr meanwhile.
473  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
474  * mmap of /dev/mem, where we would not want to touch it.
475  *
476  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
477  * of the process that owns 'vma'.  We also do not want to enforce
478  * protection keys here anyway.
479  */
480 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
481 {
482 	vm_fault_t ret = 0;
483 
484 	do {
485 		int ksm_page;
486 
487 		cond_resched();
488 		ksm_page = walk_page_range_vma(vma, addr, addr + 1,
489 					       &break_ksm_ops, NULL);
490 		if (WARN_ON_ONCE(ksm_page < 0))
491 			return ksm_page;
492 		if (!ksm_page)
493 			return 0;
494 		ret = handle_mm_fault(vma, addr,
495 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
496 				      NULL);
497 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
498 	/*
499 	 * We must loop until we no longer find a KSM page because
500 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
501 	 * pte accessed bit gets updated concurrently.
502 	 *
503 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
504 	 * backing file, which also invalidates anonymous pages: that's
505 	 * okay, that truncation will have unmapped the PageKsm for us.
506 	 *
507 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
508 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
509 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
510 	 * to user; and ksmd, having no mm, would never be chosen for that.
511 	 *
512 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
513 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
514 	 * even ksmd can fail in this way - though it's usually breaking ksm
515 	 * just to undo a merge it made a moment before, so unlikely to oom.
516 	 *
517 	 * That's a pity: we might therefore have more kernel pages allocated
518 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
519 	 * will retry to break_cow on each pass, so should recover the page
520 	 * in due course.  The important thing is to not let VM_MERGEABLE
521 	 * be cleared while any such pages might remain in the area.
522 	 */
523 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
524 }
525 
526 static bool vma_ksm_compatible(struct vm_area_struct *vma)
527 {
528 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
529 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
530 			     VM_MIXEDMAP))
531 		return false;		/* just ignore the advice */
532 
533 	if (vma_is_dax(vma))
534 		return false;
535 
536 #ifdef VM_SAO
537 	if (vma->vm_flags & VM_SAO)
538 		return false;
539 #endif
540 #ifdef VM_SPARC_ADI
541 	if (vma->vm_flags & VM_SPARC_ADI)
542 		return false;
543 #endif
544 
545 	return true;
546 }
547 
548 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
549 		unsigned long addr)
550 {
551 	struct vm_area_struct *vma;
552 	if (ksm_test_exit(mm))
553 		return NULL;
554 	vma = vma_lookup(mm, addr);
555 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
556 		return NULL;
557 	return vma;
558 }
559 
560 static void break_cow(struct ksm_rmap_item *rmap_item)
561 {
562 	struct mm_struct *mm = rmap_item->mm;
563 	unsigned long addr = rmap_item->address;
564 	struct vm_area_struct *vma;
565 
566 	/*
567 	 * It is not an accident that whenever we want to break COW
568 	 * to undo, we also need to drop a reference to the anon_vma.
569 	 */
570 	put_anon_vma(rmap_item->anon_vma);
571 
572 	mmap_read_lock(mm);
573 	vma = find_mergeable_vma(mm, addr);
574 	if (vma)
575 		break_ksm(vma, addr);
576 	mmap_read_unlock(mm);
577 }
578 
579 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
580 {
581 	struct mm_struct *mm = rmap_item->mm;
582 	unsigned long addr = rmap_item->address;
583 	struct vm_area_struct *vma;
584 	struct page *page;
585 
586 	mmap_read_lock(mm);
587 	vma = find_mergeable_vma(mm, addr);
588 	if (!vma)
589 		goto out;
590 
591 	page = follow_page(vma, addr, FOLL_GET);
592 	if (IS_ERR_OR_NULL(page))
593 		goto out;
594 	if (is_zone_device_page(page))
595 		goto out_putpage;
596 	if (PageAnon(page)) {
597 		flush_anon_page(vma, page, addr);
598 		flush_dcache_page(page);
599 	} else {
600 out_putpage:
601 		put_page(page);
602 out:
603 		page = NULL;
604 	}
605 	mmap_read_unlock(mm);
606 	return page;
607 }
608 
609 /*
610  * This helper is used for getting right index into array of tree roots.
611  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
612  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
613  * every node has its own stable and unstable tree.
614  */
615 static inline int get_kpfn_nid(unsigned long kpfn)
616 {
617 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
618 }
619 
620 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
621 						   struct rb_root *root)
622 {
623 	struct ksm_stable_node *chain = alloc_stable_node();
624 	VM_BUG_ON(is_stable_node_chain(dup));
625 	if (likely(chain)) {
626 		INIT_HLIST_HEAD(&chain->hlist);
627 		chain->chain_prune_time = jiffies;
628 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
629 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
630 		chain->nid = NUMA_NO_NODE; /* debug */
631 #endif
632 		ksm_stable_node_chains++;
633 
634 		/*
635 		 * Put the stable node chain in the first dimension of
636 		 * the stable tree and at the same time remove the old
637 		 * stable node.
638 		 */
639 		rb_replace_node(&dup->node, &chain->node, root);
640 
641 		/*
642 		 * Move the old stable node to the second dimension
643 		 * queued in the hlist_dup. The invariant is that all
644 		 * dup stable_nodes in the chain->hlist point to pages
645 		 * that are write protected and have the exact same
646 		 * content.
647 		 */
648 		stable_node_chain_add_dup(dup, chain);
649 	}
650 	return chain;
651 }
652 
653 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
654 					  struct rb_root *root)
655 {
656 	rb_erase(&chain->node, root);
657 	free_stable_node(chain);
658 	ksm_stable_node_chains--;
659 }
660 
661 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
662 {
663 	struct ksm_rmap_item *rmap_item;
664 
665 	/* check it's not STABLE_NODE_CHAIN or negative */
666 	BUG_ON(stable_node->rmap_hlist_len < 0);
667 
668 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
669 		if (rmap_item->hlist.next) {
670 			ksm_pages_sharing--;
671 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
672 		} else {
673 			ksm_pages_shared--;
674 		}
675 
676 		rmap_item->mm->ksm_merging_pages--;
677 
678 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
679 		stable_node->rmap_hlist_len--;
680 		put_anon_vma(rmap_item->anon_vma);
681 		rmap_item->address &= PAGE_MASK;
682 		cond_resched();
683 	}
684 
685 	/*
686 	 * We need the second aligned pointer of the migrate_nodes
687 	 * list_head to stay clear from the rb_parent_color union
688 	 * (aligned and different than any node) and also different
689 	 * from &migrate_nodes. This will verify that future list.h changes
690 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
691 	 */
692 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
693 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
694 
695 	trace_ksm_remove_ksm_page(stable_node->kpfn);
696 	if (stable_node->head == &migrate_nodes)
697 		list_del(&stable_node->list);
698 	else
699 		stable_node_dup_del(stable_node);
700 	free_stable_node(stable_node);
701 }
702 
703 enum get_ksm_page_flags {
704 	GET_KSM_PAGE_NOLOCK,
705 	GET_KSM_PAGE_LOCK,
706 	GET_KSM_PAGE_TRYLOCK
707 };
708 
709 /*
710  * get_ksm_page: checks if the page indicated by the stable node
711  * is still its ksm page, despite having held no reference to it.
712  * In which case we can trust the content of the page, and it
713  * returns the gotten page; but if the page has now been zapped,
714  * remove the stale node from the stable tree and return NULL.
715  * But beware, the stable node's page might be being migrated.
716  *
717  * You would expect the stable_node to hold a reference to the ksm page.
718  * But if it increments the page's count, swapping out has to wait for
719  * ksmd to come around again before it can free the page, which may take
720  * seconds or even minutes: much too unresponsive.  So instead we use a
721  * "keyhole reference": access to the ksm page from the stable node peeps
722  * out through its keyhole to see if that page still holds the right key,
723  * pointing back to this stable node.  This relies on freeing a PageAnon
724  * page to reset its page->mapping to NULL, and relies on no other use of
725  * a page to put something that might look like our key in page->mapping.
726  * is on its way to being freed; but it is an anomaly to bear in mind.
727  */
728 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
729 				 enum get_ksm_page_flags flags)
730 {
731 	struct page *page;
732 	void *expected_mapping;
733 	unsigned long kpfn;
734 
735 	expected_mapping = (void *)((unsigned long)stable_node |
736 					PAGE_MAPPING_KSM);
737 again:
738 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
739 	page = pfn_to_page(kpfn);
740 	if (READ_ONCE(page->mapping) != expected_mapping)
741 		goto stale;
742 
743 	/*
744 	 * We cannot do anything with the page while its refcount is 0.
745 	 * Usually 0 means free, or tail of a higher-order page: in which
746 	 * case this node is no longer referenced, and should be freed;
747 	 * however, it might mean that the page is under page_ref_freeze().
748 	 * The __remove_mapping() case is easy, again the node is now stale;
749 	 * the same is in reuse_ksm_page() case; but if page is swapcache
750 	 * in folio_migrate_mapping(), it might still be our page,
751 	 * in which case it's essential to keep the node.
752 	 */
753 	while (!get_page_unless_zero(page)) {
754 		/*
755 		 * Another check for page->mapping != expected_mapping would
756 		 * work here too.  We have chosen the !PageSwapCache test to
757 		 * optimize the common case, when the page is or is about to
758 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
759 		 * in the ref_freeze section of __remove_mapping(); but Anon
760 		 * page->mapping reset to NULL later, in free_pages_prepare().
761 		 */
762 		if (!PageSwapCache(page))
763 			goto stale;
764 		cpu_relax();
765 	}
766 
767 	if (READ_ONCE(page->mapping) != expected_mapping) {
768 		put_page(page);
769 		goto stale;
770 	}
771 
772 	if (flags == GET_KSM_PAGE_TRYLOCK) {
773 		if (!trylock_page(page)) {
774 			put_page(page);
775 			return ERR_PTR(-EBUSY);
776 		}
777 	} else if (flags == GET_KSM_PAGE_LOCK)
778 		lock_page(page);
779 
780 	if (flags != GET_KSM_PAGE_NOLOCK) {
781 		if (READ_ONCE(page->mapping) != expected_mapping) {
782 			unlock_page(page);
783 			put_page(page);
784 			goto stale;
785 		}
786 	}
787 	return page;
788 
789 stale:
790 	/*
791 	 * We come here from above when page->mapping or !PageSwapCache
792 	 * suggests that the node is stale; but it might be under migration.
793 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
794 	 * before checking whether node->kpfn has been changed.
795 	 */
796 	smp_rmb();
797 	if (READ_ONCE(stable_node->kpfn) != kpfn)
798 		goto again;
799 	remove_node_from_stable_tree(stable_node);
800 	return NULL;
801 }
802 
803 /*
804  * Removing rmap_item from stable or unstable tree.
805  * This function will clean the information from the stable/unstable tree.
806  */
807 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
808 {
809 	if (rmap_item->address & STABLE_FLAG) {
810 		struct ksm_stable_node *stable_node;
811 		struct page *page;
812 
813 		stable_node = rmap_item->head;
814 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
815 		if (!page)
816 			goto out;
817 
818 		hlist_del(&rmap_item->hlist);
819 		unlock_page(page);
820 		put_page(page);
821 
822 		if (!hlist_empty(&stable_node->hlist))
823 			ksm_pages_sharing--;
824 		else
825 			ksm_pages_shared--;
826 
827 		rmap_item->mm->ksm_merging_pages--;
828 
829 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
830 		stable_node->rmap_hlist_len--;
831 
832 		put_anon_vma(rmap_item->anon_vma);
833 		rmap_item->head = NULL;
834 		rmap_item->address &= PAGE_MASK;
835 
836 	} else if (rmap_item->address & UNSTABLE_FLAG) {
837 		unsigned char age;
838 		/*
839 		 * Usually ksmd can and must skip the rb_erase, because
840 		 * root_unstable_tree was already reset to RB_ROOT.
841 		 * But be careful when an mm is exiting: do the rb_erase
842 		 * if this rmap_item was inserted by this scan, rather
843 		 * than left over from before.
844 		 */
845 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
846 		BUG_ON(age > 1);
847 		if (!age)
848 			rb_erase(&rmap_item->node,
849 				 root_unstable_tree + NUMA(rmap_item->nid));
850 		ksm_pages_unshared--;
851 		rmap_item->address &= PAGE_MASK;
852 	}
853 out:
854 	cond_resched();		/* we're called from many long loops */
855 }
856 
857 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
858 {
859 	while (*rmap_list) {
860 		struct ksm_rmap_item *rmap_item = *rmap_list;
861 		*rmap_list = rmap_item->rmap_list;
862 		remove_rmap_item_from_tree(rmap_item);
863 		free_rmap_item(rmap_item);
864 	}
865 }
866 
867 /*
868  * Though it's very tempting to unmerge rmap_items from stable tree rather
869  * than check every pte of a given vma, the locking doesn't quite work for
870  * that - an rmap_item is assigned to the stable tree after inserting ksm
871  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
872  * rmap_items from parent to child at fork time (so as not to waste time
873  * if exit comes before the next scan reaches it).
874  *
875  * Similarly, although we'd like to remove rmap_items (so updating counts
876  * and freeing memory) when unmerging an area, it's easier to leave that
877  * to the next pass of ksmd - consider, for example, how ksmd might be
878  * in cmp_and_merge_page on one of the rmap_items we would be removing.
879  */
880 static int unmerge_ksm_pages(struct vm_area_struct *vma,
881 			     unsigned long start, unsigned long end)
882 {
883 	unsigned long addr;
884 	int err = 0;
885 
886 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
887 		if (ksm_test_exit(vma->vm_mm))
888 			break;
889 		if (signal_pending(current))
890 			err = -ERESTARTSYS;
891 		else
892 			err = break_ksm(vma, addr);
893 	}
894 	return err;
895 }
896 
897 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
898 {
899 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
900 }
901 
902 static inline struct ksm_stable_node *page_stable_node(struct page *page)
903 {
904 	return folio_stable_node(page_folio(page));
905 }
906 
907 static inline void set_page_stable_node(struct page *page,
908 					struct ksm_stable_node *stable_node)
909 {
910 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
911 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
912 }
913 
914 #ifdef CONFIG_SYSFS
915 /*
916  * Only called through the sysfs control interface:
917  */
918 static int remove_stable_node(struct ksm_stable_node *stable_node)
919 {
920 	struct page *page;
921 	int err;
922 
923 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
924 	if (!page) {
925 		/*
926 		 * get_ksm_page did remove_node_from_stable_tree itself.
927 		 */
928 		return 0;
929 	}
930 
931 	/*
932 	 * Page could be still mapped if this races with __mmput() running in
933 	 * between ksm_exit() and exit_mmap(). Just refuse to let
934 	 * merge_across_nodes/max_page_sharing be switched.
935 	 */
936 	err = -EBUSY;
937 	if (!page_mapped(page)) {
938 		/*
939 		 * The stable node did not yet appear stale to get_ksm_page(),
940 		 * since that allows for an unmapped ksm page to be recognized
941 		 * right up until it is freed; but the node is safe to remove.
942 		 * This page might be in an LRU cache waiting to be freed,
943 		 * or it might be PageSwapCache (perhaps under writeback),
944 		 * or it might have been removed from swapcache a moment ago.
945 		 */
946 		set_page_stable_node(page, NULL);
947 		remove_node_from_stable_tree(stable_node);
948 		err = 0;
949 	}
950 
951 	unlock_page(page);
952 	put_page(page);
953 	return err;
954 }
955 
956 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
957 				    struct rb_root *root)
958 {
959 	struct ksm_stable_node *dup;
960 	struct hlist_node *hlist_safe;
961 
962 	if (!is_stable_node_chain(stable_node)) {
963 		VM_BUG_ON(is_stable_node_dup(stable_node));
964 		if (remove_stable_node(stable_node))
965 			return true;
966 		else
967 			return false;
968 	}
969 
970 	hlist_for_each_entry_safe(dup, hlist_safe,
971 				  &stable_node->hlist, hlist_dup) {
972 		VM_BUG_ON(!is_stable_node_dup(dup));
973 		if (remove_stable_node(dup))
974 			return true;
975 	}
976 	BUG_ON(!hlist_empty(&stable_node->hlist));
977 	free_stable_node_chain(stable_node, root);
978 	return false;
979 }
980 
981 static int remove_all_stable_nodes(void)
982 {
983 	struct ksm_stable_node *stable_node, *next;
984 	int nid;
985 	int err = 0;
986 
987 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
988 		while (root_stable_tree[nid].rb_node) {
989 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
990 						struct ksm_stable_node, node);
991 			if (remove_stable_node_chain(stable_node,
992 						     root_stable_tree + nid)) {
993 				err = -EBUSY;
994 				break;	/* proceed to next nid */
995 			}
996 			cond_resched();
997 		}
998 	}
999 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1000 		if (remove_stable_node(stable_node))
1001 			err = -EBUSY;
1002 		cond_resched();
1003 	}
1004 	return err;
1005 }
1006 
1007 static int unmerge_and_remove_all_rmap_items(void)
1008 {
1009 	struct ksm_mm_slot *mm_slot;
1010 	struct mm_slot *slot;
1011 	struct mm_struct *mm;
1012 	struct vm_area_struct *vma;
1013 	int err = 0;
1014 
1015 	spin_lock(&ksm_mmlist_lock);
1016 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1017 			  struct mm_slot, mm_node);
1018 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1019 	spin_unlock(&ksm_mmlist_lock);
1020 
1021 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1022 	     mm_slot = ksm_scan.mm_slot) {
1023 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1024 
1025 		mm = mm_slot->slot.mm;
1026 		mmap_read_lock(mm);
1027 
1028 		/*
1029 		 * Exit right away if mm is exiting to avoid lockdep issue in
1030 		 * the maple tree
1031 		 */
1032 		if (ksm_test_exit(mm))
1033 			goto mm_exiting;
1034 
1035 		for_each_vma(vmi, vma) {
1036 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1037 				continue;
1038 			err = unmerge_ksm_pages(vma,
1039 						vma->vm_start, vma->vm_end);
1040 			if (err)
1041 				goto error;
1042 		}
1043 
1044 mm_exiting:
1045 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1046 		mmap_read_unlock(mm);
1047 
1048 		spin_lock(&ksm_mmlist_lock);
1049 		slot = list_entry(mm_slot->slot.mm_node.next,
1050 				  struct mm_slot, mm_node);
1051 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1052 		if (ksm_test_exit(mm)) {
1053 			hash_del(&mm_slot->slot.hash);
1054 			list_del(&mm_slot->slot.mm_node);
1055 			spin_unlock(&ksm_mmlist_lock);
1056 
1057 			mm_slot_free(mm_slot_cache, mm_slot);
1058 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1059 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1060 			mmdrop(mm);
1061 		} else
1062 			spin_unlock(&ksm_mmlist_lock);
1063 	}
1064 
1065 	/* Clean up stable nodes, but don't worry if some are still busy */
1066 	remove_all_stable_nodes();
1067 	ksm_scan.seqnr = 0;
1068 	return 0;
1069 
1070 error:
1071 	mmap_read_unlock(mm);
1072 	spin_lock(&ksm_mmlist_lock);
1073 	ksm_scan.mm_slot = &ksm_mm_head;
1074 	spin_unlock(&ksm_mmlist_lock);
1075 	return err;
1076 }
1077 #endif /* CONFIG_SYSFS */
1078 
1079 static u32 calc_checksum(struct page *page)
1080 {
1081 	u32 checksum;
1082 	void *addr = kmap_atomic(page);
1083 	checksum = xxhash(addr, PAGE_SIZE, 0);
1084 	kunmap_atomic(addr);
1085 	return checksum;
1086 }
1087 
1088 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1089 			      pte_t *orig_pte)
1090 {
1091 	struct mm_struct *mm = vma->vm_mm;
1092 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1093 	int swapped;
1094 	int err = -EFAULT;
1095 	struct mmu_notifier_range range;
1096 	bool anon_exclusive;
1097 	pte_t entry;
1098 
1099 	pvmw.address = page_address_in_vma(page, vma);
1100 	if (pvmw.address == -EFAULT)
1101 		goto out;
1102 
1103 	BUG_ON(PageTransCompound(page));
1104 
1105 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1106 				pvmw.address + PAGE_SIZE);
1107 	mmu_notifier_invalidate_range_start(&range);
1108 
1109 	if (!page_vma_mapped_walk(&pvmw))
1110 		goto out_mn;
1111 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1112 		goto out_unlock;
1113 
1114 	anon_exclusive = PageAnonExclusive(page);
1115 	entry = ptep_get(pvmw.pte);
1116 	if (pte_write(entry) || pte_dirty(entry) ||
1117 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1118 		swapped = PageSwapCache(page);
1119 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1120 		/*
1121 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1122 		 * take any lock, therefore the check that we are going to make
1123 		 * with the pagecount against the mapcount is racy and
1124 		 * O_DIRECT can happen right after the check.
1125 		 * So we clear the pte and flush the tlb before the check
1126 		 * this assure us that no O_DIRECT can happen after the check
1127 		 * or in the middle of the check.
1128 		 *
1129 		 * No need to notify as we are downgrading page table to read
1130 		 * only not changing it to point to a new page.
1131 		 *
1132 		 * See Documentation/mm/mmu_notifier.rst
1133 		 */
1134 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1135 		/*
1136 		 * Check that no O_DIRECT or similar I/O is in progress on the
1137 		 * page
1138 		 */
1139 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1140 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1141 			goto out_unlock;
1142 		}
1143 
1144 		/* See page_try_share_anon_rmap(): clear PTE first. */
1145 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1146 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1147 			goto out_unlock;
1148 		}
1149 
1150 		if (pte_dirty(entry))
1151 			set_page_dirty(page);
1152 		entry = pte_mkclean(entry);
1153 
1154 		if (pte_write(entry))
1155 			entry = pte_wrprotect(entry);
1156 
1157 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1158 	}
1159 	*orig_pte = entry;
1160 	err = 0;
1161 
1162 out_unlock:
1163 	page_vma_mapped_walk_done(&pvmw);
1164 out_mn:
1165 	mmu_notifier_invalidate_range_end(&range);
1166 out:
1167 	return err;
1168 }
1169 
1170 /**
1171  * replace_page - replace page in vma by new ksm page
1172  * @vma:      vma that holds the pte pointing to page
1173  * @page:     the page we are replacing by kpage
1174  * @kpage:    the ksm page we replace page by
1175  * @orig_pte: the original value of the pte
1176  *
1177  * Returns 0 on success, -EFAULT on failure.
1178  */
1179 static int replace_page(struct vm_area_struct *vma, struct page *page,
1180 			struct page *kpage, pte_t orig_pte)
1181 {
1182 	struct mm_struct *mm = vma->vm_mm;
1183 	struct folio *folio;
1184 	pmd_t *pmd;
1185 	pmd_t pmde;
1186 	pte_t *ptep;
1187 	pte_t newpte;
1188 	spinlock_t *ptl;
1189 	unsigned long addr;
1190 	int err = -EFAULT;
1191 	struct mmu_notifier_range range;
1192 
1193 	addr = page_address_in_vma(page, vma);
1194 	if (addr == -EFAULT)
1195 		goto out;
1196 
1197 	pmd = mm_find_pmd(mm, addr);
1198 	if (!pmd)
1199 		goto out;
1200 	/*
1201 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1202 	 * without holding anon_vma lock for write.  So when looking for a
1203 	 * genuine pmde (in which to find pte), test present and !THP together.
1204 	 */
1205 	pmde = pmdp_get_lockless(pmd);
1206 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1207 		goto out;
1208 
1209 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1210 				addr + PAGE_SIZE);
1211 	mmu_notifier_invalidate_range_start(&range);
1212 
1213 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1214 	if (!ptep)
1215 		goto out_mn;
1216 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1217 		pte_unmap_unlock(ptep, ptl);
1218 		goto out_mn;
1219 	}
1220 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1221 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1222 
1223 	/*
1224 	 * No need to check ksm_use_zero_pages here: we can only have a
1225 	 * zero_page here if ksm_use_zero_pages was enabled already.
1226 	 */
1227 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1228 		get_page(kpage);
1229 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1230 		newpte = mk_pte(kpage, vma->vm_page_prot);
1231 	} else {
1232 		/*
1233 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1234 		 * we can easily track all KSM-placed zero pages by checking if
1235 		 * the dirty bit in zero page's PTE is set.
1236 		 */
1237 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1238 		ksm_zero_pages++;
1239 		mm->ksm_zero_pages++;
1240 		/*
1241 		 * We're replacing an anonymous page with a zero page, which is
1242 		 * not anonymous. We need to do proper accounting otherwise we
1243 		 * will get wrong values in /proc, and a BUG message in dmesg
1244 		 * when tearing down the mm.
1245 		 */
1246 		dec_mm_counter(mm, MM_ANONPAGES);
1247 	}
1248 
1249 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1250 	/*
1251 	 * No need to notify as we are replacing a read only page with another
1252 	 * read only page with the same content.
1253 	 *
1254 	 * See Documentation/mm/mmu_notifier.rst
1255 	 */
1256 	ptep_clear_flush(vma, addr, ptep);
1257 	set_pte_at_notify(mm, addr, ptep, newpte);
1258 
1259 	folio = page_folio(page);
1260 	page_remove_rmap(page, vma, false);
1261 	if (!folio_mapped(folio))
1262 		folio_free_swap(folio);
1263 	folio_put(folio);
1264 
1265 	pte_unmap_unlock(ptep, ptl);
1266 	err = 0;
1267 out_mn:
1268 	mmu_notifier_invalidate_range_end(&range);
1269 out:
1270 	return err;
1271 }
1272 
1273 /*
1274  * try_to_merge_one_page - take two pages and merge them into one
1275  * @vma: the vma that holds the pte pointing to page
1276  * @page: the PageAnon page that we want to replace with kpage
1277  * @kpage: the PageKsm page that we want to map instead of page,
1278  *         or NULL the first time when we want to use page as kpage.
1279  *
1280  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1281  */
1282 static int try_to_merge_one_page(struct vm_area_struct *vma,
1283 				 struct page *page, struct page *kpage)
1284 {
1285 	pte_t orig_pte = __pte(0);
1286 	int err = -EFAULT;
1287 
1288 	if (page == kpage)			/* ksm page forked */
1289 		return 0;
1290 
1291 	if (!PageAnon(page))
1292 		goto out;
1293 
1294 	/*
1295 	 * We need the page lock to read a stable PageSwapCache in
1296 	 * write_protect_page().  We use trylock_page() instead of
1297 	 * lock_page() because we don't want to wait here - we
1298 	 * prefer to continue scanning and merging different pages,
1299 	 * then come back to this page when it is unlocked.
1300 	 */
1301 	if (!trylock_page(page))
1302 		goto out;
1303 
1304 	if (PageTransCompound(page)) {
1305 		if (split_huge_page(page))
1306 			goto out_unlock;
1307 	}
1308 
1309 	/*
1310 	 * If this anonymous page is mapped only here, its pte may need
1311 	 * to be write-protected.  If it's mapped elsewhere, all of its
1312 	 * ptes are necessarily already write-protected.  But in either
1313 	 * case, we need to lock and check page_count is not raised.
1314 	 */
1315 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1316 		if (!kpage) {
1317 			/*
1318 			 * While we hold page lock, upgrade page from
1319 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1320 			 * stable_tree_insert() will update stable_node.
1321 			 */
1322 			set_page_stable_node(page, NULL);
1323 			mark_page_accessed(page);
1324 			/*
1325 			 * Page reclaim just frees a clean page with no dirty
1326 			 * ptes: make sure that the ksm page would be swapped.
1327 			 */
1328 			if (!PageDirty(page))
1329 				SetPageDirty(page);
1330 			err = 0;
1331 		} else if (pages_identical(page, kpage))
1332 			err = replace_page(vma, page, kpage, orig_pte);
1333 	}
1334 
1335 out_unlock:
1336 	unlock_page(page);
1337 out:
1338 	return err;
1339 }
1340 
1341 /*
1342  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1343  * but no new kernel page is allocated: kpage must already be a ksm page.
1344  *
1345  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1346  */
1347 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1348 				      struct page *page, struct page *kpage)
1349 {
1350 	struct mm_struct *mm = rmap_item->mm;
1351 	struct vm_area_struct *vma;
1352 	int err = -EFAULT;
1353 
1354 	mmap_read_lock(mm);
1355 	vma = find_mergeable_vma(mm, rmap_item->address);
1356 	if (!vma)
1357 		goto out;
1358 
1359 	err = try_to_merge_one_page(vma, page, kpage);
1360 	if (err)
1361 		goto out;
1362 
1363 	/* Unstable nid is in union with stable anon_vma: remove first */
1364 	remove_rmap_item_from_tree(rmap_item);
1365 
1366 	/* Must get reference to anon_vma while still holding mmap_lock */
1367 	rmap_item->anon_vma = vma->anon_vma;
1368 	get_anon_vma(vma->anon_vma);
1369 out:
1370 	mmap_read_unlock(mm);
1371 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1372 				rmap_item, mm, err);
1373 	return err;
1374 }
1375 
1376 /*
1377  * try_to_merge_two_pages - take two identical pages and prepare them
1378  * to be merged into one page.
1379  *
1380  * This function returns the kpage if we successfully merged two identical
1381  * pages into one ksm page, NULL otherwise.
1382  *
1383  * Note that this function upgrades page to ksm page: if one of the pages
1384  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1385  */
1386 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1387 					   struct page *page,
1388 					   struct ksm_rmap_item *tree_rmap_item,
1389 					   struct page *tree_page)
1390 {
1391 	int err;
1392 
1393 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1394 	if (!err) {
1395 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1396 							tree_page, page);
1397 		/*
1398 		 * If that fails, we have a ksm page with only one pte
1399 		 * pointing to it: so break it.
1400 		 */
1401 		if (err)
1402 			break_cow(rmap_item);
1403 	}
1404 	return err ? NULL : page;
1405 }
1406 
1407 static __always_inline
1408 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1409 {
1410 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1411 	/*
1412 	 * Check that at least one mapping still exists, otherwise
1413 	 * there's no much point to merge and share with this
1414 	 * stable_node, as the underlying tree_page of the other
1415 	 * sharer is going to be freed soon.
1416 	 */
1417 	return stable_node->rmap_hlist_len &&
1418 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1419 }
1420 
1421 static __always_inline
1422 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1423 {
1424 	return __is_page_sharing_candidate(stable_node, 0);
1425 }
1426 
1427 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1428 				    struct ksm_stable_node **_stable_node,
1429 				    struct rb_root *root,
1430 				    bool prune_stale_stable_nodes)
1431 {
1432 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1433 	struct hlist_node *hlist_safe;
1434 	struct page *_tree_page, *tree_page = NULL;
1435 	int nr = 0;
1436 	int found_rmap_hlist_len;
1437 
1438 	if (!prune_stale_stable_nodes ||
1439 	    time_before(jiffies, stable_node->chain_prune_time +
1440 			msecs_to_jiffies(
1441 				ksm_stable_node_chains_prune_millisecs)))
1442 		prune_stale_stable_nodes = false;
1443 	else
1444 		stable_node->chain_prune_time = jiffies;
1445 
1446 	hlist_for_each_entry_safe(dup, hlist_safe,
1447 				  &stable_node->hlist, hlist_dup) {
1448 		cond_resched();
1449 		/*
1450 		 * We must walk all stable_node_dup to prune the stale
1451 		 * stable nodes during lookup.
1452 		 *
1453 		 * get_ksm_page can drop the nodes from the
1454 		 * stable_node->hlist if they point to freed pages
1455 		 * (that's why we do a _safe walk). The "dup"
1456 		 * stable_node parameter itself will be freed from
1457 		 * under us if it returns NULL.
1458 		 */
1459 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1460 		if (!_tree_page)
1461 			continue;
1462 		nr += 1;
1463 		if (is_page_sharing_candidate(dup)) {
1464 			if (!found ||
1465 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1466 				if (found)
1467 					put_page(tree_page);
1468 				found = dup;
1469 				found_rmap_hlist_len = found->rmap_hlist_len;
1470 				tree_page = _tree_page;
1471 
1472 				/* skip put_page for found dup */
1473 				if (!prune_stale_stable_nodes)
1474 					break;
1475 				continue;
1476 			}
1477 		}
1478 		put_page(_tree_page);
1479 	}
1480 
1481 	if (found) {
1482 		/*
1483 		 * nr is counting all dups in the chain only if
1484 		 * prune_stale_stable_nodes is true, otherwise we may
1485 		 * break the loop at nr == 1 even if there are
1486 		 * multiple entries.
1487 		 */
1488 		if (prune_stale_stable_nodes && nr == 1) {
1489 			/*
1490 			 * If there's not just one entry it would
1491 			 * corrupt memory, better BUG_ON. In KSM
1492 			 * context with no lock held it's not even
1493 			 * fatal.
1494 			 */
1495 			BUG_ON(stable_node->hlist.first->next);
1496 
1497 			/*
1498 			 * There's just one entry and it is below the
1499 			 * deduplication limit so drop the chain.
1500 			 */
1501 			rb_replace_node(&stable_node->node, &found->node,
1502 					root);
1503 			free_stable_node(stable_node);
1504 			ksm_stable_node_chains--;
1505 			ksm_stable_node_dups--;
1506 			/*
1507 			 * NOTE: the caller depends on the stable_node
1508 			 * to be equal to stable_node_dup if the chain
1509 			 * was collapsed.
1510 			 */
1511 			*_stable_node = found;
1512 			/*
1513 			 * Just for robustness, as stable_node is
1514 			 * otherwise left as a stable pointer, the
1515 			 * compiler shall optimize it away at build
1516 			 * time.
1517 			 */
1518 			stable_node = NULL;
1519 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1520 			   __is_page_sharing_candidate(found, 1)) {
1521 			/*
1522 			 * If the found stable_node dup can accept one
1523 			 * more future merge (in addition to the one
1524 			 * that is underway) and is not at the head of
1525 			 * the chain, put it there so next search will
1526 			 * be quicker in the !prune_stale_stable_nodes
1527 			 * case.
1528 			 *
1529 			 * NOTE: it would be inaccurate to use nr > 1
1530 			 * instead of checking the hlist.first pointer
1531 			 * directly, because in the
1532 			 * prune_stale_stable_nodes case "nr" isn't
1533 			 * the position of the found dup in the chain,
1534 			 * but the total number of dups in the chain.
1535 			 */
1536 			hlist_del(&found->hlist_dup);
1537 			hlist_add_head(&found->hlist_dup,
1538 				       &stable_node->hlist);
1539 		}
1540 	}
1541 
1542 	*_stable_node_dup = found;
1543 	return tree_page;
1544 }
1545 
1546 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1547 					       struct rb_root *root)
1548 {
1549 	if (!is_stable_node_chain(stable_node))
1550 		return stable_node;
1551 	if (hlist_empty(&stable_node->hlist)) {
1552 		free_stable_node_chain(stable_node, root);
1553 		return NULL;
1554 	}
1555 	return hlist_entry(stable_node->hlist.first,
1556 			   typeof(*stable_node), hlist_dup);
1557 }
1558 
1559 /*
1560  * Like for get_ksm_page, this function can free the *_stable_node and
1561  * *_stable_node_dup if the returned tree_page is NULL.
1562  *
1563  * It can also free and overwrite *_stable_node with the found
1564  * stable_node_dup if the chain is collapsed (in which case
1565  * *_stable_node will be equal to *_stable_node_dup like if the chain
1566  * never existed). It's up to the caller to verify tree_page is not
1567  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1568  *
1569  * *_stable_node_dup is really a second output parameter of this
1570  * function and will be overwritten in all cases, the caller doesn't
1571  * need to initialize it.
1572  */
1573 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1574 					struct ksm_stable_node **_stable_node,
1575 					struct rb_root *root,
1576 					bool prune_stale_stable_nodes)
1577 {
1578 	struct ksm_stable_node *stable_node = *_stable_node;
1579 	if (!is_stable_node_chain(stable_node)) {
1580 		if (is_page_sharing_candidate(stable_node)) {
1581 			*_stable_node_dup = stable_node;
1582 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1583 		}
1584 		/*
1585 		 * _stable_node_dup set to NULL means the stable_node
1586 		 * reached the ksm_max_page_sharing limit.
1587 		 */
1588 		*_stable_node_dup = NULL;
1589 		return NULL;
1590 	}
1591 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1592 			       prune_stale_stable_nodes);
1593 }
1594 
1595 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1596 						struct ksm_stable_node **s_n,
1597 						struct rb_root *root)
1598 {
1599 	return __stable_node_chain(s_n_d, s_n, root, true);
1600 }
1601 
1602 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1603 					  struct ksm_stable_node *s_n,
1604 					  struct rb_root *root)
1605 {
1606 	struct ksm_stable_node *old_stable_node = s_n;
1607 	struct page *tree_page;
1608 
1609 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1610 	/* not pruning dups so s_n cannot have changed */
1611 	VM_BUG_ON(s_n != old_stable_node);
1612 	return tree_page;
1613 }
1614 
1615 /*
1616  * stable_tree_search - search for page inside the stable tree
1617  *
1618  * This function checks if there is a page inside the stable tree
1619  * with identical content to the page that we are scanning right now.
1620  *
1621  * This function returns the stable tree node of identical content if found,
1622  * NULL otherwise.
1623  */
1624 static struct page *stable_tree_search(struct page *page)
1625 {
1626 	int nid;
1627 	struct rb_root *root;
1628 	struct rb_node **new;
1629 	struct rb_node *parent;
1630 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1631 	struct ksm_stable_node *page_node;
1632 
1633 	page_node = page_stable_node(page);
1634 	if (page_node && page_node->head != &migrate_nodes) {
1635 		/* ksm page forked */
1636 		get_page(page);
1637 		return page;
1638 	}
1639 
1640 	nid = get_kpfn_nid(page_to_pfn(page));
1641 	root = root_stable_tree + nid;
1642 again:
1643 	new = &root->rb_node;
1644 	parent = NULL;
1645 
1646 	while (*new) {
1647 		struct page *tree_page;
1648 		int ret;
1649 
1650 		cond_resched();
1651 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1652 		stable_node_any = NULL;
1653 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1654 		/*
1655 		 * NOTE: stable_node may have been freed by
1656 		 * chain_prune() if the returned stable_node_dup is
1657 		 * not NULL. stable_node_dup may have been inserted in
1658 		 * the rbtree instead as a regular stable_node (in
1659 		 * order to collapse the stable_node chain if a single
1660 		 * stable_node dup was found in it). In such case the
1661 		 * stable_node is overwritten by the callee to point
1662 		 * to the stable_node_dup that was collapsed in the
1663 		 * stable rbtree and stable_node will be equal to
1664 		 * stable_node_dup like if the chain never existed.
1665 		 */
1666 		if (!stable_node_dup) {
1667 			/*
1668 			 * Either all stable_node dups were full in
1669 			 * this stable_node chain, or this chain was
1670 			 * empty and should be rb_erased.
1671 			 */
1672 			stable_node_any = stable_node_dup_any(stable_node,
1673 							      root);
1674 			if (!stable_node_any) {
1675 				/* rb_erase just run */
1676 				goto again;
1677 			}
1678 			/*
1679 			 * Take any of the stable_node dups page of
1680 			 * this stable_node chain to let the tree walk
1681 			 * continue. All KSM pages belonging to the
1682 			 * stable_node dups in a stable_node chain
1683 			 * have the same content and they're
1684 			 * write protected at all times. Any will work
1685 			 * fine to continue the walk.
1686 			 */
1687 			tree_page = get_ksm_page(stable_node_any,
1688 						 GET_KSM_PAGE_NOLOCK);
1689 		}
1690 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1691 		if (!tree_page) {
1692 			/*
1693 			 * If we walked over a stale stable_node,
1694 			 * get_ksm_page() will call rb_erase() and it
1695 			 * may rebalance the tree from under us. So
1696 			 * restart the search from scratch. Returning
1697 			 * NULL would be safe too, but we'd generate
1698 			 * false negative insertions just because some
1699 			 * stable_node was stale.
1700 			 */
1701 			goto again;
1702 		}
1703 
1704 		ret = memcmp_pages(page, tree_page);
1705 		put_page(tree_page);
1706 
1707 		parent = *new;
1708 		if (ret < 0)
1709 			new = &parent->rb_left;
1710 		else if (ret > 0)
1711 			new = &parent->rb_right;
1712 		else {
1713 			if (page_node) {
1714 				VM_BUG_ON(page_node->head != &migrate_nodes);
1715 				/*
1716 				 * Test if the migrated page should be merged
1717 				 * into a stable node dup. If the mapcount is
1718 				 * 1 we can migrate it with another KSM page
1719 				 * without adding it to the chain.
1720 				 */
1721 				if (page_mapcount(page) > 1)
1722 					goto chain_append;
1723 			}
1724 
1725 			if (!stable_node_dup) {
1726 				/*
1727 				 * If the stable_node is a chain and
1728 				 * we got a payload match in memcmp
1729 				 * but we cannot merge the scanned
1730 				 * page in any of the existing
1731 				 * stable_node dups because they're
1732 				 * all full, we need to wait the
1733 				 * scanned page to find itself a match
1734 				 * in the unstable tree to create a
1735 				 * brand new KSM page to add later to
1736 				 * the dups of this stable_node.
1737 				 */
1738 				return NULL;
1739 			}
1740 
1741 			/*
1742 			 * Lock and unlock the stable_node's page (which
1743 			 * might already have been migrated) so that page
1744 			 * migration is sure to notice its raised count.
1745 			 * It would be more elegant to return stable_node
1746 			 * than kpage, but that involves more changes.
1747 			 */
1748 			tree_page = get_ksm_page(stable_node_dup,
1749 						 GET_KSM_PAGE_TRYLOCK);
1750 
1751 			if (PTR_ERR(tree_page) == -EBUSY)
1752 				return ERR_PTR(-EBUSY);
1753 
1754 			if (unlikely(!tree_page))
1755 				/*
1756 				 * The tree may have been rebalanced,
1757 				 * so re-evaluate parent and new.
1758 				 */
1759 				goto again;
1760 			unlock_page(tree_page);
1761 
1762 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1763 			    NUMA(stable_node_dup->nid)) {
1764 				put_page(tree_page);
1765 				goto replace;
1766 			}
1767 			return tree_page;
1768 		}
1769 	}
1770 
1771 	if (!page_node)
1772 		return NULL;
1773 
1774 	list_del(&page_node->list);
1775 	DO_NUMA(page_node->nid = nid);
1776 	rb_link_node(&page_node->node, parent, new);
1777 	rb_insert_color(&page_node->node, root);
1778 out:
1779 	if (is_page_sharing_candidate(page_node)) {
1780 		get_page(page);
1781 		return page;
1782 	} else
1783 		return NULL;
1784 
1785 replace:
1786 	/*
1787 	 * If stable_node was a chain and chain_prune collapsed it,
1788 	 * stable_node has been updated to be the new regular
1789 	 * stable_node. A collapse of the chain is indistinguishable
1790 	 * from the case there was no chain in the stable
1791 	 * rbtree. Otherwise stable_node is the chain and
1792 	 * stable_node_dup is the dup to replace.
1793 	 */
1794 	if (stable_node_dup == stable_node) {
1795 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1796 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1797 		/* there is no chain */
1798 		if (page_node) {
1799 			VM_BUG_ON(page_node->head != &migrate_nodes);
1800 			list_del(&page_node->list);
1801 			DO_NUMA(page_node->nid = nid);
1802 			rb_replace_node(&stable_node_dup->node,
1803 					&page_node->node,
1804 					root);
1805 			if (is_page_sharing_candidate(page_node))
1806 				get_page(page);
1807 			else
1808 				page = NULL;
1809 		} else {
1810 			rb_erase(&stable_node_dup->node, root);
1811 			page = NULL;
1812 		}
1813 	} else {
1814 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1815 		__stable_node_dup_del(stable_node_dup);
1816 		if (page_node) {
1817 			VM_BUG_ON(page_node->head != &migrate_nodes);
1818 			list_del(&page_node->list);
1819 			DO_NUMA(page_node->nid = nid);
1820 			stable_node_chain_add_dup(page_node, stable_node);
1821 			if (is_page_sharing_candidate(page_node))
1822 				get_page(page);
1823 			else
1824 				page = NULL;
1825 		} else {
1826 			page = NULL;
1827 		}
1828 	}
1829 	stable_node_dup->head = &migrate_nodes;
1830 	list_add(&stable_node_dup->list, stable_node_dup->head);
1831 	return page;
1832 
1833 chain_append:
1834 	/* stable_node_dup could be null if it reached the limit */
1835 	if (!stable_node_dup)
1836 		stable_node_dup = stable_node_any;
1837 	/*
1838 	 * If stable_node was a chain and chain_prune collapsed it,
1839 	 * stable_node has been updated to be the new regular
1840 	 * stable_node. A collapse of the chain is indistinguishable
1841 	 * from the case there was no chain in the stable
1842 	 * rbtree. Otherwise stable_node is the chain and
1843 	 * stable_node_dup is the dup to replace.
1844 	 */
1845 	if (stable_node_dup == stable_node) {
1846 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1847 		/* chain is missing so create it */
1848 		stable_node = alloc_stable_node_chain(stable_node_dup,
1849 						      root);
1850 		if (!stable_node)
1851 			return NULL;
1852 	}
1853 	/*
1854 	 * Add this stable_node dup that was
1855 	 * migrated to the stable_node chain
1856 	 * of the current nid for this page
1857 	 * content.
1858 	 */
1859 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1860 	VM_BUG_ON(page_node->head != &migrate_nodes);
1861 	list_del(&page_node->list);
1862 	DO_NUMA(page_node->nid = nid);
1863 	stable_node_chain_add_dup(page_node, stable_node);
1864 	goto out;
1865 }
1866 
1867 /*
1868  * stable_tree_insert - insert stable tree node pointing to new ksm page
1869  * into the stable tree.
1870  *
1871  * This function returns the stable tree node just allocated on success,
1872  * NULL otherwise.
1873  */
1874 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1875 {
1876 	int nid;
1877 	unsigned long kpfn;
1878 	struct rb_root *root;
1879 	struct rb_node **new;
1880 	struct rb_node *parent;
1881 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1882 	bool need_chain = false;
1883 
1884 	kpfn = page_to_pfn(kpage);
1885 	nid = get_kpfn_nid(kpfn);
1886 	root = root_stable_tree + nid;
1887 again:
1888 	parent = NULL;
1889 	new = &root->rb_node;
1890 
1891 	while (*new) {
1892 		struct page *tree_page;
1893 		int ret;
1894 
1895 		cond_resched();
1896 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1897 		stable_node_any = NULL;
1898 		tree_page = chain(&stable_node_dup, stable_node, root);
1899 		if (!stable_node_dup) {
1900 			/*
1901 			 * Either all stable_node dups were full in
1902 			 * this stable_node chain, or this chain was
1903 			 * empty and should be rb_erased.
1904 			 */
1905 			stable_node_any = stable_node_dup_any(stable_node,
1906 							      root);
1907 			if (!stable_node_any) {
1908 				/* rb_erase just run */
1909 				goto again;
1910 			}
1911 			/*
1912 			 * Take any of the stable_node dups page of
1913 			 * this stable_node chain to let the tree walk
1914 			 * continue. All KSM pages belonging to the
1915 			 * stable_node dups in a stable_node chain
1916 			 * have the same content and they're
1917 			 * write protected at all times. Any will work
1918 			 * fine to continue the walk.
1919 			 */
1920 			tree_page = get_ksm_page(stable_node_any,
1921 						 GET_KSM_PAGE_NOLOCK);
1922 		}
1923 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1924 		if (!tree_page) {
1925 			/*
1926 			 * If we walked over a stale stable_node,
1927 			 * get_ksm_page() will call rb_erase() and it
1928 			 * may rebalance the tree from under us. So
1929 			 * restart the search from scratch. Returning
1930 			 * NULL would be safe too, but we'd generate
1931 			 * false negative insertions just because some
1932 			 * stable_node was stale.
1933 			 */
1934 			goto again;
1935 		}
1936 
1937 		ret = memcmp_pages(kpage, tree_page);
1938 		put_page(tree_page);
1939 
1940 		parent = *new;
1941 		if (ret < 0)
1942 			new = &parent->rb_left;
1943 		else if (ret > 0)
1944 			new = &parent->rb_right;
1945 		else {
1946 			need_chain = true;
1947 			break;
1948 		}
1949 	}
1950 
1951 	stable_node_dup = alloc_stable_node();
1952 	if (!stable_node_dup)
1953 		return NULL;
1954 
1955 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1956 	stable_node_dup->kpfn = kpfn;
1957 	set_page_stable_node(kpage, stable_node_dup);
1958 	stable_node_dup->rmap_hlist_len = 0;
1959 	DO_NUMA(stable_node_dup->nid = nid);
1960 	if (!need_chain) {
1961 		rb_link_node(&stable_node_dup->node, parent, new);
1962 		rb_insert_color(&stable_node_dup->node, root);
1963 	} else {
1964 		if (!is_stable_node_chain(stable_node)) {
1965 			struct ksm_stable_node *orig = stable_node;
1966 			/* chain is missing so create it */
1967 			stable_node = alloc_stable_node_chain(orig, root);
1968 			if (!stable_node) {
1969 				free_stable_node(stable_node_dup);
1970 				return NULL;
1971 			}
1972 		}
1973 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1974 	}
1975 
1976 	return stable_node_dup;
1977 }
1978 
1979 /*
1980  * unstable_tree_search_insert - search for identical page,
1981  * else insert rmap_item into the unstable tree.
1982  *
1983  * This function searches for a page in the unstable tree identical to the
1984  * page currently being scanned; and if no identical page is found in the
1985  * tree, we insert rmap_item as a new object into the unstable tree.
1986  *
1987  * This function returns pointer to rmap_item found to be identical
1988  * to the currently scanned page, NULL otherwise.
1989  *
1990  * This function does both searching and inserting, because they share
1991  * the same walking algorithm in an rbtree.
1992  */
1993 static
1994 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1995 					      struct page *page,
1996 					      struct page **tree_pagep)
1997 {
1998 	struct rb_node **new;
1999 	struct rb_root *root;
2000 	struct rb_node *parent = NULL;
2001 	int nid;
2002 
2003 	nid = get_kpfn_nid(page_to_pfn(page));
2004 	root = root_unstable_tree + nid;
2005 	new = &root->rb_node;
2006 
2007 	while (*new) {
2008 		struct ksm_rmap_item *tree_rmap_item;
2009 		struct page *tree_page;
2010 		int ret;
2011 
2012 		cond_resched();
2013 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2014 		tree_page = get_mergeable_page(tree_rmap_item);
2015 		if (!tree_page)
2016 			return NULL;
2017 
2018 		/*
2019 		 * Don't substitute a ksm page for a forked page.
2020 		 */
2021 		if (page == tree_page) {
2022 			put_page(tree_page);
2023 			return NULL;
2024 		}
2025 
2026 		ret = memcmp_pages(page, tree_page);
2027 
2028 		parent = *new;
2029 		if (ret < 0) {
2030 			put_page(tree_page);
2031 			new = &parent->rb_left;
2032 		} else if (ret > 0) {
2033 			put_page(tree_page);
2034 			new = &parent->rb_right;
2035 		} else if (!ksm_merge_across_nodes &&
2036 			   page_to_nid(tree_page) != nid) {
2037 			/*
2038 			 * If tree_page has been migrated to another NUMA node,
2039 			 * it will be flushed out and put in the right unstable
2040 			 * tree next time: only merge with it when across_nodes.
2041 			 */
2042 			put_page(tree_page);
2043 			return NULL;
2044 		} else {
2045 			*tree_pagep = tree_page;
2046 			return tree_rmap_item;
2047 		}
2048 	}
2049 
2050 	rmap_item->address |= UNSTABLE_FLAG;
2051 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2052 	DO_NUMA(rmap_item->nid = nid);
2053 	rb_link_node(&rmap_item->node, parent, new);
2054 	rb_insert_color(&rmap_item->node, root);
2055 
2056 	ksm_pages_unshared++;
2057 	return NULL;
2058 }
2059 
2060 /*
2061  * stable_tree_append - add another rmap_item to the linked list of
2062  * rmap_items hanging off a given node of the stable tree, all sharing
2063  * the same ksm page.
2064  */
2065 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2066 			       struct ksm_stable_node *stable_node,
2067 			       bool max_page_sharing_bypass)
2068 {
2069 	/*
2070 	 * rmap won't find this mapping if we don't insert the
2071 	 * rmap_item in the right stable_node
2072 	 * duplicate. page_migration could break later if rmap breaks,
2073 	 * so we can as well crash here. We really need to check for
2074 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2075 	 * for other negative values as an underflow if detected here
2076 	 * for the first time (and not when decreasing rmap_hlist_len)
2077 	 * would be sign of memory corruption in the stable_node.
2078 	 */
2079 	BUG_ON(stable_node->rmap_hlist_len < 0);
2080 
2081 	stable_node->rmap_hlist_len++;
2082 	if (!max_page_sharing_bypass)
2083 		/* possibly non fatal but unexpected overflow, only warn */
2084 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2085 			     ksm_max_page_sharing);
2086 
2087 	rmap_item->head = stable_node;
2088 	rmap_item->address |= STABLE_FLAG;
2089 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2090 
2091 	if (rmap_item->hlist.next)
2092 		ksm_pages_sharing++;
2093 	else
2094 		ksm_pages_shared++;
2095 
2096 	rmap_item->mm->ksm_merging_pages++;
2097 }
2098 
2099 /*
2100  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2101  * if not, compare checksum to previous and if it's the same, see if page can
2102  * be inserted into the unstable tree, or merged with a page already there and
2103  * both transferred to the stable tree.
2104  *
2105  * @page: the page that we are searching identical page to.
2106  * @rmap_item: the reverse mapping into the virtual address of this page
2107  */
2108 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2109 {
2110 	struct mm_struct *mm = rmap_item->mm;
2111 	struct ksm_rmap_item *tree_rmap_item;
2112 	struct page *tree_page = NULL;
2113 	struct ksm_stable_node *stable_node;
2114 	struct page *kpage;
2115 	unsigned int checksum;
2116 	int err;
2117 	bool max_page_sharing_bypass = false;
2118 
2119 	stable_node = page_stable_node(page);
2120 	if (stable_node) {
2121 		if (stable_node->head != &migrate_nodes &&
2122 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2123 		    NUMA(stable_node->nid)) {
2124 			stable_node_dup_del(stable_node);
2125 			stable_node->head = &migrate_nodes;
2126 			list_add(&stable_node->list, stable_node->head);
2127 		}
2128 		if (stable_node->head != &migrate_nodes &&
2129 		    rmap_item->head == stable_node)
2130 			return;
2131 		/*
2132 		 * If it's a KSM fork, allow it to go over the sharing limit
2133 		 * without warnings.
2134 		 */
2135 		if (!is_page_sharing_candidate(stable_node))
2136 			max_page_sharing_bypass = true;
2137 	}
2138 
2139 	/* We first start with searching the page inside the stable tree */
2140 	kpage = stable_tree_search(page);
2141 	if (kpage == page && rmap_item->head == stable_node) {
2142 		put_page(kpage);
2143 		return;
2144 	}
2145 
2146 	remove_rmap_item_from_tree(rmap_item);
2147 
2148 	if (kpage) {
2149 		if (PTR_ERR(kpage) == -EBUSY)
2150 			return;
2151 
2152 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2153 		if (!err) {
2154 			/*
2155 			 * The page was successfully merged:
2156 			 * add its rmap_item to the stable tree.
2157 			 */
2158 			lock_page(kpage);
2159 			stable_tree_append(rmap_item, page_stable_node(kpage),
2160 					   max_page_sharing_bypass);
2161 			unlock_page(kpage);
2162 		}
2163 		put_page(kpage);
2164 		return;
2165 	}
2166 
2167 	/*
2168 	 * If the hash value of the page has changed from the last time
2169 	 * we calculated it, this page is changing frequently: therefore we
2170 	 * don't want to insert it in the unstable tree, and we don't want
2171 	 * to waste our time searching for something identical to it there.
2172 	 */
2173 	checksum = calc_checksum(page);
2174 	if (rmap_item->oldchecksum != checksum) {
2175 		rmap_item->oldchecksum = checksum;
2176 		return;
2177 	}
2178 
2179 	/*
2180 	 * Same checksum as an empty page. We attempt to merge it with the
2181 	 * appropriate zero page if the user enabled this via sysfs.
2182 	 */
2183 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2184 		struct vm_area_struct *vma;
2185 
2186 		mmap_read_lock(mm);
2187 		vma = find_mergeable_vma(mm, rmap_item->address);
2188 		if (vma) {
2189 			err = try_to_merge_one_page(vma, page,
2190 					ZERO_PAGE(rmap_item->address));
2191 			trace_ksm_merge_one_page(
2192 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2193 				rmap_item, mm, err);
2194 		} else {
2195 			/*
2196 			 * If the vma is out of date, we do not need to
2197 			 * continue.
2198 			 */
2199 			err = 0;
2200 		}
2201 		mmap_read_unlock(mm);
2202 		/*
2203 		 * In case of failure, the page was not really empty, so we
2204 		 * need to continue. Otherwise we're done.
2205 		 */
2206 		if (!err)
2207 			return;
2208 	}
2209 	tree_rmap_item =
2210 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2211 	if (tree_rmap_item) {
2212 		bool split;
2213 
2214 		kpage = try_to_merge_two_pages(rmap_item, page,
2215 						tree_rmap_item, tree_page);
2216 		/*
2217 		 * If both pages we tried to merge belong to the same compound
2218 		 * page, then we actually ended up increasing the reference
2219 		 * count of the same compound page twice, and split_huge_page
2220 		 * failed.
2221 		 * Here we set a flag if that happened, and we use it later to
2222 		 * try split_huge_page again. Since we call put_page right
2223 		 * afterwards, the reference count will be correct and
2224 		 * split_huge_page should succeed.
2225 		 */
2226 		split = PageTransCompound(page)
2227 			&& compound_head(page) == compound_head(tree_page);
2228 		put_page(tree_page);
2229 		if (kpage) {
2230 			/*
2231 			 * The pages were successfully merged: insert new
2232 			 * node in the stable tree and add both rmap_items.
2233 			 */
2234 			lock_page(kpage);
2235 			stable_node = stable_tree_insert(kpage);
2236 			if (stable_node) {
2237 				stable_tree_append(tree_rmap_item, stable_node,
2238 						   false);
2239 				stable_tree_append(rmap_item, stable_node,
2240 						   false);
2241 			}
2242 			unlock_page(kpage);
2243 
2244 			/*
2245 			 * If we fail to insert the page into the stable tree,
2246 			 * we will have 2 virtual addresses that are pointing
2247 			 * to a ksm page left outside the stable tree,
2248 			 * in which case we need to break_cow on both.
2249 			 */
2250 			if (!stable_node) {
2251 				break_cow(tree_rmap_item);
2252 				break_cow(rmap_item);
2253 			}
2254 		} else if (split) {
2255 			/*
2256 			 * We are here if we tried to merge two pages and
2257 			 * failed because they both belonged to the same
2258 			 * compound page. We will split the page now, but no
2259 			 * merging will take place.
2260 			 * We do not want to add the cost of a full lock; if
2261 			 * the page is locked, it is better to skip it and
2262 			 * perhaps try again later.
2263 			 */
2264 			if (!trylock_page(page))
2265 				return;
2266 			split_huge_page(page);
2267 			unlock_page(page);
2268 		}
2269 	}
2270 }
2271 
2272 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2273 					    struct ksm_rmap_item **rmap_list,
2274 					    unsigned long addr)
2275 {
2276 	struct ksm_rmap_item *rmap_item;
2277 
2278 	while (*rmap_list) {
2279 		rmap_item = *rmap_list;
2280 		if ((rmap_item->address & PAGE_MASK) == addr)
2281 			return rmap_item;
2282 		if (rmap_item->address > addr)
2283 			break;
2284 		*rmap_list = rmap_item->rmap_list;
2285 		remove_rmap_item_from_tree(rmap_item);
2286 		free_rmap_item(rmap_item);
2287 	}
2288 
2289 	rmap_item = alloc_rmap_item();
2290 	if (rmap_item) {
2291 		/* It has already been zeroed */
2292 		rmap_item->mm = mm_slot->slot.mm;
2293 		rmap_item->mm->ksm_rmap_items++;
2294 		rmap_item->address = addr;
2295 		rmap_item->rmap_list = *rmap_list;
2296 		*rmap_list = rmap_item;
2297 	}
2298 	return rmap_item;
2299 }
2300 
2301 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2302 {
2303 	struct mm_struct *mm;
2304 	struct ksm_mm_slot *mm_slot;
2305 	struct mm_slot *slot;
2306 	struct vm_area_struct *vma;
2307 	struct ksm_rmap_item *rmap_item;
2308 	struct vma_iterator vmi;
2309 	int nid;
2310 
2311 	if (list_empty(&ksm_mm_head.slot.mm_node))
2312 		return NULL;
2313 
2314 	mm_slot = ksm_scan.mm_slot;
2315 	if (mm_slot == &ksm_mm_head) {
2316 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2317 
2318 		/*
2319 		 * A number of pages can hang around indefinitely in per-cpu
2320 		 * LRU cache, raised page count preventing write_protect_page
2321 		 * from merging them.  Though it doesn't really matter much,
2322 		 * it is puzzling to see some stuck in pages_volatile until
2323 		 * other activity jostles them out, and they also prevented
2324 		 * LTP's KSM test from succeeding deterministically; so drain
2325 		 * them here (here rather than on entry to ksm_do_scan(),
2326 		 * so we don't IPI too often when pages_to_scan is set low).
2327 		 */
2328 		lru_add_drain_all();
2329 
2330 		/*
2331 		 * Whereas stale stable_nodes on the stable_tree itself
2332 		 * get pruned in the regular course of stable_tree_search(),
2333 		 * those moved out to the migrate_nodes list can accumulate:
2334 		 * so prune them once before each full scan.
2335 		 */
2336 		if (!ksm_merge_across_nodes) {
2337 			struct ksm_stable_node *stable_node, *next;
2338 			struct page *page;
2339 
2340 			list_for_each_entry_safe(stable_node, next,
2341 						 &migrate_nodes, list) {
2342 				page = get_ksm_page(stable_node,
2343 						    GET_KSM_PAGE_NOLOCK);
2344 				if (page)
2345 					put_page(page);
2346 				cond_resched();
2347 			}
2348 		}
2349 
2350 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2351 			root_unstable_tree[nid] = RB_ROOT;
2352 
2353 		spin_lock(&ksm_mmlist_lock);
2354 		slot = list_entry(mm_slot->slot.mm_node.next,
2355 				  struct mm_slot, mm_node);
2356 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2357 		ksm_scan.mm_slot = mm_slot;
2358 		spin_unlock(&ksm_mmlist_lock);
2359 		/*
2360 		 * Although we tested list_empty() above, a racing __ksm_exit
2361 		 * of the last mm on the list may have removed it since then.
2362 		 */
2363 		if (mm_slot == &ksm_mm_head)
2364 			return NULL;
2365 next_mm:
2366 		ksm_scan.address = 0;
2367 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2368 	}
2369 
2370 	slot = &mm_slot->slot;
2371 	mm = slot->mm;
2372 	vma_iter_init(&vmi, mm, ksm_scan.address);
2373 
2374 	mmap_read_lock(mm);
2375 	if (ksm_test_exit(mm))
2376 		goto no_vmas;
2377 
2378 	for_each_vma(vmi, vma) {
2379 		if (!(vma->vm_flags & VM_MERGEABLE))
2380 			continue;
2381 		if (ksm_scan.address < vma->vm_start)
2382 			ksm_scan.address = vma->vm_start;
2383 		if (!vma->anon_vma)
2384 			ksm_scan.address = vma->vm_end;
2385 
2386 		while (ksm_scan.address < vma->vm_end) {
2387 			if (ksm_test_exit(mm))
2388 				break;
2389 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2390 			if (IS_ERR_OR_NULL(*page)) {
2391 				ksm_scan.address += PAGE_SIZE;
2392 				cond_resched();
2393 				continue;
2394 			}
2395 			if (is_zone_device_page(*page))
2396 				goto next_page;
2397 			if (PageAnon(*page)) {
2398 				flush_anon_page(vma, *page, ksm_scan.address);
2399 				flush_dcache_page(*page);
2400 				rmap_item = get_next_rmap_item(mm_slot,
2401 					ksm_scan.rmap_list, ksm_scan.address);
2402 				if (rmap_item) {
2403 					ksm_scan.rmap_list =
2404 							&rmap_item->rmap_list;
2405 					ksm_scan.address += PAGE_SIZE;
2406 				} else
2407 					put_page(*page);
2408 				mmap_read_unlock(mm);
2409 				return rmap_item;
2410 			}
2411 next_page:
2412 			put_page(*page);
2413 			ksm_scan.address += PAGE_SIZE;
2414 			cond_resched();
2415 		}
2416 	}
2417 
2418 	if (ksm_test_exit(mm)) {
2419 no_vmas:
2420 		ksm_scan.address = 0;
2421 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2422 	}
2423 	/*
2424 	 * Nuke all the rmap_items that are above this current rmap:
2425 	 * because there were no VM_MERGEABLE vmas with such addresses.
2426 	 */
2427 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2428 
2429 	spin_lock(&ksm_mmlist_lock);
2430 	slot = list_entry(mm_slot->slot.mm_node.next,
2431 			  struct mm_slot, mm_node);
2432 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2433 	if (ksm_scan.address == 0) {
2434 		/*
2435 		 * We've completed a full scan of all vmas, holding mmap_lock
2436 		 * throughout, and found no VM_MERGEABLE: so do the same as
2437 		 * __ksm_exit does to remove this mm from all our lists now.
2438 		 * This applies either when cleaning up after __ksm_exit
2439 		 * (but beware: we can reach here even before __ksm_exit),
2440 		 * or when all VM_MERGEABLE areas have been unmapped (and
2441 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2442 		 */
2443 		hash_del(&mm_slot->slot.hash);
2444 		list_del(&mm_slot->slot.mm_node);
2445 		spin_unlock(&ksm_mmlist_lock);
2446 
2447 		mm_slot_free(mm_slot_cache, mm_slot);
2448 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2449 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2450 		mmap_read_unlock(mm);
2451 		mmdrop(mm);
2452 	} else {
2453 		mmap_read_unlock(mm);
2454 		/*
2455 		 * mmap_read_unlock(mm) first because after
2456 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2457 		 * already have been freed under us by __ksm_exit()
2458 		 * because the "mm_slot" is still hashed and
2459 		 * ksm_scan.mm_slot doesn't point to it anymore.
2460 		 */
2461 		spin_unlock(&ksm_mmlist_lock);
2462 	}
2463 
2464 	/* Repeat until we've completed scanning the whole list */
2465 	mm_slot = ksm_scan.mm_slot;
2466 	if (mm_slot != &ksm_mm_head)
2467 		goto next_mm;
2468 
2469 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2470 	ksm_scan.seqnr++;
2471 	return NULL;
2472 }
2473 
2474 /**
2475  * ksm_do_scan  - the ksm scanner main worker function.
2476  * @scan_npages:  number of pages we want to scan before we return.
2477  */
2478 static void ksm_do_scan(unsigned int scan_npages)
2479 {
2480 	struct ksm_rmap_item *rmap_item;
2481 	struct page *page;
2482 	unsigned int npages = scan_npages;
2483 
2484 	while (npages-- && likely(!freezing(current))) {
2485 		cond_resched();
2486 		rmap_item = scan_get_next_rmap_item(&page);
2487 		if (!rmap_item)
2488 			return;
2489 		cmp_and_merge_page(page, rmap_item);
2490 		put_page(page);
2491 	}
2492 
2493 	ksm_pages_scanned += scan_npages - npages;
2494 }
2495 
2496 static int ksmd_should_run(void)
2497 {
2498 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2499 }
2500 
2501 static int ksm_scan_thread(void *nothing)
2502 {
2503 	unsigned int sleep_ms;
2504 
2505 	set_freezable();
2506 	set_user_nice(current, 5);
2507 
2508 	while (!kthread_should_stop()) {
2509 		mutex_lock(&ksm_thread_mutex);
2510 		wait_while_offlining();
2511 		if (ksmd_should_run())
2512 			ksm_do_scan(ksm_thread_pages_to_scan);
2513 		mutex_unlock(&ksm_thread_mutex);
2514 
2515 		try_to_freeze();
2516 
2517 		if (ksmd_should_run()) {
2518 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2519 			wait_event_interruptible_timeout(ksm_iter_wait,
2520 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2521 				msecs_to_jiffies(sleep_ms));
2522 		} else {
2523 			wait_event_freezable(ksm_thread_wait,
2524 				ksmd_should_run() || kthread_should_stop());
2525 		}
2526 	}
2527 	return 0;
2528 }
2529 
2530 static void __ksm_add_vma(struct vm_area_struct *vma)
2531 {
2532 	unsigned long vm_flags = vma->vm_flags;
2533 
2534 	if (vm_flags & VM_MERGEABLE)
2535 		return;
2536 
2537 	if (vma_ksm_compatible(vma))
2538 		vm_flags_set(vma, VM_MERGEABLE);
2539 }
2540 
2541 static int __ksm_del_vma(struct vm_area_struct *vma)
2542 {
2543 	int err;
2544 
2545 	if (!(vma->vm_flags & VM_MERGEABLE))
2546 		return 0;
2547 
2548 	if (vma->anon_vma) {
2549 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2550 		if (err)
2551 			return err;
2552 	}
2553 
2554 	vm_flags_clear(vma, VM_MERGEABLE);
2555 	return 0;
2556 }
2557 /**
2558  * ksm_add_vma - Mark vma as mergeable if compatible
2559  *
2560  * @vma:  Pointer to vma
2561  */
2562 void ksm_add_vma(struct vm_area_struct *vma)
2563 {
2564 	struct mm_struct *mm = vma->vm_mm;
2565 
2566 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2567 		__ksm_add_vma(vma);
2568 }
2569 
2570 static void ksm_add_vmas(struct mm_struct *mm)
2571 {
2572 	struct vm_area_struct *vma;
2573 
2574 	VMA_ITERATOR(vmi, mm, 0);
2575 	for_each_vma(vmi, vma)
2576 		__ksm_add_vma(vma);
2577 }
2578 
2579 static int ksm_del_vmas(struct mm_struct *mm)
2580 {
2581 	struct vm_area_struct *vma;
2582 	int err;
2583 
2584 	VMA_ITERATOR(vmi, mm, 0);
2585 	for_each_vma(vmi, vma) {
2586 		err = __ksm_del_vma(vma);
2587 		if (err)
2588 			return err;
2589 	}
2590 	return 0;
2591 }
2592 
2593 /**
2594  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2595  *                        compatible VMA's
2596  *
2597  * @mm:  Pointer to mm
2598  *
2599  * Returns 0 on success, otherwise error code
2600  */
2601 int ksm_enable_merge_any(struct mm_struct *mm)
2602 {
2603 	int err;
2604 
2605 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2606 		return 0;
2607 
2608 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2609 		err = __ksm_enter(mm);
2610 		if (err)
2611 			return err;
2612 	}
2613 
2614 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2615 	ksm_add_vmas(mm);
2616 
2617 	return 0;
2618 }
2619 
2620 /**
2621  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2622  *			   previously enabled via ksm_enable_merge_any().
2623  *
2624  * Disabling merging implies unmerging any merged pages, like setting
2625  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2626  * merging on all compatible VMA's remains enabled.
2627  *
2628  * @mm: Pointer to mm
2629  *
2630  * Returns 0 on success, otherwise error code
2631  */
2632 int ksm_disable_merge_any(struct mm_struct *mm)
2633 {
2634 	int err;
2635 
2636 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2637 		return 0;
2638 
2639 	err = ksm_del_vmas(mm);
2640 	if (err) {
2641 		ksm_add_vmas(mm);
2642 		return err;
2643 	}
2644 
2645 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2646 	return 0;
2647 }
2648 
2649 int ksm_disable(struct mm_struct *mm)
2650 {
2651 	mmap_assert_write_locked(mm);
2652 
2653 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2654 		return 0;
2655 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2656 		return ksm_disable_merge_any(mm);
2657 	return ksm_del_vmas(mm);
2658 }
2659 
2660 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2661 		unsigned long end, int advice, unsigned long *vm_flags)
2662 {
2663 	struct mm_struct *mm = vma->vm_mm;
2664 	int err;
2665 
2666 	switch (advice) {
2667 	case MADV_MERGEABLE:
2668 		if (vma->vm_flags & VM_MERGEABLE)
2669 			return 0;
2670 		if (!vma_ksm_compatible(vma))
2671 			return 0;
2672 
2673 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2674 			err = __ksm_enter(mm);
2675 			if (err)
2676 				return err;
2677 		}
2678 
2679 		*vm_flags |= VM_MERGEABLE;
2680 		break;
2681 
2682 	case MADV_UNMERGEABLE:
2683 		if (!(*vm_flags & VM_MERGEABLE))
2684 			return 0;		/* just ignore the advice */
2685 
2686 		if (vma->anon_vma) {
2687 			err = unmerge_ksm_pages(vma, start, end);
2688 			if (err)
2689 				return err;
2690 		}
2691 
2692 		*vm_flags &= ~VM_MERGEABLE;
2693 		break;
2694 	}
2695 
2696 	return 0;
2697 }
2698 EXPORT_SYMBOL_GPL(ksm_madvise);
2699 
2700 int __ksm_enter(struct mm_struct *mm)
2701 {
2702 	struct ksm_mm_slot *mm_slot;
2703 	struct mm_slot *slot;
2704 	int needs_wakeup;
2705 
2706 	mm_slot = mm_slot_alloc(mm_slot_cache);
2707 	if (!mm_slot)
2708 		return -ENOMEM;
2709 
2710 	slot = &mm_slot->slot;
2711 
2712 	/* Check ksm_run too?  Would need tighter locking */
2713 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2714 
2715 	spin_lock(&ksm_mmlist_lock);
2716 	mm_slot_insert(mm_slots_hash, mm, slot);
2717 	/*
2718 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2719 	 * insert just behind the scanning cursor, to let the area settle
2720 	 * down a little; when fork is followed by immediate exec, we don't
2721 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2722 	 *
2723 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2724 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2725 	 * missed: then we might as well insert at the end of the list.
2726 	 */
2727 	if (ksm_run & KSM_RUN_UNMERGE)
2728 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2729 	else
2730 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2731 	spin_unlock(&ksm_mmlist_lock);
2732 
2733 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2734 	mmgrab(mm);
2735 
2736 	if (needs_wakeup)
2737 		wake_up_interruptible(&ksm_thread_wait);
2738 
2739 	trace_ksm_enter(mm);
2740 	return 0;
2741 }
2742 
2743 void __ksm_exit(struct mm_struct *mm)
2744 {
2745 	struct ksm_mm_slot *mm_slot;
2746 	struct mm_slot *slot;
2747 	int easy_to_free = 0;
2748 
2749 	/*
2750 	 * This process is exiting: if it's straightforward (as is the
2751 	 * case when ksmd was never running), free mm_slot immediately.
2752 	 * But if it's at the cursor or has rmap_items linked to it, use
2753 	 * mmap_lock to synchronize with any break_cows before pagetables
2754 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2755 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2756 	 */
2757 
2758 	spin_lock(&ksm_mmlist_lock);
2759 	slot = mm_slot_lookup(mm_slots_hash, mm);
2760 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2761 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2762 		if (!mm_slot->rmap_list) {
2763 			hash_del(&slot->hash);
2764 			list_del(&slot->mm_node);
2765 			easy_to_free = 1;
2766 		} else {
2767 			list_move(&slot->mm_node,
2768 				  &ksm_scan.mm_slot->slot.mm_node);
2769 		}
2770 	}
2771 	spin_unlock(&ksm_mmlist_lock);
2772 
2773 	if (easy_to_free) {
2774 		mm_slot_free(mm_slot_cache, mm_slot);
2775 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2776 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2777 		mmdrop(mm);
2778 	} else if (mm_slot) {
2779 		mmap_write_lock(mm);
2780 		mmap_write_unlock(mm);
2781 	}
2782 
2783 	trace_ksm_exit(mm);
2784 }
2785 
2786 struct page *ksm_might_need_to_copy(struct page *page,
2787 			struct vm_area_struct *vma, unsigned long address)
2788 {
2789 	struct folio *folio = page_folio(page);
2790 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2791 	struct page *new_page;
2792 
2793 	if (PageKsm(page)) {
2794 		if (page_stable_node(page) &&
2795 		    !(ksm_run & KSM_RUN_UNMERGE))
2796 			return page;	/* no need to copy it */
2797 	} else if (!anon_vma) {
2798 		return page;		/* no need to copy it */
2799 	} else if (page->index == linear_page_index(vma, address) &&
2800 			anon_vma->root == vma->anon_vma->root) {
2801 		return page;		/* still no need to copy it */
2802 	}
2803 	if (!PageUptodate(page))
2804 		return page;		/* let do_swap_page report the error */
2805 
2806 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2807 	if (new_page &&
2808 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2809 		put_page(new_page);
2810 		new_page = NULL;
2811 	}
2812 	if (new_page) {
2813 		if (copy_mc_user_highpage(new_page, page, address, vma)) {
2814 			put_page(new_page);
2815 			memory_failure_queue(page_to_pfn(page), 0);
2816 			return ERR_PTR(-EHWPOISON);
2817 		}
2818 		SetPageDirty(new_page);
2819 		__SetPageUptodate(new_page);
2820 		__SetPageLocked(new_page);
2821 #ifdef CONFIG_SWAP
2822 		count_vm_event(KSM_SWPIN_COPY);
2823 #endif
2824 	}
2825 
2826 	return new_page;
2827 }
2828 
2829 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2830 {
2831 	struct ksm_stable_node *stable_node;
2832 	struct ksm_rmap_item *rmap_item;
2833 	int search_new_forks = 0;
2834 
2835 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2836 
2837 	/*
2838 	 * Rely on the page lock to protect against concurrent modifications
2839 	 * to that page's node of the stable tree.
2840 	 */
2841 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2842 
2843 	stable_node = folio_stable_node(folio);
2844 	if (!stable_node)
2845 		return;
2846 again:
2847 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2848 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2849 		struct anon_vma_chain *vmac;
2850 		struct vm_area_struct *vma;
2851 
2852 		cond_resched();
2853 		if (!anon_vma_trylock_read(anon_vma)) {
2854 			if (rwc->try_lock) {
2855 				rwc->contended = true;
2856 				return;
2857 			}
2858 			anon_vma_lock_read(anon_vma);
2859 		}
2860 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2861 					       0, ULONG_MAX) {
2862 			unsigned long addr;
2863 
2864 			cond_resched();
2865 			vma = vmac->vma;
2866 
2867 			/* Ignore the stable/unstable/sqnr flags */
2868 			addr = rmap_item->address & PAGE_MASK;
2869 
2870 			if (addr < vma->vm_start || addr >= vma->vm_end)
2871 				continue;
2872 			/*
2873 			 * Initially we examine only the vma which covers this
2874 			 * rmap_item; but later, if there is still work to do,
2875 			 * we examine covering vmas in other mms: in case they
2876 			 * were forked from the original since ksmd passed.
2877 			 */
2878 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2879 				continue;
2880 
2881 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2882 				continue;
2883 
2884 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2885 				anon_vma_unlock_read(anon_vma);
2886 				return;
2887 			}
2888 			if (rwc->done && rwc->done(folio)) {
2889 				anon_vma_unlock_read(anon_vma);
2890 				return;
2891 			}
2892 		}
2893 		anon_vma_unlock_read(anon_vma);
2894 	}
2895 	if (!search_new_forks++)
2896 		goto again;
2897 }
2898 
2899 #ifdef CONFIG_MEMORY_FAILURE
2900 /*
2901  * Collect processes when the error hit an ksm page.
2902  */
2903 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2904 		       int force_early)
2905 {
2906 	struct ksm_stable_node *stable_node;
2907 	struct ksm_rmap_item *rmap_item;
2908 	struct folio *folio = page_folio(page);
2909 	struct vm_area_struct *vma;
2910 	struct task_struct *tsk;
2911 
2912 	stable_node = folio_stable_node(folio);
2913 	if (!stable_node)
2914 		return;
2915 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2916 		struct anon_vma *av = rmap_item->anon_vma;
2917 
2918 		anon_vma_lock_read(av);
2919 		read_lock(&tasklist_lock);
2920 		for_each_process(tsk) {
2921 			struct anon_vma_chain *vmac;
2922 			unsigned long addr;
2923 			struct task_struct *t =
2924 				task_early_kill(tsk, force_early);
2925 			if (!t)
2926 				continue;
2927 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2928 						       ULONG_MAX)
2929 			{
2930 				vma = vmac->vma;
2931 				if (vma->vm_mm == t->mm) {
2932 					addr = rmap_item->address & PAGE_MASK;
2933 					add_to_kill_ksm(t, page, vma, to_kill,
2934 							addr);
2935 				}
2936 			}
2937 		}
2938 		read_unlock(&tasklist_lock);
2939 		anon_vma_unlock_read(av);
2940 	}
2941 }
2942 #endif
2943 
2944 #ifdef CONFIG_MIGRATION
2945 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2946 {
2947 	struct ksm_stable_node *stable_node;
2948 
2949 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2950 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2951 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2952 
2953 	stable_node = folio_stable_node(folio);
2954 	if (stable_node) {
2955 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2956 		stable_node->kpfn = folio_pfn(newfolio);
2957 		/*
2958 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2959 		 * to make sure that the new stable_node->kpfn is visible
2960 		 * to get_ksm_page() before it can see that folio->mapping
2961 		 * has gone stale (or that folio_test_swapcache has been cleared).
2962 		 */
2963 		smp_wmb();
2964 		set_page_stable_node(&folio->page, NULL);
2965 	}
2966 }
2967 #endif /* CONFIG_MIGRATION */
2968 
2969 #ifdef CONFIG_MEMORY_HOTREMOVE
2970 static void wait_while_offlining(void)
2971 {
2972 	while (ksm_run & KSM_RUN_OFFLINE) {
2973 		mutex_unlock(&ksm_thread_mutex);
2974 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2975 			    TASK_UNINTERRUPTIBLE);
2976 		mutex_lock(&ksm_thread_mutex);
2977 	}
2978 }
2979 
2980 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2981 					 unsigned long start_pfn,
2982 					 unsigned long end_pfn)
2983 {
2984 	if (stable_node->kpfn >= start_pfn &&
2985 	    stable_node->kpfn < end_pfn) {
2986 		/*
2987 		 * Don't get_ksm_page, page has already gone:
2988 		 * which is why we keep kpfn instead of page*
2989 		 */
2990 		remove_node_from_stable_tree(stable_node);
2991 		return true;
2992 	}
2993 	return false;
2994 }
2995 
2996 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2997 					   unsigned long start_pfn,
2998 					   unsigned long end_pfn,
2999 					   struct rb_root *root)
3000 {
3001 	struct ksm_stable_node *dup;
3002 	struct hlist_node *hlist_safe;
3003 
3004 	if (!is_stable_node_chain(stable_node)) {
3005 		VM_BUG_ON(is_stable_node_dup(stable_node));
3006 		return stable_node_dup_remove_range(stable_node, start_pfn,
3007 						    end_pfn);
3008 	}
3009 
3010 	hlist_for_each_entry_safe(dup, hlist_safe,
3011 				  &stable_node->hlist, hlist_dup) {
3012 		VM_BUG_ON(!is_stable_node_dup(dup));
3013 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3014 	}
3015 	if (hlist_empty(&stable_node->hlist)) {
3016 		free_stable_node_chain(stable_node, root);
3017 		return true; /* notify caller that tree was rebalanced */
3018 	} else
3019 		return false;
3020 }
3021 
3022 static void ksm_check_stable_tree(unsigned long start_pfn,
3023 				  unsigned long end_pfn)
3024 {
3025 	struct ksm_stable_node *stable_node, *next;
3026 	struct rb_node *node;
3027 	int nid;
3028 
3029 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3030 		node = rb_first(root_stable_tree + nid);
3031 		while (node) {
3032 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3033 			if (stable_node_chain_remove_range(stable_node,
3034 							   start_pfn, end_pfn,
3035 							   root_stable_tree +
3036 							   nid))
3037 				node = rb_first(root_stable_tree + nid);
3038 			else
3039 				node = rb_next(node);
3040 			cond_resched();
3041 		}
3042 	}
3043 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3044 		if (stable_node->kpfn >= start_pfn &&
3045 		    stable_node->kpfn < end_pfn)
3046 			remove_node_from_stable_tree(stable_node);
3047 		cond_resched();
3048 	}
3049 }
3050 
3051 static int ksm_memory_callback(struct notifier_block *self,
3052 			       unsigned long action, void *arg)
3053 {
3054 	struct memory_notify *mn = arg;
3055 
3056 	switch (action) {
3057 	case MEM_GOING_OFFLINE:
3058 		/*
3059 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3060 		 * and remove_all_stable_nodes() while memory is going offline:
3061 		 * it is unsafe for them to touch the stable tree at this time.
3062 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3063 		 * which do not need the ksm_thread_mutex are all safe.
3064 		 */
3065 		mutex_lock(&ksm_thread_mutex);
3066 		ksm_run |= KSM_RUN_OFFLINE;
3067 		mutex_unlock(&ksm_thread_mutex);
3068 		break;
3069 
3070 	case MEM_OFFLINE:
3071 		/*
3072 		 * Most of the work is done by page migration; but there might
3073 		 * be a few stable_nodes left over, still pointing to struct
3074 		 * pages which have been offlined: prune those from the tree,
3075 		 * otherwise get_ksm_page() might later try to access a
3076 		 * non-existent struct page.
3077 		 */
3078 		ksm_check_stable_tree(mn->start_pfn,
3079 				      mn->start_pfn + mn->nr_pages);
3080 		fallthrough;
3081 	case MEM_CANCEL_OFFLINE:
3082 		mutex_lock(&ksm_thread_mutex);
3083 		ksm_run &= ~KSM_RUN_OFFLINE;
3084 		mutex_unlock(&ksm_thread_mutex);
3085 
3086 		smp_mb();	/* wake_up_bit advises this */
3087 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3088 		break;
3089 	}
3090 	return NOTIFY_OK;
3091 }
3092 #else
3093 static void wait_while_offlining(void)
3094 {
3095 }
3096 #endif /* CONFIG_MEMORY_HOTREMOVE */
3097 
3098 #ifdef CONFIG_PROC_FS
3099 long ksm_process_profit(struct mm_struct *mm)
3100 {
3101 	return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3102 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3103 }
3104 #endif /* CONFIG_PROC_FS */
3105 
3106 #ifdef CONFIG_SYSFS
3107 /*
3108  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3109  */
3110 
3111 #define KSM_ATTR_RO(_name) \
3112 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3113 #define KSM_ATTR(_name) \
3114 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3115 
3116 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3117 				    struct kobj_attribute *attr, char *buf)
3118 {
3119 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3120 }
3121 
3122 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3123 				     struct kobj_attribute *attr,
3124 				     const char *buf, size_t count)
3125 {
3126 	unsigned int msecs;
3127 	int err;
3128 
3129 	err = kstrtouint(buf, 10, &msecs);
3130 	if (err)
3131 		return -EINVAL;
3132 
3133 	ksm_thread_sleep_millisecs = msecs;
3134 	wake_up_interruptible(&ksm_iter_wait);
3135 
3136 	return count;
3137 }
3138 KSM_ATTR(sleep_millisecs);
3139 
3140 static ssize_t pages_to_scan_show(struct kobject *kobj,
3141 				  struct kobj_attribute *attr, char *buf)
3142 {
3143 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3144 }
3145 
3146 static ssize_t pages_to_scan_store(struct kobject *kobj,
3147 				   struct kobj_attribute *attr,
3148 				   const char *buf, size_t count)
3149 {
3150 	unsigned int nr_pages;
3151 	int err;
3152 
3153 	err = kstrtouint(buf, 10, &nr_pages);
3154 	if (err)
3155 		return -EINVAL;
3156 
3157 	ksm_thread_pages_to_scan = nr_pages;
3158 
3159 	return count;
3160 }
3161 KSM_ATTR(pages_to_scan);
3162 
3163 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3164 			char *buf)
3165 {
3166 	return sysfs_emit(buf, "%lu\n", ksm_run);
3167 }
3168 
3169 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3170 			 const char *buf, size_t count)
3171 {
3172 	unsigned int flags;
3173 	int err;
3174 
3175 	err = kstrtouint(buf, 10, &flags);
3176 	if (err)
3177 		return -EINVAL;
3178 	if (flags > KSM_RUN_UNMERGE)
3179 		return -EINVAL;
3180 
3181 	/*
3182 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3183 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3184 	 * breaking COW to free the pages_shared (but leaves mm_slots
3185 	 * on the list for when ksmd may be set running again).
3186 	 */
3187 
3188 	mutex_lock(&ksm_thread_mutex);
3189 	wait_while_offlining();
3190 	if (ksm_run != flags) {
3191 		ksm_run = flags;
3192 		if (flags & KSM_RUN_UNMERGE) {
3193 			set_current_oom_origin();
3194 			err = unmerge_and_remove_all_rmap_items();
3195 			clear_current_oom_origin();
3196 			if (err) {
3197 				ksm_run = KSM_RUN_STOP;
3198 				count = err;
3199 			}
3200 		}
3201 	}
3202 	mutex_unlock(&ksm_thread_mutex);
3203 
3204 	if (flags & KSM_RUN_MERGE)
3205 		wake_up_interruptible(&ksm_thread_wait);
3206 
3207 	return count;
3208 }
3209 KSM_ATTR(run);
3210 
3211 #ifdef CONFIG_NUMA
3212 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3213 				       struct kobj_attribute *attr, char *buf)
3214 {
3215 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3216 }
3217 
3218 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3219 				   struct kobj_attribute *attr,
3220 				   const char *buf, size_t count)
3221 {
3222 	int err;
3223 	unsigned long knob;
3224 
3225 	err = kstrtoul(buf, 10, &knob);
3226 	if (err)
3227 		return err;
3228 	if (knob > 1)
3229 		return -EINVAL;
3230 
3231 	mutex_lock(&ksm_thread_mutex);
3232 	wait_while_offlining();
3233 	if (ksm_merge_across_nodes != knob) {
3234 		if (ksm_pages_shared || remove_all_stable_nodes())
3235 			err = -EBUSY;
3236 		else if (root_stable_tree == one_stable_tree) {
3237 			struct rb_root *buf;
3238 			/*
3239 			 * This is the first time that we switch away from the
3240 			 * default of merging across nodes: must now allocate
3241 			 * a buffer to hold as many roots as may be needed.
3242 			 * Allocate stable and unstable together:
3243 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3244 			 */
3245 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3246 				      GFP_KERNEL);
3247 			/* Let us assume that RB_ROOT is NULL is zero */
3248 			if (!buf)
3249 				err = -ENOMEM;
3250 			else {
3251 				root_stable_tree = buf;
3252 				root_unstable_tree = buf + nr_node_ids;
3253 				/* Stable tree is empty but not the unstable */
3254 				root_unstable_tree[0] = one_unstable_tree[0];
3255 			}
3256 		}
3257 		if (!err) {
3258 			ksm_merge_across_nodes = knob;
3259 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3260 		}
3261 	}
3262 	mutex_unlock(&ksm_thread_mutex);
3263 
3264 	return err ? err : count;
3265 }
3266 KSM_ATTR(merge_across_nodes);
3267 #endif
3268 
3269 static ssize_t use_zero_pages_show(struct kobject *kobj,
3270 				   struct kobj_attribute *attr, char *buf)
3271 {
3272 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3273 }
3274 static ssize_t use_zero_pages_store(struct kobject *kobj,
3275 				   struct kobj_attribute *attr,
3276 				   const char *buf, size_t count)
3277 {
3278 	int err;
3279 	bool value;
3280 
3281 	err = kstrtobool(buf, &value);
3282 	if (err)
3283 		return -EINVAL;
3284 
3285 	ksm_use_zero_pages = value;
3286 
3287 	return count;
3288 }
3289 KSM_ATTR(use_zero_pages);
3290 
3291 static ssize_t max_page_sharing_show(struct kobject *kobj,
3292 				     struct kobj_attribute *attr, char *buf)
3293 {
3294 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3295 }
3296 
3297 static ssize_t max_page_sharing_store(struct kobject *kobj,
3298 				      struct kobj_attribute *attr,
3299 				      const char *buf, size_t count)
3300 {
3301 	int err;
3302 	int knob;
3303 
3304 	err = kstrtoint(buf, 10, &knob);
3305 	if (err)
3306 		return err;
3307 	/*
3308 	 * When a KSM page is created it is shared by 2 mappings. This
3309 	 * being a signed comparison, it implicitly verifies it's not
3310 	 * negative.
3311 	 */
3312 	if (knob < 2)
3313 		return -EINVAL;
3314 
3315 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3316 		return count;
3317 
3318 	mutex_lock(&ksm_thread_mutex);
3319 	wait_while_offlining();
3320 	if (ksm_max_page_sharing != knob) {
3321 		if (ksm_pages_shared || remove_all_stable_nodes())
3322 			err = -EBUSY;
3323 		else
3324 			ksm_max_page_sharing = knob;
3325 	}
3326 	mutex_unlock(&ksm_thread_mutex);
3327 
3328 	return err ? err : count;
3329 }
3330 KSM_ATTR(max_page_sharing);
3331 
3332 static ssize_t pages_scanned_show(struct kobject *kobj,
3333 				  struct kobj_attribute *attr, char *buf)
3334 {
3335 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3336 }
3337 KSM_ATTR_RO(pages_scanned);
3338 
3339 static ssize_t pages_shared_show(struct kobject *kobj,
3340 				 struct kobj_attribute *attr, char *buf)
3341 {
3342 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3343 }
3344 KSM_ATTR_RO(pages_shared);
3345 
3346 static ssize_t pages_sharing_show(struct kobject *kobj,
3347 				  struct kobj_attribute *attr, char *buf)
3348 {
3349 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3350 }
3351 KSM_ATTR_RO(pages_sharing);
3352 
3353 static ssize_t pages_unshared_show(struct kobject *kobj,
3354 				   struct kobj_attribute *attr, char *buf)
3355 {
3356 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3357 }
3358 KSM_ATTR_RO(pages_unshared);
3359 
3360 static ssize_t pages_volatile_show(struct kobject *kobj,
3361 				   struct kobj_attribute *attr, char *buf)
3362 {
3363 	long ksm_pages_volatile;
3364 
3365 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3366 				- ksm_pages_sharing - ksm_pages_unshared;
3367 	/*
3368 	 * It was not worth any locking to calculate that statistic,
3369 	 * but it might therefore sometimes be negative: conceal that.
3370 	 */
3371 	if (ksm_pages_volatile < 0)
3372 		ksm_pages_volatile = 0;
3373 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3374 }
3375 KSM_ATTR_RO(pages_volatile);
3376 
3377 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3378 				struct kobj_attribute *attr, char *buf)
3379 {
3380 	return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3381 }
3382 KSM_ATTR_RO(ksm_zero_pages);
3383 
3384 static ssize_t general_profit_show(struct kobject *kobj,
3385 				   struct kobj_attribute *attr, char *buf)
3386 {
3387 	long general_profit;
3388 
3389 	general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3390 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3391 
3392 	return sysfs_emit(buf, "%ld\n", general_profit);
3393 }
3394 KSM_ATTR_RO(general_profit);
3395 
3396 static ssize_t stable_node_dups_show(struct kobject *kobj,
3397 				     struct kobj_attribute *attr, char *buf)
3398 {
3399 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3400 }
3401 KSM_ATTR_RO(stable_node_dups);
3402 
3403 static ssize_t stable_node_chains_show(struct kobject *kobj,
3404 				       struct kobj_attribute *attr, char *buf)
3405 {
3406 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3407 }
3408 KSM_ATTR_RO(stable_node_chains);
3409 
3410 static ssize_t
3411 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3412 					struct kobj_attribute *attr,
3413 					char *buf)
3414 {
3415 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3416 }
3417 
3418 static ssize_t
3419 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3420 					 struct kobj_attribute *attr,
3421 					 const char *buf, size_t count)
3422 {
3423 	unsigned int msecs;
3424 	int err;
3425 
3426 	err = kstrtouint(buf, 10, &msecs);
3427 	if (err)
3428 		return -EINVAL;
3429 
3430 	ksm_stable_node_chains_prune_millisecs = msecs;
3431 
3432 	return count;
3433 }
3434 KSM_ATTR(stable_node_chains_prune_millisecs);
3435 
3436 static ssize_t full_scans_show(struct kobject *kobj,
3437 			       struct kobj_attribute *attr, char *buf)
3438 {
3439 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3440 }
3441 KSM_ATTR_RO(full_scans);
3442 
3443 static struct attribute *ksm_attrs[] = {
3444 	&sleep_millisecs_attr.attr,
3445 	&pages_to_scan_attr.attr,
3446 	&run_attr.attr,
3447 	&pages_scanned_attr.attr,
3448 	&pages_shared_attr.attr,
3449 	&pages_sharing_attr.attr,
3450 	&pages_unshared_attr.attr,
3451 	&pages_volatile_attr.attr,
3452 	&ksm_zero_pages_attr.attr,
3453 	&full_scans_attr.attr,
3454 #ifdef CONFIG_NUMA
3455 	&merge_across_nodes_attr.attr,
3456 #endif
3457 	&max_page_sharing_attr.attr,
3458 	&stable_node_chains_attr.attr,
3459 	&stable_node_dups_attr.attr,
3460 	&stable_node_chains_prune_millisecs_attr.attr,
3461 	&use_zero_pages_attr.attr,
3462 	&general_profit_attr.attr,
3463 	NULL,
3464 };
3465 
3466 static const struct attribute_group ksm_attr_group = {
3467 	.attrs = ksm_attrs,
3468 	.name = "ksm",
3469 };
3470 #endif /* CONFIG_SYSFS */
3471 
3472 static int __init ksm_init(void)
3473 {
3474 	struct task_struct *ksm_thread;
3475 	int err;
3476 
3477 	/* The correct value depends on page size and endianness */
3478 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3479 	/* Default to false for backwards compatibility */
3480 	ksm_use_zero_pages = false;
3481 
3482 	err = ksm_slab_init();
3483 	if (err)
3484 		goto out;
3485 
3486 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3487 	if (IS_ERR(ksm_thread)) {
3488 		pr_err("ksm: creating kthread failed\n");
3489 		err = PTR_ERR(ksm_thread);
3490 		goto out_free;
3491 	}
3492 
3493 #ifdef CONFIG_SYSFS
3494 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3495 	if (err) {
3496 		pr_err("ksm: register sysfs failed\n");
3497 		kthread_stop(ksm_thread);
3498 		goto out_free;
3499 	}
3500 #else
3501 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3502 
3503 #endif /* CONFIG_SYSFS */
3504 
3505 #ifdef CONFIG_MEMORY_HOTREMOVE
3506 	/* There is no significance to this priority 100 */
3507 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3508 #endif
3509 	return 0;
3510 
3511 out_free:
3512 	ksm_slab_free();
3513 out:
3514 	return err;
3515 }
3516 subsys_initcall(ksm_init);
3517