1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/ksm.h> 50 51 #ifdef CONFIG_NUMA 52 #define NUMA(x) (x) 53 #define DO_NUMA(x) do { (x); } while (0) 54 #else 55 #define NUMA(x) (0) 56 #define DO_NUMA(x) do { } while (0) 57 #endif 58 59 /** 60 * DOC: Overview 61 * 62 * A few notes about the KSM scanning process, 63 * to make it easier to understand the data structures below: 64 * 65 * In order to reduce excessive scanning, KSM sorts the memory pages by their 66 * contents into a data structure that holds pointers to the pages' locations. 67 * 68 * Since the contents of the pages may change at any moment, KSM cannot just 69 * insert the pages into a normal sorted tree and expect it to find anything. 70 * Therefore KSM uses two data structures - the stable and the unstable tree. 71 * 72 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 73 * by their contents. Because each such page is write-protected, searching on 74 * this tree is fully assured to be working (except when pages are unmapped), 75 * and therefore this tree is called the stable tree. 76 * 77 * The stable tree node includes information required for reverse 78 * mapping from a KSM page to virtual addresses that map this page. 79 * 80 * In order to avoid large latencies of the rmap walks on KSM pages, 81 * KSM maintains two types of nodes in the stable tree: 82 * 83 * * the regular nodes that keep the reverse mapping structures in a 84 * linked list 85 * * the "chains" that link nodes ("dups") that represent the same 86 * write protected memory content, but each "dup" corresponds to a 87 * different KSM page copy of that content 88 * 89 * Internally, the regular nodes, "dups" and "chains" are represented 90 * using the same struct ksm_stable_node structure. 91 * 92 * In addition to the stable tree, KSM uses a second data structure called the 93 * unstable tree: this tree holds pointers to pages which have been found to 94 * be "unchanged for a period of time". The unstable tree sorts these pages 95 * by their contents, but since they are not write-protected, KSM cannot rely 96 * upon the unstable tree to work correctly - the unstable tree is liable to 97 * be corrupted as its contents are modified, and so it is called unstable. 98 * 99 * KSM solves this problem by several techniques: 100 * 101 * 1) The unstable tree is flushed every time KSM completes scanning all 102 * memory areas, and then the tree is rebuilt again from the beginning. 103 * 2) KSM will only insert into the unstable tree, pages whose hash value 104 * has not changed since the previous scan of all memory areas. 105 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 106 * colors of the nodes and not on their contents, assuring that even when 107 * the tree gets "corrupted" it won't get out of balance, so scanning time 108 * remains the same (also, searching and inserting nodes in an rbtree uses 109 * the same algorithm, so we have no overhead when we flush and rebuild). 110 * 4) KSM never flushes the stable tree, which means that even if it were to 111 * take 10 attempts to find a page in the unstable tree, once it is found, 112 * it is secured in the stable tree. (When we scan a new page, we first 113 * compare it against the stable tree, and then against the unstable tree.) 114 * 115 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 116 * stable trees and multiple unstable trees: one of each for each NUMA node. 117 */ 118 119 /** 120 * struct ksm_mm_slot - ksm information per mm that is being scanned 121 * @slot: hash lookup from mm to mm_slot 122 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 123 */ 124 struct ksm_mm_slot { 125 struct mm_slot slot; 126 struct ksm_rmap_item *rmap_list; 127 }; 128 129 /** 130 * struct ksm_scan - cursor for scanning 131 * @mm_slot: the current mm_slot we are scanning 132 * @address: the next address inside that to be scanned 133 * @rmap_list: link to the next rmap to be scanned in the rmap_list 134 * @seqnr: count of completed full scans (needed when removing unstable node) 135 * 136 * There is only the one ksm_scan instance of this cursor structure. 137 */ 138 struct ksm_scan { 139 struct ksm_mm_slot *mm_slot; 140 unsigned long address; 141 struct ksm_rmap_item **rmap_list; 142 unsigned long seqnr; 143 }; 144 145 /** 146 * struct ksm_stable_node - node of the stable rbtree 147 * @node: rb node of this ksm page in the stable tree 148 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 149 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 150 * @list: linked into migrate_nodes, pending placement in the proper node tree 151 * @hlist: hlist head of rmap_items using this ksm page 152 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 153 * @chain_prune_time: time of the last full garbage collection 154 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 155 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 156 */ 157 struct ksm_stable_node { 158 union { 159 struct rb_node node; /* when node of stable tree */ 160 struct { /* when listed for migration */ 161 struct list_head *head; 162 struct { 163 struct hlist_node hlist_dup; 164 struct list_head list; 165 }; 166 }; 167 }; 168 struct hlist_head hlist; 169 union { 170 unsigned long kpfn; 171 unsigned long chain_prune_time; 172 }; 173 /* 174 * STABLE_NODE_CHAIN can be any negative number in 175 * rmap_hlist_len negative range, but better not -1 to be able 176 * to reliably detect underflows. 177 */ 178 #define STABLE_NODE_CHAIN -1024 179 int rmap_hlist_len; 180 #ifdef CONFIG_NUMA 181 int nid; 182 #endif 183 }; 184 185 /** 186 * struct ksm_rmap_item - reverse mapping item for virtual addresses 187 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 188 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 189 * @nid: NUMA node id of unstable tree in which linked (may not match page) 190 * @mm: the memory structure this rmap_item is pointing into 191 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 192 * @oldchecksum: previous checksum of the page at that virtual address 193 * @node: rb node of this rmap_item in the unstable tree 194 * @head: pointer to stable_node heading this list in the stable tree 195 * @hlist: link into hlist of rmap_items hanging off that stable_node 196 */ 197 struct ksm_rmap_item { 198 struct ksm_rmap_item *rmap_list; 199 union { 200 struct anon_vma *anon_vma; /* when stable */ 201 #ifdef CONFIG_NUMA 202 int nid; /* when node of unstable tree */ 203 #endif 204 }; 205 struct mm_struct *mm; 206 unsigned long address; /* + low bits used for flags below */ 207 unsigned int oldchecksum; /* when unstable */ 208 union { 209 struct rb_node node; /* when node of unstable tree */ 210 struct { /* when listed from stable tree */ 211 struct ksm_stable_node *head; 212 struct hlist_node hlist; 213 }; 214 }; 215 }; 216 217 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 218 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 219 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 220 221 /* The stable and unstable tree heads */ 222 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 223 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 224 static struct rb_root *root_stable_tree = one_stable_tree; 225 static struct rb_root *root_unstable_tree = one_unstable_tree; 226 227 /* Recently migrated nodes of stable tree, pending proper placement */ 228 static LIST_HEAD(migrate_nodes); 229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 230 231 #define MM_SLOTS_HASH_BITS 10 232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 233 234 static struct ksm_mm_slot ksm_mm_head = { 235 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 236 }; 237 static struct ksm_scan ksm_scan = { 238 .mm_slot = &ksm_mm_head, 239 }; 240 241 static struct kmem_cache *rmap_item_cache; 242 static struct kmem_cache *stable_node_cache; 243 static struct kmem_cache *mm_slot_cache; 244 245 /* The number of nodes in the stable tree */ 246 static unsigned long ksm_pages_shared; 247 248 /* The number of page slots additionally sharing those nodes */ 249 static unsigned long ksm_pages_sharing; 250 251 /* The number of nodes in the unstable tree */ 252 static unsigned long ksm_pages_unshared; 253 254 /* The number of rmap_items in use: to calculate pages_volatile */ 255 static unsigned long ksm_rmap_items; 256 257 /* The number of stable_node chains */ 258 static unsigned long ksm_stable_node_chains; 259 260 /* The number of stable_node dups linked to the stable_node chains */ 261 static unsigned long ksm_stable_node_dups; 262 263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 265 266 /* Maximum number of page slots sharing a stable node */ 267 static int ksm_max_page_sharing = 256; 268 269 /* Number of pages ksmd should scan in one batch */ 270 static unsigned int ksm_thread_pages_to_scan = 100; 271 272 /* Milliseconds ksmd should sleep between batches */ 273 static unsigned int ksm_thread_sleep_millisecs = 20; 274 275 /* Checksum of an empty (zeroed) page */ 276 static unsigned int zero_checksum __read_mostly; 277 278 /* Whether to merge empty (zeroed) pages with actual zero pages */ 279 static bool ksm_use_zero_pages __read_mostly; 280 281 #ifdef CONFIG_NUMA 282 /* Zeroed when merging across nodes is not allowed */ 283 static unsigned int ksm_merge_across_nodes = 1; 284 static int ksm_nr_node_ids = 1; 285 #else 286 #define ksm_merge_across_nodes 1U 287 #define ksm_nr_node_ids 1 288 #endif 289 290 #define KSM_RUN_STOP 0 291 #define KSM_RUN_MERGE 1 292 #define KSM_RUN_UNMERGE 2 293 #define KSM_RUN_OFFLINE 4 294 static unsigned long ksm_run = KSM_RUN_STOP; 295 static void wait_while_offlining(void); 296 297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 299 static DEFINE_MUTEX(ksm_thread_mutex); 300 static DEFINE_SPINLOCK(ksm_mmlist_lock); 301 302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 303 sizeof(struct __struct), __alignof__(struct __struct),\ 304 (__flags), NULL) 305 306 static int __init ksm_slab_init(void) 307 { 308 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 309 if (!rmap_item_cache) 310 goto out; 311 312 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 313 if (!stable_node_cache) 314 goto out_free1; 315 316 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 317 if (!mm_slot_cache) 318 goto out_free2; 319 320 return 0; 321 322 out_free2: 323 kmem_cache_destroy(stable_node_cache); 324 out_free1: 325 kmem_cache_destroy(rmap_item_cache); 326 out: 327 return -ENOMEM; 328 } 329 330 static void __init ksm_slab_free(void) 331 { 332 kmem_cache_destroy(mm_slot_cache); 333 kmem_cache_destroy(stable_node_cache); 334 kmem_cache_destroy(rmap_item_cache); 335 mm_slot_cache = NULL; 336 } 337 338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 339 { 340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 341 } 342 343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 344 { 345 return dup->head == STABLE_NODE_DUP_HEAD; 346 } 347 348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 349 struct ksm_stable_node *chain) 350 { 351 VM_BUG_ON(is_stable_node_dup(dup)); 352 dup->head = STABLE_NODE_DUP_HEAD; 353 VM_BUG_ON(!is_stable_node_chain(chain)); 354 hlist_add_head(&dup->hlist_dup, &chain->hlist); 355 ksm_stable_node_dups++; 356 } 357 358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 359 { 360 VM_BUG_ON(!is_stable_node_dup(dup)); 361 hlist_del(&dup->hlist_dup); 362 ksm_stable_node_dups--; 363 } 364 365 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 366 { 367 VM_BUG_ON(is_stable_node_chain(dup)); 368 if (is_stable_node_dup(dup)) 369 __stable_node_dup_del(dup); 370 else 371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 372 #ifdef CONFIG_DEBUG_VM 373 dup->head = NULL; 374 #endif 375 } 376 377 static inline struct ksm_rmap_item *alloc_rmap_item(void) 378 { 379 struct ksm_rmap_item *rmap_item; 380 381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 382 __GFP_NORETRY | __GFP_NOWARN); 383 if (rmap_item) 384 ksm_rmap_items++; 385 return rmap_item; 386 } 387 388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 389 { 390 ksm_rmap_items--; 391 rmap_item->mm->ksm_rmap_items--; 392 rmap_item->mm = NULL; /* debug safety */ 393 kmem_cache_free(rmap_item_cache, rmap_item); 394 } 395 396 static inline struct ksm_stable_node *alloc_stable_node(void) 397 { 398 /* 399 * The allocation can take too long with GFP_KERNEL when memory is under 400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 401 * grants access to memory reserves, helping to avoid this problem. 402 */ 403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 404 } 405 406 static inline void free_stable_node(struct ksm_stable_node *stable_node) 407 { 408 VM_BUG_ON(stable_node->rmap_hlist_len && 409 !is_stable_node_chain(stable_node)); 410 kmem_cache_free(stable_node_cache, stable_node); 411 } 412 413 /* 414 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 415 * page tables after it has passed through ksm_exit() - which, if necessary, 416 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 417 * a special flag: they can just back out as soon as mm_users goes to zero. 418 * ksm_test_exit() is used throughout to make this test for exit: in some 419 * places for correctness, in some places just to avoid unnecessary work. 420 */ 421 static inline bool ksm_test_exit(struct mm_struct *mm) 422 { 423 return atomic_read(&mm->mm_users) == 0; 424 } 425 426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 427 struct mm_walk *walk) 428 { 429 struct page *page = NULL; 430 spinlock_t *ptl; 431 pte_t *pte; 432 pte_t ptent; 433 int ret; 434 435 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 436 if (!pte) 437 return 0; 438 ptent = ptep_get(pte); 439 if (pte_present(ptent)) { 440 page = vm_normal_page(walk->vma, addr, ptent); 441 } else if (!pte_none(ptent)) { 442 swp_entry_t entry = pte_to_swp_entry(ptent); 443 444 /* 445 * As KSM pages remain KSM pages until freed, no need to wait 446 * here for migration to end. 447 */ 448 if (is_migration_entry(entry)) 449 page = pfn_swap_entry_to_page(entry); 450 } 451 ret = page && PageKsm(page); 452 pte_unmap_unlock(pte, ptl); 453 return ret; 454 } 455 456 static const struct mm_walk_ops break_ksm_ops = { 457 .pmd_entry = break_ksm_pmd_entry, 458 }; 459 460 /* 461 * We use break_ksm to break COW on a ksm page by triggering unsharing, 462 * such that the ksm page will get replaced by an exclusive anonymous page. 463 * 464 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 465 * in case the application has unmapped and remapped mm,addr meanwhile. 466 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 467 * mmap of /dev/mem, where we would not want to touch it. 468 * 469 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 470 * of the process that owns 'vma'. We also do not want to enforce 471 * protection keys here anyway. 472 */ 473 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 474 { 475 vm_fault_t ret = 0; 476 477 do { 478 int ksm_page; 479 480 cond_resched(); 481 ksm_page = walk_page_range_vma(vma, addr, addr + 1, 482 &break_ksm_ops, NULL); 483 if (WARN_ON_ONCE(ksm_page < 0)) 484 return ksm_page; 485 if (!ksm_page) 486 return 0; 487 ret = handle_mm_fault(vma, addr, 488 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 489 NULL); 490 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 491 /* 492 * We must loop until we no longer find a KSM page because 493 * handle_mm_fault() may back out if there's any difficulty e.g. if 494 * pte accessed bit gets updated concurrently. 495 * 496 * VM_FAULT_SIGBUS could occur if we race with truncation of the 497 * backing file, which also invalidates anonymous pages: that's 498 * okay, that truncation will have unmapped the PageKsm for us. 499 * 500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 502 * current task has TIF_MEMDIE set, and will be OOM killed on return 503 * to user; and ksmd, having no mm, would never be chosen for that. 504 * 505 * But if the mm is in a limited mem_cgroup, then the fault may fail 506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 507 * even ksmd can fail in this way - though it's usually breaking ksm 508 * just to undo a merge it made a moment before, so unlikely to oom. 509 * 510 * That's a pity: we might therefore have more kernel pages allocated 511 * than we're counting as nodes in the stable tree; but ksm_do_scan 512 * will retry to break_cow on each pass, so should recover the page 513 * in due course. The important thing is to not let VM_MERGEABLE 514 * be cleared while any such pages might remain in the area. 515 */ 516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 517 } 518 519 static bool vma_ksm_compatible(struct vm_area_struct *vma) 520 { 521 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | 522 VM_IO | VM_DONTEXPAND | VM_HUGETLB | 523 VM_MIXEDMAP)) 524 return false; /* just ignore the advice */ 525 526 if (vma_is_dax(vma)) 527 return false; 528 529 #ifdef VM_SAO 530 if (vma->vm_flags & VM_SAO) 531 return false; 532 #endif 533 #ifdef VM_SPARC_ADI 534 if (vma->vm_flags & VM_SPARC_ADI) 535 return false; 536 #endif 537 538 return true; 539 } 540 541 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 542 unsigned long addr) 543 { 544 struct vm_area_struct *vma; 545 if (ksm_test_exit(mm)) 546 return NULL; 547 vma = vma_lookup(mm, addr); 548 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 549 return NULL; 550 return vma; 551 } 552 553 static void break_cow(struct ksm_rmap_item *rmap_item) 554 { 555 struct mm_struct *mm = rmap_item->mm; 556 unsigned long addr = rmap_item->address; 557 struct vm_area_struct *vma; 558 559 /* 560 * It is not an accident that whenever we want to break COW 561 * to undo, we also need to drop a reference to the anon_vma. 562 */ 563 put_anon_vma(rmap_item->anon_vma); 564 565 mmap_read_lock(mm); 566 vma = find_mergeable_vma(mm, addr); 567 if (vma) 568 break_ksm(vma, addr); 569 mmap_read_unlock(mm); 570 } 571 572 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 573 { 574 struct mm_struct *mm = rmap_item->mm; 575 unsigned long addr = rmap_item->address; 576 struct vm_area_struct *vma; 577 struct page *page; 578 579 mmap_read_lock(mm); 580 vma = find_mergeable_vma(mm, addr); 581 if (!vma) 582 goto out; 583 584 page = follow_page(vma, addr, FOLL_GET); 585 if (IS_ERR_OR_NULL(page)) 586 goto out; 587 if (is_zone_device_page(page)) 588 goto out_putpage; 589 if (PageAnon(page)) { 590 flush_anon_page(vma, page, addr); 591 flush_dcache_page(page); 592 } else { 593 out_putpage: 594 put_page(page); 595 out: 596 page = NULL; 597 } 598 mmap_read_unlock(mm); 599 return page; 600 } 601 602 /* 603 * This helper is used for getting right index into array of tree roots. 604 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 605 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 606 * every node has its own stable and unstable tree. 607 */ 608 static inline int get_kpfn_nid(unsigned long kpfn) 609 { 610 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 611 } 612 613 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 614 struct rb_root *root) 615 { 616 struct ksm_stable_node *chain = alloc_stable_node(); 617 VM_BUG_ON(is_stable_node_chain(dup)); 618 if (likely(chain)) { 619 INIT_HLIST_HEAD(&chain->hlist); 620 chain->chain_prune_time = jiffies; 621 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 622 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 623 chain->nid = NUMA_NO_NODE; /* debug */ 624 #endif 625 ksm_stable_node_chains++; 626 627 /* 628 * Put the stable node chain in the first dimension of 629 * the stable tree and at the same time remove the old 630 * stable node. 631 */ 632 rb_replace_node(&dup->node, &chain->node, root); 633 634 /* 635 * Move the old stable node to the second dimension 636 * queued in the hlist_dup. The invariant is that all 637 * dup stable_nodes in the chain->hlist point to pages 638 * that are write protected and have the exact same 639 * content. 640 */ 641 stable_node_chain_add_dup(dup, chain); 642 } 643 return chain; 644 } 645 646 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 647 struct rb_root *root) 648 { 649 rb_erase(&chain->node, root); 650 free_stable_node(chain); 651 ksm_stable_node_chains--; 652 } 653 654 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 655 { 656 struct ksm_rmap_item *rmap_item; 657 658 /* check it's not STABLE_NODE_CHAIN or negative */ 659 BUG_ON(stable_node->rmap_hlist_len < 0); 660 661 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 662 if (rmap_item->hlist.next) { 663 ksm_pages_sharing--; 664 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 665 } else { 666 ksm_pages_shared--; 667 } 668 669 rmap_item->mm->ksm_merging_pages--; 670 671 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 672 stable_node->rmap_hlist_len--; 673 put_anon_vma(rmap_item->anon_vma); 674 rmap_item->address &= PAGE_MASK; 675 cond_resched(); 676 } 677 678 /* 679 * We need the second aligned pointer of the migrate_nodes 680 * list_head to stay clear from the rb_parent_color union 681 * (aligned and different than any node) and also different 682 * from &migrate_nodes. This will verify that future list.h changes 683 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 684 */ 685 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 686 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 687 688 trace_ksm_remove_ksm_page(stable_node->kpfn); 689 if (stable_node->head == &migrate_nodes) 690 list_del(&stable_node->list); 691 else 692 stable_node_dup_del(stable_node); 693 free_stable_node(stable_node); 694 } 695 696 enum get_ksm_page_flags { 697 GET_KSM_PAGE_NOLOCK, 698 GET_KSM_PAGE_LOCK, 699 GET_KSM_PAGE_TRYLOCK 700 }; 701 702 /* 703 * get_ksm_page: checks if the page indicated by the stable node 704 * is still its ksm page, despite having held no reference to it. 705 * In which case we can trust the content of the page, and it 706 * returns the gotten page; but if the page has now been zapped, 707 * remove the stale node from the stable tree and return NULL. 708 * But beware, the stable node's page might be being migrated. 709 * 710 * You would expect the stable_node to hold a reference to the ksm page. 711 * But if it increments the page's count, swapping out has to wait for 712 * ksmd to come around again before it can free the page, which may take 713 * seconds or even minutes: much too unresponsive. So instead we use a 714 * "keyhole reference": access to the ksm page from the stable node peeps 715 * out through its keyhole to see if that page still holds the right key, 716 * pointing back to this stable node. This relies on freeing a PageAnon 717 * page to reset its page->mapping to NULL, and relies on no other use of 718 * a page to put something that might look like our key in page->mapping. 719 * is on its way to being freed; but it is an anomaly to bear in mind. 720 */ 721 static struct page *get_ksm_page(struct ksm_stable_node *stable_node, 722 enum get_ksm_page_flags flags) 723 { 724 struct page *page; 725 void *expected_mapping; 726 unsigned long kpfn; 727 728 expected_mapping = (void *)((unsigned long)stable_node | 729 PAGE_MAPPING_KSM); 730 again: 731 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 732 page = pfn_to_page(kpfn); 733 if (READ_ONCE(page->mapping) != expected_mapping) 734 goto stale; 735 736 /* 737 * We cannot do anything with the page while its refcount is 0. 738 * Usually 0 means free, or tail of a higher-order page: in which 739 * case this node is no longer referenced, and should be freed; 740 * however, it might mean that the page is under page_ref_freeze(). 741 * The __remove_mapping() case is easy, again the node is now stale; 742 * the same is in reuse_ksm_page() case; but if page is swapcache 743 * in folio_migrate_mapping(), it might still be our page, 744 * in which case it's essential to keep the node. 745 */ 746 while (!get_page_unless_zero(page)) { 747 /* 748 * Another check for page->mapping != expected_mapping would 749 * work here too. We have chosen the !PageSwapCache test to 750 * optimize the common case, when the page is or is about to 751 * be freed: PageSwapCache is cleared (under spin_lock_irq) 752 * in the ref_freeze section of __remove_mapping(); but Anon 753 * page->mapping reset to NULL later, in free_pages_prepare(). 754 */ 755 if (!PageSwapCache(page)) 756 goto stale; 757 cpu_relax(); 758 } 759 760 if (READ_ONCE(page->mapping) != expected_mapping) { 761 put_page(page); 762 goto stale; 763 } 764 765 if (flags == GET_KSM_PAGE_TRYLOCK) { 766 if (!trylock_page(page)) { 767 put_page(page); 768 return ERR_PTR(-EBUSY); 769 } 770 } else if (flags == GET_KSM_PAGE_LOCK) 771 lock_page(page); 772 773 if (flags != GET_KSM_PAGE_NOLOCK) { 774 if (READ_ONCE(page->mapping) != expected_mapping) { 775 unlock_page(page); 776 put_page(page); 777 goto stale; 778 } 779 } 780 return page; 781 782 stale: 783 /* 784 * We come here from above when page->mapping or !PageSwapCache 785 * suggests that the node is stale; but it might be under migration. 786 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 787 * before checking whether node->kpfn has been changed. 788 */ 789 smp_rmb(); 790 if (READ_ONCE(stable_node->kpfn) != kpfn) 791 goto again; 792 remove_node_from_stable_tree(stable_node); 793 return NULL; 794 } 795 796 /* 797 * Removing rmap_item from stable or unstable tree. 798 * This function will clean the information from the stable/unstable tree. 799 */ 800 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 801 { 802 if (rmap_item->address & STABLE_FLAG) { 803 struct ksm_stable_node *stable_node; 804 struct page *page; 805 806 stable_node = rmap_item->head; 807 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 808 if (!page) 809 goto out; 810 811 hlist_del(&rmap_item->hlist); 812 unlock_page(page); 813 put_page(page); 814 815 if (!hlist_empty(&stable_node->hlist)) 816 ksm_pages_sharing--; 817 else 818 ksm_pages_shared--; 819 820 rmap_item->mm->ksm_merging_pages--; 821 822 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 823 stable_node->rmap_hlist_len--; 824 825 put_anon_vma(rmap_item->anon_vma); 826 rmap_item->head = NULL; 827 rmap_item->address &= PAGE_MASK; 828 829 } else if (rmap_item->address & UNSTABLE_FLAG) { 830 unsigned char age; 831 /* 832 * Usually ksmd can and must skip the rb_erase, because 833 * root_unstable_tree was already reset to RB_ROOT. 834 * But be careful when an mm is exiting: do the rb_erase 835 * if this rmap_item was inserted by this scan, rather 836 * than left over from before. 837 */ 838 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 839 BUG_ON(age > 1); 840 if (!age) 841 rb_erase(&rmap_item->node, 842 root_unstable_tree + NUMA(rmap_item->nid)); 843 ksm_pages_unshared--; 844 rmap_item->address &= PAGE_MASK; 845 } 846 out: 847 cond_resched(); /* we're called from many long loops */ 848 } 849 850 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 851 { 852 while (*rmap_list) { 853 struct ksm_rmap_item *rmap_item = *rmap_list; 854 *rmap_list = rmap_item->rmap_list; 855 remove_rmap_item_from_tree(rmap_item); 856 free_rmap_item(rmap_item); 857 } 858 } 859 860 /* 861 * Though it's very tempting to unmerge rmap_items from stable tree rather 862 * than check every pte of a given vma, the locking doesn't quite work for 863 * that - an rmap_item is assigned to the stable tree after inserting ksm 864 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 865 * rmap_items from parent to child at fork time (so as not to waste time 866 * if exit comes before the next scan reaches it). 867 * 868 * Similarly, although we'd like to remove rmap_items (so updating counts 869 * and freeing memory) when unmerging an area, it's easier to leave that 870 * to the next pass of ksmd - consider, for example, how ksmd might be 871 * in cmp_and_merge_page on one of the rmap_items we would be removing. 872 */ 873 static int unmerge_ksm_pages(struct vm_area_struct *vma, 874 unsigned long start, unsigned long end) 875 { 876 unsigned long addr; 877 int err = 0; 878 879 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 880 if (ksm_test_exit(vma->vm_mm)) 881 break; 882 if (signal_pending(current)) 883 err = -ERESTARTSYS; 884 else 885 err = break_ksm(vma, addr); 886 } 887 return err; 888 } 889 890 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 891 { 892 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 893 } 894 895 static inline struct ksm_stable_node *page_stable_node(struct page *page) 896 { 897 return folio_stable_node(page_folio(page)); 898 } 899 900 static inline void set_page_stable_node(struct page *page, 901 struct ksm_stable_node *stable_node) 902 { 903 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 904 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 905 } 906 907 #ifdef CONFIG_SYSFS 908 /* 909 * Only called through the sysfs control interface: 910 */ 911 static int remove_stable_node(struct ksm_stable_node *stable_node) 912 { 913 struct page *page; 914 int err; 915 916 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 917 if (!page) { 918 /* 919 * get_ksm_page did remove_node_from_stable_tree itself. 920 */ 921 return 0; 922 } 923 924 /* 925 * Page could be still mapped if this races with __mmput() running in 926 * between ksm_exit() and exit_mmap(). Just refuse to let 927 * merge_across_nodes/max_page_sharing be switched. 928 */ 929 err = -EBUSY; 930 if (!page_mapped(page)) { 931 /* 932 * The stable node did not yet appear stale to get_ksm_page(), 933 * since that allows for an unmapped ksm page to be recognized 934 * right up until it is freed; but the node is safe to remove. 935 * This page might be in an LRU cache waiting to be freed, 936 * or it might be PageSwapCache (perhaps under writeback), 937 * or it might have been removed from swapcache a moment ago. 938 */ 939 set_page_stable_node(page, NULL); 940 remove_node_from_stable_tree(stable_node); 941 err = 0; 942 } 943 944 unlock_page(page); 945 put_page(page); 946 return err; 947 } 948 949 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 950 struct rb_root *root) 951 { 952 struct ksm_stable_node *dup; 953 struct hlist_node *hlist_safe; 954 955 if (!is_stable_node_chain(stable_node)) { 956 VM_BUG_ON(is_stable_node_dup(stable_node)); 957 if (remove_stable_node(stable_node)) 958 return true; 959 else 960 return false; 961 } 962 963 hlist_for_each_entry_safe(dup, hlist_safe, 964 &stable_node->hlist, hlist_dup) { 965 VM_BUG_ON(!is_stable_node_dup(dup)); 966 if (remove_stable_node(dup)) 967 return true; 968 } 969 BUG_ON(!hlist_empty(&stable_node->hlist)); 970 free_stable_node_chain(stable_node, root); 971 return false; 972 } 973 974 static int remove_all_stable_nodes(void) 975 { 976 struct ksm_stable_node *stable_node, *next; 977 int nid; 978 int err = 0; 979 980 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 981 while (root_stable_tree[nid].rb_node) { 982 stable_node = rb_entry(root_stable_tree[nid].rb_node, 983 struct ksm_stable_node, node); 984 if (remove_stable_node_chain(stable_node, 985 root_stable_tree + nid)) { 986 err = -EBUSY; 987 break; /* proceed to next nid */ 988 } 989 cond_resched(); 990 } 991 } 992 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 993 if (remove_stable_node(stable_node)) 994 err = -EBUSY; 995 cond_resched(); 996 } 997 return err; 998 } 999 1000 static int unmerge_and_remove_all_rmap_items(void) 1001 { 1002 struct ksm_mm_slot *mm_slot; 1003 struct mm_slot *slot; 1004 struct mm_struct *mm; 1005 struct vm_area_struct *vma; 1006 int err = 0; 1007 1008 spin_lock(&ksm_mmlist_lock); 1009 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1010 struct mm_slot, mm_node); 1011 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1012 spin_unlock(&ksm_mmlist_lock); 1013 1014 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1015 mm_slot = ksm_scan.mm_slot) { 1016 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1017 1018 mm = mm_slot->slot.mm; 1019 mmap_read_lock(mm); 1020 1021 /* 1022 * Exit right away if mm is exiting to avoid lockdep issue in 1023 * the maple tree 1024 */ 1025 if (ksm_test_exit(mm)) 1026 goto mm_exiting; 1027 1028 for_each_vma(vmi, vma) { 1029 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1030 continue; 1031 err = unmerge_ksm_pages(vma, 1032 vma->vm_start, vma->vm_end); 1033 if (err) 1034 goto error; 1035 } 1036 1037 mm_exiting: 1038 remove_trailing_rmap_items(&mm_slot->rmap_list); 1039 mmap_read_unlock(mm); 1040 1041 spin_lock(&ksm_mmlist_lock); 1042 slot = list_entry(mm_slot->slot.mm_node.next, 1043 struct mm_slot, mm_node); 1044 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1045 if (ksm_test_exit(mm)) { 1046 hash_del(&mm_slot->slot.hash); 1047 list_del(&mm_slot->slot.mm_node); 1048 spin_unlock(&ksm_mmlist_lock); 1049 1050 mm_slot_free(mm_slot_cache, mm_slot); 1051 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1052 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1053 mmdrop(mm); 1054 } else 1055 spin_unlock(&ksm_mmlist_lock); 1056 } 1057 1058 /* Clean up stable nodes, but don't worry if some are still busy */ 1059 remove_all_stable_nodes(); 1060 ksm_scan.seqnr = 0; 1061 return 0; 1062 1063 error: 1064 mmap_read_unlock(mm); 1065 spin_lock(&ksm_mmlist_lock); 1066 ksm_scan.mm_slot = &ksm_mm_head; 1067 spin_unlock(&ksm_mmlist_lock); 1068 return err; 1069 } 1070 #endif /* CONFIG_SYSFS */ 1071 1072 static u32 calc_checksum(struct page *page) 1073 { 1074 u32 checksum; 1075 void *addr = kmap_atomic(page); 1076 checksum = xxhash(addr, PAGE_SIZE, 0); 1077 kunmap_atomic(addr); 1078 return checksum; 1079 } 1080 1081 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1082 pte_t *orig_pte) 1083 { 1084 struct mm_struct *mm = vma->vm_mm; 1085 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1086 int swapped; 1087 int err = -EFAULT; 1088 struct mmu_notifier_range range; 1089 bool anon_exclusive; 1090 pte_t entry; 1091 1092 pvmw.address = page_address_in_vma(page, vma); 1093 if (pvmw.address == -EFAULT) 1094 goto out; 1095 1096 BUG_ON(PageTransCompound(page)); 1097 1098 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1099 pvmw.address + PAGE_SIZE); 1100 mmu_notifier_invalidate_range_start(&range); 1101 1102 if (!page_vma_mapped_walk(&pvmw)) 1103 goto out_mn; 1104 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1105 goto out_unlock; 1106 1107 anon_exclusive = PageAnonExclusive(page); 1108 entry = ptep_get(pvmw.pte); 1109 if (pte_write(entry) || pte_dirty(entry) || 1110 anon_exclusive || mm_tlb_flush_pending(mm)) { 1111 swapped = PageSwapCache(page); 1112 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1113 /* 1114 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1115 * take any lock, therefore the check that we are going to make 1116 * with the pagecount against the mapcount is racy and 1117 * O_DIRECT can happen right after the check. 1118 * So we clear the pte and flush the tlb before the check 1119 * this assure us that no O_DIRECT can happen after the check 1120 * or in the middle of the check. 1121 * 1122 * No need to notify as we are downgrading page table to read 1123 * only not changing it to point to a new page. 1124 * 1125 * See Documentation/mm/mmu_notifier.rst 1126 */ 1127 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1128 /* 1129 * Check that no O_DIRECT or similar I/O is in progress on the 1130 * page 1131 */ 1132 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1133 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1134 goto out_unlock; 1135 } 1136 1137 /* See page_try_share_anon_rmap(): clear PTE first. */ 1138 if (anon_exclusive && page_try_share_anon_rmap(page)) { 1139 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1140 goto out_unlock; 1141 } 1142 1143 if (pte_dirty(entry)) 1144 set_page_dirty(page); 1145 entry = pte_mkclean(entry); 1146 1147 if (pte_write(entry)) 1148 entry = pte_wrprotect(entry); 1149 1150 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1151 } 1152 *orig_pte = entry; 1153 err = 0; 1154 1155 out_unlock: 1156 page_vma_mapped_walk_done(&pvmw); 1157 out_mn: 1158 mmu_notifier_invalidate_range_end(&range); 1159 out: 1160 return err; 1161 } 1162 1163 /** 1164 * replace_page - replace page in vma by new ksm page 1165 * @vma: vma that holds the pte pointing to page 1166 * @page: the page we are replacing by kpage 1167 * @kpage: the ksm page we replace page by 1168 * @orig_pte: the original value of the pte 1169 * 1170 * Returns 0 on success, -EFAULT on failure. 1171 */ 1172 static int replace_page(struct vm_area_struct *vma, struct page *page, 1173 struct page *kpage, pte_t orig_pte) 1174 { 1175 struct mm_struct *mm = vma->vm_mm; 1176 struct folio *folio; 1177 pmd_t *pmd; 1178 pmd_t pmde; 1179 pte_t *ptep; 1180 pte_t newpte; 1181 spinlock_t *ptl; 1182 unsigned long addr; 1183 int err = -EFAULT; 1184 struct mmu_notifier_range range; 1185 1186 addr = page_address_in_vma(page, vma); 1187 if (addr == -EFAULT) 1188 goto out; 1189 1190 pmd = mm_find_pmd(mm, addr); 1191 if (!pmd) 1192 goto out; 1193 /* 1194 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1195 * without holding anon_vma lock for write. So when looking for a 1196 * genuine pmde (in which to find pte), test present and !THP together. 1197 */ 1198 pmde = pmdp_get_lockless(pmd); 1199 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1200 goto out; 1201 1202 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1203 addr + PAGE_SIZE); 1204 mmu_notifier_invalidate_range_start(&range); 1205 1206 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1207 if (!ptep) 1208 goto out_mn; 1209 if (!pte_same(ptep_get(ptep), orig_pte)) { 1210 pte_unmap_unlock(ptep, ptl); 1211 goto out_mn; 1212 } 1213 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1214 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); 1215 1216 /* 1217 * No need to check ksm_use_zero_pages here: we can only have a 1218 * zero_page here if ksm_use_zero_pages was enabled already. 1219 */ 1220 if (!is_zero_pfn(page_to_pfn(kpage))) { 1221 get_page(kpage); 1222 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); 1223 newpte = mk_pte(kpage, vma->vm_page_prot); 1224 } else { 1225 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1226 vma->vm_page_prot)); 1227 /* 1228 * We're replacing an anonymous page with a zero page, which is 1229 * not anonymous. We need to do proper accounting otherwise we 1230 * will get wrong values in /proc, and a BUG message in dmesg 1231 * when tearing down the mm. 1232 */ 1233 dec_mm_counter(mm, MM_ANONPAGES); 1234 } 1235 1236 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1237 /* 1238 * No need to notify as we are replacing a read only page with another 1239 * read only page with the same content. 1240 * 1241 * See Documentation/mm/mmu_notifier.rst 1242 */ 1243 ptep_clear_flush(vma, addr, ptep); 1244 set_pte_at_notify(mm, addr, ptep, newpte); 1245 1246 folio = page_folio(page); 1247 page_remove_rmap(page, vma, false); 1248 if (!folio_mapped(folio)) 1249 folio_free_swap(folio); 1250 folio_put(folio); 1251 1252 pte_unmap_unlock(ptep, ptl); 1253 err = 0; 1254 out_mn: 1255 mmu_notifier_invalidate_range_end(&range); 1256 out: 1257 return err; 1258 } 1259 1260 /* 1261 * try_to_merge_one_page - take two pages and merge them into one 1262 * @vma: the vma that holds the pte pointing to page 1263 * @page: the PageAnon page that we want to replace with kpage 1264 * @kpage: the PageKsm page that we want to map instead of page, 1265 * or NULL the first time when we want to use page as kpage. 1266 * 1267 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1268 */ 1269 static int try_to_merge_one_page(struct vm_area_struct *vma, 1270 struct page *page, struct page *kpage) 1271 { 1272 pte_t orig_pte = __pte(0); 1273 int err = -EFAULT; 1274 1275 if (page == kpage) /* ksm page forked */ 1276 return 0; 1277 1278 if (!PageAnon(page)) 1279 goto out; 1280 1281 /* 1282 * We need the page lock to read a stable PageSwapCache in 1283 * write_protect_page(). We use trylock_page() instead of 1284 * lock_page() because we don't want to wait here - we 1285 * prefer to continue scanning and merging different pages, 1286 * then come back to this page when it is unlocked. 1287 */ 1288 if (!trylock_page(page)) 1289 goto out; 1290 1291 if (PageTransCompound(page)) { 1292 if (split_huge_page(page)) 1293 goto out_unlock; 1294 } 1295 1296 /* 1297 * If this anonymous page is mapped only here, its pte may need 1298 * to be write-protected. If it's mapped elsewhere, all of its 1299 * ptes are necessarily already write-protected. But in either 1300 * case, we need to lock and check page_count is not raised. 1301 */ 1302 if (write_protect_page(vma, page, &orig_pte) == 0) { 1303 if (!kpage) { 1304 /* 1305 * While we hold page lock, upgrade page from 1306 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1307 * stable_tree_insert() will update stable_node. 1308 */ 1309 set_page_stable_node(page, NULL); 1310 mark_page_accessed(page); 1311 /* 1312 * Page reclaim just frees a clean page with no dirty 1313 * ptes: make sure that the ksm page would be swapped. 1314 */ 1315 if (!PageDirty(page)) 1316 SetPageDirty(page); 1317 err = 0; 1318 } else if (pages_identical(page, kpage)) 1319 err = replace_page(vma, page, kpage, orig_pte); 1320 } 1321 1322 out_unlock: 1323 unlock_page(page); 1324 out: 1325 return err; 1326 } 1327 1328 /* 1329 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1330 * but no new kernel page is allocated: kpage must already be a ksm page. 1331 * 1332 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1333 */ 1334 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1335 struct page *page, struct page *kpage) 1336 { 1337 struct mm_struct *mm = rmap_item->mm; 1338 struct vm_area_struct *vma; 1339 int err = -EFAULT; 1340 1341 mmap_read_lock(mm); 1342 vma = find_mergeable_vma(mm, rmap_item->address); 1343 if (!vma) 1344 goto out; 1345 1346 err = try_to_merge_one_page(vma, page, kpage); 1347 if (err) 1348 goto out; 1349 1350 /* Unstable nid is in union with stable anon_vma: remove first */ 1351 remove_rmap_item_from_tree(rmap_item); 1352 1353 /* Must get reference to anon_vma while still holding mmap_lock */ 1354 rmap_item->anon_vma = vma->anon_vma; 1355 get_anon_vma(vma->anon_vma); 1356 out: 1357 mmap_read_unlock(mm); 1358 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1359 rmap_item, mm, err); 1360 return err; 1361 } 1362 1363 /* 1364 * try_to_merge_two_pages - take two identical pages and prepare them 1365 * to be merged into one page. 1366 * 1367 * This function returns the kpage if we successfully merged two identical 1368 * pages into one ksm page, NULL otherwise. 1369 * 1370 * Note that this function upgrades page to ksm page: if one of the pages 1371 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1372 */ 1373 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1374 struct page *page, 1375 struct ksm_rmap_item *tree_rmap_item, 1376 struct page *tree_page) 1377 { 1378 int err; 1379 1380 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1381 if (!err) { 1382 err = try_to_merge_with_ksm_page(tree_rmap_item, 1383 tree_page, page); 1384 /* 1385 * If that fails, we have a ksm page with only one pte 1386 * pointing to it: so break it. 1387 */ 1388 if (err) 1389 break_cow(rmap_item); 1390 } 1391 return err ? NULL : page; 1392 } 1393 1394 static __always_inline 1395 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1396 { 1397 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1398 /* 1399 * Check that at least one mapping still exists, otherwise 1400 * there's no much point to merge and share with this 1401 * stable_node, as the underlying tree_page of the other 1402 * sharer is going to be freed soon. 1403 */ 1404 return stable_node->rmap_hlist_len && 1405 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1406 } 1407 1408 static __always_inline 1409 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1410 { 1411 return __is_page_sharing_candidate(stable_node, 0); 1412 } 1413 1414 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1415 struct ksm_stable_node **_stable_node, 1416 struct rb_root *root, 1417 bool prune_stale_stable_nodes) 1418 { 1419 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1420 struct hlist_node *hlist_safe; 1421 struct page *_tree_page, *tree_page = NULL; 1422 int nr = 0; 1423 int found_rmap_hlist_len; 1424 1425 if (!prune_stale_stable_nodes || 1426 time_before(jiffies, stable_node->chain_prune_time + 1427 msecs_to_jiffies( 1428 ksm_stable_node_chains_prune_millisecs))) 1429 prune_stale_stable_nodes = false; 1430 else 1431 stable_node->chain_prune_time = jiffies; 1432 1433 hlist_for_each_entry_safe(dup, hlist_safe, 1434 &stable_node->hlist, hlist_dup) { 1435 cond_resched(); 1436 /* 1437 * We must walk all stable_node_dup to prune the stale 1438 * stable nodes during lookup. 1439 * 1440 * get_ksm_page can drop the nodes from the 1441 * stable_node->hlist if they point to freed pages 1442 * (that's why we do a _safe walk). The "dup" 1443 * stable_node parameter itself will be freed from 1444 * under us if it returns NULL. 1445 */ 1446 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1447 if (!_tree_page) 1448 continue; 1449 nr += 1; 1450 if (is_page_sharing_candidate(dup)) { 1451 if (!found || 1452 dup->rmap_hlist_len > found_rmap_hlist_len) { 1453 if (found) 1454 put_page(tree_page); 1455 found = dup; 1456 found_rmap_hlist_len = found->rmap_hlist_len; 1457 tree_page = _tree_page; 1458 1459 /* skip put_page for found dup */ 1460 if (!prune_stale_stable_nodes) 1461 break; 1462 continue; 1463 } 1464 } 1465 put_page(_tree_page); 1466 } 1467 1468 if (found) { 1469 /* 1470 * nr is counting all dups in the chain only if 1471 * prune_stale_stable_nodes is true, otherwise we may 1472 * break the loop at nr == 1 even if there are 1473 * multiple entries. 1474 */ 1475 if (prune_stale_stable_nodes && nr == 1) { 1476 /* 1477 * If there's not just one entry it would 1478 * corrupt memory, better BUG_ON. In KSM 1479 * context with no lock held it's not even 1480 * fatal. 1481 */ 1482 BUG_ON(stable_node->hlist.first->next); 1483 1484 /* 1485 * There's just one entry and it is below the 1486 * deduplication limit so drop the chain. 1487 */ 1488 rb_replace_node(&stable_node->node, &found->node, 1489 root); 1490 free_stable_node(stable_node); 1491 ksm_stable_node_chains--; 1492 ksm_stable_node_dups--; 1493 /* 1494 * NOTE: the caller depends on the stable_node 1495 * to be equal to stable_node_dup if the chain 1496 * was collapsed. 1497 */ 1498 *_stable_node = found; 1499 /* 1500 * Just for robustness, as stable_node is 1501 * otherwise left as a stable pointer, the 1502 * compiler shall optimize it away at build 1503 * time. 1504 */ 1505 stable_node = NULL; 1506 } else if (stable_node->hlist.first != &found->hlist_dup && 1507 __is_page_sharing_candidate(found, 1)) { 1508 /* 1509 * If the found stable_node dup can accept one 1510 * more future merge (in addition to the one 1511 * that is underway) and is not at the head of 1512 * the chain, put it there so next search will 1513 * be quicker in the !prune_stale_stable_nodes 1514 * case. 1515 * 1516 * NOTE: it would be inaccurate to use nr > 1 1517 * instead of checking the hlist.first pointer 1518 * directly, because in the 1519 * prune_stale_stable_nodes case "nr" isn't 1520 * the position of the found dup in the chain, 1521 * but the total number of dups in the chain. 1522 */ 1523 hlist_del(&found->hlist_dup); 1524 hlist_add_head(&found->hlist_dup, 1525 &stable_node->hlist); 1526 } 1527 } 1528 1529 *_stable_node_dup = found; 1530 return tree_page; 1531 } 1532 1533 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1534 struct rb_root *root) 1535 { 1536 if (!is_stable_node_chain(stable_node)) 1537 return stable_node; 1538 if (hlist_empty(&stable_node->hlist)) { 1539 free_stable_node_chain(stable_node, root); 1540 return NULL; 1541 } 1542 return hlist_entry(stable_node->hlist.first, 1543 typeof(*stable_node), hlist_dup); 1544 } 1545 1546 /* 1547 * Like for get_ksm_page, this function can free the *_stable_node and 1548 * *_stable_node_dup if the returned tree_page is NULL. 1549 * 1550 * It can also free and overwrite *_stable_node with the found 1551 * stable_node_dup if the chain is collapsed (in which case 1552 * *_stable_node will be equal to *_stable_node_dup like if the chain 1553 * never existed). It's up to the caller to verify tree_page is not 1554 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1555 * 1556 * *_stable_node_dup is really a second output parameter of this 1557 * function and will be overwritten in all cases, the caller doesn't 1558 * need to initialize it. 1559 */ 1560 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1561 struct ksm_stable_node **_stable_node, 1562 struct rb_root *root, 1563 bool prune_stale_stable_nodes) 1564 { 1565 struct ksm_stable_node *stable_node = *_stable_node; 1566 if (!is_stable_node_chain(stable_node)) { 1567 if (is_page_sharing_candidate(stable_node)) { 1568 *_stable_node_dup = stable_node; 1569 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1570 } 1571 /* 1572 * _stable_node_dup set to NULL means the stable_node 1573 * reached the ksm_max_page_sharing limit. 1574 */ 1575 *_stable_node_dup = NULL; 1576 return NULL; 1577 } 1578 return stable_node_dup(_stable_node_dup, _stable_node, root, 1579 prune_stale_stable_nodes); 1580 } 1581 1582 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, 1583 struct ksm_stable_node **s_n, 1584 struct rb_root *root) 1585 { 1586 return __stable_node_chain(s_n_d, s_n, root, true); 1587 } 1588 1589 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, 1590 struct ksm_stable_node *s_n, 1591 struct rb_root *root) 1592 { 1593 struct ksm_stable_node *old_stable_node = s_n; 1594 struct page *tree_page; 1595 1596 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1597 /* not pruning dups so s_n cannot have changed */ 1598 VM_BUG_ON(s_n != old_stable_node); 1599 return tree_page; 1600 } 1601 1602 /* 1603 * stable_tree_search - search for page inside the stable tree 1604 * 1605 * This function checks if there is a page inside the stable tree 1606 * with identical content to the page that we are scanning right now. 1607 * 1608 * This function returns the stable tree node of identical content if found, 1609 * NULL otherwise. 1610 */ 1611 static struct page *stable_tree_search(struct page *page) 1612 { 1613 int nid; 1614 struct rb_root *root; 1615 struct rb_node **new; 1616 struct rb_node *parent; 1617 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1618 struct ksm_stable_node *page_node; 1619 1620 page_node = page_stable_node(page); 1621 if (page_node && page_node->head != &migrate_nodes) { 1622 /* ksm page forked */ 1623 get_page(page); 1624 return page; 1625 } 1626 1627 nid = get_kpfn_nid(page_to_pfn(page)); 1628 root = root_stable_tree + nid; 1629 again: 1630 new = &root->rb_node; 1631 parent = NULL; 1632 1633 while (*new) { 1634 struct page *tree_page; 1635 int ret; 1636 1637 cond_resched(); 1638 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1639 stable_node_any = NULL; 1640 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1641 /* 1642 * NOTE: stable_node may have been freed by 1643 * chain_prune() if the returned stable_node_dup is 1644 * not NULL. stable_node_dup may have been inserted in 1645 * the rbtree instead as a regular stable_node (in 1646 * order to collapse the stable_node chain if a single 1647 * stable_node dup was found in it). In such case the 1648 * stable_node is overwritten by the callee to point 1649 * to the stable_node_dup that was collapsed in the 1650 * stable rbtree and stable_node will be equal to 1651 * stable_node_dup like if the chain never existed. 1652 */ 1653 if (!stable_node_dup) { 1654 /* 1655 * Either all stable_node dups were full in 1656 * this stable_node chain, or this chain was 1657 * empty and should be rb_erased. 1658 */ 1659 stable_node_any = stable_node_dup_any(stable_node, 1660 root); 1661 if (!stable_node_any) { 1662 /* rb_erase just run */ 1663 goto again; 1664 } 1665 /* 1666 * Take any of the stable_node dups page of 1667 * this stable_node chain to let the tree walk 1668 * continue. All KSM pages belonging to the 1669 * stable_node dups in a stable_node chain 1670 * have the same content and they're 1671 * write protected at all times. Any will work 1672 * fine to continue the walk. 1673 */ 1674 tree_page = get_ksm_page(stable_node_any, 1675 GET_KSM_PAGE_NOLOCK); 1676 } 1677 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1678 if (!tree_page) { 1679 /* 1680 * If we walked over a stale stable_node, 1681 * get_ksm_page() will call rb_erase() and it 1682 * may rebalance the tree from under us. So 1683 * restart the search from scratch. Returning 1684 * NULL would be safe too, but we'd generate 1685 * false negative insertions just because some 1686 * stable_node was stale. 1687 */ 1688 goto again; 1689 } 1690 1691 ret = memcmp_pages(page, tree_page); 1692 put_page(tree_page); 1693 1694 parent = *new; 1695 if (ret < 0) 1696 new = &parent->rb_left; 1697 else if (ret > 0) 1698 new = &parent->rb_right; 1699 else { 1700 if (page_node) { 1701 VM_BUG_ON(page_node->head != &migrate_nodes); 1702 /* 1703 * Test if the migrated page should be merged 1704 * into a stable node dup. If the mapcount is 1705 * 1 we can migrate it with another KSM page 1706 * without adding it to the chain. 1707 */ 1708 if (page_mapcount(page) > 1) 1709 goto chain_append; 1710 } 1711 1712 if (!stable_node_dup) { 1713 /* 1714 * If the stable_node is a chain and 1715 * we got a payload match in memcmp 1716 * but we cannot merge the scanned 1717 * page in any of the existing 1718 * stable_node dups because they're 1719 * all full, we need to wait the 1720 * scanned page to find itself a match 1721 * in the unstable tree to create a 1722 * brand new KSM page to add later to 1723 * the dups of this stable_node. 1724 */ 1725 return NULL; 1726 } 1727 1728 /* 1729 * Lock and unlock the stable_node's page (which 1730 * might already have been migrated) so that page 1731 * migration is sure to notice its raised count. 1732 * It would be more elegant to return stable_node 1733 * than kpage, but that involves more changes. 1734 */ 1735 tree_page = get_ksm_page(stable_node_dup, 1736 GET_KSM_PAGE_TRYLOCK); 1737 1738 if (PTR_ERR(tree_page) == -EBUSY) 1739 return ERR_PTR(-EBUSY); 1740 1741 if (unlikely(!tree_page)) 1742 /* 1743 * The tree may have been rebalanced, 1744 * so re-evaluate parent and new. 1745 */ 1746 goto again; 1747 unlock_page(tree_page); 1748 1749 if (get_kpfn_nid(stable_node_dup->kpfn) != 1750 NUMA(stable_node_dup->nid)) { 1751 put_page(tree_page); 1752 goto replace; 1753 } 1754 return tree_page; 1755 } 1756 } 1757 1758 if (!page_node) 1759 return NULL; 1760 1761 list_del(&page_node->list); 1762 DO_NUMA(page_node->nid = nid); 1763 rb_link_node(&page_node->node, parent, new); 1764 rb_insert_color(&page_node->node, root); 1765 out: 1766 if (is_page_sharing_candidate(page_node)) { 1767 get_page(page); 1768 return page; 1769 } else 1770 return NULL; 1771 1772 replace: 1773 /* 1774 * If stable_node was a chain and chain_prune collapsed it, 1775 * stable_node has been updated to be the new regular 1776 * stable_node. A collapse of the chain is indistinguishable 1777 * from the case there was no chain in the stable 1778 * rbtree. Otherwise stable_node is the chain and 1779 * stable_node_dup is the dup to replace. 1780 */ 1781 if (stable_node_dup == stable_node) { 1782 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1783 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1784 /* there is no chain */ 1785 if (page_node) { 1786 VM_BUG_ON(page_node->head != &migrate_nodes); 1787 list_del(&page_node->list); 1788 DO_NUMA(page_node->nid = nid); 1789 rb_replace_node(&stable_node_dup->node, 1790 &page_node->node, 1791 root); 1792 if (is_page_sharing_candidate(page_node)) 1793 get_page(page); 1794 else 1795 page = NULL; 1796 } else { 1797 rb_erase(&stable_node_dup->node, root); 1798 page = NULL; 1799 } 1800 } else { 1801 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1802 __stable_node_dup_del(stable_node_dup); 1803 if (page_node) { 1804 VM_BUG_ON(page_node->head != &migrate_nodes); 1805 list_del(&page_node->list); 1806 DO_NUMA(page_node->nid = nid); 1807 stable_node_chain_add_dup(page_node, stable_node); 1808 if (is_page_sharing_candidate(page_node)) 1809 get_page(page); 1810 else 1811 page = NULL; 1812 } else { 1813 page = NULL; 1814 } 1815 } 1816 stable_node_dup->head = &migrate_nodes; 1817 list_add(&stable_node_dup->list, stable_node_dup->head); 1818 return page; 1819 1820 chain_append: 1821 /* stable_node_dup could be null if it reached the limit */ 1822 if (!stable_node_dup) 1823 stable_node_dup = stable_node_any; 1824 /* 1825 * If stable_node was a chain and chain_prune collapsed it, 1826 * stable_node has been updated to be the new regular 1827 * stable_node. A collapse of the chain is indistinguishable 1828 * from the case there was no chain in the stable 1829 * rbtree. Otherwise stable_node is the chain and 1830 * stable_node_dup is the dup to replace. 1831 */ 1832 if (stable_node_dup == stable_node) { 1833 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1834 /* chain is missing so create it */ 1835 stable_node = alloc_stable_node_chain(stable_node_dup, 1836 root); 1837 if (!stable_node) 1838 return NULL; 1839 } 1840 /* 1841 * Add this stable_node dup that was 1842 * migrated to the stable_node chain 1843 * of the current nid for this page 1844 * content. 1845 */ 1846 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1847 VM_BUG_ON(page_node->head != &migrate_nodes); 1848 list_del(&page_node->list); 1849 DO_NUMA(page_node->nid = nid); 1850 stable_node_chain_add_dup(page_node, stable_node); 1851 goto out; 1852 } 1853 1854 /* 1855 * stable_tree_insert - insert stable tree node pointing to new ksm page 1856 * into the stable tree. 1857 * 1858 * This function returns the stable tree node just allocated on success, 1859 * NULL otherwise. 1860 */ 1861 static struct ksm_stable_node *stable_tree_insert(struct page *kpage) 1862 { 1863 int nid; 1864 unsigned long kpfn; 1865 struct rb_root *root; 1866 struct rb_node **new; 1867 struct rb_node *parent; 1868 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1869 bool need_chain = false; 1870 1871 kpfn = page_to_pfn(kpage); 1872 nid = get_kpfn_nid(kpfn); 1873 root = root_stable_tree + nid; 1874 again: 1875 parent = NULL; 1876 new = &root->rb_node; 1877 1878 while (*new) { 1879 struct page *tree_page; 1880 int ret; 1881 1882 cond_resched(); 1883 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1884 stable_node_any = NULL; 1885 tree_page = chain(&stable_node_dup, stable_node, root); 1886 if (!stable_node_dup) { 1887 /* 1888 * Either all stable_node dups were full in 1889 * this stable_node chain, or this chain was 1890 * empty and should be rb_erased. 1891 */ 1892 stable_node_any = stable_node_dup_any(stable_node, 1893 root); 1894 if (!stable_node_any) { 1895 /* rb_erase just run */ 1896 goto again; 1897 } 1898 /* 1899 * Take any of the stable_node dups page of 1900 * this stable_node chain to let the tree walk 1901 * continue. All KSM pages belonging to the 1902 * stable_node dups in a stable_node chain 1903 * have the same content and they're 1904 * write protected at all times. Any will work 1905 * fine to continue the walk. 1906 */ 1907 tree_page = get_ksm_page(stable_node_any, 1908 GET_KSM_PAGE_NOLOCK); 1909 } 1910 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1911 if (!tree_page) { 1912 /* 1913 * If we walked over a stale stable_node, 1914 * get_ksm_page() will call rb_erase() and it 1915 * may rebalance the tree from under us. So 1916 * restart the search from scratch. Returning 1917 * NULL would be safe too, but we'd generate 1918 * false negative insertions just because some 1919 * stable_node was stale. 1920 */ 1921 goto again; 1922 } 1923 1924 ret = memcmp_pages(kpage, tree_page); 1925 put_page(tree_page); 1926 1927 parent = *new; 1928 if (ret < 0) 1929 new = &parent->rb_left; 1930 else if (ret > 0) 1931 new = &parent->rb_right; 1932 else { 1933 need_chain = true; 1934 break; 1935 } 1936 } 1937 1938 stable_node_dup = alloc_stable_node(); 1939 if (!stable_node_dup) 1940 return NULL; 1941 1942 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1943 stable_node_dup->kpfn = kpfn; 1944 set_page_stable_node(kpage, stable_node_dup); 1945 stable_node_dup->rmap_hlist_len = 0; 1946 DO_NUMA(stable_node_dup->nid = nid); 1947 if (!need_chain) { 1948 rb_link_node(&stable_node_dup->node, parent, new); 1949 rb_insert_color(&stable_node_dup->node, root); 1950 } else { 1951 if (!is_stable_node_chain(stable_node)) { 1952 struct ksm_stable_node *orig = stable_node; 1953 /* chain is missing so create it */ 1954 stable_node = alloc_stable_node_chain(orig, root); 1955 if (!stable_node) { 1956 free_stable_node(stable_node_dup); 1957 return NULL; 1958 } 1959 } 1960 stable_node_chain_add_dup(stable_node_dup, stable_node); 1961 } 1962 1963 return stable_node_dup; 1964 } 1965 1966 /* 1967 * unstable_tree_search_insert - search for identical page, 1968 * else insert rmap_item into the unstable tree. 1969 * 1970 * This function searches for a page in the unstable tree identical to the 1971 * page currently being scanned; and if no identical page is found in the 1972 * tree, we insert rmap_item as a new object into the unstable tree. 1973 * 1974 * This function returns pointer to rmap_item found to be identical 1975 * to the currently scanned page, NULL otherwise. 1976 * 1977 * This function does both searching and inserting, because they share 1978 * the same walking algorithm in an rbtree. 1979 */ 1980 static 1981 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 1982 struct page *page, 1983 struct page **tree_pagep) 1984 { 1985 struct rb_node **new; 1986 struct rb_root *root; 1987 struct rb_node *parent = NULL; 1988 int nid; 1989 1990 nid = get_kpfn_nid(page_to_pfn(page)); 1991 root = root_unstable_tree + nid; 1992 new = &root->rb_node; 1993 1994 while (*new) { 1995 struct ksm_rmap_item *tree_rmap_item; 1996 struct page *tree_page; 1997 int ret; 1998 1999 cond_resched(); 2000 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2001 tree_page = get_mergeable_page(tree_rmap_item); 2002 if (!tree_page) 2003 return NULL; 2004 2005 /* 2006 * Don't substitute a ksm page for a forked page. 2007 */ 2008 if (page == tree_page) { 2009 put_page(tree_page); 2010 return NULL; 2011 } 2012 2013 ret = memcmp_pages(page, tree_page); 2014 2015 parent = *new; 2016 if (ret < 0) { 2017 put_page(tree_page); 2018 new = &parent->rb_left; 2019 } else if (ret > 0) { 2020 put_page(tree_page); 2021 new = &parent->rb_right; 2022 } else if (!ksm_merge_across_nodes && 2023 page_to_nid(tree_page) != nid) { 2024 /* 2025 * If tree_page has been migrated to another NUMA node, 2026 * it will be flushed out and put in the right unstable 2027 * tree next time: only merge with it when across_nodes. 2028 */ 2029 put_page(tree_page); 2030 return NULL; 2031 } else { 2032 *tree_pagep = tree_page; 2033 return tree_rmap_item; 2034 } 2035 } 2036 2037 rmap_item->address |= UNSTABLE_FLAG; 2038 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2039 DO_NUMA(rmap_item->nid = nid); 2040 rb_link_node(&rmap_item->node, parent, new); 2041 rb_insert_color(&rmap_item->node, root); 2042 2043 ksm_pages_unshared++; 2044 return NULL; 2045 } 2046 2047 /* 2048 * stable_tree_append - add another rmap_item to the linked list of 2049 * rmap_items hanging off a given node of the stable tree, all sharing 2050 * the same ksm page. 2051 */ 2052 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2053 struct ksm_stable_node *stable_node, 2054 bool max_page_sharing_bypass) 2055 { 2056 /* 2057 * rmap won't find this mapping if we don't insert the 2058 * rmap_item in the right stable_node 2059 * duplicate. page_migration could break later if rmap breaks, 2060 * so we can as well crash here. We really need to check for 2061 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2062 * for other negative values as an underflow if detected here 2063 * for the first time (and not when decreasing rmap_hlist_len) 2064 * would be sign of memory corruption in the stable_node. 2065 */ 2066 BUG_ON(stable_node->rmap_hlist_len < 0); 2067 2068 stable_node->rmap_hlist_len++; 2069 if (!max_page_sharing_bypass) 2070 /* possibly non fatal but unexpected overflow, only warn */ 2071 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2072 ksm_max_page_sharing); 2073 2074 rmap_item->head = stable_node; 2075 rmap_item->address |= STABLE_FLAG; 2076 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2077 2078 if (rmap_item->hlist.next) 2079 ksm_pages_sharing++; 2080 else 2081 ksm_pages_shared++; 2082 2083 rmap_item->mm->ksm_merging_pages++; 2084 } 2085 2086 /* 2087 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2088 * if not, compare checksum to previous and if it's the same, see if page can 2089 * be inserted into the unstable tree, or merged with a page already there and 2090 * both transferred to the stable tree. 2091 * 2092 * @page: the page that we are searching identical page to. 2093 * @rmap_item: the reverse mapping into the virtual address of this page 2094 */ 2095 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2096 { 2097 struct mm_struct *mm = rmap_item->mm; 2098 struct ksm_rmap_item *tree_rmap_item; 2099 struct page *tree_page = NULL; 2100 struct ksm_stable_node *stable_node; 2101 struct page *kpage; 2102 unsigned int checksum; 2103 int err; 2104 bool max_page_sharing_bypass = false; 2105 2106 stable_node = page_stable_node(page); 2107 if (stable_node) { 2108 if (stable_node->head != &migrate_nodes && 2109 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2110 NUMA(stable_node->nid)) { 2111 stable_node_dup_del(stable_node); 2112 stable_node->head = &migrate_nodes; 2113 list_add(&stable_node->list, stable_node->head); 2114 } 2115 if (stable_node->head != &migrate_nodes && 2116 rmap_item->head == stable_node) 2117 return; 2118 /* 2119 * If it's a KSM fork, allow it to go over the sharing limit 2120 * without warnings. 2121 */ 2122 if (!is_page_sharing_candidate(stable_node)) 2123 max_page_sharing_bypass = true; 2124 } 2125 2126 /* We first start with searching the page inside the stable tree */ 2127 kpage = stable_tree_search(page); 2128 if (kpage == page && rmap_item->head == stable_node) { 2129 put_page(kpage); 2130 return; 2131 } 2132 2133 remove_rmap_item_from_tree(rmap_item); 2134 2135 if (kpage) { 2136 if (PTR_ERR(kpage) == -EBUSY) 2137 return; 2138 2139 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2140 if (!err) { 2141 /* 2142 * The page was successfully merged: 2143 * add its rmap_item to the stable tree. 2144 */ 2145 lock_page(kpage); 2146 stable_tree_append(rmap_item, page_stable_node(kpage), 2147 max_page_sharing_bypass); 2148 unlock_page(kpage); 2149 } 2150 put_page(kpage); 2151 return; 2152 } 2153 2154 /* 2155 * If the hash value of the page has changed from the last time 2156 * we calculated it, this page is changing frequently: therefore we 2157 * don't want to insert it in the unstable tree, and we don't want 2158 * to waste our time searching for something identical to it there. 2159 */ 2160 checksum = calc_checksum(page); 2161 if (rmap_item->oldchecksum != checksum) { 2162 rmap_item->oldchecksum = checksum; 2163 return; 2164 } 2165 2166 /* 2167 * Same checksum as an empty page. We attempt to merge it with the 2168 * appropriate zero page if the user enabled this via sysfs. 2169 */ 2170 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2171 struct vm_area_struct *vma; 2172 2173 mmap_read_lock(mm); 2174 vma = find_mergeable_vma(mm, rmap_item->address); 2175 if (vma) { 2176 err = try_to_merge_one_page(vma, page, 2177 ZERO_PAGE(rmap_item->address)); 2178 trace_ksm_merge_one_page( 2179 page_to_pfn(ZERO_PAGE(rmap_item->address)), 2180 rmap_item, mm, err); 2181 } else { 2182 /* 2183 * If the vma is out of date, we do not need to 2184 * continue. 2185 */ 2186 err = 0; 2187 } 2188 mmap_read_unlock(mm); 2189 /* 2190 * In case of failure, the page was not really empty, so we 2191 * need to continue. Otherwise we're done. 2192 */ 2193 if (!err) 2194 return; 2195 } 2196 tree_rmap_item = 2197 unstable_tree_search_insert(rmap_item, page, &tree_page); 2198 if (tree_rmap_item) { 2199 bool split; 2200 2201 kpage = try_to_merge_two_pages(rmap_item, page, 2202 tree_rmap_item, tree_page); 2203 /* 2204 * If both pages we tried to merge belong to the same compound 2205 * page, then we actually ended up increasing the reference 2206 * count of the same compound page twice, and split_huge_page 2207 * failed. 2208 * Here we set a flag if that happened, and we use it later to 2209 * try split_huge_page again. Since we call put_page right 2210 * afterwards, the reference count will be correct and 2211 * split_huge_page should succeed. 2212 */ 2213 split = PageTransCompound(page) 2214 && compound_head(page) == compound_head(tree_page); 2215 put_page(tree_page); 2216 if (kpage) { 2217 /* 2218 * The pages were successfully merged: insert new 2219 * node in the stable tree and add both rmap_items. 2220 */ 2221 lock_page(kpage); 2222 stable_node = stable_tree_insert(kpage); 2223 if (stable_node) { 2224 stable_tree_append(tree_rmap_item, stable_node, 2225 false); 2226 stable_tree_append(rmap_item, stable_node, 2227 false); 2228 } 2229 unlock_page(kpage); 2230 2231 /* 2232 * If we fail to insert the page into the stable tree, 2233 * we will have 2 virtual addresses that are pointing 2234 * to a ksm page left outside the stable tree, 2235 * in which case we need to break_cow on both. 2236 */ 2237 if (!stable_node) { 2238 break_cow(tree_rmap_item); 2239 break_cow(rmap_item); 2240 } 2241 } else if (split) { 2242 /* 2243 * We are here if we tried to merge two pages and 2244 * failed because they both belonged to the same 2245 * compound page. We will split the page now, but no 2246 * merging will take place. 2247 * We do not want to add the cost of a full lock; if 2248 * the page is locked, it is better to skip it and 2249 * perhaps try again later. 2250 */ 2251 if (!trylock_page(page)) 2252 return; 2253 split_huge_page(page); 2254 unlock_page(page); 2255 } 2256 } 2257 } 2258 2259 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2260 struct ksm_rmap_item **rmap_list, 2261 unsigned long addr) 2262 { 2263 struct ksm_rmap_item *rmap_item; 2264 2265 while (*rmap_list) { 2266 rmap_item = *rmap_list; 2267 if ((rmap_item->address & PAGE_MASK) == addr) 2268 return rmap_item; 2269 if (rmap_item->address > addr) 2270 break; 2271 *rmap_list = rmap_item->rmap_list; 2272 remove_rmap_item_from_tree(rmap_item); 2273 free_rmap_item(rmap_item); 2274 } 2275 2276 rmap_item = alloc_rmap_item(); 2277 if (rmap_item) { 2278 /* It has already been zeroed */ 2279 rmap_item->mm = mm_slot->slot.mm; 2280 rmap_item->mm->ksm_rmap_items++; 2281 rmap_item->address = addr; 2282 rmap_item->rmap_list = *rmap_list; 2283 *rmap_list = rmap_item; 2284 } 2285 return rmap_item; 2286 } 2287 2288 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2289 { 2290 struct mm_struct *mm; 2291 struct ksm_mm_slot *mm_slot; 2292 struct mm_slot *slot; 2293 struct vm_area_struct *vma; 2294 struct ksm_rmap_item *rmap_item; 2295 struct vma_iterator vmi; 2296 int nid; 2297 2298 if (list_empty(&ksm_mm_head.slot.mm_node)) 2299 return NULL; 2300 2301 mm_slot = ksm_scan.mm_slot; 2302 if (mm_slot == &ksm_mm_head) { 2303 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2304 2305 /* 2306 * A number of pages can hang around indefinitely in per-cpu 2307 * LRU cache, raised page count preventing write_protect_page 2308 * from merging them. Though it doesn't really matter much, 2309 * it is puzzling to see some stuck in pages_volatile until 2310 * other activity jostles them out, and they also prevented 2311 * LTP's KSM test from succeeding deterministically; so drain 2312 * them here (here rather than on entry to ksm_do_scan(), 2313 * so we don't IPI too often when pages_to_scan is set low). 2314 */ 2315 lru_add_drain_all(); 2316 2317 /* 2318 * Whereas stale stable_nodes on the stable_tree itself 2319 * get pruned in the regular course of stable_tree_search(), 2320 * those moved out to the migrate_nodes list can accumulate: 2321 * so prune them once before each full scan. 2322 */ 2323 if (!ksm_merge_across_nodes) { 2324 struct ksm_stable_node *stable_node, *next; 2325 struct page *page; 2326 2327 list_for_each_entry_safe(stable_node, next, 2328 &migrate_nodes, list) { 2329 page = get_ksm_page(stable_node, 2330 GET_KSM_PAGE_NOLOCK); 2331 if (page) 2332 put_page(page); 2333 cond_resched(); 2334 } 2335 } 2336 2337 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2338 root_unstable_tree[nid] = RB_ROOT; 2339 2340 spin_lock(&ksm_mmlist_lock); 2341 slot = list_entry(mm_slot->slot.mm_node.next, 2342 struct mm_slot, mm_node); 2343 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2344 ksm_scan.mm_slot = mm_slot; 2345 spin_unlock(&ksm_mmlist_lock); 2346 /* 2347 * Although we tested list_empty() above, a racing __ksm_exit 2348 * of the last mm on the list may have removed it since then. 2349 */ 2350 if (mm_slot == &ksm_mm_head) 2351 return NULL; 2352 next_mm: 2353 ksm_scan.address = 0; 2354 ksm_scan.rmap_list = &mm_slot->rmap_list; 2355 } 2356 2357 slot = &mm_slot->slot; 2358 mm = slot->mm; 2359 vma_iter_init(&vmi, mm, ksm_scan.address); 2360 2361 mmap_read_lock(mm); 2362 if (ksm_test_exit(mm)) 2363 goto no_vmas; 2364 2365 for_each_vma(vmi, vma) { 2366 if (!(vma->vm_flags & VM_MERGEABLE)) 2367 continue; 2368 if (ksm_scan.address < vma->vm_start) 2369 ksm_scan.address = vma->vm_start; 2370 if (!vma->anon_vma) 2371 ksm_scan.address = vma->vm_end; 2372 2373 while (ksm_scan.address < vma->vm_end) { 2374 if (ksm_test_exit(mm)) 2375 break; 2376 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2377 if (IS_ERR_OR_NULL(*page)) { 2378 ksm_scan.address += PAGE_SIZE; 2379 cond_resched(); 2380 continue; 2381 } 2382 if (is_zone_device_page(*page)) 2383 goto next_page; 2384 if (PageAnon(*page)) { 2385 flush_anon_page(vma, *page, ksm_scan.address); 2386 flush_dcache_page(*page); 2387 rmap_item = get_next_rmap_item(mm_slot, 2388 ksm_scan.rmap_list, ksm_scan.address); 2389 if (rmap_item) { 2390 ksm_scan.rmap_list = 2391 &rmap_item->rmap_list; 2392 ksm_scan.address += PAGE_SIZE; 2393 } else 2394 put_page(*page); 2395 mmap_read_unlock(mm); 2396 return rmap_item; 2397 } 2398 next_page: 2399 put_page(*page); 2400 ksm_scan.address += PAGE_SIZE; 2401 cond_resched(); 2402 } 2403 } 2404 2405 if (ksm_test_exit(mm)) { 2406 no_vmas: 2407 ksm_scan.address = 0; 2408 ksm_scan.rmap_list = &mm_slot->rmap_list; 2409 } 2410 /* 2411 * Nuke all the rmap_items that are above this current rmap: 2412 * because there were no VM_MERGEABLE vmas with such addresses. 2413 */ 2414 remove_trailing_rmap_items(ksm_scan.rmap_list); 2415 2416 spin_lock(&ksm_mmlist_lock); 2417 slot = list_entry(mm_slot->slot.mm_node.next, 2418 struct mm_slot, mm_node); 2419 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2420 if (ksm_scan.address == 0) { 2421 /* 2422 * We've completed a full scan of all vmas, holding mmap_lock 2423 * throughout, and found no VM_MERGEABLE: so do the same as 2424 * __ksm_exit does to remove this mm from all our lists now. 2425 * This applies either when cleaning up after __ksm_exit 2426 * (but beware: we can reach here even before __ksm_exit), 2427 * or when all VM_MERGEABLE areas have been unmapped (and 2428 * mmap_lock then protects against race with MADV_MERGEABLE). 2429 */ 2430 hash_del(&mm_slot->slot.hash); 2431 list_del(&mm_slot->slot.mm_node); 2432 spin_unlock(&ksm_mmlist_lock); 2433 2434 mm_slot_free(mm_slot_cache, mm_slot); 2435 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2436 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2437 mmap_read_unlock(mm); 2438 mmdrop(mm); 2439 } else { 2440 mmap_read_unlock(mm); 2441 /* 2442 * mmap_read_unlock(mm) first because after 2443 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2444 * already have been freed under us by __ksm_exit() 2445 * because the "mm_slot" is still hashed and 2446 * ksm_scan.mm_slot doesn't point to it anymore. 2447 */ 2448 spin_unlock(&ksm_mmlist_lock); 2449 } 2450 2451 /* Repeat until we've completed scanning the whole list */ 2452 mm_slot = ksm_scan.mm_slot; 2453 if (mm_slot != &ksm_mm_head) 2454 goto next_mm; 2455 2456 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2457 ksm_scan.seqnr++; 2458 return NULL; 2459 } 2460 2461 /** 2462 * ksm_do_scan - the ksm scanner main worker function. 2463 * @scan_npages: number of pages we want to scan before we return. 2464 */ 2465 static void ksm_do_scan(unsigned int scan_npages) 2466 { 2467 struct ksm_rmap_item *rmap_item; 2468 struct page *page; 2469 2470 while (scan_npages-- && likely(!freezing(current))) { 2471 cond_resched(); 2472 rmap_item = scan_get_next_rmap_item(&page); 2473 if (!rmap_item) 2474 return; 2475 cmp_and_merge_page(page, rmap_item); 2476 put_page(page); 2477 } 2478 } 2479 2480 static int ksmd_should_run(void) 2481 { 2482 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2483 } 2484 2485 static int ksm_scan_thread(void *nothing) 2486 { 2487 unsigned int sleep_ms; 2488 2489 set_freezable(); 2490 set_user_nice(current, 5); 2491 2492 while (!kthread_should_stop()) { 2493 mutex_lock(&ksm_thread_mutex); 2494 wait_while_offlining(); 2495 if (ksmd_should_run()) 2496 ksm_do_scan(ksm_thread_pages_to_scan); 2497 mutex_unlock(&ksm_thread_mutex); 2498 2499 try_to_freeze(); 2500 2501 if (ksmd_should_run()) { 2502 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2503 wait_event_interruptible_timeout(ksm_iter_wait, 2504 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2505 msecs_to_jiffies(sleep_ms)); 2506 } else { 2507 wait_event_freezable(ksm_thread_wait, 2508 ksmd_should_run() || kthread_should_stop()); 2509 } 2510 } 2511 return 0; 2512 } 2513 2514 static void __ksm_add_vma(struct vm_area_struct *vma) 2515 { 2516 unsigned long vm_flags = vma->vm_flags; 2517 2518 if (vm_flags & VM_MERGEABLE) 2519 return; 2520 2521 if (vma_ksm_compatible(vma)) 2522 vm_flags_set(vma, VM_MERGEABLE); 2523 } 2524 2525 static int __ksm_del_vma(struct vm_area_struct *vma) 2526 { 2527 int err; 2528 2529 if (!(vma->vm_flags & VM_MERGEABLE)) 2530 return 0; 2531 2532 if (vma->anon_vma) { 2533 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end); 2534 if (err) 2535 return err; 2536 } 2537 2538 vm_flags_clear(vma, VM_MERGEABLE); 2539 return 0; 2540 } 2541 /** 2542 * ksm_add_vma - Mark vma as mergeable if compatible 2543 * 2544 * @vma: Pointer to vma 2545 */ 2546 void ksm_add_vma(struct vm_area_struct *vma) 2547 { 2548 struct mm_struct *mm = vma->vm_mm; 2549 2550 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2551 __ksm_add_vma(vma); 2552 } 2553 2554 static void ksm_add_vmas(struct mm_struct *mm) 2555 { 2556 struct vm_area_struct *vma; 2557 2558 VMA_ITERATOR(vmi, mm, 0); 2559 for_each_vma(vmi, vma) 2560 __ksm_add_vma(vma); 2561 } 2562 2563 static int ksm_del_vmas(struct mm_struct *mm) 2564 { 2565 struct vm_area_struct *vma; 2566 int err; 2567 2568 VMA_ITERATOR(vmi, mm, 0); 2569 for_each_vma(vmi, vma) { 2570 err = __ksm_del_vma(vma); 2571 if (err) 2572 return err; 2573 } 2574 return 0; 2575 } 2576 2577 /** 2578 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2579 * compatible VMA's 2580 * 2581 * @mm: Pointer to mm 2582 * 2583 * Returns 0 on success, otherwise error code 2584 */ 2585 int ksm_enable_merge_any(struct mm_struct *mm) 2586 { 2587 int err; 2588 2589 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2590 return 0; 2591 2592 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2593 err = __ksm_enter(mm); 2594 if (err) 2595 return err; 2596 } 2597 2598 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2599 ksm_add_vmas(mm); 2600 2601 return 0; 2602 } 2603 2604 /** 2605 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2606 * previously enabled via ksm_enable_merge_any(). 2607 * 2608 * Disabling merging implies unmerging any merged pages, like setting 2609 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2610 * merging on all compatible VMA's remains enabled. 2611 * 2612 * @mm: Pointer to mm 2613 * 2614 * Returns 0 on success, otherwise error code 2615 */ 2616 int ksm_disable_merge_any(struct mm_struct *mm) 2617 { 2618 int err; 2619 2620 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2621 return 0; 2622 2623 err = ksm_del_vmas(mm); 2624 if (err) { 2625 ksm_add_vmas(mm); 2626 return err; 2627 } 2628 2629 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2630 return 0; 2631 } 2632 2633 int ksm_disable(struct mm_struct *mm) 2634 { 2635 mmap_assert_write_locked(mm); 2636 2637 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2638 return 0; 2639 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2640 return ksm_disable_merge_any(mm); 2641 return ksm_del_vmas(mm); 2642 } 2643 2644 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2645 unsigned long end, int advice, unsigned long *vm_flags) 2646 { 2647 struct mm_struct *mm = vma->vm_mm; 2648 int err; 2649 2650 switch (advice) { 2651 case MADV_MERGEABLE: 2652 if (vma->vm_flags & VM_MERGEABLE) 2653 return 0; 2654 if (!vma_ksm_compatible(vma)) 2655 return 0; 2656 2657 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2658 err = __ksm_enter(mm); 2659 if (err) 2660 return err; 2661 } 2662 2663 *vm_flags |= VM_MERGEABLE; 2664 break; 2665 2666 case MADV_UNMERGEABLE: 2667 if (!(*vm_flags & VM_MERGEABLE)) 2668 return 0; /* just ignore the advice */ 2669 2670 if (vma->anon_vma) { 2671 err = unmerge_ksm_pages(vma, start, end); 2672 if (err) 2673 return err; 2674 } 2675 2676 *vm_flags &= ~VM_MERGEABLE; 2677 break; 2678 } 2679 2680 return 0; 2681 } 2682 EXPORT_SYMBOL_GPL(ksm_madvise); 2683 2684 int __ksm_enter(struct mm_struct *mm) 2685 { 2686 struct ksm_mm_slot *mm_slot; 2687 struct mm_slot *slot; 2688 int needs_wakeup; 2689 2690 mm_slot = mm_slot_alloc(mm_slot_cache); 2691 if (!mm_slot) 2692 return -ENOMEM; 2693 2694 slot = &mm_slot->slot; 2695 2696 /* Check ksm_run too? Would need tighter locking */ 2697 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2698 2699 spin_lock(&ksm_mmlist_lock); 2700 mm_slot_insert(mm_slots_hash, mm, slot); 2701 /* 2702 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2703 * insert just behind the scanning cursor, to let the area settle 2704 * down a little; when fork is followed by immediate exec, we don't 2705 * want ksmd to waste time setting up and tearing down an rmap_list. 2706 * 2707 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2708 * scanning cursor, otherwise KSM pages in newly forked mms will be 2709 * missed: then we might as well insert at the end of the list. 2710 */ 2711 if (ksm_run & KSM_RUN_UNMERGE) 2712 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2713 else 2714 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2715 spin_unlock(&ksm_mmlist_lock); 2716 2717 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2718 mmgrab(mm); 2719 2720 if (needs_wakeup) 2721 wake_up_interruptible(&ksm_thread_wait); 2722 2723 trace_ksm_enter(mm); 2724 return 0; 2725 } 2726 2727 void __ksm_exit(struct mm_struct *mm) 2728 { 2729 struct ksm_mm_slot *mm_slot; 2730 struct mm_slot *slot; 2731 int easy_to_free = 0; 2732 2733 /* 2734 * This process is exiting: if it's straightforward (as is the 2735 * case when ksmd was never running), free mm_slot immediately. 2736 * But if it's at the cursor or has rmap_items linked to it, use 2737 * mmap_lock to synchronize with any break_cows before pagetables 2738 * are freed, and leave the mm_slot on the list for ksmd to free. 2739 * Beware: ksm may already have noticed it exiting and freed the slot. 2740 */ 2741 2742 spin_lock(&ksm_mmlist_lock); 2743 slot = mm_slot_lookup(mm_slots_hash, mm); 2744 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2745 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2746 if (!mm_slot->rmap_list) { 2747 hash_del(&slot->hash); 2748 list_del(&slot->mm_node); 2749 easy_to_free = 1; 2750 } else { 2751 list_move(&slot->mm_node, 2752 &ksm_scan.mm_slot->slot.mm_node); 2753 } 2754 } 2755 spin_unlock(&ksm_mmlist_lock); 2756 2757 if (easy_to_free) { 2758 mm_slot_free(mm_slot_cache, mm_slot); 2759 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2760 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2761 mmdrop(mm); 2762 } else if (mm_slot) { 2763 mmap_write_lock(mm); 2764 mmap_write_unlock(mm); 2765 } 2766 2767 trace_ksm_exit(mm); 2768 } 2769 2770 struct page *ksm_might_need_to_copy(struct page *page, 2771 struct vm_area_struct *vma, unsigned long address) 2772 { 2773 struct folio *folio = page_folio(page); 2774 struct anon_vma *anon_vma = folio_anon_vma(folio); 2775 struct page *new_page; 2776 2777 if (PageKsm(page)) { 2778 if (page_stable_node(page) && 2779 !(ksm_run & KSM_RUN_UNMERGE)) 2780 return page; /* no need to copy it */ 2781 } else if (!anon_vma) { 2782 return page; /* no need to copy it */ 2783 } else if (page->index == linear_page_index(vma, address) && 2784 anon_vma->root == vma->anon_vma->root) { 2785 return page; /* still no need to copy it */ 2786 } 2787 if (!PageUptodate(page)) 2788 return page; /* let do_swap_page report the error */ 2789 2790 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2791 if (new_page && 2792 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2793 put_page(new_page); 2794 new_page = NULL; 2795 } 2796 if (new_page) { 2797 if (copy_mc_user_highpage(new_page, page, address, vma)) { 2798 put_page(new_page); 2799 memory_failure_queue(page_to_pfn(page), 0); 2800 return ERR_PTR(-EHWPOISON); 2801 } 2802 SetPageDirty(new_page); 2803 __SetPageUptodate(new_page); 2804 __SetPageLocked(new_page); 2805 #ifdef CONFIG_SWAP 2806 count_vm_event(KSM_SWPIN_COPY); 2807 #endif 2808 } 2809 2810 return new_page; 2811 } 2812 2813 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2814 { 2815 struct ksm_stable_node *stable_node; 2816 struct ksm_rmap_item *rmap_item; 2817 int search_new_forks = 0; 2818 2819 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2820 2821 /* 2822 * Rely on the page lock to protect against concurrent modifications 2823 * to that page's node of the stable tree. 2824 */ 2825 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2826 2827 stable_node = folio_stable_node(folio); 2828 if (!stable_node) 2829 return; 2830 again: 2831 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2832 struct anon_vma *anon_vma = rmap_item->anon_vma; 2833 struct anon_vma_chain *vmac; 2834 struct vm_area_struct *vma; 2835 2836 cond_resched(); 2837 if (!anon_vma_trylock_read(anon_vma)) { 2838 if (rwc->try_lock) { 2839 rwc->contended = true; 2840 return; 2841 } 2842 anon_vma_lock_read(anon_vma); 2843 } 2844 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2845 0, ULONG_MAX) { 2846 unsigned long addr; 2847 2848 cond_resched(); 2849 vma = vmac->vma; 2850 2851 /* Ignore the stable/unstable/sqnr flags */ 2852 addr = rmap_item->address & PAGE_MASK; 2853 2854 if (addr < vma->vm_start || addr >= vma->vm_end) 2855 continue; 2856 /* 2857 * Initially we examine only the vma which covers this 2858 * rmap_item; but later, if there is still work to do, 2859 * we examine covering vmas in other mms: in case they 2860 * were forked from the original since ksmd passed. 2861 */ 2862 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2863 continue; 2864 2865 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2866 continue; 2867 2868 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2869 anon_vma_unlock_read(anon_vma); 2870 return; 2871 } 2872 if (rwc->done && rwc->done(folio)) { 2873 anon_vma_unlock_read(anon_vma); 2874 return; 2875 } 2876 } 2877 anon_vma_unlock_read(anon_vma); 2878 } 2879 if (!search_new_forks++) 2880 goto again; 2881 } 2882 2883 #ifdef CONFIG_MEMORY_FAILURE 2884 /* 2885 * Collect processes when the error hit an ksm page. 2886 */ 2887 void collect_procs_ksm(struct page *page, struct list_head *to_kill, 2888 int force_early) 2889 { 2890 struct ksm_stable_node *stable_node; 2891 struct ksm_rmap_item *rmap_item; 2892 struct folio *folio = page_folio(page); 2893 struct vm_area_struct *vma; 2894 struct task_struct *tsk; 2895 2896 stable_node = folio_stable_node(folio); 2897 if (!stable_node) 2898 return; 2899 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2900 struct anon_vma *av = rmap_item->anon_vma; 2901 2902 anon_vma_lock_read(av); 2903 read_lock(&tasklist_lock); 2904 for_each_process(tsk) { 2905 struct anon_vma_chain *vmac; 2906 unsigned long addr; 2907 struct task_struct *t = 2908 task_early_kill(tsk, force_early); 2909 if (!t) 2910 continue; 2911 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 2912 ULONG_MAX) 2913 { 2914 vma = vmac->vma; 2915 if (vma->vm_mm == t->mm) { 2916 addr = rmap_item->address & PAGE_MASK; 2917 add_to_kill_ksm(t, page, vma, to_kill, 2918 addr); 2919 } 2920 } 2921 } 2922 read_unlock(&tasklist_lock); 2923 anon_vma_unlock_read(av); 2924 } 2925 } 2926 #endif 2927 2928 #ifdef CONFIG_MIGRATION 2929 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2930 { 2931 struct ksm_stable_node *stable_node; 2932 2933 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2934 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2935 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2936 2937 stable_node = folio_stable_node(folio); 2938 if (stable_node) { 2939 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2940 stable_node->kpfn = folio_pfn(newfolio); 2941 /* 2942 * newfolio->mapping was set in advance; now we need smp_wmb() 2943 * to make sure that the new stable_node->kpfn is visible 2944 * to get_ksm_page() before it can see that folio->mapping 2945 * has gone stale (or that folio_test_swapcache has been cleared). 2946 */ 2947 smp_wmb(); 2948 set_page_stable_node(&folio->page, NULL); 2949 } 2950 } 2951 #endif /* CONFIG_MIGRATION */ 2952 2953 #ifdef CONFIG_MEMORY_HOTREMOVE 2954 static void wait_while_offlining(void) 2955 { 2956 while (ksm_run & KSM_RUN_OFFLINE) { 2957 mutex_unlock(&ksm_thread_mutex); 2958 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2959 TASK_UNINTERRUPTIBLE); 2960 mutex_lock(&ksm_thread_mutex); 2961 } 2962 } 2963 2964 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 2965 unsigned long start_pfn, 2966 unsigned long end_pfn) 2967 { 2968 if (stable_node->kpfn >= start_pfn && 2969 stable_node->kpfn < end_pfn) { 2970 /* 2971 * Don't get_ksm_page, page has already gone: 2972 * which is why we keep kpfn instead of page* 2973 */ 2974 remove_node_from_stable_tree(stable_node); 2975 return true; 2976 } 2977 return false; 2978 } 2979 2980 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 2981 unsigned long start_pfn, 2982 unsigned long end_pfn, 2983 struct rb_root *root) 2984 { 2985 struct ksm_stable_node *dup; 2986 struct hlist_node *hlist_safe; 2987 2988 if (!is_stable_node_chain(stable_node)) { 2989 VM_BUG_ON(is_stable_node_dup(stable_node)); 2990 return stable_node_dup_remove_range(stable_node, start_pfn, 2991 end_pfn); 2992 } 2993 2994 hlist_for_each_entry_safe(dup, hlist_safe, 2995 &stable_node->hlist, hlist_dup) { 2996 VM_BUG_ON(!is_stable_node_dup(dup)); 2997 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2998 } 2999 if (hlist_empty(&stable_node->hlist)) { 3000 free_stable_node_chain(stable_node, root); 3001 return true; /* notify caller that tree was rebalanced */ 3002 } else 3003 return false; 3004 } 3005 3006 static void ksm_check_stable_tree(unsigned long start_pfn, 3007 unsigned long end_pfn) 3008 { 3009 struct ksm_stable_node *stable_node, *next; 3010 struct rb_node *node; 3011 int nid; 3012 3013 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3014 node = rb_first(root_stable_tree + nid); 3015 while (node) { 3016 stable_node = rb_entry(node, struct ksm_stable_node, node); 3017 if (stable_node_chain_remove_range(stable_node, 3018 start_pfn, end_pfn, 3019 root_stable_tree + 3020 nid)) 3021 node = rb_first(root_stable_tree + nid); 3022 else 3023 node = rb_next(node); 3024 cond_resched(); 3025 } 3026 } 3027 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3028 if (stable_node->kpfn >= start_pfn && 3029 stable_node->kpfn < end_pfn) 3030 remove_node_from_stable_tree(stable_node); 3031 cond_resched(); 3032 } 3033 } 3034 3035 static int ksm_memory_callback(struct notifier_block *self, 3036 unsigned long action, void *arg) 3037 { 3038 struct memory_notify *mn = arg; 3039 3040 switch (action) { 3041 case MEM_GOING_OFFLINE: 3042 /* 3043 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3044 * and remove_all_stable_nodes() while memory is going offline: 3045 * it is unsafe for them to touch the stable tree at this time. 3046 * But unmerge_ksm_pages(), rmap lookups and other entry points 3047 * which do not need the ksm_thread_mutex are all safe. 3048 */ 3049 mutex_lock(&ksm_thread_mutex); 3050 ksm_run |= KSM_RUN_OFFLINE; 3051 mutex_unlock(&ksm_thread_mutex); 3052 break; 3053 3054 case MEM_OFFLINE: 3055 /* 3056 * Most of the work is done by page migration; but there might 3057 * be a few stable_nodes left over, still pointing to struct 3058 * pages which have been offlined: prune those from the tree, 3059 * otherwise get_ksm_page() might later try to access a 3060 * non-existent struct page. 3061 */ 3062 ksm_check_stable_tree(mn->start_pfn, 3063 mn->start_pfn + mn->nr_pages); 3064 fallthrough; 3065 case MEM_CANCEL_OFFLINE: 3066 mutex_lock(&ksm_thread_mutex); 3067 ksm_run &= ~KSM_RUN_OFFLINE; 3068 mutex_unlock(&ksm_thread_mutex); 3069 3070 smp_mb(); /* wake_up_bit advises this */ 3071 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3072 break; 3073 } 3074 return NOTIFY_OK; 3075 } 3076 #else 3077 static void wait_while_offlining(void) 3078 { 3079 } 3080 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3081 3082 #ifdef CONFIG_PROC_FS 3083 long ksm_process_profit(struct mm_struct *mm) 3084 { 3085 return mm->ksm_merging_pages * PAGE_SIZE - 3086 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3087 } 3088 #endif /* CONFIG_PROC_FS */ 3089 3090 #ifdef CONFIG_SYSFS 3091 /* 3092 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3093 */ 3094 3095 #define KSM_ATTR_RO(_name) \ 3096 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3097 #define KSM_ATTR(_name) \ 3098 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3099 3100 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3101 struct kobj_attribute *attr, char *buf) 3102 { 3103 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3104 } 3105 3106 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3107 struct kobj_attribute *attr, 3108 const char *buf, size_t count) 3109 { 3110 unsigned int msecs; 3111 int err; 3112 3113 err = kstrtouint(buf, 10, &msecs); 3114 if (err) 3115 return -EINVAL; 3116 3117 ksm_thread_sleep_millisecs = msecs; 3118 wake_up_interruptible(&ksm_iter_wait); 3119 3120 return count; 3121 } 3122 KSM_ATTR(sleep_millisecs); 3123 3124 static ssize_t pages_to_scan_show(struct kobject *kobj, 3125 struct kobj_attribute *attr, char *buf) 3126 { 3127 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3128 } 3129 3130 static ssize_t pages_to_scan_store(struct kobject *kobj, 3131 struct kobj_attribute *attr, 3132 const char *buf, size_t count) 3133 { 3134 unsigned int nr_pages; 3135 int err; 3136 3137 err = kstrtouint(buf, 10, &nr_pages); 3138 if (err) 3139 return -EINVAL; 3140 3141 ksm_thread_pages_to_scan = nr_pages; 3142 3143 return count; 3144 } 3145 KSM_ATTR(pages_to_scan); 3146 3147 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3148 char *buf) 3149 { 3150 return sysfs_emit(buf, "%lu\n", ksm_run); 3151 } 3152 3153 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3154 const char *buf, size_t count) 3155 { 3156 unsigned int flags; 3157 int err; 3158 3159 err = kstrtouint(buf, 10, &flags); 3160 if (err) 3161 return -EINVAL; 3162 if (flags > KSM_RUN_UNMERGE) 3163 return -EINVAL; 3164 3165 /* 3166 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3167 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3168 * breaking COW to free the pages_shared (but leaves mm_slots 3169 * on the list for when ksmd may be set running again). 3170 */ 3171 3172 mutex_lock(&ksm_thread_mutex); 3173 wait_while_offlining(); 3174 if (ksm_run != flags) { 3175 ksm_run = flags; 3176 if (flags & KSM_RUN_UNMERGE) { 3177 set_current_oom_origin(); 3178 err = unmerge_and_remove_all_rmap_items(); 3179 clear_current_oom_origin(); 3180 if (err) { 3181 ksm_run = KSM_RUN_STOP; 3182 count = err; 3183 } 3184 } 3185 } 3186 mutex_unlock(&ksm_thread_mutex); 3187 3188 if (flags & KSM_RUN_MERGE) 3189 wake_up_interruptible(&ksm_thread_wait); 3190 3191 return count; 3192 } 3193 KSM_ATTR(run); 3194 3195 #ifdef CONFIG_NUMA 3196 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3197 struct kobj_attribute *attr, char *buf) 3198 { 3199 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3200 } 3201 3202 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3203 struct kobj_attribute *attr, 3204 const char *buf, size_t count) 3205 { 3206 int err; 3207 unsigned long knob; 3208 3209 err = kstrtoul(buf, 10, &knob); 3210 if (err) 3211 return err; 3212 if (knob > 1) 3213 return -EINVAL; 3214 3215 mutex_lock(&ksm_thread_mutex); 3216 wait_while_offlining(); 3217 if (ksm_merge_across_nodes != knob) { 3218 if (ksm_pages_shared || remove_all_stable_nodes()) 3219 err = -EBUSY; 3220 else if (root_stable_tree == one_stable_tree) { 3221 struct rb_root *buf; 3222 /* 3223 * This is the first time that we switch away from the 3224 * default of merging across nodes: must now allocate 3225 * a buffer to hold as many roots as may be needed. 3226 * Allocate stable and unstable together: 3227 * MAXSMP NODES_SHIFT 10 will use 16kB. 3228 */ 3229 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3230 GFP_KERNEL); 3231 /* Let us assume that RB_ROOT is NULL is zero */ 3232 if (!buf) 3233 err = -ENOMEM; 3234 else { 3235 root_stable_tree = buf; 3236 root_unstable_tree = buf + nr_node_ids; 3237 /* Stable tree is empty but not the unstable */ 3238 root_unstable_tree[0] = one_unstable_tree[0]; 3239 } 3240 } 3241 if (!err) { 3242 ksm_merge_across_nodes = knob; 3243 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3244 } 3245 } 3246 mutex_unlock(&ksm_thread_mutex); 3247 3248 return err ? err : count; 3249 } 3250 KSM_ATTR(merge_across_nodes); 3251 #endif 3252 3253 static ssize_t use_zero_pages_show(struct kobject *kobj, 3254 struct kobj_attribute *attr, char *buf) 3255 { 3256 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3257 } 3258 static ssize_t use_zero_pages_store(struct kobject *kobj, 3259 struct kobj_attribute *attr, 3260 const char *buf, size_t count) 3261 { 3262 int err; 3263 bool value; 3264 3265 err = kstrtobool(buf, &value); 3266 if (err) 3267 return -EINVAL; 3268 3269 ksm_use_zero_pages = value; 3270 3271 return count; 3272 } 3273 KSM_ATTR(use_zero_pages); 3274 3275 static ssize_t max_page_sharing_show(struct kobject *kobj, 3276 struct kobj_attribute *attr, char *buf) 3277 { 3278 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3279 } 3280 3281 static ssize_t max_page_sharing_store(struct kobject *kobj, 3282 struct kobj_attribute *attr, 3283 const char *buf, size_t count) 3284 { 3285 int err; 3286 int knob; 3287 3288 err = kstrtoint(buf, 10, &knob); 3289 if (err) 3290 return err; 3291 /* 3292 * When a KSM page is created it is shared by 2 mappings. This 3293 * being a signed comparison, it implicitly verifies it's not 3294 * negative. 3295 */ 3296 if (knob < 2) 3297 return -EINVAL; 3298 3299 if (READ_ONCE(ksm_max_page_sharing) == knob) 3300 return count; 3301 3302 mutex_lock(&ksm_thread_mutex); 3303 wait_while_offlining(); 3304 if (ksm_max_page_sharing != knob) { 3305 if (ksm_pages_shared || remove_all_stable_nodes()) 3306 err = -EBUSY; 3307 else 3308 ksm_max_page_sharing = knob; 3309 } 3310 mutex_unlock(&ksm_thread_mutex); 3311 3312 return err ? err : count; 3313 } 3314 KSM_ATTR(max_page_sharing); 3315 3316 static ssize_t pages_shared_show(struct kobject *kobj, 3317 struct kobj_attribute *attr, char *buf) 3318 { 3319 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3320 } 3321 KSM_ATTR_RO(pages_shared); 3322 3323 static ssize_t pages_sharing_show(struct kobject *kobj, 3324 struct kobj_attribute *attr, char *buf) 3325 { 3326 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3327 } 3328 KSM_ATTR_RO(pages_sharing); 3329 3330 static ssize_t pages_unshared_show(struct kobject *kobj, 3331 struct kobj_attribute *attr, char *buf) 3332 { 3333 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3334 } 3335 KSM_ATTR_RO(pages_unshared); 3336 3337 static ssize_t pages_volatile_show(struct kobject *kobj, 3338 struct kobj_attribute *attr, char *buf) 3339 { 3340 long ksm_pages_volatile; 3341 3342 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3343 - ksm_pages_sharing - ksm_pages_unshared; 3344 /* 3345 * It was not worth any locking to calculate that statistic, 3346 * but it might therefore sometimes be negative: conceal that. 3347 */ 3348 if (ksm_pages_volatile < 0) 3349 ksm_pages_volatile = 0; 3350 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3351 } 3352 KSM_ATTR_RO(pages_volatile); 3353 3354 static ssize_t general_profit_show(struct kobject *kobj, 3355 struct kobj_attribute *attr, char *buf) 3356 { 3357 long general_profit; 3358 3359 general_profit = ksm_pages_sharing * PAGE_SIZE - 3360 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3361 3362 return sysfs_emit(buf, "%ld\n", general_profit); 3363 } 3364 KSM_ATTR_RO(general_profit); 3365 3366 static ssize_t stable_node_dups_show(struct kobject *kobj, 3367 struct kobj_attribute *attr, char *buf) 3368 { 3369 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3370 } 3371 KSM_ATTR_RO(stable_node_dups); 3372 3373 static ssize_t stable_node_chains_show(struct kobject *kobj, 3374 struct kobj_attribute *attr, char *buf) 3375 { 3376 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3377 } 3378 KSM_ATTR_RO(stable_node_chains); 3379 3380 static ssize_t 3381 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3382 struct kobj_attribute *attr, 3383 char *buf) 3384 { 3385 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3386 } 3387 3388 static ssize_t 3389 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3390 struct kobj_attribute *attr, 3391 const char *buf, size_t count) 3392 { 3393 unsigned int msecs; 3394 int err; 3395 3396 err = kstrtouint(buf, 10, &msecs); 3397 if (err) 3398 return -EINVAL; 3399 3400 ksm_stable_node_chains_prune_millisecs = msecs; 3401 3402 return count; 3403 } 3404 KSM_ATTR(stable_node_chains_prune_millisecs); 3405 3406 static ssize_t full_scans_show(struct kobject *kobj, 3407 struct kobj_attribute *attr, char *buf) 3408 { 3409 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3410 } 3411 KSM_ATTR_RO(full_scans); 3412 3413 static struct attribute *ksm_attrs[] = { 3414 &sleep_millisecs_attr.attr, 3415 &pages_to_scan_attr.attr, 3416 &run_attr.attr, 3417 &pages_shared_attr.attr, 3418 &pages_sharing_attr.attr, 3419 &pages_unshared_attr.attr, 3420 &pages_volatile_attr.attr, 3421 &full_scans_attr.attr, 3422 #ifdef CONFIG_NUMA 3423 &merge_across_nodes_attr.attr, 3424 #endif 3425 &max_page_sharing_attr.attr, 3426 &stable_node_chains_attr.attr, 3427 &stable_node_dups_attr.attr, 3428 &stable_node_chains_prune_millisecs_attr.attr, 3429 &use_zero_pages_attr.attr, 3430 &general_profit_attr.attr, 3431 NULL, 3432 }; 3433 3434 static const struct attribute_group ksm_attr_group = { 3435 .attrs = ksm_attrs, 3436 .name = "ksm", 3437 }; 3438 #endif /* CONFIG_SYSFS */ 3439 3440 static int __init ksm_init(void) 3441 { 3442 struct task_struct *ksm_thread; 3443 int err; 3444 3445 /* The correct value depends on page size and endianness */ 3446 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3447 /* Default to false for backwards compatibility */ 3448 ksm_use_zero_pages = false; 3449 3450 err = ksm_slab_init(); 3451 if (err) 3452 goto out; 3453 3454 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3455 if (IS_ERR(ksm_thread)) { 3456 pr_err("ksm: creating kthread failed\n"); 3457 err = PTR_ERR(ksm_thread); 3458 goto out_free; 3459 } 3460 3461 #ifdef CONFIG_SYSFS 3462 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3463 if (err) { 3464 pr_err("ksm: register sysfs failed\n"); 3465 kthread_stop(ksm_thread); 3466 goto out_free; 3467 } 3468 #else 3469 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3470 3471 #endif /* CONFIG_SYSFS */ 3472 3473 #ifdef CONFIG_MEMORY_HOTREMOVE 3474 /* There is no significance to this priority 100 */ 3475 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3476 #endif 3477 return 0; 3478 3479 out_free: 3480 ksm_slab_free(); 3481 out: 3482 return err; 3483 } 3484 subsys_initcall(ksm_init); 3485