xref: /openbmc/linux/mm/ksm.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Memory merging support.
4   *
5   * This code enables dynamic sharing of identical pages found in different
6   * memory areas, even if they are not shared by fork()
7   *
8   * Copyright (C) 2008-2009 Red Hat, Inc.
9   * Authors:
10   *	Izik Eidus
11   *	Andrea Arcangeli
12   *	Chris Wright
13   *	Hugh Dickins
14   */
15  
16  #include <linux/errno.h>
17  #include <linux/mm.h>
18  #include <linux/fs.h>
19  #include <linux/mman.h>
20  #include <linux/sched.h>
21  #include <linux/sched/mm.h>
22  #include <linux/sched/coredump.h>
23  #include <linux/rwsem.h>
24  #include <linux/pagemap.h>
25  #include <linux/rmap.h>
26  #include <linux/spinlock.h>
27  #include <linux/xxhash.h>
28  #include <linux/delay.h>
29  #include <linux/kthread.h>
30  #include <linux/wait.h>
31  #include <linux/slab.h>
32  #include <linux/rbtree.h>
33  #include <linux/memory.h>
34  #include <linux/mmu_notifier.h>
35  #include <linux/swap.h>
36  #include <linux/ksm.h>
37  #include <linux/hashtable.h>
38  #include <linux/freezer.h>
39  #include <linux/oom.h>
40  #include <linux/numa.h>
41  
42  #include <asm/tlbflush.h>
43  #include "internal.h"
44  
45  #ifdef CONFIG_NUMA
46  #define NUMA(x)		(x)
47  #define DO_NUMA(x)	do { (x); } while (0)
48  #else
49  #define NUMA(x)		(0)
50  #define DO_NUMA(x)	do { } while (0)
51  #endif
52  
53  /**
54   * DOC: Overview
55   *
56   * A few notes about the KSM scanning process,
57   * to make it easier to understand the data structures below:
58   *
59   * In order to reduce excessive scanning, KSM sorts the memory pages by their
60   * contents into a data structure that holds pointers to the pages' locations.
61   *
62   * Since the contents of the pages may change at any moment, KSM cannot just
63   * insert the pages into a normal sorted tree and expect it to find anything.
64   * Therefore KSM uses two data structures - the stable and the unstable tree.
65   *
66   * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67   * by their contents.  Because each such page is write-protected, searching on
68   * this tree is fully assured to be working (except when pages are unmapped),
69   * and therefore this tree is called the stable tree.
70   *
71   * The stable tree node includes information required for reverse
72   * mapping from a KSM page to virtual addresses that map this page.
73   *
74   * In order to avoid large latencies of the rmap walks on KSM pages,
75   * KSM maintains two types of nodes in the stable tree:
76   *
77   * * the regular nodes that keep the reverse mapping structures in a
78   *   linked list
79   * * the "chains" that link nodes ("dups") that represent the same
80   *   write protected memory content, but each "dup" corresponds to a
81   *   different KSM page copy of that content
82   *
83   * Internally, the regular nodes, "dups" and "chains" are represented
84   * using the same :c:type:`struct stable_node` structure.
85   *
86   * In addition to the stable tree, KSM uses a second data structure called the
87   * unstable tree: this tree holds pointers to pages which have been found to
88   * be "unchanged for a period of time".  The unstable tree sorts these pages
89   * by their contents, but since they are not write-protected, KSM cannot rely
90   * upon the unstable tree to work correctly - the unstable tree is liable to
91   * be corrupted as its contents are modified, and so it is called unstable.
92   *
93   * KSM solves this problem by several techniques:
94   *
95   * 1) The unstable tree is flushed every time KSM completes scanning all
96   *    memory areas, and then the tree is rebuilt again from the beginning.
97   * 2) KSM will only insert into the unstable tree, pages whose hash value
98   *    has not changed since the previous scan of all memory areas.
99   * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100   *    colors of the nodes and not on their contents, assuring that even when
101   *    the tree gets "corrupted" it won't get out of balance, so scanning time
102   *    remains the same (also, searching and inserting nodes in an rbtree uses
103   *    the same algorithm, so we have no overhead when we flush and rebuild).
104   * 4) KSM never flushes the stable tree, which means that even if it were to
105   *    take 10 attempts to find a page in the unstable tree, once it is found,
106   *    it is secured in the stable tree.  (When we scan a new page, we first
107   *    compare it against the stable tree, and then against the unstable tree.)
108   *
109   * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110   * stable trees and multiple unstable trees: one of each for each NUMA node.
111   */
112  
113  /**
114   * struct mm_slot - ksm information per mm that is being scanned
115   * @link: link to the mm_slots hash list
116   * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117   * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118   * @mm: the mm that this information is valid for
119   */
120  struct mm_slot {
121  	struct hlist_node link;
122  	struct list_head mm_list;
123  	struct rmap_item *rmap_list;
124  	struct mm_struct *mm;
125  };
126  
127  /**
128   * struct ksm_scan - cursor for scanning
129   * @mm_slot: the current mm_slot we are scanning
130   * @address: the next address inside that to be scanned
131   * @rmap_list: link to the next rmap to be scanned in the rmap_list
132   * @seqnr: count of completed full scans (needed when removing unstable node)
133   *
134   * There is only the one ksm_scan instance of this cursor structure.
135   */
136  struct ksm_scan {
137  	struct mm_slot *mm_slot;
138  	unsigned long address;
139  	struct rmap_item **rmap_list;
140  	unsigned long seqnr;
141  };
142  
143  /**
144   * struct stable_node - node of the stable rbtree
145   * @node: rb node of this ksm page in the stable tree
146   * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147   * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148   * @list: linked into migrate_nodes, pending placement in the proper node tree
149   * @hlist: hlist head of rmap_items using this ksm page
150   * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151   * @chain_prune_time: time of the last full garbage collection
152   * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153   * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154   */
155  struct stable_node {
156  	union {
157  		struct rb_node node;	/* when node of stable tree */
158  		struct {		/* when listed for migration */
159  			struct list_head *head;
160  			struct {
161  				struct hlist_node hlist_dup;
162  				struct list_head list;
163  			};
164  		};
165  	};
166  	struct hlist_head hlist;
167  	union {
168  		unsigned long kpfn;
169  		unsigned long chain_prune_time;
170  	};
171  	/*
172  	 * STABLE_NODE_CHAIN can be any negative number in
173  	 * rmap_hlist_len negative range, but better not -1 to be able
174  	 * to reliably detect underflows.
175  	 */
176  #define STABLE_NODE_CHAIN -1024
177  	int rmap_hlist_len;
178  #ifdef CONFIG_NUMA
179  	int nid;
180  #endif
181  };
182  
183  /**
184   * struct rmap_item - reverse mapping item for virtual addresses
185   * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186   * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187   * @nid: NUMA node id of unstable tree in which linked (may not match page)
188   * @mm: the memory structure this rmap_item is pointing into
189   * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190   * @oldchecksum: previous checksum of the page at that virtual address
191   * @node: rb node of this rmap_item in the unstable tree
192   * @head: pointer to stable_node heading this list in the stable tree
193   * @hlist: link into hlist of rmap_items hanging off that stable_node
194   */
195  struct rmap_item {
196  	struct rmap_item *rmap_list;
197  	union {
198  		struct anon_vma *anon_vma;	/* when stable */
199  #ifdef CONFIG_NUMA
200  		int nid;		/* when node of unstable tree */
201  #endif
202  	};
203  	struct mm_struct *mm;
204  	unsigned long address;		/* + low bits used for flags below */
205  	unsigned int oldchecksum;	/* when unstable */
206  	union {
207  		struct rb_node node;	/* when node of unstable tree */
208  		struct {		/* when listed from stable tree */
209  			struct stable_node *head;
210  			struct hlist_node hlist;
211  		};
212  	};
213  };
214  
215  #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
216  #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
217  #define STABLE_FLAG	0x200	/* is listed from the stable tree */
218  #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
219  				/* to mask all the flags */
220  
221  /* The stable and unstable tree heads */
222  static struct rb_root one_stable_tree[1] = { RB_ROOT };
223  static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224  static struct rb_root *root_stable_tree = one_stable_tree;
225  static struct rb_root *root_unstable_tree = one_unstable_tree;
226  
227  /* Recently migrated nodes of stable tree, pending proper placement */
228  static LIST_HEAD(migrate_nodes);
229  #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230  
231  #define MM_SLOTS_HASH_BITS 10
232  static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233  
234  static struct mm_slot ksm_mm_head = {
235  	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
236  };
237  static struct ksm_scan ksm_scan = {
238  	.mm_slot = &ksm_mm_head,
239  };
240  
241  static struct kmem_cache *rmap_item_cache;
242  static struct kmem_cache *stable_node_cache;
243  static struct kmem_cache *mm_slot_cache;
244  
245  /* The number of nodes in the stable tree */
246  static unsigned long ksm_pages_shared;
247  
248  /* The number of page slots additionally sharing those nodes */
249  static unsigned long ksm_pages_sharing;
250  
251  /* The number of nodes in the unstable tree */
252  static unsigned long ksm_pages_unshared;
253  
254  /* The number of rmap_items in use: to calculate pages_volatile */
255  static unsigned long ksm_rmap_items;
256  
257  /* The number of stable_node chains */
258  static unsigned long ksm_stable_node_chains;
259  
260  /* The number of stable_node dups linked to the stable_node chains */
261  static unsigned long ksm_stable_node_dups;
262  
263  /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264  static int ksm_stable_node_chains_prune_millisecs = 2000;
265  
266  /* Maximum number of page slots sharing a stable node */
267  static int ksm_max_page_sharing = 256;
268  
269  /* Number of pages ksmd should scan in one batch */
270  static unsigned int ksm_thread_pages_to_scan = 100;
271  
272  /* Milliseconds ksmd should sleep between batches */
273  static unsigned int ksm_thread_sleep_millisecs = 20;
274  
275  /* Checksum of an empty (zeroed) page */
276  static unsigned int zero_checksum __read_mostly;
277  
278  /* Whether to merge empty (zeroed) pages with actual zero pages */
279  static bool ksm_use_zero_pages __read_mostly;
280  
281  #ifdef CONFIG_NUMA
282  /* Zeroed when merging across nodes is not allowed */
283  static unsigned int ksm_merge_across_nodes = 1;
284  static int ksm_nr_node_ids = 1;
285  #else
286  #define ksm_merge_across_nodes	1U
287  #define ksm_nr_node_ids		1
288  #endif
289  
290  #define KSM_RUN_STOP	0
291  #define KSM_RUN_MERGE	1
292  #define KSM_RUN_UNMERGE	2
293  #define KSM_RUN_OFFLINE	4
294  static unsigned long ksm_run = KSM_RUN_STOP;
295  static void wait_while_offlining(void);
296  
297  static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298  static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299  static DEFINE_MUTEX(ksm_thread_mutex);
300  static DEFINE_SPINLOCK(ksm_mmlist_lock);
301  
302  #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303  		sizeof(struct __struct), __alignof__(struct __struct),\
304  		(__flags), NULL)
305  
306  static int __init ksm_slab_init(void)
307  {
308  	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
309  	if (!rmap_item_cache)
310  		goto out;
311  
312  	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
313  	if (!stable_node_cache)
314  		goto out_free1;
315  
316  	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
317  	if (!mm_slot_cache)
318  		goto out_free2;
319  
320  	return 0;
321  
322  out_free2:
323  	kmem_cache_destroy(stable_node_cache);
324  out_free1:
325  	kmem_cache_destroy(rmap_item_cache);
326  out:
327  	return -ENOMEM;
328  }
329  
330  static void __init ksm_slab_free(void)
331  {
332  	kmem_cache_destroy(mm_slot_cache);
333  	kmem_cache_destroy(stable_node_cache);
334  	kmem_cache_destroy(rmap_item_cache);
335  	mm_slot_cache = NULL;
336  }
337  
338  static __always_inline bool is_stable_node_chain(struct stable_node *chain)
339  {
340  	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341  }
342  
343  static __always_inline bool is_stable_node_dup(struct stable_node *dup)
344  {
345  	return dup->head == STABLE_NODE_DUP_HEAD;
346  }
347  
348  static inline void stable_node_chain_add_dup(struct stable_node *dup,
349  					     struct stable_node *chain)
350  {
351  	VM_BUG_ON(is_stable_node_dup(dup));
352  	dup->head = STABLE_NODE_DUP_HEAD;
353  	VM_BUG_ON(!is_stable_node_chain(chain));
354  	hlist_add_head(&dup->hlist_dup, &chain->hlist);
355  	ksm_stable_node_dups++;
356  }
357  
358  static inline void __stable_node_dup_del(struct stable_node *dup)
359  {
360  	VM_BUG_ON(!is_stable_node_dup(dup));
361  	hlist_del(&dup->hlist_dup);
362  	ksm_stable_node_dups--;
363  }
364  
365  static inline void stable_node_dup_del(struct stable_node *dup)
366  {
367  	VM_BUG_ON(is_stable_node_chain(dup));
368  	if (is_stable_node_dup(dup))
369  		__stable_node_dup_del(dup);
370  	else
371  		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372  #ifdef CONFIG_DEBUG_VM
373  	dup->head = NULL;
374  #endif
375  }
376  
377  static inline struct rmap_item *alloc_rmap_item(void)
378  {
379  	struct rmap_item *rmap_item;
380  
381  	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382  						__GFP_NORETRY | __GFP_NOWARN);
383  	if (rmap_item)
384  		ksm_rmap_items++;
385  	return rmap_item;
386  }
387  
388  static inline void free_rmap_item(struct rmap_item *rmap_item)
389  {
390  	ksm_rmap_items--;
391  	rmap_item->mm = NULL;	/* debug safety */
392  	kmem_cache_free(rmap_item_cache, rmap_item);
393  }
394  
395  static inline struct stable_node *alloc_stable_node(void)
396  {
397  	/*
398  	 * The allocation can take too long with GFP_KERNEL when memory is under
399  	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
400  	 * grants access to memory reserves, helping to avoid this problem.
401  	 */
402  	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
403  }
404  
405  static inline void free_stable_node(struct stable_node *stable_node)
406  {
407  	VM_BUG_ON(stable_node->rmap_hlist_len &&
408  		  !is_stable_node_chain(stable_node));
409  	kmem_cache_free(stable_node_cache, stable_node);
410  }
411  
412  static inline struct mm_slot *alloc_mm_slot(void)
413  {
414  	if (!mm_slot_cache)	/* initialization failed */
415  		return NULL;
416  	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
417  }
418  
419  static inline void free_mm_slot(struct mm_slot *mm_slot)
420  {
421  	kmem_cache_free(mm_slot_cache, mm_slot);
422  }
423  
424  static struct mm_slot *get_mm_slot(struct mm_struct *mm)
425  {
426  	struct mm_slot *slot;
427  
428  	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
429  		if (slot->mm == mm)
430  			return slot;
431  
432  	return NULL;
433  }
434  
435  static void insert_to_mm_slots_hash(struct mm_struct *mm,
436  				    struct mm_slot *mm_slot)
437  {
438  	mm_slot->mm = mm;
439  	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
440  }
441  
442  /*
443   * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444   * page tables after it has passed through ksm_exit() - which, if necessary,
445   * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
446   * a special flag: they can just back out as soon as mm_users goes to zero.
447   * ksm_test_exit() is used throughout to make this test for exit: in some
448   * places for correctness, in some places just to avoid unnecessary work.
449   */
450  static inline bool ksm_test_exit(struct mm_struct *mm)
451  {
452  	return atomic_read(&mm->mm_users) == 0;
453  }
454  
455  /*
456   * We use break_ksm to break COW on a ksm page: it's a stripped down
457   *
458   *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
459   *		put_page(page);
460   *
461   * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462   * in case the application has unmapped and remapped mm,addr meanwhile.
463   * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
464   * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
465   *
466   * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467   * of the process that owns 'vma'.  We also do not want to enforce
468   * protection keys here anyway.
469   */
470  static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
471  {
472  	struct page *page;
473  	vm_fault_t ret = 0;
474  
475  	do {
476  		cond_resched();
477  		page = follow_page(vma, addr,
478  				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
479  		if (IS_ERR_OR_NULL(page))
480  			break;
481  		if (PageKsm(page))
482  			ret = handle_mm_fault(vma, addr,
483  					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
484  		else
485  			ret = VM_FAULT_WRITE;
486  		put_page(page);
487  	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488  	/*
489  	 * We must loop because handle_mm_fault() may back out if there's
490  	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491  	 *
492  	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493  	 * COW has been broken, even if the vma does not permit VM_WRITE;
494  	 * but note that a concurrent fault might break PageKsm for us.
495  	 *
496  	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497  	 * backing file, which also invalidates anonymous pages: that's
498  	 * okay, that truncation will have unmapped the PageKsm for us.
499  	 *
500  	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501  	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502  	 * current task has TIF_MEMDIE set, and will be OOM killed on return
503  	 * to user; and ksmd, having no mm, would never be chosen for that.
504  	 *
505  	 * But if the mm is in a limited mem_cgroup, then the fault may fail
506  	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507  	 * even ksmd can fail in this way - though it's usually breaking ksm
508  	 * just to undo a merge it made a moment before, so unlikely to oom.
509  	 *
510  	 * That's a pity: we might therefore have more kernel pages allocated
511  	 * than we're counting as nodes in the stable tree; but ksm_do_scan
512  	 * will retry to break_cow on each pass, so should recover the page
513  	 * in due course.  The important thing is to not let VM_MERGEABLE
514  	 * be cleared while any such pages might remain in the area.
515  	 */
516  	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517  }
518  
519  static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520  		unsigned long addr)
521  {
522  	struct vm_area_struct *vma;
523  	if (ksm_test_exit(mm))
524  		return NULL;
525  	vma = find_vma(mm, addr);
526  	if (!vma || vma->vm_start > addr)
527  		return NULL;
528  	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
529  		return NULL;
530  	return vma;
531  }
532  
533  static void break_cow(struct rmap_item *rmap_item)
534  {
535  	struct mm_struct *mm = rmap_item->mm;
536  	unsigned long addr = rmap_item->address;
537  	struct vm_area_struct *vma;
538  
539  	/*
540  	 * It is not an accident that whenever we want to break COW
541  	 * to undo, we also need to drop a reference to the anon_vma.
542  	 */
543  	put_anon_vma(rmap_item->anon_vma);
544  
545  	mmap_read_lock(mm);
546  	vma = find_mergeable_vma(mm, addr);
547  	if (vma)
548  		break_ksm(vma, addr);
549  	mmap_read_unlock(mm);
550  }
551  
552  static struct page *get_mergeable_page(struct rmap_item *rmap_item)
553  {
554  	struct mm_struct *mm = rmap_item->mm;
555  	unsigned long addr = rmap_item->address;
556  	struct vm_area_struct *vma;
557  	struct page *page;
558  
559  	mmap_read_lock(mm);
560  	vma = find_mergeable_vma(mm, addr);
561  	if (!vma)
562  		goto out;
563  
564  	page = follow_page(vma, addr, FOLL_GET);
565  	if (IS_ERR_OR_NULL(page))
566  		goto out;
567  	if (PageAnon(page)) {
568  		flush_anon_page(vma, page, addr);
569  		flush_dcache_page(page);
570  	} else {
571  		put_page(page);
572  out:
573  		page = NULL;
574  	}
575  	mmap_read_unlock(mm);
576  	return page;
577  }
578  
579  /*
580   * This helper is used for getting right index into array of tree roots.
581   * When merge_across_nodes knob is set to 1, there are only two rb-trees for
582   * stable and unstable pages from all nodes with roots in index 0. Otherwise,
583   * every node has its own stable and unstable tree.
584   */
585  static inline int get_kpfn_nid(unsigned long kpfn)
586  {
587  	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
588  }
589  
590  static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
591  						   struct rb_root *root)
592  {
593  	struct stable_node *chain = alloc_stable_node();
594  	VM_BUG_ON(is_stable_node_chain(dup));
595  	if (likely(chain)) {
596  		INIT_HLIST_HEAD(&chain->hlist);
597  		chain->chain_prune_time = jiffies;
598  		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
599  #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
600  		chain->nid = NUMA_NO_NODE; /* debug */
601  #endif
602  		ksm_stable_node_chains++;
603  
604  		/*
605  		 * Put the stable node chain in the first dimension of
606  		 * the stable tree and at the same time remove the old
607  		 * stable node.
608  		 */
609  		rb_replace_node(&dup->node, &chain->node, root);
610  
611  		/*
612  		 * Move the old stable node to the second dimension
613  		 * queued in the hlist_dup. The invariant is that all
614  		 * dup stable_nodes in the chain->hlist point to pages
615  		 * that are write protected and have the exact same
616  		 * content.
617  		 */
618  		stable_node_chain_add_dup(dup, chain);
619  	}
620  	return chain;
621  }
622  
623  static inline void free_stable_node_chain(struct stable_node *chain,
624  					  struct rb_root *root)
625  {
626  	rb_erase(&chain->node, root);
627  	free_stable_node(chain);
628  	ksm_stable_node_chains--;
629  }
630  
631  static void remove_node_from_stable_tree(struct stable_node *stable_node)
632  {
633  	struct rmap_item *rmap_item;
634  
635  	/* check it's not STABLE_NODE_CHAIN or negative */
636  	BUG_ON(stable_node->rmap_hlist_len < 0);
637  
638  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
639  		if (rmap_item->hlist.next)
640  			ksm_pages_sharing--;
641  		else
642  			ksm_pages_shared--;
643  		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644  		stable_node->rmap_hlist_len--;
645  		put_anon_vma(rmap_item->anon_vma);
646  		rmap_item->address &= PAGE_MASK;
647  		cond_resched();
648  	}
649  
650  	/*
651  	 * We need the second aligned pointer of the migrate_nodes
652  	 * list_head to stay clear from the rb_parent_color union
653  	 * (aligned and different than any node) and also different
654  	 * from &migrate_nodes. This will verify that future list.h changes
655  	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
656  	 */
657  #if defined(GCC_VERSION) && GCC_VERSION >= 40903
658  	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659  	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660  #endif
661  
662  	if (stable_node->head == &migrate_nodes)
663  		list_del(&stable_node->list);
664  	else
665  		stable_node_dup_del(stable_node);
666  	free_stable_node(stable_node);
667  }
668  
669  enum get_ksm_page_flags {
670  	GET_KSM_PAGE_NOLOCK,
671  	GET_KSM_PAGE_LOCK,
672  	GET_KSM_PAGE_TRYLOCK
673  };
674  
675  /*
676   * get_ksm_page: checks if the page indicated by the stable node
677   * is still its ksm page, despite having held no reference to it.
678   * In which case we can trust the content of the page, and it
679   * returns the gotten page; but if the page has now been zapped,
680   * remove the stale node from the stable tree and return NULL.
681   * But beware, the stable node's page might be being migrated.
682   *
683   * You would expect the stable_node to hold a reference to the ksm page.
684   * But if it increments the page's count, swapping out has to wait for
685   * ksmd to come around again before it can free the page, which may take
686   * seconds or even minutes: much too unresponsive.  So instead we use a
687   * "keyhole reference": access to the ksm page from the stable node peeps
688   * out through its keyhole to see if that page still holds the right key,
689   * pointing back to this stable node.  This relies on freeing a PageAnon
690   * page to reset its page->mapping to NULL, and relies on no other use of
691   * a page to put something that might look like our key in page->mapping.
692   * is on its way to being freed; but it is an anomaly to bear in mind.
693   */
694  static struct page *get_ksm_page(struct stable_node *stable_node,
695  				 enum get_ksm_page_flags flags)
696  {
697  	struct page *page;
698  	void *expected_mapping;
699  	unsigned long kpfn;
700  
701  	expected_mapping = (void *)((unsigned long)stable_node |
702  					PAGE_MAPPING_KSM);
703  again:
704  	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
705  	page = pfn_to_page(kpfn);
706  	if (READ_ONCE(page->mapping) != expected_mapping)
707  		goto stale;
708  
709  	/*
710  	 * We cannot do anything with the page while its refcount is 0.
711  	 * Usually 0 means free, or tail of a higher-order page: in which
712  	 * case this node is no longer referenced, and should be freed;
713  	 * however, it might mean that the page is under page_ref_freeze().
714  	 * The __remove_mapping() case is easy, again the node is now stale;
715  	 * the same is in reuse_ksm_page() case; but if page is swapcache
716  	 * in migrate_page_move_mapping(), it might still be our page,
717  	 * in which case it's essential to keep the node.
718  	 */
719  	while (!get_page_unless_zero(page)) {
720  		/*
721  		 * Another check for page->mapping != expected_mapping would
722  		 * work here too.  We have chosen the !PageSwapCache test to
723  		 * optimize the common case, when the page is or is about to
724  		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
725  		 * in the ref_freeze section of __remove_mapping(); but Anon
726  		 * page->mapping reset to NULL later, in free_pages_prepare().
727  		 */
728  		if (!PageSwapCache(page))
729  			goto stale;
730  		cpu_relax();
731  	}
732  
733  	if (READ_ONCE(page->mapping) != expected_mapping) {
734  		put_page(page);
735  		goto stale;
736  	}
737  
738  	if (flags == GET_KSM_PAGE_TRYLOCK) {
739  		if (!trylock_page(page)) {
740  			put_page(page);
741  			return ERR_PTR(-EBUSY);
742  		}
743  	} else if (flags == GET_KSM_PAGE_LOCK)
744  		lock_page(page);
745  
746  	if (flags != GET_KSM_PAGE_NOLOCK) {
747  		if (READ_ONCE(page->mapping) != expected_mapping) {
748  			unlock_page(page);
749  			put_page(page);
750  			goto stale;
751  		}
752  	}
753  	return page;
754  
755  stale:
756  	/*
757  	 * We come here from above when page->mapping or !PageSwapCache
758  	 * suggests that the node is stale; but it might be under migration.
759  	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
760  	 * before checking whether node->kpfn has been changed.
761  	 */
762  	smp_rmb();
763  	if (READ_ONCE(stable_node->kpfn) != kpfn)
764  		goto again;
765  	remove_node_from_stable_tree(stable_node);
766  	return NULL;
767  }
768  
769  /*
770   * Removing rmap_item from stable or unstable tree.
771   * This function will clean the information from the stable/unstable tree.
772   */
773  static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
774  {
775  	if (rmap_item->address & STABLE_FLAG) {
776  		struct stable_node *stable_node;
777  		struct page *page;
778  
779  		stable_node = rmap_item->head;
780  		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
781  		if (!page)
782  			goto out;
783  
784  		hlist_del(&rmap_item->hlist);
785  		unlock_page(page);
786  		put_page(page);
787  
788  		if (!hlist_empty(&stable_node->hlist))
789  			ksm_pages_sharing--;
790  		else
791  			ksm_pages_shared--;
792  		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
793  		stable_node->rmap_hlist_len--;
794  
795  		put_anon_vma(rmap_item->anon_vma);
796  		rmap_item->address &= PAGE_MASK;
797  
798  	} else if (rmap_item->address & UNSTABLE_FLAG) {
799  		unsigned char age;
800  		/*
801  		 * Usually ksmd can and must skip the rb_erase, because
802  		 * root_unstable_tree was already reset to RB_ROOT.
803  		 * But be careful when an mm is exiting: do the rb_erase
804  		 * if this rmap_item was inserted by this scan, rather
805  		 * than left over from before.
806  		 */
807  		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
808  		BUG_ON(age > 1);
809  		if (!age)
810  			rb_erase(&rmap_item->node,
811  				 root_unstable_tree + NUMA(rmap_item->nid));
812  		ksm_pages_unshared--;
813  		rmap_item->address &= PAGE_MASK;
814  	}
815  out:
816  	cond_resched();		/* we're called from many long loops */
817  }
818  
819  static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
820  				       struct rmap_item **rmap_list)
821  {
822  	while (*rmap_list) {
823  		struct rmap_item *rmap_item = *rmap_list;
824  		*rmap_list = rmap_item->rmap_list;
825  		remove_rmap_item_from_tree(rmap_item);
826  		free_rmap_item(rmap_item);
827  	}
828  }
829  
830  /*
831   * Though it's very tempting to unmerge rmap_items from stable tree rather
832   * than check every pte of a given vma, the locking doesn't quite work for
833   * that - an rmap_item is assigned to the stable tree after inserting ksm
834   * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
835   * rmap_items from parent to child at fork time (so as not to waste time
836   * if exit comes before the next scan reaches it).
837   *
838   * Similarly, although we'd like to remove rmap_items (so updating counts
839   * and freeing memory) when unmerging an area, it's easier to leave that
840   * to the next pass of ksmd - consider, for example, how ksmd might be
841   * in cmp_and_merge_page on one of the rmap_items we would be removing.
842   */
843  static int unmerge_ksm_pages(struct vm_area_struct *vma,
844  			     unsigned long start, unsigned long end)
845  {
846  	unsigned long addr;
847  	int err = 0;
848  
849  	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
850  		if (ksm_test_exit(vma->vm_mm))
851  			break;
852  		if (signal_pending(current))
853  			err = -ERESTARTSYS;
854  		else
855  			err = break_ksm(vma, addr);
856  	}
857  	return err;
858  }
859  
860  static inline struct stable_node *page_stable_node(struct page *page)
861  {
862  	return PageKsm(page) ? page_rmapping(page) : NULL;
863  }
864  
865  static inline void set_page_stable_node(struct page *page,
866  					struct stable_node *stable_node)
867  {
868  	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
869  }
870  
871  #ifdef CONFIG_SYSFS
872  /*
873   * Only called through the sysfs control interface:
874   */
875  static int remove_stable_node(struct stable_node *stable_node)
876  {
877  	struct page *page;
878  	int err;
879  
880  	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
881  	if (!page) {
882  		/*
883  		 * get_ksm_page did remove_node_from_stable_tree itself.
884  		 */
885  		return 0;
886  	}
887  
888  	/*
889  	 * Page could be still mapped if this races with __mmput() running in
890  	 * between ksm_exit() and exit_mmap(). Just refuse to let
891  	 * merge_across_nodes/max_page_sharing be switched.
892  	 */
893  	err = -EBUSY;
894  	if (!page_mapped(page)) {
895  		/*
896  		 * The stable node did not yet appear stale to get_ksm_page(),
897  		 * since that allows for an unmapped ksm page to be recognized
898  		 * right up until it is freed; but the node is safe to remove.
899  		 * This page might be in a pagevec waiting to be freed,
900  		 * or it might be PageSwapCache (perhaps under writeback),
901  		 * or it might have been removed from swapcache a moment ago.
902  		 */
903  		set_page_stable_node(page, NULL);
904  		remove_node_from_stable_tree(stable_node);
905  		err = 0;
906  	}
907  
908  	unlock_page(page);
909  	put_page(page);
910  	return err;
911  }
912  
913  static int remove_stable_node_chain(struct stable_node *stable_node,
914  				    struct rb_root *root)
915  {
916  	struct stable_node *dup;
917  	struct hlist_node *hlist_safe;
918  
919  	if (!is_stable_node_chain(stable_node)) {
920  		VM_BUG_ON(is_stable_node_dup(stable_node));
921  		if (remove_stable_node(stable_node))
922  			return true;
923  		else
924  			return false;
925  	}
926  
927  	hlist_for_each_entry_safe(dup, hlist_safe,
928  				  &stable_node->hlist, hlist_dup) {
929  		VM_BUG_ON(!is_stable_node_dup(dup));
930  		if (remove_stable_node(dup))
931  			return true;
932  	}
933  	BUG_ON(!hlist_empty(&stable_node->hlist));
934  	free_stable_node_chain(stable_node, root);
935  	return false;
936  }
937  
938  static int remove_all_stable_nodes(void)
939  {
940  	struct stable_node *stable_node, *next;
941  	int nid;
942  	int err = 0;
943  
944  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
945  		while (root_stable_tree[nid].rb_node) {
946  			stable_node = rb_entry(root_stable_tree[nid].rb_node,
947  						struct stable_node, node);
948  			if (remove_stable_node_chain(stable_node,
949  						     root_stable_tree + nid)) {
950  				err = -EBUSY;
951  				break;	/* proceed to next nid */
952  			}
953  			cond_resched();
954  		}
955  	}
956  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
957  		if (remove_stable_node(stable_node))
958  			err = -EBUSY;
959  		cond_resched();
960  	}
961  	return err;
962  }
963  
964  static int unmerge_and_remove_all_rmap_items(void)
965  {
966  	struct mm_slot *mm_slot;
967  	struct mm_struct *mm;
968  	struct vm_area_struct *vma;
969  	int err = 0;
970  
971  	spin_lock(&ksm_mmlist_lock);
972  	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
973  						struct mm_slot, mm_list);
974  	spin_unlock(&ksm_mmlist_lock);
975  
976  	for (mm_slot = ksm_scan.mm_slot;
977  			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
978  		mm = mm_slot->mm;
979  		mmap_read_lock(mm);
980  		for (vma = mm->mmap; vma; vma = vma->vm_next) {
981  			if (ksm_test_exit(mm))
982  				break;
983  			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
984  				continue;
985  			err = unmerge_ksm_pages(vma,
986  						vma->vm_start, vma->vm_end);
987  			if (err)
988  				goto error;
989  		}
990  
991  		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
992  		mmap_read_unlock(mm);
993  
994  		spin_lock(&ksm_mmlist_lock);
995  		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
996  						struct mm_slot, mm_list);
997  		if (ksm_test_exit(mm)) {
998  			hash_del(&mm_slot->link);
999  			list_del(&mm_slot->mm_list);
1000  			spin_unlock(&ksm_mmlist_lock);
1001  
1002  			free_mm_slot(mm_slot);
1003  			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1004  			mmdrop(mm);
1005  		} else
1006  			spin_unlock(&ksm_mmlist_lock);
1007  	}
1008  
1009  	/* Clean up stable nodes, but don't worry if some are still busy */
1010  	remove_all_stable_nodes();
1011  	ksm_scan.seqnr = 0;
1012  	return 0;
1013  
1014  error:
1015  	mmap_read_unlock(mm);
1016  	spin_lock(&ksm_mmlist_lock);
1017  	ksm_scan.mm_slot = &ksm_mm_head;
1018  	spin_unlock(&ksm_mmlist_lock);
1019  	return err;
1020  }
1021  #endif /* CONFIG_SYSFS */
1022  
1023  static u32 calc_checksum(struct page *page)
1024  {
1025  	u32 checksum;
1026  	void *addr = kmap_atomic(page);
1027  	checksum = xxhash(addr, PAGE_SIZE, 0);
1028  	kunmap_atomic(addr);
1029  	return checksum;
1030  }
1031  
1032  static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1033  			      pte_t *orig_pte)
1034  {
1035  	struct mm_struct *mm = vma->vm_mm;
1036  	struct page_vma_mapped_walk pvmw = {
1037  		.page = page,
1038  		.vma = vma,
1039  	};
1040  	int swapped;
1041  	int err = -EFAULT;
1042  	struct mmu_notifier_range range;
1043  
1044  	pvmw.address = page_address_in_vma(page, vma);
1045  	if (pvmw.address == -EFAULT)
1046  		goto out;
1047  
1048  	BUG_ON(PageTransCompound(page));
1049  
1050  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1051  				pvmw.address,
1052  				pvmw.address + PAGE_SIZE);
1053  	mmu_notifier_invalidate_range_start(&range);
1054  
1055  	if (!page_vma_mapped_walk(&pvmw))
1056  		goto out_mn;
1057  	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1058  		goto out_unlock;
1059  
1060  	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1061  	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1062  						mm_tlb_flush_pending(mm)) {
1063  		pte_t entry;
1064  
1065  		swapped = PageSwapCache(page);
1066  		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1067  		/*
1068  		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1069  		 * take any lock, therefore the check that we are going to make
1070  		 * with the pagecount against the mapcount is racey and
1071  		 * O_DIRECT can happen right after the check.
1072  		 * So we clear the pte and flush the tlb before the check
1073  		 * this assure us that no O_DIRECT can happen after the check
1074  		 * or in the middle of the check.
1075  		 *
1076  		 * No need to notify as we are downgrading page table to read
1077  		 * only not changing it to point to a new page.
1078  		 *
1079  		 * See Documentation/vm/mmu_notifier.rst
1080  		 */
1081  		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1082  		/*
1083  		 * Check that no O_DIRECT or similar I/O is in progress on the
1084  		 * page
1085  		 */
1086  		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1087  			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1088  			goto out_unlock;
1089  		}
1090  		if (pte_dirty(entry))
1091  			set_page_dirty(page);
1092  
1093  		if (pte_protnone(entry))
1094  			entry = pte_mkclean(pte_clear_savedwrite(entry));
1095  		else
1096  			entry = pte_mkclean(pte_wrprotect(entry));
1097  		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1098  	}
1099  	*orig_pte = *pvmw.pte;
1100  	err = 0;
1101  
1102  out_unlock:
1103  	page_vma_mapped_walk_done(&pvmw);
1104  out_mn:
1105  	mmu_notifier_invalidate_range_end(&range);
1106  out:
1107  	return err;
1108  }
1109  
1110  /**
1111   * replace_page - replace page in vma by new ksm page
1112   * @vma:      vma that holds the pte pointing to page
1113   * @page:     the page we are replacing by kpage
1114   * @kpage:    the ksm page we replace page by
1115   * @orig_pte: the original value of the pte
1116   *
1117   * Returns 0 on success, -EFAULT on failure.
1118   */
1119  static int replace_page(struct vm_area_struct *vma, struct page *page,
1120  			struct page *kpage, pte_t orig_pte)
1121  {
1122  	struct mm_struct *mm = vma->vm_mm;
1123  	pmd_t *pmd;
1124  	pte_t *ptep;
1125  	pte_t newpte;
1126  	spinlock_t *ptl;
1127  	unsigned long addr;
1128  	int err = -EFAULT;
1129  	struct mmu_notifier_range range;
1130  
1131  	addr = page_address_in_vma(page, vma);
1132  	if (addr == -EFAULT)
1133  		goto out;
1134  
1135  	pmd = mm_find_pmd(mm, addr);
1136  	if (!pmd)
1137  		goto out;
1138  
1139  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1140  				addr + PAGE_SIZE);
1141  	mmu_notifier_invalidate_range_start(&range);
1142  
1143  	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1144  	if (!pte_same(*ptep, orig_pte)) {
1145  		pte_unmap_unlock(ptep, ptl);
1146  		goto out_mn;
1147  	}
1148  
1149  	/*
1150  	 * No need to check ksm_use_zero_pages here: we can only have a
1151  	 * zero_page here if ksm_use_zero_pages was enabled already.
1152  	 */
1153  	if (!is_zero_pfn(page_to_pfn(kpage))) {
1154  		get_page(kpage);
1155  		page_add_anon_rmap(kpage, vma, addr, false);
1156  		newpte = mk_pte(kpage, vma->vm_page_prot);
1157  	} else {
1158  		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1159  					       vma->vm_page_prot));
1160  		/*
1161  		 * We're replacing an anonymous page with a zero page, which is
1162  		 * not anonymous. We need to do proper accounting otherwise we
1163  		 * will get wrong values in /proc, and a BUG message in dmesg
1164  		 * when tearing down the mm.
1165  		 */
1166  		dec_mm_counter(mm, MM_ANONPAGES);
1167  	}
1168  
1169  	flush_cache_page(vma, addr, pte_pfn(*ptep));
1170  	/*
1171  	 * No need to notify as we are replacing a read only page with another
1172  	 * read only page with the same content.
1173  	 *
1174  	 * See Documentation/vm/mmu_notifier.rst
1175  	 */
1176  	ptep_clear_flush(vma, addr, ptep);
1177  	set_pte_at_notify(mm, addr, ptep, newpte);
1178  
1179  	page_remove_rmap(page, false);
1180  	if (!page_mapped(page))
1181  		try_to_free_swap(page);
1182  	put_page(page);
1183  
1184  	pte_unmap_unlock(ptep, ptl);
1185  	err = 0;
1186  out_mn:
1187  	mmu_notifier_invalidate_range_end(&range);
1188  out:
1189  	return err;
1190  }
1191  
1192  /*
1193   * try_to_merge_one_page - take two pages and merge them into one
1194   * @vma: the vma that holds the pte pointing to page
1195   * @page: the PageAnon page that we want to replace with kpage
1196   * @kpage: the PageKsm page that we want to map instead of page,
1197   *         or NULL the first time when we want to use page as kpage.
1198   *
1199   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1200   */
1201  static int try_to_merge_one_page(struct vm_area_struct *vma,
1202  				 struct page *page, struct page *kpage)
1203  {
1204  	pte_t orig_pte = __pte(0);
1205  	int err = -EFAULT;
1206  
1207  	if (page == kpage)			/* ksm page forked */
1208  		return 0;
1209  
1210  	if (!PageAnon(page))
1211  		goto out;
1212  
1213  	/*
1214  	 * We need the page lock to read a stable PageSwapCache in
1215  	 * write_protect_page().  We use trylock_page() instead of
1216  	 * lock_page() because we don't want to wait here - we
1217  	 * prefer to continue scanning and merging different pages,
1218  	 * then come back to this page when it is unlocked.
1219  	 */
1220  	if (!trylock_page(page))
1221  		goto out;
1222  
1223  	if (PageTransCompound(page)) {
1224  		if (split_huge_page(page))
1225  			goto out_unlock;
1226  	}
1227  
1228  	/*
1229  	 * If this anonymous page is mapped only here, its pte may need
1230  	 * to be write-protected.  If it's mapped elsewhere, all of its
1231  	 * ptes are necessarily already write-protected.  But in either
1232  	 * case, we need to lock and check page_count is not raised.
1233  	 */
1234  	if (write_protect_page(vma, page, &orig_pte) == 0) {
1235  		if (!kpage) {
1236  			/*
1237  			 * While we hold page lock, upgrade page from
1238  			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1239  			 * stable_tree_insert() will update stable_node.
1240  			 */
1241  			set_page_stable_node(page, NULL);
1242  			mark_page_accessed(page);
1243  			/*
1244  			 * Page reclaim just frees a clean page with no dirty
1245  			 * ptes: make sure that the ksm page would be swapped.
1246  			 */
1247  			if (!PageDirty(page))
1248  				SetPageDirty(page);
1249  			err = 0;
1250  		} else if (pages_identical(page, kpage))
1251  			err = replace_page(vma, page, kpage, orig_pte);
1252  	}
1253  
1254  	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1255  		munlock_vma_page(page);
1256  		if (!PageMlocked(kpage)) {
1257  			unlock_page(page);
1258  			lock_page(kpage);
1259  			mlock_vma_page(kpage);
1260  			page = kpage;		/* for final unlock */
1261  		}
1262  	}
1263  
1264  out_unlock:
1265  	unlock_page(page);
1266  out:
1267  	return err;
1268  }
1269  
1270  /*
1271   * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1272   * but no new kernel page is allocated: kpage must already be a ksm page.
1273   *
1274   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1275   */
1276  static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1277  				      struct page *page, struct page *kpage)
1278  {
1279  	struct mm_struct *mm = rmap_item->mm;
1280  	struct vm_area_struct *vma;
1281  	int err = -EFAULT;
1282  
1283  	mmap_read_lock(mm);
1284  	vma = find_mergeable_vma(mm, rmap_item->address);
1285  	if (!vma)
1286  		goto out;
1287  
1288  	err = try_to_merge_one_page(vma, page, kpage);
1289  	if (err)
1290  		goto out;
1291  
1292  	/* Unstable nid is in union with stable anon_vma: remove first */
1293  	remove_rmap_item_from_tree(rmap_item);
1294  
1295  	/* Must get reference to anon_vma while still holding mmap_lock */
1296  	rmap_item->anon_vma = vma->anon_vma;
1297  	get_anon_vma(vma->anon_vma);
1298  out:
1299  	mmap_read_unlock(mm);
1300  	return err;
1301  }
1302  
1303  /*
1304   * try_to_merge_two_pages - take two identical pages and prepare them
1305   * to be merged into one page.
1306   *
1307   * This function returns the kpage if we successfully merged two identical
1308   * pages into one ksm page, NULL otherwise.
1309   *
1310   * Note that this function upgrades page to ksm page: if one of the pages
1311   * is already a ksm page, try_to_merge_with_ksm_page should be used.
1312   */
1313  static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1314  					   struct page *page,
1315  					   struct rmap_item *tree_rmap_item,
1316  					   struct page *tree_page)
1317  {
1318  	int err;
1319  
1320  	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1321  	if (!err) {
1322  		err = try_to_merge_with_ksm_page(tree_rmap_item,
1323  							tree_page, page);
1324  		/*
1325  		 * If that fails, we have a ksm page with only one pte
1326  		 * pointing to it: so break it.
1327  		 */
1328  		if (err)
1329  			break_cow(rmap_item);
1330  	}
1331  	return err ? NULL : page;
1332  }
1333  
1334  static __always_inline
1335  bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1336  {
1337  	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1338  	/*
1339  	 * Check that at least one mapping still exists, otherwise
1340  	 * there's no much point to merge and share with this
1341  	 * stable_node, as the underlying tree_page of the other
1342  	 * sharer is going to be freed soon.
1343  	 */
1344  	return stable_node->rmap_hlist_len &&
1345  		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1346  }
1347  
1348  static __always_inline
1349  bool is_page_sharing_candidate(struct stable_node *stable_node)
1350  {
1351  	return __is_page_sharing_candidate(stable_node, 0);
1352  }
1353  
1354  static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1355  				    struct stable_node **_stable_node,
1356  				    struct rb_root *root,
1357  				    bool prune_stale_stable_nodes)
1358  {
1359  	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1360  	struct hlist_node *hlist_safe;
1361  	struct page *_tree_page, *tree_page = NULL;
1362  	int nr = 0;
1363  	int found_rmap_hlist_len;
1364  
1365  	if (!prune_stale_stable_nodes ||
1366  	    time_before(jiffies, stable_node->chain_prune_time +
1367  			msecs_to_jiffies(
1368  				ksm_stable_node_chains_prune_millisecs)))
1369  		prune_stale_stable_nodes = false;
1370  	else
1371  		stable_node->chain_prune_time = jiffies;
1372  
1373  	hlist_for_each_entry_safe(dup, hlist_safe,
1374  				  &stable_node->hlist, hlist_dup) {
1375  		cond_resched();
1376  		/*
1377  		 * We must walk all stable_node_dup to prune the stale
1378  		 * stable nodes during lookup.
1379  		 *
1380  		 * get_ksm_page can drop the nodes from the
1381  		 * stable_node->hlist if they point to freed pages
1382  		 * (that's why we do a _safe walk). The "dup"
1383  		 * stable_node parameter itself will be freed from
1384  		 * under us if it returns NULL.
1385  		 */
1386  		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1387  		if (!_tree_page)
1388  			continue;
1389  		nr += 1;
1390  		if (is_page_sharing_candidate(dup)) {
1391  			if (!found ||
1392  			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1393  				if (found)
1394  					put_page(tree_page);
1395  				found = dup;
1396  				found_rmap_hlist_len = found->rmap_hlist_len;
1397  				tree_page = _tree_page;
1398  
1399  				/* skip put_page for found dup */
1400  				if (!prune_stale_stable_nodes)
1401  					break;
1402  				continue;
1403  			}
1404  		}
1405  		put_page(_tree_page);
1406  	}
1407  
1408  	if (found) {
1409  		/*
1410  		 * nr is counting all dups in the chain only if
1411  		 * prune_stale_stable_nodes is true, otherwise we may
1412  		 * break the loop at nr == 1 even if there are
1413  		 * multiple entries.
1414  		 */
1415  		if (prune_stale_stable_nodes && nr == 1) {
1416  			/*
1417  			 * If there's not just one entry it would
1418  			 * corrupt memory, better BUG_ON. In KSM
1419  			 * context with no lock held it's not even
1420  			 * fatal.
1421  			 */
1422  			BUG_ON(stable_node->hlist.first->next);
1423  
1424  			/*
1425  			 * There's just one entry and it is below the
1426  			 * deduplication limit so drop the chain.
1427  			 */
1428  			rb_replace_node(&stable_node->node, &found->node,
1429  					root);
1430  			free_stable_node(stable_node);
1431  			ksm_stable_node_chains--;
1432  			ksm_stable_node_dups--;
1433  			/*
1434  			 * NOTE: the caller depends on the stable_node
1435  			 * to be equal to stable_node_dup if the chain
1436  			 * was collapsed.
1437  			 */
1438  			*_stable_node = found;
1439  			/*
1440  			 * Just for robustneess as stable_node is
1441  			 * otherwise left as a stable pointer, the
1442  			 * compiler shall optimize it away at build
1443  			 * time.
1444  			 */
1445  			stable_node = NULL;
1446  		} else if (stable_node->hlist.first != &found->hlist_dup &&
1447  			   __is_page_sharing_candidate(found, 1)) {
1448  			/*
1449  			 * If the found stable_node dup can accept one
1450  			 * more future merge (in addition to the one
1451  			 * that is underway) and is not at the head of
1452  			 * the chain, put it there so next search will
1453  			 * be quicker in the !prune_stale_stable_nodes
1454  			 * case.
1455  			 *
1456  			 * NOTE: it would be inaccurate to use nr > 1
1457  			 * instead of checking the hlist.first pointer
1458  			 * directly, because in the
1459  			 * prune_stale_stable_nodes case "nr" isn't
1460  			 * the position of the found dup in the chain,
1461  			 * but the total number of dups in the chain.
1462  			 */
1463  			hlist_del(&found->hlist_dup);
1464  			hlist_add_head(&found->hlist_dup,
1465  				       &stable_node->hlist);
1466  		}
1467  	}
1468  
1469  	*_stable_node_dup = found;
1470  	return tree_page;
1471  }
1472  
1473  static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1474  					       struct rb_root *root)
1475  {
1476  	if (!is_stable_node_chain(stable_node))
1477  		return stable_node;
1478  	if (hlist_empty(&stable_node->hlist)) {
1479  		free_stable_node_chain(stable_node, root);
1480  		return NULL;
1481  	}
1482  	return hlist_entry(stable_node->hlist.first,
1483  			   typeof(*stable_node), hlist_dup);
1484  }
1485  
1486  /*
1487   * Like for get_ksm_page, this function can free the *_stable_node and
1488   * *_stable_node_dup if the returned tree_page is NULL.
1489   *
1490   * It can also free and overwrite *_stable_node with the found
1491   * stable_node_dup if the chain is collapsed (in which case
1492   * *_stable_node will be equal to *_stable_node_dup like if the chain
1493   * never existed). It's up to the caller to verify tree_page is not
1494   * NULL before dereferencing *_stable_node or *_stable_node_dup.
1495   *
1496   * *_stable_node_dup is really a second output parameter of this
1497   * function and will be overwritten in all cases, the caller doesn't
1498   * need to initialize it.
1499   */
1500  static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1501  					struct stable_node **_stable_node,
1502  					struct rb_root *root,
1503  					bool prune_stale_stable_nodes)
1504  {
1505  	struct stable_node *stable_node = *_stable_node;
1506  	if (!is_stable_node_chain(stable_node)) {
1507  		if (is_page_sharing_candidate(stable_node)) {
1508  			*_stable_node_dup = stable_node;
1509  			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1510  		}
1511  		/*
1512  		 * _stable_node_dup set to NULL means the stable_node
1513  		 * reached the ksm_max_page_sharing limit.
1514  		 */
1515  		*_stable_node_dup = NULL;
1516  		return NULL;
1517  	}
1518  	return stable_node_dup(_stable_node_dup, _stable_node, root,
1519  			       prune_stale_stable_nodes);
1520  }
1521  
1522  static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1523  						struct stable_node **s_n,
1524  						struct rb_root *root)
1525  {
1526  	return __stable_node_chain(s_n_d, s_n, root, true);
1527  }
1528  
1529  static __always_inline struct page *chain(struct stable_node **s_n_d,
1530  					  struct stable_node *s_n,
1531  					  struct rb_root *root)
1532  {
1533  	struct stable_node *old_stable_node = s_n;
1534  	struct page *tree_page;
1535  
1536  	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1537  	/* not pruning dups so s_n cannot have changed */
1538  	VM_BUG_ON(s_n != old_stable_node);
1539  	return tree_page;
1540  }
1541  
1542  /*
1543   * stable_tree_search - search for page inside the stable tree
1544   *
1545   * This function checks if there is a page inside the stable tree
1546   * with identical content to the page that we are scanning right now.
1547   *
1548   * This function returns the stable tree node of identical content if found,
1549   * NULL otherwise.
1550   */
1551  static struct page *stable_tree_search(struct page *page)
1552  {
1553  	int nid;
1554  	struct rb_root *root;
1555  	struct rb_node **new;
1556  	struct rb_node *parent;
1557  	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1558  	struct stable_node *page_node;
1559  
1560  	page_node = page_stable_node(page);
1561  	if (page_node && page_node->head != &migrate_nodes) {
1562  		/* ksm page forked */
1563  		get_page(page);
1564  		return page;
1565  	}
1566  
1567  	nid = get_kpfn_nid(page_to_pfn(page));
1568  	root = root_stable_tree + nid;
1569  again:
1570  	new = &root->rb_node;
1571  	parent = NULL;
1572  
1573  	while (*new) {
1574  		struct page *tree_page;
1575  		int ret;
1576  
1577  		cond_resched();
1578  		stable_node = rb_entry(*new, struct stable_node, node);
1579  		stable_node_any = NULL;
1580  		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1581  		/*
1582  		 * NOTE: stable_node may have been freed by
1583  		 * chain_prune() if the returned stable_node_dup is
1584  		 * not NULL. stable_node_dup may have been inserted in
1585  		 * the rbtree instead as a regular stable_node (in
1586  		 * order to collapse the stable_node chain if a single
1587  		 * stable_node dup was found in it). In such case the
1588  		 * stable_node is overwritten by the calleee to point
1589  		 * to the stable_node_dup that was collapsed in the
1590  		 * stable rbtree and stable_node will be equal to
1591  		 * stable_node_dup like if the chain never existed.
1592  		 */
1593  		if (!stable_node_dup) {
1594  			/*
1595  			 * Either all stable_node dups were full in
1596  			 * this stable_node chain, or this chain was
1597  			 * empty and should be rb_erased.
1598  			 */
1599  			stable_node_any = stable_node_dup_any(stable_node,
1600  							      root);
1601  			if (!stable_node_any) {
1602  				/* rb_erase just run */
1603  				goto again;
1604  			}
1605  			/*
1606  			 * Take any of the stable_node dups page of
1607  			 * this stable_node chain to let the tree walk
1608  			 * continue. All KSM pages belonging to the
1609  			 * stable_node dups in a stable_node chain
1610  			 * have the same content and they're
1611  			 * write protected at all times. Any will work
1612  			 * fine to continue the walk.
1613  			 */
1614  			tree_page = get_ksm_page(stable_node_any,
1615  						 GET_KSM_PAGE_NOLOCK);
1616  		}
1617  		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1618  		if (!tree_page) {
1619  			/*
1620  			 * If we walked over a stale stable_node,
1621  			 * get_ksm_page() will call rb_erase() and it
1622  			 * may rebalance the tree from under us. So
1623  			 * restart the search from scratch. Returning
1624  			 * NULL would be safe too, but we'd generate
1625  			 * false negative insertions just because some
1626  			 * stable_node was stale.
1627  			 */
1628  			goto again;
1629  		}
1630  
1631  		ret = memcmp_pages(page, tree_page);
1632  		put_page(tree_page);
1633  
1634  		parent = *new;
1635  		if (ret < 0)
1636  			new = &parent->rb_left;
1637  		else if (ret > 0)
1638  			new = &parent->rb_right;
1639  		else {
1640  			if (page_node) {
1641  				VM_BUG_ON(page_node->head != &migrate_nodes);
1642  				/*
1643  				 * Test if the migrated page should be merged
1644  				 * into a stable node dup. If the mapcount is
1645  				 * 1 we can migrate it with another KSM page
1646  				 * without adding it to the chain.
1647  				 */
1648  				if (page_mapcount(page) > 1)
1649  					goto chain_append;
1650  			}
1651  
1652  			if (!stable_node_dup) {
1653  				/*
1654  				 * If the stable_node is a chain and
1655  				 * we got a payload match in memcmp
1656  				 * but we cannot merge the scanned
1657  				 * page in any of the existing
1658  				 * stable_node dups because they're
1659  				 * all full, we need to wait the
1660  				 * scanned page to find itself a match
1661  				 * in the unstable tree to create a
1662  				 * brand new KSM page to add later to
1663  				 * the dups of this stable_node.
1664  				 */
1665  				return NULL;
1666  			}
1667  
1668  			/*
1669  			 * Lock and unlock the stable_node's page (which
1670  			 * might already have been migrated) so that page
1671  			 * migration is sure to notice its raised count.
1672  			 * It would be more elegant to return stable_node
1673  			 * than kpage, but that involves more changes.
1674  			 */
1675  			tree_page = get_ksm_page(stable_node_dup,
1676  						 GET_KSM_PAGE_TRYLOCK);
1677  
1678  			if (PTR_ERR(tree_page) == -EBUSY)
1679  				return ERR_PTR(-EBUSY);
1680  
1681  			if (unlikely(!tree_page))
1682  				/*
1683  				 * The tree may have been rebalanced,
1684  				 * so re-evaluate parent and new.
1685  				 */
1686  				goto again;
1687  			unlock_page(tree_page);
1688  
1689  			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1690  			    NUMA(stable_node_dup->nid)) {
1691  				put_page(tree_page);
1692  				goto replace;
1693  			}
1694  			return tree_page;
1695  		}
1696  	}
1697  
1698  	if (!page_node)
1699  		return NULL;
1700  
1701  	list_del(&page_node->list);
1702  	DO_NUMA(page_node->nid = nid);
1703  	rb_link_node(&page_node->node, parent, new);
1704  	rb_insert_color(&page_node->node, root);
1705  out:
1706  	if (is_page_sharing_candidate(page_node)) {
1707  		get_page(page);
1708  		return page;
1709  	} else
1710  		return NULL;
1711  
1712  replace:
1713  	/*
1714  	 * If stable_node was a chain and chain_prune collapsed it,
1715  	 * stable_node has been updated to be the new regular
1716  	 * stable_node. A collapse of the chain is indistinguishable
1717  	 * from the case there was no chain in the stable
1718  	 * rbtree. Otherwise stable_node is the chain and
1719  	 * stable_node_dup is the dup to replace.
1720  	 */
1721  	if (stable_node_dup == stable_node) {
1722  		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1723  		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1724  		/* there is no chain */
1725  		if (page_node) {
1726  			VM_BUG_ON(page_node->head != &migrate_nodes);
1727  			list_del(&page_node->list);
1728  			DO_NUMA(page_node->nid = nid);
1729  			rb_replace_node(&stable_node_dup->node,
1730  					&page_node->node,
1731  					root);
1732  			if (is_page_sharing_candidate(page_node))
1733  				get_page(page);
1734  			else
1735  				page = NULL;
1736  		} else {
1737  			rb_erase(&stable_node_dup->node, root);
1738  			page = NULL;
1739  		}
1740  	} else {
1741  		VM_BUG_ON(!is_stable_node_chain(stable_node));
1742  		__stable_node_dup_del(stable_node_dup);
1743  		if (page_node) {
1744  			VM_BUG_ON(page_node->head != &migrate_nodes);
1745  			list_del(&page_node->list);
1746  			DO_NUMA(page_node->nid = nid);
1747  			stable_node_chain_add_dup(page_node, stable_node);
1748  			if (is_page_sharing_candidate(page_node))
1749  				get_page(page);
1750  			else
1751  				page = NULL;
1752  		} else {
1753  			page = NULL;
1754  		}
1755  	}
1756  	stable_node_dup->head = &migrate_nodes;
1757  	list_add(&stable_node_dup->list, stable_node_dup->head);
1758  	return page;
1759  
1760  chain_append:
1761  	/* stable_node_dup could be null if it reached the limit */
1762  	if (!stable_node_dup)
1763  		stable_node_dup = stable_node_any;
1764  	/*
1765  	 * If stable_node was a chain and chain_prune collapsed it,
1766  	 * stable_node has been updated to be the new regular
1767  	 * stable_node. A collapse of the chain is indistinguishable
1768  	 * from the case there was no chain in the stable
1769  	 * rbtree. Otherwise stable_node is the chain and
1770  	 * stable_node_dup is the dup to replace.
1771  	 */
1772  	if (stable_node_dup == stable_node) {
1773  		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1774  		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1775  		/* chain is missing so create it */
1776  		stable_node = alloc_stable_node_chain(stable_node_dup,
1777  						      root);
1778  		if (!stable_node)
1779  			return NULL;
1780  	}
1781  	/*
1782  	 * Add this stable_node dup that was
1783  	 * migrated to the stable_node chain
1784  	 * of the current nid for this page
1785  	 * content.
1786  	 */
1787  	VM_BUG_ON(!is_stable_node_chain(stable_node));
1788  	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1789  	VM_BUG_ON(page_node->head != &migrate_nodes);
1790  	list_del(&page_node->list);
1791  	DO_NUMA(page_node->nid = nid);
1792  	stable_node_chain_add_dup(page_node, stable_node);
1793  	goto out;
1794  }
1795  
1796  /*
1797   * stable_tree_insert - insert stable tree node pointing to new ksm page
1798   * into the stable tree.
1799   *
1800   * This function returns the stable tree node just allocated on success,
1801   * NULL otherwise.
1802   */
1803  static struct stable_node *stable_tree_insert(struct page *kpage)
1804  {
1805  	int nid;
1806  	unsigned long kpfn;
1807  	struct rb_root *root;
1808  	struct rb_node **new;
1809  	struct rb_node *parent;
1810  	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1811  	bool need_chain = false;
1812  
1813  	kpfn = page_to_pfn(kpage);
1814  	nid = get_kpfn_nid(kpfn);
1815  	root = root_stable_tree + nid;
1816  again:
1817  	parent = NULL;
1818  	new = &root->rb_node;
1819  
1820  	while (*new) {
1821  		struct page *tree_page;
1822  		int ret;
1823  
1824  		cond_resched();
1825  		stable_node = rb_entry(*new, struct stable_node, node);
1826  		stable_node_any = NULL;
1827  		tree_page = chain(&stable_node_dup, stable_node, root);
1828  		if (!stable_node_dup) {
1829  			/*
1830  			 * Either all stable_node dups were full in
1831  			 * this stable_node chain, or this chain was
1832  			 * empty and should be rb_erased.
1833  			 */
1834  			stable_node_any = stable_node_dup_any(stable_node,
1835  							      root);
1836  			if (!stable_node_any) {
1837  				/* rb_erase just run */
1838  				goto again;
1839  			}
1840  			/*
1841  			 * Take any of the stable_node dups page of
1842  			 * this stable_node chain to let the tree walk
1843  			 * continue. All KSM pages belonging to the
1844  			 * stable_node dups in a stable_node chain
1845  			 * have the same content and they're
1846  			 * write protected at all times. Any will work
1847  			 * fine to continue the walk.
1848  			 */
1849  			tree_page = get_ksm_page(stable_node_any,
1850  						 GET_KSM_PAGE_NOLOCK);
1851  		}
1852  		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1853  		if (!tree_page) {
1854  			/*
1855  			 * If we walked over a stale stable_node,
1856  			 * get_ksm_page() will call rb_erase() and it
1857  			 * may rebalance the tree from under us. So
1858  			 * restart the search from scratch. Returning
1859  			 * NULL would be safe too, but we'd generate
1860  			 * false negative insertions just because some
1861  			 * stable_node was stale.
1862  			 */
1863  			goto again;
1864  		}
1865  
1866  		ret = memcmp_pages(kpage, tree_page);
1867  		put_page(tree_page);
1868  
1869  		parent = *new;
1870  		if (ret < 0)
1871  			new = &parent->rb_left;
1872  		else if (ret > 0)
1873  			new = &parent->rb_right;
1874  		else {
1875  			need_chain = true;
1876  			break;
1877  		}
1878  	}
1879  
1880  	stable_node_dup = alloc_stable_node();
1881  	if (!stable_node_dup)
1882  		return NULL;
1883  
1884  	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1885  	stable_node_dup->kpfn = kpfn;
1886  	set_page_stable_node(kpage, stable_node_dup);
1887  	stable_node_dup->rmap_hlist_len = 0;
1888  	DO_NUMA(stable_node_dup->nid = nid);
1889  	if (!need_chain) {
1890  		rb_link_node(&stable_node_dup->node, parent, new);
1891  		rb_insert_color(&stable_node_dup->node, root);
1892  	} else {
1893  		if (!is_stable_node_chain(stable_node)) {
1894  			struct stable_node *orig = stable_node;
1895  			/* chain is missing so create it */
1896  			stable_node = alloc_stable_node_chain(orig, root);
1897  			if (!stable_node) {
1898  				free_stable_node(stable_node_dup);
1899  				return NULL;
1900  			}
1901  		}
1902  		stable_node_chain_add_dup(stable_node_dup, stable_node);
1903  	}
1904  
1905  	return stable_node_dup;
1906  }
1907  
1908  /*
1909   * unstable_tree_search_insert - search for identical page,
1910   * else insert rmap_item into the unstable tree.
1911   *
1912   * This function searches for a page in the unstable tree identical to the
1913   * page currently being scanned; and if no identical page is found in the
1914   * tree, we insert rmap_item as a new object into the unstable tree.
1915   *
1916   * This function returns pointer to rmap_item found to be identical
1917   * to the currently scanned page, NULL otherwise.
1918   *
1919   * This function does both searching and inserting, because they share
1920   * the same walking algorithm in an rbtree.
1921   */
1922  static
1923  struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1924  					      struct page *page,
1925  					      struct page **tree_pagep)
1926  {
1927  	struct rb_node **new;
1928  	struct rb_root *root;
1929  	struct rb_node *parent = NULL;
1930  	int nid;
1931  
1932  	nid = get_kpfn_nid(page_to_pfn(page));
1933  	root = root_unstable_tree + nid;
1934  	new = &root->rb_node;
1935  
1936  	while (*new) {
1937  		struct rmap_item *tree_rmap_item;
1938  		struct page *tree_page;
1939  		int ret;
1940  
1941  		cond_resched();
1942  		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1943  		tree_page = get_mergeable_page(tree_rmap_item);
1944  		if (!tree_page)
1945  			return NULL;
1946  
1947  		/*
1948  		 * Don't substitute a ksm page for a forked page.
1949  		 */
1950  		if (page == tree_page) {
1951  			put_page(tree_page);
1952  			return NULL;
1953  		}
1954  
1955  		ret = memcmp_pages(page, tree_page);
1956  
1957  		parent = *new;
1958  		if (ret < 0) {
1959  			put_page(tree_page);
1960  			new = &parent->rb_left;
1961  		} else if (ret > 0) {
1962  			put_page(tree_page);
1963  			new = &parent->rb_right;
1964  		} else if (!ksm_merge_across_nodes &&
1965  			   page_to_nid(tree_page) != nid) {
1966  			/*
1967  			 * If tree_page has been migrated to another NUMA node,
1968  			 * it will be flushed out and put in the right unstable
1969  			 * tree next time: only merge with it when across_nodes.
1970  			 */
1971  			put_page(tree_page);
1972  			return NULL;
1973  		} else {
1974  			*tree_pagep = tree_page;
1975  			return tree_rmap_item;
1976  		}
1977  	}
1978  
1979  	rmap_item->address |= UNSTABLE_FLAG;
1980  	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1981  	DO_NUMA(rmap_item->nid = nid);
1982  	rb_link_node(&rmap_item->node, parent, new);
1983  	rb_insert_color(&rmap_item->node, root);
1984  
1985  	ksm_pages_unshared++;
1986  	return NULL;
1987  }
1988  
1989  /*
1990   * stable_tree_append - add another rmap_item to the linked list of
1991   * rmap_items hanging off a given node of the stable tree, all sharing
1992   * the same ksm page.
1993   */
1994  static void stable_tree_append(struct rmap_item *rmap_item,
1995  			       struct stable_node *stable_node,
1996  			       bool max_page_sharing_bypass)
1997  {
1998  	/*
1999  	 * rmap won't find this mapping if we don't insert the
2000  	 * rmap_item in the right stable_node
2001  	 * duplicate. page_migration could break later if rmap breaks,
2002  	 * so we can as well crash here. We really need to check for
2003  	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2004  	 * for other negative values as an underflow if detected here
2005  	 * for the first time (and not when decreasing rmap_hlist_len)
2006  	 * would be sign of memory corruption in the stable_node.
2007  	 */
2008  	BUG_ON(stable_node->rmap_hlist_len < 0);
2009  
2010  	stable_node->rmap_hlist_len++;
2011  	if (!max_page_sharing_bypass)
2012  		/* possibly non fatal but unexpected overflow, only warn */
2013  		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2014  			     ksm_max_page_sharing);
2015  
2016  	rmap_item->head = stable_node;
2017  	rmap_item->address |= STABLE_FLAG;
2018  	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2019  
2020  	if (rmap_item->hlist.next)
2021  		ksm_pages_sharing++;
2022  	else
2023  		ksm_pages_shared++;
2024  }
2025  
2026  /*
2027   * cmp_and_merge_page - first see if page can be merged into the stable tree;
2028   * if not, compare checksum to previous and if it's the same, see if page can
2029   * be inserted into the unstable tree, or merged with a page already there and
2030   * both transferred to the stable tree.
2031   *
2032   * @page: the page that we are searching identical page to.
2033   * @rmap_item: the reverse mapping into the virtual address of this page
2034   */
2035  static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2036  {
2037  	struct mm_struct *mm = rmap_item->mm;
2038  	struct rmap_item *tree_rmap_item;
2039  	struct page *tree_page = NULL;
2040  	struct stable_node *stable_node;
2041  	struct page *kpage;
2042  	unsigned int checksum;
2043  	int err;
2044  	bool max_page_sharing_bypass = false;
2045  
2046  	stable_node = page_stable_node(page);
2047  	if (stable_node) {
2048  		if (stable_node->head != &migrate_nodes &&
2049  		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2050  		    NUMA(stable_node->nid)) {
2051  			stable_node_dup_del(stable_node);
2052  			stable_node->head = &migrate_nodes;
2053  			list_add(&stable_node->list, stable_node->head);
2054  		}
2055  		if (stable_node->head != &migrate_nodes &&
2056  		    rmap_item->head == stable_node)
2057  			return;
2058  		/*
2059  		 * If it's a KSM fork, allow it to go over the sharing limit
2060  		 * without warnings.
2061  		 */
2062  		if (!is_page_sharing_candidate(stable_node))
2063  			max_page_sharing_bypass = true;
2064  	}
2065  
2066  	/* We first start with searching the page inside the stable tree */
2067  	kpage = stable_tree_search(page);
2068  	if (kpage == page && rmap_item->head == stable_node) {
2069  		put_page(kpage);
2070  		return;
2071  	}
2072  
2073  	remove_rmap_item_from_tree(rmap_item);
2074  
2075  	if (kpage) {
2076  		if (PTR_ERR(kpage) == -EBUSY)
2077  			return;
2078  
2079  		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2080  		if (!err) {
2081  			/*
2082  			 * The page was successfully merged:
2083  			 * add its rmap_item to the stable tree.
2084  			 */
2085  			lock_page(kpage);
2086  			stable_tree_append(rmap_item, page_stable_node(kpage),
2087  					   max_page_sharing_bypass);
2088  			unlock_page(kpage);
2089  		}
2090  		put_page(kpage);
2091  		return;
2092  	}
2093  
2094  	/*
2095  	 * If the hash value of the page has changed from the last time
2096  	 * we calculated it, this page is changing frequently: therefore we
2097  	 * don't want to insert it in the unstable tree, and we don't want
2098  	 * to waste our time searching for something identical to it there.
2099  	 */
2100  	checksum = calc_checksum(page);
2101  	if (rmap_item->oldchecksum != checksum) {
2102  		rmap_item->oldchecksum = checksum;
2103  		return;
2104  	}
2105  
2106  	/*
2107  	 * Same checksum as an empty page. We attempt to merge it with the
2108  	 * appropriate zero page if the user enabled this via sysfs.
2109  	 */
2110  	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2111  		struct vm_area_struct *vma;
2112  
2113  		mmap_read_lock(mm);
2114  		vma = find_mergeable_vma(mm, rmap_item->address);
2115  		if (vma) {
2116  			err = try_to_merge_one_page(vma, page,
2117  					ZERO_PAGE(rmap_item->address));
2118  		} else {
2119  			/*
2120  			 * If the vma is out of date, we do not need to
2121  			 * continue.
2122  			 */
2123  			err = 0;
2124  		}
2125  		mmap_read_unlock(mm);
2126  		/*
2127  		 * In case of failure, the page was not really empty, so we
2128  		 * need to continue. Otherwise we're done.
2129  		 */
2130  		if (!err)
2131  			return;
2132  	}
2133  	tree_rmap_item =
2134  		unstable_tree_search_insert(rmap_item, page, &tree_page);
2135  	if (tree_rmap_item) {
2136  		bool split;
2137  
2138  		kpage = try_to_merge_two_pages(rmap_item, page,
2139  						tree_rmap_item, tree_page);
2140  		/*
2141  		 * If both pages we tried to merge belong to the same compound
2142  		 * page, then we actually ended up increasing the reference
2143  		 * count of the same compound page twice, and split_huge_page
2144  		 * failed.
2145  		 * Here we set a flag if that happened, and we use it later to
2146  		 * try split_huge_page again. Since we call put_page right
2147  		 * afterwards, the reference count will be correct and
2148  		 * split_huge_page should succeed.
2149  		 */
2150  		split = PageTransCompound(page)
2151  			&& compound_head(page) == compound_head(tree_page);
2152  		put_page(tree_page);
2153  		if (kpage) {
2154  			/*
2155  			 * The pages were successfully merged: insert new
2156  			 * node in the stable tree and add both rmap_items.
2157  			 */
2158  			lock_page(kpage);
2159  			stable_node = stable_tree_insert(kpage);
2160  			if (stable_node) {
2161  				stable_tree_append(tree_rmap_item, stable_node,
2162  						   false);
2163  				stable_tree_append(rmap_item, stable_node,
2164  						   false);
2165  			}
2166  			unlock_page(kpage);
2167  
2168  			/*
2169  			 * If we fail to insert the page into the stable tree,
2170  			 * we will have 2 virtual addresses that are pointing
2171  			 * to a ksm page left outside the stable tree,
2172  			 * in which case we need to break_cow on both.
2173  			 */
2174  			if (!stable_node) {
2175  				break_cow(tree_rmap_item);
2176  				break_cow(rmap_item);
2177  			}
2178  		} else if (split) {
2179  			/*
2180  			 * We are here if we tried to merge two pages and
2181  			 * failed because they both belonged to the same
2182  			 * compound page. We will split the page now, but no
2183  			 * merging will take place.
2184  			 * We do not want to add the cost of a full lock; if
2185  			 * the page is locked, it is better to skip it and
2186  			 * perhaps try again later.
2187  			 */
2188  			if (!trylock_page(page))
2189  				return;
2190  			split_huge_page(page);
2191  			unlock_page(page);
2192  		}
2193  	}
2194  }
2195  
2196  static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2197  					    struct rmap_item **rmap_list,
2198  					    unsigned long addr)
2199  {
2200  	struct rmap_item *rmap_item;
2201  
2202  	while (*rmap_list) {
2203  		rmap_item = *rmap_list;
2204  		if ((rmap_item->address & PAGE_MASK) == addr)
2205  			return rmap_item;
2206  		if (rmap_item->address > addr)
2207  			break;
2208  		*rmap_list = rmap_item->rmap_list;
2209  		remove_rmap_item_from_tree(rmap_item);
2210  		free_rmap_item(rmap_item);
2211  	}
2212  
2213  	rmap_item = alloc_rmap_item();
2214  	if (rmap_item) {
2215  		/* It has already been zeroed */
2216  		rmap_item->mm = mm_slot->mm;
2217  		rmap_item->address = addr;
2218  		rmap_item->rmap_list = *rmap_list;
2219  		*rmap_list = rmap_item;
2220  	}
2221  	return rmap_item;
2222  }
2223  
2224  static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2225  {
2226  	struct mm_struct *mm;
2227  	struct mm_slot *slot;
2228  	struct vm_area_struct *vma;
2229  	struct rmap_item *rmap_item;
2230  	int nid;
2231  
2232  	if (list_empty(&ksm_mm_head.mm_list))
2233  		return NULL;
2234  
2235  	slot = ksm_scan.mm_slot;
2236  	if (slot == &ksm_mm_head) {
2237  		/*
2238  		 * A number of pages can hang around indefinitely on per-cpu
2239  		 * pagevecs, raised page count preventing write_protect_page
2240  		 * from merging them.  Though it doesn't really matter much,
2241  		 * it is puzzling to see some stuck in pages_volatile until
2242  		 * other activity jostles them out, and they also prevented
2243  		 * LTP's KSM test from succeeding deterministically; so drain
2244  		 * them here (here rather than on entry to ksm_do_scan(),
2245  		 * so we don't IPI too often when pages_to_scan is set low).
2246  		 */
2247  		lru_add_drain_all();
2248  
2249  		/*
2250  		 * Whereas stale stable_nodes on the stable_tree itself
2251  		 * get pruned in the regular course of stable_tree_search(),
2252  		 * those moved out to the migrate_nodes list can accumulate:
2253  		 * so prune them once before each full scan.
2254  		 */
2255  		if (!ksm_merge_across_nodes) {
2256  			struct stable_node *stable_node, *next;
2257  			struct page *page;
2258  
2259  			list_for_each_entry_safe(stable_node, next,
2260  						 &migrate_nodes, list) {
2261  				page = get_ksm_page(stable_node,
2262  						    GET_KSM_PAGE_NOLOCK);
2263  				if (page)
2264  					put_page(page);
2265  				cond_resched();
2266  			}
2267  		}
2268  
2269  		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2270  			root_unstable_tree[nid] = RB_ROOT;
2271  
2272  		spin_lock(&ksm_mmlist_lock);
2273  		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2274  		ksm_scan.mm_slot = slot;
2275  		spin_unlock(&ksm_mmlist_lock);
2276  		/*
2277  		 * Although we tested list_empty() above, a racing __ksm_exit
2278  		 * of the last mm on the list may have removed it since then.
2279  		 */
2280  		if (slot == &ksm_mm_head)
2281  			return NULL;
2282  next_mm:
2283  		ksm_scan.address = 0;
2284  		ksm_scan.rmap_list = &slot->rmap_list;
2285  	}
2286  
2287  	mm = slot->mm;
2288  	mmap_read_lock(mm);
2289  	if (ksm_test_exit(mm))
2290  		vma = NULL;
2291  	else
2292  		vma = find_vma(mm, ksm_scan.address);
2293  
2294  	for (; vma; vma = vma->vm_next) {
2295  		if (!(vma->vm_flags & VM_MERGEABLE))
2296  			continue;
2297  		if (ksm_scan.address < vma->vm_start)
2298  			ksm_scan.address = vma->vm_start;
2299  		if (!vma->anon_vma)
2300  			ksm_scan.address = vma->vm_end;
2301  
2302  		while (ksm_scan.address < vma->vm_end) {
2303  			if (ksm_test_exit(mm))
2304  				break;
2305  			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2306  			if (IS_ERR_OR_NULL(*page)) {
2307  				ksm_scan.address += PAGE_SIZE;
2308  				cond_resched();
2309  				continue;
2310  			}
2311  			if (PageAnon(*page)) {
2312  				flush_anon_page(vma, *page, ksm_scan.address);
2313  				flush_dcache_page(*page);
2314  				rmap_item = get_next_rmap_item(slot,
2315  					ksm_scan.rmap_list, ksm_scan.address);
2316  				if (rmap_item) {
2317  					ksm_scan.rmap_list =
2318  							&rmap_item->rmap_list;
2319  					ksm_scan.address += PAGE_SIZE;
2320  				} else
2321  					put_page(*page);
2322  				mmap_read_unlock(mm);
2323  				return rmap_item;
2324  			}
2325  			put_page(*page);
2326  			ksm_scan.address += PAGE_SIZE;
2327  			cond_resched();
2328  		}
2329  	}
2330  
2331  	if (ksm_test_exit(mm)) {
2332  		ksm_scan.address = 0;
2333  		ksm_scan.rmap_list = &slot->rmap_list;
2334  	}
2335  	/*
2336  	 * Nuke all the rmap_items that are above this current rmap:
2337  	 * because there were no VM_MERGEABLE vmas with such addresses.
2338  	 */
2339  	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2340  
2341  	spin_lock(&ksm_mmlist_lock);
2342  	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2343  						struct mm_slot, mm_list);
2344  	if (ksm_scan.address == 0) {
2345  		/*
2346  		 * We've completed a full scan of all vmas, holding mmap_lock
2347  		 * throughout, and found no VM_MERGEABLE: so do the same as
2348  		 * __ksm_exit does to remove this mm from all our lists now.
2349  		 * This applies either when cleaning up after __ksm_exit
2350  		 * (but beware: we can reach here even before __ksm_exit),
2351  		 * or when all VM_MERGEABLE areas have been unmapped (and
2352  		 * mmap_lock then protects against race with MADV_MERGEABLE).
2353  		 */
2354  		hash_del(&slot->link);
2355  		list_del(&slot->mm_list);
2356  		spin_unlock(&ksm_mmlist_lock);
2357  
2358  		free_mm_slot(slot);
2359  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2360  		mmap_read_unlock(mm);
2361  		mmdrop(mm);
2362  	} else {
2363  		mmap_read_unlock(mm);
2364  		/*
2365  		 * mmap_read_unlock(mm) first because after
2366  		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2367  		 * already have been freed under us by __ksm_exit()
2368  		 * because the "mm_slot" is still hashed and
2369  		 * ksm_scan.mm_slot doesn't point to it anymore.
2370  		 */
2371  		spin_unlock(&ksm_mmlist_lock);
2372  	}
2373  
2374  	/* Repeat until we've completed scanning the whole list */
2375  	slot = ksm_scan.mm_slot;
2376  	if (slot != &ksm_mm_head)
2377  		goto next_mm;
2378  
2379  	ksm_scan.seqnr++;
2380  	return NULL;
2381  }
2382  
2383  /**
2384   * ksm_do_scan  - the ksm scanner main worker function.
2385   * @scan_npages:  number of pages we want to scan before we return.
2386   */
2387  static void ksm_do_scan(unsigned int scan_npages)
2388  {
2389  	struct rmap_item *rmap_item;
2390  	struct page *uninitialized_var(page);
2391  
2392  	while (scan_npages-- && likely(!freezing(current))) {
2393  		cond_resched();
2394  		rmap_item = scan_get_next_rmap_item(&page);
2395  		if (!rmap_item)
2396  			return;
2397  		cmp_and_merge_page(page, rmap_item);
2398  		put_page(page);
2399  	}
2400  }
2401  
2402  static int ksmd_should_run(void)
2403  {
2404  	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2405  }
2406  
2407  static int ksm_scan_thread(void *nothing)
2408  {
2409  	unsigned int sleep_ms;
2410  
2411  	set_freezable();
2412  	set_user_nice(current, 5);
2413  
2414  	while (!kthread_should_stop()) {
2415  		mutex_lock(&ksm_thread_mutex);
2416  		wait_while_offlining();
2417  		if (ksmd_should_run())
2418  			ksm_do_scan(ksm_thread_pages_to_scan);
2419  		mutex_unlock(&ksm_thread_mutex);
2420  
2421  		try_to_freeze();
2422  
2423  		if (ksmd_should_run()) {
2424  			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2425  			wait_event_interruptible_timeout(ksm_iter_wait,
2426  				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2427  				msecs_to_jiffies(sleep_ms));
2428  		} else {
2429  			wait_event_freezable(ksm_thread_wait,
2430  				ksmd_should_run() || kthread_should_stop());
2431  		}
2432  	}
2433  	return 0;
2434  }
2435  
2436  int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2437  		unsigned long end, int advice, unsigned long *vm_flags)
2438  {
2439  	struct mm_struct *mm = vma->vm_mm;
2440  	int err;
2441  
2442  	switch (advice) {
2443  	case MADV_MERGEABLE:
2444  		/*
2445  		 * Be somewhat over-protective for now!
2446  		 */
2447  		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2448  				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2449  				 VM_HUGETLB | VM_MIXEDMAP))
2450  			return 0;		/* just ignore the advice */
2451  
2452  		if (vma_is_dax(vma))
2453  			return 0;
2454  
2455  #ifdef VM_SAO
2456  		if (*vm_flags & VM_SAO)
2457  			return 0;
2458  #endif
2459  #ifdef VM_SPARC_ADI
2460  		if (*vm_flags & VM_SPARC_ADI)
2461  			return 0;
2462  #endif
2463  
2464  		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2465  			err = __ksm_enter(mm);
2466  			if (err)
2467  				return err;
2468  		}
2469  
2470  		*vm_flags |= VM_MERGEABLE;
2471  		break;
2472  
2473  	case MADV_UNMERGEABLE:
2474  		if (!(*vm_flags & VM_MERGEABLE))
2475  			return 0;		/* just ignore the advice */
2476  
2477  		if (vma->anon_vma) {
2478  			err = unmerge_ksm_pages(vma, start, end);
2479  			if (err)
2480  				return err;
2481  		}
2482  
2483  		*vm_flags &= ~VM_MERGEABLE;
2484  		break;
2485  	}
2486  
2487  	return 0;
2488  }
2489  EXPORT_SYMBOL_GPL(ksm_madvise);
2490  
2491  int __ksm_enter(struct mm_struct *mm)
2492  {
2493  	struct mm_slot *mm_slot;
2494  	int needs_wakeup;
2495  
2496  	mm_slot = alloc_mm_slot();
2497  	if (!mm_slot)
2498  		return -ENOMEM;
2499  
2500  	/* Check ksm_run too?  Would need tighter locking */
2501  	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2502  
2503  	spin_lock(&ksm_mmlist_lock);
2504  	insert_to_mm_slots_hash(mm, mm_slot);
2505  	/*
2506  	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2507  	 * insert just behind the scanning cursor, to let the area settle
2508  	 * down a little; when fork is followed by immediate exec, we don't
2509  	 * want ksmd to waste time setting up and tearing down an rmap_list.
2510  	 *
2511  	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2512  	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2513  	 * missed: then we might as well insert at the end of the list.
2514  	 */
2515  	if (ksm_run & KSM_RUN_UNMERGE)
2516  		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2517  	else
2518  		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2519  	spin_unlock(&ksm_mmlist_lock);
2520  
2521  	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2522  	mmgrab(mm);
2523  
2524  	if (needs_wakeup)
2525  		wake_up_interruptible(&ksm_thread_wait);
2526  
2527  	return 0;
2528  }
2529  
2530  void __ksm_exit(struct mm_struct *mm)
2531  {
2532  	struct mm_slot *mm_slot;
2533  	int easy_to_free = 0;
2534  
2535  	/*
2536  	 * This process is exiting: if it's straightforward (as is the
2537  	 * case when ksmd was never running), free mm_slot immediately.
2538  	 * But if it's at the cursor or has rmap_items linked to it, use
2539  	 * mmap_lock to synchronize with any break_cows before pagetables
2540  	 * are freed, and leave the mm_slot on the list for ksmd to free.
2541  	 * Beware: ksm may already have noticed it exiting and freed the slot.
2542  	 */
2543  
2544  	spin_lock(&ksm_mmlist_lock);
2545  	mm_slot = get_mm_slot(mm);
2546  	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2547  		if (!mm_slot->rmap_list) {
2548  			hash_del(&mm_slot->link);
2549  			list_del(&mm_slot->mm_list);
2550  			easy_to_free = 1;
2551  		} else {
2552  			list_move(&mm_slot->mm_list,
2553  				  &ksm_scan.mm_slot->mm_list);
2554  		}
2555  	}
2556  	spin_unlock(&ksm_mmlist_lock);
2557  
2558  	if (easy_to_free) {
2559  		free_mm_slot(mm_slot);
2560  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2561  		mmdrop(mm);
2562  	} else if (mm_slot) {
2563  		mmap_write_lock(mm);
2564  		mmap_write_unlock(mm);
2565  	}
2566  }
2567  
2568  struct page *ksm_might_need_to_copy(struct page *page,
2569  			struct vm_area_struct *vma, unsigned long address)
2570  {
2571  	struct anon_vma *anon_vma = page_anon_vma(page);
2572  	struct page *new_page;
2573  
2574  	if (PageKsm(page)) {
2575  		if (page_stable_node(page) &&
2576  		    !(ksm_run & KSM_RUN_UNMERGE))
2577  			return page;	/* no need to copy it */
2578  	} else if (!anon_vma) {
2579  		return page;		/* no need to copy it */
2580  	} else if (anon_vma->root == vma->anon_vma->root &&
2581  		 page->index == linear_page_index(vma, address)) {
2582  		return page;		/* still no need to copy it */
2583  	}
2584  	if (!PageUptodate(page))
2585  		return page;		/* let do_swap_page report the error */
2586  
2587  	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2588  	if (new_page) {
2589  		copy_user_highpage(new_page, page, address, vma);
2590  
2591  		SetPageDirty(new_page);
2592  		__SetPageUptodate(new_page);
2593  		__SetPageLocked(new_page);
2594  	}
2595  
2596  	return new_page;
2597  }
2598  
2599  void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2600  {
2601  	struct stable_node *stable_node;
2602  	struct rmap_item *rmap_item;
2603  	int search_new_forks = 0;
2604  
2605  	VM_BUG_ON_PAGE(!PageKsm(page), page);
2606  
2607  	/*
2608  	 * Rely on the page lock to protect against concurrent modifications
2609  	 * to that page's node of the stable tree.
2610  	 */
2611  	VM_BUG_ON_PAGE(!PageLocked(page), page);
2612  
2613  	stable_node = page_stable_node(page);
2614  	if (!stable_node)
2615  		return;
2616  again:
2617  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2618  		struct anon_vma *anon_vma = rmap_item->anon_vma;
2619  		struct anon_vma_chain *vmac;
2620  		struct vm_area_struct *vma;
2621  
2622  		cond_resched();
2623  		anon_vma_lock_read(anon_vma);
2624  		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2625  					       0, ULONG_MAX) {
2626  			unsigned long addr;
2627  
2628  			cond_resched();
2629  			vma = vmac->vma;
2630  
2631  			/* Ignore the stable/unstable/sqnr flags */
2632  			addr = rmap_item->address & ~KSM_FLAG_MASK;
2633  
2634  			if (addr < vma->vm_start || addr >= vma->vm_end)
2635  				continue;
2636  			/*
2637  			 * Initially we examine only the vma which covers this
2638  			 * rmap_item; but later, if there is still work to do,
2639  			 * we examine covering vmas in other mms: in case they
2640  			 * were forked from the original since ksmd passed.
2641  			 */
2642  			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2643  				continue;
2644  
2645  			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2646  				continue;
2647  
2648  			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2649  				anon_vma_unlock_read(anon_vma);
2650  				return;
2651  			}
2652  			if (rwc->done && rwc->done(page)) {
2653  				anon_vma_unlock_read(anon_vma);
2654  				return;
2655  			}
2656  		}
2657  		anon_vma_unlock_read(anon_vma);
2658  	}
2659  	if (!search_new_forks++)
2660  		goto again;
2661  }
2662  
2663  bool reuse_ksm_page(struct page *page,
2664  		    struct vm_area_struct *vma,
2665  		    unsigned long address)
2666  {
2667  #ifdef CONFIG_DEBUG_VM
2668  	if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2669  			WARN_ON(!page_mapped(page)) ||
2670  			WARN_ON(!PageLocked(page))) {
2671  		dump_page(page, "reuse_ksm_page");
2672  		return false;
2673  	}
2674  #endif
2675  
2676  	if (PageSwapCache(page) || !page_stable_node(page))
2677  		return false;
2678  	/* Prohibit parallel get_ksm_page() */
2679  	if (!page_ref_freeze(page, 1))
2680  		return false;
2681  
2682  	page_move_anon_rmap(page, vma);
2683  	page->index = linear_page_index(vma, address);
2684  	page_ref_unfreeze(page, 1);
2685  
2686  	return true;
2687  }
2688  #ifdef CONFIG_MIGRATION
2689  void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2690  {
2691  	struct stable_node *stable_node;
2692  
2693  	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2694  	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2695  	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2696  
2697  	stable_node = page_stable_node(newpage);
2698  	if (stable_node) {
2699  		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2700  		stable_node->kpfn = page_to_pfn(newpage);
2701  		/*
2702  		 * newpage->mapping was set in advance; now we need smp_wmb()
2703  		 * to make sure that the new stable_node->kpfn is visible
2704  		 * to get_ksm_page() before it can see that oldpage->mapping
2705  		 * has gone stale (or that PageSwapCache has been cleared).
2706  		 */
2707  		smp_wmb();
2708  		set_page_stable_node(oldpage, NULL);
2709  	}
2710  }
2711  #endif /* CONFIG_MIGRATION */
2712  
2713  #ifdef CONFIG_MEMORY_HOTREMOVE
2714  static void wait_while_offlining(void)
2715  {
2716  	while (ksm_run & KSM_RUN_OFFLINE) {
2717  		mutex_unlock(&ksm_thread_mutex);
2718  		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2719  			    TASK_UNINTERRUPTIBLE);
2720  		mutex_lock(&ksm_thread_mutex);
2721  	}
2722  }
2723  
2724  static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2725  					 unsigned long start_pfn,
2726  					 unsigned long end_pfn)
2727  {
2728  	if (stable_node->kpfn >= start_pfn &&
2729  	    stable_node->kpfn < end_pfn) {
2730  		/*
2731  		 * Don't get_ksm_page, page has already gone:
2732  		 * which is why we keep kpfn instead of page*
2733  		 */
2734  		remove_node_from_stable_tree(stable_node);
2735  		return true;
2736  	}
2737  	return false;
2738  }
2739  
2740  static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2741  					   unsigned long start_pfn,
2742  					   unsigned long end_pfn,
2743  					   struct rb_root *root)
2744  {
2745  	struct stable_node *dup;
2746  	struct hlist_node *hlist_safe;
2747  
2748  	if (!is_stable_node_chain(stable_node)) {
2749  		VM_BUG_ON(is_stable_node_dup(stable_node));
2750  		return stable_node_dup_remove_range(stable_node, start_pfn,
2751  						    end_pfn);
2752  	}
2753  
2754  	hlist_for_each_entry_safe(dup, hlist_safe,
2755  				  &stable_node->hlist, hlist_dup) {
2756  		VM_BUG_ON(!is_stable_node_dup(dup));
2757  		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2758  	}
2759  	if (hlist_empty(&stable_node->hlist)) {
2760  		free_stable_node_chain(stable_node, root);
2761  		return true; /* notify caller that tree was rebalanced */
2762  	} else
2763  		return false;
2764  }
2765  
2766  static void ksm_check_stable_tree(unsigned long start_pfn,
2767  				  unsigned long end_pfn)
2768  {
2769  	struct stable_node *stable_node, *next;
2770  	struct rb_node *node;
2771  	int nid;
2772  
2773  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2774  		node = rb_first(root_stable_tree + nid);
2775  		while (node) {
2776  			stable_node = rb_entry(node, struct stable_node, node);
2777  			if (stable_node_chain_remove_range(stable_node,
2778  							   start_pfn, end_pfn,
2779  							   root_stable_tree +
2780  							   nid))
2781  				node = rb_first(root_stable_tree + nid);
2782  			else
2783  				node = rb_next(node);
2784  			cond_resched();
2785  		}
2786  	}
2787  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2788  		if (stable_node->kpfn >= start_pfn &&
2789  		    stable_node->kpfn < end_pfn)
2790  			remove_node_from_stable_tree(stable_node);
2791  		cond_resched();
2792  	}
2793  }
2794  
2795  static int ksm_memory_callback(struct notifier_block *self,
2796  			       unsigned long action, void *arg)
2797  {
2798  	struct memory_notify *mn = arg;
2799  
2800  	switch (action) {
2801  	case MEM_GOING_OFFLINE:
2802  		/*
2803  		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2804  		 * and remove_all_stable_nodes() while memory is going offline:
2805  		 * it is unsafe for them to touch the stable tree at this time.
2806  		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2807  		 * which do not need the ksm_thread_mutex are all safe.
2808  		 */
2809  		mutex_lock(&ksm_thread_mutex);
2810  		ksm_run |= KSM_RUN_OFFLINE;
2811  		mutex_unlock(&ksm_thread_mutex);
2812  		break;
2813  
2814  	case MEM_OFFLINE:
2815  		/*
2816  		 * Most of the work is done by page migration; but there might
2817  		 * be a few stable_nodes left over, still pointing to struct
2818  		 * pages which have been offlined: prune those from the tree,
2819  		 * otherwise get_ksm_page() might later try to access a
2820  		 * non-existent struct page.
2821  		 */
2822  		ksm_check_stable_tree(mn->start_pfn,
2823  				      mn->start_pfn + mn->nr_pages);
2824  		fallthrough;
2825  	case MEM_CANCEL_OFFLINE:
2826  		mutex_lock(&ksm_thread_mutex);
2827  		ksm_run &= ~KSM_RUN_OFFLINE;
2828  		mutex_unlock(&ksm_thread_mutex);
2829  
2830  		smp_mb();	/* wake_up_bit advises this */
2831  		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2832  		break;
2833  	}
2834  	return NOTIFY_OK;
2835  }
2836  #else
2837  static void wait_while_offlining(void)
2838  {
2839  }
2840  #endif /* CONFIG_MEMORY_HOTREMOVE */
2841  
2842  #ifdef CONFIG_SYSFS
2843  /*
2844   * This all compiles without CONFIG_SYSFS, but is a waste of space.
2845   */
2846  
2847  #define KSM_ATTR_RO(_name) \
2848  	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2849  #define KSM_ATTR(_name) \
2850  	static struct kobj_attribute _name##_attr = \
2851  		__ATTR(_name, 0644, _name##_show, _name##_store)
2852  
2853  static ssize_t sleep_millisecs_show(struct kobject *kobj,
2854  				    struct kobj_attribute *attr, char *buf)
2855  {
2856  	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2857  }
2858  
2859  static ssize_t sleep_millisecs_store(struct kobject *kobj,
2860  				     struct kobj_attribute *attr,
2861  				     const char *buf, size_t count)
2862  {
2863  	unsigned long msecs;
2864  	int err;
2865  
2866  	err = kstrtoul(buf, 10, &msecs);
2867  	if (err || msecs > UINT_MAX)
2868  		return -EINVAL;
2869  
2870  	ksm_thread_sleep_millisecs = msecs;
2871  	wake_up_interruptible(&ksm_iter_wait);
2872  
2873  	return count;
2874  }
2875  KSM_ATTR(sleep_millisecs);
2876  
2877  static ssize_t pages_to_scan_show(struct kobject *kobj,
2878  				  struct kobj_attribute *attr, char *buf)
2879  {
2880  	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2881  }
2882  
2883  static ssize_t pages_to_scan_store(struct kobject *kobj,
2884  				   struct kobj_attribute *attr,
2885  				   const char *buf, size_t count)
2886  {
2887  	int err;
2888  	unsigned long nr_pages;
2889  
2890  	err = kstrtoul(buf, 10, &nr_pages);
2891  	if (err || nr_pages > UINT_MAX)
2892  		return -EINVAL;
2893  
2894  	ksm_thread_pages_to_scan = nr_pages;
2895  
2896  	return count;
2897  }
2898  KSM_ATTR(pages_to_scan);
2899  
2900  static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2901  			char *buf)
2902  {
2903  	return sprintf(buf, "%lu\n", ksm_run);
2904  }
2905  
2906  static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2907  			 const char *buf, size_t count)
2908  {
2909  	int err;
2910  	unsigned long flags;
2911  
2912  	err = kstrtoul(buf, 10, &flags);
2913  	if (err || flags > UINT_MAX)
2914  		return -EINVAL;
2915  	if (flags > KSM_RUN_UNMERGE)
2916  		return -EINVAL;
2917  
2918  	/*
2919  	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2920  	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2921  	 * breaking COW to free the pages_shared (but leaves mm_slots
2922  	 * on the list for when ksmd may be set running again).
2923  	 */
2924  
2925  	mutex_lock(&ksm_thread_mutex);
2926  	wait_while_offlining();
2927  	if (ksm_run != flags) {
2928  		ksm_run = flags;
2929  		if (flags & KSM_RUN_UNMERGE) {
2930  			set_current_oom_origin();
2931  			err = unmerge_and_remove_all_rmap_items();
2932  			clear_current_oom_origin();
2933  			if (err) {
2934  				ksm_run = KSM_RUN_STOP;
2935  				count = err;
2936  			}
2937  		}
2938  	}
2939  	mutex_unlock(&ksm_thread_mutex);
2940  
2941  	if (flags & KSM_RUN_MERGE)
2942  		wake_up_interruptible(&ksm_thread_wait);
2943  
2944  	return count;
2945  }
2946  KSM_ATTR(run);
2947  
2948  #ifdef CONFIG_NUMA
2949  static ssize_t merge_across_nodes_show(struct kobject *kobj,
2950  				struct kobj_attribute *attr, char *buf)
2951  {
2952  	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2953  }
2954  
2955  static ssize_t merge_across_nodes_store(struct kobject *kobj,
2956  				   struct kobj_attribute *attr,
2957  				   const char *buf, size_t count)
2958  {
2959  	int err;
2960  	unsigned long knob;
2961  
2962  	err = kstrtoul(buf, 10, &knob);
2963  	if (err)
2964  		return err;
2965  	if (knob > 1)
2966  		return -EINVAL;
2967  
2968  	mutex_lock(&ksm_thread_mutex);
2969  	wait_while_offlining();
2970  	if (ksm_merge_across_nodes != knob) {
2971  		if (ksm_pages_shared || remove_all_stable_nodes())
2972  			err = -EBUSY;
2973  		else if (root_stable_tree == one_stable_tree) {
2974  			struct rb_root *buf;
2975  			/*
2976  			 * This is the first time that we switch away from the
2977  			 * default of merging across nodes: must now allocate
2978  			 * a buffer to hold as many roots as may be needed.
2979  			 * Allocate stable and unstable together:
2980  			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2981  			 */
2982  			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2983  				      GFP_KERNEL);
2984  			/* Let us assume that RB_ROOT is NULL is zero */
2985  			if (!buf)
2986  				err = -ENOMEM;
2987  			else {
2988  				root_stable_tree = buf;
2989  				root_unstable_tree = buf + nr_node_ids;
2990  				/* Stable tree is empty but not the unstable */
2991  				root_unstable_tree[0] = one_unstable_tree[0];
2992  			}
2993  		}
2994  		if (!err) {
2995  			ksm_merge_across_nodes = knob;
2996  			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2997  		}
2998  	}
2999  	mutex_unlock(&ksm_thread_mutex);
3000  
3001  	return err ? err : count;
3002  }
3003  KSM_ATTR(merge_across_nodes);
3004  #endif
3005  
3006  static ssize_t use_zero_pages_show(struct kobject *kobj,
3007  				struct kobj_attribute *attr, char *buf)
3008  {
3009  	return sprintf(buf, "%u\n", ksm_use_zero_pages);
3010  }
3011  static ssize_t use_zero_pages_store(struct kobject *kobj,
3012  				   struct kobj_attribute *attr,
3013  				   const char *buf, size_t count)
3014  {
3015  	int err;
3016  	bool value;
3017  
3018  	err = kstrtobool(buf, &value);
3019  	if (err)
3020  		return -EINVAL;
3021  
3022  	ksm_use_zero_pages = value;
3023  
3024  	return count;
3025  }
3026  KSM_ATTR(use_zero_pages);
3027  
3028  static ssize_t max_page_sharing_show(struct kobject *kobj,
3029  				     struct kobj_attribute *attr, char *buf)
3030  {
3031  	return sprintf(buf, "%u\n", ksm_max_page_sharing);
3032  }
3033  
3034  static ssize_t max_page_sharing_store(struct kobject *kobj,
3035  				      struct kobj_attribute *attr,
3036  				      const char *buf, size_t count)
3037  {
3038  	int err;
3039  	int knob;
3040  
3041  	err = kstrtoint(buf, 10, &knob);
3042  	if (err)
3043  		return err;
3044  	/*
3045  	 * When a KSM page is created it is shared by 2 mappings. This
3046  	 * being a signed comparison, it implicitly verifies it's not
3047  	 * negative.
3048  	 */
3049  	if (knob < 2)
3050  		return -EINVAL;
3051  
3052  	if (READ_ONCE(ksm_max_page_sharing) == knob)
3053  		return count;
3054  
3055  	mutex_lock(&ksm_thread_mutex);
3056  	wait_while_offlining();
3057  	if (ksm_max_page_sharing != knob) {
3058  		if (ksm_pages_shared || remove_all_stable_nodes())
3059  			err = -EBUSY;
3060  		else
3061  			ksm_max_page_sharing = knob;
3062  	}
3063  	mutex_unlock(&ksm_thread_mutex);
3064  
3065  	return err ? err : count;
3066  }
3067  KSM_ATTR(max_page_sharing);
3068  
3069  static ssize_t pages_shared_show(struct kobject *kobj,
3070  				 struct kobj_attribute *attr, char *buf)
3071  {
3072  	return sprintf(buf, "%lu\n", ksm_pages_shared);
3073  }
3074  KSM_ATTR_RO(pages_shared);
3075  
3076  static ssize_t pages_sharing_show(struct kobject *kobj,
3077  				  struct kobj_attribute *attr, char *buf)
3078  {
3079  	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3080  }
3081  KSM_ATTR_RO(pages_sharing);
3082  
3083  static ssize_t pages_unshared_show(struct kobject *kobj,
3084  				   struct kobj_attribute *attr, char *buf)
3085  {
3086  	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3087  }
3088  KSM_ATTR_RO(pages_unshared);
3089  
3090  static ssize_t pages_volatile_show(struct kobject *kobj,
3091  				   struct kobj_attribute *attr, char *buf)
3092  {
3093  	long ksm_pages_volatile;
3094  
3095  	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3096  				- ksm_pages_sharing - ksm_pages_unshared;
3097  	/*
3098  	 * It was not worth any locking to calculate that statistic,
3099  	 * but it might therefore sometimes be negative: conceal that.
3100  	 */
3101  	if (ksm_pages_volatile < 0)
3102  		ksm_pages_volatile = 0;
3103  	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3104  }
3105  KSM_ATTR_RO(pages_volatile);
3106  
3107  static ssize_t stable_node_dups_show(struct kobject *kobj,
3108  				     struct kobj_attribute *attr, char *buf)
3109  {
3110  	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3111  }
3112  KSM_ATTR_RO(stable_node_dups);
3113  
3114  static ssize_t stable_node_chains_show(struct kobject *kobj,
3115  				       struct kobj_attribute *attr, char *buf)
3116  {
3117  	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3118  }
3119  KSM_ATTR_RO(stable_node_chains);
3120  
3121  static ssize_t
3122  stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3123  					struct kobj_attribute *attr,
3124  					char *buf)
3125  {
3126  	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3127  }
3128  
3129  static ssize_t
3130  stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3131  					 struct kobj_attribute *attr,
3132  					 const char *buf, size_t count)
3133  {
3134  	unsigned long msecs;
3135  	int err;
3136  
3137  	err = kstrtoul(buf, 10, &msecs);
3138  	if (err || msecs > UINT_MAX)
3139  		return -EINVAL;
3140  
3141  	ksm_stable_node_chains_prune_millisecs = msecs;
3142  
3143  	return count;
3144  }
3145  KSM_ATTR(stable_node_chains_prune_millisecs);
3146  
3147  static ssize_t full_scans_show(struct kobject *kobj,
3148  			       struct kobj_attribute *attr, char *buf)
3149  {
3150  	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3151  }
3152  KSM_ATTR_RO(full_scans);
3153  
3154  static struct attribute *ksm_attrs[] = {
3155  	&sleep_millisecs_attr.attr,
3156  	&pages_to_scan_attr.attr,
3157  	&run_attr.attr,
3158  	&pages_shared_attr.attr,
3159  	&pages_sharing_attr.attr,
3160  	&pages_unshared_attr.attr,
3161  	&pages_volatile_attr.attr,
3162  	&full_scans_attr.attr,
3163  #ifdef CONFIG_NUMA
3164  	&merge_across_nodes_attr.attr,
3165  #endif
3166  	&max_page_sharing_attr.attr,
3167  	&stable_node_chains_attr.attr,
3168  	&stable_node_dups_attr.attr,
3169  	&stable_node_chains_prune_millisecs_attr.attr,
3170  	&use_zero_pages_attr.attr,
3171  	NULL,
3172  };
3173  
3174  static const struct attribute_group ksm_attr_group = {
3175  	.attrs = ksm_attrs,
3176  	.name = "ksm",
3177  };
3178  #endif /* CONFIG_SYSFS */
3179  
3180  static int __init ksm_init(void)
3181  {
3182  	struct task_struct *ksm_thread;
3183  	int err;
3184  
3185  	/* The correct value depends on page size and endianness */
3186  	zero_checksum = calc_checksum(ZERO_PAGE(0));
3187  	/* Default to false for backwards compatibility */
3188  	ksm_use_zero_pages = false;
3189  
3190  	err = ksm_slab_init();
3191  	if (err)
3192  		goto out;
3193  
3194  	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3195  	if (IS_ERR(ksm_thread)) {
3196  		pr_err("ksm: creating kthread failed\n");
3197  		err = PTR_ERR(ksm_thread);
3198  		goto out_free;
3199  	}
3200  
3201  #ifdef CONFIG_SYSFS
3202  	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3203  	if (err) {
3204  		pr_err("ksm: register sysfs failed\n");
3205  		kthread_stop(ksm_thread);
3206  		goto out_free;
3207  	}
3208  #else
3209  	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3210  
3211  #endif /* CONFIG_SYSFS */
3212  
3213  #ifdef CONFIG_MEMORY_HOTREMOVE
3214  	/* There is no significance to this priority 100 */
3215  	hotplug_memory_notifier(ksm_memory_callback, 100);
3216  #endif
3217  	return 0;
3218  
3219  out_free:
3220  	ksm_slab_free();
3221  out:
3222  	return err;
3223  }
3224  subsys_initcall(ksm_init);
3225