1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #ifdef CONFIG_NUMA 49 #define NUMA(x) (x) 50 #define DO_NUMA(x) do { (x); } while (0) 51 #else 52 #define NUMA(x) (0) 53 #define DO_NUMA(x) do { } while (0) 54 #endif 55 56 /** 57 * DOC: Overview 58 * 59 * A few notes about the KSM scanning process, 60 * to make it easier to understand the data structures below: 61 * 62 * In order to reduce excessive scanning, KSM sorts the memory pages by their 63 * contents into a data structure that holds pointers to the pages' locations. 64 * 65 * Since the contents of the pages may change at any moment, KSM cannot just 66 * insert the pages into a normal sorted tree and expect it to find anything. 67 * Therefore KSM uses two data structures - the stable and the unstable tree. 68 * 69 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 70 * by their contents. Because each such page is write-protected, searching on 71 * this tree is fully assured to be working (except when pages are unmapped), 72 * and therefore this tree is called the stable tree. 73 * 74 * The stable tree node includes information required for reverse 75 * mapping from a KSM page to virtual addresses that map this page. 76 * 77 * In order to avoid large latencies of the rmap walks on KSM pages, 78 * KSM maintains two types of nodes in the stable tree: 79 * 80 * * the regular nodes that keep the reverse mapping structures in a 81 * linked list 82 * * the "chains" that link nodes ("dups") that represent the same 83 * write protected memory content, but each "dup" corresponds to a 84 * different KSM page copy of that content 85 * 86 * Internally, the regular nodes, "dups" and "chains" are represented 87 * using the same struct ksm_stable_node structure. 88 * 89 * In addition to the stable tree, KSM uses a second data structure called the 90 * unstable tree: this tree holds pointers to pages which have been found to 91 * be "unchanged for a period of time". The unstable tree sorts these pages 92 * by their contents, but since they are not write-protected, KSM cannot rely 93 * upon the unstable tree to work correctly - the unstable tree is liable to 94 * be corrupted as its contents are modified, and so it is called unstable. 95 * 96 * KSM solves this problem by several techniques: 97 * 98 * 1) The unstable tree is flushed every time KSM completes scanning all 99 * memory areas, and then the tree is rebuilt again from the beginning. 100 * 2) KSM will only insert into the unstable tree, pages whose hash value 101 * has not changed since the previous scan of all memory areas. 102 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 103 * colors of the nodes and not on their contents, assuring that even when 104 * the tree gets "corrupted" it won't get out of balance, so scanning time 105 * remains the same (also, searching and inserting nodes in an rbtree uses 106 * the same algorithm, so we have no overhead when we flush and rebuild). 107 * 4) KSM never flushes the stable tree, which means that even if it were to 108 * take 10 attempts to find a page in the unstable tree, once it is found, 109 * it is secured in the stable tree. (When we scan a new page, we first 110 * compare it against the stable tree, and then against the unstable tree.) 111 * 112 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 113 * stable trees and multiple unstable trees: one of each for each NUMA node. 114 */ 115 116 /** 117 * struct ksm_mm_slot - ksm information per mm that is being scanned 118 * @slot: hash lookup from mm to mm_slot 119 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 120 */ 121 struct ksm_mm_slot { 122 struct mm_slot slot; 123 struct ksm_rmap_item *rmap_list; 124 }; 125 126 /** 127 * struct ksm_scan - cursor for scanning 128 * @mm_slot: the current mm_slot we are scanning 129 * @address: the next address inside that to be scanned 130 * @rmap_list: link to the next rmap to be scanned in the rmap_list 131 * @seqnr: count of completed full scans (needed when removing unstable node) 132 * 133 * There is only the one ksm_scan instance of this cursor structure. 134 */ 135 struct ksm_scan { 136 struct ksm_mm_slot *mm_slot; 137 unsigned long address; 138 struct ksm_rmap_item **rmap_list; 139 unsigned long seqnr; 140 }; 141 142 /** 143 * struct ksm_stable_node - node of the stable rbtree 144 * @node: rb node of this ksm page in the stable tree 145 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 146 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 147 * @list: linked into migrate_nodes, pending placement in the proper node tree 148 * @hlist: hlist head of rmap_items using this ksm page 149 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 150 * @chain_prune_time: time of the last full garbage collection 151 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 152 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 153 */ 154 struct ksm_stable_node { 155 union { 156 struct rb_node node; /* when node of stable tree */ 157 struct { /* when listed for migration */ 158 struct list_head *head; 159 struct { 160 struct hlist_node hlist_dup; 161 struct list_head list; 162 }; 163 }; 164 }; 165 struct hlist_head hlist; 166 union { 167 unsigned long kpfn; 168 unsigned long chain_prune_time; 169 }; 170 /* 171 * STABLE_NODE_CHAIN can be any negative number in 172 * rmap_hlist_len negative range, but better not -1 to be able 173 * to reliably detect underflows. 174 */ 175 #define STABLE_NODE_CHAIN -1024 176 int rmap_hlist_len; 177 #ifdef CONFIG_NUMA 178 int nid; 179 #endif 180 }; 181 182 /** 183 * struct ksm_rmap_item - reverse mapping item for virtual addresses 184 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 185 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 186 * @nid: NUMA node id of unstable tree in which linked (may not match page) 187 * @mm: the memory structure this rmap_item is pointing into 188 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 189 * @oldchecksum: previous checksum of the page at that virtual address 190 * @node: rb node of this rmap_item in the unstable tree 191 * @head: pointer to stable_node heading this list in the stable tree 192 * @hlist: link into hlist of rmap_items hanging off that stable_node 193 */ 194 struct ksm_rmap_item { 195 struct ksm_rmap_item *rmap_list; 196 union { 197 struct anon_vma *anon_vma; /* when stable */ 198 #ifdef CONFIG_NUMA 199 int nid; /* when node of unstable tree */ 200 #endif 201 }; 202 struct mm_struct *mm; 203 unsigned long address; /* + low bits used for flags below */ 204 unsigned int oldchecksum; /* when unstable */ 205 union { 206 struct rb_node node; /* when node of unstable tree */ 207 struct { /* when listed from stable tree */ 208 struct ksm_stable_node *head; 209 struct hlist_node hlist; 210 }; 211 }; 212 }; 213 214 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 215 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 216 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 217 218 /* The stable and unstable tree heads */ 219 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 220 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 221 static struct rb_root *root_stable_tree = one_stable_tree; 222 static struct rb_root *root_unstable_tree = one_unstable_tree; 223 224 /* Recently migrated nodes of stable tree, pending proper placement */ 225 static LIST_HEAD(migrate_nodes); 226 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 227 228 #define MM_SLOTS_HASH_BITS 10 229 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 230 231 static struct ksm_mm_slot ksm_mm_head = { 232 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 233 }; 234 static struct ksm_scan ksm_scan = { 235 .mm_slot = &ksm_mm_head, 236 }; 237 238 static struct kmem_cache *rmap_item_cache; 239 static struct kmem_cache *stable_node_cache; 240 static struct kmem_cache *mm_slot_cache; 241 242 /* The number of nodes in the stable tree */ 243 static unsigned long ksm_pages_shared; 244 245 /* The number of page slots additionally sharing those nodes */ 246 static unsigned long ksm_pages_sharing; 247 248 /* The number of nodes in the unstable tree */ 249 static unsigned long ksm_pages_unshared; 250 251 /* The number of rmap_items in use: to calculate pages_volatile */ 252 static unsigned long ksm_rmap_items; 253 254 /* The number of stable_node chains */ 255 static unsigned long ksm_stable_node_chains; 256 257 /* The number of stable_node dups linked to the stable_node chains */ 258 static unsigned long ksm_stable_node_dups; 259 260 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 261 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 262 263 /* Maximum number of page slots sharing a stable node */ 264 static int ksm_max_page_sharing = 256; 265 266 /* Number of pages ksmd should scan in one batch */ 267 static unsigned int ksm_thread_pages_to_scan = 100; 268 269 /* Milliseconds ksmd should sleep between batches */ 270 static unsigned int ksm_thread_sleep_millisecs = 20; 271 272 /* Checksum of an empty (zeroed) page */ 273 static unsigned int zero_checksum __read_mostly; 274 275 /* Whether to merge empty (zeroed) pages with actual zero pages */ 276 static bool ksm_use_zero_pages __read_mostly; 277 278 #ifdef CONFIG_NUMA 279 /* Zeroed when merging across nodes is not allowed */ 280 static unsigned int ksm_merge_across_nodes = 1; 281 static int ksm_nr_node_ids = 1; 282 #else 283 #define ksm_merge_across_nodes 1U 284 #define ksm_nr_node_ids 1 285 #endif 286 287 #define KSM_RUN_STOP 0 288 #define KSM_RUN_MERGE 1 289 #define KSM_RUN_UNMERGE 2 290 #define KSM_RUN_OFFLINE 4 291 static unsigned long ksm_run = KSM_RUN_STOP; 292 static void wait_while_offlining(void); 293 294 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 295 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 296 static DEFINE_MUTEX(ksm_thread_mutex); 297 static DEFINE_SPINLOCK(ksm_mmlist_lock); 298 299 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 300 sizeof(struct __struct), __alignof__(struct __struct),\ 301 (__flags), NULL) 302 303 static int __init ksm_slab_init(void) 304 { 305 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 306 if (!rmap_item_cache) 307 goto out; 308 309 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 310 if (!stable_node_cache) 311 goto out_free1; 312 313 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 314 if (!mm_slot_cache) 315 goto out_free2; 316 317 return 0; 318 319 out_free2: 320 kmem_cache_destroy(stable_node_cache); 321 out_free1: 322 kmem_cache_destroy(rmap_item_cache); 323 out: 324 return -ENOMEM; 325 } 326 327 static void __init ksm_slab_free(void) 328 { 329 kmem_cache_destroy(mm_slot_cache); 330 kmem_cache_destroy(stable_node_cache); 331 kmem_cache_destroy(rmap_item_cache); 332 mm_slot_cache = NULL; 333 } 334 335 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 336 { 337 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 338 } 339 340 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 341 { 342 return dup->head == STABLE_NODE_DUP_HEAD; 343 } 344 345 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 346 struct ksm_stable_node *chain) 347 { 348 VM_BUG_ON(is_stable_node_dup(dup)); 349 dup->head = STABLE_NODE_DUP_HEAD; 350 VM_BUG_ON(!is_stable_node_chain(chain)); 351 hlist_add_head(&dup->hlist_dup, &chain->hlist); 352 ksm_stable_node_dups++; 353 } 354 355 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 356 { 357 VM_BUG_ON(!is_stable_node_dup(dup)); 358 hlist_del(&dup->hlist_dup); 359 ksm_stable_node_dups--; 360 } 361 362 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 363 { 364 VM_BUG_ON(is_stable_node_chain(dup)); 365 if (is_stable_node_dup(dup)) 366 __stable_node_dup_del(dup); 367 else 368 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 369 #ifdef CONFIG_DEBUG_VM 370 dup->head = NULL; 371 #endif 372 } 373 374 static inline struct ksm_rmap_item *alloc_rmap_item(void) 375 { 376 struct ksm_rmap_item *rmap_item; 377 378 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 379 __GFP_NORETRY | __GFP_NOWARN); 380 if (rmap_item) 381 ksm_rmap_items++; 382 return rmap_item; 383 } 384 385 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 386 { 387 ksm_rmap_items--; 388 rmap_item->mm->ksm_rmap_items--; 389 rmap_item->mm = NULL; /* debug safety */ 390 kmem_cache_free(rmap_item_cache, rmap_item); 391 } 392 393 static inline struct ksm_stable_node *alloc_stable_node(void) 394 { 395 /* 396 * The allocation can take too long with GFP_KERNEL when memory is under 397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 398 * grants access to memory reserves, helping to avoid this problem. 399 */ 400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 401 } 402 403 static inline void free_stable_node(struct ksm_stable_node *stable_node) 404 { 405 VM_BUG_ON(stable_node->rmap_hlist_len && 406 !is_stable_node_chain(stable_node)); 407 kmem_cache_free(stable_node_cache, stable_node); 408 } 409 410 /* 411 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 412 * page tables after it has passed through ksm_exit() - which, if necessary, 413 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 414 * a special flag: they can just back out as soon as mm_users goes to zero. 415 * ksm_test_exit() is used throughout to make this test for exit: in some 416 * places for correctness, in some places just to avoid unnecessary work. 417 */ 418 static inline bool ksm_test_exit(struct mm_struct *mm) 419 { 420 return atomic_read(&mm->mm_users) == 0; 421 } 422 423 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 424 struct mm_walk *walk) 425 { 426 struct page *page = NULL; 427 spinlock_t *ptl; 428 pte_t *pte; 429 int ret; 430 431 if (pmd_leaf(*pmd) || !pmd_present(*pmd)) 432 return 0; 433 434 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 435 if (pte_present(*pte)) { 436 page = vm_normal_page(walk->vma, addr, *pte); 437 } else if (!pte_none(*pte)) { 438 swp_entry_t entry = pte_to_swp_entry(*pte); 439 440 /* 441 * As KSM pages remain KSM pages until freed, no need to wait 442 * here for migration to end. 443 */ 444 if (is_migration_entry(entry)) 445 page = pfn_swap_entry_to_page(entry); 446 } 447 ret = page && PageKsm(page); 448 pte_unmap_unlock(pte, ptl); 449 return ret; 450 } 451 452 static const struct mm_walk_ops break_ksm_ops = { 453 .pmd_entry = break_ksm_pmd_entry, 454 }; 455 456 /* 457 * We use break_ksm to break COW on a ksm page by triggering unsharing, 458 * such that the ksm page will get replaced by an exclusive anonymous page. 459 * 460 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 461 * in case the application has unmapped and remapped mm,addr meanwhile. 462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 463 * mmap of /dev/mem, where we would not want to touch it. 464 * 465 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 466 * of the process that owns 'vma'. We also do not want to enforce 467 * protection keys here anyway. 468 */ 469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 470 { 471 vm_fault_t ret = 0; 472 473 do { 474 int ksm_page; 475 476 cond_resched(); 477 ksm_page = walk_page_range_vma(vma, addr, addr + 1, 478 &break_ksm_ops, NULL); 479 if (WARN_ON_ONCE(ksm_page < 0)) 480 return ksm_page; 481 if (!ksm_page) 482 return 0; 483 ret = handle_mm_fault(vma, addr, 484 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 485 NULL); 486 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 487 /* 488 * We must loop until we no longer find a KSM page because 489 * handle_mm_fault() may back out if there's any difficulty e.g. if 490 * pte accessed bit gets updated concurrently. 491 * 492 * VM_FAULT_SIGBUS could occur if we race with truncation of the 493 * backing file, which also invalidates anonymous pages: that's 494 * okay, that truncation will have unmapped the PageKsm for us. 495 * 496 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 497 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 498 * current task has TIF_MEMDIE set, and will be OOM killed on return 499 * to user; and ksmd, having no mm, would never be chosen for that. 500 * 501 * But if the mm is in a limited mem_cgroup, then the fault may fail 502 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 503 * even ksmd can fail in this way - though it's usually breaking ksm 504 * just to undo a merge it made a moment before, so unlikely to oom. 505 * 506 * That's a pity: we might therefore have more kernel pages allocated 507 * than we're counting as nodes in the stable tree; but ksm_do_scan 508 * will retry to break_cow on each pass, so should recover the page 509 * in due course. The important thing is to not let VM_MERGEABLE 510 * be cleared while any such pages might remain in the area. 511 */ 512 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 513 } 514 515 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 516 unsigned long addr) 517 { 518 struct vm_area_struct *vma; 519 if (ksm_test_exit(mm)) 520 return NULL; 521 vma = vma_lookup(mm, addr); 522 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 523 return NULL; 524 return vma; 525 } 526 527 static void break_cow(struct ksm_rmap_item *rmap_item) 528 { 529 struct mm_struct *mm = rmap_item->mm; 530 unsigned long addr = rmap_item->address; 531 struct vm_area_struct *vma; 532 533 /* 534 * It is not an accident that whenever we want to break COW 535 * to undo, we also need to drop a reference to the anon_vma. 536 */ 537 put_anon_vma(rmap_item->anon_vma); 538 539 mmap_read_lock(mm); 540 vma = find_mergeable_vma(mm, addr); 541 if (vma) 542 break_ksm(vma, addr); 543 mmap_read_unlock(mm); 544 } 545 546 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 547 { 548 struct mm_struct *mm = rmap_item->mm; 549 unsigned long addr = rmap_item->address; 550 struct vm_area_struct *vma; 551 struct page *page; 552 553 mmap_read_lock(mm); 554 vma = find_mergeable_vma(mm, addr); 555 if (!vma) 556 goto out; 557 558 page = follow_page(vma, addr, FOLL_GET); 559 if (IS_ERR_OR_NULL(page)) 560 goto out; 561 if (is_zone_device_page(page)) 562 goto out_putpage; 563 if (PageAnon(page)) { 564 flush_anon_page(vma, page, addr); 565 flush_dcache_page(page); 566 } else { 567 out_putpage: 568 put_page(page); 569 out: 570 page = NULL; 571 } 572 mmap_read_unlock(mm); 573 return page; 574 } 575 576 /* 577 * This helper is used for getting right index into array of tree roots. 578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 579 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 580 * every node has its own stable and unstable tree. 581 */ 582 static inline int get_kpfn_nid(unsigned long kpfn) 583 { 584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 585 } 586 587 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 588 struct rb_root *root) 589 { 590 struct ksm_stable_node *chain = alloc_stable_node(); 591 VM_BUG_ON(is_stable_node_chain(dup)); 592 if (likely(chain)) { 593 INIT_HLIST_HEAD(&chain->hlist); 594 chain->chain_prune_time = jiffies; 595 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 597 chain->nid = NUMA_NO_NODE; /* debug */ 598 #endif 599 ksm_stable_node_chains++; 600 601 /* 602 * Put the stable node chain in the first dimension of 603 * the stable tree and at the same time remove the old 604 * stable node. 605 */ 606 rb_replace_node(&dup->node, &chain->node, root); 607 608 /* 609 * Move the old stable node to the second dimension 610 * queued in the hlist_dup. The invariant is that all 611 * dup stable_nodes in the chain->hlist point to pages 612 * that are write protected and have the exact same 613 * content. 614 */ 615 stable_node_chain_add_dup(dup, chain); 616 } 617 return chain; 618 } 619 620 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 621 struct rb_root *root) 622 { 623 rb_erase(&chain->node, root); 624 free_stable_node(chain); 625 ksm_stable_node_chains--; 626 } 627 628 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 629 { 630 struct ksm_rmap_item *rmap_item; 631 632 /* check it's not STABLE_NODE_CHAIN or negative */ 633 BUG_ON(stable_node->rmap_hlist_len < 0); 634 635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 636 if (rmap_item->hlist.next) 637 ksm_pages_sharing--; 638 else 639 ksm_pages_shared--; 640 641 rmap_item->mm->ksm_merging_pages--; 642 643 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 644 stable_node->rmap_hlist_len--; 645 put_anon_vma(rmap_item->anon_vma); 646 rmap_item->address &= PAGE_MASK; 647 cond_resched(); 648 } 649 650 /* 651 * We need the second aligned pointer of the migrate_nodes 652 * list_head to stay clear from the rb_parent_color union 653 * (aligned and different than any node) and also different 654 * from &migrate_nodes. This will verify that future list.h changes 655 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 656 */ 657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 659 660 if (stable_node->head == &migrate_nodes) 661 list_del(&stable_node->list); 662 else 663 stable_node_dup_del(stable_node); 664 free_stable_node(stable_node); 665 } 666 667 enum get_ksm_page_flags { 668 GET_KSM_PAGE_NOLOCK, 669 GET_KSM_PAGE_LOCK, 670 GET_KSM_PAGE_TRYLOCK 671 }; 672 673 /* 674 * get_ksm_page: checks if the page indicated by the stable node 675 * is still its ksm page, despite having held no reference to it. 676 * In which case we can trust the content of the page, and it 677 * returns the gotten page; but if the page has now been zapped, 678 * remove the stale node from the stable tree and return NULL. 679 * But beware, the stable node's page might be being migrated. 680 * 681 * You would expect the stable_node to hold a reference to the ksm page. 682 * But if it increments the page's count, swapping out has to wait for 683 * ksmd to come around again before it can free the page, which may take 684 * seconds or even minutes: much too unresponsive. So instead we use a 685 * "keyhole reference": access to the ksm page from the stable node peeps 686 * out through its keyhole to see if that page still holds the right key, 687 * pointing back to this stable node. This relies on freeing a PageAnon 688 * page to reset its page->mapping to NULL, and relies on no other use of 689 * a page to put something that might look like our key in page->mapping. 690 * is on its way to being freed; but it is an anomaly to bear in mind. 691 */ 692 static struct page *get_ksm_page(struct ksm_stable_node *stable_node, 693 enum get_ksm_page_flags flags) 694 { 695 struct page *page; 696 void *expected_mapping; 697 unsigned long kpfn; 698 699 expected_mapping = (void *)((unsigned long)stable_node | 700 PAGE_MAPPING_KSM); 701 again: 702 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 703 page = pfn_to_page(kpfn); 704 if (READ_ONCE(page->mapping) != expected_mapping) 705 goto stale; 706 707 /* 708 * We cannot do anything with the page while its refcount is 0. 709 * Usually 0 means free, or tail of a higher-order page: in which 710 * case this node is no longer referenced, and should be freed; 711 * however, it might mean that the page is under page_ref_freeze(). 712 * The __remove_mapping() case is easy, again the node is now stale; 713 * the same is in reuse_ksm_page() case; but if page is swapcache 714 * in folio_migrate_mapping(), it might still be our page, 715 * in which case it's essential to keep the node. 716 */ 717 while (!get_page_unless_zero(page)) { 718 /* 719 * Another check for page->mapping != expected_mapping would 720 * work here too. We have chosen the !PageSwapCache test to 721 * optimize the common case, when the page is or is about to 722 * be freed: PageSwapCache is cleared (under spin_lock_irq) 723 * in the ref_freeze section of __remove_mapping(); but Anon 724 * page->mapping reset to NULL later, in free_pages_prepare(). 725 */ 726 if (!PageSwapCache(page)) 727 goto stale; 728 cpu_relax(); 729 } 730 731 if (READ_ONCE(page->mapping) != expected_mapping) { 732 put_page(page); 733 goto stale; 734 } 735 736 if (flags == GET_KSM_PAGE_TRYLOCK) { 737 if (!trylock_page(page)) { 738 put_page(page); 739 return ERR_PTR(-EBUSY); 740 } 741 } else if (flags == GET_KSM_PAGE_LOCK) 742 lock_page(page); 743 744 if (flags != GET_KSM_PAGE_NOLOCK) { 745 if (READ_ONCE(page->mapping) != expected_mapping) { 746 unlock_page(page); 747 put_page(page); 748 goto stale; 749 } 750 } 751 return page; 752 753 stale: 754 /* 755 * We come here from above when page->mapping or !PageSwapCache 756 * suggests that the node is stale; but it might be under migration. 757 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 758 * before checking whether node->kpfn has been changed. 759 */ 760 smp_rmb(); 761 if (READ_ONCE(stable_node->kpfn) != kpfn) 762 goto again; 763 remove_node_from_stable_tree(stable_node); 764 return NULL; 765 } 766 767 /* 768 * Removing rmap_item from stable or unstable tree. 769 * This function will clean the information from the stable/unstable tree. 770 */ 771 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 772 { 773 if (rmap_item->address & STABLE_FLAG) { 774 struct ksm_stable_node *stable_node; 775 struct page *page; 776 777 stable_node = rmap_item->head; 778 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 779 if (!page) 780 goto out; 781 782 hlist_del(&rmap_item->hlist); 783 unlock_page(page); 784 put_page(page); 785 786 if (!hlist_empty(&stable_node->hlist)) 787 ksm_pages_sharing--; 788 else 789 ksm_pages_shared--; 790 791 rmap_item->mm->ksm_merging_pages--; 792 793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 794 stable_node->rmap_hlist_len--; 795 796 put_anon_vma(rmap_item->anon_vma); 797 rmap_item->head = NULL; 798 rmap_item->address &= PAGE_MASK; 799 800 } else if (rmap_item->address & UNSTABLE_FLAG) { 801 unsigned char age; 802 /* 803 * Usually ksmd can and must skip the rb_erase, because 804 * root_unstable_tree was already reset to RB_ROOT. 805 * But be careful when an mm is exiting: do the rb_erase 806 * if this rmap_item was inserted by this scan, rather 807 * than left over from before. 808 */ 809 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 810 BUG_ON(age > 1); 811 if (!age) 812 rb_erase(&rmap_item->node, 813 root_unstable_tree + NUMA(rmap_item->nid)); 814 ksm_pages_unshared--; 815 rmap_item->address &= PAGE_MASK; 816 } 817 out: 818 cond_resched(); /* we're called from many long loops */ 819 } 820 821 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 822 { 823 while (*rmap_list) { 824 struct ksm_rmap_item *rmap_item = *rmap_list; 825 *rmap_list = rmap_item->rmap_list; 826 remove_rmap_item_from_tree(rmap_item); 827 free_rmap_item(rmap_item); 828 } 829 } 830 831 /* 832 * Though it's very tempting to unmerge rmap_items from stable tree rather 833 * than check every pte of a given vma, the locking doesn't quite work for 834 * that - an rmap_item is assigned to the stable tree after inserting ksm 835 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 836 * rmap_items from parent to child at fork time (so as not to waste time 837 * if exit comes before the next scan reaches it). 838 * 839 * Similarly, although we'd like to remove rmap_items (so updating counts 840 * and freeing memory) when unmerging an area, it's easier to leave that 841 * to the next pass of ksmd - consider, for example, how ksmd might be 842 * in cmp_and_merge_page on one of the rmap_items we would be removing. 843 */ 844 static int unmerge_ksm_pages(struct vm_area_struct *vma, 845 unsigned long start, unsigned long end) 846 { 847 unsigned long addr; 848 int err = 0; 849 850 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 851 if (ksm_test_exit(vma->vm_mm)) 852 break; 853 if (signal_pending(current)) 854 err = -ERESTARTSYS; 855 else 856 err = break_ksm(vma, addr); 857 } 858 return err; 859 } 860 861 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 862 { 863 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 864 } 865 866 static inline struct ksm_stable_node *page_stable_node(struct page *page) 867 { 868 return folio_stable_node(page_folio(page)); 869 } 870 871 static inline void set_page_stable_node(struct page *page, 872 struct ksm_stable_node *stable_node) 873 { 874 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 875 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 876 } 877 878 #ifdef CONFIG_SYSFS 879 /* 880 * Only called through the sysfs control interface: 881 */ 882 static int remove_stable_node(struct ksm_stable_node *stable_node) 883 { 884 struct page *page; 885 int err; 886 887 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 888 if (!page) { 889 /* 890 * get_ksm_page did remove_node_from_stable_tree itself. 891 */ 892 return 0; 893 } 894 895 /* 896 * Page could be still mapped if this races with __mmput() running in 897 * between ksm_exit() and exit_mmap(). Just refuse to let 898 * merge_across_nodes/max_page_sharing be switched. 899 */ 900 err = -EBUSY; 901 if (!page_mapped(page)) { 902 /* 903 * The stable node did not yet appear stale to get_ksm_page(), 904 * since that allows for an unmapped ksm page to be recognized 905 * right up until it is freed; but the node is safe to remove. 906 * This page might be in a pagevec waiting to be freed, 907 * or it might be PageSwapCache (perhaps under writeback), 908 * or it might have been removed from swapcache a moment ago. 909 */ 910 set_page_stable_node(page, NULL); 911 remove_node_from_stable_tree(stable_node); 912 err = 0; 913 } 914 915 unlock_page(page); 916 put_page(page); 917 return err; 918 } 919 920 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 921 struct rb_root *root) 922 { 923 struct ksm_stable_node *dup; 924 struct hlist_node *hlist_safe; 925 926 if (!is_stable_node_chain(stable_node)) { 927 VM_BUG_ON(is_stable_node_dup(stable_node)); 928 if (remove_stable_node(stable_node)) 929 return true; 930 else 931 return false; 932 } 933 934 hlist_for_each_entry_safe(dup, hlist_safe, 935 &stable_node->hlist, hlist_dup) { 936 VM_BUG_ON(!is_stable_node_dup(dup)); 937 if (remove_stable_node(dup)) 938 return true; 939 } 940 BUG_ON(!hlist_empty(&stable_node->hlist)); 941 free_stable_node_chain(stable_node, root); 942 return false; 943 } 944 945 static int remove_all_stable_nodes(void) 946 { 947 struct ksm_stable_node *stable_node, *next; 948 int nid; 949 int err = 0; 950 951 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 952 while (root_stable_tree[nid].rb_node) { 953 stable_node = rb_entry(root_stable_tree[nid].rb_node, 954 struct ksm_stable_node, node); 955 if (remove_stable_node_chain(stable_node, 956 root_stable_tree + nid)) { 957 err = -EBUSY; 958 break; /* proceed to next nid */ 959 } 960 cond_resched(); 961 } 962 } 963 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 964 if (remove_stable_node(stable_node)) 965 err = -EBUSY; 966 cond_resched(); 967 } 968 return err; 969 } 970 971 static int unmerge_and_remove_all_rmap_items(void) 972 { 973 struct ksm_mm_slot *mm_slot; 974 struct mm_slot *slot; 975 struct mm_struct *mm; 976 struct vm_area_struct *vma; 977 int err = 0; 978 979 spin_lock(&ksm_mmlist_lock); 980 slot = list_entry(ksm_mm_head.slot.mm_node.next, 981 struct mm_slot, mm_node); 982 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 983 spin_unlock(&ksm_mmlist_lock); 984 985 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 986 mm_slot = ksm_scan.mm_slot) { 987 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 988 989 mm = mm_slot->slot.mm; 990 mmap_read_lock(mm); 991 992 /* 993 * Exit right away if mm is exiting to avoid lockdep issue in 994 * the maple tree 995 */ 996 if (ksm_test_exit(mm)) 997 goto mm_exiting; 998 999 for_each_vma(vmi, vma) { 1000 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1001 continue; 1002 err = unmerge_ksm_pages(vma, 1003 vma->vm_start, vma->vm_end); 1004 if (err) 1005 goto error; 1006 } 1007 1008 mm_exiting: 1009 remove_trailing_rmap_items(&mm_slot->rmap_list); 1010 mmap_read_unlock(mm); 1011 1012 spin_lock(&ksm_mmlist_lock); 1013 slot = list_entry(mm_slot->slot.mm_node.next, 1014 struct mm_slot, mm_node); 1015 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1016 if (ksm_test_exit(mm)) { 1017 hash_del(&mm_slot->slot.hash); 1018 list_del(&mm_slot->slot.mm_node); 1019 spin_unlock(&ksm_mmlist_lock); 1020 1021 mm_slot_free(mm_slot_cache, mm_slot); 1022 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1023 mmdrop(mm); 1024 } else 1025 spin_unlock(&ksm_mmlist_lock); 1026 } 1027 1028 /* Clean up stable nodes, but don't worry if some are still busy */ 1029 remove_all_stable_nodes(); 1030 ksm_scan.seqnr = 0; 1031 return 0; 1032 1033 error: 1034 mmap_read_unlock(mm); 1035 spin_lock(&ksm_mmlist_lock); 1036 ksm_scan.mm_slot = &ksm_mm_head; 1037 spin_unlock(&ksm_mmlist_lock); 1038 return err; 1039 } 1040 #endif /* CONFIG_SYSFS */ 1041 1042 static u32 calc_checksum(struct page *page) 1043 { 1044 u32 checksum; 1045 void *addr = kmap_atomic(page); 1046 checksum = xxhash(addr, PAGE_SIZE, 0); 1047 kunmap_atomic(addr); 1048 return checksum; 1049 } 1050 1051 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1052 pte_t *orig_pte) 1053 { 1054 struct mm_struct *mm = vma->vm_mm; 1055 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1056 int swapped; 1057 int err = -EFAULT; 1058 struct mmu_notifier_range range; 1059 bool anon_exclusive; 1060 1061 pvmw.address = page_address_in_vma(page, vma); 1062 if (pvmw.address == -EFAULT) 1063 goto out; 1064 1065 BUG_ON(PageTransCompound(page)); 1066 1067 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1068 pvmw.address + PAGE_SIZE); 1069 mmu_notifier_invalidate_range_start(&range); 1070 1071 if (!page_vma_mapped_walk(&pvmw)) 1072 goto out_mn; 1073 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1074 goto out_unlock; 1075 1076 anon_exclusive = PageAnonExclusive(page); 1077 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1078 anon_exclusive || mm_tlb_flush_pending(mm)) { 1079 pte_t entry; 1080 1081 swapped = PageSwapCache(page); 1082 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1083 /* 1084 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1085 * take any lock, therefore the check that we are going to make 1086 * with the pagecount against the mapcount is racy and 1087 * O_DIRECT can happen right after the check. 1088 * So we clear the pte and flush the tlb before the check 1089 * this assure us that no O_DIRECT can happen after the check 1090 * or in the middle of the check. 1091 * 1092 * No need to notify as we are downgrading page table to read 1093 * only not changing it to point to a new page. 1094 * 1095 * See Documentation/mm/mmu_notifier.rst 1096 */ 1097 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1098 /* 1099 * Check that no O_DIRECT or similar I/O is in progress on the 1100 * page 1101 */ 1102 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1103 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1104 goto out_unlock; 1105 } 1106 1107 /* See page_try_share_anon_rmap(): clear PTE first. */ 1108 if (anon_exclusive && page_try_share_anon_rmap(page)) { 1109 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1110 goto out_unlock; 1111 } 1112 1113 if (pte_dirty(entry)) 1114 set_page_dirty(page); 1115 entry = pte_mkclean(entry); 1116 1117 if (pte_write(entry)) 1118 entry = pte_wrprotect(entry); 1119 1120 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1121 } 1122 *orig_pte = *pvmw.pte; 1123 err = 0; 1124 1125 out_unlock: 1126 page_vma_mapped_walk_done(&pvmw); 1127 out_mn: 1128 mmu_notifier_invalidate_range_end(&range); 1129 out: 1130 return err; 1131 } 1132 1133 /** 1134 * replace_page - replace page in vma by new ksm page 1135 * @vma: vma that holds the pte pointing to page 1136 * @page: the page we are replacing by kpage 1137 * @kpage: the ksm page we replace page by 1138 * @orig_pte: the original value of the pte 1139 * 1140 * Returns 0 on success, -EFAULT on failure. 1141 */ 1142 static int replace_page(struct vm_area_struct *vma, struct page *page, 1143 struct page *kpage, pte_t orig_pte) 1144 { 1145 struct mm_struct *mm = vma->vm_mm; 1146 struct folio *folio; 1147 pmd_t *pmd; 1148 pmd_t pmde; 1149 pte_t *ptep; 1150 pte_t newpte; 1151 spinlock_t *ptl; 1152 unsigned long addr; 1153 int err = -EFAULT; 1154 struct mmu_notifier_range range; 1155 1156 addr = page_address_in_vma(page, vma); 1157 if (addr == -EFAULT) 1158 goto out; 1159 1160 pmd = mm_find_pmd(mm, addr); 1161 if (!pmd) 1162 goto out; 1163 /* 1164 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1165 * without holding anon_vma lock for write. So when looking for a 1166 * genuine pmde (in which to find pte), test present and !THP together. 1167 */ 1168 pmde = *pmd; 1169 barrier(); 1170 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1171 goto out; 1172 1173 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1174 addr + PAGE_SIZE); 1175 mmu_notifier_invalidate_range_start(&range); 1176 1177 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1178 if (!pte_same(*ptep, orig_pte)) { 1179 pte_unmap_unlock(ptep, ptl); 1180 goto out_mn; 1181 } 1182 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1183 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); 1184 1185 /* 1186 * No need to check ksm_use_zero_pages here: we can only have a 1187 * zero_page here if ksm_use_zero_pages was enabled already. 1188 */ 1189 if (!is_zero_pfn(page_to_pfn(kpage))) { 1190 get_page(kpage); 1191 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); 1192 newpte = mk_pte(kpage, vma->vm_page_prot); 1193 } else { 1194 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1195 vma->vm_page_prot)); 1196 /* 1197 * We're replacing an anonymous page with a zero page, which is 1198 * not anonymous. We need to do proper accounting otherwise we 1199 * will get wrong values in /proc, and a BUG message in dmesg 1200 * when tearing down the mm. 1201 */ 1202 dec_mm_counter(mm, MM_ANONPAGES); 1203 } 1204 1205 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1206 /* 1207 * No need to notify as we are replacing a read only page with another 1208 * read only page with the same content. 1209 * 1210 * See Documentation/mm/mmu_notifier.rst 1211 */ 1212 ptep_clear_flush(vma, addr, ptep); 1213 set_pte_at_notify(mm, addr, ptep, newpte); 1214 1215 folio = page_folio(page); 1216 page_remove_rmap(page, vma, false); 1217 if (!folio_mapped(folio)) 1218 folio_free_swap(folio); 1219 folio_put(folio); 1220 1221 pte_unmap_unlock(ptep, ptl); 1222 err = 0; 1223 out_mn: 1224 mmu_notifier_invalidate_range_end(&range); 1225 out: 1226 return err; 1227 } 1228 1229 /* 1230 * try_to_merge_one_page - take two pages and merge them into one 1231 * @vma: the vma that holds the pte pointing to page 1232 * @page: the PageAnon page that we want to replace with kpage 1233 * @kpage: the PageKsm page that we want to map instead of page, 1234 * or NULL the first time when we want to use page as kpage. 1235 * 1236 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1237 */ 1238 static int try_to_merge_one_page(struct vm_area_struct *vma, 1239 struct page *page, struct page *kpage) 1240 { 1241 pte_t orig_pte = __pte(0); 1242 int err = -EFAULT; 1243 1244 if (page == kpage) /* ksm page forked */ 1245 return 0; 1246 1247 if (!PageAnon(page)) 1248 goto out; 1249 1250 /* 1251 * We need the page lock to read a stable PageSwapCache in 1252 * write_protect_page(). We use trylock_page() instead of 1253 * lock_page() because we don't want to wait here - we 1254 * prefer to continue scanning and merging different pages, 1255 * then come back to this page when it is unlocked. 1256 */ 1257 if (!trylock_page(page)) 1258 goto out; 1259 1260 if (PageTransCompound(page)) { 1261 if (split_huge_page(page)) 1262 goto out_unlock; 1263 } 1264 1265 /* 1266 * If this anonymous page is mapped only here, its pte may need 1267 * to be write-protected. If it's mapped elsewhere, all of its 1268 * ptes are necessarily already write-protected. But in either 1269 * case, we need to lock and check page_count is not raised. 1270 */ 1271 if (write_protect_page(vma, page, &orig_pte) == 0) { 1272 if (!kpage) { 1273 /* 1274 * While we hold page lock, upgrade page from 1275 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1276 * stable_tree_insert() will update stable_node. 1277 */ 1278 set_page_stable_node(page, NULL); 1279 mark_page_accessed(page); 1280 /* 1281 * Page reclaim just frees a clean page with no dirty 1282 * ptes: make sure that the ksm page would be swapped. 1283 */ 1284 if (!PageDirty(page)) 1285 SetPageDirty(page); 1286 err = 0; 1287 } else if (pages_identical(page, kpage)) 1288 err = replace_page(vma, page, kpage, orig_pte); 1289 } 1290 1291 out_unlock: 1292 unlock_page(page); 1293 out: 1294 return err; 1295 } 1296 1297 /* 1298 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1299 * but no new kernel page is allocated: kpage must already be a ksm page. 1300 * 1301 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1302 */ 1303 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1304 struct page *page, struct page *kpage) 1305 { 1306 struct mm_struct *mm = rmap_item->mm; 1307 struct vm_area_struct *vma; 1308 int err = -EFAULT; 1309 1310 mmap_read_lock(mm); 1311 vma = find_mergeable_vma(mm, rmap_item->address); 1312 if (!vma) 1313 goto out; 1314 1315 err = try_to_merge_one_page(vma, page, kpage); 1316 if (err) 1317 goto out; 1318 1319 /* Unstable nid is in union with stable anon_vma: remove first */ 1320 remove_rmap_item_from_tree(rmap_item); 1321 1322 /* Must get reference to anon_vma while still holding mmap_lock */ 1323 rmap_item->anon_vma = vma->anon_vma; 1324 get_anon_vma(vma->anon_vma); 1325 out: 1326 mmap_read_unlock(mm); 1327 return err; 1328 } 1329 1330 /* 1331 * try_to_merge_two_pages - take two identical pages and prepare them 1332 * to be merged into one page. 1333 * 1334 * This function returns the kpage if we successfully merged two identical 1335 * pages into one ksm page, NULL otherwise. 1336 * 1337 * Note that this function upgrades page to ksm page: if one of the pages 1338 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1339 */ 1340 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1341 struct page *page, 1342 struct ksm_rmap_item *tree_rmap_item, 1343 struct page *tree_page) 1344 { 1345 int err; 1346 1347 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1348 if (!err) { 1349 err = try_to_merge_with_ksm_page(tree_rmap_item, 1350 tree_page, page); 1351 /* 1352 * If that fails, we have a ksm page with only one pte 1353 * pointing to it: so break it. 1354 */ 1355 if (err) 1356 break_cow(rmap_item); 1357 } 1358 return err ? NULL : page; 1359 } 1360 1361 static __always_inline 1362 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1363 { 1364 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1365 /* 1366 * Check that at least one mapping still exists, otherwise 1367 * there's no much point to merge and share with this 1368 * stable_node, as the underlying tree_page of the other 1369 * sharer is going to be freed soon. 1370 */ 1371 return stable_node->rmap_hlist_len && 1372 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1373 } 1374 1375 static __always_inline 1376 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1377 { 1378 return __is_page_sharing_candidate(stable_node, 0); 1379 } 1380 1381 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1382 struct ksm_stable_node **_stable_node, 1383 struct rb_root *root, 1384 bool prune_stale_stable_nodes) 1385 { 1386 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1387 struct hlist_node *hlist_safe; 1388 struct page *_tree_page, *tree_page = NULL; 1389 int nr = 0; 1390 int found_rmap_hlist_len; 1391 1392 if (!prune_stale_stable_nodes || 1393 time_before(jiffies, stable_node->chain_prune_time + 1394 msecs_to_jiffies( 1395 ksm_stable_node_chains_prune_millisecs))) 1396 prune_stale_stable_nodes = false; 1397 else 1398 stable_node->chain_prune_time = jiffies; 1399 1400 hlist_for_each_entry_safe(dup, hlist_safe, 1401 &stable_node->hlist, hlist_dup) { 1402 cond_resched(); 1403 /* 1404 * We must walk all stable_node_dup to prune the stale 1405 * stable nodes during lookup. 1406 * 1407 * get_ksm_page can drop the nodes from the 1408 * stable_node->hlist if they point to freed pages 1409 * (that's why we do a _safe walk). The "dup" 1410 * stable_node parameter itself will be freed from 1411 * under us if it returns NULL. 1412 */ 1413 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1414 if (!_tree_page) 1415 continue; 1416 nr += 1; 1417 if (is_page_sharing_candidate(dup)) { 1418 if (!found || 1419 dup->rmap_hlist_len > found_rmap_hlist_len) { 1420 if (found) 1421 put_page(tree_page); 1422 found = dup; 1423 found_rmap_hlist_len = found->rmap_hlist_len; 1424 tree_page = _tree_page; 1425 1426 /* skip put_page for found dup */ 1427 if (!prune_stale_stable_nodes) 1428 break; 1429 continue; 1430 } 1431 } 1432 put_page(_tree_page); 1433 } 1434 1435 if (found) { 1436 /* 1437 * nr is counting all dups in the chain only if 1438 * prune_stale_stable_nodes is true, otherwise we may 1439 * break the loop at nr == 1 even if there are 1440 * multiple entries. 1441 */ 1442 if (prune_stale_stable_nodes && nr == 1) { 1443 /* 1444 * If there's not just one entry it would 1445 * corrupt memory, better BUG_ON. In KSM 1446 * context with no lock held it's not even 1447 * fatal. 1448 */ 1449 BUG_ON(stable_node->hlist.first->next); 1450 1451 /* 1452 * There's just one entry and it is below the 1453 * deduplication limit so drop the chain. 1454 */ 1455 rb_replace_node(&stable_node->node, &found->node, 1456 root); 1457 free_stable_node(stable_node); 1458 ksm_stable_node_chains--; 1459 ksm_stable_node_dups--; 1460 /* 1461 * NOTE: the caller depends on the stable_node 1462 * to be equal to stable_node_dup if the chain 1463 * was collapsed. 1464 */ 1465 *_stable_node = found; 1466 /* 1467 * Just for robustness, as stable_node is 1468 * otherwise left as a stable pointer, the 1469 * compiler shall optimize it away at build 1470 * time. 1471 */ 1472 stable_node = NULL; 1473 } else if (stable_node->hlist.first != &found->hlist_dup && 1474 __is_page_sharing_candidate(found, 1)) { 1475 /* 1476 * If the found stable_node dup can accept one 1477 * more future merge (in addition to the one 1478 * that is underway) and is not at the head of 1479 * the chain, put it there so next search will 1480 * be quicker in the !prune_stale_stable_nodes 1481 * case. 1482 * 1483 * NOTE: it would be inaccurate to use nr > 1 1484 * instead of checking the hlist.first pointer 1485 * directly, because in the 1486 * prune_stale_stable_nodes case "nr" isn't 1487 * the position of the found dup in the chain, 1488 * but the total number of dups in the chain. 1489 */ 1490 hlist_del(&found->hlist_dup); 1491 hlist_add_head(&found->hlist_dup, 1492 &stable_node->hlist); 1493 } 1494 } 1495 1496 *_stable_node_dup = found; 1497 return tree_page; 1498 } 1499 1500 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1501 struct rb_root *root) 1502 { 1503 if (!is_stable_node_chain(stable_node)) 1504 return stable_node; 1505 if (hlist_empty(&stable_node->hlist)) { 1506 free_stable_node_chain(stable_node, root); 1507 return NULL; 1508 } 1509 return hlist_entry(stable_node->hlist.first, 1510 typeof(*stable_node), hlist_dup); 1511 } 1512 1513 /* 1514 * Like for get_ksm_page, this function can free the *_stable_node and 1515 * *_stable_node_dup if the returned tree_page is NULL. 1516 * 1517 * It can also free and overwrite *_stable_node with the found 1518 * stable_node_dup if the chain is collapsed (in which case 1519 * *_stable_node will be equal to *_stable_node_dup like if the chain 1520 * never existed). It's up to the caller to verify tree_page is not 1521 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1522 * 1523 * *_stable_node_dup is really a second output parameter of this 1524 * function and will be overwritten in all cases, the caller doesn't 1525 * need to initialize it. 1526 */ 1527 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1528 struct ksm_stable_node **_stable_node, 1529 struct rb_root *root, 1530 bool prune_stale_stable_nodes) 1531 { 1532 struct ksm_stable_node *stable_node = *_stable_node; 1533 if (!is_stable_node_chain(stable_node)) { 1534 if (is_page_sharing_candidate(stable_node)) { 1535 *_stable_node_dup = stable_node; 1536 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1537 } 1538 /* 1539 * _stable_node_dup set to NULL means the stable_node 1540 * reached the ksm_max_page_sharing limit. 1541 */ 1542 *_stable_node_dup = NULL; 1543 return NULL; 1544 } 1545 return stable_node_dup(_stable_node_dup, _stable_node, root, 1546 prune_stale_stable_nodes); 1547 } 1548 1549 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, 1550 struct ksm_stable_node **s_n, 1551 struct rb_root *root) 1552 { 1553 return __stable_node_chain(s_n_d, s_n, root, true); 1554 } 1555 1556 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, 1557 struct ksm_stable_node *s_n, 1558 struct rb_root *root) 1559 { 1560 struct ksm_stable_node *old_stable_node = s_n; 1561 struct page *tree_page; 1562 1563 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1564 /* not pruning dups so s_n cannot have changed */ 1565 VM_BUG_ON(s_n != old_stable_node); 1566 return tree_page; 1567 } 1568 1569 /* 1570 * stable_tree_search - search for page inside the stable tree 1571 * 1572 * This function checks if there is a page inside the stable tree 1573 * with identical content to the page that we are scanning right now. 1574 * 1575 * This function returns the stable tree node of identical content if found, 1576 * NULL otherwise. 1577 */ 1578 static struct page *stable_tree_search(struct page *page) 1579 { 1580 int nid; 1581 struct rb_root *root; 1582 struct rb_node **new; 1583 struct rb_node *parent; 1584 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1585 struct ksm_stable_node *page_node; 1586 1587 page_node = page_stable_node(page); 1588 if (page_node && page_node->head != &migrate_nodes) { 1589 /* ksm page forked */ 1590 get_page(page); 1591 return page; 1592 } 1593 1594 nid = get_kpfn_nid(page_to_pfn(page)); 1595 root = root_stable_tree + nid; 1596 again: 1597 new = &root->rb_node; 1598 parent = NULL; 1599 1600 while (*new) { 1601 struct page *tree_page; 1602 int ret; 1603 1604 cond_resched(); 1605 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1606 stable_node_any = NULL; 1607 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1608 /* 1609 * NOTE: stable_node may have been freed by 1610 * chain_prune() if the returned stable_node_dup is 1611 * not NULL. stable_node_dup may have been inserted in 1612 * the rbtree instead as a regular stable_node (in 1613 * order to collapse the stable_node chain if a single 1614 * stable_node dup was found in it). In such case the 1615 * stable_node is overwritten by the callee to point 1616 * to the stable_node_dup that was collapsed in the 1617 * stable rbtree and stable_node will be equal to 1618 * stable_node_dup like if the chain never existed. 1619 */ 1620 if (!stable_node_dup) { 1621 /* 1622 * Either all stable_node dups were full in 1623 * this stable_node chain, or this chain was 1624 * empty and should be rb_erased. 1625 */ 1626 stable_node_any = stable_node_dup_any(stable_node, 1627 root); 1628 if (!stable_node_any) { 1629 /* rb_erase just run */ 1630 goto again; 1631 } 1632 /* 1633 * Take any of the stable_node dups page of 1634 * this stable_node chain to let the tree walk 1635 * continue. All KSM pages belonging to the 1636 * stable_node dups in a stable_node chain 1637 * have the same content and they're 1638 * write protected at all times. Any will work 1639 * fine to continue the walk. 1640 */ 1641 tree_page = get_ksm_page(stable_node_any, 1642 GET_KSM_PAGE_NOLOCK); 1643 } 1644 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1645 if (!tree_page) { 1646 /* 1647 * If we walked over a stale stable_node, 1648 * get_ksm_page() will call rb_erase() and it 1649 * may rebalance the tree from under us. So 1650 * restart the search from scratch. Returning 1651 * NULL would be safe too, but we'd generate 1652 * false negative insertions just because some 1653 * stable_node was stale. 1654 */ 1655 goto again; 1656 } 1657 1658 ret = memcmp_pages(page, tree_page); 1659 put_page(tree_page); 1660 1661 parent = *new; 1662 if (ret < 0) 1663 new = &parent->rb_left; 1664 else if (ret > 0) 1665 new = &parent->rb_right; 1666 else { 1667 if (page_node) { 1668 VM_BUG_ON(page_node->head != &migrate_nodes); 1669 /* 1670 * Test if the migrated page should be merged 1671 * into a stable node dup. If the mapcount is 1672 * 1 we can migrate it with another KSM page 1673 * without adding it to the chain. 1674 */ 1675 if (page_mapcount(page) > 1) 1676 goto chain_append; 1677 } 1678 1679 if (!stable_node_dup) { 1680 /* 1681 * If the stable_node is a chain and 1682 * we got a payload match in memcmp 1683 * but we cannot merge the scanned 1684 * page in any of the existing 1685 * stable_node dups because they're 1686 * all full, we need to wait the 1687 * scanned page to find itself a match 1688 * in the unstable tree to create a 1689 * brand new KSM page to add later to 1690 * the dups of this stable_node. 1691 */ 1692 return NULL; 1693 } 1694 1695 /* 1696 * Lock and unlock the stable_node's page (which 1697 * might already have been migrated) so that page 1698 * migration is sure to notice its raised count. 1699 * It would be more elegant to return stable_node 1700 * than kpage, but that involves more changes. 1701 */ 1702 tree_page = get_ksm_page(stable_node_dup, 1703 GET_KSM_PAGE_TRYLOCK); 1704 1705 if (PTR_ERR(tree_page) == -EBUSY) 1706 return ERR_PTR(-EBUSY); 1707 1708 if (unlikely(!tree_page)) 1709 /* 1710 * The tree may have been rebalanced, 1711 * so re-evaluate parent and new. 1712 */ 1713 goto again; 1714 unlock_page(tree_page); 1715 1716 if (get_kpfn_nid(stable_node_dup->kpfn) != 1717 NUMA(stable_node_dup->nid)) { 1718 put_page(tree_page); 1719 goto replace; 1720 } 1721 return tree_page; 1722 } 1723 } 1724 1725 if (!page_node) 1726 return NULL; 1727 1728 list_del(&page_node->list); 1729 DO_NUMA(page_node->nid = nid); 1730 rb_link_node(&page_node->node, parent, new); 1731 rb_insert_color(&page_node->node, root); 1732 out: 1733 if (is_page_sharing_candidate(page_node)) { 1734 get_page(page); 1735 return page; 1736 } else 1737 return NULL; 1738 1739 replace: 1740 /* 1741 * If stable_node was a chain and chain_prune collapsed it, 1742 * stable_node has been updated to be the new regular 1743 * stable_node. A collapse of the chain is indistinguishable 1744 * from the case there was no chain in the stable 1745 * rbtree. Otherwise stable_node is the chain and 1746 * stable_node_dup is the dup to replace. 1747 */ 1748 if (stable_node_dup == stable_node) { 1749 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1750 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1751 /* there is no chain */ 1752 if (page_node) { 1753 VM_BUG_ON(page_node->head != &migrate_nodes); 1754 list_del(&page_node->list); 1755 DO_NUMA(page_node->nid = nid); 1756 rb_replace_node(&stable_node_dup->node, 1757 &page_node->node, 1758 root); 1759 if (is_page_sharing_candidate(page_node)) 1760 get_page(page); 1761 else 1762 page = NULL; 1763 } else { 1764 rb_erase(&stable_node_dup->node, root); 1765 page = NULL; 1766 } 1767 } else { 1768 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1769 __stable_node_dup_del(stable_node_dup); 1770 if (page_node) { 1771 VM_BUG_ON(page_node->head != &migrate_nodes); 1772 list_del(&page_node->list); 1773 DO_NUMA(page_node->nid = nid); 1774 stable_node_chain_add_dup(page_node, stable_node); 1775 if (is_page_sharing_candidate(page_node)) 1776 get_page(page); 1777 else 1778 page = NULL; 1779 } else { 1780 page = NULL; 1781 } 1782 } 1783 stable_node_dup->head = &migrate_nodes; 1784 list_add(&stable_node_dup->list, stable_node_dup->head); 1785 return page; 1786 1787 chain_append: 1788 /* stable_node_dup could be null if it reached the limit */ 1789 if (!stable_node_dup) 1790 stable_node_dup = stable_node_any; 1791 /* 1792 * If stable_node was a chain and chain_prune collapsed it, 1793 * stable_node has been updated to be the new regular 1794 * stable_node. A collapse of the chain is indistinguishable 1795 * from the case there was no chain in the stable 1796 * rbtree. Otherwise stable_node is the chain and 1797 * stable_node_dup is the dup to replace. 1798 */ 1799 if (stable_node_dup == stable_node) { 1800 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1801 /* chain is missing so create it */ 1802 stable_node = alloc_stable_node_chain(stable_node_dup, 1803 root); 1804 if (!stable_node) 1805 return NULL; 1806 } 1807 /* 1808 * Add this stable_node dup that was 1809 * migrated to the stable_node chain 1810 * of the current nid for this page 1811 * content. 1812 */ 1813 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1814 VM_BUG_ON(page_node->head != &migrate_nodes); 1815 list_del(&page_node->list); 1816 DO_NUMA(page_node->nid = nid); 1817 stable_node_chain_add_dup(page_node, stable_node); 1818 goto out; 1819 } 1820 1821 /* 1822 * stable_tree_insert - insert stable tree node pointing to new ksm page 1823 * into the stable tree. 1824 * 1825 * This function returns the stable tree node just allocated on success, 1826 * NULL otherwise. 1827 */ 1828 static struct ksm_stable_node *stable_tree_insert(struct page *kpage) 1829 { 1830 int nid; 1831 unsigned long kpfn; 1832 struct rb_root *root; 1833 struct rb_node **new; 1834 struct rb_node *parent; 1835 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1836 bool need_chain = false; 1837 1838 kpfn = page_to_pfn(kpage); 1839 nid = get_kpfn_nid(kpfn); 1840 root = root_stable_tree + nid; 1841 again: 1842 parent = NULL; 1843 new = &root->rb_node; 1844 1845 while (*new) { 1846 struct page *tree_page; 1847 int ret; 1848 1849 cond_resched(); 1850 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1851 stable_node_any = NULL; 1852 tree_page = chain(&stable_node_dup, stable_node, root); 1853 if (!stable_node_dup) { 1854 /* 1855 * Either all stable_node dups were full in 1856 * this stable_node chain, or this chain was 1857 * empty and should be rb_erased. 1858 */ 1859 stable_node_any = stable_node_dup_any(stable_node, 1860 root); 1861 if (!stable_node_any) { 1862 /* rb_erase just run */ 1863 goto again; 1864 } 1865 /* 1866 * Take any of the stable_node dups page of 1867 * this stable_node chain to let the tree walk 1868 * continue. All KSM pages belonging to the 1869 * stable_node dups in a stable_node chain 1870 * have the same content and they're 1871 * write protected at all times. Any will work 1872 * fine to continue the walk. 1873 */ 1874 tree_page = get_ksm_page(stable_node_any, 1875 GET_KSM_PAGE_NOLOCK); 1876 } 1877 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1878 if (!tree_page) { 1879 /* 1880 * If we walked over a stale stable_node, 1881 * get_ksm_page() will call rb_erase() and it 1882 * may rebalance the tree from under us. So 1883 * restart the search from scratch. Returning 1884 * NULL would be safe too, but we'd generate 1885 * false negative insertions just because some 1886 * stable_node was stale. 1887 */ 1888 goto again; 1889 } 1890 1891 ret = memcmp_pages(kpage, tree_page); 1892 put_page(tree_page); 1893 1894 parent = *new; 1895 if (ret < 0) 1896 new = &parent->rb_left; 1897 else if (ret > 0) 1898 new = &parent->rb_right; 1899 else { 1900 need_chain = true; 1901 break; 1902 } 1903 } 1904 1905 stable_node_dup = alloc_stable_node(); 1906 if (!stable_node_dup) 1907 return NULL; 1908 1909 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1910 stable_node_dup->kpfn = kpfn; 1911 set_page_stable_node(kpage, stable_node_dup); 1912 stable_node_dup->rmap_hlist_len = 0; 1913 DO_NUMA(stable_node_dup->nid = nid); 1914 if (!need_chain) { 1915 rb_link_node(&stable_node_dup->node, parent, new); 1916 rb_insert_color(&stable_node_dup->node, root); 1917 } else { 1918 if (!is_stable_node_chain(stable_node)) { 1919 struct ksm_stable_node *orig = stable_node; 1920 /* chain is missing so create it */ 1921 stable_node = alloc_stable_node_chain(orig, root); 1922 if (!stable_node) { 1923 free_stable_node(stable_node_dup); 1924 return NULL; 1925 } 1926 } 1927 stable_node_chain_add_dup(stable_node_dup, stable_node); 1928 } 1929 1930 return stable_node_dup; 1931 } 1932 1933 /* 1934 * unstable_tree_search_insert - search for identical page, 1935 * else insert rmap_item into the unstable tree. 1936 * 1937 * This function searches for a page in the unstable tree identical to the 1938 * page currently being scanned; and if no identical page is found in the 1939 * tree, we insert rmap_item as a new object into the unstable tree. 1940 * 1941 * This function returns pointer to rmap_item found to be identical 1942 * to the currently scanned page, NULL otherwise. 1943 * 1944 * This function does both searching and inserting, because they share 1945 * the same walking algorithm in an rbtree. 1946 */ 1947 static 1948 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 1949 struct page *page, 1950 struct page **tree_pagep) 1951 { 1952 struct rb_node **new; 1953 struct rb_root *root; 1954 struct rb_node *parent = NULL; 1955 int nid; 1956 1957 nid = get_kpfn_nid(page_to_pfn(page)); 1958 root = root_unstable_tree + nid; 1959 new = &root->rb_node; 1960 1961 while (*new) { 1962 struct ksm_rmap_item *tree_rmap_item; 1963 struct page *tree_page; 1964 int ret; 1965 1966 cond_resched(); 1967 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 1968 tree_page = get_mergeable_page(tree_rmap_item); 1969 if (!tree_page) 1970 return NULL; 1971 1972 /* 1973 * Don't substitute a ksm page for a forked page. 1974 */ 1975 if (page == tree_page) { 1976 put_page(tree_page); 1977 return NULL; 1978 } 1979 1980 ret = memcmp_pages(page, tree_page); 1981 1982 parent = *new; 1983 if (ret < 0) { 1984 put_page(tree_page); 1985 new = &parent->rb_left; 1986 } else if (ret > 0) { 1987 put_page(tree_page); 1988 new = &parent->rb_right; 1989 } else if (!ksm_merge_across_nodes && 1990 page_to_nid(tree_page) != nid) { 1991 /* 1992 * If tree_page has been migrated to another NUMA node, 1993 * it will be flushed out and put in the right unstable 1994 * tree next time: only merge with it when across_nodes. 1995 */ 1996 put_page(tree_page); 1997 return NULL; 1998 } else { 1999 *tree_pagep = tree_page; 2000 return tree_rmap_item; 2001 } 2002 } 2003 2004 rmap_item->address |= UNSTABLE_FLAG; 2005 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2006 DO_NUMA(rmap_item->nid = nid); 2007 rb_link_node(&rmap_item->node, parent, new); 2008 rb_insert_color(&rmap_item->node, root); 2009 2010 ksm_pages_unshared++; 2011 return NULL; 2012 } 2013 2014 /* 2015 * stable_tree_append - add another rmap_item to the linked list of 2016 * rmap_items hanging off a given node of the stable tree, all sharing 2017 * the same ksm page. 2018 */ 2019 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2020 struct ksm_stable_node *stable_node, 2021 bool max_page_sharing_bypass) 2022 { 2023 /* 2024 * rmap won't find this mapping if we don't insert the 2025 * rmap_item in the right stable_node 2026 * duplicate. page_migration could break later if rmap breaks, 2027 * so we can as well crash here. We really need to check for 2028 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2029 * for other negative values as an underflow if detected here 2030 * for the first time (and not when decreasing rmap_hlist_len) 2031 * would be sign of memory corruption in the stable_node. 2032 */ 2033 BUG_ON(stable_node->rmap_hlist_len < 0); 2034 2035 stable_node->rmap_hlist_len++; 2036 if (!max_page_sharing_bypass) 2037 /* possibly non fatal but unexpected overflow, only warn */ 2038 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2039 ksm_max_page_sharing); 2040 2041 rmap_item->head = stable_node; 2042 rmap_item->address |= STABLE_FLAG; 2043 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2044 2045 if (rmap_item->hlist.next) 2046 ksm_pages_sharing++; 2047 else 2048 ksm_pages_shared++; 2049 2050 rmap_item->mm->ksm_merging_pages++; 2051 } 2052 2053 /* 2054 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2055 * if not, compare checksum to previous and if it's the same, see if page can 2056 * be inserted into the unstable tree, or merged with a page already there and 2057 * both transferred to the stable tree. 2058 * 2059 * @page: the page that we are searching identical page to. 2060 * @rmap_item: the reverse mapping into the virtual address of this page 2061 */ 2062 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2063 { 2064 struct mm_struct *mm = rmap_item->mm; 2065 struct ksm_rmap_item *tree_rmap_item; 2066 struct page *tree_page = NULL; 2067 struct ksm_stable_node *stable_node; 2068 struct page *kpage; 2069 unsigned int checksum; 2070 int err; 2071 bool max_page_sharing_bypass = false; 2072 2073 stable_node = page_stable_node(page); 2074 if (stable_node) { 2075 if (stable_node->head != &migrate_nodes && 2076 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2077 NUMA(stable_node->nid)) { 2078 stable_node_dup_del(stable_node); 2079 stable_node->head = &migrate_nodes; 2080 list_add(&stable_node->list, stable_node->head); 2081 } 2082 if (stable_node->head != &migrate_nodes && 2083 rmap_item->head == stable_node) 2084 return; 2085 /* 2086 * If it's a KSM fork, allow it to go over the sharing limit 2087 * without warnings. 2088 */ 2089 if (!is_page_sharing_candidate(stable_node)) 2090 max_page_sharing_bypass = true; 2091 } 2092 2093 /* We first start with searching the page inside the stable tree */ 2094 kpage = stable_tree_search(page); 2095 if (kpage == page && rmap_item->head == stable_node) { 2096 put_page(kpage); 2097 return; 2098 } 2099 2100 remove_rmap_item_from_tree(rmap_item); 2101 2102 if (kpage) { 2103 if (PTR_ERR(kpage) == -EBUSY) 2104 return; 2105 2106 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2107 if (!err) { 2108 /* 2109 * The page was successfully merged: 2110 * add its rmap_item to the stable tree. 2111 */ 2112 lock_page(kpage); 2113 stable_tree_append(rmap_item, page_stable_node(kpage), 2114 max_page_sharing_bypass); 2115 unlock_page(kpage); 2116 } 2117 put_page(kpage); 2118 return; 2119 } 2120 2121 /* 2122 * If the hash value of the page has changed from the last time 2123 * we calculated it, this page is changing frequently: therefore we 2124 * don't want to insert it in the unstable tree, and we don't want 2125 * to waste our time searching for something identical to it there. 2126 */ 2127 checksum = calc_checksum(page); 2128 if (rmap_item->oldchecksum != checksum) { 2129 rmap_item->oldchecksum = checksum; 2130 return; 2131 } 2132 2133 /* 2134 * Same checksum as an empty page. We attempt to merge it with the 2135 * appropriate zero page if the user enabled this via sysfs. 2136 */ 2137 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2138 struct vm_area_struct *vma; 2139 2140 mmap_read_lock(mm); 2141 vma = find_mergeable_vma(mm, rmap_item->address); 2142 if (vma) { 2143 err = try_to_merge_one_page(vma, page, 2144 ZERO_PAGE(rmap_item->address)); 2145 } else { 2146 /* 2147 * If the vma is out of date, we do not need to 2148 * continue. 2149 */ 2150 err = 0; 2151 } 2152 mmap_read_unlock(mm); 2153 /* 2154 * In case of failure, the page was not really empty, so we 2155 * need to continue. Otherwise we're done. 2156 */ 2157 if (!err) 2158 return; 2159 } 2160 tree_rmap_item = 2161 unstable_tree_search_insert(rmap_item, page, &tree_page); 2162 if (tree_rmap_item) { 2163 bool split; 2164 2165 kpage = try_to_merge_two_pages(rmap_item, page, 2166 tree_rmap_item, tree_page); 2167 /* 2168 * If both pages we tried to merge belong to the same compound 2169 * page, then we actually ended up increasing the reference 2170 * count of the same compound page twice, and split_huge_page 2171 * failed. 2172 * Here we set a flag if that happened, and we use it later to 2173 * try split_huge_page again. Since we call put_page right 2174 * afterwards, the reference count will be correct and 2175 * split_huge_page should succeed. 2176 */ 2177 split = PageTransCompound(page) 2178 && compound_head(page) == compound_head(tree_page); 2179 put_page(tree_page); 2180 if (kpage) { 2181 /* 2182 * The pages were successfully merged: insert new 2183 * node in the stable tree and add both rmap_items. 2184 */ 2185 lock_page(kpage); 2186 stable_node = stable_tree_insert(kpage); 2187 if (stable_node) { 2188 stable_tree_append(tree_rmap_item, stable_node, 2189 false); 2190 stable_tree_append(rmap_item, stable_node, 2191 false); 2192 } 2193 unlock_page(kpage); 2194 2195 /* 2196 * If we fail to insert the page into the stable tree, 2197 * we will have 2 virtual addresses that are pointing 2198 * to a ksm page left outside the stable tree, 2199 * in which case we need to break_cow on both. 2200 */ 2201 if (!stable_node) { 2202 break_cow(tree_rmap_item); 2203 break_cow(rmap_item); 2204 } 2205 } else if (split) { 2206 /* 2207 * We are here if we tried to merge two pages and 2208 * failed because they both belonged to the same 2209 * compound page. We will split the page now, but no 2210 * merging will take place. 2211 * We do not want to add the cost of a full lock; if 2212 * the page is locked, it is better to skip it and 2213 * perhaps try again later. 2214 */ 2215 if (!trylock_page(page)) 2216 return; 2217 split_huge_page(page); 2218 unlock_page(page); 2219 } 2220 } 2221 } 2222 2223 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2224 struct ksm_rmap_item **rmap_list, 2225 unsigned long addr) 2226 { 2227 struct ksm_rmap_item *rmap_item; 2228 2229 while (*rmap_list) { 2230 rmap_item = *rmap_list; 2231 if ((rmap_item->address & PAGE_MASK) == addr) 2232 return rmap_item; 2233 if (rmap_item->address > addr) 2234 break; 2235 *rmap_list = rmap_item->rmap_list; 2236 remove_rmap_item_from_tree(rmap_item); 2237 free_rmap_item(rmap_item); 2238 } 2239 2240 rmap_item = alloc_rmap_item(); 2241 if (rmap_item) { 2242 /* It has already been zeroed */ 2243 rmap_item->mm = mm_slot->slot.mm; 2244 rmap_item->mm->ksm_rmap_items++; 2245 rmap_item->address = addr; 2246 rmap_item->rmap_list = *rmap_list; 2247 *rmap_list = rmap_item; 2248 } 2249 return rmap_item; 2250 } 2251 2252 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2253 { 2254 struct mm_struct *mm; 2255 struct ksm_mm_slot *mm_slot; 2256 struct mm_slot *slot; 2257 struct vm_area_struct *vma; 2258 struct ksm_rmap_item *rmap_item; 2259 struct vma_iterator vmi; 2260 int nid; 2261 2262 if (list_empty(&ksm_mm_head.slot.mm_node)) 2263 return NULL; 2264 2265 mm_slot = ksm_scan.mm_slot; 2266 if (mm_slot == &ksm_mm_head) { 2267 /* 2268 * A number of pages can hang around indefinitely on per-cpu 2269 * pagevecs, raised page count preventing write_protect_page 2270 * from merging them. Though it doesn't really matter much, 2271 * it is puzzling to see some stuck in pages_volatile until 2272 * other activity jostles them out, and they also prevented 2273 * LTP's KSM test from succeeding deterministically; so drain 2274 * them here (here rather than on entry to ksm_do_scan(), 2275 * so we don't IPI too often when pages_to_scan is set low). 2276 */ 2277 lru_add_drain_all(); 2278 2279 /* 2280 * Whereas stale stable_nodes on the stable_tree itself 2281 * get pruned in the regular course of stable_tree_search(), 2282 * those moved out to the migrate_nodes list can accumulate: 2283 * so prune them once before each full scan. 2284 */ 2285 if (!ksm_merge_across_nodes) { 2286 struct ksm_stable_node *stable_node, *next; 2287 struct page *page; 2288 2289 list_for_each_entry_safe(stable_node, next, 2290 &migrate_nodes, list) { 2291 page = get_ksm_page(stable_node, 2292 GET_KSM_PAGE_NOLOCK); 2293 if (page) 2294 put_page(page); 2295 cond_resched(); 2296 } 2297 } 2298 2299 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2300 root_unstable_tree[nid] = RB_ROOT; 2301 2302 spin_lock(&ksm_mmlist_lock); 2303 slot = list_entry(mm_slot->slot.mm_node.next, 2304 struct mm_slot, mm_node); 2305 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2306 ksm_scan.mm_slot = mm_slot; 2307 spin_unlock(&ksm_mmlist_lock); 2308 /* 2309 * Although we tested list_empty() above, a racing __ksm_exit 2310 * of the last mm on the list may have removed it since then. 2311 */ 2312 if (mm_slot == &ksm_mm_head) 2313 return NULL; 2314 next_mm: 2315 ksm_scan.address = 0; 2316 ksm_scan.rmap_list = &mm_slot->rmap_list; 2317 } 2318 2319 slot = &mm_slot->slot; 2320 mm = slot->mm; 2321 vma_iter_init(&vmi, mm, ksm_scan.address); 2322 2323 mmap_read_lock(mm); 2324 if (ksm_test_exit(mm)) 2325 goto no_vmas; 2326 2327 for_each_vma(vmi, vma) { 2328 if (!(vma->vm_flags & VM_MERGEABLE)) 2329 continue; 2330 if (ksm_scan.address < vma->vm_start) 2331 ksm_scan.address = vma->vm_start; 2332 if (!vma->anon_vma) 2333 ksm_scan.address = vma->vm_end; 2334 2335 while (ksm_scan.address < vma->vm_end) { 2336 if (ksm_test_exit(mm)) 2337 break; 2338 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2339 if (IS_ERR_OR_NULL(*page)) { 2340 ksm_scan.address += PAGE_SIZE; 2341 cond_resched(); 2342 continue; 2343 } 2344 if (is_zone_device_page(*page)) 2345 goto next_page; 2346 if (PageAnon(*page)) { 2347 flush_anon_page(vma, *page, ksm_scan.address); 2348 flush_dcache_page(*page); 2349 rmap_item = get_next_rmap_item(mm_slot, 2350 ksm_scan.rmap_list, ksm_scan.address); 2351 if (rmap_item) { 2352 ksm_scan.rmap_list = 2353 &rmap_item->rmap_list; 2354 ksm_scan.address += PAGE_SIZE; 2355 } else 2356 put_page(*page); 2357 mmap_read_unlock(mm); 2358 return rmap_item; 2359 } 2360 next_page: 2361 put_page(*page); 2362 ksm_scan.address += PAGE_SIZE; 2363 cond_resched(); 2364 } 2365 } 2366 2367 if (ksm_test_exit(mm)) { 2368 no_vmas: 2369 ksm_scan.address = 0; 2370 ksm_scan.rmap_list = &mm_slot->rmap_list; 2371 } 2372 /* 2373 * Nuke all the rmap_items that are above this current rmap: 2374 * because there were no VM_MERGEABLE vmas with such addresses. 2375 */ 2376 remove_trailing_rmap_items(ksm_scan.rmap_list); 2377 2378 spin_lock(&ksm_mmlist_lock); 2379 slot = list_entry(mm_slot->slot.mm_node.next, 2380 struct mm_slot, mm_node); 2381 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2382 if (ksm_scan.address == 0) { 2383 /* 2384 * We've completed a full scan of all vmas, holding mmap_lock 2385 * throughout, and found no VM_MERGEABLE: so do the same as 2386 * __ksm_exit does to remove this mm from all our lists now. 2387 * This applies either when cleaning up after __ksm_exit 2388 * (but beware: we can reach here even before __ksm_exit), 2389 * or when all VM_MERGEABLE areas have been unmapped (and 2390 * mmap_lock then protects against race with MADV_MERGEABLE). 2391 */ 2392 hash_del(&mm_slot->slot.hash); 2393 list_del(&mm_slot->slot.mm_node); 2394 spin_unlock(&ksm_mmlist_lock); 2395 2396 mm_slot_free(mm_slot_cache, mm_slot); 2397 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2398 mmap_read_unlock(mm); 2399 mmdrop(mm); 2400 } else { 2401 mmap_read_unlock(mm); 2402 /* 2403 * mmap_read_unlock(mm) first because after 2404 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2405 * already have been freed under us by __ksm_exit() 2406 * because the "mm_slot" is still hashed and 2407 * ksm_scan.mm_slot doesn't point to it anymore. 2408 */ 2409 spin_unlock(&ksm_mmlist_lock); 2410 } 2411 2412 /* Repeat until we've completed scanning the whole list */ 2413 mm_slot = ksm_scan.mm_slot; 2414 if (mm_slot != &ksm_mm_head) 2415 goto next_mm; 2416 2417 ksm_scan.seqnr++; 2418 return NULL; 2419 } 2420 2421 /** 2422 * ksm_do_scan - the ksm scanner main worker function. 2423 * @scan_npages: number of pages we want to scan before we return. 2424 */ 2425 static void ksm_do_scan(unsigned int scan_npages) 2426 { 2427 struct ksm_rmap_item *rmap_item; 2428 struct page *page; 2429 2430 while (scan_npages-- && likely(!freezing(current))) { 2431 cond_resched(); 2432 rmap_item = scan_get_next_rmap_item(&page); 2433 if (!rmap_item) 2434 return; 2435 cmp_and_merge_page(page, rmap_item); 2436 put_page(page); 2437 } 2438 } 2439 2440 static int ksmd_should_run(void) 2441 { 2442 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2443 } 2444 2445 static int ksm_scan_thread(void *nothing) 2446 { 2447 unsigned int sleep_ms; 2448 2449 set_freezable(); 2450 set_user_nice(current, 5); 2451 2452 while (!kthread_should_stop()) { 2453 mutex_lock(&ksm_thread_mutex); 2454 wait_while_offlining(); 2455 if (ksmd_should_run()) 2456 ksm_do_scan(ksm_thread_pages_to_scan); 2457 mutex_unlock(&ksm_thread_mutex); 2458 2459 try_to_freeze(); 2460 2461 if (ksmd_should_run()) { 2462 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2463 wait_event_interruptible_timeout(ksm_iter_wait, 2464 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2465 msecs_to_jiffies(sleep_ms)); 2466 } else { 2467 wait_event_freezable(ksm_thread_wait, 2468 ksmd_should_run() || kthread_should_stop()); 2469 } 2470 } 2471 return 0; 2472 } 2473 2474 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2475 unsigned long end, int advice, unsigned long *vm_flags) 2476 { 2477 struct mm_struct *mm = vma->vm_mm; 2478 int err; 2479 2480 switch (advice) { 2481 case MADV_MERGEABLE: 2482 /* 2483 * Be somewhat over-protective for now! 2484 */ 2485 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2486 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2487 VM_HUGETLB | VM_MIXEDMAP)) 2488 return 0; /* just ignore the advice */ 2489 2490 if (vma_is_dax(vma)) 2491 return 0; 2492 2493 #ifdef VM_SAO 2494 if (*vm_flags & VM_SAO) 2495 return 0; 2496 #endif 2497 #ifdef VM_SPARC_ADI 2498 if (*vm_flags & VM_SPARC_ADI) 2499 return 0; 2500 #endif 2501 2502 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2503 err = __ksm_enter(mm); 2504 if (err) 2505 return err; 2506 } 2507 2508 *vm_flags |= VM_MERGEABLE; 2509 break; 2510 2511 case MADV_UNMERGEABLE: 2512 if (!(*vm_flags & VM_MERGEABLE)) 2513 return 0; /* just ignore the advice */ 2514 2515 if (vma->anon_vma) { 2516 err = unmerge_ksm_pages(vma, start, end); 2517 if (err) 2518 return err; 2519 } 2520 2521 *vm_flags &= ~VM_MERGEABLE; 2522 break; 2523 } 2524 2525 return 0; 2526 } 2527 EXPORT_SYMBOL_GPL(ksm_madvise); 2528 2529 int __ksm_enter(struct mm_struct *mm) 2530 { 2531 struct ksm_mm_slot *mm_slot; 2532 struct mm_slot *slot; 2533 int needs_wakeup; 2534 2535 mm_slot = mm_slot_alloc(mm_slot_cache); 2536 if (!mm_slot) 2537 return -ENOMEM; 2538 2539 slot = &mm_slot->slot; 2540 2541 /* Check ksm_run too? Would need tighter locking */ 2542 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2543 2544 spin_lock(&ksm_mmlist_lock); 2545 mm_slot_insert(mm_slots_hash, mm, slot); 2546 /* 2547 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2548 * insert just behind the scanning cursor, to let the area settle 2549 * down a little; when fork is followed by immediate exec, we don't 2550 * want ksmd to waste time setting up and tearing down an rmap_list. 2551 * 2552 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2553 * scanning cursor, otherwise KSM pages in newly forked mms will be 2554 * missed: then we might as well insert at the end of the list. 2555 */ 2556 if (ksm_run & KSM_RUN_UNMERGE) 2557 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2558 else 2559 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2560 spin_unlock(&ksm_mmlist_lock); 2561 2562 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2563 mmgrab(mm); 2564 2565 if (needs_wakeup) 2566 wake_up_interruptible(&ksm_thread_wait); 2567 2568 return 0; 2569 } 2570 2571 void __ksm_exit(struct mm_struct *mm) 2572 { 2573 struct ksm_mm_slot *mm_slot; 2574 struct mm_slot *slot; 2575 int easy_to_free = 0; 2576 2577 /* 2578 * This process is exiting: if it's straightforward (as is the 2579 * case when ksmd was never running), free mm_slot immediately. 2580 * But if it's at the cursor or has rmap_items linked to it, use 2581 * mmap_lock to synchronize with any break_cows before pagetables 2582 * are freed, and leave the mm_slot on the list for ksmd to free. 2583 * Beware: ksm may already have noticed it exiting and freed the slot. 2584 */ 2585 2586 spin_lock(&ksm_mmlist_lock); 2587 slot = mm_slot_lookup(mm_slots_hash, mm); 2588 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2589 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2590 if (!mm_slot->rmap_list) { 2591 hash_del(&slot->hash); 2592 list_del(&slot->mm_node); 2593 easy_to_free = 1; 2594 } else { 2595 list_move(&slot->mm_node, 2596 &ksm_scan.mm_slot->slot.mm_node); 2597 } 2598 } 2599 spin_unlock(&ksm_mmlist_lock); 2600 2601 if (easy_to_free) { 2602 mm_slot_free(mm_slot_cache, mm_slot); 2603 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2604 mmdrop(mm); 2605 } else if (mm_slot) { 2606 mmap_write_lock(mm); 2607 mmap_write_unlock(mm); 2608 } 2609 } 2610 2611 struct page *ksm_might_need_to_copy(struct page *page, 2612 struct vm_area_struct *vma, unsigned long address) 2613 { 2614 struct folio *folio = page_folio(page); 2615 struct anon_vma *anon_vma = folio_anon_vma(folio); 2616 struct page *new_page; 2617 2618 if (PageKsm(page)) { 2619 if (page_stable_node(page) && 2620 !(ksm_run & KSM_RUN_UNMERGE)) 2621 return page; /* no need to copy it */ 2622 } else if (!anon_vma) { 2623 return page; /* no need to copy it */ 2624 } else if (page->index == linear_page_index(vma, address) && 2625 anon_vma->root == vma->anon_vma->root) { 2626 return page; /* still no need to copy it */ 2627 } 2628 if (!PageUptodate(page)) 2629 return page; /* let do_swap_page report the error */ 2630 2631 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2632 if (new_page && 2633 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2634 put_page(new_page); 2635 new_page = NULL; 2636 } 2637 if (new_page) { 2638 if (copy_mc_user_highpage(new_page, page, address, vma)) { 2639 put_page(new_page); 2640 memory_failure_queue(page_to_pfn(page), 0); 2641 return ERR_PTR(-EHWPOISON); 2642 } 2643 SetPageDirty(new_page); 2644 __SetPageUptodate(new_page); 2645 __SetPageLocked(new_page); 2646 #ifdef CONFIG_SWAP 2647 count_vm_event(KSM_SWPIN_COPY); 2648 #endif 2649 } 2650 2651 return new_page; 2652 } 2653 2654 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2655 { 2656 struct ksm_stable_node *stable_node; 2657 struct ksm_rmap_item *rmap_item; 2658 int search_new_forks = 0; 2659 2660 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2661 2662 /* 2663 * Rely on the page lock to protect against concurrent modifications 2664 * to that page's node of the stable tree. 2665 */ 2666 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2667 2668 stable_node = folio_stable_node(folio); 2669 if (!stable_node) 2670 return; 2671 again: 2672 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2673 struct anon_vma *anon_vma = rmap_item->anon_vma; 2674 struct anon_vma_chain *vmac; 2675 struct vm_area_struct *vma; 2676 2677 cond_resched(); 2678 if (!anon_vma_trylock_read(anon_vma)) { 2679 if (rwc->try_lock) { 2680 rwc->contended = true; 2681 return; 2682 } 2683 anon_vma_lock_read(anon_vma); 2684 } 2685 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2686 0, ULONG_MAX) { 2687 unsigned long addr; 2688 2689 cond_resched(); 2690 vma = vmac->vma; 2691 2692 /* Ignore the stable/unstable/sqnr flags */ 2693 addr = rmap_item->address & PAGE_MASK; 2694 2695 if (addr < vma->vm_start || addr >= vma->vm_end) 2696 continue; 2697 /* 2698 * Initially we examine only the vma which covers this 2699 * rmap_item; but later, if there is still work to do, 2700 * we examine covering vmas in other mms: in case they 2701 * were forked from the original since ksmd passed. 2702 */ 2703 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2704 continue; 2705 2706 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2707 continue; 2708 2709 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2710 anon_vma_unlock_read(anon_vma); 2711 return; 2712 } 2713 if (rwc->done && rwc->done(folio)) { 2714 anon_vma_unlock_read(anon_vma); 2715 return; 2716 } 2717 } 2718 anon_vma_unlock_read(anon_vma); 2719 } 2720 if (!search_new_forks++) 2721 goto again; 2722 } 2723 2724 #ifdef CONFIG_MIGRATION 2725 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2726 { 2727 struct ksm_stable_node *stable_node; 2728 2729 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2730 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2731 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2732 2733 stable_node = folio_stable_node(folio); 2734 if (stable_node) { 2735 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2736 stable_node->kpfn = folio_pfn(newfolio); 2737 /* 2738 * newfolio->mapping was set in advance; now we need smp_wmb() 2739 * to make sure that the new stable_node->kpfn is visible 2740 * to get_ksm_page() before it can see that folio->mapping 2741 * has gone stale (or that folio_test_swapcache has been cleared). 2742 */ 2743 smp_wmb(); 2744 set_page_stable_node(&folio->page, NULL); 2745 } 2746 } 2747 #endif /* CONFIG_MIGRATION */ 2748 2749 #ifdef CONFIG_MEMORY_HOTREMOVE 2750 static void wait_while_offlining(void) 2751 { 2752 while (ksm_run & KSM_RUN_OFFLINE) { 2753 mutex_unlock(&ksm_thread_mutex); 2754 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2755 TASK_UNINTERRUPTIBLE); 2756 mutex_lock(&ksm_thread_mutex); 2757 } 2758 } 2759 2760 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 2761 unsigned long start_pfn, 2762 unsigned long end_pfn) 2763 { 2764 if (stable_node->kpfn >= start_pfn && 2765 stable_node->kpfn < end_pfn) { 2766 /* 2767 * Don't get_ksm_page, page has already gone: 2768 * which is why we keep kpfn instead of page* 2769 */ 2770 remove_node_from_stable_tree(stable_node); 2771 return true; 2772 } 2773 return false; 2774 } 2775 2776 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 2777 unsigned long start_pfn, 2778 unsigned long end_pfn, 2779 struct rb_root *root) 2780 { 2781 struct ksm_stable_node *dup; 2782 struct hlist_node *hlist_safe; 2783 2784 if (!is_stable_node_chain(stable_node)) { 2785 VM_BUG_ON(is_stable_node_dup(stable_node)); 2786 return stable_node_dup_remove_range(stable_node, start_pfn, 2787 end_pfn); 2788 } 2789 2790 hlist_for_each_entry_safe(dup, hlist_safe, 2791 &stable_node->hlist, hlist_dup) { 2792 VM_BUG_ON(!is_stable_node_dup(dup)); 2793 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2794 } 2795 if (hlist_empty(&stable_node->hlist)) { 2796 free_stable_node_chain(stable_node, root); 2797 return true; /* notify caller that tree was rebalanced */ 2798 } else 2799 return false; 2800 } 2801 2802 static void ksm_check_stable_tree(unsigned long start_pfn, 2803 unsigned long end_pfn) 2804 { 2805 struct ksm_stable_node *stable_node, *next; 2806 struct rb_node *node; 2807 int nid; 2808 2809 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2810 node = rb_first(root_stable_tree + nid); 2811 while (node) { 2812 stable_node = rb_entry(node, struct ksm_stable_node, node); 2813 if (stable_node_chain_remove_range(stable_node, 2814 start_pfn, end_pfn, 2815 root_stable_tree + 2816 nid)) 2817 node = rb_first(root_stable_tree + nid); 2818 else 2819 node = rb_next(node); 2820 cond_resched(); 2821 } 2822 } 2823 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2824 if (stable_node->kpfn >= start_pfn && 2825 stable_node->kpfn < end_pfn) 2826 remove_node_from_stable_tree(stable_node); 2827 cond_resched(); 2828 } 2829 } 2830 2831 static int ksm_memory_callback(struct notifier_block *self, 2832 unsigned long action, void *arg) 2833 { 2834 struct memory_notify *mn = arg; 2835 2836 switch (action) { 2837 case MEM_GOING_OFFLINE: 2838 /* 2839 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2840 * and remove_all_stable_nodes() while memory is going offline: 2841 * it is unsafe for them to touch the stable tree at this time. 2842 * But unmerge_ksm_pages(), rmap lookups and other entry points 2843 * which do not need the ksm_thread_mutex are all safe. 2844 */ 2845 mutex_lock(&ksm_thread_mutex); 2846 ksm_run |= KSM_RUN_OFFLINE; 2847 mutex_unlock(&ksm_thread_mutex); 2848 break; 2849 2850 case MEM_OFFLINE: 2851 /* 2852 * Most of the work is done by page migration; but there might 2853 * be a few stable_nodes left over, still pointing to struct 2854 * pages which have been offlined: prune those from the tree, 2855 * otherwise get_ksm_page() might later try to access a 2856 * non-existent struct page. 2857 */ 2858 ksm_check_stable_tree(mn->start_pfn, 2859 mn->start_pfn + mn->nr_pages); 2860 fallthrough; 2861 case MEM_CANCEL_OFFLINE: 2862 mutex_lock(&ksm_thread_mutex); 2863 ksm_run &= ~KSM_RUN_OFFLINE; 2864 mutex_unlock(&ksm_thread_mutex); 2865 2866 smp_mb(); /* wake_up_bit advises this */ 2867 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2868 break; 2869 } 2870 return NOTIFY_OK; 2871 } 2872 #else 2873 static void wait_while_offlining(void) 2874 { 2875 } 2876 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2877 2878 #ifdef CONFIG_SYSFS 2879 /* 2880 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2881 */ 2882 2883 #define KSM_ATTR_RO(_name) \ 2884 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2885 #define KSM_ATTR(_name) \ 2886 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 2887 2888 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2889 struct kobj_attribute *attr, char *buf) 2890 { 2891 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2892 } 2893 2894 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2895 struct kobj_attribute *attr, 2896 const char *buf, size_t count) 2897 { 2898 unsigned int msecs; 2899 int err; 2900 2901 err = kstrtouint(buf, 10, &msecs); 2902 if (err) 2903 return -EINVAL; 2904 2905 ksm_thread_sleep_millisecs = msecs; 2906 wake_up_interruptible(&ksm_iter_wait); 2907 2908 return count; 2909 } 2910 KSM_ATTR(sleep_millisecs); 2911 2912 static ssize_t pages_to_scan_show(struct kobject *kobj, 2913 struct kobj_attribute *attr, char *buf) 2914 { 2915 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2916 } 2917 2918 static ssize_t pages_to_scan_store(struct kobject *kobj, 2919 struct kobj_attribute *attr, 2920 const char *buf, size_t count) 2921 { 2922 unsigned int nr_pages; 2923 int err; 2924 2925 err = kstrtouint(buf, 10, &nr_pages); 2926 if (err) 2927 return -EINVAL; 2928 2929 ksm_thread_pages_to_scan = nr_pages; 2930 2931 return count; 2932 } 2933 KSM_ATTR(pages_to_scan); 2934 2935 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2936 char *buf) 2937 { 2938 return sysfs_emit(buf, "%lu\n", ksm_run); 2939 } 2940 2941 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2942 const char *buf, size_t count) 2943 { 2944 unsigned int flags; 2945 int err; 2946 2947 err = kstrtouint(buf, 10, &flags); 2948 if (err) 2949 return -EINVAL; 2950 if (flags > KSM_RUN_UNMERGE) 2951 return -EINVAL; 2952 2953 /* 2954 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2955 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2956 * breaking COW to free the pages_shared (but leaves mm_slots 2957 * on the list for when ksmd may be set running again). 2958 */ 2959 2960 mutex_lock(&ksm_thread_mutex); 2961 wait_while_offlining(); 2962 if (ksm_run != flags) { 2963 ksm_run = flags; 2964 if (flags & KSM_RUN_UNMERGE) { 2965 set_current_oom_origin(); 2966 err = unmerge_and_remove_all_rmap_items(); 2967 clear_current_oom_origin(); 2968 if (err) { 2969 ksm_run = KSM_RUN_STOP; 2970 count = err; 2971 } 2972 } 2973 } 2974 mutex_unlock(&ksm_thread_mutex); 2975 2976 if (flags & KSM_RUN_MERGE) 2977 wake_up_interruptible(&ksm_thread_wait); 2978 2979 return count; 2980 } 2981 KSM_ATTR(run); 2982 2983 #ifdef CONFIG_NUMA 2984 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2985 struct kobj_attribute *attr, char *buf) 2986 { 2987 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2988 } 2989 2990 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2991 struct kobj_attribute *attr, 2992 const char *buf, size_t count) 2993 { 2994 int err; 2995 unsigned long knob; 2996 2997 err = kstrtoul(buf, 10, &knob); 2998 if (err) 2999 return err; 3000 if (knob > 1) 3001 return -EINVAL; 3002 3003 mutex_lock(&ksm_thread_mutex); 3004 wait_while_offlining(); 3005 if (ksm_merge_across_nodes != knob) { 3006 if (ksm_pages_shared || remove_all_stable_nodes()) 3007 err = -EBUSY; 3008 else if (root_stable_tree == one_stable_tree) { 3009 struct rb_root *buf; 3010 /* 3011 * This is the first time that we switch away from the 3012 * default of merging across nodes: must now allocate 3013 * a buffer to hold as many roots as may be needed. 3014 * Allocate stable and unstable together: 3015 * MAXSMP NODES_SHIFT 10 will use 16kB. 3016 */ 3017 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3018 GFP_KERNEL); 3019 /* Let us assume that RB_ROOT is NULL is zero */ 3020 if (!buf) 3021 err = -ENOMEM; 3022 else { 3023 root_stable_tree = buf; 3024 root_unstable_tree = buf + nr_node_ids; 3025 /* Stable tree is empty but not the unstable */ 3026 root_unstable_tree[0] = one_unstable_tree[0]; 3027 } 3028 } 3029 if (!err) { 3030 ksm_merge_across_nodes = knob; 3031 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3032 } 3033 } 3034 mutex_unlock(&ksm_thread_mutex); 3035 3036 return err ? err : count; 3037 } 3038 KSM_ATTR(merge_across_nodes); 3039 #endif 3040 3041 static ssize_t use_zero_pages_show(struct kobject *kobj, 3042 struct kobj_attribute *attr, char *buf) 3043 { 3044 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3045 } 3046 static ssize_t use_zero_pages_store(struct kobject *kobj, 3047 struct kobj_attribute *attr, 3048 const char *buf, size_t count) 3049 { 3050 int err; 3051 bool value; 3052 3053 err = kstrtobool(buf, &value); 3054 if (err) 3055 return -EINVAL; 3056 3057 ksm_use_zero_pages = value; 3058 3059 return count; 3060 } 3061 KSM_ATTR(use_zero_pages); 3062 3063 static ssize_t max_page_sharing_show(struct kobject *kobj, 3064 struct kobj_attribute *attr, char *buf) 3065 { 3066 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3067 } 3068 3069 static ssize_t max_page_sharing_store(struct kobject *kobj, 3070 struct kobj_attribute *attr, 3071 const char *buf, size_t count) 3072 { 3073 int err; 3074 int knob; 3075 3076 err = kstrtoint(buf, 10, &knob); 3077 if (err) 3078 return err; 3079 /* 3080 * When a KSM page is created it is shared by 2 mappings. This 3081 * being a signed comparison, it implicitly verifies it's not 3082 * negative. 3083 */ 3084 if (knob < 2) 3085 return -EINVAL; 3086 3087 if (READ_ONCE(ksm_max_page_sharing) == knob) 3088 return count; 3089 3090 mutex_lock(&ksm_thread_mutex); 3091 wait_while_offlining(); 3092 if (ksm_max_page_sharing != knob) { 3093 if (ksm_pages_shared || remove_all_stable_nodes()) 3094 err = -EBUSY; 3095 else 3096 ksm_max_page_sharing = knob; 3097 } 3098 mutex_unlock(&ksm_thread_mutex); 3099 3100 return err ? err : count; 3101 } 3102 KSM_ATTR(max_page_sharing); 3103 3104 static ssize_t pages_shared_show(struct kobject *kobj, 3105 struct kobj_attribute *attr, char *buf) 3106 { 3107 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3108 } 3109 KSM_ATTR_RO(pages_shared); 3110 3111 static ssize_t pages_sharing_show(struct kobject *kobj, 3112 struct kobj_attribute *attr, char *buf) 3113 { 3114 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3115 } 3116 KSM_ATTR_RO(pages_sharing); 3117 3118 static ssize_t pages_unshared_show(struct kobject *kobj, 3119 struct kobj_attribute *attr, char *buf) 3120 { 3121 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3122 } 3123 KSM_ATTR_RO(pages_unshared); 3124 3125 static ssize_t pages_volatile_show(struct kobject *kobj, 3126 struct kobj_attribute *attr, char *buf) 3127 { 3128 long ksm_pages_volatile; 3129 3130 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3131 - ksm_pages_sharing - ksm_pages_unshared; 3132 /* 3133 * It was not worth any locking to calculate that statistic, 3134 * but it might therefore sometimes be negative: conceal that. 3135 */ 3136 if (ksm_pages_volatile < 0) 3137 ksm_pages_volatile = 0; 3138 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3139 } 3140 KSM_ATTR_RO(pages_volatile); 3141 3142 static ssize_t stable_node_dups_show(struct kobject *kobj, 3143 struct kobj_attribute *attr, char *buf) 3144 { 3145 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3146 } 3147 KSM_ATTR_RO(stable_node_dups); 3148 3149 static ssize_t stable_node_chains_show(struct kobject *kobj, 3150 struct kobj_attribute *attr, char *buf) 3151 { 3152 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3153 } 3154 KSM_ATTR_RO(stable_node_chains); 3155 3156 static ssize_t 3157 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3158 struct kobj_attribute *attr, 3159 char *buf) 3160 { 3161 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3162 } 3163 3164 static ssize_t 3165 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3166 struct kobj_attribute *attr, 3167 const char *buf, size_t count) 3168 { 3169 unsigned int msecs; 3170 int err; 3171 3172 err = kstrtouint(buf, 10, &msecs); 3173 if (err) 3174 return -EINVAL; 3175 3176 ksm_stable_node_chains_prune_millisecs = msecs; 3177 3178 return count; 3179 } 3180 KSM_ATTR(stable_node_chains_prune_millisecs); 3181 3182 static ssize_t full_scans_show(struct kobject *kobj, 3183 struct kobj_attribute *attr, char *buf) 3184 { 3185 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3186 } 3187 KSM_ATTR_RO(full_scans); 3188 3189 static struct attribute *ksm_attrs[] = { 3190 &sleep_millisecs_attr.attr, 3191 &pages_to_scan_attr.attr, 3192 &run_attr.attr, 3193 &pages_shared_attr.attr, 3194 &pages_sharing_attr.attr, 3195 &pages_unshared_attr.attr, 3196 &pages_volatile_attr.attr, 3197 &full_scans_attr.attr, 3198 #ifdef CONFIG_NUMA 3199 &merge_across_nodes_attr.attr, 3200 #endif 3201 &max_page_sharing_attr.attr, 3202 &stable_node_chains_attr.attr, 3203 &stable_node_dups_attr.attr, 3204 &stable_node_chains_prune_millisecs_attr.attr, 3205 &use_zero_pages_attr.attr, 3206 NULL, 3207 }; 3208 3209 static const struct attribute_group ksm_attr_group = { 3210 .attrs = ksm_attrs, 3211 .name = "ksm", 3212 }; 3213 #endif /* CONFIG_SYSFS */ 3214 3215 static int __init ksm_init(void) 3216 { 3217 struct task_struct *ksm_thread; 3218 int err; 3219 3220 /* The correct value depends on page size and endianness */ 3221 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3222 /* Default to false for backwards compatibility */ 3223 ksm_use_zero_pages = false; 3224 3225 err = ksm_slab_init(); 3226 if (err) 3227 goto out; 3228 3229 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3230 if (IS_ERR(ksm_thread)) { 3231 pr_err("ksm: creating kthread failed\n"); 3232 err = PTR_ERR(ksm_thread); 3233 goto out_free; 3234 } 3235 3236 #ifdef CONFIG_SYSFS 3237 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3238 if (err) { 3239 pr_err("ksm: register sysfs failed\n"); 3240 kthread_stop(ksm_thread); 3241 goto out_free; 3242 } 3243 #else 3244 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3245 3246 #endif /* CONFIG_SYSFS */ 3247 3248 #ifdef CONFIG_MEMORY_HOTREMOVE 3249 /* There is no significance to this priority 100 */ 3250 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3251 #endif 3252 return 0; 3253 3254 out_free: 3255 ksm_slab_free(); 3256 out: 3257 return err; 3258 } 3259 subsys_initcall(ksm_init); 3260