1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/memory.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/swap.h> 35 #include <linux/ksm.h> 36 #include <linux/hashtable.h> 37 #include <linux/freezer.h> 38 #include <linux/oom.h> 39 #include <linux/numa.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 #ifdef CONFIG_NUMA 45 #define NUMA(x) (x) 46 #define DO_NUMA(x) do { (x); } while (0) 47 #else 48 #define NUMA(x) (0) 49 #define DO_NUMA(x) do { } while (0) 50 #endif 51 52 /* 53 * A few notes about the KSM scanning process, 54 * to make it easier to understand the data structures below: 55 * 56 * In order to reduce excessive scanning, KSM sorts the memory pages by their 57 * contents into a data structure that holds pointers to the pages' locations. 58 * 59 * Since the contents of the pages may change at any moment, KSM cannot just 60 * insert the pages into a normal sorted tree and expect it to find anything. 61 * Therefore KSM uses two data structures - the stable and the unstable tree. 62 * 63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 64 * by their contents. Because each such page is write-protected, searching on 65 * this tree is fully assured to be working (except when pages are unmapped), 66 * and therefore this tree is called the stable tree. 67 * 68 * In addition to the stable tree, KSM uses a second data structure called the 69 * unstable tree: this tree holds pointers to pages which have been found to 70 * be "unchanged for a period of time". The unstable tree sorts these pages 71 * by their contents, but since they are not write-protected, KSM cannot rely 72 * upon the unstable tree to work correctly - the unstable tree is liable to 73 * be corrupted as its contents are modified, and so it is called unstable. 74 * 75 * KSM solves this problem by several techniques: 76 * 77 * 1) The unstable tree is flushed every time KSM completes scanning all 78 * memory areas, and then the tree is rebuilt again from the beginning. 79 * 2) KSM will only insert into the unstable tree, pages whose hash value 80 * has not changed since the previous scan of all memory areas. 81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 82 * colors of the nodes and not on their contents, assuring that even when 83 * the tree gets "corrupted" it won't get out of balance, so scanning time 84 * remains the same (also, searching and inserting nodes in an rbtree uses 85 * the same algorithm, so we have no overhead when we flush and rebuild). 86 * 4) KSM never flushes the stable tree, which means that even if it were to 87 * take 10 attempts to find a page in the unstable tree, once it is found, 88 * it is secured in the stable tree. (When we scan a new page, we first 89 * compare it against the stable tree, and then against the unstable tree.) 90 * 91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 92 * stable trees and multiple unstable trees: one of each for each NUMA node. 93 */ 94 95 /** 96 * struct mm_slot - ksm information per mm that is being scanned 97 * @link: link to the mm_slots hash list 98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 100 * @mm: the mm that this information is valid for 101 */ 102 struct mm_slot { 103 struct hlist_node link; 104 struct list_head mm_list; 105 struct rmap_item *rmap_list; 106 struct mm_struct *mm; 107 }; 108 109 /** 110 * struct ksm_scan - cursor for scanning 111 * @mm_slot: the current mm_slot we are scanning 112 * @address: the next address inside that to be scanned 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list 114 * @seqnr: count of completed full scans (needed when removing unstable node) 115 * 116 * There is only the one ksm_scan instance of this cursor structure. 117 */ 118 struct ksm_scan { 119 struct mm_slot *mm_slot; 120 unsigned long address; 121 struct rmap_item **rmap_list; 122 unsigned long seqnr; 123 }; 124 125 /** 126 * struct stable_node - node of the stable rbtree 127 * @node: rb node of this ksm page in the stable tree 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 129 * @list: linked into migrate_nodes, pending placement in the proper node tree 130 * @hlist: hlist head of rmap_items using this ksm page 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 133 */ 134 struct stable_node { 135 union { 136 struct rb_node node; /* when node of stable tree */ 137 struct { /* when listed for migration */ 138 struct list_head *head; 139 struct list_head list; 140 }; 141 }; 142 struct hlist_head hlist; 143 unsigned long kpfn; 144 #ifdef CONFIG_NUMA 145 int nid; 146 #endif 147 }; 148 149 /** 150 * struct rmap_item - reverse mapping item for virtual addresses 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 153 * @nid: NUMA node id of unstable tree in which linked (may not match page) 154 * @mm: the memory structure this rmap_item is pointing into 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 156 * @oldchecksum: previous checksum of the page at that virtual address 157 * @node: rb node of this rmap_item in the unstable tree 158 * @head: pointer to stable_node heading this list in the stable tree 159 * @hlist: link into hlist of rmap_items hanging off that stable_node 160 */ 161 struct rmap_item { 162 struct rmap_item *rmap_list; 163 union { 164 struct anon_vma *anon_vma; /* when stable */ 165 #ifdef CONFIG_NUMA 166 int nid; /* when node of unstable tree */ 167 #endif 168 }; 169 struct mm_struct *mm; 170 unsigned long address; /* + low bits used for flags below */ 171 unsigned int oldchecksum; /* when unstable */ 172 union { 173 struct rb_node node; /* when node of unstable tree */ 174 struct { /* when listed from stable tree */ 175 struct stable_node *head; 176 struct hlist_node hlist; 177 }; 178 }; 179 }; 180 181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 184 185 /* The stable and unstable tree heads */ 186 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 187 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 188 static struct rb_root *root_stable_tree = one_stable_tree; 189 static struct rb_root *root_unstable_tree = one_unstable_tree; 190 191 /* Recently migrated nodes of stable tree, pending proper placement */ 192 static LIST_HEAD(migrate_nodes); 193 194 #define MM_SLOTS_HASH_BITS 10 195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 196 197 static struct mm_slot ksm_mm_head = { 198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 199 }; 200 static struct ksm_scan ksm_scan = { 201 .mm_slot = &ksm_mm_head, 202 }; 203 204 static struct kmem_cache *rmap_item_cache; 205 static struct kmem_cache *stable_node_cache; 206 static struct kmem_cache *mm_slot_cache; 207 208 /* The number of nodes in the stable tree */ 209 static unsigned long ksm_pages_shared; 210 211 /* The number of page slots additionally sharing those nodes */ 212 static unsigned long ksm_pages_sharing; 213 214 /* The number of nodes in the unstable tree */ 215 static unsigned long ksm_pages_unshared; 216 217 /* The number of rmap_items in use: to calculate pages_volatile */ 218 static unsigned long ksm_rmap_items; 219 220 /* Number of pages ksmd should scan in one batch */ 221 static unsigned int ksm_thread_pages_to_scan = 100; 222 223 /* Milliseconds ksmd should sleep between batches */ 224 static unsigned int ksm_thread_sleep_millisecs = 20; 225 226 #ifdef CONFIG_NUMA 227 /* Zeroed when merging across nodes is not allowed */ 228 static unsigned int ksm_merge_across_nodes = 1; 229 static int ksm_nr_node_ids = 1; 230 #else 231 #define ksm_merge_across_nodes 1U 232 #define ksm_nr_node_ids 1 233 #endif 234 235 #define KSM_RUN_STOP 0 236 #define KSM_RUN_MERGE 1 237 #define KSM_RUN_UNMERGE 2 238 #define KSM_RUN_OFFLINE 4 239 static unsigned long ksm_run = KSM_RUN_STOP; 240 static void wait_while_offlining(void); 241 242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 243 static DEFINE_MUTEX(ksm_thread_mutex); 244 static DEFINE_SPINLOCK(ksm_mmlist_lock); 245 246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 247 sizeof(struct __struct), __alignof__(struct __struct),\ 248 (__flags), NULL) 249 250 static int __init ksm_slab_init(void) 251 { 252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 253 if (!rmap_item_cache) 254 goto out; 255 256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 257 if (!stable_node_cache) 258 goto out_free1; 259 260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 261 if (!mm_slot_cache) 262 goto out_free2; 263 264 return 0; 265 266 out_free2: 267 kmem_cache_destroy(stable_node_cache); 268 out_free1: 269 kmem_cache_destroy(rmap_item_cache); 270 out: 271 return -ENOMEM; 272 } 273 274 static void __init ksm_slab_free(void) 275 { 276 kmem_cache_destroy(mm_slot_cache); 277 kmem_cache_destroy(stable_node_cache); 278 kmem_cache_destroy(rmap_item_cache); 279 mm_slot_cache = NULL; 280 } 281 282 static inline struct rmap_item *alloc_rmap_item(void) 283 { 284 struct rmap_item *rmap_item; 285 286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); 287 if (rmap_item) 288 ksm_rmap_items++; 289 return rmap_item; 290 } 291 292 static inline void free_rmap_item(struct rmap_item *rmap_item) 293 { 294 ksm_rmap_items--; 295 rmap_item->mm = NULL; /* debug safety */ 296 kmem_cache_free(rmap_item_cache, rmap_item); 297 } 298 299 static inline struct stable_node *alloc_stable_node(void) 300 { 301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL); 302 } 303 304 static inline void free_stable_node(struct stable_node *stable_node) 305 { 306 kmem_cache_free(stable_node_cache, stable_node); 307 } 308 309 static inline struct mm_slot *alloc_mm_slot(void) 310 { 311 if (!mm_slot_cache) /* initialization failed */ 312 return NULL; 313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 314 } 315 316 static inline void free_mm_slot(struct mm_slot *mm_slot) 317 { 318 kmem_cache_free(mm_slot_cache, mm_slot); 319 } 320 321 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 322 { 323 struct mm_slot *slot; 324 325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 326 if (slot->mm == mm) 327 return slot; 328 329 return NULL; 330 } 331 332 static void insert_to_mm_slots_hash(struct mm_struct *mm, 333 struct mm_slot *mm_slot) 334 { 335 mm_slot->mm = mm; 336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 337 } 338 339 /* 340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 341 * page tables after it has passed through ksm_exit() - which, if necessary, 342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 343 * a special flag: they can just back out as soon as mm_users goes to zero. 344 * ksm_test_exit() is used throughout to make this test for exit: in some 345 * places for correctness, in some places just to avoid unnecessary work. 346 */ 347 static inline bool ksm_test_exit(struct mm_struct *mm) 348 { 349 return atomic_read(&mm->mm_users) == 0; 350 } 351 352 /* 353 * We use break_ksm to break COW on a ksm page: it's a stripped down 354 * 355 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1) 356 * put_page(page); 357 * 358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 359 * in case the application has unmapped and remapped mm,addr meanwhile. 360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 362 */ 363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 364 { 365 struct page *page; 366 int ret = 0; 367 368 do { 369 cond_resched(); 370 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION); 371 if (IS_ERR_OR_NULL(page)) 372 break; 373 if (PageKsm(page)) 374 ret = handle_mm_fault(vma->vm_mm, vma, addr, 375 FAULT_FLAG_WRITE); 376 else 377 ret = VM_FAULT_WRITE; 378 put_page(page); 379 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 380 /* 381 * We must loop because handle_mm_fault() may back out if there's 382 * any difficulty e.g. if pte accessed bit gets updated concurrently. 383 * 384 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 385 * COW has been broken, even if the vma does not permit VM_WRITE; 386 * but note that a concurrent fault might break PageKsm for us. 387 * 388 * VM_FAULT_SIGBUS could occur if we race with truncation of the 389 * backing file, which also invalidates anonymous pages: that's 390 * okay, that truncation will have unmapped the PageKsm for us. 391 * 392 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 393 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 394 * current task has TIF_MEMDIE set, and will be OOM killed on return 395 * to user; and ksmd, having no mm, would never be chosen for that. 396 * 397 * But if the mm is in a limited mem_cgroup, then the fault may fail 398 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 399 * even ksmd can fail in this way - though it's usually breaking ksm 400 * just to undo a merge it made a moment before, so unlikely to oom. 401 * 402 * That's a pity: we might therefore have more kernel pages allocated 403 * than we're counting as nodes in the stable tree; but ksm_do_scan 404 * will retry to break_cow on each pass, so should recover the page 405 * in due course. The important thing is to not let VM_MERGEABLE 406 * be cleared while any such pages might remain in the area. 407 */ 408 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 409 } 410 411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 412 unsigned long addr) 413 { 414 struct vm_area_struct *vma; 415 if (ksm_test_exit(mm)) 416 return NULL; 417 vma = find_vma(mm, addr); 418 if (!vma || vma->vm_start > addr) 419 return NULL; 420 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 421 return NULL; 422 return vma; 423 } 424 425 static void break_cow(struct rmap_item *rmap_item) 426 { 427 struct mm_struct *mm = rmap_item->mm; 428 unsigned long addr = rmap_item->address; 429 struct vm_area_struct *vma; 430 431 /* 432 * It is not an accident that whenever we want to break COW 433 * to undo, we also need to drop a reference to the anon_vma. 434 */ 435 put_anon_vma(rmap_item->anon_vma); 436 437 down_read(&mm->mmap_sem); 438 vma = find_mergeable_vma(mm, addr); 439 if (vma) 440 break_ksm(vma, addr); 441 up_read(&mm->mmap_sem); 442 } 443 444 static struct page *page_trans_compound_anon(struct page *page) 445 { 446 if (PageTransCompound(page)) { 447 struct page *head = compound_head(page); 448 /* 449 * head may actually be splitted and freed from under 450 * us but it's ok here. 451 */ 452 if (PageAnon(head)) 453 return head; 454 } 455 return NULL; 456 } 457 458 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 459 { 460 struct mm_struct *mm = rmap_item->mm; 461 unsigned long addr = rmap_item->address; 462 struct vm_area_struct *vma; 463 struct page *page; 464 465 down_read(&mm->mmap_sem); 466 vma = find_mergeable_vma(mm, addr); 467 if (!vma) 468 goto out; 469 470 page = follow_page(vma, addr, FOLL_GET); 471 if (IS_ERR_OR_NULL(page)) 472 goto out; 473 if (PageAnon(page) || page_trans_compound_anon(page)) { 474 flush_anon_page(vma, page, addr); 475 flush_dcache_page(page); 476 } else { 477 put_page(page); 478 out: 479 page = NULL; 480 } 481 up_read(&mm->mmap_sem); 482 return page; 483 } 484 485 /* 486 * This helper is used for getting right index into array of tree roots. 487 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 488 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 489 * every node has its own stable and unstable tree. 490 */ 491 static inline int get_kpfn_nid(unsigned long kpfn) 492 { 493 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 494 } 495 496 static void remove_node_from_stable_tree(struct stable_node *stable_node) 497 { 498 struct rmap_item *rmap_item; 499 500 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 501 if (rmap_item->hlist.next) 502 ksm_pages_sharing--; 503 else 504 ksm_pages_shared--; 505 put_anon_vma(rmap_item->anon_vma); 506 rmap_item->address &= PAGE_MASK; 507 cond_resched(); 508 } 509 510 if (stable_node->head == &migrate_nodes) 511 list_del(&stable_node->list); 512 else 513 rb_erase(&stable_node->node, 514 root_stable_tree + NUMA(stable_node->nid)); 515 free_stable_node(stable_node); 516 } 517 518 /* 519 * get_ksm_page: checks if the page indicated by the stable node 520 * is still its ksm page, despite having held no reference to it. 521 * In which case we can trust the content of the page, and it 522 * returns the gotten page; but if the page has now been zapped, 523 * remove the stale node from the stable tree and return NULL. 524 * But beware, the stable node's page might be being migrated. 525 * 526 * You would expect the stable_node to hold a reference to the ksm page. 527 * But if it increments the page's count, swapping out has to wait for 528 * ksmd to come around again before it can free the page, which may take 529 * seconds or even minutes: much too unresponsive. So instead we use a 530 * "keyhole reference": access to the ksm page from the stable node peeps 531 * out through its keyhole to see if that page still holds the right key, 532 * pointing back to this stable node. This relies on freeing a PageAnon 533 * page to reset its page->mapping to NULL, and relies on no other use of 534 * a page to put something that might look like our key in page->mapping. 535 * is on its way to being freed; but it is an anomaly to bear in mind. 536 */ 537 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 538 { 539 struct page *page; 540 void *expected_mapping; 541 unsigned long kpfn; 542 543 expected_mapping = (void *)stable_node + 544 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 545 again: 546 kpfn = READ_ONCE(stable_node->kpfn); 547 page = pfn_to_page(kpfn); 548 549 /* 550 * page is computed from kpfn, so on most architectures reading 551 * page->mapping is naturally ordered after reading node->kpfn, 552 * but on Alpha we need to be more careful. 553 */ 554 smp_read_barrier_depends(); 555 if (READ_ONCE(page->mapping) != expected_mapping) 556 goto stale; 557 558 /* 559 * We cannot do anything with the page while its refcount is 0. 560 * Usually 0 means free, or tail of a higher-order page: in which 561 * case this node is no longer referenced, and should be freed; 562 * however, it might mean that the page is under page_freeze_refs(). 563 * The __remove_mapping() case is easy, again the node is now stale; 564 * but if page is swapcache in migrate_page_move_mapping(), it might 565 * still be our page, in which case it's essential to keep the node. 566 */ 567 while (!get_page_unless_zero(page)) { 568 /* 569 * Another check for page->mapping != expected_mapping would 570 * work here too. We have chosen the !PageSwapCache test to 571 * optimize the common case, when the page is or is about to 572 * be freed: PageSwapCache is cleared (under spin_lock_irq) 573 * in the freeze_refs section of __remove_mapping(); but Anon 574 * page->mapping reset to NULL later, in free_pages_prepare(). 575 */ 576 if (!PageSwapCache(page)) 577 goto stale; 578 cpu_relax(); 579 } 580 581 if (READ_ONCE(page->mapping) != expected_mapping) { 582 put_page(page); 583 goto stale; 584 } 585 586 if (lock_it) { 587 lock_page(page); 588 if (READ_ONCE(page->mapping) != expected_mapping) { 589 unlock_page(page); 590 put_page(page); 591 goto stale; 592 } 593 } 594 return page; 595 596 stale: 597 /* 598 * We come here from above when page->mapping or !PageSwapCache 599 * suggests that the node is stale; but it might be under migration. 600 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 601 * before checking whether node->kpfn has been changed. 602 */ 603 smp_rmb(); 604 if (READ_ONCE(stable_node->kpfn) != kpfn) 605 goto again; 606 remove_node_from_stable_tree(stable_node); 607 return NULL; 608 } 609 610 /* 611 * Removing rmap_item from stable or unstable tree. 612 * This function will clean the information from the stable/unstable tree. 613 */ 614 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 615 { 616 if (rmap_item->address & STABLE_FLAG) { 617 struct stable_node *stable_node; 618 struct page *page; 619 620 stable_node = rmap_item->head; 621 page = get_ksm_page(stable_node, true); 622 if (!page) 623 goto out; 624 625 hlist_del(&rmap_item->hlist); 626 unlock_page(page); 627 put_page(page); 628 629 if (!hlist_empty(&stable_node->hlist)) 630 ksm_pages_sharing--; 631 else 632 ksm_pages_shared--; 633 634 put_anon_vma(rmap_item->anon_vma); 635 rmap_item->address &= PAGE_MASK; 636 637 } else if (rmap_item->address & UNSTABLE_FLAG) { 638 unsigned char age; 639 /* 640 * Usually ksmd can and must skip the rb_erase, because 641 * root_unstable_tree was already reset to RB_ROOT. 642 * But be careful when an mm is exiting: do the rb_erase 643 * if this rmap_item was inserted by this scan, rather 644 * than left over from before. 645 */ 646 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 647 BUG_ON(age > 1); 648 if (!age) 649 rb_erase(&rmap_item->node, 650 root_unstable_tree + NUMA(rmap_item->nid)); 651 ksm_pages_unshared--; 652 rmap_item->address &= PAGE_MASK; 653 } 654 out: 655 cond_resched(); /* we're called from many long loops */ 656 } 657 658 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 659 struct rmap_item **rmap_list) 660 { 661 while (*rmap_list) { 662 struct rmap_item *rmap_item = *rmap_list; 663 *rmap_list = rmap_item->rmap_list; 664 remove_rmap_item_from_tree(rmap_item); 665 free_rmap_item(rmap_item); 666 } 667 } 668 669 /* 670 * Though it's very tempting to unmerge rmap_items from stable tree rather 671 * than check every pte of a given vma, the locking doesn't quite work for 672 * that - an rmap_item is assigned to the stable tree after inserting ksm 673 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 674 * rmap_items from parent to child at fork time (so as not to waste time 675 * if exit comes before the next scan reaches it). 676 * 677 * Similarly, although we'd like to remove rmap_items (so updating counts 678 * and freeing memory) when unmerging an area, it's easier to leave that 679 * to the next pass of ksmd - consider, for example, how ksmd might be 680 * in cmp_and_merge_page on one of the rmap_items we would be removing. 681 */ 682 static int unmerge_ksm_pages(struct vm_area_struct *vma, 683 unsigned long start, unsigned long end) 684 { 685 unsigned long addr; 686 int err = 0; 687 688 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 689 if (ksm_test_exit(vma->vm_mm)) 690 break; 691 if (signal_pending(current)) 692 err = -ERESTARTSYS; 693 else 694 err = break_ksm(vma, addr); 695 } 696 return err; 697 } 698 699 #ifdef CONFIG_SYSFS 700 /* 701 * Only called through the sysfs control interface: 702 */ 703 static int remove_stable_node(struct stable_node *stable_node) 704 { 705 struct page *page; 706 int err; 707 708 page = get_ksm_page(stable_node, true); 709 if (!page) { 710 /* 711 * get_ksm_page did remove_node_from_stable_tree itself. 712 */ 713 return 0; 714 } 715 716 if (WARN_ON_ONCE(page_mapped(page))) { 717 /* 718 * This should not happen: but if it does, just refuse to let 719 * merge_across_nodes be switched - there is no need to panic. 720 */ 721 err = -EBUSY; 722 } else { 723 /* 724 * The stable node did not yet appear stale to get_ksm_page(), 725 * since that allows for an unmapped ksm page to be recognized 726 * right up until it is freed; but the node is safe to remove. 727 * This page might be in a pagevec waiting to be freed, 728 * or it might be PageSwapCache (perhaps under writeback), 729 * or it might have been removed from swapcache a moment ago. 730 */ 731 set_page_stable_node(page, NULL); 732 remove_node_from_stable_tree(stable_node); 733 err = 0; 734 } 735 736 unlock_page(page); 737 put_page(page); 738 return err; 739 } 740 741 static int remove_all_stable_nodes(void) 742 { 743 struct stable_node *stable_node; 744 struct list_head *this, *next; 745 int nid; 746 int err = 0; 747 748 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 749 while (root_stable_tree[nid].rb_node) { 750 stable_node = rb_entry(root_stable_tree[nid].rb_node, 751 struct stable_node, node); 752 if (remove_stable_node(stable_node)) { 753 err = -EBUSY; 754 break; /* proceed to next nid */ 755 } 756 cond_resched(); 757 } 758 } 759 list_for_each_safe(this, next, &migrate_nodes) { 760 stable_node = list_entry(this, struct stable_node, list); 761 if (remove_stable_node(stable_node)) 762 err = -EBUSY; 763 cond_resched(); 764 } 765 return err; 766 } 767 768 static int unmerge_and_remove_all_rmap_items(void) 769 { 770 struct mm_slot *mm_slot; 771 struct mm_struct *mm; 772 struct vm_area_struct *vma; 773 int err = 0; 774 775 spin_lock(&ksm_mmlist_lock); 776 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 777 struct mm_slot, mm_list); 778 spin_unlock(&ksm_mmlist_lock); 779 780 for (mm_slot = ksm_scan.mm_slot; 781 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 782 mm = mm_slot->mm; 783 down_read(&mm->mmap_sem); 784 for (vma = mm->mmap; vma; vma = vma->vm_next) { 785 if (ksm_test_exit(mm)) 786 break; 787 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 788 continue; 789 err = unmerge_ksm_pages(vma, 790 vma->vm_start, vma->vm_end); 791 if (err) 792 goto error; 793 } 794 795 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 796 797 spin_lock(&ksm_mmlist_lock); 798 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 799 struct mm_slot, mm_list); 800 if (ksm_test_exit(mm)) { 801 hash_del(&mm_slot->link); 802 list_del(&mm_slot->mm_list); 803 spin_unlock(&ksm_mmlist_lock); 804 805 free_mm_slot(mm_slot); 806 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 807 up_read(&mm->mmap_sem); 808 mmdrop(mm); 809 } else { 810 spin_unlock(&ksm_mmlist_lock); 811 up_read(&mm->mmap_sem); 812 } 813 } 814 815 /* Clean up stable nodes, but don't worry if some are still busy */ 816 remove_all_stable_nodes(); 817 ksm_scan.seqnr = 0; 818 return 0; 819 820 error: 821 up_read(&mm->mmap_sem); 822 spin_lock(&ksm_mmlist_lock); 823 ksm_scan.mm_slot = &ksm_mm_head; 824 spin_unlock(&ksm_mmlist_lock); 825 return err; 826 } 827 #endif /* CONFIG_SYSFS */ 828 829 static u32 calc_checksum(struct page *page) 830 { 831 u32 checksum; 832 void *addr = kmap_atomic(page); 833 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 834 kunmap_atomic(addr); 835 return checksum; 836 } 837 838 static int memcmp_pages(struct page *page1, struct page *page2) 839 { 840 char *addr1, *addr2; 841 int ret; 842 843 addr1 = kmap_atomic(page1); 844 addr2 = kmap_atomic(page2); 845 ret = memcmp(addr1, addr2, PAGE_SIZE); 846 kunmap_atomic(addr2); 847 kunmap_atomic(addr1); 848 return ret; 849 } 850 851 static inline int pages_identical(struct page *page1, struct page *page2) 852 { 853 return !memcmp_pages(page1, page2); 854 } 855 856 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 857 pte_t *orig_pte) 858 { 859 struct mm_struct *mm = vma->vm_mm; 860 unsigned long addr; 861 pte_t *ptep; 862 spinlock_t *ptl; 863 int swapped; 864 int err = -EFAULT; 865 unsigned long mmun_start; /* For mmu_notifiers */ 866 unsigned long mmun_end; /* For mmu_notifiers */ 867 868 addr = page_address_in_vma(page, vma); 869 if (addr == -EFAULT) 870 goto out; 871 872 BUG_ON(PageTransCompound(page)); 873 874 mmun_start = addr; 875 mmun_end = addr + PAGE_SIZE; 876 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 877 878 ptep = page_check_address(page, mm, addr, &ptl, 0); 879 if (!ptep) 880 goto out_mn; 881 882 if (pte_write(*ptep) || pte_dirty(*ptep)) { 883 pte_t entry; 884 885 swapped = PageSwapCache(page); 886 flush_cache_page(vma, addr, page_to_pfn(page)); 887 /* 888 * Ok this is tricky, when get_user_pages_fast() run it doesn't 889 * take any lock, therefore the check that we are going to make 890 * with the pagecount against the mapcount is racey and 891 * O_DIRECT can happen right after the check. 892 * So we clear the pte and flush the tlb before the check 893 * this assure us that no O_DIRECT can happen after the check 894 * or in the middle of the check. 895 */ 896 entry = ptep_clear_flush_notify(vma, addr, ptep); 897 /* 898 * Check that no O_DIRECT or similar I/O is in progress on the 899 * page 900 */ 901 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 902 set_pte_at(mm, addr, ptep, entry); 903 goto out_unlock; 904 } 905 if (pte_dirty(entry)) 906 set_page_dirty(page); 907 entry = pte_mkclean(pte_wrprotect(entry)); 908 set_pte_at_notify(mm, addr, ptep, entry); 909 } 910 *orig_pte = *ptep; 911 err = 0; 912 913 out_unlock: 914 pte_unmap_unlock(ptep, ptl); 915 out_mn: 916 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 917 out: 918 return err; 919 } 920 921 /** 922 * replace_page - replace page in vma by new ksm page 923 * @vma: vma that holds the pte pointing to page 924 * @page: the page we are replacing by kpage 925 * @kpage: the ksm page we replace page by 926 * @orig_pte: the original value of the pte 927 * 928 * Returns 0 on success, -EFAULT on failure. 929 */ 930 static int replace_page(struct vm_area_struct *vma, struct page *page, 931 struct page *kpage, pte_t orig_pte) 932 { 933 struct mm_struct *mm = vma->vm_mm; 934 pmd_t *pmd; 935 pte_t *ptep; 936 spinlock_t *ptl; 937 unsigned long addr; 938 int err = -EFAULT; 939 unsigned long mmun_start; /* For mmu_notifiers */ 940 unsigned long mmun_end; /* For mmu_notifiers */ 941 942 addr = page_address_in_vma(page, vma); 943 if (addr == -EFAULT) 944 goto out; 945 946 pmd = mm_find_pmd(mm, addr); 947 if (!pmd) 948 goto out; 949 950 mmun_start = addr; 951 mmun_end = addr + PAGE_SIZE; 952 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 953 954 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 955 if (!pte_same(*ptep, orig_pte)) { 956 pte_unmap_unlock(ptep, ptl); 957 goto out_mn; 958 } 959 960 get_page(kpage); 961 page_add_anon_rmap(kpage, vma, addr); 962 963 flush_cache_page(vma, addr, pte_pfn(*ptep)); 964 ptep_clear_flush_notify(vma, addr, ptep); 965 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 966 967 page_remove_rmap(page); 968 if (!page_mapped(page)) 969 try_to_free_swap(page); 970 put_page(page); 971 972 pte_unmap_unlock(ptep, ptl); 973 err = 0; 974 out_mn: 975 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 976 out: 977 return err; 978 } 979 980 static int page_trans_compound_anon_split(struct page *page) 981 { 982 int ret = 0; 983 struct page *transhuge_head = page_trans_compound_anon(page); 984 if (transhuge_head) { 985 /* Get the reference on the head to split it. */ 986 if (get_page_unless_zero(transhuge_head)) { 987 /* 988 * Recheck we got the reference while the head 989 * was still anonymous. 990 */ 991 if (PageAnon(transhuge_head)) 992 ret = split_huge_page(transhuge_head); 993 else 994 /* 995 * Retry later if split_huge_page run 996 * from under us. 997 */ 998 ret = 1; 999 put_page(transhuge_head); 1000 } else 1001 /* Retry later if split_huge_page run from under us. */ 1002 ret = 1; 1003 } 1004 return ret; 1005 } 1006 1007 /* 1008 * try_to_merge_one_page - take two pages and merge them into one 1009 * @vma: the vma that holds the pte pointing to page 1010 * @page: the PageAnon page that we want to replace with kpage 1011 * @kpage: the PageKsm page that we want to map instead of page, 1012 * or NULL the first time when we want to use page as kpage. 1013 * 1014 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1015 */ 1016 static int try_to_merge_one_page(struct vm_area_struct *vma, 1017 struct page *page, struct page *kpage) 1018 { 1019 pte_t orig_pte = __pte(0); 1020 int err = -EFAULT; 1021 1022 if (page == kpage) /* ksm page forked */ 1023 return 0; 1024 1025 if (PageTransCompound(page) && page_trans_compound_anon_split(page)) 1026 goto out; 1027 BUG_ON(PageTransCompound(page)); 1028 if (!PageAnon(page)) 1029 goto out; 1030 1031 /* 1032 * We need the page lock to read a stable PageSwapCache in 1033 * write_protect_page(). We use trylock_page() instead of 1034 * lock_page() because we don't want to wait here - we 1035 * prefer to continue scanning and merging different pages, 1036 * then come back to this page when it is unlocked. 1037 */ 1038 if (!trylock_page(page)) 1039 goto out; 1040 /* 1041 * If this anonymous page is mapped only here, its pte may need 1042 * to be write-protected. If it's mapped elsewhere, all of its 1043 * ptes are necessarily already write-protected. But in either 1044 * case, we need to lock and check page_count is not raised. 1045 */ 1046 if (write_protect_page(vma, page, &orig_pte) == 0) { 1047 if (!kpage) { 1048 /* 1049 * While we hold page lock, upgrade page from 1050 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1051 * stable_tree_insert() will update stable_node. 1052 */ 1053 set_page_stable_node(page, NULL); 1054 mark_page_accessed(page); 1055 err = 0; 1056 } else if (pages_identical(page, kpage)) 1057 err = replace_page(vma, page, kpage, orig_pte); 1058 } 1059 1060 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1061 munlock_vma_page(page); 1062 if (!PageMlocked(kpage)) { 1063 unlock_page(page); 1064 lock_page(kpage); 1065 mlock_vma_page(kpage); 1066 page = kpage; /* for final unlock */ 1067 } 1068 } 1069 1070 unlock_page(page); 1071 out: 1072 return err; 1073 } 1074 1075 /* 1076 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1077 * but no new kernel page is allocated: kpage must already be a ksm page. 1078 * 1079 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1080 */ 1081 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1082 struct page *page, struct page *kpage) 1083 { 1084 struct mm_struct *mm = rmap_item->mm; 1085 struct vm_area_struct *vma; 1086 int err = -EFAULT; 1087 1088 down_read(&mm->mmap_sem); 1089 vma = find_mergeable_vma(mm, rmap_item->address); 1090 if (!vma) 1091 goto out; 1092 1093 err = try_to_merge_one_page(vma, page, kpage); 1094 if (err) 1095 goto out; 1096 1097 /* Unstable nid is in union with stable anon_vma: remove first */ 1098 remove_rmap_item_from_tree(rmap_item); 1099 1100 /* Must get reference to anon_vma while still holding mmap_sem */ 1101 rmap_item->anon_vma = vma->anon_vma; 1102 get_anon_vma(vma->anon_vma); 1103 out: 1104 up_read(&mm->mmap_sem); 1105 return err; 1106 } 1107 1108 /* 1109 * try_to_merge_two_pages - take two identical pages and prepare them 1110 * to be merged into one page. 1111 * 1112 * This function returns the kpage if we successfully merged two identical 1113 * pages into one ksm page, NULL otherwise. 1114 * 1115 * Note that this function upgrades page to ksm page: if one of the pages 1116 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1117 */ 1118 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1119 struct page *page, 1120 struct rmap_item *tree_rmap_item, 1121 struct page *tree_page) 1122 { 1123 int err; 1124 1125 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1126 if (!err) { 1127 err = try_to_merge_with_ksm_page(tree_rmap_item, 1128 tree_page, page); 1129 /* 1130 * If that fails, we have a ksm page with only one pte 1131 * pointing to it: so break it. 1132 */ 1133 if (err) 1134 break_cow(rmap_item); 1135 } 1136 return err ? NULL : page; 1137 } 1138 1139 /* 1140 * stable_tree_search - search for page inside the stable tree 1141 * 1142 * This function checks if there is a page inside the stable tree 1143 * with identical content to the page that we are scanning right now. 1144 * 1145 * This function returns the stable tree node of identical content if found, 1146 * NULL otherwise. 1147 */ 1148 static struct page *stable_tree_search(struct page *page) 1149 { 1150 int nid; 1151 struct rb_root *root; 1152 struct rb_node **new; 1153 struct rb_node *parent; 1154 struct stable_node *stable_node; 1155 struct stable_node *page_node; 1156 1157 page_node = page_stable_node(page); 1158 if (page_node && page_node->head != &migrate_nodes) { 1159 /* ksm page forked */ 1160 get_page(page); 1161 return page; 1162 } 1163 1164 nid = get_kpfn_nid(page_to_pfn(page)); 1165 root = root_stable_tree + nid; 1166 again: 1167 new = &root->rb_node; 1168 parent = NULL; 1169 1170 while (*new) { 1171 struct page *tree_page; 1172 int ret; 1173 1174 cond_resched(); 1175 stable_node = rb_entry(*new, struct stable_node, node); 1176 tree_page = get_ksm_page(stable_node, false); 1177 if (!tree_page) { 1178 /* 1179 * If we walked over a stale stable_node, 1180 * get_ksm_page() will call rb_erase() and it 1181 * may rebalance the tree from under us. So 1182 * restart the search from scratch. Returning 1183 * NULL would be safe too, but we'd generate 1184 * false negative insertions just because some 1185 * stable_node was stale. 1186 */ 1187 goto again; 1188 } 1189 1190 ret = memcmp_pages(page, tree_page); 1191 put_page(tree_page); 1192 1193 parent = *new; 1194 if (ret < 0) 1195 new = &parent->rb_left; 1196 else if (ret > 0) 1197 new = &parent->rb_right; 1198 else { 1199 /* 1200 * Lock and unlock the stable_node's page (which 1201 * might already have been migrated) so that page 1202 * migration is sure to notice its raised count. 1203 * It would be more elegant to return stable_node 1204 * than kpage, but that involves more changes. 1205 */ 1206 tree_page = get_ksm_page(stable_node, true); 1207 if (tree_page) { 1208 unlock_page(tree_page); 1209 if (get_kpfn_nid(stable_node->kpfn) != 1210 NUMA(stable_node->nid)) { 1211 put_page(tree_page); 1212 goto replace; 1213 } 1214 return tree_page; 1215 } 1216 /* 1217 * There is now a place for page_node, but the tree may 1218 * have been rebalanced, so re-evaluate parent and new. 1219 */ 1220 if (page_node) 1221 goto again; 1222 return NULL; 1223 } 1224 } 1225 1226 if (!page_node) 1227 return NULL; 1228 1229 list_del(&page_node->list); 1230 DO_NUMA(page_node->nid = nid); 1231 rb_link_node(&page_node->node, parent, new); 1232 rb_insert_color(&page_node->node, root); 1233 get_page(page); 1234 return page; 1235 1236 replace: 1237 if (page_node) { 1238 list_del(&page_node->list); 1239 DO_NUMA(page_node->nid = nid); 1240 rb_replace_node(&stable_node->node, &page_node->node, root); 1241 get_page(page); 1242 } else { 1243 rb_erase(&stable_node->node, root); 1244 page = NULL; 1245 } 1246 stable_node->head = &migrate_nodes; 1247 list_add(&stable_node->list, stable_node->head); 1248 return page; 1249 } 1250 1251 /* 1252 * stable_tree_insert - insert stable tree node pointing to new ksm page 1253 * into the stable tree. 1254 * 1255 * This function returns the stable tree node just allocated on success, 1256 * NULL otherwise. 1257 */ 1258 static struct stable_node *stable_tree_insert(struct page *kpage) 1259 { 1260 int nid; 1261 unsigned long kpfn; 1262 struct rb_root *root; 1263 struct rb_node **new; 1264 struct rb_node *parent; 1265 struct stable_node *stable_node; 1266 1267 kpfn = page_to_pfn(kpage); 1268 nid = get_kpfn_nid(kpfn); 1269 root = root_stable_tree + nid; 1270 again: 1271 parent = NULL; 1272 new = &root->rb_node; 1273 1274 while (*new) { 1275 struct page *tree_page; 1276 int ret; 1277 1278 cond_resched(); 1279 stable_node = rb_entry(*new, struct stable_node, node); 1280 tree_page = get_ksm_page(stable_node, false); 1281 if (!tree_page) { 1282 /* 1283 * If we walked over a stale stable_node, 1284 * get_ksm_page() will call rb_erase() and it 1285 * may rebalance the tree from under us. So 1286 * restart the search from scratch. Returning 1287 * NULL would be safe too, but we'd generate 1288 * false negative insertions just because some 1289 * stable_node was stale. 1290 */ 1291 goto again; 1292 } 1293 1294 ret = memcmp_pages(kpage, tree_page); 1295 put_page(tree_page); 1296 1297 parent = *new; 1298 if (ret < 0) 1299 new = &parent->rb_left; 1300 else if (ret > 0) 1301 new = &parent->rb_right; 1302 else { 1303 /* 1304 * It is not a bug that stable_tree_search() didn't 1305 * find this node: because at that time our page was 1306 * not yet write-protected, so may have changed since. 1307 */ 1308 return NULL; 1309 } 1310 } 1311 1312 stable_node = alloc_stable_node(); 1313 if (!stable_node) 1314 return NULL; 1315 1316 INIT_HLIST_HEAD(&stable_node->hlist); 1317 stable_node->kpfn = kpfn; 1318 set_page_stable_node(kpage, stable_node); 1319 DO_NUMA(stable_node->nid = nid); 1320 rb_link_node(&stable_node->node, parent, new); 1321 rb_insert_color(&stable_node->node, root); 1322 1323 return stable_node; 1324 } 1325 1326 /* 1327 * unstable_tree_search_insert - search for identical page, 1328 * else insert rmap_item into the unstable tree. 1329 * 1330 * This function searches for a page in the unstable tree identical to the 1331 * page currently being scanned; and if no identical page is found in the 1332 * tree, we insert rmap_item as a new object into the unstable tree. 1333 * 1334 * This function returns pointer to rmap_item found to be identical 1335 * to the currently scanned page, NULL otherwise. 1336 * 1337 * This function does both searching and inserting, because they share 1338 * the same walking algorithm in an rbtree. 1339 */ 1340 static 1341 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1342 struct page *page, 1343 struct page **tree_pagep) 1344 { 1345 struct rb_node **new; 1346 struct rb_root *root; 1347 struct rb_node *parent = NULL; 1348 int nid; 1349 1350 nid = get_kpfn_nid(page_to_pfn(page)); 1351 root = root_unstable_tree + nid; 1352 new = &root->rb_node; 1353 1354 while (*new) { 1355 struct rmap_item *tree_rmap_item; 1356 struct page *tree_page; 1357 int ret; 1358 1359 cond_resched(); 1360 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1361 tree_page = get_mergeable_page(tree_rmap_item); 1362 if (!tree_page) 1363 return NULL; 1364 1365 /* 1366 * Don't substitute a ksm page for a forked page. 1367 */ 1368 if (page == tree_page) { 1369 put_page(tree_page); 1370 return NULL; 1371 } 1372 1373 ret = memcmp_pages(page, tree_page); 1374 1375 parent = *new; 1376 if (ret < 0) { 1377 put_page(tree_page); 1378 new = &parent->rb_left; 1379 } else if (ret > 0) { 1380 put_page(tree_page); 1381 new = &parent->rb_right; 1382 } else if (!ksm_merge_across_nodes && 1383 page_to_nid(tree_page) != nid) { 1384 /* 1385 * If tree_page has been migrated to another NUMA node, 1386 * it will be flushed out and put in the right unstable 1387 * tree next time: only merge with it when across_nodes. 1388 */ 1389 put_page(tree_page); 1390 return NULL; 1391 } else { 1392 *tree_pagep = tree_page; 1393 return tree_rmap_item; 1394 } 1395 } 1396 1397 rmap_item->address |= UNSTABLE_FLAG; 1398 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1399 DO_NUMA(rmap_item->nid = nid); 1400 rb_link_node(&rmap_item->node, parent, new); 1401 rb_insert_color(&rmap_item->node, root); 1402 1403 ksm_pages_unshared++; 1404 return NULL; 1405 } 1406 1407 /* 1408 * stable_tree_append - add another rmap_item to the linked list of 1409 * rmap_items hanging off a given node of the stable tree, all sharing 1410 * the same ksm page. 1411 */ 1412 static void stable_tree_append(struct rmap_item *rmap_item, 1413 struct stable_node *stable_node) 1414 { 1415 rmap_item->head = stable_node; 1416 rmap_item->address |= STABLE_FLAG; 1417 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1418 1419 if (rmap_item->hlist.next) 1420 ksm_pages_sharing++; 1421 else 1422 ksm_pages_shared++; 1423 } 1424 1425 /* 1426 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1427 * if not, compare checksum to previous and if it's the same, see if page can 1428 * be inserted into the unstable tree, or merged with a page already there and 1429 * both transferred to the stable tree. 1430 * 1431 * @page: the page that we are searching identical page to. 1432 * @rmap_item: the reverse mapping into the virtual address of this page 1433 */ 1434 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1435 { 1436 struct rmap_item *tree_rmap_item; 1437 struct page *tree_page = NULL; 1438 struct stable_node *stable_node; 1439 struct page *kpage; 1440 unsigned int checksum; 1441 int err; 1442 1443 stable_node = page_stable_node(page); 1444 if (stable_node) { 1445 if (stable_node->head != &migrate_nodes && 1446 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) { 1447 rb_erase(&stable_node->node, 1448 root_stable_tree + NUMA(stable_node->nid)); 1449 stable_node->head = &migrate_nodes; 1450 list_add(&stable_node->list, stable_node->head); 1451 } 1452 if (stable_node->head != &migrate_nodes && 1453 rmap_item->head == stable_node) 1454 return; 1455 } 1456 1457 /* We first start with searching the page inside the stable tree */ 1458 kpage = stable_tree_search(page); 1459 if (kpage == page && rmap_item->head == stable_node) { 1460 put_page(kpage); 1461 return; 1462 } 1463 1464 remove_rmap_item_from_tree(rmap_item); 1465 1466 if (kpage) { 1467 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1468 if (!err) { 1469 /* 1470 * The page was successfully merged: 1471 * add its rmap_item to the stable tree. 1472 */ 1473 lock_page(kpage); 1474 stable_tree_append(rmap_item, page_stable_node(kpage)); 1475 unlock_page(kpage); 1476 } 1477 put_page(kpage); 1478 return; 1479 } 1480 1481 /* 1482 * If the hash value of the page has changed from the last time 1483 * we calculated it, this page is changing frequently: therefore we 1484 * don't want to insert it in the unstable tree, and we don't want 1485 * to waste our time searching for something identical to it there. 1486 */ 1487 checksum = calc_checksum(page); 1488 if (rmap_item->oldchecksum != checksum) { 1489 rmap_item->oldchecksum = checksum; 1490 return; 1491 } 1492 1493 tree_rmap_item = 1494 unstable_tree_search_insert(rmap_item, page, &tree_page); 1495 if (tree_rmap_item) { 1496 kpage = try_to_merge_two_pages(rmap_item, page, 1497 tree_rmap_item, tree_page); 1498 put_page(tree_page); 1499 if (kpage) { 1500 /* 1501 * The pages were successfully merged: insert new 1502 * node in the stable tree and add both rmap_items. 1503 */ 1504 lock_page(kpage); 1505 stable_node = stable_tree_insert(kpage); 1506 if (stable_node) { 1507 stable_tree_append(tree_rmap_item, stable_node); 1508 stable_tree_append(rmap_item, stable_node); 1509 } 1510 unlock_page(kpage); 1511 1512 /* 1513 * If we fail to insert the page into the stable tree, 1514 * we will have 2 virtual addresses that are pointing 1515 * to a ksm page left outside the stable tree, 1516 * in which case we need to break_cow on both. 1517 */ 1518 if (!stable_node) { 1519 break_cow(tree_rmap_item); 1520 break_cow(rmap_item); 1521 } 1522 } 1523 } 1524 } 1525 1526 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1527 struct rmap_item **rmap_list, 1528 unsigned long addr) 1529 { 1530 struct rmap_item *rmap_item; 1531 1532 while (*rmap_list) { 1533 rmap_item = *rmap_list; 1534 if ((rmap_item->address & PAGE_MASK) == addr) 1535 return rmap_item; 1536 if (rmap_item->address > addr) 1537 break; 1538 *rmap_list = rmap_item->rmap_list; 1539 remove_rmap_item_from_tree(rmap_item); 1540 free_rmap_item(rmap_item); 1541 } 1542 1543 rmap_item = alloc_rmap_item(); 1544 if (rmap_item) { 1545 /* It has already been zeroed */ 1546 rmap_item->mm = mm_slot->mm; 1547 rmap_item->address = addr; 1548 rmap_item->rmap_list = *rmap_list; 1549 *rmap_list = rmap_item; 1550 } 1551 return rmap_item; 1552 } 1553 1554 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1555 { 1556 struct mm_struct *mm; 1557 struct mm_slot *slot; 1558 struct vm_area_struct *vma; 1559 struct rmap_item *rmap_item; 1560 int nid; 1561 1562 if (list_empty(&ksm_mm_head.mm_list)) 1563 return NULL; 1564 1565 slot = ksm_scan.mm_slot; 1566 if (slot == &ksm_mm_head) { 1567 /* 1568 * A number of pages can hang around indefinitely on per-cpu 1569 * pagevecs, raised page count preventing write_protect_page 1570 * from merging them. Though it doesn't really matter much, 1571 * it is puzzling to see some stuck in pages_volatile until 1572 * other activity jostles them out, and they also prevented 1573 * LTP's KSM test from succeeding deterministically; so drain 1574 * them here (here rather than on entry to ksm_do_scan(), 1575 * so we don't IPI too often when pages_to_scan is set low). 1576 */ 1577 lru_add_drain_all(); 1578 1579 /* 1580 * Whereas stale stable_nodes on the stable_tree itself 1581 * get pruned in the regular course of stable_tree_search(), 1582 * those moved out to the migrate_nodes list can accumulate: 1583 * so prune them once before each full scan. 1584 */ 1585 if (!ksm_merge_across_nodes) { 1586 struct stable_node *stable_node; 1587 struct list_head *this, *next; 1588 struct page *page; 1589 1590 list_for_each_safe(this, next, &migrate_nodes) { 1591 stable_node = list_entry(this, 1592 struct stable_node, list); 1593 page = get_ksm_page(stable_node, false); 1594 if (page) 1595 put_page(page); 1596 cond_resched(); 1597 } 1598 } 1599 1600 for (nid = 0; nid < ksm_nr_node_ids; nid++) 1601 root_unstable_tree[nid] = RB_ROOT; 1602 1603 spin_lock(&ksm_mmlist_lock); 1604 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1605 ksm_scan.mm_slot = slot; 1606 spin_unlock(&ksm_mmlist_lock); 1607 /* 1608 * Although we tested list_empty() above, a racing __ksm_exit 1609 * of the last mm on the list may have removed it since then. 1610 */ 1611 if (slot == &ksm_mm_head) 1612 return NULL; 1613 next_mm: 1614 ksm_scan.address = 0; 1615 ksm_scan.rmap_list = &slot->rmap_list; 1616 } 1617 1618 mm = slot->mm; 1619 down_read(&mm->mmap_sem); 1620 if (ksm_test_exit(mm)) 1621 vma = NULL; 1622 else 1623 vma = find_vma(mm, ksm_scan.address); 1624 1625 for (; vma; vma = vma->vm_next) { 1626 if (!(vma->vm_flags & VM_MERGEABLE)) 1627 continue; 1628 if (ksm_scan.address < vma->vm_start) 1629 ksm_scan.address = vma->vm_start; 1630 if (!vma->anon_vma) 1631 ksm_scan.address = vma->vm_end; 1632 1633 while (ksm_scan.address < vma->vm_end) { 1634 if (ksm_test_exit(mm)) 1635 break; 1636 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1637 if (IS_ERR_OR_NULL(*page)) { 1638 ksm_scan.address += PAGE_SIZE; 1639 cond_resched(); 1640 continue; 1641 } 1642 if (PageAnon(*page) || 1643 page_trans_compound_anon(*page)) { 1644 flush_anon_page(vma, *page, ksm_scan.address); 1645 flush_dcache_page(*page); 1646 rmap_item = get_next_rmap_item(slot, 1647 ksm_scan.rmap_list, ksm_scan.address); 1648 if (rmap_item) { 1649 ksm_scan.rmap_list = 1650 &rmap_item->rmap_list; 1651 ksm_scan.address += PAGE_SIZE; 1652 } else 1653 put_page(*page); 1654 up_read(&mm->mmap_sem); 1655 return rmap_item; 1656 } 1657 put_page(*page); 1658 ksm_scan.address += PAGE_SIZE; 1659 cond_resched(); 1660 } 1661 } 1662 1663 if (ksm_test_exit(mm)) { 1664 ksm_scan.address = 0; 1665 ksm_scan.rmap_list = &slot->rmap_list; 1666 } 1667 /* 1668 * Nuke all the rmap_items that are above this current rmap: 1669 * because there were no VM_MERGEABLE vmas with such addresses. 1670 */ 1671 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1672 1673 spin_lock(&ksm_mmlist_lock); 1674 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1675 struct mm_slot, mm_list); 1676 if (ksm_scan.address == 0) { 1677 /* 1678 * We've completed a full scan of all vmas, holding mmap_sem 1679 * throughout, and found no VM_MERGEABLE: so do the same as 1680 * __ksm_exit does to remove this mm from all our lists now. 1681 * This applies either when cleaning up after __ksm_exit 1682 * (but beware: we can reach here even before __ksm_exit), 1683 * or when all VM_MERGEABLE areas have been unmapped (and 1684 * mmap_sem then protects against race with MADV_MERGEABLE). 1685 */ 1686 hash_del(&slot->link); 1687 list_del(&slot->mm_list); 1688 spin_unlock(&ksm_mmlist_lock); 1689 1690 free_mm_slot(slot); 1691 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1692 up_read(&mm->mmap_sem); 1693 mmdrop(mm); 1694 } else { 1695 spin_unlock(&ksm_mmlist_lock); 1696 up_read(&mm->mmap_sem); 1697 } 1698 1699 /* Repeat until we've completed scanning the whole list */ 1700 slot = ksm_scan.mm_slot; 1701 if (slot != &ksm_mm_head) 1702 goto next_mm; 1703 1704 ksm_scan.seqnr++; 1705 return NULL; 1706 } 1707 1708 /** 1709 * ksm_do_scan - the ksm scanner main worker function. 1710 * @scan_npages - number of pages we want to scan before we return. 1711 */ 1712 static void ksm_do_scan(unsigned int scan_npages) 1713 { 1714 struct rmap_item *rmap_item; 1715 struct page *uninitialized_var(page); 1716 1717 while (scan_npages-- && likely(!freezing(current))) { 1718 cond_resched(); 1719 rmap_item = scan_get_next_rmap_item(&page); 1720 if (!rmap_item) 1721 return; 1722 cmp_and_merge_page(page, rmap_item); 1723 put_page(page); 1724 } 1725 } 1726 1727 static int ksmd_should_run(void) 1728 { 1729 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1730 } 1731 1732 static int ksm_scan_thread(void *nothing) 1733 { 1734 set_freezable(); 1735 set_user_nice(current, 5); 1736 1737 while (!kthread_should_stop()) { 1738 mutex_lock(&ksm_thread_mutex); 1739 wait_while_offlining(); 1740 if (ksmd_should_run()) 1741 ksm_do_scan(ksm_thread_pages_to_scan); 1742 mutex_unlock(&ksm_thread_mutex); 1743 1744 try_to_freeze(); 1745 1746 if (ksmd_should_run()) { 1747 schedule_timeout_interruptible( 1748 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1749 } else { 1750 wait_event_freezable(ksm_thread_wait, 1751 ksmd_should_run() || kthread_should_stop()); 1752 } 1753 } 1754 return 0; 1755 } 1756 1757 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1758 unsigned long end, int advice, unsigned long *vm_flags) 1759 { 1760 struct mm_struct *mm = vma->vm_mm; 1761 int err; 1762 1763 switch (advice) { 1764 case MADV_MERGEABLE: 1765 /* 1766 * Be somewhat over-protective for now! 1767 */ 1768 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1769 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1770 VM_HUGETLB | VM_MIXEDMAP)) 1771 return 0; /* just ignore the advice */ 1772 1773 #ifdef VM_SAO 1774 if (*vm_flags & VM_SAO) 1775 return 0; 1776 #endif 1777 1778 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1779 err = __ksm_enter(mm); 1780 if (err) 1781 return err; 1782 } 1783 1784 *vm_flags |= VM_MERGEABLE; 1785 break; 1786 1787 case MADV_UNMERGEABLE: 1788 if (!(*vm_flags & VM_MERGEABLE)) 1789 return 0; /* just ignore the advice */ 1790 1791 if (vma->anon_vma) { 1792 err = unmerge_ksm_pages(vma, start, end); 1793 if (err) 1794 return err; 1795 } 1796 1797 *vm_flags &= ~VM_MERGEABLE; 1798 break; 1799 } 1800 1801 return 0; 1802 } 1803 1804 int __ksm_enter(struct mm_struct *mm) 1805 { 1806 struct mm_slot *mm_slot; 1807 int needs_wakeup; 1808 1809 mm_slot = alloc_mm_slot(); 1810 if (!mm_slot) 1811 return -ENOMEM; 1812 1813 /* Check ksm_run too? Would need tighter locking */ 1814 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1815 1816 spin_lock(&ksm_mmlist_lock); 1817 insert_to_mm_slots_hash(mm, mm_slot); 1818 /* 1819 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 1820 * insert just behind the scanning cursor, to let the area settle 1821 * down a little; when fork is followed by immediate exec, we don't 1822 * want ksmd to waste time setting up and tearing down an rmap_list. 1823 * 1824 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 1825 * scanning cursor, otherwise KSM pages in newly forked mms will be 1826 * missed: then we might as well insert at the end of the list. 1827 */ 1828 if (ksm_run & KSM_RUN_UNMERGE) 1829 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 1830 else 1831 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1832 spin_unlock(&ksm_mmlist_lock); 1833 1834 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1835 atomic_inc(&mm->mm_count); 1836 1837 if (needs_wakeup) 1838 wake_up_interruptible(&ksm_thread_wait); 1839 1840 return 0; 1841 } 1842 1843 void __ksm_exit(struct mm_struct *mm) 1844 { 1845 struct mm_slot *mm_slot; 1846 int easy_to_free = 0; 1847 1848 /* 1849 * This process is exiting: if it's straightforward (as is the 1850 * case when ksmd was never running), free mm_slot immediately. 1851 * But if it's at the cursor or has rmap_items linked to it, use 1852 * mmap_sem to synchronize with any break_cows before pagetables 1853 * are freed, and leave the mm_slot on the list for ksmd to free. 1854 * Beware: ksm may already have noticed it exiting and freed the slot. 1855 */ 1856 1857 spin_lock(&ksm_mmlist_lock); 1858 mm_slot = get_mm_slot(mm); 1859 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1860 if (!mm_slot->rmap_list) { 1861 hash_del(&mm_slot->link); 1862 list_del(&mm_slot->mm_list); 1863 easy_to_free = 1; 1864 } else { 1865 list_move(&mm_slot->mm_list, 1866 &ksm_scan.mm_slot->mm_list); 1867 } 1868 } 1869 spin_unlock(&ksm_mmlist_lock); 1870 1871 if (easy_to_free) { 1872 free_mm_slot(mm_slot); 1873 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1874 mmdrop(mm); 1875 } else if (mm_slot) { 1876 down_write(&mm->mmap_sem); 1877 up_write(&mm->mmap_sem); 1878 } 1879 } 1880 1881 struct page *ksm_might_need_to_copy(struct page *page, 1882 struct vm_area_struct *vma, unsigned long address) 1883 { 1884 struct anon_vma *anon_vma = page_anon_vma(page); 1885 struct page *new_page; 1886 1887 if (PageKsm(page)) { 1888 if (page_stable_node(page) && 1889 !(ksm_run & KSM_RUN_UNMERGE)) 1890 return page; /* no need to copy it */ 1891 } else if (!anon_vma) { 1892 return page; /* no need to copy it */ 1893 } else if (anon_vma->root == vma->anon_vma->root && 1894 page->index == linear_page_index(vma, address)) { 1895 return page; /* still no need to copy it */ 1896 } 1897 if (!PageUptodate(page)) 1898 return page; /* let do_swap_page report the error */ 1899 1900 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1901 if (new_page) { 1902 copy_user_highpage(new_page, page, address, vma); 1903 1904 SetPageDirty(new_page); 1905 __SetPageUptodate(new_page); 1906 __set_page_locked(new_page); 1907 } 1908 1909 return new_page; 1910 } 1911 1912 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 1913 { 1914 struct stable_node *stable_node; 1915 struct rmap_item *rmap_item; 1916 int ret = SWAP_AGAIN; 1917 int search_new_forks = 0; 1918 1919 VM_BUG_ON_PAGE(!PageKsm(page), page); 1920 1921 /* 1922 * Rely on the page lock to protect against concurrent modifications 1923 * to that page's node of the stable tree. 1924 */ 1925 VM_BUG_ON_PAGE(!PageLocked(page), page); 1926 1927 stable_node = page_stable_node(page); 1928 if (!stable_node) 1929 return ret; 1930 again: 1931 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 1932 struct anon_vma *anon_vma = rmap_item->anon_vma; 1933 struct anon_vma_chain *vmac; 1934 struct vm_area_struct *vma; 1935 1936 cond_resched(); 1937 anon_vma_lock_read(anon_vma); 1938 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 1939 0, ULONG_MAX) { 1940 cond_resched(); 1941 vma = vmac->vma; 1942 if (rmap_item->address < vma->vm_start || 1943 rmap_item->address >= vma->vm_end) 1944 continue; 1945 /* 1946 * Initially we examine only the vma which covers this 1947 * rmap_item; but later, if there is still work to do, 1948 * we examine covering vmas in other mms: in case they 1949 * were forked from the original since ksmd passed. 1950 */ 1951 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1952 continue; 1953 1954 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1955 continue; 1956 1957 ret = rwc->rmap_one(page, vma, 1958 rmap_item->address, rwc->arg); 1959 if (ret != SWAP_AGAIN) { 1960 anon_vma_unlock_read(anon_vma); 1961 goto out; 1962 } 1963 if (rwc->done && rwc->done(page)) { 1964 anon_vma_unlock_read(anon_vma); 1965 goto out; 1966 } 1967 } 1968 anon_vma_unlock_read(anon_vma); 1969 } 1970 if (!search_new_forks++) 1971 goto again; 1972 out: 1973 return ret; 1974 } 1975 1976 #ifdef CONFIG_MIGRATION 1977 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 1978 { 1979 struct stable_node *stable_node; 1980 1981 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 1982 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1983 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 1984 1985 stable_node = page_stable_node(newpage); 1986 if (stable_node) { 1987 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 1988 stable_node->kpfn = page_to_pfn(newpage); 1989 /* 1990 * newpage->mapping was set in advance; now we need smp_wmb() 1991 * to make sure that the new stable_node->kpfn is visible 1992 * to get_ksm_page() before it can see that oldpage->mapping 1993 * has gone stale (or that PageSwapCache has been cleared). 1994 */ 1995 smp_wmb(); 1996 set_page_stable_node(oldpage, NULL); 1997 } 1998 } 1999 #endif /* CONFIG_MIGRATION */ 2000 2001 #ifdef CONFIG_MEMORY_HOTREMOVE 2002 static void wait_while_offlining(void) 2003 { 2004 while (ksm_run & KSM_RUN_OFFLINE) { 2005 mutex_unlock(&ksm_thread_mutex); 2006 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2007 TASK_UNINTERRUPTIBLE); 2008 mutex_lock(&ksm_thread_mutex); 2009 } 2010 } 2011 2012 static void ksm_check_stable_tree(unsigned long start_pfn, 2013 unsigned long end_pfn) 2014 { 2015 struct stable_node *stable_node; 2016 struct list_head *this, *next; 2017 struct rb_node *node; 2018 int nid; 2019 2020 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2021 node = rb_first(root_stable_tree + nid); 2022 while (node) { 2023 stable_node = rb_entry(node, struct stable_node, node); 2024 if (stable_node->kpfn >= start_pfn && 2025 stable_node->kpfn < end_pfn) { 2026 /* 2027 * Don't get_ksm_page, page has already gone: 2028 * which is why we keep kpfn instead of page* 2029 */ 2030 remove_node_from_stable_tree(stable_node); 2031 node = rb_first(root_stable_tree + nid); 2032 } else 2033 node = rb_next(node); 2034 cond_resched(); 2035 } 2036 } 2037 list_for_each_safe(this, next, &migrate_nodes) { 2038 stable_node = list_entry(this, struct stable_node, list); 2039 if (stable_node->kpfn >= start_pfn && 2040 stable_node->kpfn < end_pfn) 2041 remove_node_from_stable_tree(stable_node); 2042 cond_resched(); 2043 } 2044 } 2045 2046 static int ksm_memory_callback(struct notifier_block *self, 2047 unsigned long action, void *arg) 2048 { 2049 struct memory_notify *mn = arg; 2050 2051 switch (action) { 2052 case MEM_GOING_OFFLINE: 2053 /* 2054 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2055 * and remove_all_stable_nodes() while memory is going offline: 2056 * it is unsafe for them to touch the stable tree at this time. 2057 * But unmerge_ksm_pages(), rmap lookups and other entry points 2058 * which do not need the ksm_thread_mutex are all safe. 2059 */ 2060 mutex_lock(&ksm_thread_mutex); 2061 ksm_run |= KSM_RUN_OFFLINE; 2062 mutex_unlock(&ksm_thread_mutex); 2063 break; 2064 2065 case MEM_OFFLINE: 2066 /* 2067 * Most of the work is done by page migration; but there might 2068 * be a few stable_nodes left over, still pointing to struct 2069 * pages which have been offlined: prune those from the tree, 2070 * otherwise get_ksm_page() might later try to access a 2071 * non-existent struct page. 2072 */ 2073 ksm_check_stable_tree(mn->start_pfn, 2074 mn->start_pfn + mn->nr_pages); 2075 /* fallthrough */ 2076 2077 case MEM_CANCEL_OFFLINE: 2078 mutex_lock(&ksm_thread_mutex); 2079 ksm_run &= ~KSM_RUN_OFFLINE; 2080 mutex_unlock(&ksm_thread_mutex); 2081 2082 smp_mb(); /* wake_up_bit advises this */ 2083 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2084 break; 2085 } 2086 return NOTIFY_OK; 2087 } 2088 #else 2089 static void wait_while_offlining(void) 2090 { 2091 } 2092 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2093 2094 #ifdef CONFIG_SYSFS 2095 /* 2096 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2097 */ 2098 2099 #define KSM_ATTR_RO(_name) \ 2100 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2101 #define KSM_ATTR(_name) \ 2102 static struct kobj_attribute _name##_attr = \ 2103 __ATTR(_name, 0644, _name##_show, _name##_store) 2104 2105 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2106 struct kobj_attribute *attr, char *buf) 2107 { 2108 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2109 } 2110 2111 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2112 struct kobj_attribute *attr, 2113 const char *buf, size_t count) 2114 { 2115 unsigned long msecs; 2116 int err; 2117 2118 err = kstrtoul(buf, 10, &msecs); 2119 if (err || msecs > UINT_MAX) 2120 return -EINVAL; 2121 2122 ksm_thread_sleep_millisecs = msecs; 2123 2124 return count; 2125 } 2126 KSM_ATTR(sleep_millisecs); 2127 2128 static ssize_t pages_to_scan_show(struct kobject *kobj, 2129 struct kobj_attribute *attr, char *buf) 2130 { 2131 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2132 } 2133 2134 static ssize_t pages_to_scan_store(struct kobject *kobj, 2135 struct kobj_attribute *attr, 2136 const char *buf, size_t count) 2137 { 2138 int err; 2139 unsigned long nr_pages; 2140 2141 err = kstrtoul(buf, 10, &nr_pages); 2142 if (err || nr_pages > UINT_MAX) 2143 return -EINVAL; 2144 2145 ksm_thread_pages_to_scan = nr_pages; 2146 2147 return count; 2148 } 2149 KSM_ATTR(pages_to_scan); 2150 2151 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2152 char *buf) 2153 { 2154 return sprintf(buf, "%lu\n", ksm_run); 2155 } 2156 2157 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2158 const char *buf, size_t count) 2159 { 2160 int err; 2161 unsigned long flags; 2162 2163 err = kstrtoul(buf, 10, &flags); 2164 if (err || flags > UINT_MAX) 2165 return -EINVAL; 2166 if (flags > KSM_RUN_UNMERGE) 2167 return -EINVAL; 2168 2169 /* 2170 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2171 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2172 * breaking COW to free the pages_shared (but leaves mm_slots 2173 * on the list for when ksmd may be set running again). 2174 */ 2175 2176 mutex_lock(&ksm_thread_mutex); 2177 wait_while_offlining(); 2178 if (ksm_run != flags) { 2179 ksm_run = flags; 2180 if (flags & KSM_RUN_UNMERGE) { 2181 set_current_oom_origin(); 2182 err = unmerge_and_remove_all_rmap_items(); 2183 clear_current_oom_origin(); 2184 if (err) { 2185 ksm_run = KSM_RUN_STOP; 2186 count = err; 2187 } 2188 } 2189 } 2190 mutex_unlock(&ksm_thread_mutex); 2191 2192 if (flags & KSM_RUN_MERGE) 2193 wake_up_interruptible(&ksm_thread_wait); 2194 2195 return count; 2196 } 2197 KSM_ATTR(run); 2198 2199 #ifdef CONFIG_NUMA 2200 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2201 struct kobj_attribute *attr, char *buf) 2202 { 2203 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2204 } 2205 2206 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2207 struct kobj_attribute *attr, 2208 const char *buf, size_t count) 2209 { 2210 int err; 2211 unsigned long knob; 2212 2213 err = kstrtoul(buf, 10, &knob); 2214 if (err) 2215 return err; 2216 if (knob > 1) 2217 return -EINVAL; 2218 2219 mutex_lock(&ksm_thread_mutex); 2220 wait_while_offlining(); 2221 if (ksm_merge_across_nodes != knob) { 2222 if (ksm_pages_shared || remove_all_stable_nodes()) 2223 err = -EBUSY; 2224 else if (root_stable_tree == one_stable_tree) { 2225 struct rb_root *buf; 2226 /* 2227 * This is the first time that we switch away from the 2228 * default of merging across nodes: must now allocate 2229 * a buffer to hold as many roots as may be needed. 2230 * Allocate stable and unstable together: 2231 * MAXSMP NODES_SHIFT 10 will use 16kB. 2232 */ 2233 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2234 GFP_KERNEL); 2235 /* Let us assume that RB_ROOT is NULL is zero */ 2236 if (!buf) 2237 err = -ENOMEM; 2238 else { 2239 root_stable_tree = buf; 2240 root_unstable_tree = buf + nr_node_ids; 2241 /* Stable tree is empty but not the unstable */ 2242 root_unstable_tree[0] = one_unstable_tree[0]; 2243 } 2244 } 2245 if (!err) { 2246 ksm_merge_across_nodes = knob; 2247 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2248 } 2249 } 2250 mutex_unlock(&ksm_thread_mutex); 2251 2252 return err ? err : count; 2253 } 2254 KSM_ATTR(merge_across_nodes); 2255 #endif 2256 2257 static ssize_t pages_shared_show(struct kobject *kobj, 2258 struct kobj_attribute *attr, char *buf) 2259 { 2260 return sprintf(buf, "%lu\n", ksm_pages_shared); 2261 } 2262 KSM_ATTR_RO(pages_shared); 2263 2264 static ssize_t pages_sharing_show(struct kobject *kobj, 2265 struct kobj_attribute *attr, char *buf) 2266 { 2267 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2268 } 2269 KSM_ATTR_RO(pages_sharing); 2270 2271 static ssize_t pages_unshared_show(struct kobject *kobj, 2272 struct kobj_attribute *attr, char *buf) 2273 { 2274 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2275 } 2276 KSM_ATTR_RO(pages_unshared); 2277 2278 static ssize_t pages_volatile_show(struct kobject *kobj, 2279 struct kobj_attribute *attr, char *buf) 2280 { 2281 long ksm_pages_volatile; 2282 2283 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2284 - ksm_pages_sharing - ksm_pages_unshared; 2285 /* 2286 * It was not worth any locking to calculate that statistic, 2287 * but it might therefore sometimes be negative: conceal that. 2288 */ 2289 if (ksm_pages_volatile < 0) 2290 ksm_pages_volatile = 0; 2291 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2292 } 2293 KSM_ATTR_RO(pages_volatile); 2294 2295 static ssize_t full_scans_show(struct kobject *kobj, 2296 struct kobj_attribute *attr, char *buf) 2297 { 2298 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 2299 } 2300 KSM_ATTR_RO(full_scans); 2301 2302 static struct attribute *ksm_attrs[] = { 2303 &sleep_millisecs_attr.attr, 2304 &pages_to_scan_attr.attr, 2305 &run_attr.attr, 2306 &pages_shared_attr.attr, 2307 &pages_sharing_attr.attr, 2308 &pages_unshared_attr.attr, 2309 &pages_volatile_attr.attr, 2310 &full_scans_attr.attr, 2311 #ifdef CONFIG_NUMA 2312 &merge_across_nodes_attr.attr, 2313 #endif 2314 NULL, 2315 }; 2316 2317 static struct attribute_group ksm_attr_group = { 2318 .attrs = ksm_attrs, 2319 .name = "ksm", 2320 }; 2321 #endif /* CONFIG_SYSFS */ 2322 2323 static int __init ksm_init(void) 2324 { 2325 struct task_struct *ksm_thread; 2326 int err; 2327 2328 err = ksm_slab_init(); 2329 if (err) 2330 goto out; 2331 2332 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 2333 if (IS_ERR(ksm_thread)) { 2334 pr_err("ksm: creating kthread failed\n"); 2335 err = PTR_ERR(ksm_thread); 2336 goto out_free; 2337 } 2338 2339 #ifdef CONFIG_SYSFS 2340 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 2341 if (err) { 2342 pr_err("ksm: register sysfs failed\n"); 2343 kthread_stop(ksm_thread); 2344 goto out_free; 2345 } 2346 #else 2347 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2348 2349 #endif /* CONFIG_SYSFS */ 2350 2351 #ifdef CONFIG_MEMORY_HOTREMOVE 2352 /* There is no significance to this priority 100 */ 2353 hotplug_memory_notifier(ksm_memory_callback, 100); 2354 #endif 2355 return 0; 2356 2357 out_free: 2358 ksm_slab_free(); 2359 out: 2360 return err; 2361 } 2362 subsys_initcall(ksm_init); 2363