1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/jhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same :c:type:`struct stable_node` structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) 220 /* to mask all the flags */ 221 222 /* The stable and unstable tree heads */ 223 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 224 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 225 static struct rb_root *root_stable_tree = one_stable_tree; 226 static struct rb_root *root_unstable_tree = one_unstable_tree; 227 228 /* Recently migrated nodes of stable tree, pending proper placement */ 229 static LIST_HEAD(migrate_nodes); 230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 231 232 #define MM_SLOTS_HASH_BITS 10 233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 234 235 static struct mm_slot ksm_mm_head = { 236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 237 }; 238 static struct ksm_scan ksm_scan = { 239 .mm_slot = &ksm_mm_head, 240 }; 241 242 static struct kmem_cache *rmap_item_cache; 243 static struct kmem_cache *stable_node_cache; 244 static struct kmem_cache *mm_slot_cache; 245 246 /* The number of nodes in the stable tree */ 247 static unsigned long ksm_pages_shared; 248 249 /* The number of page slots additionally sharing those nodes */ 250 static unsigned long ksm_pages_sharing; 251 252 /* The number of nodes in the unstable tree */ 253 static unsigned long ksm_pages_unshared; 254 255 /* The number of rmap_items in use: to calculate pages_volatile */ 256 static unsigned long ksm_rmap_items; 257 258 /* The number of stable_node chains */ 259 static unsigned long ksm_stable_node_chains; 260 261 /* The number of stable_node dups linked to the stable_node chains */ 262 static unsigned long ksm_stable_node_dups; 263 264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 265 static int ksm_stable_node_chains_prune_millisecs = 2000; 266 267 /* Maximum number of page slots sharing a stable node */ 268 static int ksm_max_page_sharing = 256; 269 270 /* Number of pages ksmd should scan in one batch */ 271 static unsigned int ksm_thread_pages_to_scan = 100; 272 273 /* Milliseconds ksmd should sleep between batches */ 274 static unsigned int ksm_thread_sleep_millisecs = 20; 275 276 /* Checksum of an empty (zeroed) page */ 277 static unsigned int zero_checksum __read_mostly; 278 279 /* Whether to merge empty (zeroed) pages with actual zero pages */ 280 static bool ksm_use_zero_pages __read_mostly; 281 282 #ifdef CONFIG_NUMA 283 /* Zeroed when merging across nodes is not allowed */ 284 static unsigned int ksm_merge_across_nodes = 1; 285 static int ksm_nr_node_ids = 1; 286 #else 287 #define ksm_merge_across_nodes 1U 288 #define ksm_nr_node_ids 1 289 #endif 290 291 #define KSM_RUN_STOP 0 292 #define KSM_RUN_MERGE 1 293 #define KSM_RUN_UNMERGE 2 294 #define KSM_RUN_OFFLINE 4 295 static unsigned long ksm_run = KSM_RUN_STOP; 296 static void wait_while_offlining(void); 297 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 299 static DEFINE_MUTEX(ksm_thread_mutex); 300 static DEFINE_SPINLOCK(ksm_mmlist_lock); 301 302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 303 sizeof(struct __struct), __alignof__(struct __struct),\ 304 (__flags), NULL) 305 306 static int __init ksm_slab_init(void) 307 { 308 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 309 if (!rmap_item_cache) 310 goto out; 311 312 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 313 if (!stable_node_cache) 314 goto out_free1; 315 316 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 317 if (!mm_slot_cache) 318 goto out_free2; 319 320 return 0; 321 322 out_free2: 323 kmem_cache_destroy(stable_node_cache); 324 out_free1: 325 kmem_cache_destroy(rmap_item_cache); 326 out: 327 return -ENOMEM; 328 } 329 330 static void __init ksm_slab_free(void) 331 { 332 kmem_cache_destroy(mm_slot_cache); 333 kmem_cache_destroy(stable_node_cache); 334 kmem_cache_destroy(rmap_item_cache); 335 mm_slot_cache = NULL; 336 } 337 338 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 339 { 340 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 341 } 342 343 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 344 { 345 return dup->head == STABLE_NODE_DUP_HEAD; 346 } 347 348 static inline void stable_node_chain_add_dup(struct stable_node *dup, 349 struct stable_node *chain) 350 { 351 VM_BUG_ON(is_stable_node_dup(dup)); 352 dup->head = STABLE_NODE_DUP_HEAD; 353 VM_BUG_ON(!is_stable_node_chain(chain)); 354 hlist_add_head(&dup->hlist_dup, &chain->hlist); 355 ksm_stable_node_dups++; 356 } 357 358 static inline void __stable_node_dup_del(struct stable_node *dup) 359 { 360 VM_BUG_ON(!is_stable_node_dup(dup)); 361 hlist_del(&dup->hlist_dup); 362 ksm_stable_node_dups--; 363 } 364 365 static inline void stable_node_dup_del(struct stable_node *dup) 366 { 367 VM_BUG_ON(is_stable_node_chain(dup)); 368 if (is_stable_node_dup(dup)) 369 __stable_node_dup_del(dup); 370 else 371 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 372 #ifdef CONFIG_DEBUG_VM 373 dup->head = NULL; 374 #endif 375 } 376 377 static inline struct rmap_item *alloc_rmap_item(void) 378 { 379 struct rmap_item *rmap_item; 380 381 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 382 __GFP_NORETRY | __GFP_NOWARN); 383 if (rmap_item) 384 ksm_rmap_items++; 385 return rmap_item; 386 } 387 388 static inline void free_rmap_item(struct rmap_item *rmap_item) 389 { 390 ksm_rmap_items--; 391 rmap_item->mm = NULL; /* debug safety */ 392 kmem_cache_free(rmap_item_cache, rmap_item); 393 } 394 395 static inline struct stable_node *alloc_stable_node(void) 396 { 397 /* 398 * The allocation can take too long with GFP_KERNEL when memory is under 399 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 400 * grants access to memory reserves, helping to avoid this problem. 401 */ 402 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 403 } 404 405 static inline void free_stable_node(struct stable_node *stable_node) 406 { 407 VM_BUG_ON(stable_node->rmap_hlist_len && 408 !is_stable_node_chain(stable_node)); 409 kmem_cache_free(stable_node_cache, stable_node); 410 } 411 412 static inline struct mm_slot *alloc_mm_slot(void) 413 { 414 if (!mm_slot_cache) /* initialization failed */ 415 return NULL; 416 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 417 } 418 419 static inline void free_mm_slot(struct mm_slot *mm_slot) 420 { 421 kmem_cache_free(mm_slot_cache, mm_slot); 422 } 423 424 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 425 { 426 struct mm_slot *slot; 427 428 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 429 if (slot->mm == mm) 430 return slot; 431 432 return NULL; 433 } 434 435 static void insert_to_mm_slots_hash(struct mm_struct *mm, 436 struct mm_slot *mm_slot) 437 { 438 mm_slot->mm = mm; 439 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 440 } 441 442 /* 443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 444 * page tables after it has passed through ksm_exit() - which, if necessary, 445 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 446 * a special flag: they can just back out as soon as mm_users goes to zero. 447 * ksm_test_exit() is used throughout to make this test for exit: in some 448 * places for correctness, in some places just to avoid unnecessary work. 449 */ 450 static inline bool ksm_test_exit(struct mm_struct *mm) 451 { 452 return atomic_read(&mm->mm_users) == 0; 453 } 454 455 /* 456 * We use break_ksm to break COW on a ksm page: it's a stripped down 457 * 458 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 459 * put_page(page); 460 * 461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 462 * in case the application has unmapped and remapped mm,addr meanwhile. 463 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 465 * 466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 467 * of the process that owns 'vma'. We also do not want to enforce 468 * protection keys here anyway. 469 */ 470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 471 { 472 struct page *page; 473 vm_fault_t ret = 0; 474 475 do { 476 cond_resched(); 477 page = follow_page(vma, addr, 478 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 479 if (IS_ERR_OR_NULL(page)) 480 break; 481 if (PageKsm(page)) 482 ret = handle_mm_fault(vma, addr, 483 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 484 else 485 ret = VM_FAULT_WRITE; 486 put_page(page); 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 488 /* 489 * We must loop because handle_mm_fault() may back out if there's 490 * any difficulty e.g. if pte accessed bit gets updated concurrently. 491 * 492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 493 * COW has been broken, even if the vma does not permit VM_WRITE; 494 * but note that a concurrent fault might break PageKsm for us. 495 * 496 * VM_FAULT_SIGBUS could occur if we race with truncation of the 497 * backing file, which also invalidates anonymous pages: that's 498 * okay, that truncation will have unmapped the PageKsm for us. 499 * 500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 502 * current task has TIF_MEMDIE set, and will be OOM killed on return 503 * to user; and ksmd, having no mm, would never be chosen for that. 504 * 505 * But if the mm is in a limited mem_cgroup, then the fault may fail 506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 507 * even ksmd can fail in this way - though it's usually breaking ksm 508 * just to undo a merge it made a moment before, so unlikely to oom. 509 * 510 * That's a pity: we might therefore have more kernel pages allocated 511 * than we're counting as nodes in the stable tree; but ksm_do_scan 512 * will retry to break_cow on each pass, so should recover the page 513 * in due course. The important thing is to not let VM_MERGEABLE 514 * be cleared while any such pages might remain in the area. 515 */ 516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 517 } 518 519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 520 unsigned long addr) 521 { 522 struct vm_area_struct *vma; 523 if (ksm_test_exit(mm)) 524 return NULL; 525 vma = find_vma(mm, addr); 526 if (!vma || vma->vm_start > addr) 527 return NULL; 528 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 529 return NULL; 530 return vma; 531 } 532 533 static void break_cow(struct rmap_item *rmap_item) 534 { 535 struct mm_struct *mm = rmap_item->mm; 536 unsigned long addr = rmap_item->address; 537 struct vm_area_struct *vma; 538 539 /* 540 * It is not an accident that whenever we want to break COW 541 * to undo, we also need to drop a reference to the anon_vma. 542 */ 543 put_anon_vma(rmap_item->anon_vma); 544 545 down_read(&mm->mmap_sem); 546 vma = find_mergeable_vma(mm, addr); 547 if (vma) 548 break_ksm(vma, addr); 549 up_read(&mm->mmap_sem); 550 } 551 552 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 553 { 554 struct mm_struct *mm = rmap_item->mm; 555 unsigned long addr = rmap_item->address; 556 struct vm_area_struct *vma; 557 struct page *page; 558 559 down_read(&mm->mmap_sem); 560 vma = find_mergeable_vma(mm, addr); 561 if (!vma) 562 goto out; 563 564 page = follow_page(vma, addr, FOLL_GET); 565 if (IS_ERR_OR_NULL(page)) 566 goto out; 567 if (PageAnon(page)) { 568 flush_anon_page(vma, page, addr); 569 flush_dcache_page(page); 570 } else { 571 put_page(page); 572 out: 573 page = NULL; 574 } 575 up_read(&mm->mmap_sem); 576 return page; 577 } 578 579 /* 580 * This helper is used for getting right index into array of tree roots. 581 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 582 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 583 * every node has its own stable and unstable tree. 584 */ 585 static inline int get_kpfn_nid(unsigned long kpfn) 586 { 587 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 588 } 589 590 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 591 struct rb_root *root) 592 { 593 struct stable_node *chain = alloc_stable_node(); 594 VM_BUG_ON(is_stable_node_chain(dup)); 595 if (likely(chain)) { 596 INIT_HLIST_HEAD(&chain->hlist); 597 chain->chain_prune_time = jiffies; 598 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 599 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 600 chain->nid = -1; /* debug */ 601 #endif 602 ksm_stable_node_chains++; 603 604 /* 605 * Put the stable node chain in the first dimension of 606 * the stable tree and at the same time remove the old 607 * stable node. 608 */ 609 rb_replace_node(&dup->node, &chain->node, root); 610 611 /* 612 * Move the old stable node to the second dimension 613 * queued in the hlist_dup. The invariant is that all 614 * dup stable_nodes in the chain->hlist point to pages 615 * that are wrprotected and have the exact same 616 * content. 617 */ 618 stable_node_chain_add_dup(dup, chain); 619 } 620 return chain; 621 } 622 623 static inline void free_stable_node_chain(struct stable_node *chain, 624 struct rb_root *root) 625 { 626 rb_erase(&chain->node, root); 627 free_stable_node(chain); 628 ksm_stable_node_chains--; 629 } 630 631 static void remove_node_from_stable_tree(struct stable_node *stable_node) 632 { 633 struct rmap_item *rmap_item; 634 635 /* check it's not STABLE_NODE_CHAIN or negative */ 636 BUG_ON(stable_node->rmap_hlist_len < 0); 637 638 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 639 if (rmap_item->hlist.next) 640 ksm_pages_sharing--; 641 else 642 ksm_pages_shared--; 643 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 644 stable_node->rmap_hlist_len--; 645 put_anon_vma(rmap_item->anon_vma); 646 rmap_item->address &= PAGE_MASK; 647 cond_resched(); 648 } 649 650 /* 651 * We need the second aligned pointer of the migrate_nodes 652 * list_head to stay clear from the rb_parent_color union 653 * (aligned and different than any node) and also different 654 * from &migrate_nodes. This will verify that future list.h changes 655 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 656 */ 657 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 660 #endif 661 662 if (stable_node->head == &migrate_nodes) 663 list_del(&stable_node->list); 664 else 665 stable_node_dup_del(stable_node); 666 free_stable_node(stable_node); 667 } 668 669 /* 670 * get_ksm_page: checks if the page indicated by the stable node 671 * is still its ksm page, despite having held no reference to it. 672 * In which case we can trust the content of the page, and it 673 * returns the gotten page; but if the page has now been zapped, 674 * remove the stale node from the stable tree and return NULL. 675 * But beware, the stable node's page might be being migrated. 676 * 677 * You would expect the stable_node to hold a reference to the ksm page. 678 * But if it increments the page's count, swapping out has to wait for 679 * ksmd to come around again before it can free the page, which may take 680 * seconds or even minutes: much too unresponsive. So instead we use a 681 * "keyhole reference": access to the ksm page from the stable node peeps 682 * out through its keyhole to see if that page still holds the right key, 683 * pointing back to this stable node. This relies on freeing a PageAnon 684 * page to reset its page->mapping to NULL, and relies on no other use of 685 * a page to put something that might look like our key in page->mapping. 686 * is on its way to being freed; but it is an anomaly to bear in mind. 687 */ 688 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 689 { 690 struct page *page; 691 void *expected_mapping; 692 unsigned long kpfn; 693 694 expected_mapping = (void *)((unsigned long)stable_node | 695 PAGE_MAPPING_KSM); 696 again: 697 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 698 page = pfn_to_page(kpfn); 699 if (READ_ONCE(page->mapping) != expected_mapping) 700 goto stale; 701 702 /* 703 * We cannot do anything with the page while its refcount is 0. 704 * Usually 0 means free, or tail of a higher-order page: in which 705 * case this node is no longer referenced, and should be freed; 706 * however, it might mean that the page is under page_ref_freeze(). 707 * The __remove_mapping() case is easy, again the node is now stale; 708 * but if page is swapcache in migrate_page_move_mapping(), it might 709 * still be our page, in which case it's essential to keep the node. 710 */ 711 while (!get_page_unless_zero(page)) { 712 /* 713 * Another check for page->mapping != expected_mapping would 714 * work here too. We have chosen the !PageSwapCache test to 715 * optimize the common case, when the page is or is about to 716 * be freed: PageSwapCache is cleared (under spin_lock_irq) 717 * in the ref_freeze section of __remove_mapping(); but Anon 718 * page->mapping reset to NULL later, in free_pages_prepare(). 719 */ 720 if (!PageSwapCache(page)) 721 goto stale; 722 cpu_relax(); 723 } 724 725 if (READ_ONCE(page->mapping) != expected_mapping) { 726 put_page(page); 727 goto stale; 728 } 729 730 if (lock_it) { 731 lock_page(page); 732 if (READ_ONCE(page->mapping) != expected_mapping) { 733 unlock_page(page); 734 put_page(page); 735 goto stale; 736 } 737 } 738 return page; 739 740 stale: 741 /* 742 * We come here from above when page->mapping or !PageSwapCache 743 * suggests that the node is stale; but it might be under migration. 744 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 745 * before checking whether node->kpfn has been changed. 746 */ 747 smp_rmb(); 748 if (READ_ONCE(stable_node->kpfn) != kpfn) 749 goto again; 750 remove_node_from_stable_tree(stable_node); 751 return NULL; 752 } 753 754 /* 755 * Removing rmap_item from stable or unstable tree. 756 * This function will clean the information from the stable/unstable tree. 757 */ 758 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 759 { 760 if (rmap_item->address & STABLE_FLAG) { 761 struct stable_node *stable_node; 762 struct page *page; 763 764 stable_node = rmap_item->head; 765 page = get_ksm_page(stable_node, true); 766 if (!page) 767 goto out; 768 769 hlist_del(&rmap_item->hlist); 770 unlock_page(page); 771 put_page(page); 772 773 if (!hlist_empty(&stable_node->hlist)) 774 ksm_pages_sharing--; 775 else 776 ksm_pages_shared--; 777 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 778 stable_node->rmap_hlist_len--; 779 780 put_anon_vma(rmap_item->anon_vma); 781 rmap_item->address &= PAGE_MASK; 782 783 } else if (rmap_item->address & UNSTABLE_FLAG) { 784 unsigned char age; 785 /* 786 * Usually ksmd can and must skip the rb_erase, because 787 * root_unstable_tree was already reset to RB_ROOT. 788 * But be careful when an mm is exiting: do the rb_erase 789 * if this rmap_item was inserted by this scan, rather 790 * than left over from before. 791 */ 792 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 793 BUG_ON(age > 1); 794 if (!age) 795 rb_erase(&rmap_item->node, 796 root_unstable_tree + NUMA(rmap_item->nid)); 797 ksm_pages_unshared--; 798 rmap_item->address &= PAGE_MASK; 799 } 800 out: 801 cond_resched(); /* we're called from many long loops */ 802 } 803 804 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 805 struct rmap_item **rmap_list) 806 { 807 while (*rmap_list) { 808 struct rmap_item *rmap_item = *rmap_list; 809 *rmap_list = rmap_item->rmap_list; 810 remove_rmap_item_from_tree(rmap_item); 811 free_rmap_item(rmap_item); 812 } 813 } 814 815 /* 816 * Though it's very tempting to unmerge rmap_items from stable tree rather 817 * than check every pte of a given vma, the locking doesn't quite work for 818 * that - an rmap_item is assigned to the stable tree after inserting ksm 819 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 820 * rmap_items from parent to child at fork time (so as not to waste time 821 * if exit comes before the next scan reaches it). 822 * 823 * Similarly, although we'd like to remove rmap_items (so updating counts 824 * and freeing memory) when unmerging an area, it's easier to leave that 825 * to the next pass of ksmd - consider, for example, how ksmd might be 826 * in cmp_and_merge_page on one of the rmap_items we would be removing. 827 */ 828 static int unmerge_ksm_pages(struct vm_area_struct *vma, 829 unsigned long start, unsigned long end) 830 { 831 unsigned long addr; 832 int err = 0; 833 834 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 835 if (ksm_test_exit(vma->vm_mm)) 836 break; 837 if (signal_pending(current)) 838 err = -ERESTARTSYS; 839 else 840 err = break_ksm(vma, addr); 841 } 842 return err; 843 } 844 845 static inline struct stable_node *page_stable_node(struct page *page) 846 { 847 return PageKsm(page) ? page_rmapping(page) : NULL; 848 } 849 850 static inline void set_page_stable_node(struct page *page, 851 struct stable_node *stable_node) 852 { 853 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 854 } 855 856 #ifdef CONFIG_SYSFS 857 /* 858 * Only called through the sysfs control interface: 859 */ 860 static int remove_stable_node(struct stable_node *stable_node) 861 { 862 struct page *page; 863 int err; 864 865 page = get_ksm_page(stable_node, true); 866 if (!page) { 867 /* 868 * get_ksm_page did remove_node_from_stable_tree itself. 869 */ 870 return 0; 871 } 872 873 if (WARN_ON_ONCE(page_mapped(page))) { 874 /* 875 * This should not happen: but if it does, just refuse to let 876 * merge_across_nodes be switched - there is no need to panic. 877 */ 878 err = -EBUSY; 879 } else { 880 /* 881 * The stable node did not yet appear stale to get_ksm_page(), 882 * since that allows for an unmapped ksm page to be recognized 883 * right up until it is freed; but the node is safe to remove. 884 * This page might be in a pagevec waiting to be freed, 885 * or it might be PageSwapCache (perhaps under writeback), 886 * or it might have been removed from swapcache a moment ago. 887 */ 888 set_page_stable_node(page, NULL); 889 remove_node_from_stable_tree(stable_node); 890 err = 0; 891 } 892 893 unlock_page(page); 894 put_page(page); 895 return err; 896 } 897 898 static int remove_stable_node_chain(struct stable_node *stable_node, 899 struct rb_root *root) 900 { 901 struct stable_node *dup; 902 struct hlist_node *hlist_safe; 903 904 if (!is_stable_node_chain(stable_node)) { 905 VM_BUG_ON(is_stable_node_dup(stable_node)); 906 if (remove_stable_node(stable_node)) 907 return true; 908 else 909 return false; 910 } 911 912 hlist_for_each_entry_safe(dup, hlist_safe, 913 &stable_node->hlist, hlist_dup) { 914 VM_BUG_ON(!is_stable_node_dup(dup)); 915 if (remove_stable_node(dup)) 916 return true; 917 } 918 BUG_ON(!hlist_empty(&stable_node->hlist)); 919 free_stable_node_chain(stable_node, root); 920 return false; 921 } 922 923 static int remove_all_stable_nodes(void) 924 { 925 struct stable_node *stable_node, *next; 926 int nid; 927 int err = 0; 928 929 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 930 while (root_stable_tree[nid].rb_node) { 931 stable_node = rb_entry(root_stable_tree[nid].rb_node, 932 struct stable_node, node); 933 if (remove_stable_node_chain(stable_node, 934 root_stable_tree + nid)) { 935 err = -EBUSY; 936 break; /* proceed to next nid */ 937 } 938 cond_resched(); 939 } 940 } 941 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 942 if (remove_stable_node(stable_node)) 943 err = -EBUSY; 944 cond_resched(); 945 } 946 return err; 947 } 948 949 static int unmerge_and_remove_all_rmap_items(void) 950 { 951 struct mm_slot *mm_slot; 952 struct mm_struct *mm; 953 struct vm_area_struct *vma; 954 int err = 0; 955 956 spin_lock(&ksm_mmlist_lock); 957 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 958 struct mm_slot, mm_list); 959 spin_unlock(&ksm_mmlist_lock); 960 961 for (mm_slot = ksm_scan.mm_slot; 962 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 963 mm = mm_slot->mm; 964 down_read(&mm->mmap_sem); 965 for (vma = mm->mmap; vma; vma = vma->vm_next) { 966 if (ksm_test_exit(mm)) 967 break; 968 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 969 continue; 970 err = unmerge_ksm_pages(vma, 971 vma->vm_start, vma->vm_end); 972 if (err) 973 goto error; 974 } 975 976 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 977 up_read(&mm->mmap_sem); 978 979 spin_lock(&ksm_mmlist_lock); 980 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 981 struct mm_slot, mm_list); 982 if (ksm_test_exit(mm)) { 983 hash_del(&mm_slot->link); 984 list_del(&mm_slot->mm_list); 985 spin_unlock(&ksm_mmlist_lock); 986 987 free_mm_slot(mm_slot); 988 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 989 mmdrop(mm); 990 } else 991 spin_unlock(&ksm_mmlist_lock); 992 } 993 994 /* Clean up stable nodes, but don't worry if some are still busy */ 995 remove_all_stable_nodes(); 996 ksm_scan.seqnr = 0; 997 return 0; 998 999 error: 1000 up_read(&mm->mmap_sem); 1001 spin_lock(&ksm_mmlist_lock); 1002 ksm_scan.mm_slot = &ksm_mm_head; 1003 spin_unlock(&ksm_mmlist_lock); 1004 return err; 1005 } 1006 #endif /* CONFIG_SYSFS */ 1007 1008 static u32 calc_checksum(struct page *page) 1009 { 1010 u32 checksum; 1011 void *addr = kmap_atomic(page); 1012 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 1013 kunmap_atomic(addr); 1014 return checksum; 1015 } 1016 1017 static int memcmp_pages(struct page *page1, struct page *page2) 1018 { 1019 char *addr1, *addr2; 1020 int ret; 1021 1022 addr1 = kmap_atomic(page1); 1023 addr2 = kmap_atomic(page2); 1024 ret = memcmp(addr1, addr2, PAGE_SIZE); 1025 kunmap_atomic(addr2); 1026 kunmap_atomic(addr1); 1027 return ret; 1028 } 1029 1030 static inline int pages_identical(struct page *page1, struct page *page2) 1031 { 1032 return !memcmp_pages(page1, page2); 1033 } 1034 1035 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1036 pte_t *orig_pte) 1037 { 1038 struct mm_struct *mm = vma->vm_mm; 1039 struct page_vma_mapped_walk pvmw = { 1040 .page = page, 1041 .vma = vma, 1042 }; 1043 int swapped; 1044 int err = -EFAULT; 1045 unsigned long mmun_start; /* For mmu_notifiers */ 1046 unsigned long mmun_end; /* For mmu_notifiers */ 1047 1048 pvmw.address = page_address_in_vma(page, vma); 1049 if (pvmw.address == -EFAULT) 1050 goto out; 1051 1052 BUG_ON(PageTransCompound(page)); 1053 1054 mmun_start = pvmw.address; 1055 mmun_end = pvmw.address + PAGE_SIZE; 1056 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1057 1058 if (!page_vma_mapped_walk(&pvmw)) 1059 goto out_mn; 1060 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1061 goto out_unlock; 1062 1063 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1064 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1065 mm_tlb_flush_pending(mm)) { 1066 pte_t entry; 1067 1068 swapped = PageSwapCache(page); 1069 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1070 /* 1071 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1072 * take any lock, therefore the check that we are going to make 1073 * with the pagecount against the mapcount is racey and 1074 * O_DIRECT can happen right after the check. 1075 * So we clear the pte and flush the tlb before the check 1076 * this assure us that no O_DIRECT can happen after the check 1077 * or in the middle of the check. 1078 * 1079 * No need to notify as we are downgrading page table to read 1080 * only not changing it to point to a new page. 1081 * 1082 * See Documentation/vm/mmu_notifier.rst 1083 */ 1084 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1085 /* 1086 * Check that no O_DIRECT or similar I/O is in progress on the 1087 * page 1088 */ 1089 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1090 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1091 goto out_unlock; 1092 } 1093 if (pte_dirty(entry)) 1094 set_page_dirty(page); 1095 1096 if (pte_protnone(entry)) 1097 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1098 else 1099 entry = pte_mkclean(pte_wrprotect(entry)); 1100 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1101 } 1102 *orig_pte = *pvmw.pte; 1103 err = 0; 1104 1105 out_unlock: 1106 page_vma_mapped_walk_done(&pvmw); 1107 out_mn: 1108 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1109 out: 1110 return err; 1111 } 1112 1113 /** 1114 * replace_page - replace page in vma by new ksm page 1115 * @vma: vma that holds the pte pointing to page 1116 * @page: the page we are replacing by kpage 1117 * @kpage: the ksm page we replace page by 1118 * @orig_pte: the original value of the pte 1119 * 1120 * Returns 0 on success, -EFAULT on failure. 1121 */ 1122 static int replace_page(struct vm_area_struct *vma, struct page *page, 1123 struct page *kpage, pte_t orig_pte) 1124 { 1125 struct mm_struct *mm = vma->vm_mm; 1126 pmd_t *pmd; 1127 pte_t *ptep; 1128 pte_t newpte; 1129 spinlock_t *ptl; 1130 unsigned long addr; 1131 int err = -EFAULT; 1132 unsigned long mmun_start; /* For mmu_notifiers */ 1133 unsigned long mmun_end; /* For mmu_notifiers */ 1134 1135 addr = page_address_in_vma(page, vma); 1136 if (addr == -EFAULT) 1137 goto out; 1138 1139 pmd = mm_find_pmd(mm, addr); 1140 if (!pmd) 1141 goto out; 1142 1143 mmun_start = addr; 1144 mmun_end = addr + PAGE_SIZE; 1145 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1146 1147 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1148 if (!pte_same(*ptep, orig_pte)) { 1149 pte_unmap_unlock(ptep, ptl); 1150 goto out_mn; 1151 } 1152 1153 /* 1154 * No need to check ksm_use_zero_pages here: we can only have a 1155 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1156 */ 1157 if (!is_zero_pfn(page_to_pfn(kpage))) { 1158 get_page(kpage); 1159 page_add_anon_rmap(kpage, vma, addr, false); 1160 newpte = mk_pte(kpage, vma->vm_page_prot); 1161 } else { 1162 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1163 vma->vm_page_prot)); 1164 /* 1165 * We're replacing an anonymous page with a zero page, which is 1166 * not anonymous. We need to do proper accounting otherwise we 1167 * will get wrong values in /proc, and a BUG message in dmesg 1168 * when tearing down the mm. 1169 */ 1170 dec_mm_counter(mm, MM_ANONPAGES); 1171 } 1172 1173 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1174 /* 1175 * No need to notify as we are replacing a read only page with another 1176 * read only page with the same content. 1177 * 1178 * See Documentation/vm/mmu_notifier.rst 1179 */ 1180 ptep_clear_flush(vma, addr, ptep); 1181 set_pte_at_notify(mm, addr, ptep, newpte); 1182 1183 page_remove_rmap(page, false); 1184 if (!page_mapped(page)) 1185 try_to_free_swap(page); 1186 put_page(page); 1187 1188 pte_unmap_unlock(ptep, ptl); 1189 err = 0; 1190 out_mn: 1191 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1192 out: 1193 return err; 1194 } 1195 1196 /* 1197 * try_to_merge_one_page - take two pages and merge them into one 1198 * @vma: the vma that holds the pte pointing to page 1199 * @page: the PageAnon page that we want to replace with kpage 1200 * @kpage: the PageKsm page that we want to map instead of page, 1201 * or NULL the first time when we want to use page as kpage. 1202 * 1203 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1204 */ 1205 static int try_to_merge_one_page(struct vm_area_struct *vma, 1206 struct page *page, struct page *kpage) 1207 { 1208 pte_t orig_pte = __pte(0); 1209 int err = -EFAULT; 1210 1211 if (page == kpage) /* ksm page forked */ 1212 return 0; 1213 1214 if (!PageAnon(page)) 1215 goto out; 1216 1217 /* 1218 * We need the page lock to read a stable PageSwapCache in 1219 * write_protect_page(). We use trylock_page() instead of 1220 * lock_page() because we don't want to wait here - we 1221 * prefer to continue scanning and merging different pages, 1222 * then come back to this page when it is unlocked. 1223 */ 1224 if (!trylock_page(page)) 1225 goto out; 1226 1227 if (PageTransCompound(page)) { 1228 if (split_huge_page(page)) 1229 goto out_unlock; 1230 } 1231 1232 /* 1233 * If this anonymous page is mapped only here, its pte may need 1234 * to be write-protected. If it's mapped elsewhere, all of its 1235 * ptes are necessarily already write-protected. But in either 1236 * case, we need to lock and check page_count is not raised. 1237 */ 1238 if (write_protect_page(vma, page, &orig_pte) == 0) { 1239 if (!kpage) { 1240 /* 1241 * While we hold page lock, upgrade page from 1242 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1243 * stable_tree_insert() will update stable_node. 1244 */ 1245 set_page_stable_node(page, NULL); 1246 mark_page_accessed(page); 1247 /* 1248 * Page reclaim just frees a clean page with no dirty 1249 * ptes: make sure that the ksm page would be swapped. 1250 */ 1251 if (!PageDirty(page)) 1252 SetPageDirty(page); 1253 err = 0; 1254 } else if (pages_identical(page, kpage)) 1255 err = replace_page(vma, page, kpage, orig_pte); 1256 } 1257 1258 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1259 munlock_vma_page(page); 1260 if (!PageMlocked(kpage)) { 1261 unlock_page(page); 1262 lock_page(kpage); 1263 mlock_vma_page(kpage); 1264 page = kpage; /* for final unlock */ 1265 } 1266 } 1267 1268 out_unlock: 1269 unlock_page(page); 1270 out: 1271 return err; 1272 } 1273 1274 /* 1275 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1276 * but no new kernel page is allocated: kpage must already be a ksm page. 1277 * 1278 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1279 */ 1280 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1281 struct page *page, struct page *kpage) 1282 { 1283 struct mm_struct *mm = rmap_item->mm; 1284 struct vm_area_struct *vma; 1285 int err = -EFAULT; 1286 1287 down_read(&mm->mmap_sem); 1288 vma = find_mergeable_vma(mm, rmap_item->address); 1289 if (!vma) 1290 goto out; 1291 1292 err = try_to_merge_one_page(vma, page, kpage); 1293 if (err) 1294 goto out; 1295 1296 /* Unstable nid is in union with stable anon_vma: remove first */ 1297 remove_rmap_item_from_tree(rmap_item); 1298 1299 /* Must get reference to anon_vma while still holding mmap_sem */ 1300 rmap_item->anon_vma = vma->anon_vma; 1301 get_anon_vma(vma->anon_vma); 1302 out: 1303 up_read(&mm->mmap_sem); 1304 return err; 1305 } 1306 1307 /* 1308 * try_to_merge_two_pages - take two identical pages and prepare them 1309 * to be merged into one page. 1310 * 1311 * This function returns the kpage if we successfully merged two identical 1312 * pages into one ksm page, NULL otherwise. 1313 * 1314 * Note that this function upgrades page to ksm page: if one of the pages 1315 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1316 */ 1317 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1318 struct page *page, 1319 struct rmap_item *tree_rmap_item, 1320 struct page *tree_page) 1321 { 1322 int err; 1323 1324 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1325 if (!err) { 1326 err = try_to_merge_with_ksm_page(tree_rmap_item, 1327 tree_page, page); 1328 /* 1329 * If that fails, we have a ksm page with only one pte 1330 * pointing to it: so break it. 1331 */ 1332 if (err) 1333 break_cow(rmap_item); 1334 } 1335 return err ? NULL : page; 1336 } 1337 1338 static __always_inline 1339 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1340 { 1341 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1342 /* 1343 * Check that at least one mapping still exists, otherwise 1344 * there's no much point to merge and share with this 1345 * stable_node, as the underlying tree_page of the other 1346 * sharer is going to be freed soon. 1347 */ 1348 return stable_node->rmap_hlist_len && 1349 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1350 } 1351 1352 static __always_inline 1353 bool is_page_sharing_candidate(struct stable_node *stable_node) 1354 { 1355 return __is_page_sharing_candidate(stable_node, 0); 1356 } 1357 1358 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1359 struct stable_node **_stable_node, 1360 struct rb_root *root, 1361 bool prune_stale_stable_nodes) 1362 { 1363 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1364 struct hlist_node *hlist_safe; 1365 struct page *_tree_page, *tree_page = NULL; 1366 int nr = 0; 1367 int found_rmap_hlist_len; 1368 1369 if (!prune_stale_stable_nodes || 1370 time_before(jiffies, stable_node->chain_prune_time + 1371 msecs_to_jiffies( 1372 ksm_stable_node_chains_prune_millisecs))) 1373 prune_stale_stable_nodes = false; 1374 else 1375 stable_node->chain_prune_time = jiffies; 1376 1377 hlist_for_each_entry_safe(dup, hlist_safe, 1378 &stable_node->hlist, hlist_dup) { 1379 cond_resched(); 1380 /* 1381 * We must walk all stable_node_dup to prune the stale 1382 * stable nodes during lookup. 1383 * 1384 * get_ksm_page can drop the nodes from the 1385 * stable_node->hlist if they point to freed pages 1386 * (that's why we do a _safe walk). The "dup" 1387 * stable_node parameter itself will be freed from 1388 * under us if it returns NULL. 1389 */ 1390 _tree_page = get_ksm_page(dup, false); 1391 if (!_tree_page) 1392 continue; 1393 nr += 1; 1394 if (is_page_sharing_candidate(dup)) { 1395 if (!found || 1396 dup->rmap_hlist_len > found_rmap_hlist_len) { 1397 if (found) 1398 put_page(tree_page); 1399 found = dup; 1400 found_rmap_hlist_len = found->rmap_hlist_len; 1401 tree_page = _tree_page; 1402 1403 /* skip put_page for found dup */ 1404 if (!prune_stale_stable_nodes) 1405 break; 1406 continue; 1407 } 1408 } 1409 put_page(_tree_page); 1410 } 1411 1412 if (found) { 1413 /* 1414 * nr is counting all dups in the chain only if 1415 * prune_stale_stable_nodes is true, otherwise we may 1416 * break the loop at nr == 1 even if there are 1417 * multiple entries. 1418 */ 1419 if (prune_stale_stable_nodes && nr == 1) { 1420 /* 1421 * If there's not just one entry it would 1422 * corrupt memory, better BUG_ON. In KSM 1423 * context with no lock held it's not even 1424 * fatal. 1425 */ 1426 BUG_ON(stable_node->hlist.first->next); 1427 1428 /* 1429 * There's just one entry and it is below the 1430 * deduplication limit so drop the chain. 1431 */ 1432 rb_replace_node(&stable_node->node, &found->node, 1433 root); 1434 free_stable_node(stable_node); 1435 ksm_stable_node_chains--; 1436 ksm_stable_node_dups--; 1437 /* 1438 * NOTE: the caller depends on the stable_node 1439 * to be equal to stable_node_dup if the chain 1440 * was collapsed. 1441 */ 1442 *_stable_node = found; 1443 /* 1444 * Just for robustneess as stable_node is 1445 * otherwise left as a stable pointer, the 1446 * compiler shall optimize it away at build 1447 * time. 1448 */ 1449 stable_node = NULL; 1450 } else if (stable_node->hlist.first != &found->hlist_dup && 1451 __is_page_sharing_candidate(found, 1)) { 1452 /* 1453 * If the found stable_node dup can accept one 1454 * more future merge (in addition to the one 1455 * that is underway) and is not at the head of 1456 * the chain, put it there so next search will 1457 * be quicker in the !prune_stale_stable_nodes 1458 * case. 1459 * 1460 * NOTE: it would be inaccurate to use nr > 1 1461 * instead of checking the hlist.first pointer 1462 * directly, because in the 1463 * prune_stale_stable_nodes case "nr" isn't 1464 * the position of the found dup in the chain, 1465 * but the total number of dups in the chain. 1466 */ 1467 hlist_del(&found->hlist_dup); 1468 hlist_add_head(&found->hlist_dup, 1469 &stable_node->hlist); 1470 } 1471 } 1472 1473 *_stable_node_dup = found; 1474 return tree_page; 1475 } 1476 1477 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1478 struct rb_root *root) 1479 { 1480 if (!is_stable_node_chain(stable_node)) 1481 return stable_node; 1482 if (hlist_empty(&stable_node->hlist)) { 1483 free_stable_node_chain(stable_node, root); 1484 return NULL; 1485 } 1486 return hlist_entry(stable_node->hlist.first, 1487 typeof(*stable_node), hlist_dup); 1488 } 1489 1490 /* 1491 * Like for get_ksm_page, this function can free the *_stable_node and 1492 * *_stable_node_dup if the returned tree_page is NULL. 1493 * 1494 * It can also free and overwrite *_stable_node with the found 1495 * stable_node_dup if the chain is collapsed (in which case 1496 * *_stable_node will be equal to *_stable_node_dup like if the chain 1497 * never existed). It's up to the caller to verify tree_page is not 1498 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1499 * 1500 * *_stable_node_dup is really a second output parameter of this 1501 * function and will be overwritten in all cases, the caller doesn't 1502 * need to initialize it. 1503 */ 1504 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1505 struct stable_node **_stable_node, 1506 struct rb_root *root, 1507 bool prune_stale_stable_nodes) 1508 { 1509 struct stable_node *stable_node = *_stable_node; 1510 if (!is_stable_node_chain(stable_node)) { 1511 if (is_page_sharing_candidate(stable_node)) { 1512 *_stable_node_dup = stable_node; 1513 return get_ksm_page(stable_node, false); 1514 } 1515 /* 1516 * _stable_node_dup set to NULL means the stable_node 1517 * reached the ksm_max_page_sharing limit. 1518 */ 1519 *_stable_node_dup = NULL; 1520 return NULL; 1521 } 1522 return stable_node_dup(_stable_node_dup, _stable_node, root, 1523 prune_stale_stable_nodes); 1524 } 1525 1526 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1527 struct stable_node **s_n, 1528 struct rb_root *root) 1529 { 1530 return __stable_node_chain(s_n_d, s_n, root, true); 1531 } 1532 1533 static __always_inline struct page *chain(struct stable_node **s_n_d, 1534 struct stable_node *s_n, 1535 struct rb_root *root) 1536 { 1537 struct stable_node *old_stable_node = s_n; 1538 struct page *tree_page; 1539 1540 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1541 /* not pruning dups so s_n cannot have changed */ 1542 VM_BUG_ON(s_n != old_stable_node); 1543 return tree_page; 1544 } 1545 1546 /* 1547 * stable_tree_search - search for page inside the stable tree 1548 * 1549 * This function checks if there is a page inside the stable tree 1550 * with identical content to the page that we are scanning right now. 1551 * 1552 * This function returns the stable tree node of identical content if found, 1553 * NULL otherwise. 1554 */ 1555 static struct page *stable_tree_search(struct page *page) 1556 { 1557 int nid; 1558 struct rb_root *root; 1559 struct rb_node **new; 1560 struct rb_node *parent; 1561 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1562 struct stable_node *page_node; 1563 1564 page_node = page_stable_node(page); 1565 if (page_node && page_node->head != &migrate_nodes) { 1566 /* ksm page forked */ 1567 get_page(page); 1568 return page; 1569 } 1570 1571 nid = get_kpfn_nid(page_to_pfn(page)); 1572 root = root_stable_tree + nid; 1573 again: 1574 new = &root->rb_node; 1575 parent = NULL; 1576 1577 while (*new) { 1578 struct page *tree_page; 1579 int ret; 1580 1581 cond_resched(); 1582 stable_node = rb_entry(*new, struct stable_node, node); 1583 stable_node_any = NULL; 1584 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1585 /* 1586 * NOTE: stable_node may have been freed by 1587 * chain_prune() if the returned stable_node_dup is 1588 * not NULL. stable_node_dup may have been inserted in 1589 * the rbtree instead as a regular stable_node (in 1590 * order to collapse the stable_node chain if a single 1591 * stable_node dup was found in it). In such case the 1592 * stable_node is overwritten by the calleee to point 1593 * to the stable_node_dup that was collapsed in the 1594 * stable rbtree and stable_node will be equal to 1595 * stable_node_dup like if the chain never existed. 1596 */ 1597 if (!stable_node_dup) { 1598 /* 1599 * Either all stable_node dups were full in 1600 * this stable_node chain, or this chain was 1601 * empty and should be rb_erased. 1602 */ 1603 stable_node_any = stable_node_dup_any(stable_node, 1604 root); 1605 if (!stable_node_any) { 1606 /* rb_erase just run */ 1607 goto again; 1608 } 1609 /* 1610 * Take any of the stable_node dups page of 1611 * this stable_node chain to let the tree walk 1612 * continue. All KSM pages belonging to the 1613 * stable_node dups in a stable_node chain 1614 * have the same content and they're 1615 * wrprotected at all times. Any will work 1616 * fine to continue the walk. 1617 */ 1618 tree_page = get_ksm_page(stable_node_any, false); 1619 } 1620 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1621 if (!tree_page) { 1622 /* 1623 * If we walked over a stale stable_node, 1624 * get_ksm_page() will call rb_erase() and it 1625 * may rebalance the tree from under us. So 1626 * restart the search from scratch. Returning 1627 * NULL would be safe too, but we'd generate 1628 * false negative insertions just because some 1629 * stable_node was stale. 1630 */ 1631 goto again; 1632 } 1633 1634 ret = memcmp_pages(page, tree_page); 1635 put_page(tree_page); 1636 1637 parent = *new; 1638 if (ret < 0) 1639 new = &parent->rb_left; 1640 else if (ret > 0) 1641 new = &parent->rb_right; 1642 else { 1643 if (page_node) { 1644 VM_BUG_ON(page_node->head != &migrate_nodes); 1645 /* 1646 * Test if the migrated page should be merged 1647 * into a stable node dup. If the mapcount is 1648 * 1 we can migrate it with another KSM page 1649 * without adding it to the chain. 1650 */ 1651 if (page_mapcount(page) > 1) 1652 goto chain_append; 1653 } 1654 1655 if (!stable_node_dup) { 1656 /* 1657 * If the stable_node is a chain and 1658 * we got a payload match in memcmp 1659 * but we cannot merge the scanned 1660 * page in any of the existing 1661 * stable_node dups because they're 1662 * all full, we need to wait the 1663 * scanned page to find itself a match 1664 * in the unstable tree to create a 1665 * brand new KSM page to add later to 1666 * the dups of this stable_node. 1667 */ 1668 return NULL; 1669 } 1670 1671 /* 1672 * Lock and unlock the stable_node's page (which 1673 * might already have been migrated) so that page 1674 * migration is sure to notice its raised count. 1675 * It would be more elegant to return stable_node 1676 * than kpage, but that involves more changes. 1677 */ 1678 tree_page = get_ksm_page(stable_node_dup, true); 1679 if (unlikely(!tree_page)) 1680 /* 1681 * The tree may have been rebalanced, 1682 * so re-evaluate parent and new. 1683 */ 1684 goto again; 1685 unlock_page(tree_page); 1686 1687 if (get_kpfn_nid(stable_node_dup->kpfn) != 1688 NUMA(stable_node_dup->nid)) { 1689 put_page(tree_page); 1690 goto replace; 1691 } 1692 return tree_page; 1693 } 1694 } 1695 1696 if (!page_node) 1697 return NULL; 1698 1699 list_del(&page_node->list); 1700 DO_NUMA(page_node->nid = nid); 1701 rb_link_node(&page_node->node, parent, new); 1702 rb_insert_color(&page_node->node, root); 1703 out: 1704 if (is_page_sharing_candidate(page_node)) { 1705 get_page(page); 1706 return page; 1707 } else 1708 return NULL; 1709 1710 replace: 1711 /* 1712 * If stable_node was a chain and chain_prune collapsed it, 1713 * stable_node has been updated to be the new regular 1714 * stable_node. A collapse of the chain is indistinguishable 1715 * from the case there was no chain in the stable 1716 * rbtree. Otherwise stable_node is the chain and 1717 * stable_node_dup is the dup to replace. 1718 */ 1719 if (stable_node_dup == stable_node) { 1720 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1721 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1722 /* there is no chain */ 1723 if (page_node) { 1724 VM_BUG_ON(page_node->head != &migrate_nodes); 1725 list_del(&page_node->list); 1726 DO_NUMA(page_node->nid = nid); 1727 rb_replace_node(&stable_node_dup->node, 1728 &page_node->node, 1729 root); 1730 if (is_page_sharing_candidate(page_node)) 1731 get_page(page); 1732 else 1733 page = NULL; 1734 } else { 1735 rb_erase(&stable_node_dup->node, root); 1736 page = NULL; 1737 } 1738 } else { 1739 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1740 __stable_node_dup_del(stable_node_dup); 1741 if (page_node) { 1742 VM_BUG_ON(page_node->head != &migrate_nodes); 1743 list_del(&page_node->list); 1744 DO_NUMA(page_node->nid = nid); 1745 stable_node_chain_add_dup(page_node, stable_node); 1746 if (is_page_sharing_candidate(page_node)) 1747 get_page(page); 1748 else 1749 page = NULL; 1750 } else { 1751 page = NULL; 1752 } 1753 } 1754 stable_node_dup->head = &migrate_nodes; 1755 list_add(&stable_node_dup->list, stable_node_dup->head); 1756 return page; 1757 1758 chain_append: 1759 /* stable_node_dup could be null if it reached the limit */ 1760 if (!stable_node_dup) 1761 stable_node_dup = stable_node_any; 1762 /* 1763 * If stable_node was a chain and chain_prune collapsed it, 1764 * stable_node has been updated to be the new regular 1765 * stable_node. A collapse of the chain is indistinguishable 1766 * from the case there was no chain in the stable 1767 * rbtree. Otherwise stable_node is the chain and 1768 * stable_node_dup is the dup to replace. 1769 */ 1770 if (stable_node_dup == stable_node) { 1771 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1772 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1773 /* chain is missing so create it */ 1774 stable_node = alloc_stable_node_chain(stable_node_dup, 1775 root); 1776 if (!stable_node) 1777 return NULL; 1778 } 1779 /* 1780 * Add this stable_node dup that was 1781 * migrated to the stable_node chain 1782 * of the current nid for this page 1783 * content. 1784 */ 1785 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1786 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1787 VM_BUG_ON(page_node->head != &migrate_nodes); 1788 list_del(&page_node->list); 1789 DO_NUMA(page_node->nid = nid); 1790 stable_node_chain_add_dup(page_node, stable_node); 1791 goto out; 1792 } 1793 1794 /* 1795 * stable_tree_insert - insert stable tree node pointing to new ksm page 1796 * into the stable tree. 1797 * 1798 * This function returns the stable tree node just allocated on success, 1799 * NULL otherwise. 1800 */ 1801 static struct stable_node *stable_tree_insert(struct page *kpage) 1802 { 1803 int nid; 1804 unsigned long kpfn; 1805 struct rb_root *root; 1806 struct rb_node **new; 1807 struct rb_node *parent; 1808 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1809 bool need_chain = false; 1810 1811 kpfn = page_to_pfn(kpage); 1812 nid = get_kpfn_nid(kpfn); 1813 root = root_stable_tree + nid; 1814 again: 1815 parent = NULL; 1816 new = &root->rb_node; 1817 1818 while (*new) { 1819 struct page *tree_page; 1820 int ret; 1821 1822 cond_resched(); 1823 stable_node = rb_entry(*new, struct stable_node, node); 1824 stable_node_any = NULL; 1825 tree_page = chain(&stable_node_dup, stable_node, root); 1826 if (!stable_node_dup) { 1827 /* 1828 * Either all stable_node dups were full in 1829 * this stable_node chain, or this chain was 1830 * empty and should be rb_erased. 1831 */ 1832 stable_node_any = stable_node_dup_any(stable_node, 1833 root); 1834 if (!stable_node_any) { 1835 /* rb_erase just run */ 1836 goto again; 1837 } 1838 /* 1839 * Take any of the stable_node dups page of 1840 * this stable_node chain to let the tree walk 1841 * continue. All KSM pages belonging to the 1842 * stable_node dups in a stable_node chain 1843 * have the same content and they're 1844 * wrprotected at all times. Any will work 1845 * fine to continue the walk. 1846 */ 1847 tree_page = get_ksm_page(stable_node_any, false); 1848 } 1849 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1850 if (!tree_page) { 1851 /* 1852 * If we walked over a stale stable_node, 1853 * get_ksm_page() will call rb_erase() and it 1854 * may rebalance the tree from under us. So 1855 * restart the search from scratch. Returning 1856 * NULL would be safe too, but we'd generate 1857 * false negative insertions just because some 1858 * stable_node was stale. 1859 */ 1860 goto again; 1861 } 1862 1863 ret = memcmp_pages(kpage, tree_page); 1864 put_page(tree_page); 1865 1866 parent = *new; 1867 if (ret < 0) 1868 new = &parent->rb_left; 1869 else if (ret > 0) 1870 new = &parent->rb_right; 1871 else { 1872 need_chain = true; 1873 break; 1874 } 1875 } 1876 1877 stable_node_dup = alloc_stable_node(); 1878 if (!stable_node_dup) 1879 return NULL; 1880 1881 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1882 stable_node_dup->kpfn = kpfn; 1883 set_page_stable_node(kpage, stable_node_dup); 1884 stable_node_dup->rmap_hlist_len = 0; 1885 DO_NUMA(stable_node_dup->nid = nid); 1886 if (!need_chain) { 1887 rb_link_node(&stable_node_dup->node, parent, new); 1888 rb_insert_color(&stable_node_dup->node, root); 1889 } else { 1890 if (!is_stable_node_chain(stable_node)) { 1891 struct stable_node *orig = stable_node; 1892 /* chain is missing so create it */ 1893 stable_node = alloc_stable_node_chain(orig, root); 1894 if (!stable_node) { 1895 free_stable_node(stable_node_dup); 1896 return NULL; 1897 } 1898 } 1899 stable_node_chain_add_dup(stable_node_dup, stable_node); 1900 } 1901 1902 return stable_node_dup; 1903 } 1904 1905 /* 1906 * unstable_tree_search_insert - search for identical page, 1907 * else insert rmap_item into the unstable tree. 1908 * 1909 * This function searches for a page in the unstable tree identical to the 1910 * page currently being scanned; and if no identical page is found in the 1911 * tree, we insert rmap_item as a new object into the unstable tree. 1912 * 1913 * This function returns pointer to rmap_item found to be identical 1914 * to the currently scanned page, NULL otherwise. 1915 * 1916 * This function does both searching and inserting, because they share 1917 * the same walking algorithm in an rbtree. 1918 */ 1919 static 1920 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1921 struct page *page, 1922 struct page **tree_pagep) 1923 { 1924 struct rb_node **new; 1925 struct rb_root *root; 1926 struct rb_node *parent = NULL; 1927 int nid; 1928 1929 nid = get_kpfn_nid(page_to_pfn(page)); 1930 root = root_unstable_tree + nid; 1931 new = &root->rb_node; 1932 1933 while (*new) { 1934 struct rmap_item *tree_rmap_item; 1935 struct page *tree_page; 1936 int ret; 1937 1938 cond_resched(); 1939 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1940 tree_page = get_mergeable_page(tree_rmap_item); 1941 if (!tree_page) 1942 return NULL; 1943 1944 /* 1945 * Don't substitute a ksm page for a forked page. 1946 */ 1947 if (page == tree_page) { 1948 put_page(tree_page); 1949 return NULL; 1950 } 1951 1952 ret = memcmp_pages(page, tree_page); 1953 1954 parent = *new; 1955 if (ret < 0) { 1956 put_page(tree_page); 1957 new = &parent->rb_left; 1958 } else if (ret > 0) { 1959 put_page(tree_page); 1960 new = &parent->rb_right; 1961 } else if (!ksm_merge_across_nodes && 1962 page_to_nid(tree_page) != nid) { 1963 /* 1964 * If tree_page has been migrated to another NUMA node, 1965 * it will be flushed out and put in the right unstable 1966 * tree next time: only merge with it when across_nodes. 1967 */ 1968 put_page(tree_page); 1969 return NULL; 1970 } else { 1971 *tree_pagep = tree_page; 1972 return tree_rmap_item; 1973 } 1974 } 1975 1976 rmap_item->address |= UNSTABLE_FLAG; 1977 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1978 DO_NUMA(rmap_item->nid = nid); 1979 rb_link_node(&rmap_item->node, parent, new); 1980 rb_insert_color(&rmap_item->node, root); 1981 1982 ksm_pages_unshared++; 1983 return NULL; 1984 } 1985 1986 /* 1987 * stable_tree_append - add another rmap_item to the linked list of 1988 * rmap_items hanging off a given node of the stable tree, all sharing 1989 * the same ksm page. 1990 */ 1991 static void stable_tree_append(struct rmap_item *rmap_item, 1992 struct stable_node *stable_node, 1993 bool max_page_sharing_bypass) 1994 { 1995 /* 1996 * rmap won't find this mapping if we don't insert the 1997 * rmap_item in the right stable_node 1998 * duplicate. page_migration could break later if rmap breaks, 1999 * so we can as well crash here. We really need to check for 2000 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2001 * for other negative values as an undeflow if detected here 2002 * for the first time (and not when decreasing rmap_hlist_len) 2003 * would be sign of memory corruption in the stable_node. 2004 */ 2005 BUG_ON(stable_node->rmap_hlist_len < 0); 2006 2007 stable_node->rmap_hlist_len++; 2008 if (!max_page_sharing_bypass) 2009 /* possibly non fatal but unexpected overflow, only warn */ 2010 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2011 ksm_max_page_sharing); 2012 2013 rmap_item->head = stable_node; 2014 rmap_item->address |= STABLE_FLAG; 2015 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2016 2017 if (rmap_item->hlist.next) 2018 ksm_pages_sharing++; 2019 else 2020 ksm_pages_shared++; 2021 } 2022 2023 /* 2024 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2025 * if not, compare checksum to previous and if it's the same, see if page can 2026 * be inserted into the unstable tree, or merged with a page already there and 2027 * both transferred to the stable tree. 2028 * 2029 * @page: the page that we are searching identical page to. 2030 * @rmap_item: the reverse mapping into the virtual address of this page 2031 */ 2032 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2033 { 2034 struct mm_struct *mm = rmap_item->mm; 2035 struct rmap_item *tree_rmap_item; 2036 struct page *tree_page = NULL; 2037 struct stable_node *stable_node; 2038 struct page *kpage; 2039 unsigned int checksum; 2040 int err; 2041 bool max_page_sharing_bypass = false; 2042 2043 stable_node = page_stable_node(page); 2044 if (stable_node) { 2045 if (stable_node->head != &migrate_nodes && 2046 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2047 NUMA(stable_node->nid)) { 2048 stable_node_dup_del(stable_node); 2049 stable_node->head = &migrate_nodes; 2050 list_add(&stable_node->list, stable_node->head); 2051 } 2052 if (stable_node->head != &migrate_nodes && 2053 rmap_item->head == stable_node) 2054 return; 2055 /* 2056 * If it's a KSM fork, allow it to go over the sharing limit 2057 * without warnings. 2058 */ 2059 if (!is_page_sharing_candidate(stable_node)) 2060 max_page_sharing_bypass = true; 2061 } 2062 2063 /* We first start with searching the page inside the stable tree */ 2064 kpage = stable_tree_search(page); 2065 if (kpage == page && rmap_item->head == stable_node) { 2066 put_page(kpage); 2067 return; 2068 } 2069 2070 remove_rmap_item_from_tree(rmap_item); 2071 2072 if (kpage) { 2073 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2074 if (!err) { 2075 /* 2076 * The page was successfully merged: 2077 * add its rmap_item to the stable tree. 2078 */ 2079 lock_page(kpage); 2080 stable_tree_append(rmap_item, page_stable_node(kpage), 2081 max_page_sharing_bypass); 2082 unlock_page(kpage); 2083 } 2084 put_page(kpage); 2085 return; 2086 } 2087 2088 /* 2089 * If the hash value of the page has changed from the last time 2090 * we calculated it, this page is changing frequently: therefore we 2091 * don't want to insert it in the unstable tree, and we don't want 2092 * to waste our time searching for something identical to it there. 2093 */ 2094 checksum = calc_checksum(page); 2095 if (rmap_item->oldchecksum != checksum) { 2096 rmap_item->oldchecksum = checksum; 2097 return; 2098 } 2099 2100 /* 2101 * Same checksum as an empty page. We attempt to merge it with the 2102 * appropriate zero page if the user enabled this via sysfs. 2103 */ 2104 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2105 struct vm_area_struct *vma; 2106 2107 down_read(&mm->mmap_sem); 2108 vma = find_mergeable_vma(mm, rmap_item->address); 2109 err = try_to_merge_one_page(vma, page, 2110 ZERO_PAGE(rmap_item->address)); 2111 up_read(&mm->mmap_sem); 2112 /* 2113 * In case of failure, the page was not really empty, so we 2114 * need to continue. Otherwise we're done. 2115 */ 2116 if (!err) 2117 return; 2118 } 2119 tree_rmap_item = 2120 unstable_tree_search_insert(rmap_item, page, &tree_page); 2121 if (tree_rmap_item) { 2122 bool split; 2123 2124 kpage = try_to_merge_two_pages(rmap_item, page, 2125 tree_rmap_item, tree_page); 2126 /* 2127 * If both pages we tried to merge belong to the same compound 2128 * page, then we actually ended up increasing the reference 2129 * count of the same compound page twice, and split_huge_page 2130 * failed. 2131 * Here we set a flag if that happened, and we use it later to 2132 * try split_huge_page again. Since we call put_page right 2133 * afterwards, the reference count will be correct and 2134 * split_huge_page should succeed. 2135 */ 2136 split = PageTransCompound(page) 2137 && compound_head(page) == compound_head(tree_page); 2138 put_page(tree_page); 2139 if (kpage) { 2140 /* 2141 * The pages were successfully merged: insert new 2142 * node in the stable tree and add both rmap_items. 2143 */ 2144 lock_page(kpage); 2145 stable_node = stable_tree_insert(kpage); 2146 if (stable_node) { 2147 stable_tree_append(tree_rmap_item, stable_node, 2148 false); 2149 stable_tree_append(rmap_item, stable_node, 2150 false); 2151 } 2152 unlock_page(kpage); 2153 2154 /* 2155 * If we fail to insert the page into the stable tree, 2156 * we will have 2 virtual addresses that are pointing 2157 * to a ksm page left outside the stable tree, 2158 * in which case we need to break_cow on both. 2159 */ 2160 if (!stable_node) { 2161 break_cow(tree_rmap_item); 2162 break_cow(rmap_item); 2163 } 2164 } else if (split) { 2165 /* 2166 * We are here if we tried to merge two pages and 2167 * failed because they both belonged to the same 2168 * compound page. We will split the page now, but no 2169 * merging will take place. 2170 * We do not want to add the cost of a full lock; if 2171 * the page is locked, it is better to skip it and 2172 * perhaps try again later. 2173 */ 2174 if (!trylock_page(page)) 2175 return; 2176 split_huge_page(page); 2177 unlock_page(page); 2178 } 2179 } 2180 } 2181 2182 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2183 struct rmap_item **rmap_list, 2184 unsigned long addr) 2185 { 2186 struct rmap_item *rmap_item; 2187 2188 while (*rmap_list) { 2189 rmap_item = *rmap_list; 2190 if ((rmap_item->address & PAGE_MASK) == addr) 2191 return rmap_item; 2192 if (rmap_item->address > addr) 2193 break; 2194 *rmap_list = rmap_item->rmap_list; 2195 remove_rmap_item_from_tree(rmap_item); 2196 free_rmap_item(rmap_item); 2197 } 2198 2199 rmap_item = alloc_rmap_item(); 2200 if (rmap_item) { 2201 /* It has already been zeroed */ 2202 rmap_item->mm = mm_slot->mm; 2203 rmap_item->address = addr; 2204 rmap_item->rmap_list = *rmap_list; 2205 *rmap_list = rmap_item; 2206 } 2207 return rmap_item; 2208 } 2209 2210 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2211 { 2212 struct mm_struct *mm; 2213 struct mm_slot *slot; 2214 struct vm_area_struct *vma; 2215 struct rmap_item *rmap_item; 2216 int nid; 2217 2218 if (list_empty(&ksm_mm_head.mm_list)) 2219 return NULL; 2220 2221 slot = ksm_scan.mm_slot; 2222 if (slot == &ksm_mm_head) { 2223 /* 2224 * A number of pages can hang around indefinitely on per-cpu 2225 * pagevecs, raised page count preventing write_protect_page 2226 * from merging them. Though it doesn't really matter much, 2227 * it is puzzling to see some stuck in pages_volatile until 2228 * other activity jostles them out, and they also prevented 2229 * LTP's KSM test from succeeding deterministically; so drain 2230 * them here (here rather than on entry to ksm_do_scan(), 2231 * so we don't IPI too often when pages_to_scan is set low). 2232 */ 2233 lru_add_drain_all(); 2234 2235 /* 2236 * Whereas stale stable_nodes on the stable_tree itself 2237 * get pruned in the regular course of stable_tree_search(), 2238 * those moved out to the migrate_nodes list can accumulate: 2239 * so prune them once before each full scan. 2240 */ 2241 if (!ksm_merge_across_nodes) { 2242 struct stable_node *stable_node, *next; 2243 struct page *page; 2244 2245 list_for_each_entry_safe(stable_node, next, 2246 &migrate_nodes, list) { 2247 page = get_ksm_page(stable_node, false); 2248 if (page) 2249 put_page(page); 2250 cond_resched(); 2251 } 2252 } 2253 2254 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2255 root_unstable_tree[nid] = RB_ROOT; 2256 2257 spin_lock(&ksm_mmlist_lock); 2258 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2259 ksm_scan.mm_slot = slot; 2260 spin_unlock(&ksm_mmlist_lock); 2261 /* 2262 * Although we tested list_empty() above, a racing __ksm_exit 2263 * of the last mm on the list may have removed it since then. 2264 */ 2265 if (slot == &ksm_mm_head) 2266 return NULL; 2267 next_mm: 2268 ksm_scan.address = 0; 2269 ksm_scan.rmap_list = &slot->rmap_list; 2270 } 2271 2272 mm = slot->mm; 2273 down_read(&mm->mmap_sem); 2274 if (ksm_test_exit(mm)) 2275 vma = NULL; 2276 else 2277 vma = find_vma(mm, ksm_scan.address); 2278 2279 for (; vma; vma = vma->vm_next) { 2280 if (!(vma->vm_flags & VM_MERGEABLE)) 2281 continue; 2282 if (ksm_scan.address < vma->vm_start) 2283 ksm_scan.address = vma->vm_start; 2284 if (!vma->anon_vma) 2285 ksm_scan.address = vma->vm_end; 2286 2287 while (ksm_scan.address < vma->vm_end) { 2288 if (ksm_test_exit(mm)) 2289 break; 2290 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2291 if (IS_ERR_OR_NULL(*page)) { 2292 ksm_scan.address += PAGE_SIZE; 2293 cond_resched(); 2294 continue; 2295 } 2296 if (PageAnon(*page)) { 2297 flush_anon_page(vma, *page, ksm_scan.address); 2298 flush_dcache_page(*page); 2299 rmap_item = get_next_rmap_item(slot, 2300 ksm_scan.rmap_list, ksm_scan.address); 2301 if (rmap_item) { 2302 ksm_scan.rmap_list = 2303 &rmap_item->rmap_list; 2304 ksm_scan.address += PAGE_SIZE; 2305 } else 2306 put_page(*page); 2307 up_read(&mm->mmap_sem); 2308 return rmap_item; 2309 } 2310 put_page(*page); 2311 ksm_scan.address += PAGE_SIZE; 2312 cond_resched(); 2313 } 2314 } 2315 2316 if (ksm_test_exit(mm)) { 2317 ksm_scan.address = 0; 2318 ksm_scan.rmap_list = &slot->rmap_list; 2319 } 2320 /* 2321 * Nuke all the rmap_items that are above this current rmap: 2322 * because there were no VM_MERGEABLE vmas with such addresses. 2323 */ 2324 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2325 2326 spin_lock(&ksm_mmlist_lock); 2327 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2328 struct mm_slot, mm_list); 2329 if (ksm_scan.address == 0) { 2330 /* 2331 * We've completed a full scan of all vmas, holding mmap_sem 2332 * throughout, and found no VM_MERGEABLE: so do the same as 2333 * __ksm_exit does to remove this mm from all our lists now. 2334 * This applies either when cleaning up after __ksm_exit 2335 * (but beware: we can reach here even before __ksm_exit), 2336 * or when all VM_MERGEABLE areas have been unmapped (and 2337 * mmap_sem then protects against race with MADV_MERGEABLE). 2338 */ 2339 hash_del(&slot->link); 2340 list_del(&slot->mm_list); 2341 spin_unlock(&ksm_mmlist_lock); 2342 2343 free_mm_slot(slot); 2344 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2345 up_read(&mm->mmap_sem); 2346 mmdrop(mm); 2347 } else { 2348 up_read(&mm->mmap_sem); 2349 /* 2350 * up_read(&mm->mmap_sem) first because after 2351 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2352 * already have been freed under us by __ksm_exit() 2353 * because the "mm_slot" is still hashed and 2354 * ksm_scan.mm_slot doesn't point to it anymore. 2355 */ 2356 spin_unlock(&ksm_mmlist_lock); 2357 } 2358 2359 /* Repeat until we've completed scanning the whole list */ 2360 slot = ksm_scan.mm_slot; 2361 if (slot != &ksm_mm_head) 2362 goto next_mm; 2363 2364 ksm_scan.seqnr++; 2365 return NULL; 2366 } 2367 2368 /** 2369 * ksm_do_scan - the ksm scanner main worker function. 2370 * @scan_npages: number of pages we want to scan before we return. 2371 */ 2372 static void ksm_do_scan(unsigned int scan_npages) 2373 { 2374 struct rmap_item *rmap_item; 2375 struct page *uninitialized_var(page); 2376 2377 while (scan_npages-- && likely(!freezing(current))) { 2378 cond_resched(); 2379 rmap_item = scan_get_next_rmap_item(&page); 2380 if (!rmap_item) 2381 return; 2382 cmp_and_merge_page(page, rmap_item); 2383 put_page(page); 2384 } 2385 } 2386 2387 static int ksmd_should_run(void) 2388 { 2389 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2390 } 2391 2392 static int ksm_scan_thread(void *nothing) 2393 { 2394 set_freezable(); 2395 set_user_nice(current, 5); 2396 2397 while (!kthread_should_stop()) { 2398 mutex_lock(&ksm_thread_mutex); 2399 wait_while_offlining(); 2400 if (ksmd_should_run()) 2401 ksm_do_scan(ksm_thread_pages_to_scan); 2402 mutex_unlock(&ksm_thread_mutex); 2403 2404 try_to_freeze(); 2405 2406 if (ksmd_should_run()) { 2407 schedule_timeout_interruptible( 2408 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 2409 } else { 2410 wait_event_freezable(ksm_thread_wait, 2411 ksmd_should_run() || kthread_should_stop()); 2412 } 2413 } 2414 return 0; 2415 } 2416 2417 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2418 unsigned long end, int advice, unsigned long *vm_flags) 2419 { 2420 struct mm_struct *mm = vma->vm_mm; 2421 int err; 2422 2423 switch (advice) { 2424 case MADV_MERGEABLE: 2425 /* 2426 * Be somewhat over-protective for now! 2427 */ 2428 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2429 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2430 VM_HUGETLB | VM_MIXEDMAP)) 2431 return 0; /* just ignore the advice */ 2432 2433 if (vma_is_dax(vma)) 2434 return 0; 2435 2436 #ifdef VM_SAO 2437 if (*vm_flags & VM_SAO) 2438 return 0; 2439 #endif 2440 #ifdef VM_SPARC_ADI 2441 if (*vm_flags & VM_SPARC_ADI) 2442 return 0; 2443 #endif 2444 2445 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2446 err = __ksm_enter(mm); 2447 if (err) 2448 return err; 2449 } 2450 2451 *vm_flags |= VM_MERGEABLE; 2452 break; 2453 2454 case MADV_UNMERGEABLE: 2455 if (!(*vm_flags & VM_MERGEABLE)) 2456 return 0; /* just ignore the advice */ 2457 2458 if (vma->anon_vma) { 2459 err = unmerge_ksm_pages(vma, start, end); 2460 if (err) 2461 return err; 2462 } 2463 2464 *vm_flags &= ~VM_MERGEABLE; 2465 break; 2466 } 2467 2468 return 0; 2469 } 2470 2471 int __ksm_enter(struct mm_struct *mm) 2472 { 2473 struct mm_slot *mm_slot; 2474 int needs_wakeup; 2475 2476 mm_slot = alloc_mm_slot(); 2477 if (!mm_slot) 2478 return -ENOMEM; 2479 2480 /* Check ksm_run too? Would need tighter locking */ 2481 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2482 2483 spin_lock(&ksm_mmlist_lock); 2484 insert_to_mm_slots_hash(mm, mm_slot); 2485 /* 2486 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2487 * insert just behind the scanning cursor, to let the area settle 2488 * down a little; when fork is followed by immediate exec, we don't 2489 * want ksmd to waste time setting up and tearing down an rmap_list. 2490 * 2491 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2492 * scanning cursor, otherwise KSM pages in newly forked mms will be 2493 * missed: then we might as well insert at the end of the list. 2494 */ 2495 if (ksm_run & KSM_RUN_UNMERGE) 2496 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2497 else 2498 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2499 spin_unlock(&ksm_mmlist_lock); 2500 2501 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2502 mmgrab(mm); 2503 2504 if (needs_wakeup) 2505 wake_up_interruptible(&ksm_thread_wait); 2506 2507 return 0; 2508 } 2509 2510 void __ksm_exit(struct mm_struct *mm) 2511 { 2512 struct mm_slot *mm_slot; 2513 int easy_to_free = 0; 2514 2515 /* 2516 * This process is exiting: if it's straightforward (as is the 2517 * case when ksmd was never running), free mm_slot immediately. 2518 * But if it's at the cursor or has rmap_items linked to it, use 2519 * mmap_sem to synchronize with any break_cows before pagetables 2520 * are freed, and leave the mm_slot on the list for ksmd to free. 2521 * Beware: ksm may already have noticed it exiting and freed the slot. 2522 */ 2523 2524 spin_lock(&ksm_mmlist_lock); 2525 mm_slot = get_mm_slot(mm); 2526 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2527 if (!mm_slot->rmap_list) { 2528 hash_del(&mm_slot->link); 2529 list_del(&mm_slot->mm_list); 2530 easy_to_free = 1; 2531 } else { 2532 list_move(&mm_slot->mm_list, 2533 &ksm_scan.mm_slot->mm_list); 2534 } 2535 } 2536 spin_unlock(&ksm_mmlist_lock); 2537 2538 if (easy_to_free) { 2539 free_mm_slot(mm_slot); 2540 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2541 mmdrop(mm); 2542 } else if (mm_slot) { 2543 down_write(&mm->mmap_sem); 2544 up_write(&mm->mmap_sem); 2545 } 2546 } 2547 2548 struct page *ksm_might_need_to_copy(struct page *page, 2549 struct vm_area_struct *vma, unsigned long address) 2550 { 2551 struct anon_vma *anon_vma = page_anon_vma(page); 2552 struct page *new_page; 2553 2554 if (PageKsm(page)) { 2555 if (page_stable_node(page) && 2556 !(ksm_run & KSM_RUN_UNMERGE)) 2557 return page; /* no need to copy it */ 2558 } else if (!anon_vma) { 2559 return page; /* no need to copy it */ 2560 } else if (anon_vma->root == vma->anon_vma->root && 2561 page->index == linear_page_index(vma, address)) { 2562 return page; /* still no need to copy it */ 2563 } 2564 if (!PageUptodate(page)) 2565 return page; /* let do_swap_page report the error */ 2566 2567 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2568 if (new_page) { 2569 copy_user_highpage(new_page, page, address, vma); 2570 2571 SetPageDirty(new_page); 2572 __SetPageUptodate(new_page); 2573 __SetPageLocked(new_page); 2574 } 2575 2576 return new_page; 2577 } 2578 2579 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2580 { 2581 struct stable_node *stable_node; 2582 struct rmap_item *rmap_item; 2583 int search_new_forks = 0; 2584 2585 VM_BUG_ON_PAGE(!PageKsm(page), page); 2586 2587 /* 2588 * Rely on the page lock to protect against concurrent modifications 2589 * to that page's node of the stable tree. 2590 */ 2591 VM_BUG_ON_PAGE(!PageLocked(page), page); 2592 2593 stable_node = page_stable_node(page); 2594 if (!stable_node) 2595 return; 2596 again: 2597 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2598 struct anon_vma *anon_vma = rmap_item->anon_vma; 2599 struct anon_vma_chain *vmac; 2600 struct vm_area_struct *vma; 2601 2602 cond_resched(); 2603 anon_vma_lock_read(anon_vma); 2604 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2605 0, ULONG_MAX) { 2606 unsigned long addr; 2607 2608 cond_resched(); 2609 vma = vmac->vma; 2610 2611 /* Ignore the stable/unstable/sqnr flags */ 2612 addr = rmap_item->address & ~KSM_FLAG_MASK; 2613 2614 if (addr < vma->vm_start || addr >= vma->vm_end) 2615 continue; 2616 /* 2617 * Initially we examine only the vma which covers this 2618 * rmap_item; but later, if there is still work to do, 2619 * we examine covering vmas in other mms: in case they 2620 * were forked from the original since ksmd passed. 2621 */ 2622 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2623 continue; 2624 2625 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2626 continue; 2627 2628 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2629 anon_vma_unlock_read(anon_vma); 2630 return; 2631 } 2632 if (rwc->done && rwc->done(page)) { 2633 anon_vma_unlock_read(anon_vma); 2634 return; 2635 } 2636 } 2637 anon_vma_unlock_read(anon_vma); 2638 } 2639 if (!search_new_forks++) 2640 goto again; 2641 } 2642 2643 #ifdef CONFIG_MIGRATION 2644 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2645 { 2646 struct stable_node *stable_node; 2647 2648 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2649 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2650 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2651 2652 stable_node = page_stable_node(newpage); 2653 if (stable_node) { 2654 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2655 stable_node->kpfn = page_to_pfn(newpage); 2656 /* 2657 * newpage->mapping was set in advance; now we need smp_wmb() 2658 * to make sure that the new stable_node->kpfn is visible 2659 * to get_ksm_page() before it can see that oldpage->mapping 2660 * has gone stale (or that PageSwapCache has been cleared). 2661 */ 2662 smp_wmb(); 2663 set_page_stable_node(oldpage, NULL); 2664 } 2665 } 2666 #endif /* CONFIG_MIGRATION */ 2667 2668 #ifdef CONFIG_MEMORY_HOTREMOVE 2669 static void wait_while_offlining(void) 2670 { 2671 while (ksm_run & KSM_RUN_OFFLINE) { 2672 mutex_unlock(&ksm_thread_mutex); 2673 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2674 TASK_UNINTERRUPTIBLE); 2675 mutex_lock(&ksm_thread_mutex); 2676 } 2677 } 2678 2679 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2680 unsigned long start_pfn, 2681 unsigned long end_pfn) 2682 { 2683 if (stable_node->kpfn >= start_pfn && 2684 stable_node->kpfn < end_pfn) { 2685 /* 2686 * Don't get_ksm_page, page has already gone: 2687 * which is why we keep kpfn instead of page* 2688 */ 2689 remove_node_from_stable_tree(stable_node); 2690 return true; 2691 } 2692 return false; 2693 } 2694 2695 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2696 unsigned long start_pfn, 2697 unsigned long end_pfn, 2698 struct rb_root *root) 2699 { 2700 struct stable_node *dup; 2701 struct hlist_node *hlist_safe; 2702 2703 if (!is_stable_node_chain(stable_node)) { 2704 VM_BUG_ON(is_stable_node_dup(stable_node)); 2705 return stable_node_dup_remove_range(stable_node, start_pfn, 2706 end_pfn); 2707 } 2708 2709 hlist_for_each_entry_safe(dup, hlist_safe, 2710 &stable_node->hlist, hlist_dup) { 2711 VM_BUG_ON(!is_stable_node_dup(dup)); 2712 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2713 } 2714 if (hlist_empty(&stable_node->hlist)) { 2715 free_stable_node_chain(stable_node, root); 2716 return true; /* notify caller that tree was rebalanced */ 2717 } else 2718 return false; 2719 } 2720 2721 static void ksm_check_stable_tree(unsigned long start_pfn, 2722 unsigned long end_pfn) 2723 { 2724 struct stable_node *stable_node, *next; 2725 struct rb_node *node; 2726 int nid; 2727 2728 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2729 node = rb_first(root_stable_tree + nid); 2730 while (node) { 2731 stable_node = rb_entry(node, struct stable_node, node); 2732 if (stable_node_chain_remove_range(stable_node, 2733 start_pfn, end_pfn, 2734 root_stable_tree + 2735 nid)) 2736 node = rb_first(root_stable_tree + nid); 2737 else 2738 node = rb_next(node); 2739 cond_resched(); 2740 } 2741 } 2742 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2743 if (stable_node->kpfn >= start_pfn && 2744 stable_node->kpfn < end_pfn) 2745 remove_node_from_stable_tree(stable_node); 2746 cond_resched(); 2747 } 2748 } 2749 2750 static int ksm_memory_callback(struct notifier_block *self, 2751 unsigned long action, void *arg) 2752 { 2753 struct memory_notify *mn = arg; 2754 2755 switch (action) { 2756 case MEM_GOING_OFFLINE: 2757 /* 2758 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2759 * and remove_all_stable_nodes() while memory is going offline: 2760 * it is unsafe for them to touch the stable tree at this time. 2761 * But unmerge_ksm_pages(), rmap lookups and other entry points 2762 * which do not need the ksm_thread_mutex are all safe. 2763 */ 2764 mutex_lock(&ksm_thread_mutex); 2765 ksm_run |= KSM_RUN_OFFLINE; 2766 mutex_unlock(&ksm_thread_mutex); 2767 break; 2768 2769 case MEM_OFFLINE: 2770 /* 2771 * Most of the work is done by page migration; but there might 2772 * be a few stable_nodes left over, still pointing to struct 2773 * pages which have been offlined: prune those from the tree, 2774 * otherwise get_ksm_page() might later try to access a 2775 * non-existent struct page. 2776 */ 2777 ksm_check_stable_tree(mn->start_pfn, 2778 mn->start_pfn + mn->nr_pages); 2779 /* fallthrough */ 2780 2781 case MEM_CANCEL_OFFLINE: 2782 mutex_lock(&ksm_thread_mutex); 2783 ksm_run &= ~KSM_RUN_OFFLINE; 2784 mutex_unlock(&ksm_thread_mutex); 2785 2786 smp_mb(); /* wake_up_bit advises this */ 2787 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2788 break; 2789 } 2790 return NOTIFY_OK; 2791 } 2792 #else 2793 static void wait_while_offlining(void) 2794 { 2795 } 2796 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2797 2798 #ifdef CONFIG_SYSFS 2799 /* 2800 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2801 */ 2802 2803 #define KSM_ATTR_RO(_name) \ 2804 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2805 #define KSM_ATTR(_name) \ 2806 static struct kobj_attribute _name##_attr = \ 2807 __ATTR(_name, 0644, _name##_show, _name##_store) 2808 2809 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2810 struct kobj_attribute *attr, char *buf) 2811 { 2812 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2813 } 2814 2815 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2816 struct kobj_attribute *attr, 2817 const char *buf, size_t count) 2818 { 2819 unsigned long msecs; 2820 int err; 2821 2822 err = kstrtoul(buf, 10, &msecs); 2823 if (err || msecs > UINT_MAX) 2824 return -EINVAL; 2825 2826 ksm_thread_sleep_millisecs = msecs; 2827 2828 return count; 2829 } 2830 KSM_ATTR(sleep_millisecs); 2831 2832 static ssize_t pages_to_scan_show(struct kobject *kobj, 2833 struct kobj_attribute *attr, char *buf) 2834 { 2835 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2836 } 2837 2838 static ssize_t pages_to_scan_store(struct kobject *kobj, 2839 struct kobj_attribute *attr, 2840 const char *buf, size_t count) 2841 { 2842 int err; 2843 unsigned long nr_pages; 2844 2845 err = kstrtoul(buf, 10, &nr_pages); 2846 if (err || nr_pages > UINT_MAX) 2847 return -EINVAL; 2848 2849 ksm_thread_pages_to_scan = nr_pages; 2850 2851 return count; 2852 } 2853 KSM_ATTR(pages_to_scan); 2854 2855 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2856 char *buf) 2857 { 2858 return sprintf(buf, "%lu\n", ksm_run); 2859 } 2860 2861 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2862 const char *buf, size_t count) 2863 { 2864 int err; 2865 unsigned long flags; 2866 2867 err = kstrtoul(buf, 10, &flags); 2868 if (err || flags > UINT_MAX) 2869 return -EINVAL; 2870 if (flags > KSM_RUN_UNMERGE) 2871 return -EINVAL; 2872 2873 /* 2874 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2875 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2876 * breaking COW to free the pages_shared (but leaves mm_slots 2877 * on the list for when ksmd may be set running again). 2878 */ 2879 2880 mutex_lock(&ksm_thread_mutex); 2881 wait_while_offlining(); 2882 if (ksm_run != flags) { 2883 ksm_run = flags; 2884 if (flags & KSM_RUN_UNMERGE) { 2885 set_current_oom_origin(); 2886 err = unmerge_and_remove_all_rmap_items(); 2887 clear_current_oom_origin(); 2888 if (err) { 2889 ksm_run = KSM_RUN_STOP; 2890 count = err; 2891 } 2892 } 2893 } 2894 mutex_unlock(&ksm_thread_mutex); 2895 2896 if (flags & KSM_RUN_MERGE) 2897 wake_up_interruptible(&ksm_thread_wait); 2898 2899 return count; 2900 } 2901 KSM_ATTR(run); 2902 2903 #ifdef CONFIG_NUMA 2904 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2905 struct kobj_attribute *attr, char *buf) 2906 { 2907 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2908 } 2909 2910 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2911 struct kobj_attribute *attr, 2912 const char *buf, size_t count) 2913 { 2914 int err; 2915 unsigned long knob; 2916 2917 err = kstrtoul(buf, 10, &knob); 2918 if (err) 2919 return err; 2920 if (knob > 1) 2921 return -EINVAL; 2922 2923 mutex_lock(&ksm_thread_mutex); 2924 wait_while_offlining(); 2925 if (ksm_merge_across_nodes != knob) { 2926 if (ksm_pages_shared || remove_all_stable_nodes()) 2927 err = -EBUSY; 2928 else if (root_stable_tree == one_stable_tree) { 2929 struct rb_root *buf; 2930 /* 2931 * This is the first time that we switch away from the 2932 * default of merging across nodes: must now allocate 2933 * a buffer to hold as many roots as may be needed. 2934 * Allocate stable and unstable together: 2935 * MAXSMP NODES_SHIFT 10 will use 16kB. 2936 */ 2937 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2938 GFP_KERNEL); 2939 /* Let us assume that RB_ROOT is NULL is zero */ 2940 if (!buf) 2941 err = -ENOMEM; 2942 else { 2943 root_stable_tree = buf; 2944 root_unstable_tree = buf + nr_node_ids; 2945 /* Stable tree is empty but not the unstable */ 2946 root_unstable_tree[0] = one_unstable_tree[0]; 2947 } 2948 } 2949 if (!err) { 2950 ksm_merge_across_nodes = knob; 2951 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2952 } 2953 } 2954 mutex_unlock(&ksm_thread_mutex); 2955 2956 return err ? err : count; 2957 } 2958 KSM_ATTR(merge_across_nodes); 2959 #endif 2960 2961 static ssize_t use_zero_pages_show(struct kobject *kobj, 2962 struct kobj_attribute *attr, char *buf) 2963 { 2964 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2965 } 2966 static ssize_t use_zero_pages_store(struct kobject *kobj, 2967 struct kobj_attribute *attr, 2968 const char *buf, size_t count) 2969 { 2970 int err; 2971 bool value; 2972 2973 err = kstrtobool(buf, &value); 2974 if (err) 2975 return -EINVAL; 2976 2977 ksm_use_zero_pages = value; 2978 2979 return count; 2980 } 2981 KSM_ATTR(use_zero_pages); 2982 2983 static ssize_t max_page_sharing_show(struct kobject *kobj, 2984 struct kobj_attribute *attr, char *buf) 2985 { 2986 return sprintf(buf, "%u\n", ksm_max_page_sharing); 2987 } 2988 2989 static ssize_t max_page_sharing_store(struct kobject *kobj, 2990 struct kobj_attribute *attr, 2991 const char *buf, size_t count) 2992 { 2993 int err; 2994 int knob; 2995 2996 err = kstrtoint(buf, 10, &knob); 2997 if (err) 2998 return err; 2999 /* 3000 * When a KSM page is created it is shared by 2 mappings. This 3001 * being a signed comparison, it implicitly verifies it's not 3002 * negative. 3003 */ 3004 if (knob < 2) 3005 return -EINVAL; 3006 3007 if (READ_ONCE(ksm_max_page_sharing) == knob) 3008 return count; 3009 3010 mutex_lock(&ksm_thread_mutex); 3011 wait_while_offlining(); 3012 if (ksm_max_page_sharing != knob) { 3013 if (ksm_pages_shared || remove_all_stable_nodes()) 3014 err = -EBUSY; 3015 else 3016 ksm_max_page_sharing = knob; 3017 } 3018 mutex_unlock(&ksm_thread_mutex); 3019 3020 return err ? err : count; 3021 } 3022 KSM_ATTR(max_page_sharing); 3023 3024 static ssize_t pages_shared_show(struct kobject *kobj, 3025 struct kobj_attribute *attr, char *buf) 3026 { 3027 return sprintf(buf, "%lu\n", ksm_pages_shared); 3028 } 3029 KSM_ATTR_RO(pages_shared); 3030 3031 static ssize_t pages_sharing_show(struct kobject *kobj, 3032 struct kobj_attribute *attr, char *buf) 3033 { 3034 return sprintf(buf, "%lu\n", ksm_pages_sharing); 3035 } 3036 KSM_ATTR_RO(pages_sharing); 3037 3038 static ssize_t pages_unshared_show(struct kobject *kobj, 3039 struct kobj_attribute *attr, char *buf) 3040 { 3041 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3042 } 3043 KSM_ATTR_RO(pages_unshared); 3044 3045 static ssize_t pages_volatile_show(struct kobject *kobj, 3046 struct kobj_attribute *attr, char *buf) 3047 { 3048 long ksm_pages_volatile; 3049 3050 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3051 - ksm_pages_sharing - ksm_pages_unshared; 3052 /* 3053 * It was not worth any locking to calculate that statistic, 3054 * but it might therefore sometimes be negative: conceal that. 3055 */ 3056 if (ksm_pages_volatile < 0) 3057 ksm_pages_volatile = 0; 3058 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3059 } 3060 KSM_ATTR_RO(pages_volatile); 3061 3062 static ssize_t stable_node_dups_show(struct kobject *kobj, 3063 struct kobj_attribute *attr, char *buf) 3064 { 3065 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3066 } 3067 KSM_ATTR_RO(stable_node_dups); 3068 3069 static ssize_t stable_node_chains_show(struct kobject *kobj, 3070 struct kobj_attribute *attr, char *buf) 3071 { 3072 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3073 } 3074 KSM_ATTR_RO(stable_node_chains); 3075 3076 static ssize_t 3077 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3078 struct kobj_attribute *attr, 3079 char *buf) 3080 { 3081 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3082 } 3083 3084 static ssize_t 3085 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3086 struct kobj_attribute *attr, 3087 const char *buf, size_t count) 3088 { 3089 unsigned long msecs; 3090 int err; 3091 3092 err = kstrtoul(buf, 10, &msecs); 3093 if (err || msecs > UINT_MAX) 3094 return -EINVAL; 3095 3096 ksm_stable_node_chains_prune_millisecs = msecs; 3097 3098 return count; 3099 } 3100 KSM_ATTR(stable_node_chains_prune_millisecs); 3101 3102 static ssize_t full_scans_show(struct kobject *kobj, 3103 struct kobj_attribute *attr, char *buf) 3104 { 3105 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3106 } 3107 KSM_ATTR_RO(full_scans); 3108 3109 static struct attribute *ksm_attrs[] = { 3110 &sleep_millisecs_attr.attr, 3111 &pages_to_scan_attr.attr, 3112 &run_attr.attr, 3113 &pages_shared_attr.attr, 3114 &pages_sharing_attr.attr, 3115 &pages_unshared_attr.attr, 3116 &pages_volatile_attr.attr, 3117 &full_scans_attr.attr, 3118 #ifdef CONFIG_NUMA 3119 &merge_across_nodes_attr.attr, 3120 #endif 3121 &max_page_sharing_attr.attr, 3122 &stable_node_chains_attr.attr, 3123 &stable_node_dups_attr.attr, 3124 &stable_node_chains_prune_millisecs_attr.attr, 3125 &use_zero_pages_attr.attr, 3126 NULL, 3127 }; 3128 3129 static const struct attribute_group ksm_attr_group = { 3130 .attrs = ksm_attrs, 3131 .name = "ksm", 3132 }; 3133 #endif /* CONFIG_SYSFS */ 3134 3135 static int __init ksm_init(void) 3136 { 3137 struct task_struct *ksm_thread; 3138 int err; 3139 3140 /* The correct value depends on page size and endianness */ 3141 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3142 /* Default to false for backwards compatibility */ 3143 ksm_use_zero_pages = false; 3144 3145 err = ksm_slab_init(); 3146 if (err) 3147 goto out; 3148 3149 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3150 if (IS_ERR(ksm_thread)) { 3151 pr_err("ksm: creating kthread failed\n"); 3152 err = PTR_ERR(ksm_thread); 3153 goto out_free; 3154 } 3155 3156 #ifdef CONFIG_SYSFS 3157 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3158 if (err) { 3159 pr_err("ksm: register sysfs failed\n"); 3160 kthread_stop(ksm_thread); 3161 goto out_free; 3162 } 3163 #else 3164 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3165 3166 #endif /* CONFIG_SYSFS */ 3167 3168 #ifdef CONFIG_MEMORY_HOTREMOVE 3169 /* There is no significance to this priority 100 */ 3170 hotplug_memory_notifier(ksm_memory_callback, 100); 3171 #endif 3172 return 0; 3173 3174 out_free: 3175 ksm_slab_free(); 3176 out: 3177 return err; 3178 } 3179 subsys_initcall(ksm_init); 3180