xref: /openbmc/linux/mm/ksm.c (revision 96c63fa7393d0a346acfe5a91e0c7d4c7782641b)
1  /*
2   * Memory merging support.
3   *
4   * This code enables dynamic sharing of identical pages found in different
5   * memory areas, even if they are not shared by fork()
6   *
7   * Copyright (C) 2008-2009 Red Hat, Inc.
8   * Authors:
9   *	Izik Eidus
10   *	Andrea Arcangeli
11   *	Chris Wright
12   *	Hugh Dickins
13   *
14   * This work is licensed under the terms of the GNU GPL, version 2.
15   */
16  
17  #include <linux/errno.h>
18  #include <linux/mm.h>
19  #include <linux/fs.h>
20  #include <linux/mman.h>
21  #include <linux/sched.h>
22  #include <linux/rwsem.h>
23  #include <linux/pagemap.h>
24  #include <linux/rmap.h>
25  #include <linux/spinlock.h>
26  #include <linux/jhash.h>
27  #include <linux/delay.h>
28  #include <linux/kthread.h>
29  #include <linux/wait.h>
30  #include <linux/slab.h>
31  #include <linux/rbtree.h>
32  #include <linux/memory.h>
33  #include <linux/mmu_notifier.h>
34  #include <linux/swap.h>
35  #include <linux/ksm.h>
36  #include <linux/hashtable.h>
37  #include <linux/freezer.h>
38  #include <linux/oom.h>
39  #include <linux/numa.h>
40  
41  #include <asm/tlbflush.h>
42  #include "internal.h"
43  
44  #ifdef CONFIG_NUMA
45  #define NUMA(x)		(x)
46  #define DO_NUMA(x)	do { (x); } while (0)
47  #else
48  #define NUMA(x)		(0)
49  #define DO_NUMA(x)	do { } while (0)
50  #endif
51  
52  /*
53   * A few notes about the KSM scanning process,
54   * to make it easier to understand the data structures below:
55   *
56   * In order to reduce excessive scanning, KSM sorts the memory pages by their
57   * contents into a data structure that holds pointers to the pages' locations.
58   *
59   * Since the contents of the pages may change at any moment, KSM cannot just
60   * insert the pages into a normal sorted tree and expect it to find anything.
61   * Therefore KSM uses two data structures - the stable and the unstable tree.
62   *
63   * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64   * by their contents.  Because each such page is write-protected, searching on
65   * this tree is fully assured to be working (except when pages are unmapped),
66   * and therefore this tree is called the stable tree.
67   *
68   * In addition to the stable tree, KSM uses a second data structure called the
69   * unstable tree: this tree holds pointers to pages which have been found to
70   * be "unchanged for a period of time".  The unstable tree sorts these pages
71   * by their contents, but since they are not write-protected, KSM cannot rely
72   * upon the unstable tree to work correctly - the unstable tree is liable to
73   * be corrupted as its contents are modified, and so it is called unstable.
74   *
75   * KSM solves this problem by several techniques:
76   *
77   * 1) The unstable tree is flushed every time KSM completes scanning all
78   *    memory areas, and then the tree is rebuilt again from the beginning.
79   * 2) KSM will only insert into the unstable tree, pages whose hash value
80   *    has not changed since the previous scan of all memory areas.
81   * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82   *    colors of the nodes and not on their contents, assuring that even when
83   *    the tree gets "corrupted" it won't get out of balance, so scanning time
84   *    remains the same (also, searching and inserting nodes in an rbtree uses
85   *    the same algorithm, so we have no overhead when we flush and rebuild).
86   * 4) KSM never flushes the stable tree, which means that even if it were to
87   *    take 10 attempts to find a page in the unstable tree, once it is found,
88   *    it is secured in the stable tree.  (When we scan a new page, we first
89   *    compare it against the stable tree, and then against the unstable tree.)
90   *
91   * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92   * stable trees and multiple unstable trees: one of each for each NUMA node.
93   */
94  
95  /**
96   * struct mm_slot - ksm information per mm that is being scanned
97   * @link: link to the mm_slots hash list
98   * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99   * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100   * @mm: the mm that this information is valid for
101   */
102  struct mm_slot {
103  	struct hlist_node link;
104  	struct list_head mm_list;
105  	struct rmap_item *rmap_list;
106  	struct mm_struct *mm;
107  };
108  
109  /**
110   * struct ksm_scan - cursor for scanning
111   * @mm_slot: the current mm_slot we are scanning
112   * @address: the next address inside that to be scanned
113   * @rmap_list: link to the next rmap to be scanned in the rmap_list
114   * @seqnr: count of completed full scans (needed when removing unstable node)
115   *
116   * There is only the one ksm_scan instance of this cursor structure.
117   */
118  struct ksm_scan {
119  	struct mm_slot *mm_slot;
120  	unsigned long address;
121  	struct rmap_item **rmap_list;
122  	unsigned long seqnr;
123  };
124  
125  /**
126   * struct stable_node - node of the stable rbtree
127   * @node: rb node of this ksm page in the stable tree
128   * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129   * @list: linked into migrate_nodes, pending placement in the proper node tree
130   * @hlist: hlist head of rmap_items using this ksm page
131   * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132   * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133   */
134  struct stable_node {
135  	union {
136  		struct rb_node node;	/* when node of stable tree */
137  		struct {		/* when listed for migration */
138  			struct list_head *head;
139  			struct list_head list;
140  		};
141  	};
142  	struct hlist_head hlist;
143  	unsigned long kpfn;
144  #ifdef CONFIG_NUMA
145  	int nid;
146  #endif
147  };
148  
149  /**
150   * struct rmap_item - reverse mapping item for virtual addresses
151   * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152   * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153   * @nid: NUMA node id of unstable tree in which linked (may not match page)
154   * @mm: the memory structure this rmap_item is pointing into
155   * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156   * @oldchecksum: previous checksum of the page at that virtual address
157   * @node: rb node of this rmap_item in the unstable tree
158   * @head: pointer to stable_node heading this list in the stable tree
159   * @hlist: link into hlist of rmap_items hanging off that stable_node
160   */
161  struct rmap_item {
162  	struct rmap_item *rmap_list;
163  	union {
164  		struct anon_vma *anon_vma;	/* when stable */
165  #ifdef CONFIG_NUMA
166  		int nid;		/* when node of unstable tree */
167  #endif
168  	};
169  	struct mm_struct *mm;
170  	unsigned long address;		/* + low bits used for flags below */
171  	unsigned int oldchecksum;	/* when unstable */
172  	union {
173  		struct rb_node node;	/* when node of unstable tree */
174  		struct {		/* when listed from stable tree */
175  			struct stable_node *head;
176  			struct hlist_node hlist;
177  		};
178  	};
179  };
180  
181  #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182  #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183  #define STABLE_FLAG	0x200	/* is listed from the stable tree */
184  
185  /* The stable and unstable tree heads */
186  static struct rb_root one_stable_tree[1] = { RB_ROOT };
187  static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188  static struct rb_root *root_stable_tree = one_stable_tree;
189  static struct rb_root *root_unstable_tree = one_unstable_tree;
190  
191  /* Recently migrated nodes of stable tree, pending proper placement */
192  static LIST_HEAD(migrate_nodes);
193  
194  #define MM_SLOTS_HASH_BITS 10
195  static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196  
197  static struct mm_slot ksm_mm_head = {
198  	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199  };
200  static struct ksm_scan ksm_scan = {
201  	.mm_slot = &ksm_mm_head,
202  };
203  
204  static struct kmem_cache *rmap_item_cache;
205  static struct kmem_cache *stable_node_cache;
206  static struct kmem_cache *mm_slot_cache;
207  
208  /* The number of nodes in the stable tree */
209  static unsigned long ksm_pages_shared;
210  
211  /* The number of page slots additionally sharing those nodes */
212  static unsigned long ksm_pages_sharing;
213  
214  /* The number of nodes in the unstable tree */
215  static unsigned long ksm_pages_unshared;
216  
217  /* The number of rmap_items in use: to calculate pages_volatile */
218  static unsigned long ksm_rmap_items;
219  
220  /* Number of pages ksmd should scan in one batch */
221  static unsigned int ksm_thread_pages_to_scan = 100;
222  
223  /* Milliseconds ksmd should sleep between batches */
224  static unsigned int ksm_thread_sleep_millisecs = 20;
225  
226  #ifdef CONFIG_NUMA
227  /* Zeroed when merging across nodes is not allowed */
228  static unsigned int ksm_merge_across_nodes = 1;
229  static int ksm_nr_node_ids = 1;
230  #else
231  #define ksm_merge_across_nodes	1U
232  #define ksm_nr_node_ids		1
233  #endif
234  
235  #define KSM_RUN_STOP	0
236  #define KSM_RUN_MERGE	1
237  #define KSM_RUN_UNMERGE	2
238  #define KSM_RUN_OFFLINE	4
239  static unsigned long ksm_run = KSM_RUN_STOP;
240  static void wait_while_offlining(void);
241  
242  static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243  static DEFINE_MUTEX(ksm_thread_mutex);
244  static DEFINE_SPINLOCK(ksm_mmlist_lock);
245  
246  #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247  		sizeof(struct __struct), __alignof__(struct __struct),\
248  		(__flags), NULL)
249  
250  static int __init ksm_slab_init(void)
251  {
252  	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253  	if (!rmap_item_cache)
254  		goto out;
255  
256  	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257  	if (!stable_node_cache)
258  		goto out_free1;
259  
260  	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261  	if (!mm_slot_cache)
262  		goto out_free2;
263  
264  	return 0;
265  
266  out_free2:
267  	kmem_cache_destroy(stable_node_cache);
268  out_free1:
269  	kmem_cache_destroy(rmap_item_cache);
270  out:
271  	return -ENOMEM;
272  }
273  
274  static void __init ksm_slab_free(void)
275  {
276  	kmem_cache_destroy(mm_slot_cache);
277  	kmem_cache_destroy(stable_node_cache);
278  	kmem_cache_destroy(rmap_item_cache);
279  	mm_slot_cache = NULL;
280  }
281  
282  static inline struct rmap_item *alloc_rmap_item(void)
283  {
284  	struct rmap_item *rmap_item;
285  
286  	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287  	if (rmap_item)
288  		ksm_rmap_items++;
289  	return rmap_item;
290  }
291  
292  static inline void free_rmap_item(struct rmap_item *rmap_item)
293  {
294  	ksm_rmap_items--;
295  	rmap_item->mm = NULL;	/* debug safety */
296  	kmem_cache_free(rmap_item_cache, rmap_item);
297  }
298  
299  static inline struct stable_node *alloc_stable_node(void)
300  {
301  	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302  }
303  
304  static inline void free_stable_node(struct stable_node *stable_node)
305  {
306  	kmem_cache_free(stable_node_cache, stable_node);
307  }
308  
309  static inline struct mm_slot *alloc_mm_slot(void)
310  {
311  	if (!mm_slot_cache)	/* initialization failed */
312  		return NULL;
313  	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314  }
315  
316  static inline void free_mm_slot(struct mm_slot *mm_slot)
317  {
318  	kmem_cache_free(mm_slot_cache, mm_slot);
319  }
320  
321  static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322  {
323  	struct mm_slot *slot;
324  
325  	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326  		if (slot->mm == mm)
327  			return slot;
328  
329  	return NULL;
330  }
331  
332  static void insert_to_mm_slots_hash(struct mm_struct *mm,
333  				    struct mm_slot *mm_slot)
334  {
335  	mm_slot->mm = mm;
336  	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337  }
338  
339  /*
340   * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341   * page tables after it has passed through ksm_exit() - which, if necessary,
342   * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343   * a special flag: they can just back out as soon as mm_users goes to zero.
344   * ksm_test_exit() is used throughout to make this test for exit: in some
345   * places for correctness, in some places just to avoid unnecessary work.
346   */
347  static inline bool ksm_test_exit(struct mm_struct *mm)
348  {
349  	return atomic_read(&mm->mm_users) == 0;
350  }
351  
352  /*
353   * We use break_ksm to break COW on a ksm page: it's a stripped down
354   *
355   *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
356   *		put_page(page);
357   *
358   * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359   * in case the application has unmapped and remapped mm,addr meanwhile.
360   * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361   * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362   *
363   * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
364   * of the process that owns 'vma'.  We also do not want to enforce
365   * protection keys here anyway.
366   */
367  static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
368  {
369  	struct page *page;
370  	int ret = 0;
371  
372  	do {
373  		cond_resched();
374  		page = follow_page(vma, addr,
375  				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
376  		if (IS_ERR_OR_NULL(page))
377  			break;
378  		if (PageKsm(page))
379  			ret = handle_mm_fault(vma->vm_mm, vma, addr,
380  							FAULT_FLAG_WRITE |
381  							FAULT_FLAG_REMOTE);
382  		else
383  			ret = VM_FAULT_WRITE;
384  		put_page(page);
385  	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
386  	/*
387  	 * We must loop because handle_mm_fault() may back out if there's
388  	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
389  	 *
390  	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
391  	 * COW has been broken, even if the vma does not permit VM_WRITE;
392  	 * but note that a concurrent fault might break PageKsm for us.
393  	 *
394  	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
395  	 * backing file, which also invalidates anonymous pages: that's
396  	 * okay, that truncation will have unmapped the PageKsm for us.
397  	 *
398  	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
399  	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
400  	 * current task has TIF_MEMDIE set, and will be OOM killed on return
401  	 * to user; and ksmd, having no mm, would never be chosen for that.
402  	 *
403  	 * But if the mm is in a limited mem_cgroup, then the fault may fail
404  	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
405  	 * even ksmd can fail in this way - though it's usually breaking ksm
406  	 * just to undo a merge it made a moment before, so unlikely to oom.
407  	 *
408  	 * That's a pity: we might therefore have more kernel pages allocated
409  	 * than we're counting as nodes in the stable tree; but ksm_do_scan
410  	 * will retry to break_cow on each pass, so should recover the page
411  	 * in due course.  The important thing is to not let VM_MERGEABLE
412  	 * be cleared while any such pages might remain in the area.
413  	 */
414  	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
415  }
416  
417  static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
418  		unsigned long addr)
419  {
420  	struct vm_area_struct *vma;
421  	if (ksm_test_exit(mm))
422  		return NULL;
423  	vma = find_vma(mm, addr);
424  	if (!vma || vma->vm_start > addr)
425  		return NULL;
426  	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
427  		return NULL;
428  	return vma;
429  }
430  
431  static void break_cow(struct rmap_item *rmap_item)
432  {
433  	struct mm_struct *mm = rmap_item->mm;
434  	unsigned long addr = rmap_item->address;
435  	struct vm_area_struct *vma;
436  
437  	/*
438  	 * It is not an accident that whenever we want to break COW
439  	 * to undo, we also need to drop a reference to the anon_vma.
440  	 */
441  	put_anon_vma(rmap_item->anon_vma);
442  
443  	down_read(&mm->mmap_sem);
444  	vma = find_mergeable_vma(mm, addr);
445  	if (vma)
446  		break_ksm(vma, addr);
447  	up_read(&mm->mmap_sem);
448  }
449  
450  static struct page *get_mergeable_page(struct rmap_item *rmap_item)
451  {
452  	struct mm_struct *mm = rmap_item->mm;
453  	unsigned long addr = rmap_item->address;
454  	struct vm_area_struct *vma;
455  	struct page *page;
456  
457  	down_read(&mm->mmap_sem);
458  	vma = find_mergeable_vma(mm, addr);
459  	if (!vma)
460  		goto out;
461  
462  	page = follow_page(vma, addr, FOLL_GET);
463  	if (IS_ERR_OR_NULL(page))
464  		goto out;
465  	if (PageAnon(page)) {
466  		flush_anon_page(vma, page, addr);
467  		flush_dcache_page(page);
468  	} else {
469  		put_page(page);
470  out:
471  		page = NULL;
472  	}
473  	up_read(&mm->mmap_sem);
474  	return page;
475  }
476  
477  /*
478   * This helper is used for getting right index into array of tree roots.
479   * When merge_across_nodes knob is set to 1, there are only two rb-trees for
480   * stable and unstable pages from all nodes with roots in index 0. Otherwise,
481   * every node has its own stable and unstable tree.
482   */
483  static inline int get_kpfn_nid(unsigned long kpfn)
484  {
485  	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
486  }
487  
488  static void remove_node_from_stable_tree(struct stable_node *stable_node)
489  {
490  	struct rmap_item *rmap_item;
491  
492  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
493  		if (rmap_item->hlist.next)
494  			ksm_pages_sharing--;
495  		else
496  			ksm_pages_shared--;
497  		put_anon_vma(rmap_item->anon_vma);
498  		rmap_item->address &= PAGE_MASK;
499  		cond_resched();
500  	}
501  
502  	if (stable_node->head == &migrate_nodes)
503  		list_del(&stable_node->list);
504  	else
505  		rb_erase(&stable_node->node,
506  			 root_stable_tree + NUMA(stable_node->nid));
507  	free_stable_node(stable_node);
508  }
509  
510  /*
511   * get_ksm_page: checks if the page indicated by the stable node
512   * is still its ksm page, despite having held no reference to it.
513   * In which case we can trust the content of the page, and it
514   * returns the gotten page; but if the page has now been zapped,
515   * remove the stale node from the stable tree and return NULL.
516   * But beware, the stable node's page might be being migrated.
517   *
518   * You would expect the stable_node to hold a reference to the ksm page.
519   * But if it increments the page's count, swapping out has to wait for
520   * ksmd to come around again before it can free the page, which may take
521   * seconds or even minutes: much too unresponsive.  So instead we use a
522   * "keyhole reference": access to the ksm page from the stable node peeps
523   * out through its keyhole to see if that page still holds the right key,
524   * pointing back to this stable node.  This relies on freeing a PageAnon
525   * page to reset its page->mapping to NULL, and relies on no other use of
526   * a page to put something that might look like our key in page->mapping.
527   * is on its way to being freed; but it is an anomaly to bear in mind.
528   */
529  static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
530  {
531  	struct page *page;
532  	void *expected_mapping;
533  	unsigned long kpfn;
534  
535  	expected_mapping = (void *)stable_node +
536  				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
537  again:
538  	kpfn = READ_ONCE(stable_node->kpfn);
539  	page = pfn_to_page(kpfn);
540  
541  	/*
542  	 * page is computed from kpfn, so on most architectures reading
543  	 * page->mapping is naturally ordered after reading node->kpfn,
544  	 * but on Alpha we need to be more careful.
545  	 */
546  	smp_read_barrier_depends();
547  	if (READ_ONCE(page->mapping) != expected_mapping)
548  		goto stale;
549  
550  	/*
551  	 * We cannot do anything with the page while its refcount is 0.
552  	 * Usually 0 means free, or tail of a higher-order page: in which
553  	 * case this node is no longer referenced, and should be freed;
554  	 * however, it might mean that the page is under page_freeze_refs().
555  	 * The __remove_mapping() case is easy, again the node is now stale;
556  	 * but if page is swapcache in migrate_page_move_mapping(), it might
557  	 * still be our page, in which case it's essential to keep the node.
558  	 */
559  	while (!get_page_unless_zero(page)) {
560  		/*
561  		 * Another check for page->mapping != expected_mapping would
562  		 * work here too.  We have chosen the !PageSwapCache test to
563  		 * optimize the common case, when the page is or is about to
564  		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
565  		 * in the freeze_refs section of __remove_mapping(); but Anon
566  		 * page->mapping reset to NULL later, in free_pages_prepare().
567  		 */
568  		if (!PageSwapCache(page))
569  			goto stale;
570  		cpu_relax();
571  	}
572  
573  	if (READ_ONCE(page->mapping) != expected_mapping) {
574  		put_page(page);
575  		goto stale;
576  	}
577  
578  	if (lock_it) {
579  		lock_page(page);
580  		if (READ_ONCE(page->mapping) != expected_mapping) {
581  			unlock_page(page);
582  			put_page(page);
583  			goto stale;
584  		}
585  	}
586  	return page;
587  
588  stale:
589  	/*
590  	 * We come here from above when page->mapping or !PageSwapCache
591  	 * suggests that the node is stale; but it might be under migration.
592  	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
593  	 * before checking whether node->kpfn has been changed.
594  	 */
595  	smp_rmb();
596  	if (READ_ONCE(stable_node->kpfn) != kpfn)
597  		goto again;
598  	remove_node_from_stable_tree(stable_node);
599  	return NULL;
600  }
601  
602  /*
603   * Removing rmap_item from stable or unstable tree.
604   * This function will clean the information from the stable/unstable tree.
605   */
606  static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
607  {
608  	if (rmap_item->address & STABLE_FLAG) {
609  		struct stable_node *stable_node;
610  		struct page *page;
611  
612  		stable_node = rmap_item->head;
613  		page = get_ksm_page(stable_node, true);
614  		if (!page)
615  			goto out;
616  
617  		hlist_del(&rmap_item->hlist);
618  		unlock_page(page);
619  		put_page(page);
620  
621  		if (!hlist_empty(&stable_node->hlist))
622  			ksm_pages_sharing--;
623  		else
624  			ksm_pages_shared--;
625  
626  		put_anon_vma(rmap_item->anon_vma);
627  		rmap_item->address &= PAGE_MASK;
628  
629  	} else if (rmap_item->address & UNSTABLE_FLAG) {
630  		unsigned char age;
631  		/*
632  		 * Usually ksmd can and must skip the rb_erase, because
633  		 * root_unstable_tree was already reset to RB_ROOT.
634  		 * But be careful when an mm is exiting: do the rb_erase
635  		 * if this rmap_item was inserted by this scan, rather
636  		 * than left over from before.
637  		 */
638  		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
639  		BUG_ON(age > 1);
640  		if (!age)
641  			rb_erase(&rmap_item->node,
642  				 root_unstable_tree + NUMA(rmap_item->nid));
643  		ksm_pages_unshared--;
644  		rmap_item->address &= PAGE_MASK;
645  	}
646  out:
647  	cond_resched();		/* we're called from many long loops */
648  }
649  
650  static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
651  				       struct rmap_item **rmap_list)
652  {
653  	while (*rmap_list) {
654  		struct rmap_item *rmap_item = *rmap_list;
655  		*rmap_list = rmap_item->rmap_list;
656  		remove_rmap_item_from_tree(rmap_item);
657  		free_rmap_item(rmap_item);
658  	}
659  }
660  
661  /*
662   * Though it's very tempting to unmerge rmap_items from stable tree rather
663   * than check every pte of a given vma, the locking doesn't quite work for
664   * that - an rmap_item is assigned to the stable tree after inserting ksm
665   * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
666   * rmap_items from parent to child at fork time (so as not to waste time
667   * if exit comes before the next scan reaches it).
668   *
669   * Similarly, although we'd like to remove rmap_items (so updating counts
670   * and freeing memory) when unmerging an area, it's easier to leave that
671   * to the next pass of ksmd - consider, for example, how ksmd might be
672   * in cmp_and_merge_page on one of the rmap_items we would be removing.
673   */
674  static int unmerge_ksm_pages(struct vm_area_struct *vma,
675  			     unsigned long start, unsigned long end)
676  {
677  	unsigned long addr;
678  	int err = 0;
679  
680  	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
681  		if (ksm_test_exit(vma->vm_mm))
682  			break;
683  		if (signal_pending(current))
684  			err = -ERESTARTSYS;
685  		else
686  			err = break_ksm(vma, addr);
687  	}
688  	return err;
689  }
690  
691  #ifdef CONFIG_SYSFS
692  /*
693   * Only called through the sysfs control interface:
694   */
695  static int remove_stable_node(struct stable_node *stable_node)
696  {
697  	struct page *page;
698  	int err;
699  
700  	page = get_ksm_page(stable_node, true);
701  	if (!page) {
702  		/*
703  		 * get_ksm_page did remove_node_from_stable_tree itself.
704  		 */
705  		return 0;
706  	}
707  
708  	if (WARN_ON_ONCE(page_mapped(page))) {
709  		/*
710  		 * This should not happen: but if it does, just refuse to let
711  		 * merge_across_nodes be switched - there is no need to panic.
712  		 */
713  		err = -EBUSY;
714  	} else {
715  		/*
716  		 * The stable node did not yet appear stale to get_ksm_page(),
717  		 * since that allows for an unmapped ksm page to be recognized
718  		 * right up until it is freed; but the node is safe to remove.
719  		 * This page might be in a pagevec waiting to be freed,
720  		 * or it might be PageSwapCache (perhaps under writeback),
721  		 * or it might have been removed from swapcache a moment ago.
722  		 */
723  		set_page_stable_node(page, NULL);
724  		remove_node_from_stable_tree(stable_node);
725  		err = 0;
726  	}
727  
728  	unlock_page(page);
729  	put_page(page);
730  	return err;
731  }
732  
733  static int remove_all_stable_nodes(void)
734  {
735  	struct stable_node *stable_node, *next;
736  	int nid;
737  	int err = 0;
738  
739  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
740  		while (root_stable_tree[nid].rb_node) {
741  			stable_node = rb_entry(root_stable_tree[nid].rb_node,
742  						struct stable_node, node);
743  			if (remove_stable_node(stable_node)) {
744  				err = -EBUSY;
745  				break;	/* proceed to next nid */
746  			}
747  			cond_resched();
748  		}
749  	}
750  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
751  		if (remove_stable_node(stable_node))
752  			err = -EBUSY;
753  		cond_resched();
754  	}
755  	return err;
756  }
757  
758  static int unmerge_and_remove_all_rmap_items(void)
759  {
760  	struct mm_slot *mm_slot;
761  	struct mm_struct *mm;
762  	struct vm_area_struct *vma;
763  	int err = 0;
764  
765  	spin_lock(&ksm_mmlist_lock);
766  	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
767  						struct mm_slot, mm_list);
768  	spin_unlock(&ksm_mmlist_lock);
769  
770  	for (mm_slot = ksm_scan.mm_slot;
771  			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
772  		mm = mm_slot->mm;
773  		down_read(&mm->mmap_sem);
774  		for (vma = mm->mmap; vma; vma = vma->vm_next) {
775  			if (ksm_test_exit(mm))
776  				break;
777  			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
778  				continue;
779  			err = unmerge_ksm_pages(vma,
780  						vma->vm_start, vma->vm_end);
781  			if (err)
782  				goto error;
783  		}
784  
785  		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
786  		up_read(&mm->mmap_sem);
787  
788  		spin_lock(&ksm_mmlist_lock);
789  		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
790  						struct mm_slot, mm_list);
791  		if (ksm_test_exit(mm)) {
792  			hash_del(&mm_slot->link);
793  			list_del(&mm_slot->mm_list);
794  			spin_unlock(&ksm_mmlist_lock);
795  
796  			free_mm_slot(mm_slot);
797  			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
798  			mmdrop(mm);
799  		} else
800  			spin_unlock(&ksm_mmlist_lock);
801  	}
802  
803  	/* Clean up stable nodes, but don't worry if some are still busy */
804  	remove_all_stable_nodes();
805  	ksm_scan.seqnr = 0;
806  	return 0;
807  
808  error:
809  	up_read(&mm->mmap_sem);
810  	spin_lock(&ksm_mmlist_lock);
811  	ksm_scan.mm_slot = &ksm_mm_head;
812  	spin_unlock(&ksm_mmlist_lock);
813  	return err;
814  }
815  #endif /* CONFIG_SYSFS */
816  
817  static u32 calc_checksum(struct page *page)
818  {
819  	u32 checksum;
820  	void *addr = kmap_atomic(page);
821  	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
822  	kunmap_atomic(addr);
823  	return checksum;
824  }
825  
826  static int memcmp_pages(struct page *page1, struct page *page2)
827  {
828  	char *addr1, *addr2;
829  	int ret;
830  
831  	addr1 = kmap_atomic(page1);
832  	addr2 = kmap_atomic(page2);
833  	ret = memcmp(addr1, addr2, PAGE_SIZE);
834  	kunmap_atomic(addr2);
835  	kunmap_atomic(addr1);
836  	return ret;
837  }
838  
839  static inline int pages_identical(struct page *page1, struct page *page2)
840  {
841  	return !memcmp_pages(page1, page2);
842  }
843  
844  static int write_protect_page(struct vm_area_struct *vma, struct page *page,
845  			      pte_t *orig_pte)
846  {
847  	struct mm_struct *mm = vma->vm_mm;
848  	unsigned long addr;
849  	pte_t *ptep;
850  	spinlock_t *ptl;
851  	int swapped;
852  	int err = -EFAULT;
853  	unsigned long mmun_start;	/* For mmu_notifiers */
854  	unsigned long mmun_end;		/* For mmu_notifiers */
855  
856  	addr = page_address_in_vma(page, vma);
857  	if (addr == -EFAULT)
858  		goto out;
859  
860  	BUG_ON(PageTransCompound(page));
861  
862  	mmun_start = addr;
863  	mmun_end   = addr + PAGE_SIZE;
864  	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
865  
866  	ptep = page_check_address(page, mm, addr, &ptl, 0);
867  	if (!ptep)
868  		goto out_mn;
869  
870  	if (pte_write(*ptep) || pte_dirty(*ptep)) {
871  		pte_t entry;
872  
873  		swapped = PageSwapCache(page);
874  		flush_cache_page(vma, addr, page_to_pfn(page));
875  		/*
876  		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
877  		 * take any lock, therefore the check that we are going to make
878  		 * with the pagecount against the mapcount is racey and
879  		 * O_DIRECT can happen right after the check.
880  		 * So we clear the pte and flush the tlb before the check
881  		 * this assure us that no O_DIRECT can happen after the check
882  		 * or in the middle of the check.
883  		 */
884  		entry = ptep_clear_flush_notify(vma, addr, ptep);
885  		/*
886  		 * Check that no O_DIRECT or similar I/O is in progress on the
887  		 * page
888  		 */
889  		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
890  			set_pte_at(mm, addr, ptep, entry);
891  			goto out_unlock;
892  		}
893  		if (pte_dirty(entry))
894  			set_page_dirty(page);
895  		entry = pte_mkclean(pte_wrprotect(entry));
896  		set_pte_at_notify(mm, addr, ptep, entry);
897  	}
898  	*orig_pte = *ptep;
899  	err = 0;
900  
901  out_unlock:
902  	pte_unmap_unlock(ptep, ptl);
903  out_mn:
904  	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
905  out:
906  	return err;
907  }
908  
909  /**
910   * replace_page - replace page in vma by new ksm page
911   * @vma:      vma that holds the pte pointing to page
912   * @page:     the page we are replacing by kpage
913   * @kpage:    the ksm page we replace page by
914   * @orig_pte: the original value of the pte
915   *
916   * Returns 0 on success, -EFAULT on failure.
917   */
918  static int replace_page(struct vm_area_struct *vma, struct page *page,
919  			struct page *kpage, pte_t orig_pte)
920  {
921  	struct mm_struct *mm = vma->vm_mm;
922  	pmd_t *pmd;
923  	pte_t *ptep;
924  	spinlock_t *ptl;
925  	unsigned long addr;
926  	int err = -EFAULT;
927  	unsigned long mmun_start;	/* For mmu_notifiers */
928  	unsigned long mmun_end;		/* For mmu_notifiers */
929  
930  	addr = page_address_in_vma(page, vma);
931  	if (addr == -EFAULT)
932  		goto out;
933  
934  	pmd = mm_find_pmd(mm, addr);
935  	if (!pmd)
936  		goto out;
937  
938  	mmun_start = addr;
939  	mmun_end   = addr + PAGE_SIZE;
940  	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
941  
942  	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
943  	if (!pte_same(*ptep, orig_pte)) {
944  		pte_unmap_unlock(ptep, ptl);
945  		goto out_mn;
946  	}
947  
948  	get_page(kpage);
949  	page_add_anon_rmap(kpage, vma, addr, false);
950  
951  	flush_cache_page(vma, addr, pte_pfn(*ptep));
952  	ptep_clear_flush_notify(vma, addr, ptep);
953  	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
954  
955  	page_remove_rmap(page, false);
956  	if (!page_mapped(page))
957  		try_to_free_swap(page);
958  	put_page(page);
959  
960  	pte_unmap_unlock(ptep, ptl);
961  	err = 0;
962  out_mn:
963  	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
964  out:
965  	return err;
966  }
967  
968  /*
969   * try_to_merge_one_page - take two pages and merge them into one
970   * @vma: the vma that holds the pte pointing to page
971   * @page: the PageAnon page that we want to replace with kpage
972   * @kpage: the PageKsm page that we want to map instead of page,
973   *         or NULL the first time when we want to use page as kpage.
974   *
975   * This function returns 0 if the pages were merged, -EFAULT otherwise.
976   */
977  static int try_to_merge_one_page(struct vm_area_struct *vma,
978  				 struct page *page, struct page *kpage)
979  {
980  	pte_t orig_pte = __pte(0);
981  	int err = -EFAULT;
982  
983  	if (page == kpage)			/* ksm page forked */
984  		return 0;
985  
986  	if (!PageAnon(page))
987  		goto out;
988  
989  	/*
990  	 * We need the page lock to read a stable PageSwapCache in
991  	 * write_protect_page().  We use trylock_page() instead of
992  	 * lock_page() because we don't want to wait here - we
993  	 * prefer to continue scanning and merging different pages,
994  	 * then come back to this page when it is unlocked.
995  	 */
996  	if (!trylock_page(page))
997  		goto out;
998  
999  	if (PageTransCompound(page)) {
1000  		err = split_huge_page(page);
1001  		if (err)
1002  			goto out_unlock;
1003  	}
1004  
1005  	/*
1006  	 * If this anonymous page is mapped only here, its pte may need
1007  	 * to be write-protected.  If it's mapped elsewhere, all of its
1008  	 * ptes are necessarily already write-protected.  But in either
1009  	 * case, we need to lock and check page_count is not raised.
1010  	 */
1011  	if (write_protect_page(vma, page, &orig_pte) == 0) {
1012  		if (!kpage) {
1013  			/*
1014  			 * While we hold page lock, upgrade page from
1015  			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1016  			 * stable_tree_insert() will update stable_node.
1017  			 */
1018  			set_page_stable_node(page, NULL);
1019  			mark_page_accessed(page);
1020  			/*
1021  			 * Page reclaim just frees a clean page with no dirty
1022  			 * ptes: make sure that the ksm page would be swapped.
1023  			 */
1024  			if (!PageDirty(page))
1025  				SetPageDirty(page);
1026  			err = 0;
1027  		} else if (pages_identical(page, kpage))
1028  			err = replace_page(vma, page, kpage, orig_pte);
1029  	}
1030  
1031  	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1032  		munlock_vma_page(page);
1033  		if (!PageMlocked(kpage)) {
1034  			unlock_page(page);
1035  			lock_page(kpage);
1036  			mlock_vma_page(kpage);
1037  			page = kpage;		/* for final unlock */
1038  		}
1039  	}
1040  
1041  out_unlock:
1042  	unlock_page(page);
1043  out:
1044  	return err;
1045  }
1046  
1047  /*
1048   * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1049   * but no new kernel page is allocated: kpage must already be a ksm page.
1050   *
1051   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1052   */
1053  static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1054  				      struct page *page, struct page *kpage)
1055  {
1056  	struct mm_struct *mm = rmap_item->mm;
1057  	struct vm_area_struct *vma;
1058  	int err = -EFAULT;
1059  
1060  	down_read(&mm->mmap_sem);
1061  	vma = find_mergeable_vma(mm, rmap_item->address);
1062  	if (!vma)
1063  		goto out;
1064  
1065  	err = try_to_merge_one_page(vma, page, kpage);
1066  	if (err)
1067  		goto out;
1068  
1069  	/* Unstable nid is in union with stable anon_vma: remove first */
1070  	remove_rmap_item_from_tree(rmap_item);
1071  
1072  	/* Must get reference to anon_vma while still holding mmap_sem */
1073  	rmap_item->anon_vma = vma->anon_vma;
1074  	get_anon_vma(vma->anon_vma);
1075  out:
1076  	up_read(&mm->mmap_sem);
1077  	return err;
1078  }
1079  
1080  /*
1081   * try_to_merge_two_pages - take two identical pages and prepare them
1082   * to be merged into one page.
1083   *
1084   * This function returns the kpage if we successfully merged two identical
1085   * pages into one ksm page, NULL otherwise.
1086   *
1087   * Note that this function upgrades page to ksm page: if one of the pages
1088   * is already a ksm page, try_to_merge_with_ksm_page should be used.
1089   */
1090  static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1091  					   struct page *page,
1092  					   struct rmap_item *tree_rmap_item,
1093  					   struct page *tree_page)
1094  {
1095  	int err;
1096  
1097  	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1098  	if (!err) {
1099  		err = try_to_merge_with_ksm_page(tree_rmap_item,
1100  							tree_page, page);
1101  		/*
1102  		 * If that fails, we have a ksm page with only one pte
1103  		 * pointing to it: so break it.
1104  		 */
1105  		if (err)
1106  			break_cow(rmap_item);
1107  	}
1108  	return err ? NULL : page;
1109  }
1110  
1111  /*
1112   * stable_tree_search - search for page inside the stable tree
1113   *
1114   * This function checks if there is a page inside the stable tree
1115   * with identical content to the page that we are scanning right now.
1116   *
1117   * This function returns the stable tree node of identical content if found,
1118   * NULL otherwise.
1119   */
1120  static struct page *stable_tree_search(struct page *page)
1121  {
1122  	int nid;
1123  	struct rb_root *root;
1124  	struct rb_node **new;
1125  	struct rb_node *parent;
1126  	struct stable_node *stable_node;
1127  	struct stable_node *page_node;
1128  
1129  	page_node = page_stable_node(page);
1130  	if (page_node && page_node->head != &migrate_nodes) {
1131  		/* ksm page forked */
1132  		get_page(page);
1133  		return page;
1134  	}
1135  
1136  	nid = get_kpfn_nid(page_to_pfn(page));
1137  	root = root_stable_tree + nid;
1138  again:
1139  	new = &root->rb_node;
1140  	parent = NULL;
1141  
1142  	while (*new) {
1143  		struct page *tree_page;
1144  		int ret;
1145  
1146  		cond_resched();
1147  		stable_node = rb_entry(*new, struct stable_node, node);
1148  		tree_page = get_ksm_page(stable_node, false);
1149  		if (!tree_page) {
1150  			/*
1151  			 * If we walked over a stale stable_node,
1152  			 * get_ksm_page() will call rb_erase() and it
1153  			 * may rebalance the tree from under us. So
1154  			 * restart the search from scratch. Returning
1155  			 * NULL would be safe too, but we'd generate
1156  			 * false negative insertions just because some
1157  			 * stable_node was stale.
1158  			 */
1159  			goto again;
1160  		}
1161  
1162  		ret = memcmp_pages(page, tree_page);
1163  		put_page(tree_page);
1164  
1165  		parent = *new;
1166  		if (ret < 0)
1167  			new = &parent->rb_left;
1168  		else if (ret > 0)
1169  			new = &parent->rb_right;
1170  		else {
1171  			/*
1172  			 * Lock and unlock the stable_node's page (which
1173  			 * might already have been migrated) so that page
1174  			 * migration is sure to notice its raised count.
1175  			 * It would be more elegant to return stable_node
1176  			 * than kpage, but that involves more changes.
1177  			 */
1178  			tree_page = get_ksm_page(stable_node, true);
1179  			if (tree_page) {
1180  				unlock_page(tree_page);
1181  				if (get_kpfn_nid(stable_node->kpfn) !=
1182  						NUMA(stable_node->nid)) {
1183  					put_page(tree_page);
1184  					goto replace;
1185  				}
1186  				return tree_page;
1187  			}
1188  			/*
1189  			 * There is now a place for page_node, but the tree may
1190  			 * have been rebalanced, so re-evaluate parent and new.
1191  			 */
1192  			if (page_node)
1193  				goto again;
1194  			return NULL;
1195  		}
1196  	}
1197  
1198  	if (!page_node)
1199  		return NULL;
1200  
1201  	list_del(&page_node->list);
1202  	DO_NUMA(page_node->nid = nid);
1203  	rb_link_node(&page_node->node, parent, new);
1204  	rb_insert_color(&page_node->node, root);
1205  	get_page(page);
1206  	return page;
1207  
1208  replace:
1209  	if (page_node) {
1210  		list_del(&page_node->list);
1211  		DO_NUMA(page_node->nid = nid);
1212  		rb_replace_node(&stable_node->node, &page_node->node, root);
1213  		get_page(page);
1214  	} else {
1215  		rb_erase(&stable_node->node, root);
1216  		page = NULL;
1217  	}
1218  	stable_node->head = &migrate_nodes;
1219  	list_add(&stable_node->list, stable_node->head);
1220  	return page;
1221  }
1222  
1223  /*
1224   * stable_tree_insert - insert stable tree node pointing to new ksm page
1225   * into the stable tree.
1226   *
1227   * This function returns the stable tree node just allocated on success,
1228   * NULL otherwise.
1229   */
1230  static struct stable_node *stable_tree_insert(struct page *kpage)
1231  {
1232  	int nid;
1233  	unsigned long kpfn;
1234  	struct rb_root *root;
1235  	struct rb_node **new;
1236  	struct rb_node *parent;
1237  	struct stable_node *stable_node;
1238  
1239  	kpfn = page_to_pfn(kpage);
1240  	nid = get_kpfn_nid(kpfn);
1241  	root = root_stable_tree + nid;
1242  again:
1243  	parent = NULL;
1244  	new = &root->rb_node;
1245  
1246  	while (*new) {
1247  		struct page *tree_page;
1248  		int ret;
1249  
1250  		cond_resched();
1251  		stable_node = rb_entry(*new, struct stable_node, node);
1252  		tree_page = get_ksm_page(stable_node, false);
1253  		if (!tree_page) {
1254  			/*
1255  			 * If we walked over a stale stable_node,
1256  			 * get_ksm_page() will call rb_erase() and it
1257  			 * may rebalance the tree from under us. So
1258  			 * restart the search from scratch. Returning
1259  			 * NULL would be safe too, but we'd generate
1260  			 * false negative insertions just because some
1261  			 * stable_node was stale.
1262  			 */
1263  			goto again;
1264  		}
1265  
1266  		ret = memcmp_pages(kpage, tree_page);
1267  		put_page(tree_page);
1268  
1269  		parent = *new;
1270  		if (ret < 0)
1271  			new = &parent->rb_left;
1272  		else if (ret > 0)
1273  			new = &parent->rb_right;
1274  		else {
1275  			/*
1276  			 * It is not a bug that stable_tree_search() didn't
1277  			 * find this node: because at that time our page was
1278  			 * not yet write-protected, so may have changed since.
1279  			 */
1280  			return NULL;
1281  		}
1282  	}
1283  
1284  	stable_node = alloc_stable_node();
1285  	if (!stable_node)
1286  		return NULL;
1287  
1288  	INIT_HLIST_HEAD(&stable_node->hlist);
1289  	stable_node->kpfn = kpfn;
1290  	set_page_stable_node(kpage, stable_node);
1291  	DO_NUMA(stable_node->nid = nid);
1292  	rb_link_node(&stable_node->node, parent, new);
1293  	rb_insert_color(&stable_node->node, root);
1294  
1295  	return stable_node;
1296  }
1297  
1298  /*
1299   * unstable_tree_search_insert - search for identical page,
1300   * else insert rmap_item into the unstable tree.
1301   *
1302   * This function searches for a page in the unstable tree identical to the
1303   * page currently being scanned; and if no identical page is found in the
1304   * tree, we insert rmap_item as a new object into the unstable tree.
1305   *
1306   * This function returns pointer to rmap_item found to be identical
1307   * to the currently scanned page, NULL otherwise.
1308   *
1309   * This function does both searching and inserting, because they share
1310   * the same walking algorithm in an rbtree.
1311   */
1312  static
1313  struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1314  					      struct page *page,
1315  					      struct page **tree_pagep)
1316  {
1317  	struct rb_node **new;
1318  	struct rb_root *root;
1319  	struct rb_node *parent = NULL;
1320  	int nid;
1321  
1322  	nid = get_kpfn_nid(page_to_pfn(page));
1323  	root = root_unstable_tree + nid;
1324  	new = &root->rb_node;
1325  
1326  	while (*new) {
1327  		struct rmap_item *tree_rmap_item;
1328  		struct page *tree_page;
1329  		int ret;
1330  
1331  		cond_resched();
1332  		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1333  		tree_page = get_mergeable_page(tree_rmap_item);
1334  		if (!tree_page)
1335  			return NULL;
1336  
1337  		/*
1338  		 * Don't substitute a ksm page for a forked page.
1339  		 */
1340  		if (page == tree_page) {
1341  			put_page(tree_page);
1342  			return NULL;
1343  		}
1344  
1345  		ret = memcmp_pages(page, tree_page);
1346  
1347  		parent = *new;
1348  		if (ret < 0) {
1349  			put_page(tree_page);
1350  			new = &parent->rb_left;
1351  		} else if (ret > 0) {
1352  			put_page(tree_page);
1353  			new = &parent->rb_right;
1354  		} else if (!ksm_merge_across_nodes &&
1355  			   page_to_nid(tree_page) != nid) {
1356  			/*
1357  			 * If tree_page has been migrated to another NUMA node,
1358  			 * it will be flushed out and put in the right unstable
1359  			 * tree next time: only merge with it when across_nodes.
1360  			 */
1361  			put_page(tree_page);
1362  			return NULL;
1363  		} else {
1364  			*tree_pagep = tree_page;
1365  			return tree_rmap_item;
1366  		}
1367  	}
1368  
1369  	rmap_item->address |= UNSTABLE_FLAG;
1370  	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1371  	DO_NUMA(rmap_item->nid = nid);
1372  	rb_link_node(&rmap_item->node, parent, new);
1373  	rb_insert_color(&rmap_item->node, root);
1374  
1375  	ksm_pages_unshared++;
1376  	return NULL;
1377  }
1378  
1379  /*
1380   * stable_tree_append - add another rmap_item to the linked list of
1381   * rmap_items hanging off a given node of the stable tree, all sharing
1382   * the same ksm page.
1383   */
1384  static void stable_tree_append(struct rmap_item *rmap_item,
1385  			       struct stable_node *stable_node)
1386  {
1387  	rmap_item->head = stable_node;
1388  	rmap_item->address |= STABLE_FLAG;
1389  	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1390  
1391  	if (rmap_item->hlist.next)
1392  		ksm_pages_sharing++;
1393  	else
1394  		ksm_pages_shared++;
1395  }
1396  
1397  /*
1398   * cmp_and_merge_page - first see if page can be merged into the stable tree;
1399   * if not, compare checksum to previous and if it's the same, see if page can
1400   * be inserted into the unstable tree, or merged with a page already there and
1401   * both transferred to the stable tree.
1402   *
1403   * @page: the page that we are searching identical page to.
1404   * @rmap_item: the reverse mapping into the virtual address of this page
1405   */
1406  static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1407  {
1408  	struct rmap_item *tree_rmap_item;
1409  	struct page *tree_page = NULL;
1410  	struct stable_node *stable_node;
1411  	struct page *kpage;
1412  	unsigned int checksum;
1413  	int err;
1414  
1415  	stable_node = page_stable_node(page);
1416  	if (stable_node) {
1417  		if (stable_node->head != &migrate_nodes &&
1418  		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1419  			rb_erase(&stable_node->node,
1420  				 root_stable_tree + NUMA(stable_node->nid));
1421  			stable_node->head = &migrate_nodes;
1422  			list_add(&stable_node->list, stable_node->head);
1423  		}
1424  		if (stable_node->head != &migrate_nodes &&
1425  		    rmap_item->head == stable_node)
1426  			return;
1427  	}
1428  
1429  	/* We first start with searching the page inside the stable tree */
1430  	kpage = stable_tree_search(page);
1431  	if (kpage == page && rmap_item->head == stable_node) {
1432  		put_page(kpage);
1433  		return;
1434  	}
1435  
1436  	remove_rmap_item_from_tree(rmap_item);
1437  
1438  	if (kpage) {
1439  		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1440  		if (!err) {
1441  			/*
1442  			 * The page was successfully merged:
1443  			 * add its rmap_item to the stable tree.
1444  			 */
1445  			lock_page(kpage);
1446  			stable_tree_append(rmap_item, page_stable_node(kpage));
1447  			unlock_page(kpage);
1448  		}
1449  		put_page(kpage);
1450  		return;
1451  	}
1452  
1453  	/*
1454  	 * If the hash value of the page has changed from the last time
1455  	 * we calculated it, this page is changing frequently: therefore we
1456  	 * don't want to insert it in the unstable tree, and we don't want
1457  	 * to waste our time searching for something identical to it there.
1458  	 */
1459  	checksum = calc_checksum(page);
1460  	if (rmap_item->oldchecksum != checksum) {
1461  		rmap_item->oldchecksum = checksum;
1462  		return;
1463  	}
1464  
1465  	tree_rmap_item =
1466  		unstable_tree_search_insert(rmap_item, page, &tree_page);
1467  	if (tree_rmap_item) {
1468  		kpage = try_to_merge_two_pages(rmap_item, page,
1469  						tree_rmap_item, tree_page);
1470  		put_page(tree_page);
1471  		if (kpage) {
1472  			/*
1473  			 * The pages were successfully merged: insert new
1474  			 * node in the stable tree and add both rmap_items.
1475  			 */
1476  			lock_page(kpage);
1477  			stable_node = stable_tree_insert(kpage);
1478  			if (stable_node) {
1479  				stable_tree_append(tree_rmap_item, stable_node);
1480  				stable_tree_append(rmap_item, stable_node);
1481  			}
1482  			unlock_page(kpage);
1483  
1484  			/*
1485  			 * If we fail to insert the page into the stable tree,
1486  			 * we will have 2 virtual addresses that are pointing
1487  			 * to a ksm page left outside the stable tree,
1488  			 * in which case we need to break_cow on both.
1489  			 */
1490  			if (!stable_node) {
1491  				break_cow(tree_rmap_item);
1492  				break_cow(rmap_item);
1493  			}
1494  		}
1495  	}
1496  }
1497  
1498  static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1499  					    struct rmap_item **rmap_list,
1500  					    unsigned long addr)
1501  {
1502  	struct rmap_item *rmap_item;
1503  
1504  	while (*rmap_list) {
1505  		rmap_item = *rmap_list;
1506  		if ((rmap_item->address & PAGE_MASK) == addr)
1507  			return rmap_item;
1508  		if (rmap_item->address > addr)
1509  			break;
1510  		*rmap_list = rmap_item->rmap_list;
1511  		remove_rmap_item_from_tree(rmap_item);
1512  		free_rmap_item(rmap_item);
1513  	}
1514  
1515  	rmap_item = alloc_rmap_item();
1516  	if (rmap_item) {
1517  		/* It has already been zeroed */
1518  		rmap_item->mm = mm_slot->mm;
1519  		rmap_item->address = addr;
1520  		rmap_item->rmap_list = *rmap_list;
1521  		*rmap_list = rmap_item;
1522  	}
1523  	return rmap_item;
1524  }
1525  
1526  static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1527  {
1528  	struct mm_struct *mm;
1529  	struct mm_slot *slot;
1530  	struct vm_area_struct *vma;
1531  	struct rmap_item *rmap_item;
1532  	int nid;
1533  
1534  	if (list_empty(&ksm_mm_head.mm_list))
1535  		return NULL;
1536  
1537  	slot = ksm_scan.mm_slot;
1538  	if (slot == &ksm_mm_head) {
1539  		/*
1540  		 * A number of pages can hang around indefinitely on per-cpu
1541  		 * pagevecs, raised page count preventing write_protect_page
1542  		 * from merging them.  Though it doesn't really matter much,
1543  		 * it is puzzling to see some stuck in pages_volatile until
1544  		 * other activity jostles them out, and they also prevented
1545  		 * LTP's KSM test from succeeding deterministically; so drain
1546  		 * them here (here rather than on entry to ksm_do_scan(),
1547  		 * so we don't IPI too often when pages_to_scan is set low).
1548  		 */
1549  		lru_add_drain_all();
1550  
1551  		/*
1552  		 * Whereas stale stable_nodes on the stable_tree itself
1553  		 * get pruned in the regular course of stable_tree_search(),
1554  		 * those moved out to the migrate_nodes list can accumulate:
1555  		 * so prune them once before each full scan.
1556  		 */
1557  		if (!ksm_merge_across_nodes) {
1558  			struct stable_node *stable_node, *next;
1559  			struct page *page;
1560  
1561  			list_for_each_entry_safe(stable_node, next,
1562  						 &migrate_nodes, list) {
1563  				page = get_ksm_page(stable_node, false);
1564  				if (page)
1565  					put_page(page);
1566  				cond_resched();
1567  			}
1568  		}
1569  
1570  		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1571  			root_unstable_tree[nid] = RB_ROOT;
1572  
1573  		spin_lock(&ksm_mmlist_lock);
1574  		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1575  		ksm_scan.mm_slot = slot;
1576  		spin_unlock(&ksm_mmlist_lock);
1577  		/*
1578  		 * Although we tested list_empty() above, a racing __ksm_exit
1579  		 * of the last mm on the list may have removed it since then.
1580  		 */
1581  		if (slot == &ksm_mm_head)
1582  			return NULL;
1583  next_mm:
1584  		ksm_scan.address = 0;
1585  		ksm_scan.rmap_list = &slot->rmap_list;
1586  	}
1587  
1588  	mm = slot->mm;
1589  	down_read(&mm->mmap_sem);
1590  	if (ksm_test_exit(mm))
1591  		vma = NULL;
1592  	else
1593  		vma = find_vma(mm, ksm_scan.address);
1594  
1595  	for (; vma; vma = vma->vm_next) {
1596  		if (!(vma->vm_flags & VM_MERGEABLE))
1597  			continue;
1598  		if (ksm_scan.address < vma->vm_start)
1599  			ksm_scan.address = vma->vm_start;
1600  		if (!vma->anon_vma)
1601  			ksm_scan.address = vma->vm_end;
1602  
1603  		while (ksm_scan.address < vma->vm_end) {
1604  			if (ksm_test_exit(mm))
1605  				break;
1606  			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1607  			if (IS_ERR_OR_NULL(*page)) {
1608  				ksm_scan.address += PAGE_SIZE;
1609  				cond_resched();
1610  				continue;
1611  			}
1612  			if (PageAnon(*page)) {
1613  				flush_anon_page(vma, *page, ksm_scan.address);
1614  				flush_dcache_page(*page);
1615  				rmap_item = get_next_rmap_item(slot,
1616  					ksm_scan.rmap_list, ksm_scan.address);
1617  				if (rmap_item) {
1618  					ksm_scan.rmap_list =
1619  							&rmap_item->rmap_list;
1620  					ksm_scan.address += PAGE_SIZE;
1621  				} else
1622  					put_page(*page);
1623  				up_read(&mm->mmap_sem);
1624  				return rmap_item;
1625  			}
1626  			put_page(*page);
1627  			ksm_scan.address += PAGE_SIZE;
1628  			cond_resched();
1629  		}
1630  	}
1631  
1632  	if (ksm_test_exit(mm)) {
1633  		ksm_scan.address = 0;
1634  		ksm_scan.rmap_list = &slot->rmap_list;
1635  	}
1636  	/*
1637  	 * Nuke all the rmap_items that are above this current rmap:
1638  	 * because there were no VM_MERGEABLE vmas with such addresses.
1639  	 */
1640  	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1641  
1642  	spin_lock(&ksm_mmlist_lock);
1643  	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1644  						struct mm_slot, mm_list);
1645  	if (ksm_scan.address == 0) {
1646  		/*
1647  		 * We've completed a full scan of all vmas, holding mmap_sem
1648  		 * throughout, and found no VM_MERGEABLE: so do the same as
1649  		 * __ksm_exit does to remove this mm from all our lists now.
1650  		 * This applies either when cleaning up after __ksm_exit
1651  		 * (but beware: we can reach here even before __ksm_exit),
1652  		 * or when all VM_MERGEABLE areas have been unmapped (and
1653  		 * mmap_sem then protects against race with MADV_MERGEABLE).
1654  		 */
1655  		hash_del(&slot->link);
1656  		list_del(&slot->mm_list);
1657  		spin_unlock(&ksm_mmlist_lock);
1658  
1659  		free_mm_slot(slot);
1660  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1661  		up_read(&mm->mmap_sem);
1662  		mmdrop(mm);
1663  	} else {
1664  		up_read(&mm->mmap_sem);
1665  		/*
1666  		 * up_read(&mm->mmap_sem) first because after
1667  		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1668  		 * already have been freed under us by __ksm_exit()
1669  		 * because the "mm_slot" is still hashed and
1670  		 * ksm_scan.mm_slot doesn't point to it anymore.
1671  		 */
1672  		spin_unlock(&ksm_mmlist_lock);
1673  	}
1674  
1675  	/* Repeat until we've completed scanning the whole list */
1676  	slot = ksm_scan.mm_slot;
1677  	if (slot != &ksm_mm_head)
1678  		goto next_mm;
1679  
1680  	ksm_scan.seqnr++;
1681  	return NULL;
1682  }
1683  
1684  /**
1685   * ksm_do_scan  - the ksm scanner main worker function.
1686   * @scan_npages - number of pages we want to scan before we return.
1687   */
1688  static void ksm_do_scan(unsigned int scan_npages)
1689  {
1690  	struct rmap_item *rmap_item;
1691  	struct page *uninitialized_var(page);
1692  
1693  	while (scan_npages-- && likely(!freezing(current))) {
1694  		cond_resched();
1695  		rmap_item = scan_get_next_rmap_item(&page);
1696  		if (!rmap_item)
1697  			return;
1698  		cmp_and_merge_page(page, rmap_item);
1699  		put_page(page);
1700  	}
1701  }
1702  
1703  static int ksmd_should_run(void)
1704  {
1705  	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1706  }
1707  
1708  static int ksm_scan_thread(void *nothing)
1709  {
1710  	set_freezable();
1711  	set_user_nice(current, 5);
1712  
1713  	while (!kthread_should_stop()) {
1714  		mutex_lock(&ksm_thread_mutex);
1715  		wait_while_offlining();
1716  		if (ksmd_should_run())
1717  			ksm_do_scan(ksm_thread_pages_to_scan);
1718  		mutex_unlock(&ksm_thread_mutex);
1719  
1720  		try_to_freeze();
1721  
1722  		if (ksmd_should_run()) {
1723  			schedule_timeout_interruptible(
1724  				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1725  		} else {
1726  			wait_event_freezable(ksm_thread_wait,
1727  				ksmd_should_run() || kthread_should_stop());
1728  		}
1729  	}
1730  	return 0;
1731  }
1732  
1733  int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1734  		unsigned long end, int advice, unsigned long *vm_flags)
1735  {
1736  	struct mm_struct *mm = vma->vm_mm;
1737  	int err;
1738  
1739  	switch (advice) {
1740  	case MADV_MERGEABLE:
1741  		/*
1742  		 * Be somewhat over-protective for now!
1743  		 */
1744  		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1745  				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1746  				 VM_HUGETLB | VM_MIXEDMAP))
1747  			return 0;		/* just ignore the advice */
1748  
1749  #ifdef VM_SAO
1750  		if (*vm_flags & VM_SAO)
1751  			return 0;
1752  #endif
1753  
1754  		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1755  			err = __ksm_enter(mm);
1756  			if (err)
1757  				return err;
1758  		}
1759  
1760  		*vm_flags |= VM_MERGEABLE;
1761  		break;
1762  
1763  	case MADV_UNMERGEABLE:
1764  		if (!(*vm_flags & VM_MERGEABLE))
1765  			return 0;		/* just ignore the advice */
1766  
1767  		if (vma->anon_vma) {
1768  			err = unmerge_ksm_pages(vma, start, end);
1769  			if (err)
1770  				return err;
1771  		}
1772  
1773  		*vm_flags &= ~VM_MERGEABLE;
1774  		break;
1775  	}
1776  
1777  	return 0;
1778  }
1779  
1780  int __ksm_enter(struct mm_struct *mm)
1781  {
1782  	struct mm_slot *mm_slot;
1783  	int needs_wakeup;
1784  
1785  	mm_slot = alloc_mm_slot();
1786  	if (!mm_slot)
1787  		return -ENOMEM;
1788  
1789  	/* Check ksm_run too?  Would need tighter locking */
1790  	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1791  
1792  	spin_lock(&ksm_mmlist_lock);
1793  	insert_to_mm_slots_hash(mm, mm_slot);
1794  	/*
1795  	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1796  	 * insert just behind the scanning cursor, to let the area settle
1797  	 * down a little; when fork is followed by immediate exec, we don't
1798  	 * want ksmd to waste time setting up and tearing down an rmap_list.
1799  	 *
1800  	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1801  	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1802  	 * missed: then we might as well insert at the end of the list.
1803  	 */
1804  	if (ksm_run & KSM_RUN_UNMERGE)
1805  		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1806  	else
1807  		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1808  	spin_unlock(&ksm_mmlist_lock);
1809  
1810  	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1811  	atomic_inc(&mm->mm_count);
1812  
1813  	if (needs_wakeup)
1814  		wake_up_interruptible(&ksm_thread_wait);
1815  
1816  	return 0;
1817  }
1818  
1819  void __ksm_exit(struct mm_struct *mm)
1820  {
1821  	struct mm_slot *mm_slot;
1822  	int easy_to_free = 0;
1823  
1824  	/*
1825  	 * This process is exiting: if it's straightforward (as is the
1826  	 * case when ksmd was never running), free mm_slot immediately.
1827  	 * But if it's at the cursor or has rmap_items linked to it, use
1828  	 * mmap_sem to synchronize with any break_cows before pagetables
1829  	 * are freed, and leave the mm_slot on the list for ksmd to free.
1830  	 * Beware: ksm may already have noticed it exiting and freed the slot.
1831  	 */
1832  
1833  	spin_lock(&ksm_mmlist_lock);
1834  	mm_slot = get_mm_slot(mm);
1835  	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1836  		if (!mm_slot->rmap_list) {
1837  			hash_del(&mm_slot->link);
1838  			list_del(&mm_slot->mm_list);
1839  			easy_to_free = 1;
1840  		} else {
1841  			list_move(&mm_slot->mm_list,
1842  				  &ksm_scan.mm_slot->mm_list);
1843  		}
1844  	}
1845  	spin_unlock(&ksm_mmlist_lock);
1846  
1847  	if (easy_to_free) {
1848  		free_mm_slot(mm_slot);
1849  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1850  		mmdrop(mm);
1851  	} else if (mm_slot) {
1852  		down_write(&mm->mmap_sem);
1853  		up_write(&mm->mmap_sem);
1854  	}
1855  }
1856  
1857  struct page *ksm_might_need_to_copy(struct page *page,
1858  			struct vm_area_struct *vma, unsigned long address)
1859  {
1860  	struct anon_vma *anon_vma = page_anon_vma(page);
1861  	struct page *new_page;
1862  
1863  	if (PageKsm(page)) {
1864  		if (page_stable_node(page) &&
1865  		    !(ksm_run & KSM_RUN_UNMERGE))
1866  			return page;	/* no need to copy it */
1867  	} else if (!anon_vma) {
1868  		return page;		/* no need to copy it */
1869  	} else if (anon_vma->root == vma->anon_vma->root &&
1870  		 page->index == linear_page_index(vma, address)) {
1871  		return page;		/* still no need to copy it */
1872  	}
1873  	if (!PageUptodate(page))
1874  		return page;		/* let do_swap_page report the error */
1875  
1876  	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1877  	if (new_page) {
1878  		copy_user_highpage(new_page, page, address, vma);
1879  
1880  		SetPageDirty(new_page);
1881  		__SetPageUptodate(new_page);
1882  		__SetPageLocked(new_page);
1883  	}
1884  
1885  	return new_page;
1886  }
1887  
1888  int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1889  {
1890  	struct stable_node *stable_node;
1891  	struct rmap_item *rmap_item;
1892  	int ret = SWAP_AGAIN;
1893  	int search_new_forks = 0;
1894  
1895  	VM_BUG_ON_PAGE(!PageKsm(page), page);
1896  
1897  	/*
1898  	 * Rely on the page lock to protect against concurrent modifications
1899  	 * to that page's node of the stable tree.
1900  	 */
1901  	VM_BUG_ON_PAGE(!PageLocked(page), page);
1902  
1903  	stable_node = page_stable_node(page);
1904  	if (!stable_node)
1905  		return ret;
1906  again:
1907  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1908  		struct anon_vma *anon_vma = rmap_item->anon_vma;
1909  		struct anon_vma_chain *vmac;
1910  		struct vm_area_struct *vma;
1911  
1912  		cond_resched();
1913  		anon_vma_lock_read(anon_vma);
1914  		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1915  					       0, ULONG_MAX) {
1916  			cond_resched();
1917  			vma = vmac->vma;
1918  			if (rmap_item->address < vma->vm_start ||
1919  			    rmap_item->address >= vma->vm_end)
1920  				continue;
1921  			/*
1922  			 * Initially we examine only the vma which covers this
1923  			 * rmap_item; but later, if there is still work to do,
1924  			 * we examine covering vmas in other mms: in case they
1925  			 * were forked from the original since ksmd passed.
1926  			 */
1927  			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1928  				continue;
1929  
1930  			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1931  				continue;
1932  
1933  			ret = rwc->rmap_one(page, vma,
1934  					rmap_item->address, rwc->arg);
1935  			if (ret != SWAP_AGAIN) {
1936  				anon_vma_unlock_read(anon_vma);
1937  				goto out;
1938  			}
1939  			if (rwc->done && rwc->done(page)) {
1940  				anon_vma_unlock_read(anon_vma);
1941  				goto out;
1942  			}
1943  		}
1944  		anon_vma_unlock_read(anon_vma);
1945  	}
1946  	if (!search_new_forks++)
1947  		goto again;
1948  out:
1949  	return ret;
1950  }
1951  
1952  #ifdef CONFIG_MIGRATION
1953  void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1954  {
1955  	struct stable_node *stable_node;
1956  
1957  	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1958  	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1959  	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1960  
1961  	stable_node = page_stable_node(newpage);
1962  	if (stable_node) {
1963  		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1964  		stable_node->kpfn = page_to_pfn(newpage);
1965  		/*
1966  		 * newpage->mapping was set in advance; now we need smp_wmb()
1967  		 * to make sure that the new stable_node->kpfn is visible
1968  		 * to get_ksm_page() before it can see that oldpage->mapping
1969  		 * has gone stale (or that PageSwapCache has been cleared).
1970  		 */
1971  		smp_wmb();
1972  		set_page_stable_node(oldpage, NULL);
1973  	}
1974  }
1975  #endif /* CONFIG_MIGRATION */
1976  
1977  #ifdef CONFIG_MEMORY_HOTREMOVE
1978  static void wait_while_offlining(void)
1979  {
1980  	while (ksm_run & KSM_RUN_OFFLINE) {
1981  		mutex_unlock(&ksm_thread_mutex);
1982  		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1983  			    TASK_UNINTERRUPTIBLE);
1984  		mutex_lock(&ksm_thread_mutex);
1985  	}
1986  }
1987  
1988  static void ksm_check_stable_tree(unsigned long start_pfn,
1989  				  unsigned long end_pfn)
1990  {
1991  	struct stable_node *stable_node, *next;
1992  	struct rb_node *node;
1993  	int nid;
1994  
1995  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1996  		node = rb_first(root_stable_tree + nid);
1997  		while (node) {
1998  			stable_node = rb_entry(node, struct stable_node, node);
1999  			if (stable_node->kpfn >= start_pfn &&
2000  			    stable_node->kpfn < end_pfn) {
2001  				/*
2002  				 * Don't get_ksm_page, page has already gone:
2003  				 * which is why we keep kpfn instead of page*
2004  				 */
2005  				remove_node_from_stable_tree(stable_node);
2006  				node = rb_first(root_stable_tree + nid);
2007  			} else
2008  				node = rb_next(node);
2009  			cond_resched();
2010  		}
2011  	}
2012  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2013  		if (stable_node->kpfn >= start_pfn &&
2014  		    stable_node->kpfn < end_pfn)
2015  			remove_node_from_stable_tree(stable_node);
2016  		cond_resched();
2017  	}
2018  }
2019  
2020  static int ksm_memory_callback(struct notifier_block *self,
2021  			       unsigned long action, void *arg)
2022  {
2023  	struct memory_notify *mn = arg;
2024  
2025  	switch (action) {
2026  	case MEM_GOING_OFFLINE:
2027  		/*
2028  		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2029  		 * and remove_all_stable_nodes() while memory is going offline:
2030  		 * it is unsafe for them to touch the stable tree at this time.
2031  		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2032  		 * which do not need the ksm_thread_mutex are all safe.
2033  		 */
2034  		mutex_lock(&ksm_thread_mutex);
2035  		ksm_run |= KSM_RUN_OFFLINE;
2036  		mutex_unlock(&ksm_thread_mutex);
2037  		break;
2038  
2039  	case MEM_OFFLINE:
2040  		/*
2041  		 * Most of the work is done by page migration; but there might
2042  		 * be a few stable_nodes left over, still pointing to struct
2043  		 * pages which have been offlined: prune those from the tree,
2044  		 * otherwise get_ksm_page() might later try to access a
2045  		 * non-existent struct page.
2046  		 */
2047  		ksm_check_stable_tree(mn->start_pfn,
2048  				      mn->start_pfn + mn->nr_pages);
2049  		/* fallthrough */
2050  
2051  	case MEM_CANCEL_OFFLINE:
2052  		mutex_lock(&ksm_thread_mutex);
2053  		ksm_run &= ~KSM_RUN_OFFLINE;
2054  		mutex_unlock(&ksm_thread_mutex);
2055  
2056  		smp_mb();	/* wake_up_bit advises this */
2057  		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2058  		break;
2059  	}
2060  	return NOTIFY_OK;
2061  }
2062  #else
2063  static void wait_while_offlining(void)
2064  {
2065  }
2066  #endif /* CONFIG_MEMORY_HOTREMOVE */
2067  
2068  #ifdef CONFIG_SYSFS
2069  /*
2070   * This all compiles without CONFIG_SYSFS, but is a waste of space.
2071   */
2072  
2073  #define KSM_ATTR_RO(_name) \
2074  	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2075  #define KSM_ATTR(_name) \
2076  	static struct kobj_attribute _name##_attr = \
2077  		__ATTR(_name, 0644, _name##_show, _name##_store)
2078  
2079  static ssize_t sleep_millisecs_show(struct kobject *kobj,
2080  				    struct kobj_attribute *attr, char *buf)
2081  {
2082  	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2083  }
2084  
2085  static ssize_t sleep_millisecs_store(struct kobject *kobj,
2086  				     struct kobj_attribute *attr,
2087  				     const char *buf, size_t count)
2088  {
2089  	unsigned long msecs;
2090  	int err;
2091  
2092  	err = kstrtoul(buf, 10, &msecs);
2093  	if (err || msecs > UINT_MAX)
2094  		return -EINVAL;
2095  
2096  	ksm_thread_sleep_millisecs = msecs;
2097  
2098  	return count;
2099  }
2100  KSM_ATTR(sleep_millisecs);
2101  
2102  static ssize_t pages_to_scan_show(struct kobject *kobj,
2103  				  struct kobj_attribute *attr, char *buf)
2104  {
2105  	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2106  }
2107  
2108  static ssize_t pages_to_scan_store(struct kobject *kobj,
2109  				   struct kobj_attribute *attr,
2110  				   const char *buf, size_t count)
2111  {
2112  	int err;
2113  	unsigned long nr_pages;
2114  
2115  	err = kstrtoul(buf, 10, &nr_pages);
2116  	if (err || nr_pages > UINT_MAX)
2117  		return -EINVAL;
2118  
2119  	ksm_thread_pages_to_scan = nr_pages;
2120  
2121  	return count;
2122  }
2123  KSM_ATTR(pages_to_scan);
2124  
2125  static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2126  			char *buf)
2127  {
2128  	return sprintf(buf, "%lu\n", ksm_run);
2129  }
2130  
2131  static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2132  			 const char *buf, size_t count)
2133  {
2134  	int err;
2135  	unsigned long flags;
2136  
2137  	err = kstrtoul(buf, 10, &flags);
2138  	if (err || flags > UINT_MAX)
2139  		return -EINVAL;
2140  	if (flags > KSM_RUN_UNMERGE)
2141  		return -EINVAL;
2142  
2143  	/*
2144  	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2145  	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2146  	 * breaking COW to free the pages_shared (but leaves mm_slots
2147  	 * on the list for when ksmd may be set running again).
2148  	 */
2149  
2150  	mutex_lock(&ksm_thread_mutex);
2151  	wait_while_offlining();
2152  	if (ksm_run != flags) {
2153  		ksm_run = flags;
2154  		if (flags & KSM_RUN_UNMERGE) {
2155  			set_current_oom_origin();
2156  			err = unmerge_and_remove_all_rmap_items();
2157  			clear_current_oom_origin();
2158  			if (err) {
2159  				ksm_run = KSM_RUN_STOP;
2160  				count = err;
2161  			}
2162  		}
2163  	}
2164  	mutex_unlock(&ksm_thread_mutex);
2165  
2166  	if (flags & KSM_RUN_MERGE)
2167  		wake_up_interruptible(&ksm_thread_wait);
2168  
2169  	return count;
2170  }
2171  KSM_ATTR(run);
2172  
2173  #ifdef CONFIG_NUMA
2174  static ssize_t merge_across_nodes_show(struct kobject *kobj,
2175  				struct kobj_attribute *attr, char *buf)
2176  {
2177  	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2178  }
2179  
2180  static ssize_t merge_across_nodes_store(struct kobject *kobj,
2181  				   struct kobj_attribute *attr,
2182  				   const char *buf, size_t count)
2183  {
2184  	int err;
2185  	unsigned long knob;
2186  
2187  	err = kstrtoul(buf, 10, &knob);
2188  	if (err)
2189  		return err;
2190  	if (knob > 1)
2191  		return -EINVAL;
2192  
2193  	mutex_lock(&ksm_thread_mutex);
2194  	wait_while_offlining();
2195  	if (ksm_merge_across_nodes != knob) {
2196  		if (ksm_pages_shared || remove_all_stable_nodes())
2197  			err = -EBUSY;
2198  		else if (root_stable_tree == one_stable_tree) {
2199  			struct rb_root *buf;
2200  			/*
2201  			 * This is the first time that we switch away from the
2202  			 * default of merging across nodes: must now allocate
2203  			 * a buffer to hold as many roots as may be needed.
2204  			 * Allocate stable and unstable together:
2205  			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2206  			 */
2207  			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2208  				      GFP_KERNEL);
2209  			/* Let us assume that RB_ROOT is NULL is zero */
2210  			if (!buf)
2211  				err = -ENOMEM;
2212  			else {
2213  				root_stable_tree = buf;
2214  				root_unstable_tree = buf + nr_node_ids;
2215  				/* Stable tree is empty but not the unstable */
2216  				root_unstable_tree[0] = one_unstable_tree[0];
2217  			}
2218  		}
2219  		if (!err) {
2220  			ksm_merge_across_nodes = knob;
2221  			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2222  		}
2223  	}
2224  	mutex_unlock(&ksm_thread_mutex);
2225  
2226  	return err ? err : count;
2227  }
2228  KSM_ATTR(merge_across_nodes);
2229  #endif
2230  
2231  static ssize_t pages_shared_show(struct kobject *kobj,
2232  				 struct kobj_attribute *attr, char *buf)
2233  {
2234  	return sprintf(buf, "%lu\n", ksm_pages_shared);
2235  }
2236  KSM_ATTR_RO(pages_shared);
2237  
2238  static ssize_t pages_sharing_show(struct kobject *kobj,
2239  				  struct kobj_attribute *attr, char *buf)
2240  {
2241  	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2242  }
2243  KSM_ATTR_RO(pages_sharing);
2244  
2245  static ssize_t pages_unshared_show(struct kobject *kobj,
2246  				   struct kobj_attribute *attr, char *buf)
2247  {
2248  	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2249  }
2250  KSM_ATTR_RO(pages_unshared);
2251  
2252  static ssize_t pages_volatile_show(struct kobject *kobj,
2253  				   struct kobj_attribute *attr, char *buf)
2254  {
2255  	long ksm_pages_volatile;
2256  
2257  	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2258  				- ksm_pages_sharing - ksm_pages_unshared;
2259  	/*
2260  	 * It was not worth any locking to calculate that statistic,
2261  	 * but it might therefore sometimes be negative: conceal that.
2262  	 */
2263  	if (ksm_pages_volatile < 0)
2264  		ksm_pages_volatile = 0;
2265  	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2266  }
2267  KSM_ATTR_RO(pages_volatile);
2268  
2269  static ssize_t full_scans_show(struct kobject *kobj,
2270  			       struct kobj_attribute *attr, char *buf)
2271  {
2272  	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2273  }
2274  KSM_ATTR_RO(full_scans);
2275  
2276  static struct attribute *ksm_attrs[] = {
2277  	&sleep_millisecs_attr.attr,
2278  	&pages_to_scan_attr.attr,
2279  	&run_attr.attr,
2280  	&pages_shared_attr.attr,
2281  	&pages_sharing_attr.attr,
2282  	&pages_unshared_attr.attr,
2283  	&pages_volatile_attr.attr,
2284  	&full_scans_attr.attr,
2285  #ifdef CONFIG_NUMA
2286  	&merge_across_nodes_attr.attr,
2287  #endif
2288  	NULL,
2289  };
2290  
2291  static struct attribute_group ksm_attr_group = {
2292  	.attrs = ksm_attrs,
2293  	.name = "ksm",
2294  };
2295  #endif /* CONFIG_SYSFS */
2296  
2297  static int __init ksm_init(void)
2298  {
2299  	struct task_struct *ksm_thread;
2300  	int err;
2301  
2302  	err = ksm_slab_init();
2303  	if (err)
2304  		goto out;
2305  
2306  	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2307  	if (IS_ERR(ksm_thread)) {
2308  		pr_err("ksm: creating kthread failed\n");
2309  		err = PTR_ERR(ksm_thread);
2310  		goto out_free;
2311  	}
2312  
2313  #ifdef CONFIG_SYSFS
2314  	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2315  	if (err) {
2316  		pr_err("ksm: register sysfs failed\n");
2317  		kthread_stop(ksm_thread);
2318  		goto out_free;
2319  	}
2320  #else
2321  	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2322  
2323  #endif /* CONFIG_SYSFS */
2324  
2325  #ifdef CONFIG_MEMORY_HOTREMOVE
2326  	/* There is no significance to this priority 100 */
2327  	hotplug_memory_notifier(ksm_memory_callback, 100);
2328  #endif
2329  	return 0;
2330  
2331  out_free:
2332  	ksm_slab_free();
2333  out:
2334  	return err;
2335  }
2336  subsys_initcall(ksm_init);
2337