1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/memory.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/swap.h> 35 #include <linux/ksm.h> 36 #include <linux/hash.h> 37 #include <linux/freezer.h> 38 #include <linux/oom.h> 39 40 #include <asm/tlbflush.h> 41 #include "internal.h" 42 43 /* 44 * A few notes about the KSM scanning process, 45 * to make it easier to understand the data structures below: 46 * 47 * In order to reduce excessive scanning, KSM sorts the memory pages by their 48 * contents into a data structure that holds pointers to the pages' locations. 49 * 50 * Since the contents of the pages may change at any moment, KSM cannot just 51 * insert the pages into a normal sorted tree and expect it to find anything. 52 * Therefore KSM uses two data structures - the stable and the unstable tree. 53 * 54 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 55 * by their contents. Because each such page is write-protected, searching on 56 * this tree is fully assured to be working (except when pages are unmapped), 57 * and therefore this tree is called the stable tree. 58 * 59 * In addition to the stable tree, KSM uses a second data structure called the 60 * unstable tree: this tree holds pointers to pages which have been found to 61 * be "unchanged for a period of time". The unstable tree sorts these pages 62 * by their contents, but since they are not write-protected, KSM cannot rely 63 * upon the unstable tree to work correctly - the unstable tree is liable to 64 * be corrupted as its contents are modified, and so it is called unstable. 65 * 66 * KSM solves this problem by several techniques: 67 * 68 * 1) The unstable tree is flushed every time KSM completes scanning all 69 * memory areas, and then the tree is rebuilt again from the beginning. 70 * 2) KSM will only insert into the unstable tree, pages whose hash value 71 * has not changed since the previous scan of all memory areas. 72 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 73 * colors of the nodes and not on their contents, assuring that even when 74 * the tree gets "corrupted" it won't get out of balance, so scanning time 75 * remains the same (also, searching and inserting nodes in an rbtree uses 76 * the same algorithm, so we have no overhead when we flush and rebuild). 77 * 4) KSM never flushes the stable tree, which means that even if it were to 78 * take 10 attempts to find a page in the unstable tree, once it is found, 79 * it is secured in the stable tree. (When we scan a new page, we first 80 * compare it against the stable tree, and then against the unstable tree.) 81 */ 82 83 /** 84 * struct mm_slot - ksm information per mm that is being scanned 85 * @link: link to the mm_slots hash list 86 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 87 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 88 * @mm: the mm that this information is valid for 89 */ 90 struct mm_slot { 91 struct hlist_node link; 92 struct list_head mm_list; 93 struct rmap_item *rmap_list; 94 struct mm_struct *mm; 95 }; 96 97 /** 98 * struct ksm_scan - cursor for scanning 99 * @mm_slot: the current mm_slot we are scanning 100 * @address: the next address inside that to be scanned 101 * @rmap_list: link to the next rmap to be scanned in the rmap_list 102 * @seqnr: count of completed full scans (needed when removing unstable node) 103 * 104 * There is only the one ksm_scan instance of this cursor structure. 105 */ 106 struct ksm_scan { 107 struct mm_slot *mm_slot; 108 unsigned long address; 109 struct rmap_item **rmap_list; 110 unsigned long seqnr; 111 }; 112 113 /** 114 * struct stable_node - node of the stable rbtree 115 * @node: rb node of this ksm page in the stable tree 116 * @hlist: hlist head of rmap_items using this ksm page 117 * @kpfn: page frame number of this ksm page 118 */ 119 struct stable_node { 120 struct rb_node node; 121 struct hlist_head hlist; 122 unsigned long kpfn; 123 }; 124 125 /** 126 * struct rmap_item - reverse mapping item for virtual addresses 127 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 128 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 129 * @mm: the memory structure this rmap_item is pointing into 130 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 131 * @oldchecksum: previous checksum of the page at that virtual address 132 * @node: rb node of this rmap_item in the unstable tree 133 * @head: pointer to stable_node heading this list in the stable tree 134 * @hlist: link into hlist of rmap_items hanging off that stable_node 135 */ 136 struct rmap_item { 137 struct rmap_item *rmap_list; 138 struct anon_vma *anon_vma; /* when stable */ 139 struct mm_struct *mm; 140 unsigned long address; /* + low bits used for flags below */ 141 unsigned int oldchecksum; /* when unstable */ 142 union { 143 struct rb_node node; /* when node of unstable tree */ 144 struct { /* when listed from stable tree */ 145 struct stable_node *head; 146 struct hlist_node hlist; 147 }; 148 }; 149 }; 150 151 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 152 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 153 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 154 155 /* The stable and unstable tree heads */ 156 static struct rb_root root_stable_tree = RB_ROOT; 157 static struct rb_root root_unstable_tree = RB_ROOT; 158 159 #define MM_SLOTS_HASH_SHIFT 10 160 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT) 161 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS]; 162 163 static struct mm_slot ksm_mm_head = { 164 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 165 }; 166 static struct ksm_scan ksm_scan = { 167 .mm_slot = &ksm_mm_head, 168 }; 169 170 static struct kmem_cache *rmap_item_cache; 171 static struct kmem_cache *stable_node_cache; 172 static struct kmem_cache *mm_slot_cache; 173 174 /* The number of nodes in the stable tree */ 175 static unsigned long ksm_pages_shared; 176 177 /* The number of page slots additionally sharing those nodes */ 178 static unsigned long ksm_pages_sharing; 179 180 /* The number of nodes in the unstable tree */ 181 static unsigned long ksm_pages_unshared; 182 183 /* The number of rmap_items in use: to calculate pages_volatile */ 184 static unsigned long ksm_rmap_items; 185 186 /* Number of pages ksmd should scan in one batch */ 187 static unsigned int ksm_thread_pages_to_scan = 100; 188 189 /* Milliseconds ksmd should sleep between batches */ 190 static unsigned int ksm_thread_sleep_millisecs = 20; 191 192 #define KSM_RUN_STOP 0 193 #define KSM_RUN_MERGE 1 194 #define KSM_RUN_UNMERGE 2 195 static unsigned int ksm_run = KSM_RUN_STOP; 196 197 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 198 static DEFINE_MUTEX(ksm_thread_mutex); 199 static DEFINE_SPINLOCK(ksm_mmlist_lock); 200 201 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 202 sizeof(struct __struct), __alignof__(struct __struct),\ 203 (__flags), NULL) 204 205 static int __init ksm_slab_init(void) 206 { 207 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 208 if (!rmap_item_cache) 209 goto out; 210 211 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 212 if (!stable_node_cache) 213 goto out_free1; 214 215 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 216 if (!mm_slot_cache) 217 goto out_free2; 218 219 return 0; 220 221 out_free2: 222 kmem_cache_destroy(stable_node_cache); 223 out_free1: 224 kmem_cache_destroy(rmap_item_cache); 225 out: 226 return -ENOMEM; 227 } 228 229 static void __init ksm_slab_free(void) 230 { 231 kmem_cache_destroy(mm_slot_cache); 232 kmem_cache_destroy(stable_node_cache); 233 kmem_cache_destroy(rmap_item_cache); 234 mm_slot_cache = NULL; 235 } 236 237 static inline struct rmap_item *alloc_rmap_item(void) 238 { 239 struct rmap_item *rmap_item; 240 241 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); 242 if (rmap_item) 243 ksm_rmap_items++; 244 return rmap_item; 245 } 246 247 static inline void free_rmap_item(struct rmap_item *rmap_item) 248 { 249 ksm_rmap_items--; 250 rmap_item->mm = NULL; /* debug safety */ 251 kmem_cache_free(rmap_item_cache, rmap_item); 252 } 253 254 static inline struct stable_node *alloc_stable_node(void) 255 { 256 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL); 257 } 258 259 static inline void free_stable_node(struct stable_node *stable_node) 260 { 261 kmem_cache_free(stable_node_cache, stable_node); 262 } 263 264 static inline struct mm_slot *alloc_mm_slot(void) 265 { 266 if (!mm_slot_cache) /* initialization failed */ 267 return NULL; 268 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 269 } 270 271 static inline void free_mm_slot(struct mm_slot *mm_slot) 272 { 273 kmem_cache_free(mm_slot_cache, mm_slot); 274 } 275 276 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 277 { 278 struct mm_slot *mm_slot; 279 struct hlist_head *bucket; 280 struct hlist_node *node; 281 282 bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)]; 283 hlist_for_each_entry(mm_slot, node, bucket, link) { 284 if (mm == mm_slot->mm) 285 return mm_slot; 286 } 287 return NULL; 288 } 289 290 static void insert_to_mm_slots_hash(struct mm_struct *mm, 291 struct mm_slot *mm_slot) 292 { 293 struct hlist_head *bucket; 294 295 bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)]; 296 mm_slot->mm = mm; 297 hlist_add_head(&mm_slot->link, bucket); 298 } 299 300 static inline int in_stable_tree(struct rmap_item *rmap_item) 301 { 302 return rmap_item->address & STABLE_FLAG; 303 } 304 305 /* 306 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 307 * page tables after it has passed through ksm_exit() - which, if necessary, 308 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 309 * a special flag: they can just back out as soon as mm_users goes to zero. 310 * ksm_test_exit() is used throughout to make this test for exit: in some 311 * places for correctness, in some places just to avoid unnecessary work. 312 */ 313 static inline bool ksm_test_exit(struct mm_struct *mm) 314 { 315 return atomic_read(&mm->mm_users) == 0; 316 } 317 318 /* 319 * We use break_ksm to break COW on a ksm page: it's a stripped down 320 * 321 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1) 322 * put_page(page); 323 * 324 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 325 * in case the application has unmapped and remapped mm,addr meanwhile. 326 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 327 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 328 */ 329 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 330 { 331 struct page *page; 332 int ret = 0; 333 334 do { 335 cond_resched(); 336 page = follow_page(vma, addr, FOLL_GET); 337 if (IS_ERR_OR_NULL(page)) 338 break; 339 if (PageKsm(page)) 340 ret = handle_mm_fault(vma->vm_mm, vma, addr, 341 FAULT_FLAG_WRITE); 342 else 343 ret = VM_FAULT_WRITE; 344 put_page(page); 345 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM))); 346 /* 347 * We must loop because handle_mm_fault() may back out if there's 348 * any difficulty e.g. if pte accessed bit gets updated concurrently. 349 * 350 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 351 * COW has been broken, even if the vma does not permit VM_WRITE; 352 * but note that a concurrent fault might break PageKsm for us. 353 * 354 * VM_FAULT_SIGBUS could occur if we race with truncation of the 355 * backing file, which also invalidates anonymous pages: that's 356 * okay, that truncation will have unmapped the PageKsm for us. 357 * 358 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 359 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 360 * current task has TIF_MEMDIE set, and will be OOM killed on return 361 * to user; and ksmd, having no mm, would never be chosen for that. 362 * 363 * But if the mm is in a limited mem_cgroup, then the fault may fail 364 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 365 * even ksmd can fail in this way - though it's usually breaking ksm 366 * just to undo a merge it made a moment before, so unlikely to oom. 367 * 368 * That's a pity: we might therefore have more kernel pages allocated 369 * than we're counting as nodes in the stable tree; but ksm_do_scan 370 * will retry to break_cow on each pass, so should recover the page 371 * in due course. The important thing is to not let VM_MERGEABLE 372 * be cleared while any such pages might remain in the area. 373 */ 374 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 375 } 376 377 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 378 unsigned long addr) 379 { 380 struct vm_area_struct *vma; 381 if (ksm_test_exit(mm)) 382 return NULL; 383 vma = find_vma(mm, addr); 384 if (!vma || vma->vm_start > addr) 385 return NULL; 386 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 387 return NULL; 388 return vma; 389 } 390 391 static void break_cow(struct rmap_item *rmap_item) 392 { 393 struct mm_struct *mm = rmap_item->mm; 394 unsigned long addr = rmap_item->address; 395 struct vm_area_struct *vma; 396 397 /* 398 * It is not an accident that whenever we want to break COW 399 * to undo, we also need to drop a reference to the anon_vma. 400 */ 401 put_anon_vma(rmap_item->anon_vma); 402 403 down_read(&mm->mmap_sem); 404 vma = find_mergeable_vma(mm, addr); 405 if (vma) 406 break_ksm(vma, addr); 407 up_read(&mm->mmap_sem); 408 } 409 410 static struct page *page_trans_compound_anon(struct page *page) 411 { 412 if (PageTransCompound(page)) { 413 struct page *head = compound_trans_head(page); 414 /* 415 * head may actually be splitted and freed from under 416 * us but it's ok here. 417 */ 418 if (PageAnon(head)) 419 return head; 420 } 421 return NULL; 422 } 423 424 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 425 { 426 struct mm_struct *mm = rmap_item->mm; 427 unsigned long addr = rmap_item->address; 428 struct vm_area_struct *vma; 429 struct page *page; 430 431 down_read(&mm->mmap_sem); 432 vma = find_mergeable_vma(mm, addr); 433 if (!vma) 434 goto out; 435 436 page = follow_page(vma, addr, FOLL_GET); 437 if (IS_ERR_OR_NULL(page)) 438 goto out; 439 if (PageAnon(page) || page_trans_compound_anon(page)) { 440 flush_anon_page(vma, page, addr); 441 flush_dcache_page(page); 442 } else { 443 put_page(page); 444 out: page = NULL; 445 } 446 up_read(&mm->mmap_sem); 447 return page; 448 } 449 450 static void remove_node_from_stable_tree(struct stable_node *stable_node) 451 { 452 struct rmap_item *rmap_item; 453 struct hlist_node *hlist; 454 455 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { 456 if (rmap_item->hlist.next) 457 ksm_pages_sharing--; 458 else 459 ksm_pages_shared--; 460 put_anon_vma(rmap_item->anon_vma); 461 rmap_item->address &= PAGE_MASK; 462 cond_resched(); 463 } 464 465 rb_erase(&stable_node->node, &root_stable_tree); 466 free_stable_node(stable_node); 467 } 468 469 /* 470 * get_ksm_page: checks if the page indicated by the stable node 471 * is still its ksm page, despite having held no reference to it. 472 * In which case we can trust the content of the page, and it 473 * returns the gotten page; but if the page has now been zapped, 474 * remove the stale node from the stable tree and return NULL. 475 * 476 * You would expect the stable_node to hold a reference to the ksm page. 477 * But if it increments the page's count, swapping out has to wait for 478 * ksmd to come around again before it can free the page, which may take 479 * seconds or even minutes: much too unresponsive. So instead we use a 480 * "keyhole reference": access to the ksm page from the stable node peeps 481 * out through its keyhole to see if that page still holds the right key, 482 * pointing back to this stable node. This relies on freeing a PageAnon 483 * page to reset its page->mapping to NULL, and relies on no other use of 484 * a page to put something that might look like our key in page->mapping. 485 * 486 * include/linux/pagemap.h page_cache_get_speculative() is a good reference, 487 * but this is different - made simpler by ksm_thread_mutex being held, but 488 * interesting for assuming that no other use of the struct page could ever 489 * put our expected_mapping into page->mapping (or a field of the union which 490 * coincides with page->mapping). The RCU calls are not for KSM at all, but 491 * to keep the page_count protocol described with page_cache_get_speculative. 492 * 493 * Note: it is possible that get_ksm_page() will return NULL one moment, 494 * then page the next, if the page is in between page_freeze_refs() and 495 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page 496 * is on its way to being freed; but it is an anomaly to bear in mind. 497 */ 498 static struct page *get_ksm_page(struct stable_node *stable_node) 499 { 500 struct page *page; 501 void *expected_mapping; 502 503 page = pfn_to_page(stable_node->kpfn); 504 expected_mapping = (void *)stable_node + 505 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 506 rcu_read_lock(); 507 if (page->mapping != expected_mapping) 508 goto stale; 509 if (!get_page_unless_zero(page)) 510 goto stale; 511 if (page->mapping != expected_mapping) { 512 put_page(page); 513 goto stale; 514 } 515 rcu_read_unlock(); 516 return page; 517 stale: 518 rcu_read_unlock(); 519 remove_node_from_stable_tree(stable_node); 520 return NULL; 521 } 522 523 /* 524 * Removing rmap_item from stable or unstable tree. 525 * This function will clean the information from the stable/unstable tree. 526 */ 527 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 528 { 529 if (rmap_item->address & STABLE_FLAG) { 530 struct stable_node *stable_node; 531 struct page *page; 532 533 stable_node = rmap_item->head; 534 page = get_ksm_page(stable_node); 535 if (!page) 536 goto out; 537 538 lock_page(page); 539 hlist_del(&rmap_item->hlist); 540 unlock_page(page); 541 put_page(page); 542 543 if (stable_node->hlist.first) 544 ksm_pages_sharing--; 545 else 546 ksm_pages_shared--; 547 548 put_anon_vma(rmap_item->anon_vma); 549 rmap_item->address &= PAGE_MASK; 550 551 } else if (rmap_item->address & UNSTABLE_FLAG) { 552 unsigned char age; 553 /* 554 * Usually ksmd can and must skip the rb_erase, because 555 * root_unstable_tree was already reset to RB_ROOT. 556 * But be careful when an mm is exiting: do the rb_erase 557 * if this rmap_item was inserted by this scan, rather 558 * than left over from before. 559 */ 560 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 561 BUG_ON(age > 1); 562 if (!age) 563 rb_erase(&rmap_item->node, &root_unstable_tree); 564 565 ksm_pages_unshared--; 566 rmap_item->address &= PAGE_MASK; 567 } 568 out: 569 cond_resched(); /* we're called from many long loops */ 570 } 571 572 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 573 struct rmap_item **rmap_list) 574 { 575 while (*rmap_list) { 576 struct rmap_item *rmap_item = *rmap_list; 577 *rmap_list = rmap_item->rmap_list; 578 remove_rmap_item_from_tree(rmap_item); 579 free_rmap_item(rmap_item); 580 } 581 } 582 583 /* 584 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather 585 * than check every pte of a given vma, the locking doesn't quite work for 586 * that - an rmap_item is assigned to the stable tree after inserting ksm 587 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 588 * rmap_items from parent to child at fork time (so as not to waste time 589 * if exit comes before the next scan reaches it). 590 * 591 * Similarly, although we'd like to remove rmap_items (so updating counts 592 * and freeing memory) when unmerging an area, it's easier to leave that 593 * to the next pass of ksmd - consider, for example, how ksmd might be 594 * in cmp_and_merge_page on one of the rmap_items we would be removing. 595 */ 596 static int unmerge_ksm_pages(struct vm_area_struct *vma, 597 unsigned long start, unsigned long end) 598 { 599 unsigned long addr; 600 int err = 0; 601 602 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 603 if (ksm_test_exit(vma->vm_mm)) 604 break; 605 if (signal_pending(current)) 606 err = -ERESTARTSYS; 607 else 608 err = break_ksm(vma, addr); 609 } 610 return err; 611 } 612 613 #ifdef CONFIG_SYSFS 614 /* 615 * Only called through the sysfs control interface: 616 */ 617 static int unmerge_and_remove_all_rmap_items(void) 618 { 619 struct mm_slot *mm_slot; 620 struct mm_struct *mm; 621 struct vm_area_struct *vma; 622 int err = 0; 623 624 spin_lock(&ksm_mmlist_lock); 625 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 626 struct mm_slot, mm_list); 627 spin_unlock(&ksm_mmlist_lock); 628 629 for (mm_slot = ksm_scan.mm_slot; 630 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 631 mm = mm_slot->mm; 632 down_read(&mm->mmap_sem); 633 for (vma = mm->mmap; vma; vma = vma->vm_next) { 634 if (ksm_test_exit(mm)) 635 break; 636 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 637 continue; 638 err = unmerge_ksm_pages(vma, 639 vma->vm_start, vma->vm_end); 640 if (err) 641 goto error; 642 } 643 644 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 645 646 spin_lock(&ksm_mmlist_lock); 647 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 648 struct mm_slot, mm_list); 649 if (ksm_test_exit(mm)) { 650 hlist_del(&mm_slot->link); 651 list_del(&mm_slot->mm_list); 652 spin_unlock(&ksm_mmlist_lock); 653 654 free_mm_slot(mm_slot); 655 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 656 up_read(&mm->mmap_sem); 657 mmdrop(mm); 658 } else { 659 spin_unlock(&ksm_mmlist_lock); 660 up_read(&mm->mmap_sem); 661 } 662 } 663 664 ksm_scan.seqnr = 0; 665 return 0; 666 667 error: 668 up_read(&mm->mmap_sem); 669 spin_lock(&ksm_mmlist_lock); 670 ksm_scan.mm_slot = &ksm_mm_head; 671 spin_unlock(&ksm_mmlist_lock); 672 return err; 673 } 674 #endif /* CONFIG_SYSFS */ 675 676 static u32 calc_checksum(struct page *page) 677 { 678 u32 checksum; 679 void *addr = kmap_atomic(page); 680 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 681 kunmap_atomic(addr); 682 return checksum; 683 } 684 685 static int memcmp_pages(struct page *page1, struct page *page2) 686 { 687 char *addr1, *addr2; 688 int ret; 689 690 addr1 = kmap_atomic(page1); 691 addr2 = kmap_atomic(page2); 692 ret = memcmp(addr1, addr2, PAGE_SIZE); 693 kunmap_atomic(addr2); 694 kunmap_atomic(addr1); 695 return ret; 696 } 697 698 static inline int pages_identical(struct page *page1, struct page *page2) 699 { 700 return !memcmp_pages(page1, page2); 701 } 702 703 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 704 pte_t *orig_pte) 705 { 706 struct mm_struct *mm = vma->vm_mm; 707 unsigned long addr; 708 pte_t *ptep; 709 spinlock_t *ptl; 710 int swapped; 711 int err = -EFAULT; 712 713 addr = page_address_in_vma(page, vma); 714 if (addr == -EFAULT) 715 goto out; 716 717 BUG_ON(PageTransCompound(page)); 718 ptep = page_check_address(page, mm, addr, &ptl, 0); 719 if (!ptep) 720 goto out; 721 722 if (pte_write(*ptep) || pte_dirty(*ptep)) { 723 pte_t entry; 724 725 swapped = PageSwapCache(page); 726 flush_cache_page(vma, addr, page_to_pfn(page)); 727 /* 728 * Ok this is tricky, when get_user_pages_fast() run it doesn't 729 * take any lock, therefore the check that we are going to make 730 * with the pagecount against the mapcount is racey and 731 * O_DIRECT can happen right after the check. 732 * So we clear the pte and flush the tlb before the check 733 * this assure us that no O_DIRECT can happen after the check 734 * or in the middle of the check. 735 */ 736 entry = ptep_clear_flush(vma, addr, ptep); 737 /* 738 * Check that no O_DIRECT or similar I/O is in progress on the 739 * page 740 */ 741 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 742 set_pte_at(mm, addr, ptep, entry); 743 goto out_unlock; 744 } 745 if (pte_dirty(entry)) 746 set_page_dirty(page); 747 entry = pte_mkclean(pte_wrprotect(entry)); 748 set_pte_at_notify(mm, addr, ptep, entry); 749 } 750 *orig_pte = *ptep; 751 err = 0; 752 753 out_unlock: 754 pte_unmap_unlock(ptep, ptl); 755 out: 756 return err; 757 } 758 759 /** 760 * replace_page - replace page in vma by new ksm page 761 * @vma: vma that holds the pte pointing to page 762 * @page: the page we are replacing by kpage 763 * @kpage: the ksm page we replace page by 764 * @orig_pte: the original value of the pte 765 * 766 * Returns 0 on success, -EFAULT on failure. 767 */ 768 static int replace_page(struct vm_area_struct *vma, struct page *page, 769 struct page *kpage, pte_t orig_pte) 770 { 771 struct mm_struct *mm = vma->vm_mm; 772 pgd_t *pgd; 773 pud_t *pud; 774 pmd_t *pmd; 775 pte_t *ptep; 776 spinlock_t *ptl; 777 unsigned long addr; 778 int err = -EFAULT; 779 780 addr = page_address_in_vma(page, vma); 781 if (addr == -EFAULT) 782 goto out; 783 784 pgd = pgd_offset(mm, addr); 785 if (!pgd_present(*pgd)) 786 goto out; 787 788 pud = pud_offset(pgd, addr); 789 if (!pud_present(*pud)) 790 goto out; 791 792 pmd = pmd_offset(pud, addr); 793 BUG_ON(pmd_trans_huge(*pmd)); 794 if (!pmd_present(*pmd)) 795 goto out; 796 797 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 798 if (!pte_same(*ptep, orig_pte)) { 799 pte_unmap_unlock(ptep, ptl); 800 goto out; 801 } 802 803 get_page(kpage); 804 page_add_anon_rmap(kpage, vma, addr); 805 806 flush_cache_page(vma, addr, pte_pfn(*ptep)); 807 ptep_clear_flush(vma, addr, ptep); 808 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 809 810 page_remove_rmap(page); 811 if (!page_mapped(page)) 812 try_to_free_swap(page); 813 put_page(page); 814 815 pte_unmap_unlock(ptep, ptl); 816 err = 0; 817 out: 818 return err; 819 } 820 821 static int page_trans_compound_anon_split(struct page *page) 822 { 823 int ret = 0; 824 struct page *transhuge_head = page_trans_compound_anon(page); 825 if (transhuge_head) { 826 /* Get the reference on the head to split it. */ 827 if (get_page_unless_zero(transhuge_head)) { 828 /* 829 * Recheck we got the reference while the head 830 * was still anonymous. 831 */ 832 if (PageAnon(transhuge_head)) 833 ret = split_huge_page(transhuge_head); 834 else 835 /* 836 * Retry later if split_huge_page run 837 * from under us. 838 */ 839 ret = 1; 840 put_page(transhuge_head); 841 } else 842 /* Retry later if split_huge_page run from under us. */ 843 ret = 1; 844 } 845 return ret; 846 } 847 848 /* 849 * try_to_merge_one_page - take two pages and merge them into one 850 * @vma: the vma that holds the pte pointing to page 851 * @page: the PageAnon page that we want to replace with kpage 852 * @kpage: the PageKsm page that we want to map instead of page, 853 * or NULL the first time when we want to use page as kpage. 854 * 855 * This function returns 0 if the pages were merged, -EFAULT otherwise. 856 */ 857 static int try_to_merge_one_page(struct vm_area_struct *vma, 858 struct page *page, struct page *kpage) 859 { 860 pte_t orig_pte = __pte(0); 861 int err = -EFAULT; 862 863 if (page == kpage) /* ksm page forked */ 864 return 0; 865 866 if (!(vma->vm_flags & VM_MERGEABLE)) 867 goto out; 868 if (PageTransCompound(page) && page_trans_compound_anon_split(page)) 869 goto out; 870 BUG_ON(PageTransCompound(page)); 871 if (!PageAnon(page)) 872 goto out; 873 874 /* 875 * We need the page lock to read a stable PageSwapCache in 876 * write_protect_page(). We use trylock_page() instead of 877 * lock_page() because we don't want to wait here - we 878 * prefer to continue scanning and merging different pages, 879 * then come back to this page when it is unlocked. 880 */ 881 if (!trylock_page(page)) 882 goto out; 883 /* 884 * If this anonymous page is mapped only here, its pte may need 885 * to be write-protected. If it's mapped elsewhere, all of its 886 * ptes are necessarily already write-protected. But in either 887 * case, we need to lock and check page_count is not raised. 888 */ 889 if (write_protect_page(vma, page, &orig_pte) == 0) { 890 if (!kpage) { 891 /* 892 * While we hold page lock, upgrade page from 893 * PageAnon+anon_vma to PageKsm+NULL stable_node: 894 * stable_tree_insert() will update stable_node. 895 */ 896 set_page_stable_node(page, NULL); 897 mark_page_accessed(page); 898 err = 0; 899 } else if (pages_identical(page, kpage)) 900 err = replace_page(vma, page, kpage, orig_pte); 901 } 902 903 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 904 munlock_vma_page(page); 905 if (!PageMlocked(kpage)) { 906 unlock_page(page); 907 lock_page(kpage); 908 mlock_vma_page(kpage); 909 page = kpage; /* for final unlock */ 910 } 911 } 912 913 unlock_page(page); 914 out: 915 return err; 916 } 917 918 /* 919 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 920 * but no new kernel page is allocated: kpage must already be a ksm page. 921 * 922 * This function returns 0 if the pages were merged, -EFAULT otherwise. 923 */ 924 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 925 struct page *page, struct page *kpage) 926 { 927 struct mm_struct *mm = rmap_item->mm; 928 struct vm_area_struct *vma; 929 int err = -EFAULT; 930 931 down_read(&mm->mmap_sem); 932 if (ksm_test_exit(mm)) 933 goto out; 934 vma = find_vma(mm, rmap_item->address); 935 if (!vma || vma->vm_start > rmap_item->address) 936 goto out; 937 938 err = try_to_merge_one_page(vma, page, kpage); 939 if (err) 940 goto out; 941 942 /* Must get reference to anon_vma while still holding mmap_sem */ 943 rmap_item->anon_vma = vma->anon_vma; 944 get_anon_vma(vma->anon_vma); 945 out: 946 up_read(&mm->mmap_sem); 947 return err; 948 } 949 950 /* 951 * try_to_merge_two_pages - take two identical pages and prepare them 952 * to be merged into one page. 953 * 954 * This function returns the kpage if we successfully merged two identical 955 * pages into one ksm page, NULL otherwise. 956 * 957 * Note that this function upgrades page to ksm page: if one of the pages 958 * is already a ksm page, try_to_merge_with_ksm_page should be used. 959 */ 960 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 961 struct page *page, 962 struct rmap_item *tree_rmap_item, 963 struct page *tree_page) 964 { 965 int err; 966 967 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 968 if (!err) { 969 err = try_to_merge_with_ksm_page(tree_rmap_item, 970 tree_page, page); 971 /* 972 * If that fails, we have a ksm page with only one pte 973 * pointing to it: so break it. 974 */ 975 if (err) 976 break_cow(rmap_item); 977 } 978 return err ? NULL : page; 979 } 980 981 /* 982 * stable_tree_search - search for page inside the stable tree 983 * 984 * This function checks if there is a page inside the stable tree 985 * with identical content to the page that we are scanning right now. 986 * 987 * This function returns the stable tree node of identical content if found, 988 * NULL otherwise. 989 */ 990 static struct page *stable_tree_search(struct page *page) 991 { 992 struct rb_node *node = root_stable_tree.rb_node; 993 struct stable_node *stable_node; 994 995 stable_node = page_stable_node(page); 996 if (stable_node) { /* ksm page forked */ 997 get_page(page); 998 return page; 999 } 1000 1001 while (node) { 1002 struct page *tree_page; 1003 int ret; 1004 1005 cond_resched(); 1006 stable_node = rb_entry(node, struct stable_node, node); 1007 tree_page = get_ksm_page(stable_node); 1008 if (!tree_page) 1009 return NULL; 1010 1011 ret = memcmp_pages(page, tree_page); 1012 1013 if (ret < 0) { 1014 put_page(tree_page); 1015 node = node->rb_left; 1016 } else if (ret > 0) { 1017 put_page(tree_page); 1018 node = node->rb_right; 1019 } else 1020 return tree_page; 1021 } 1022 1023 return NULL; 1024 } 1025 1026 /* 1027 * stable_tree_insert - insert rmap_item pointing to new ksm page 1028 * into the stable tree. 1029 * 1030 * This function returns the stable tree node just allocated on success, 1031 * NULL otherwise. 1032 */ 1033 static struct stable_node *stable_tree_insert(struct page *kpage) 1034 { 1035 struct rb_node **new = &root_stable_tree.rb_node; 1036 struct rb_node *parent = NULL; 1037 struct stable_node *stable_node; 1038 1039 while (*new) { 1040 struct page *tree_page; 1041 int ret; 1042 1043 cond_resched(); 1044 stable_node = rb_entry(*new, struct stable_node, node); 1045 tree_page = get_ksm_page(stable_node); 1046 if (!tree_page) 1047 return NULL; 1048 1049 ret = memcmp_pages(kpage, tree_page); 1050 put_page(tree_page); 1051 1052 parent = *new; 1053 if (ret < 0) 1054 new = &parent->rb_left; 1055 else if (ret > 0) 1056 new = &parent->rb_right; 1057 else { 1058 /* 1059 * It is not a bug that stable_tree_search() didn't 1060 * find this node: because at that time our page was 1061 * not yet write-protected, so may have changed since. 1062 */ 1063 return NULL; 1064 } 1065 } 1066 1067 stable_node = alloc_stable_node(); 1068 if (!stable_node) 1069 return NULL; 1070 1071 rb_link_node(&stable_node->node, parent, new); 1072 rb_insert_color(&stable_node->node, &root_stable_tree); 1073 1074 INIT_HLIST_HEAD(&stable_node->hlist); 1075 1076 stable_node->kpfn = page_to_pfn(kpage); 1077 set_page_stable_node(kpage, stable_node); 1078 1079 return stable_node; 1080 } 1081 1082 /* 1083 * unstable_tree_search_insert - search for identical page, 1084 * else insert rmap_item into the unstable tree. 1085 * 1086 * This function searches for a page in the unstable tree identical to the 1087 * page currently being scanned; and if no identical page is found in the 1088 * tree, we insert rmap_item as a new object into the unstable tree. 1089 * 1090 * This function returns pointer to rmap_item found to be identical 1091 * to the currently scanned page, NULL otherwise. 1092 * 1093 * This function does both searching and inserting, because they share 1094 * the same walking algorithm in an rbtree. 1095 */ 1096 static 1097 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1098 struct page *page, 1099 struct page **tree_pagep) 1100 1101 { 1102 struct rb_node **new = &root_unstable_tree.rb_node; 1103 struct rb_node *parent = NULL; 1104 1105 while (*new) { 1106 struct rmap_item *tree_rmap_item; 1107 struct page *tree_page; 1108 int ret; 1109 1110 cond_resched(); 1111 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1112 tree_page = get_mergeable_page(tree_rmap_item); 1113 if (IS_ERR_OR_NULL(tree_page)) 1114 return NULL; 1115 1116 /* 1117 * Don't substitute a ksm page for a forked page. 1118 */ 1119 if (page == tree_page) { 1120 put_page(tree_page); 1121 return NULL; 1122 } 1123 1124 ret = memcmp_pages(page, tree_page); 1125 1126 parent = *new; 1127 if (ret < 0) { 1128 put_page(tree_page); 1129 new = &parent->rb_left; 1130 } else if (ret > 0) { 1131 put_page(tree_page); 1132 new = &parent->rb_right; 1133 } else { 1134 *tree_pagep = tree_page; 1135 return tree_rmap_item; 1136 } 1137 } 1138 1139 rmap_item->address |= UNSTABLE_FLAG; 1140 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1141 rb_link_node(&rmap_item->node, parent, new); 1142 rb_insert_color(&rmap_item->node, &root_unstable_tree); 1143 1144 ksm_pages_unshared++; 1145 return NULL; 1146 } 1147 1148 /* 1149 * stable_tree_append - add another rmap_item to the linked list of 1150 * rmap_items hanging off a given node of the stable tree, all sharing 1151 * the same ksm page. 1152 */ 1153 static void stable_tree_append(struct rmap_item *rmap_item, 1154 struct stable_node *stable_node) 1155 { 1156 rmap_item->head = stable_node; 1157 rmap_item->address |= STABLE_FLAG; 1158 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1159 1160 if (rmap_item->hlist.next) 1161 ksm_pages_sharing++; 1162 else 1163 ksm_pages_shared++; 1164 } 1165 1166 /* 1167 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1168 * if not, compare checksum to previous and if it's the same, see if page can 1169 * be inserted into the unstable tree, or merged with a page already there and 1170 * both transferred to the stable tree. 1171 * 1172 * @page: the page that we are searching identical page to. 1173 * @rmap_item: the reverse mapping into the virtual address of this page 1174 */ 1175 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1176 { 1177 struct rmap_item *tree_rmap_item; 1178 struct page *tree_page = NULL; 1179 struct stable_node *stable_node; 1180 struct page *kpage; 1181 unsigned int checksum; 1182 int err; 1183 1184 remove_rmap_item_from_tree(rmap_item); 1185 1186 /* We first start with searching the page inside the stable tree */ 1187 kpage = stable_tree_search(page); 1188 if (kpage) { 1189 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1190 if (!err) { 1191 /* 1192 * The page was successfully merged: 1193 * add its rmap_item to the stable tree. 1194 */ 1195 lock_page(kpage); 1196 stable_tree_append(rmap_item, page_stable_node(kpage)); 1197 unlock_page(kpage); 1198 } 1199 put_page(kpage); 1200 return; 1201 } 1202 1203 /* 1204 * If the hash value of the page has changed from the last time 1205 * we calculated it, this page is changing frequently: therefore we 1206 * don't want to insert it in the unstable tree, and we don't want 1207 * to waste our time searching for something identical to it there. 1208 */ 1209 checksum = calc_checksum(page); 1210 if (rmap_item->oldchecksum != checksum) { 1211 rmap_item->oldchecksum = checksum; 1212 return; 1213 } 1214 1215 tree_rmap_item = 1216 unstable_tree_search_insert(rmap_item, page, &tree_page); 1217 if (tree_rmap_item) { 1218 kpage = try_to_merge_two_pages(rmap_item, page, 1219 tree_rmap_item, tree_page); 1220 put_page(tree_page); 1221 /* 1222 * As soon as we merge this page, we want to remove the 1223 * rmap_item of the page we have merged with from the unstable 1224 * tree, and insert it instead as new node in the stable tree. 1225 */ 1226 if (kpage) { 1227 remove_rmap_item_from_tree(tree_rmap_item); 1228 1229 lock_page(kpage); 1230 stable_node = stable_tree_insert(kpage); 1231 if (stable_node) { 1232 stable_tree_append(tree_rmap_item, stable_node); 1233 stable_tree_append(rmap_item, stable_node); 1234 } 1235 unlock_page(kpage); 1236 1237 /* 1238 * If we fail to insert the page into the stable tree, 1239 * we will have 2 virtual addresses that are pointing 1240 * to a ksm page left outside the stable tree, 1241 * in which case we need to break_cow on both. 1242 */ 1243 if (!stable_node) { 1244 break_cow(tree_rmap_item); 1245 break_cow(rmap_item); 1246 } 1247 } 1248 } 1249 } 1250 1251 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1252 struct rmap_item **rmap_list, 1253 unsigned long addr) 1254 { 1255 struct rmap_item *rmap_item; 1256 1257 while (*rmap_list) { 1258 rmap_item = *rmap_list; 1259 if ((rmap_item->address & PAGE_MASK) == addr) 1260 return rmap_item; 1261 if (rmap_item->address > addr) 1262 break; 1263 *rmap_list = rmap_item->rmap_list; 1264 remove_rmap_item_from_tree(rmap_item); 1265 free_rmap_item(rmap_item); 1266 } 1267 1268 rmap_item = alloc_rmap_item(); 1269 if (rmap_item) { 1270 /* It has already been zeroed */ 1271 rmap_item->mm = mm_slot->mm; 1272 rmap_item->address = addr; 1273 rmap_item->rmap_list = *rmap_list; 1274 *rmap_list = rmap_item; 1275 } 1276 return rmap_item; 1277 } 1278 1279 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1280 { 1281 struct mm_struct *mm; 1282 struct mm_slot *slot; 1283 struct vm_area_struct *vma; 1284 struct rmap_item *rmap_item; 1285 1286 if (list_empty(&ksm_mm_head.mm_list)) 1287 return NULL; 1288 1289 slot = ksm_scan.mm_slot; 1290 if (slot == &ksm_mm_head) { 1291 /* 1292 * A number of pages can hang around indefinitely on per-cpu 1293 * pagevecs, raised page count preventing write_protect_page 1294 * from merging them. Though it doesn't really matter much, 1295 * it is puzzling to see some stuck in pages_volatile until 1296 * other activity jostles them out, and they also prevented 1297 * LTP's KSM test from succeeding deterministically; so drain 1298 * them here (here rather than on entry to ksm_do_scan(), 1299 * so we don't IPI too often when pages_to_scan is set low). 1300 */ 1301 lru_add_drain_all(); 1302 1303 root_unstable_tree = RB_ROOT; 1304 1305 spin_lock(&ksm_mmlist_lock); 1306 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1307 ksm_scan.mm_slot = slot; 1308 spin_unlock(&ksm_mmlist_lock); 1309 /* 1310 * Although we tested list_empty() above, a racing __ksm_exit 1311 * of the last mm on the list may have removed it since then. 1312 */ 1313 if (slot == &ksm_mm_head) 1314 return NULL; 1315 next_mm: 1316 ksm_scan.address = 0; 1317 ksm_scan.rmap_list = &slot->rmap_list; 1318 } 1319 1320 mm = slot->mm; 1321 down_read(&mm->mmap_sem); 1322 if (ksm_test_exit(mm)) 1323 vma = NULL; 1324 else 1325 vma = find_vma(mm, ksm_scan.address); 1326 1327 for (; vma; vma = vma->vm_next) { 1328 if (!(vma->vm_flags & VM_MERGEABLE)) 1329 continue; 1330 if (ksm_scan.address < vma->vm_start) 1331 ksm_scan.address = vma->vm_start; 1332 if (!vma->anon_vma) 1333 ksm_scan.address = vma->vm_end; 1334 1335 while (ksm_scan.address < vma->vm_end) { 1336 if (ksm_test_exit(mm)) 1337 break; 1338 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1339 if (IS_ERR_OR_NULL(*page)) { 1340 ksm_scan.address += PAGE_SIZE; 1341 cond_resched(); 1342 continue; 1343 } 1344 if (PageAnon(*page) || 1345 page_trans_compound_anon(*page)) { 1346 flush_anon_page(vma, *page, ksm_scan.address); 1347 flush_dcache_page(*page); 1348 rmap_item = get_next_rmap_item(slot, 1349 ksm_scan.rmap_list, ksm_scan.address); 1350 if (rmap_item) { 1351 ksm_scan.rmap_list = 1352 &rmap_item->rmap_list; 1353 ksm_scan.address += PAGE_SIZE; 1354 } else 1355 put_page(*page); 1356 up_read(&mm->mmap_sem); 1357 return rmap_item; 1358 } 1359 put_page(*page); 1360 ksm_scan.address += PAGE_SIZE; 1361 cond_resched(); 1362 } 1363 } 1364 1365 if (ksm_test_exit(mm)) { 1366 ksm_scan.address = 0; 1367 ksm_scan.rmap_list = &slot->rmap_list; 1368 } 1369 /* 1370 * Nuke all the rmap_items that are above this current rmap: 1371 * because there were no VM_MERGEABLE vmas with such addresses. 1372 */ 1373 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1374 1375 spin_lock(&ksm_mmlist_lock); 1376 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1377 struct mm_slot, mm_list); 1378 if (ksm_scan.address == 0) { 1379 /* 1380 * We've completed a full scan of all vmas, holding mmap_sem 1381 * throughout, and found no VM_MERGEABLE: so do the same as 1382 * __ksm_exit does to remove this mm from all our lists now. 1383 * This applies either when cleaning up after __ksm_exit 1384 * (but beware: we can reach here even before __ksm_exit), 1385 * or when all VM_MERGEABLE areas have been unmapped (and 1386 * mmap_sem then protects against race with MADV_MERGEABLE). 1387 */ 1388 hlist_del(&slot->link); 1389 list_del(&slot->mm_list); 1390 spin_unlock(&ksm_mmlist_lock); 1391 1392 free_mm_slot(slot); 1393 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1394 up_read(&mm->mmap_sem); 1395 mmdrop(mm); 1396 } else { 1397 spin_unlock(&ksm_mmlist_lock); 1398 up_read(&mm->mmap_sem); 1399 } 1400 1401 /* Repeat until we've completed scanning the whole list */ 1402 slot = ksm_scan.mm_slot; 1403 if (slot != &ksm_mm_head) 1404 goto next_mm; 1405 1406 ksm_scan.seqnr++; 1407 return NULL; 1408 } 1409 1410 /** 1411 * ksm_do_scan - the ksm scanner main worker function. 1412 * @scan_npages - number of pages we want to scan before we return. 1413 */ 1414 static void ksm_do_scan(unsigned int scan_npages) 1415 { 1416 struct rmap_item *rmap_item; 1417 struct page *uninitialized_var(page); 1418 1419 while (scan_npages-- && likely(!freezing(current))) { 1420 cond_resched(); 1421 rmap_item = scan_get_next_rmap_item(&page); 1422 if (!rmap_item) 1423 return; 1424 if (!PageKsm(page) || !in_stable_tree(rmap_item)) 1425 cmp_and_merge_page(page, rmap_item); 1426 put_page(page); 1427 } 1428 } 1429 1430 static int ksmd_should_run(void) 1431 { 1432 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1433 } 1434 1435 static int ksm_scan_thread(void *nothing) 1436 { 1437 set_freezable(); 1438 set_user_nice(current, 5); 1439 1440 while (!kthread_should_stop()) { 1441 mutex_lock(&ksm_thread_mutex); 1442 if (ksmd_should_run()) 1443 ksm_do_scan(ksm_thread_pages_to_scan); 1444 mutex_unlock(&ksm_thread_mutex); 1445 1446 try_to_freeze(); 1447 1448 if (ksmd_should_run()) { 1449 schedule_timeout_interruptible( 1450 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1451 } else { 1452 wait_event_freezable(ksm_thread_wait, 1453 ksmd_should_run() || kthread_should_stop()); 1454 } 1455 } 1456 return 0; 1457 } 1458 1459 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1460 unsigned long end, int advice, unsigned long *vm_flags) 1461 { 1462 struct mm_struct *mm = vma->vm_mm; 1463 int err; 1464 1465 switch (advice) { 1466 case MADV_MERGEABLE: 1467 /* 1468 * Be somewhat over-protective for now! 1469 */ 1470 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1471 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1472 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE | 1473 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO)) 1474 return 0; /* just ignore the advice */ 1475 1476 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1477 err = __ksm_enter(mm); 1478 if (err) 1479 return err; 1480 } 1481 1482 *vm_flags |= VM_MERGEABLE; 1483 break; 1484 1485 case MADV_UNMERGEABLE: 1486 if (!(*vm_flags & VM_MERGEABLE)) 1487 return 0; /* just ignore the advice */ 1488 1489 if (vma->anon_vma) { 1490 err = unmerge_ksm_pages(vma, start, end); 1491 if (err) 1492 return err; 1493 } 1494 1495 *vm_flags &= ~VM_MERGEABLE; 1496 break; 1497 } 1498 1499 return 0; 1500 } 1501 1502 int __ksm_enter(struct mm_struct *mm) 1503 { 1504 struct mm_slot *mm_slot; 1505 int needs_wakeup; 1506 1507 mm_slot = alloc_mm_slot(); 1508 if (!mm_slot) 1509 return -ENOMEM; 1510 1511 /* Check ksm_run too? Would need tighter locking */ 1512 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1513 1514 spin_lock(&ksm_mmlist_lock); 1515 insert_to_mm_slots_hash(mm, mm_slot); 1516 /* 1517 * Insert just behind the scanning cursor, to let the area settle 1518 * down a little; when fork is followed by immediate exec, we don't 1519 * want ksmd to waste time setting up and tearing down an rmap_list. 1520 */ 1521 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1522 spin_unlock(&ksm_mmlist_lock); 1523 1524 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1525 atomic_inc(&mm->mm_count); 1526 1527 if (needs_wakeup) 1528 wake_up_interruptible(&ksm_thread_wait); 1529 1530 return 0; 1531 } 1532 1533 void __ksm_exit(struct mm_struct *mm) 1534 { 1535 struct mm_slot *mm_slot; 1536 int easy_to_free = 0; 1537 1538 /* 1539 * This process is exiting: if it's straightforward (as is the 1540 * case when ksmd was never running), free mm_slot immediately. 1541 * But if it's at the cursor or has rmap_items linked to it, use 1542 * mmap_sem to synchronize with any break_cows before pagetables 1543 * are freed, and leave the mm_slot on the list for ksmd to free. 1544 * Beware: ksm may already have noticed it exiting and freed the slot. 1545 */ 1546 1547 spin_lock(&ksm_mmlist_lock); 1548 mm_slot = get_mm_slot(mm); 1549 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1550 if (!mm_slot->rmap_list) { 1551 hlist_del(&mm_slot->link); 1552 list_del(&mm_slot->mm_list); 1553 easy_to_free = 1; 1554 } else { 1555 list_move(&mm_slot->mm_list, 1556 &ksm_scan.mm_slot->mm_list); 1557 } 1558 } 1559 spin_unlock(&ksm_mmlist_lock); 1560 1561 if (easy_to_free) { 1562 free_mm_slot(mm_slot); 1563 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1564 mmdrop(mm); 1565 } else if (mm_slot) { 1566 down_write(&mm->mmap_sem); 1567 up_write(&mm->mmap_sem); 1568 } 1569 } 1570 1571 struct page *ksm_does_need_to_copy(struct page *page, 1572 struct vm_area_struct *vma, unsigned long address) 1573 { 1574 struct page *new_page; 1575 1576 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1577 if (new_page) { 1578 copy_user_highpage(new_page, page, address, vma); 1579 1580 SetPageDirty(new_page); 1581 __SetPageUptodate(new_page); 1582 SetPageSwapBacked(new_page); 1583 __set_page_locked(new_page); 1584 1585 if (page_evictable(new_page, vma)) 1586 lru_cache_add_lru(new_page, LRU_ACTIVE_ANON); 1587 else 1588 add_page_to_unevictable_list(new_page); 1589 } 1590 1591 return new_page; 1592 } 1593 1594 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg, 1595 unsigned long *vm_flags) 1596 { 1597 struct stable_node *stable_node; 1598 struct rmap_item *rmap_item; 1599 struct hlist_node *hlist; 1600 unsigned int mapcount = page_mapcount(page); 1601 int referenced = 0; 1602 int search_new_forks = 0; 1603 1604 VM_BUG_ON(!PageKsm(page)); 1605 VM_BUG_ON(!PageLocked(page)); 1606 1607 stable_node = page_stable_node(page); 1608 if (!stable_node) 1609 return 0; 1610 again: 1611 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { 1612 struct anon_vma *anon_vma = rmap_item->anon_vma; 1613 struct anon_vma_chain *vmac; 1614 struct vm_area_struct *vma; 1615 1616 anon_vma_lock(anon_vma); 1617 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { 1618 vma = vmac->vma; 1619 if (rmap_item->address < vma->vm_start || 1620 rmap_item->address >= vma->vm_end) 1621 continue; 1622 /* 1623 * Initially we examine only the vma which covers this 1624 * rmap_item; but later, if there is still work to do, 1625 * we examine covering vmas in other mms: in case they 1626 * were forked from the original since ksmd passed. 1627 */ 1628 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1629 continue; 1630 1631 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 1632 continue; 1633 1634 referenced += page_referenced_one(page, vma, 1635 rmap_item->address, &mapcount, vm_flags); 1636 if (!search_new_forks || !mapcount) 1637 break; 1638 } 1639 anon_vma_unlock(anon_vma); 1640 if (!mapcount) 1641 goto out; 1642 } 1643 if (!search_new_forks++) 1644 goto again; 1645 out: 1646 return referenced; 1647 } 1648 1649 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags) 1650 { 1651 struct stable_node *stable_node; 1652 struct hlist_node *hlist; 1653 struct rmap_item *rmap_item; 1654 int ret = SWAP_AGAIN; 1655 int search_new_forks = 0; 1656 1657 VM_BUG_ON(!PageKsm(page)); 1658 VM_BUG_ON(!PageLocked(page)); 1659 1660 stable_node = page_stable_node(page); 1661 if (!stable_node) 1662 return SWAP_FAIL; 1663 again: 1664 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { 1665 struct anon_vma *anon_vma = rmap_item->anon_vma; 1666 struct anon_vma_chain *vmac; 1667 struct vm_area_struct *vma; 1668 1669 anon_vma_lock(anon_vma); 1670 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { 1671 vma = vmac->vma; 1672 if (rmap_item->address < vma->vm_start || 1673 rmap_item->address >= vma->vm_end) 1674 continue; 1675 /* 1676 * Initially we examine only the vma which covers this 1677 * rmap_item; but later, if there is still work to do, 1678 * we examine covering vmas in other mms: in case they 1679 * were forked from the original since ksmd passed. 1680 */ 1681 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1682 continue; 1683 1684 ret = try_to_unmap_one(page, vma, 1685 rmap_item->address, flags); 1686 if (ret != SWAP_AGAIN || !page_mapped(page)) { 1687 anon_vma_unlock(anon_vma); 1688 goto out; 1689 } 1690 } 1691 anon_vma_unlock(anon_vma); 1692 } 1693 if (!search_new_forks++) 1694 goto again; 1695 out: 1696 return ret; 1697 } 1698 1699 #ifdef CONFIG_MIGRATION 1700 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *, 1701 struct vm_area_struct *, unsigned long, void *), void *arg) 1702 { 1703 struct stable_node *stable_node; 1704 struct hlist_node *hlist; 1705 struct rmap_item *rmap_item; 1706 int ret = SWAP_AGAIN; 1707 int search_new_forks = 0; 1708 1709 VM_BUG_ON(!PageKsm(page)); 1710 VM_BUG_ON(!PageLocked(page)); 1711 1712 stable_node = page_stable_node(page); 1713 if (!stable_node) 1714 return ret; 1715 again: 1716 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { 1717 struct anon_vma *anon_vma = rmap_item->anon_vma; 1718 struct anon_vma_chain *vmac; 1719 struct vm_area_struct *vma; 1720 1721 anon_vma_lock(anon_vma); 1722 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { 1723 vma = vmac->vma; 1724 if (rmap_item->address < vma->vm_start || 1725 rmap_item->address >= vma->vm_end) 1726 continue; 1727 /* 1728 * Initially we examine only the vma which covers this 1729 * rmap_item; but later, if there is still work to do, 1730 * we examine covering vmas in other mms: in case they 1731 * were forked from the original since ksmd passed. 1732 */ 1733 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1734 continue; 1735 1736 ret = rmap_one(page, vma, rmap_item->address, arg); 1737 if (ret != SWAP_AGAIN) { 1738 anon_vma_unlock(anon_vma); 1739 goto out; 1740 } 1741 } 1742 anon_vma_unlock(anon_vma); 1743 } 1744 if (!search_new_forks++) 1745 goto again; 1746 out: 1747 return ret; 1748 } 1749 1750 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 1751 { 1752 struct stable_node *stable_node; 1753 1754 VM_BUG_ON(!PageLocked(oldpage)); 1755 VM_BUG_ON(!PageLocked(newpage)); 1756 VM_BUG_ON(newpage->mapping != oldpage->mapping); 1757 1758 stable_node = page_stable_node(newpage); 1759 if (stable_node) { 1760 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage)); 1761 stable_node->kpfn = page_to_pfn(newpage); 1762 } 1763 } 1764 #endif /* CONFIG_MIGRATION */ 1765 1766 #ifdef CONFIG_MEMORY_HOTREMOVE 1767 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn, 1768 unsigned long end_pfn) 1769 { 1770 struct rb_node *node; 1771 1772 for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) { 1773 struct stable_node *stable_node; 1774 1775 stable_node = rb_entry(node, struct stable_node, node); 1776 if (stable_node->kpfn >= start_pfn && 1777 stable_node->kpfn < end_pfn) 1778 return stable_node; 1779 } 1780 return NULL; 1781 } 1782 1783 static int ksm_memory_callback(struct notifier_block *self, 1784 unsigned long action, void *arg) 1785 { 1786 struct memory_notify *mn = arg; 1787 struct stable_node *stable_node; 1788 1789 switch (action) { 1790 case MEM_GOING_OFFLINE: 1791 /* 1792 * Keep it very simple for now: just lock out ksmd and 1793 * MADV_UNMERGEABLE while any memory is going offline. 1794 * mutex_lock_nested() is necessary because lockdep was alarmed 1795 * that here we take ksm_thread_mutex inside notifier chain 1796 * mutex, and later take notifier chain mutex inside 1797 * ksm_thread_mutex to unlock it. But that's safe because both 1798 * are inside mem_hotplug_mutex. 1799 */ 1800 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING); 1801 break; 1802 1803 case MEM_OFFLINE: 1804 /* 1805 * Most of the work is done by page migration; but there might 1806 * be a few stable_nodes left over, still pointing to struct 1807 * pages which have been offlined: prune those from the tree. 1808 */ 1809 while ((stable_node = ksm_check_stable_tree(mn->start_pfn, 1810 mn->start_pfn + mn->nr_pages)) != NULL) 1811 remove_node_from_stable_tree(stable_node); 1812 /* fallthrough */ 1813 1814 case MEM_CANCEL_OFFLINE: 1815 mutex_unlock(&ksm_thread_mutex); 1816 break; 1817 } 1818 return NOTIFY_OK; 1819 } 1820 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1821 1822 #ifdef CONFIG_SYSFS 1823 /* 1824 * This all compiles without CONFIG_SYSFS, but is a waste of space. 1825 */ 1826 1827 #define KSM_ATTR_RO(_name) \ 1828 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1829 #define KSM_ATTR(_name) \ 1830 static struct kobj_attribute _name##_attr = \ 1831 __ATTR(_name, 0644, _name##_show, _name##_store) 1832 1833 static ssize_t sleep_millisecs_show(struct kobject *kobj, 1834 struct kobj_attribute *attr, char *buf) 1835 { 1836 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 1837 } 1838 1839 static ssize_t sleep_millisecs_store(struct kobject *kobj, 1840 struct kobj_attribute *attr, 1841 const char *buf, size_t count) 1842 { 1843 unsigned long msecs; 1844 int err; 1845 1846 err = strict_strtoul(buf, 10, &msecs); 1847 if (err || msecs > UINT_MAX) 1848 return -EINVAL; 1849 1850 ksm_thread_sleep_millisecs = msecs; 1851 1852 return count; 1853 } 1854 KSM_ATTR(sleep_millisecs); 1855 1856 static ssize_t pages_to_scan_show(struct kobject *kobj, 1857 struct kobj_attribute *attr, char *buf) 1858 { 1859 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 1860 } 1861 1862 static ssize_t pages_to_scan_store(struct kobject *kobj, 1863 struct kobj_attribute *attr, 1864 const char *buf, size_t count) 1865 { 1866 int err; 1867 unsigned long nr_pages; 1868 1869 err = strict_strtoul(buf, 10, &nr_pages); 1870 if (err || nr_pages > UINT_MAX) 1871 return -EINVAL; 1872 1873 ksm_thread_pages_to_scan = nr_pages; 1874 1875 return count; 1876 } 1877 KSM_ATTR(pages_to_scan); 1878 1879 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 1880 char *buf) 1881 { 1882 return sprintf(buf, "%u\n", ksm_run); 1883 } 1884 1885 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 1886 const char *buf, size_t count) 1887 { 1888 int err; 1889 unsigned long flags; 1890 1891 err = strict_strtoul(buf, 10, &flags); 1892 if (err || flags > UINT_MAX) 1893 return -EINVAL; 1894 if (flags > KSM_RUN_UNMERGE) 1895 return -EINVAL; 1896 1897 /* 1898 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 1899 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 1900 * breaking COW to free the pages_shared (but leaves mm_slots 1901 * on the list for when ksmd may be set running again). 1902 */ 1903 1904 mutex_lock(&ksm_thread_mutex); 1905 if (ksm_run != flags) { 1906 ksm_run = flags; 1907 if (flags & KSM_RUN_UNMERGE) { 1908 int oom_score_adj; 1909 1910 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); 1911 err = unmerge_and_remove_all_rmap_items(); 1912 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, 1913 oom_score_adj); 1914 if (err) { 1915 ksm_run = KSM_RUN_STOP; 1916 count = err; 1917 } 1918 } 1919 } 1920 mutex_unlock(&ksm_thread_mutex); 1921 1922 if (flags & KSM_RUN_MERGE) 1923 wake_up_interruptible(&ksm_thread_wait); 1924 1925 return count; 1926 } 1927 KSM_ATTR(run); 1928 1929 static ssize_t pages_shared_show(struct kobject *kobj, 1930 struct kobj_attribute *attr, char *buf) 1931 { 1932 return sprintf(buf, "%lu\n", ksm_pages_shared); 1933 } 1934 KSM_ATTR_RO(pages_shared); 1935 1936 static ssize_t pages_sharing_show(struct kobject *kobj, 1937 struct kobj_attribute *attr, char *buf) 1938 { 1939 return sprintf(buf, "%lu\n", ksm_pages_sharing); 1940 } 1941 KSM_ATTR_RO(pages_sharing); 1942 1943 static ssize_t pages_unshared_show(struct kobject *kobj, 1944 struct kobj_attribute *attr, char *buf) 1945 { 1946 return sprintf(buf, "%lu\n", ksm_pages_unshared); 1947 } 1948 KSM_ATTR_RO(pages_unshared); 1949 1950 static ssize_t pages_volatile_show(struct kobject *kobj, 1951 struct kobj_attribute *attr, char *buf) 1952 { 1953 long ksm_pages_volatile; 1954 1955 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 1956 - ksm_pages_sharing - ksm_pages_unshared; 1957 /* 1958 * It was not worth any locking to calculate that statistic, 1959 * but it might therefore sometimes be negative: conceal that. 1960 */ 1961 if (ksm_pages_volatile < 0) 1962 ksm_pages_volatile = 0; 1963 return sprintf(buf, "%ld\n", ksm_pages_volatile); 1964 } 1965 KSM_ATTR_RO(pages_volatile); 1966 1967 static ssize_t full_scans_show(struct kobject *kobj, 1968 struct kobj_attribute *attr, char *buf) 1969 { 1970 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 1971 } 1972 KSM_ATTR_RO(full_scans); 1973 1974 static struct attribute *ksm_attrs[] = { 1975 &sleep_millisecs_attr.attr, 1976 &pages_to_scan_attr.attr, 1977 &run_attr.attr, 1978 &pages_shared_attr.attr, 1979 &pages_sharing_attr.attr, 1980 &pages_unshared_attr.attr, 1981 &pages_volatile_attr.attr, 1982 &full_scans_attr.attr, 1983 NULL, 1984 }; 1985 1986 static struct attribute_group ksm_attr_group = { 1987 .attrs = ksm_attrs, 1988 .name = "ksm", 1989 }; 1990 #endif /* CONFIG_SYSFS */ 1991 1992 static int __init ksm_init(void) 1993 { 1994 struct task_struct *ksm_thread; 1995 int err; 1996 1997 err = ksm_slab_init(); 1998 if (err) 1999 goto out; 2000 2001 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 2002 if (IS_ERR(ksm_thread)) { 2003 printk(KERN_ERR "ksm: creating kthread failed\n"); 2004 err = PTR_ERR(ksm_thread); 2005 goto out_free; 2006 } 2007 2008 #ifdef CONFIG_SYSFS 2009 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 2010 if (err) { 2011 printk(KERN_ERR "ksm: register sysfs failed\n"); 2012 kthread_stop(ksm_thread); 2013 goto out_free; 2014 } 2015 #else 2016 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2017 2018 #endif /* CONFIG_SYSFS */ 2019 2020 #ifdef CONFIG_MEMORY_HOTREMOVE 2021 /* 2022 * Choose a high priority since the callback takes ksm_thread_mutex: 2023 * later callbacks could only be taking locks which nest within that. 2024 */ 2025 hotplug_memory_notifier(ksm_memory_callback, 100); 2026 #endif 2027 return 0; 2028 2029 out_free: 2030 ksm_slab_free(); 2031 out: 2032 return err; 2033 } 2034 module_init(ksm_init) 2035