1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same struct stable_node structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 220 /* The stable and unstable tree heads */ 221 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 222 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 223 static struct rb_root *root_stable_tree = one_stable_tree; 224 static struct rb_root *root_unstable_tree = one_unstable_tree; 225 226 /* Recently migrated nodes of stable tree, pending proper placement */ 227 static LIST_HEAD(migrate_nodes); 228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 229 230 #define MM_SLOTS_HASH_BITS 10 231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 232 233 static struct mm_slot ksm_mm_head = { 234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 235 }; 236 static struct ksm_scan ksm_scan = { 237 .mm_slot = &ksm_mm_head, 238 }; 239 240 static struct kmem_cache *rmap_item_cache; 241 static struct kmem_cache *stable_node_cache; 242 static struct kmem_cache *mm_slot_cache; 243 244 /* The number of nodes in the stable tree */ 245 static unsigned long ksm_pages_shared; 246 247 /* The number of page slots additionally sharing those nodes */ 248 static unsigned long ksm_pages_sharing; 249 250 /* The number of nodes in the unstable tree */ 251 static unsigned long ksm_pages_unshared; 252 253 /* The number of rmap_items in use: to calculate pages_volatile */ 254 static unsigned long ksm_rmap_items; 255 256 /* The number of stable_node chains */ 257 static unsigned long ksm_stable_node_chains; 258 259 /* The number of stable_node dups linked to the stable_node chains */ 260 static unsigned long ksm_stable_node_dups; 261 262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 264 265 /* Maximum number of page slots sharing a stable node */ 266 static int ksm_max_page_sharing = 256; 267 268 /* Number of pages ksmd should scan in one batch */ 269 static unsigned int ksm_thread_pages_to_scan = 100; 270 271 /* Milliseconds ksmd should sleep between batches */ 272 static unsigned int ksm_thread_sleep_millisecs = 20; 273 274 /* Checksum of an empty (zeroed) page */ 275 static unsigned int zero_checksum __read_mostly; 276 277 /* Whether to merge empty (zeroed) pages with actual zero pages */ 278 static bool ksm_use_zero_pages __read_mostly; 279 280 #ifdef CONFIG_NUMA 281 /* Zeroed when merging across nodes is not allowed */ 282 static unsigned int ksm_merge_across_nodes = 1; 283 static int ksm_nr_node_ids = 1; 284 #else 285 #define ksm_merge_across_nodes 1U 286 #define ksm_nr_node_ids 1 287 #endif 288 289 #define KSM_RUN_STOP 0 290 #define KSM_RUN_MERGE 1 291 #define KSM_RUN_UNMERGE 2 292 #define KSM_RUN_OFFLINE 4 293 static unsigned long ksm_run = KSM_RUN_STOP; 294 static void wait_while_offlining(void); 295 296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 298 static DEFINE_MUTEX(ksm_thread_mutex); 299 static DEFINE_SPINLOCK(ksm_mmlist_lock); 300 301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 302 sizeof(struct __struct), __alignof__(struct __struct),\ 303 (__flags), NULL) 304 305 static int __init ksm_slab_init(void) 306 { 307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 308 if (!rmap_item_cache) 309 goto out; 310 311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 312 if (!stable_node_cache) 313 goto out_free1; 314 315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 316 if (!mm_slot_cache) 317 goto out_free2; 318 319 return 0; 320 321 out_free2: 322 kmem_cache_destroy(stable_node_cache); 323 out_free1: 324 kmem_cache_destroy(rmap_item_cache); 325 out: 326 return -ENOMEM; 327 } 328 329 static void __init ksm_slab_free(void) 330 { 331 kmem_cache_destroy(mm_slot_cache); 332 kmem_cache_destroy(stable_node_cache); 333 kmem_cache_destroy(rmap_item_cache); 334 mm_slot_cache = NULL; 335 } 336 337 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 338 { 339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 340 } 341 342 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 343 { 344 return dup->head == STABLE_NODE_DUP_HEAD; 345 } 346 347 static inline void stable_node_chain_add_dup(struct stable_node *dup, 348 struct stable_node *chain) 349 { 350 VM_BUG_ON(is_stable_node_dup(dup)); 351 dup->head = STABLE_NODE_DUP_HEAD; 352 VM_BUG_ON(!is_stable_node_chain(chain)); 353 hlist_add_head(&dup->hlist_dup, &chain->hlist); 354 ksm_stable_node_dups++; 355 } 356 357 static inline void __stable_node_dup_del(struct stable_node *dup) 358 { 359 VM_BUG_ON(!is_stable_node_dup(dup)); 360 hlist_del(&dup->hlist_dup); 361 ksm_stable_node_dups--; 362 } 363 364 static inline void stable_node_dup_del(struct stable_node *dup) 365 { 366 VM_BUG_ON(is_stable_node_chain(dup)); 367 if (is_stable_node_dup(dup)) 368 __stable_node_dup_del(dup); 369 else 370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 371 #ifdef CONFIG_DEBUG_VM 372 dup->head = NULL; 373 #endif 374 } 375 376 static inline struct rmap_item *alloc_rmap_item(void) 377 { 378 struct rmap_item *rmap_item; 379 380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 381 __GFP_NORETRY | __GFP_NOWARN); 382 if (rmap_item) 383 ksm_rmap_items++; 384 return rmap_item; 385 } 386 387 static inline void free_rmap_item(struct rmap_item *rmap_item) 388 { 389 ksm_rmap_items--; 390 rmap_item->mm = NULL; /* debug safety */ 391 kmem_cache_free(rmap_item_cache, rmap_item); 392 } 393 394 static inline struct stable_node *alloc_stable_node(void) 395 { 396 /* 397 * The allocation can take too long with GFP_KERNEL when memory is under 398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 399 * grants access to memory reserves, helping to avoid this problem. 400 */ 401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 402 } 403 404 static inline void free_stable_node(struct stable_node *stable_node) 405 { 406 VM_BUG_ON(stable_node->rmap_hlist_len && 407 !is_stable_node_chain(stable_node)); 408 kmem_cache_free(stable_node_cache, stable_node); 409 } 410 411 static inline struct mm_slot *alloc_mm_slot(void) 412 { 413 if (!mm_slot_cache) /* initialization failed */ 414 return NULL; 415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 416 } 417 418 static inline void free_mm_slot(struct mm_slot *mm_slot) 419 { 420 kmem_cache_free(mm_slot_cache, mm_slot); 421 } 422 423 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 424 { 425 struct mm_slot *slot; 426 427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 428 if (slot->mm == mm) 429 return slot; 430 431 return NULL; 432 } 433 434 static void insert_to_mm_slots_hash(struct mm_struct *mm, 435 struct mm_slot *mm_slot) 436 { 437 mm_slot->mm = mm; 438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 439 } 440 441 /* 442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 443 * page tables after it has passed through ksm_exit() - which, if necessary, 444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 445 * a special flag: they can just back out as soon as mm_users goes to zero. 446 * ksm_test_exit() is used throughout to make this test for exit: in some 447 * places for correctness, in some places just to avoid unnecessary work. 448 */ 449 static inline bool ksm_test_exit(struct mm_struct *mm) 450 { 451 return atomic_read(&mm->mm_users) == 0; 452 } 453 454 /* 455 * We use break_ksm to break COW on a ksm page: it's a stripped down 456 * 457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 458 * put_page(page); 459 * 460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 461 * in case the application has unmapped and remapped mm,addr meanwhile. 462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 463 * mmap of /dev/mem, where we would not want to touch it. 464 * 465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 466 * of the process that owns 'vma'. We also do not want to enforce 467 * protection keys here anyway. 468 */ 469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 470 { 471 struct page *page; 472 vm_fault_t ret = 0; 473 474 do { 475 cond_resched(); 476 page = follow_page(vma, addr, 477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 478 if (IS_ERR_OR_NULL(page)) 479 break; 480 if (PageKsm(page)) 481 ret = handle_mm_fault(vma, addr, 482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 483 NULL); 484 else 485 ret = VM_FAULT_WRITE; 486 put_page(page); 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 488 /* 489 * We must loop because handle_mm_fault() may back out if there's 490 * any difficulty e.g. if pte accessed bit gets updated concurrently. 491 * 492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 493 * COW has been broken, even if the vma does not permit VM_WRITE; 494 * but note that a concurrent fault might break PageKsm for us. 495 * 496 * VM_FAULT_SIGBUS could occur if we race with truncation of the 497 * backing file, which also invalidates anonymous pages: that's 498 * okay, that truncation will have unmapped the PageKsm for us. 499 * 500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 502 * current task has TIF_MEMDIE set, and will be OOM killed on return 503 * to user; and ksmd, having no mm, would never be chosen for that. 504 * 505 * But if the mm is in a limited mem_cgroup, then the fault may fail 506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 507 * even ksmd can fail in this way - though it's usually breaking ksm 508 * just to undo a merge it made a moment before, so unlikely to oom. 509 * 510 * That's a pity: we might therefore have more kernel pages allocated 511 * than we're counting as nodes in the stable tree; but ksm_do_scan 512 * will retry to break_cow on each pass, so should recover the page 513 * in due course. The important thing is to not let VM_MERGEABLE 514 * be cleared while any such pages might remain in the area. 515 */ 516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 517 } 518 519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 520 unsigned long addr) 521 { 522 struct vm_area_struct *vma; 523 if (ksm_test_exit(mm)) 524 return NULL; 525 vma = vma_lookup(mm, addr); 526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 527 return NULL; 528 return vma; 529 } 530 531 static void break_cow(struct rmap_item *rmap_item) 532 { 533 struct mm_struct *mm = rmap_item->mm; 534 unsigned long addr = rmap_item->address; 535 struct vm_area_struct *vma; 536 537 /* 538 * It is not an accident that whenever we want to break COW 539 * to undo, we also need to drop a reference to the anon_vma. 540 */ 541 put_anon_vma(rmap_item->anon_vma); 542 543 mmap_read_lock(mm); 544 vma = find_mergeable_vma(mm, addr); 545 if (vma) 546 break_ksm(vma, addr); 547 mmap_read_unlock(mm); 548 } 549 550 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 551 { 552 struct mm_struct *mm = rmap_item->mm; 553 unsigned long addr = rmap_item->address; 554 struct vm_area_struct *vma; 555 struct page *page; 556 557 mmap_read_lock(mm); 558 vma = find_mergeable_vma(mm, addr); 559 if (!vma) 560 goto out; 561 562 page = follow_page(vma, addr, FOLL_GET); 563 if (IS_ERR_OR_NULL(page)) 564 goto out; 565 if (PageAnon(page)) { 566 flush_anon_page(vma, page, addr); 567 flush_dcache_page(page); 568 } else { 569 put_page(page); 570 out: 571 page = NULL; 572 } 573 mmap_read_unlock(mm); 574 return page; 575 } 576 577 /* 578 * This helper is used for getting right index into array of tree roots. 579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 580 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 581 * every node has its own stable and unstable tree. 582 */ 583 static inline int get_kpfn_nid(unsigned long kpfn) 584 { 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 586 } 587 588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 589 struct rb_root *root) 590 { 591 struct stable_node *chain = alloc_stable_node(); 592 VM_BUG_ON(is_stable_node_chain(dup)); 593 if (likely(chain)) { 594 INIT_HLIST_HEAD(&chain->hlist); 595 chain->chain_prune_time = jiffies; 596 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 598 chain->nid = NUMA_NO_NODE; /* debug */ 599 #endif 600 ksm_stable_node_chains++; 601 602 /* 603 * Put the stable node chain in the first dimension of 604 * the stable tree and at the same time remove the old 605 * stable node. 606 */ 607 rb_replace_node(&dup->node, &chain->node, root); 608 609 /* 610 * Move the old stable node to the second dimension 611 * queued in the hlist_dup. The invariant is that all 612 * dup stable_nodes in the chain->hlist point to pages 613 * that are write protected and have the exact same 614 * content. 615 */ 616 stable_node_chain_add_dup(dup, chain); 617 } 618 return chain; 619 } 620 621 static inline void free_stable_node_chain(struct stable_node *chain, 622 struct rb_root *root) 623 { 624 rb_erase(&chain->node, root); 625 free_stable_node(chain); 626 ksm_stable_node_chains--; 627 } 628 629 static void remove_node_from_stable_tree(struct stable_node *stable_node) 630 { 631 struct rmap_item *rmap_item; 632 633 /* check it's not STABLE_NODE_CHAIN or negative */ 634 BUG_ON(stable_node->rmap_hlist_len < 0); 635 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 637 if (rmap_item->hlist.next) 638 ksm_pages_sharing--; 639 else 640 ksm_pages_shared--; 641 642 rmap_item->mm->ksm_merging_pages--; 643 644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 645 stable_node->rmap_hlist_len--; 646 put_anon_vma(rmap_item->anon_vma); 647 rmap_item->address &= PAGE_MASK; 648 cond_resched(); 649 } 650 651 /* 652 * We need the second aligned pointer of the migrate_nodes 653 * list_head to stay clear from the rb_parent_color union 654 * (aligned and different than any node) and also different 655 * from &migrate_nodes. This will verify that future list.h changes 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 657 */ 658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 660 661 if (stable_node->head == &migrate_nodes) 662 list_del(&stable_node->list); 663 else 664 stable_node_dup_del(stable_node); 665 free_stable_node(stable_node); 666 } 667 668 enum get_ksm_page_flags { 669 GET_KSM_PAGE_NOLOCK, 670 GET_KSM_PAGE_LOCK, 671 GET_KSM_PAGE_TRYLOCK 672 }; 673 674 /* 675 * get_ksm_page: checks if the page indicated by the stable node 676 * is still its ksm page, despite having held no reference to it. 677 * In which case we can trust the content of the page, and it 678 * returns the gotten page; but if the page has now been zapped, 679 * remove the stale node from the stable tree and return NULL. 680 * But beware, the stable node's page might be being migrated. 681 * 682 * You would expect the stable_node to hold a reference to the ksm page. 683 * But if it increments the page's count, swapping out has to wait for 684 * ksmd to come around again before it can free the page, which may take 685 * seconds or even minutes: much too unresponsive. So instead we use a 686 * "keyhole reference": access to the ksm page from the stable node peeps 687 * out through its keyhole to see if that page still holds the right key, 688 * pointing back to this stable node. This relies on freeing a PageAnon 689 * page to reset its page->mapping to NULL, and relies on no other use of 690 * a page to put something that might look like our key in page->mapping. 691 * is on its way to being freed; but it is an anomaly to bear in mind. 692 */ 693 static struct page *get_ksm_page(struct stable_node *stable_node, 694 enum get_ksm_page_flags flags) 695 { 696 struct page *page; 697 void *expected_mapping; 698 unsigned long kpfn; 699 700 expected_mapping = (void *)((unsigned long)stable_node | 701 PAGE_MAPPING_KSM); 702 again: 703 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 704 page = pfn_to_page(kpfn); 705 if (READ_ONCE(page->mapping) != expected_mapping) 706 goto stale; 707 708 /* 709 * We cannot do anything with the page while its refcount is 0. 710 * Usually 0 means free, or tail of a higher-order page: in which 711 * case this node is no longer referenced, and should be freed; 712 * however, it might mean that the page is under page_ref_freeze(). 713 * The __remove_mapping() case is easy, again the node is now stale; 714 * the same is in reuse_ksm_page() case; but if page is swapcache 715 * in migrate_page_move_mapping(), it might still be our page, 716 * in which case it's essential to keep the node. 717 */ 718 while (!get_page_unless_zero(page)) { 719 /* 720 * Another check for page->mapping != expected_mapping would 721 * work here too. We have chosen the !PageSwapCache test to 722 * optimize the common case, when the page is or is about to 723 * be freed: PageSwapCache is cleared (under spin_lock_irq) 724 * in the ref_freeze section of __remove_mapping(); but Anon 725 * page->mapping reset to NULL later, in free_pages_prepare(). 726 */ 727 if (!PageSwapCache(page)) 728 goto stale; 729 cpu_relax(); 730 } 731 732 if (READ_ONCE(page->mapping) != expected_mapping) { 733 put_page(page); 734 goto stale; 735 } 736 737 if (flags == GET_KSM_PAGE_TRYLOCK) { 738 if (!trylock_page(page)) { 739 put_page(page); 740 return ERR_PTR(-EBUSY); 741 } 742 } else if (flags == GET_KSM_PAGE_LOCK) 743 lock_page(page); 744 745 if (flags != GET_KSM_PAGE_NOLOCK) { 746 if (READ_ONCE(page->mapping) != expected_mapping) { 747 unlock_page(page); 748 put_page(page); 749 goto stale; 750 } 751 } 752 return page; 753 754 stale: 755 /* 756 * We come here from above when page->mapping or !PageSwapCache 757 * suggests that the node is stale; but it might be under migration. 758 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 759 * before checking whether node->kpfn has been changed. 760 */ 761 smp_rmb(); 762 if (READ_ONCE(stable_node->kpfn) != kpfn) 763 goto again; 764 remove_node_from_stable_tree(stable_node); 765 return NULL; 766 } 767 768 /* 769 * Removing rmap_item from stable or unstable tree. 770 * This function will clean the information from the stable/unstable tree. 771 */ 772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 773 { 774 if (rmap_item->address & STABLE_FLAG) { 775 struct stable_node *stable_node; 776 struct page *page; 777 778 stable_node = rmap_item->head; 779 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 780 if (!page) 781 goto out; 782 783 hlist_del(&rmap_item->hlist); 784 unlock_page(page); 785 put_page(page); 786 787 if (!hlist_empty(&stable_node->hlist)) 788 ksm_pages_sharing--; 789 else 790 ksm_pages_shared--; 791 792 rmap_item->mm->ksm_merging_pages--; 793 794 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 795 stable_node->rmap_hlist_len--; 796 797 put_anon_vma(rmap_item->anon_vma); 798 rmap_item->head = NULL; 799 rmap_item->address &= PAGE_MASK; 800 801 } else if (rmap_item->address & UNSTABLE_FLAG) { 802 unsigned char age; 803 /* 804 * Usually ksmd can and must skip the rb_erase, because 805 * root_unstable_tree was already reset to RB_ROOT. 806 * But be careful when an mm is exiting: do the rb_erase 807 * if this rmap_item was inserted by this scan, rather 808 * than left over from before. 809 */ 810 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 811 BUG_ON(age > 1); 812 if (!age) 813 rb_erase(&rmap_item->node, 814 root_unstable_tree + NUMA(rmap_item->nid)); 815 ksm_pages_unshared--; 816 rmap_item->address &= PAGE_MASK; 817 } 818 out: 819 cond_resched(); /* we're called from many long loops */ 820 } 821 822 static void remove_trailing_rmap_items(struct rmap_item **rmap_list) 823 { 824 while (*rmap_list) { 825 struct rmap_item *rmap_item = *rmap_list; 826 *rmap_list = rmap_item->rmap_list; 827 remove_rmap_item_from_tree(rmap_item); 828 free_rmap_item(rmap_item); 829 } 830 } 831 832 /* 833 * Though it's very tempting to unmerge rmap_items from stable tree rather 834 * than check every pte of a given vma, the locking doesn't quite work for 835 * that - an rmap_item is assigned to the stable tree after inserting ksm 836 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 837 * rmap_items from parent to child at fork time (so as not to waste time 838 * if exit comes before the next scan reaches it). 839 * 840 * Similarly, although we'd like to remove rmap_items (so updating counts 841 * and freeing memory) when unmerging an area, it's easier to leave that 842 * to the next pass of ksmd - consider, for example, how ksmd might be 843 * in cmp_and_merge_page on one of the rmap_items we would be removing. 844 */ 845 static int unmerge_ksm_pages(struct vm_area_struct *vma, 846 unsigned long start, unsigned long end) 847 { 848 unsigned long addr; 849 int err = 0; 850 851 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 852 if (ksm_test_exit(vma->vm_mm)) 853 break; 854 if (signal_pending(current)) 855 err = -ERESTARTSYS; 856 else 857 err = break_ksm(vma, addr); 858 } 859 return err; 860 } 861 862 static inline struct stable_node *folio_stable_node(struct folio *folio) 863 { 864 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 865 } 866 867 static inline struct stable_node *page_stable_node(struct page *page) 868 { 869 return folio_stable_node(page_folio(page)); 870 } 871 872 static inline void set_page_stable_node(struct page *page, 873 struct stable_node *stable_node) 874 { 875 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 876 } 877 878 #ifdef CONFIG_SYSFS 879 /* 880 * Only called through the sysfs control interface: 881 */ 882 static int remove_stable_node(struct stable_node *stable_node) 883 { 884 struct page *page; 885 int err; 886 887 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 888 if (!page) { 889 /* 890 * get_ksm_page did remove_node_from_stable_tree itself. 891 */ 892 return 0; 893 } 894 895 /* 896 * Page could be still mapped if this races with __mmput() running in 897 * between ksm_exit() and exit_mmap(). Just refuse to let 898 * merge_across_nodes/max_page_sharing be switched. 899 */ 900 err = -EBUSY; 901 if (!page_mapped(page)) { 902 /* 903 * The stable node did not yet appear stale to get_ksm_page(), 904 * since that allows for an unmapped ksm page to be recognized 905 * right up until it is freed; but the node is safe to remove. 906 * This page might be in a pagevec waiting to be freed, 907 * or it might be PageSwapCache (perhaps under writeback), 908 * or it might have been removed from swapcache a moment ago. 909 */ 910 set_page_stable_node(page, NULL); 911 remove_node_from_stable_tree(stable_node); 912 err = 0; 913 } 914 915 unlock_page(page); 916 put_page(page); 917 return err; 918 } 919 920 static int remove_stable_node_chain(struct stable_node *stable_node, 921 struct rb_root *root) 922 { 923 struct stable_node *dup; 924 struct hlist_node *hlist_safe; 925 926 if (!is_stable_node_chain(stable_node)) { 927 VM_BUG_ON(is_stable_node_dup(stable_node)); 928 if (remove_stable_node(stable_node)) 929 return true; 930 else 931 return false; 932 } 933 934 hlist_for_each_entry_safe(dup, hlist_safe, 935 &stable_node->hlist, hlist_dup) { 936 VM_BUG_ON(!is_stable_node_dup(dup)); 937 if (remove_stable_node(dup)) 938 return true; 939 } 940 BUG_ON(!hlist_empty(&stable_node->hlist)); 941 free_stable_node_chain(stable_node, root); 942 return false; 943 } 944 945 static int remove_all_stable_nodes(void) 946 { 947 struct stable_node *stable_node, *next; 948 int nid; 949 int err = 0; 950 951 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 952 while (root_stable_tree[nid].rb_node) { 953 stable_node = rb_entry(root_stable_tree[nid].rb_node, 954 struct stable_node, node); 955 if (remove_stable_node_chain(stable_node, 956 root_stable_tree + nid)) { 957 err = -EBUSY; 958 break; /* proceed to next nid */ 959 } 960 cond_resched(); 961 } 962 } 963 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 964 if (remove_stable_node(stable_node)) 965 err = -EBUSY; 966 cond_resched(); 967 } 968 return err; 969 } 970 971 static int unmerge_and_remove_all_rmap_items(void) 972 { 973 struct mm_slot *mm_slot; 974 struct mm_struct *mm; 975 struct vm_area_struct *vma; 976 int err = 0; 977 978 spin_lock(&ksm_mmlist_lock); 979 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 980 struct mm_slot, mm_list); 981 spin_unlock(&ksm_mmlist_lock); 982 983 for (mm_slot = ksm_scan.mm_slot; 984 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 985 mm = mm_slot->mm; 986 mmap_read_lock(mm); 987 for (vma = mm->mmap; vma; vma = vma->vm_next) { 988 if (ksm_test_exit(mm)) 989 break; 990 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 991 continue; 992 err = unmerge_ksm_pages(vma, 993 vma->vm_start, vma->vm_end); 994 if (err) 995 goto error; 996 } 997 998 remove_trailing_rmap_items(&mm_slot->rmap_list); 999 mmap_read_unlock(mm); 1000 1001 spin_lock(&ksm_mmlist_lock); 1002 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 1003 struct mm_slot, mm_list); 1004 if (ksm_test_exit(mm)) { 1005 hash_del(&mm_slot->link); 1006 list_del(&mm_slot->mm_list); 1007 spin_unlock(&ksm_mmlist_lock); 1008 1009 free_mm_slot(mm_slot); 1010 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1011 mmdrop(mm); 1012 } else 1013 spin_unlock(&ksm_mmlist_lock); 1014 } 1015 1016 /* Clean up stable nodes, but don't worry if some are still busy */ 1017 remove_all_stable_nodes(); 1018 ksm_scan.seqnr = 0; 1019 return 0; 1020 1021 error: 1022 mmap_read_unlock(mm); 1023 spin_lock(&ksm_mmlist_lock); 1024 ksm_scan.mm_slot = &ksm_mm_head; 1025 spin_unlock(&ksm_mmlist_lock); 1026 return err; 1027 } 1028 #endif /* CONFIG_SYSFS */ 1029 1030 static u32 calc_checksum(struct page *page) 1031 { 1032 u32 checksum; 1033 void *addr = kmap_atomic(page); 1034 checksum = xxhash(addr, PAGE_SIZE, 0); 1035 kunmap_atomic(addr); 1036 return checksum; 1037 } 1038 1039 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1040 pte_t *orig_pte) 1041 { 1042 struct mm_struct *mm = vma->vm_mm; 1043 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1044 int swapped; 1045 int err = -EFAULT; 1046 struct mmu_notifier_range range; 1047 1048 pvmw.address = page_address_in_vma(page, vma); 1049 if (pvmw.address == -EFAULT) 1050 goto out; 1051 1052 BUG_ON(PageTransCompound(page)); 1053 1054 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1055 pvmw.address, 1056 pvmw.address + PAGE_SIZE); 1057 mmu_notifier_invalidate_range_start(&range); 1058 1059 if (!page_vma_mapped_walk(&pvmw)) 1060 goto out_mn; 1061 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1062 goto out_unlock; 1063 1064 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1065 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1066 mm_tlb_flush_pending(mm)) { 1067 pte_t entry; 1068 1069 swapped = PageSwapCache(page); 1070 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1071 /* 1072 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1073 * take any lock, therefore the check that we are going to make 1074 * with the pagecount against the mapcount is racy and 1075 * O_DIRECT can happen right after the check. 1076 * So we clear the pte and flush the tlb before the check 1077 * this assure us that no O_DIRECT can happen after the check 1078 * or in the middle of the check. 1079 * 1080 * No need to notify as we are downgrading page table to read 1081 * only not changing it to point to a new page. 1082 * 1083 * See Documentation/vm/mmu_notifier.rst 1084 */ 1085 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1086 /* 1087 * Check that no O_DIRECT or similar I/O is in progress on the 1088 * page 1089 */ 1090 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1091 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1092 goto out_unlock; 1093 } 1094 if (pte_dirty(entry)) 1095 set_page_dirty(page); 1096 1097 if (pte_protnone(entry)) 1098 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1099 else 1100 entry = pte_mkclean(pte_wrprotect(entry)); 1101 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1102 } 1103 *orig_pte = *pvmw.pte; 1104 err = 0; 1105 1106 out_unlock: 1107 page_vma_mapped_walk_done(&pvmw); 1108 out_mn: 1109 mmu_notifier_invalidate_range_end(&range); 1110 out: 1111 return err; 1112 } 1113 1114 /** 1115 * replace_page - replace page in vma by new ksm page 1116 * @vma: vma that holds the pte pointing to page 1117 * @page: the page we are replacing by kpage 1118 * @kpage: the ksm page we replace page by 1119 * @orig_pte: the original value of the pte 1120 * 1121 * Returns 0 on success, -EFAULT on failure. 1122 */ 1123 static int replace_page(struct vm_area_struct *vma, struct page *page, 1124 struct page *kpage, pte_t orig_pte) 1125 { 1126 struct mm_struct *mm = vma->vm_mm; 1127 pmd_t *pmd; 1128 pte_t *ptep; 1129 pte_t newpte; 1130 spinlock_t *ptl; 1131 unsigned long addr; 1132 int err = -EFAULT; 1133 struct mmu_notifier_range range; 1134 1135 addr = page_address_in_vma(page, vma); 1136 if (addr == -EFAULT) 1137 goto out; 1138 1139 pmd = mm_find_pmd(mm, addr); 1140 if (!pmd) 1141 goto out; 1142 1143 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1144 addr + PAGE_SIZE); 1145 mmu_notifier_invalidate_range_start(&range); 1146 1147 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1148 if (!pte_same(*ptep, orig_pte)) { 1149 pte_unmap_unlock(ptep, ptl); 1150 goto out_mn; 1151 } 1152 1153 /* 1154 * No need to check ksm_use_zero_pages here: we can only have a 1155 * zero_page here if ksm_use_zero_pages was enabled already. 1156 */ 1157 if (!is_zero_pfn(page_to_pfn(kpage))) { 1158 get_page(kpage); 1159 page_add_anon_rmap(kpage, vma, addr, false); 1160 newpte = mk_pte(kpage, vma->vm_page_prot); 1161 } else { 1162 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1163 vma->vm_page_prot)); 1164 /* 1165 * We're replacing an anonymous page with a zero page, which is 1166 * not anonymous. We need to do proper accounting otherwise we 1167 * will get wrong values in /proc, and a BUG message in dmesg 1168 * when tearing down the mm. 1169 */ 1170 dec_mm_counter(mm, MM_ANONPAGES); 1171 } 1172 1173 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1174 /* 1175 * No need to notify as we are replacing a read only page with another 1176 * read only page with the same content. 1177 * 1178 * See Documentation/vm/mmu_notifier.rst 1179 */ 1180 ptep_clear_flush(vma, addr, ptep); 1181 set_pte_at_notify(mm, addr, ptep, newpte); 1182 1183 page_remove_rmap(page, vma, false); 1184 if (!page_mapped(page)) 1185 try_to_free_swap(page); 1186 put_page(page); 1187 1188 pte_unmap_unlock(ptep, ptl); 1189 err = 0; 1190 out_mn: 1191 mmu_notifier_invalidate_range_end(&range); 1192 out: 1193 return err; 1194 } 1195 1196 /* 1197 * try_to_merge_one_page - take two pages and merge them into one 1198 * @vma: the vma that holds the pte pointing to page 1199 * @page: the PageAnon page that we want to replace with kpage 1200 * @kpage: the PageKsm page that we want to map instead of page, 1201 * or NULL the first time when we want to use page as kpage. 1202 * 1203 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1204 */ 1205 static int try_to_merge_one_page(struct vm_area_struct *vma, 1206 struct page *page, struct page *kpage) 1207 { 1208 pte_t orig_pte = __pte(0); 1209 int err = -EFAULT; 1210 1211 if (page == kpage) /* ksm page forked */ 1212 return 0; 1213 1214 if (!PageAnon(page)) 1215 goto out; 1216 1217 /* 1218 * We need the page lock to read a stable PageSwapCache in 1219 * write_protect_page(). We use trylock_page() instead of 1220 * lock_page() because we don't want to wait here - we 1221 * prefer to continue scanning and merging different pages, 1222 * then come back to this page when it is unlocked. 1223 */ 1224 if (!trylock_page(page)) 1225 goto out; 1226 1227 if (PageTransCompound(page)) { 1228 if (split_huge_page(page)) 1229 goto out_unlock; 1230 } 1231 1232 /* 1233 * If this anonymous page is mapped only here, its pte may need 1234 * to be write-protected. If it's mapped elsewhere, all of its 1235 * ptes are necessarily already write-protected. But in either 1236 * case, we need to lock and check page_count is not raised. 1237 */ 1238 if (write_protect_page(vma, page, &orig_pte) == 0) { 1239 if (!kpage) { 1240 /* 1241 * While we hold page lock, upgrade page from 1242 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1243 * stable_tree_insert() will update stable_node. 1244 */ 1245 set_page_stable_node(page, NULL); 1246 mark_page_accessed(page); 1247 /* 1248 * Page reclaim just frees a clean page with no dirty 1249 * ptes: make sure that the ksm page would be swapped. 1250 */ 1251 if (!PageDirty(page)) 1252 SetPageDirty(page); 1253 err = 0; 1254 } else if (pages_identical(page, kpage)) 1255 err = replace_page(vma, page, kpage, orig_pte); 1256 } 1257 1258 out_unlock: 1259 unlock_page(page); 1260 out: 1261 return err; 1262 } 1263 1264 /* 1265 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1266 * but no new kernel page is allocated: kpage must already be a ksm page. 1267 * 1268 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1269 */ 1270 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1271 struct page *page, struct page *kpage) 1272 { 1273 struct mm_struct *mm = rmap_item->mm; 1274 struct vm_area_struct *vma; 1275 int err = -EFAULT; 1276 1277 mmap_read_lock(mm); 1278 vma = find_mergeable_vma(mm, rmap_item->address); 1279 if (!vma) 1280 goto out; 1281 1282 err = try_to_merge_one_page(vma, page, kpage); 1283 if (err) 1284 goto out; 1285 1286 /* Unstable nid is in union with stable anon_vma: remove first */ 1287 remove_rmap_item_from_tree(rmap_item); 1288 1289 /* Must get reference to anon_vma while still holding mmap_lock */ 1290 rmap_item->anon_vma = vma->anon_vma; 1291 get_anon_vma(vma->anon_vma); 1292 out: 1293 mmap_read_unlock(mm); 1294 return err; 1295 } 1296 1297 /* 1298 * try_to_merge_two_pages - take two identical pages and prepare them 1299 * to be merged into one page. 1300 * 1301 * This function returns the kpage if we successfully merged two identical 1302 * pages into one ksm page, NULL otherwise. 1303 * 1304 * Note that this function upgrades page to ksm page: if one of the pages 1305 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1306 */ 1307 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1308 struct page *page, 1309 struct rmap_item *tree_rmap_item, 1310 struct page *tree_page) 1311 { 1312 int err; 1313 1314 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1315 if (!err) { 1316 err = try_to_merge_with_ksm_page(tree_rmap_item, 1317 tree_page, page); 1318 /* 1319 * If that fails, we have a ksm page with only one pte 1320 * pointing to it: so break it. 1321 */ 1322 if (err) 1323 break_cow(rmap_item); 1324 } 1325 return err ? NULL : page; 1326 } 1327 1328 static __always_inline 1329 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1330 { 1331 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1332 /* 1333 * Check that at least one mapping still exists, otherwise 1334 * there's no much point to merge and share with this 1335 * stable_node, as the underlying tree_page of the other 1336 * sharer is going to be freed soon. 1337 */ 1338 return stable_node->rmap_hlist_len && 1339 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1340 } 1341 1342 static __always_inline 1343 bool is_page_sharing_candidate(struct stable_node *stable_node) 1344 { 1345 return __is_page_sharing_candidate(stable_node, 0); 1346 } 1347 1348 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1349 struct stable_node **_stable_node, 1350 struct rb_root *root, 1351 bool prune_stale_stable_nodes) 1352 { 1353 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1354 struct hlist_node *hlist_safe; 1355 struct page *_tree_page, *tree_page = NULL; 1356 int nr = 0; 1357 int found_rmap_hlist_len; 1358 1359 if (!prune_stale_stable_nodes || 1360 time_before(jiffies, stable_node->chain_prune_time + 1361 msecs_to_jiffies( 1362 ksm_stable_node_chains_prune_millisecs))) 1363 prune_stale_stable_nodes = false; 1364 else 1365 stable_node->chain_prune_time = jiffies; 1366 1367 hlist_for_each_entry_safe(dup, hlist_safe, 1368 &stable_node->hlist, hlist_dup) { 1369 cond_resched(); 1370 /* 1371 * We must walk all stable_node_dup to prune the stale 1372 * stable nodes during lookup. 1373 * 1374 * get_ksm_page can drop the nodes from the 1375 * stable_node->hlist if they point to freed pages 1376 * (that's why we do a _safe walk). The "dup" 1377 * stable_node parameter itself will be freed from 1378 * under us if it returns NULL. 1379 */ 1380 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1381 if (!_tree_page) 1382 continue; 1383 nr += 1; 1384 if (is_page_sharing_candidate(dup)) { 1385 if (!found || 1386 dup->rmap_hlist_len > found_rmap_hlist_len) { 1387 if (found) 1388 put_page(tree_page); 1389 found = dup; 1390 found_rmap_hlist_len = found->rmap_hlist_len; 1391 tree_page = _tree_page; 1392 1393 /* skip put_page for found dup */ 1394 if (!prune_stale_stable_nodes) 1395 break; 1396 continue; 1397 } 1398 } 1399 put_page(_tree_page); 1400 } 1401 1402 if (found) { 1403 /* 1404 * nr is counting all dups in the chain only if 1405 * prune_stale_stable_nodes is true, otherwise we may 1406 * break the loop at nr == 1 even if there are 1407 * multiple entries. 1408 */ 1409 if (prune_stale_stable_nodes && nr == 1) { 1410 /* 1411 * If there's not just one entry it would 1412 * corrupt memory, better BUG_ON. In KSM 1413 * context with no lock held it's not even 1414 * fatal. 1415 */ 1416 BUG_ON(stable_node->hlist.first->next); 1417 1418 /* 1419 * There's just one entry and it is below the 1420 * deduplication limit so drop the chain. 1421 */ 1422 rb_replace_node(&stable_node->node, &found->node, 1423 root); 1424 free_stable_node(stable_node); 1425 ksm_stable_node_chains--; 1426 ksm_stable_node_dups--; 1427 /* 1428 * NOTE: the caller depends on the stable_node 1429 * to be equal to stable_node_dup if the chain 1430 * was collapsed. 1431 */ 1432 *_stable_node = found; 1433 /* 1434 * Just for robustness, as stable_node is 1435 * otherwise left as a stable pointer, the 1436 * compiler shall optimize it away at build 1437 * time. 1438 */ 1439 stable_node = NULL; 1440 } else if (stable_node->hlist.first != &found->hlist_dup && 1441 __is_page_sharing_candidate(found, 1)) { 1442 /* 1443 * If the found stable_node dup can accept one 1444 * more future merge (in addition to the one 1445 * that is underway) and is not at the head of 1446 * the chain, put it there so next search will 1447 * be quicker in the !prune_stale_stable_nodes 1448 * case. 1449 * 1450 * NOTE: it would be inaccurate to use nr > 1 1451 * instead of checking the hlist.first pointer 1452 * directly, because in the 1453 * prune_stale_stable_nodes case "nr" isn't 1454 * the position of the found dup in the chain, 1455 * but the total number of dups in the chain. 1456 */ 1457 hlist_del(&found->hlist_dup); 1458 hlist_add_head(&found->hlist_dup, 1459 &stable_node->hlist); 1460 } 1461 } 1462 1463 *_stable_node_dup = found; 1464 return tree_page; 1465 } 1466 1467 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1468 struct rb_root *root) 1469 { 1470 if (!is_stable_node_chain(stable_node)) 1471 return stable_node; 1472 if (hlist_empty(&stable_node->hlist)) { 1473 free_stable_node_chain(stable_node, root); 1474 return NULL; 1475 } 1476 return hlist_entry(stable_node->hlist.first, 1477 typeof(*stable_node), hlist_dup); 1478 } 1479 1480 /* 1481 * Like for get_ksm_page, this function can free the *_stable_node and 1482 * *_stable_node_dup if the returned tree_page is NULL. 1483 * 1484 * It can also free and overwrite *_stable_node with the found 1485 * stable_node_dup if the chain is collapsed (in which case 1486 * *_stable_node will be equal to *_stable_node_dup like if the chain 1487 * never existed). It's up to the caller to verify tree_page is not 1488 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1489 * 1490 * *_stable_node_dup is really a second output parameter of this 1491 * function and will be overwritten in all cases, the caller doesn't 1492 * need to initialize it. 1493 */ 1494 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1495 struct stable_node **_stable_node, 1496 struct rb_root *root, 1497 bool prune_stale_stable_nodes) 1498 { 1499 struct stable_node *stable_node = *_stable_node; 1500 if (!is_stable_node_chain(stable_node)) { 1501 if (is_page_sharing_candidate(stable_node)) { 1502 *_stable_node_dup = stable_node; 1503 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1504 } 1505 /* 1506 * _stable_node_dup set to NULL means the stable_node 1507 * reached the ksm_max_page_sharing limit. 1508 */ 1509 *_stable_node_dup = NULL; 1510 return NULL; 1511 } 1512 return stable_node_dup(_stable_node_dup, _stable_node, root, 1513 prune_stale_stable_nodes); 1514 } 1515 1516 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1517 struct stable_node **s_n, 1518 struct rb_root *root) 1519 { 1520 return __stable_node_chain(s_n_d, s_n, root, true); 1521 } 1522 1523 static __always_inline struct page *chain(struct stable_node **s_n_d, 1524 struct stable_node *s_n, 1525 struct rb_root *root) 1526 { 1527 struct stable_node *old_stable_node = s_n; 1528 struct page *tree_page; 1529 1530 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1531 /* not pruning dups so s_n cannot have changed */ 1532 VM_BUG_ON(s_n != old_stable_node); 1533 return tree_page; 1534 } 1535 1536 /* 1537 * stable_tree_search - search for page inside the stable tree 1538 * 1539 * This function checks if there is a page inside the stable tree 1540 * with identical content to the page that we are scanning right now. 1541 * 1542 * This function returns the stable tree node of identical content if found, 1543 * NULL otherwise. 1544 */ 1545 static struct page *stable_tree_search(struct page *page) 1546 { 1547 int nid; 1548 struct rb_root *root; 1549 struct rb_node **new; 1550 struct rb_node *parent; 1551 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1552 struct stable_node *page_node; 1553 1554 page_node = page_stable_node(page); 1555 if (page_node && page_node->head != &migrate_nodes) { 1556 /* ksm page forked */ 1557 get_page(page); 1558 return page; 1559 } 1560 1561 nid = get_kpfn_nid(page_to_pfn(page)); 1562 root = root_stable_tree + nid; 1563 again: 1564 new = &root->rb_node; 1565 parent = NULL; 1566 1567 while (*new) { 1568 struct page *tree_page; 1569 int ret; 1570 1571 cond_resched(); 1572 stable_node = rb_entry(*new, struct stable_node, node); 1573 stable_node_any = NULL; 1574 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1575 /* 1576 * NOTE: stable_node may have been freed by 1577 * chain_prune() if the returned stable_node_dup is 1578 * not NULL. stable_node_dup may have been inserted in 1579 * the rbtree instead as a regular stable_node (in 1580 * order to collapse the stable_node chain if a single 1581 * stable_node dup was found in it). In such case the 1582 * stable_node is overwritten by the calleee to point 1583 * to the stable_node_dup that was collapsed in the 1584 * stable rbtree and stable_node will be equal to 1585 * stable_node_dup like if the chain never existed. 1586 */ 1587 if (!stable_node_dup) { 1588 /* 1589 * Either all stable_node dups were full in 1590 * this stable_node chain, or this chain was 1591 * empty and should be rb_erased. 1592 */ 1593 stable_node_any = stable_node_dup_any(stable_node, 1594 root); 1595 if (!stable_node_any) { 1596 /* rb_erase just run */ 1597 goto again; 1598 } 1599 /* 1600 * Take any of the stable_node dups page of 1601 * this stable_node chain to let the tree walk 1602 * continue. All KSM pages belonging to the 1603 * stable_node dups in a stable_node chain 1604 * have the same content and they're 1605 * write protected at all times. Any will work 1606 * fine to continue the walk. 1607 */ 1608 tree_page = get_ksm_page(stable_node_any, 1609 GET_KSM_PAGE_NOLOCK); 1610 } 1611 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1612 if (!tree_page) { 1613 /* 1614 * If we walked over a stale stable_node, 1615 * get_ksm_page() will call rb_erase() and it 1616 * may rebalance the tree from under us. So 1617 * restart the search from scratch. Returning 1618 * NULL would be safe too, but we'd generate 1619 * false negative insertions just because some 1620 * stable_node was stale. 1621 */ 1622 goto again; 1623 } 1624 1625 ret = memcmp_pages(page, tree_page); 1626 put_page(tree_page); 1627 1628 parent = *new; 1629 if (ret < 0) 1630 new = &parent->rb_left; 1631 else if (ret > 0) 1632 new = &parent->rb_right; 1633 else { 1634 if (page_node) { 1635 VM_BUG_ON(page_node->head != &migrate_nodes); 1636 /* 1637 * Test if the migrated page should be merged 1638 * into a stable node dup. If the mapcount is 1639 * 1 we can migrate it with another KSM page 1640 * without adding it to the chain. 1641 */ 1642 if (page_mapcount(page) > 1) 1643 goto chain_append; 1644 } 1645 1646 if (!stable_node_dup) { 1647 /* 1648 * If the stable_node is a chain and 1649 * we got a payload match in memcmp 1650 * but we cannot merge the scanned 1651 * page in any of the existing 1652 * stable_node dups because they're 1653 * all full, we need to wait the 1654 * scanned page to find itself a match 1655 * in the unstable tree to create a 1656 * brand new KSM page to add later to 1657 * the dups of this stable_node. 1658 */ 1659 return NULL; 1660 } 1661 1662 /* 1663 * Lock and unlock the stable_node's page (which 1664 * might already have been migrated) so that page 1665 * migration is sure to notice its raised count. 1666 * It would be more elegant to return stable_node 1667 * than kpage, but that involves more changes. 1668 */ 1669 tree_page = get_ksm_page(stable_node_dup, 1670 GET_KSM_PAGE_TRYLOCK); 1671 1672 if (PTR_ERR(tree_page) == -EBUSY) 1673 return ERR_PTR(-EBUSY); 1674 1675 if (unlikely(!tree_page)) 1676 /* 1677 * The tree may have been rebalanced, 1678 * so re-evaluate parent and new. 1679 */ 1680 goto again; 1681 unlock_page(tree_page); 1682 1683 if (get_kpfn_nid(stable_node_dup->kpfn) != 1684 NUMA(stable_node_dup->nid)) { 1685 put_page(tree_page); 1686 goto replace; 1687 } 1688 return tree_page; 1689 } 1690 } 1691 1692 if (!page_node) 1693 return NULL; 1694 1695 list_del(&page_node->list); 1696 DO_NUMA(page_node->nid = nid); 1697 rb_link_node(&page_node->node, parent, new); 1698 rb_insert_color(&page_node->node, root); 1699 out: 1700 if (is_page_sharing_candidate(page_node)) { 1701 get_page(page); 1702 return page; 1703 } else 1704 return NULL; 1705 1706 replace: 1707 /* 1708 * If stable_node was a chain and chain_prune collapsed it, 1709 * stable_node has been updated to be the new regular 1710 * stable_node. A collapse of the chain is indistinguishable 1711 * from the case there was no chain in the stable 1712 * rbtree. Otherwise stable_node is the chain and 1713 * stable_node_dup is the dup to replace. 1714 */ 1715 if (stable_node_dup == stable_node) { 1716 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1717 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1718 /* there is no chain */ 1719 if (page_node) { 1720 VM_BUG_ON(page_node->head != &migrate_nodes); 1721 list_del(&page_node->list); 1722 DO_NUMA(page_node->nid = nid); 1723 rb_replace_node(&stable_node_dup->node, 1724 &page_node->node, 1725 root); 1726 if (is_page_sharing_candidate(page_node)) 1727 get_page(page); 1728 else 1729 page = NULL; 1730 } else { 1731 rb_erase(&stable_node_dup->node, root); 1732 page = NULL; 1733 } 1734 } else { 1735 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1736 __stable_node_dup_del(stable_node_dup); 1737 if (page_node) { 1738 VM_BUG_ON(page_node->head != &migrate_nodes); 1739 list_del(&page_node->list); 1740 DO_NUMA(page_node->nid = nid); 1741 stable_node_chain_add_dup(page_node, stable_node); 1742 if (is_page_sharing_candidate(page_node)) 1743 get_page(page); 1744 else 1745 page = NULL; 1746 } else { 1747 page = NULL; 1748 } 1749 } 1750 stable_node_dup->head = &migrate_nodes; 1751 list_add(&stable_node_dup->list, stable_node_dup->head); 1752 return page; 1753 1754 chain_append: 1755 /* stable_node_dup could be null if it reached the limit */ 1756 if (!stable_node_dup) 1757 stable_node_dup = stable_node_any; 1758 /* 1759 * If stable_node was a chain and chain_prune collapsed it, 1760 * stable_node has been updated to be the new regular 1761 * stable_node. A collapse of the chain is indistinguishable 1762 * from the case there was no chain in the stable 1763 * rbtree. Otherwise stable_node is the chain and 1764 * stable_node_dup is the dup to replace. 1765 */ 1766 if (stable_node_dup == stable_node) { 1767 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1768 /* chain is missing so create it */ 1769 stable_node = alloc_stable_node_chain(stable_node_dup, 1770 root); 1771 if (!stable_node) 1772 return NULL; 1773 } 1774 /* 1775 * Add this stable_node dup that was 1776 * migrated to the stable_node chain 1777 * of the current nid for this page 1778 * content. 1779 */ 1780 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1781 VM_BUG_ON(page_node->head != &migrate_nodes); 1782 list_del(&page_node->list); 1783 DO_NUMA(page_node->nid = nid); 1784 stable_node_chain_add_dup(page_node, stable_node); 1785 goto out; 1786 } 1787 1788 /* 1789 * stable_tree_insert - insert stable tree node pointing to new ksm page 1790 * into the stable tree. 1791 * 1792 * This function returns the stable tree node just allocated on success, 1793 * NULL otherwise. 1794 */ 1795 static struct stable_node *stable_tree_insert(struct page *kpage) 1796 { 1797 int nid; 1798 unsigned long kpfn; 1799 struct rb_root *root; 1800 struct rb_node **new; 1801 struct rb_node *parent; 1802 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1803 bool need_chain = false; 1804 1805 kpfn = page_to_pfn(kpage); 1806 nid = get_kpfn_nid(kpfn); 1807 root = root_stable_tree + nid; 1808 again: 1809 parent = NULL; 1810 new = &root->rb_node; 1811 1812 while (*new) { 1813 struct page *tree_page; 1814 int ret; 1815 1816 cond_resched(); 1817 stable_node = rb_entry(*new, struct stable_node, node); 1818 stable_node_any = NULL; 1819 tree_page = chain(&stable_node_dup, stable_node, root); 1820 if (!stable_node_dup) { 1821 /* 1822 * Either all stable_node dups were full in 1823 * this stable_node chain, or this chain was 1824 * empty and should be rb_erased. 1825 */ 1826 stable_node_any = stable_node_dup_any(stable_node, 1827 root); 1828 if (!stable_node_any) { 1829 /* rb_erase just run */ 1830 goto again; 1831 } 1832 /* 1833 * Take any of the stable_node dups page of 1834 * this stable_node chain to let the tree walk 1835 * continue. All KSM pages belonging to the 1836 * stable_node dups in a stable_node chain 1837 * have the same content and they're 1838 * write protected at all times. Any will work 1839 * fine to continue the walk. 1840 */ 1841 tree_page = get_ksm_page(stable_node_any, 1842 GET_KSM_PAGE_NOLOCK); 1843 } 1844 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1845 if (!tree_page) { 1846 /* 1847 * If we walked over a stale stable_node, 1848 * get_ksm_page() will call rb_erase() and it 1849 * may rebalance the tree from under us. So 1850 * restart the search from scratch. Returning 1851 * NULL would be safe too, but we'd generate 1852 * false negative insertions just because some 1853 * stable_node was stale. 1854 */ 1855 goto again; 1856 } 1857 1858 ret = memcmp_pages(kpage, tree_page); 1859 put_page(tree_page); 1860 1861 parent = *new; 1862 if (ret < 0) 1863 new = &parent->rb_left; 1864 else if (ret > 0) 1865 new = &parent->rb_right; 1866 else { 1867 need_chain = true; 1868 break; 1869 } 1870 } 1871 1872 stable_node_dup = alloc_stable_node(); 1873 if (!stable_node_dup) 1874 return NULL; 1875 1876 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1877 stable_node_dup->kpfn = kpfn; 1878 set_page_stable_node(kpage, stable_node_dup); 1879 stable_node_dup->rmap_hlist_len = 0; 1880 DO_NUMA(stable_node_dup->nid = nid); 1881 if (!need_chain) { 1882 rb_link_node(&stable_node_dup->node, parent, new); 1883 rb_insert_color(&stable_node_dup->node, root); 1884 } else { 1885 if (!is_stable_node_chain(stable_node)) { 1886 struct stable_node *orig = stable_node; 1887 /* chain is missing so create it */ 1888 stable_node = alloc_stable_node_chain(orig, root); 1889 if (!stable_node) { 1890 free_stable_node(stable_node_dup); 1891 return NULL; 1892 } 1893 } 1894 stable_node_chain_add_dup(stable_node_dup, stable_node); 1895 } 1896 1897 return stable_node_dup; 1898 } 1899 1900 /* 1901 * unstable_tree_search_insert - search for identical page, 1902 * else insert rmap_item into the unstable tree. 1903 * 1904 * This function searches for a page in the unstable tree identical to the 1905 * page currently being scanned; and if no identical page is found in the 1906 * tree, we insert rmap_item as a new object into the unstable tree. 1907 * 1908 * This function returns pointer to rmap_item found to be identical 1909 * to the currently scanned page, NULL otherwise. 1910 * 1911 * This function does both searching and inserting, because they share 1912 * the same walking algorithm in an rbtree. 1913 */ 1914 static 1915 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1916 struct page *page, 1917 struct page **tree_pagep) 1918 { 1919 struct rb_node **new; 1920 struct rb_root *root; 1921 struct rb_node *parent = NULL; 1922 int nid; 1923 1924 nid = get_kpfn_nid(page_to_pfn(page)); 1925 root = root_unstable_tree + nid; 1926 new = &root->rb_node; 1927 1928 while (*new) { 1929 struct rmap_item *tree_rmap_item; 1930 struct page *tree_page; 1931 int ret; 1932 1933 cond_resched(); 1934 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1935 tree_page = get_mergeable_page(tree_rmap_item); 1936 if (!tree_page) 1937 return NULL; 1938 1939 /* 1940 * Don't substitute a ksm page for a forked page. 1941 */ 1942 if (page == tree_page) { 1943 put_page(tree_page); 1944 return NULL; 1945 } 1946 1947 ret = memcmp_pages(page, tree_page); 1948 1949 parent = *new; 1950 if (ret < 0) { 1951 put_page(tree_page); 1952 new = &parent->rb_left; 1953 } else if (ret > 0) { 1954 put_page(tree_page); 1955 new = &parent->rb_right; 1956 } else if (!ksm_merge_across_nodes && 1957 page_to_nid(tree_page) != nid) { 1958 /* 1959 * If tree_page has been migrated to another NUMA node, 1960 * it will be flushed out and put in the right unstable 1961 * tree next time: only merge with it when across_nodes. 1962 */ 1963 put_page(tree_page); 1964 return NULL; 1965 } else { 1966 *tree_pagep = tree_page; 1967 return tree_rmap_item; 1968 } 1969 } 1970 1971 rmap_item->address |= UNSTABLE_FLAG; 1972 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1973 DO_NUMA(rmap_item->nid = nid); 1974 rb_link_node(&rmap_item->node, parent, new); 1975 rb_insert_color(&rmap_item->node, root); 1976 1977 ksm_pages_unshared++; 1978 return NULL; 1979 } 1980 1981 /* 1982 * stable_tree_append - add another rmap_item to the linked list of 1983 * rmap_items hanging off a given node of the stable tree, all sharing 1984 * the same ksm page. 1985 */ 1986 static void stable_tree_append(struct rmap_item *rmap_item, 1987 struct stable_node *stable_node, 1988 bool max_page_sharing_bypass) 1989 { 1990 /* 1991 * rmap won't find this mapping if we don't insert the 1992 * rmap_item in the right stable_node 1993 * duplicate. page_migration could break later if rmap breaks, 1994 * so we can as well crash here. We really need to check for 1995 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1996 * for other negative values as an underflow if detected here 1997 * for the first time (and not when decreasing rmap_hlist_len) 1998 * would be sign of memory corruption in the stable_node. 1999 */ 2000 BUG_ON(stable_node->rmap_hlist_len < 0); 2001 2002 stable_node->rmap_hlist_len++; 2003 if (!max_page_sharing_bypass) 2004 /* possibly non fatal but unexpected overflow, only warn */ 2005 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2006 ksm_max_page_sharing); 2007 2008 rmap_item->head = stable_node; 2009 rmap_item->address |= STABLE_FLAG; 2010 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2011 2012 if (rmap_item->hlist.next) 2013 ksm_pages_sharing++; 2014 else 2015 ksm_pages_shared++; 2016 2017 rmap_item->mm->ksm_merging_pages++; 2018 } 2019 2020 /* 2021 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2022 * if not, compare checksum to previous and if it's the same, see if page can 2023 * be inserted into the unstable tree, or merged with a page already there and 2024 * both transferred to the stable tree. 2025 * 2026 * @page: the page that we are searching identical page to. 2027 * @rmap_item: the reverse mapping into the virtual address of this page 2028 */ 2029 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2030 { 2031 struct mm_struct *mm = rmap_item->mm; 2032 struct rmap_item *tree_rmap_item; 2033 struct page *tree_page = NULL; 2034 struct stable_node *stable_node; 2035 struct page *kpage; 2036 unsigned int checksum; 2037 int err; 2038 bool max_page_sharing_bypass = false; 2039 2040 stable_node = page_stable_node(page); 2041 if (stable_node) { 2042 if (stable_node->head != &migrate_nodes && 2043 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2044 NUMA(stable_node->nid)) { 2045 stable_node_dup_del(stable_node); 2046 stable_node->head = &migrate_nodes; 2047 list_add(&stable_node->list, stable_node->head); 2048 } 2049 if (stable_node->head != &migrate_nodes && 2050 rmap_item->head == stable_node) 2051 return; 2052 /* 2053 * If it's a KSM fork, allow it to go over the sharing limit 2054 * without warnings. 2055 */ 2056 if (!is_page_sharing_candidate(stable_node)) 2057 max_page_sharing_bypass = true; 2058 } 2059 2060 /* We first start with searching the page inside the stable tree */ 2061 kpage = stable_tree_search(page); 2062 if (kpage == page && rmap_item->head == stable_node) { 2063 put_page(kpage); 2064 return; 2065 } 2066 2067 remove_rmap_item_from_tree(rmap_item); 2068 2069 if (kpage) { 2070 if (PTR_ERR(kpage) == -EBUSY) 2071 return; 2072 2073 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2074 if (!err) { 2075 /* 2076 * The page was successfully merged: 2077 * add its rmap_item to the stable tree. 2078 */ 2079 lock_page(kpage); 2080 stable_tree_append(rmap_item, page_stable_node(kpage), 2081 max_page_sharing_bypass); 2082 unlock_page(kpage); 2083 } 2084 put_page(kpage); 2085 return; 2086 } 2087 2088 /* 2089 * If the hash value of the page has changed from the last time 2090 * we calculated it, this page is changing frequently: therefore we 2091 * don't want to insert it in the unstable tree, and we don't want 2092 * to waste our time searching for something identical to it there. 2093 */ 2094 checksum = calc_checksum(page); 2095 if (rmap_item->oldchecksum != checksum) { 2096 rmap_item->oldchecksum = checksum; 2097 return; 2098 } 2099 2100 /* 2101 * Same checksum as an empty page. We attempt to merge it with the 2102 * appropriate zero page if the user enabled this via sysfs. 2103 */ 2104 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2105 struct vm_area_struct *vma; 2106 2107 mmap_read_lock(mm); 2108 vma = find_mergeable_vma(mm, rmap_item->address); 2109 if (vma) { 2110 err = try_to_merge_one_page(vma, page, 2111 ZERO_PAGE(rmap_item->address)); 2112 } else { 2113 /* 2114 * If the vma is out of date, we do not need to 2115 * continue. 2116 */ 2117 err = 0; 2118 } 2119 mmap_read_unlock(mm); 2120 /* 2121 * In case of failure, the page was not really empty, so we 2122 * need to continue. Otherwise we're done. 2123 */ 2124 if (!err) 2125 return; 2126 } 2127 tree_rmap_item = 2128 unstable_tree_search_insert(rmap_item, page, &tree_page); 2129 if (tree_rmap_item) { 2130 bool split; 2131 2132 kpage = try_to_merge_two_pages(rmap_item, page, 2133 tree_rmap_item, tree_page); 2134 /* 2135 * If both pages we tried to merge belong to the same compound 2136 * page, then we actually ended up increasing the reference 2137 * count of the same compound page twice, and split_huge_page 2138 * failed. 2139 * Here we set a flag if that happened, and we use it later to 2140 * try split_huge_page again. Since we call put_page right 2141 * afterwards, the reference count will be correct and 2142 * split_huge_page should succeed. 2143 */ 2144 split = PageTransCompound(page) 2145 && compound_head(page) == compound_head(tree_page); 2146 put_page(tree_page); 2147 if (kpage) { 2148 /* 2149 * The pages were successfully merged: insert new 2150 * node in the stable tree and add both rmap_items. 2151 */ 2152 lock_page(kpage); 2153 stable_node = stable_tree_insert(kpage); 2154 if (stable_node) { 2155 stable_tree_append(tree_rmap_item, stable_node, 2156 false); 2157 stable_tree_append(rmap_item, stable_node, 2158 false); 2159 } 2160 unlock_page(kpage); 2161 2162 /* 2163 * If we fail to insert the page into the stable tree, 2164 * we will have 2 virtual addresses that are pointing 2165 * to a ksm page left outside the stable tree, 2166 * in which case we need to break_cow on both. 2167 */ 2168 if (!stable_node) { 2169 break_cow(tree_rmap_item); 2170 break_cow(rmap_item); 2171 } 2172 } else if (split) { 2173 /* 2174 * We are here if we tried to merge two pages and 2175 * failed because they both belonged to the same 2176 * compound page. We will split the page now, but no 2177 * merging will take place. 2178 * We do not want to add the cost of a full lock; if 2179 * the page is locked, it is better to skip it and 2180 * perhaps try again later. 2181 */ 2182 if (!trylock_page(page)) 2183 return; 2184 split_huge_page(page); 2185 unlock_page(page); 2186 } 2187 } 2188 } 2189 2190 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2191 struct rmap_item **rmap_list, 2192 unsigned long addr) 2193 { 2194 struct rmap_item *rmap_item; 2195 2196 while (*rmap_list) { 2197 rmap_item = *rmap_list; 2198 if ((rmap_item->address & PAGE_MASK) == addr) 2199 return rmap_item; 2200 if (rmap_item->address > addr) 2201 break; 2202 *rmap_list = rmap_item->rmap_list; 2203 remove_rmap_item_from_tree(rmap_item); 2204 free_rmap_item(rmap_item); 2205 } 2206 2207 rmap_item = alloc_rmap_item(); 2208 if (rmap_item) { 2209 /* It has already been zeroed */ 2210 rmap_item->mm = mm_slot->mm; 2211 rmap_item->address = addr; 2212 rmap_item->rmap_list = *rmap_list; 2213 *rmap_list = rmap_item; 2214 } 2215 return rmap_item; 2216 } 2217 2218 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2219 { 2220 struct mm_struct *mm; 2221 struct mm_slot *slot; 2222 struct vm_area_struct *vma; 2223 struct rmap_item *rmap_item; 2224 int nid; 2225 2226 if (list_empty(&ksm_mm_head.mm_list)) 2227 return NULL; 2228 2229 slot = ksm_scan.mm_slot; 2230 if (slot == &ksm_mm_head) { 2231 /* 2232 * A number of pages can hang around indefinitely on per-cpu 2233 * pagevecs, raised page count preventing write_protect_page 2234 * from merging them. Though it doesn't really matter much, 2235 * it is puzzling to see some stuck in pages_volatile until 2236 * other activity jostles them out, and they also prevented 2237 * LTP's KSM test from succeeding deterministically; so drain 2238 * them here (here rather than on entry to ksm_do_scan(), 2239 * so we don't IPI too often when pages_to_scan is set low). 2240 */ 2241 lru_add_drain_all(); 2242 2243 /* 2244 * Whereas stale stable_nodes on the stable_tree itself 2245 * get pruned in the regular course of stable_tree_search(), 2246 * those moved out to the migrate_nodes list can accumulate: 2247 * so prune them once before each full scan. 2248 */ 2249 if (!ksm_merge_across_nodes) { 2250 struct stable_node *stable_node, *next; 2251 struct page *page; 2252 2253 list_for_each_entry_safe(stable_node, next, 2254 &migrate_nodes, list) { 2255 page = get_ksm_page(stable_node, 2256 GET_KSM_PAGE_NOLOCK); 2257 if (page) 2258 put_page(page); 2259 cond_resched(); 2260 } 2261 } 2262 2263 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2264 root_unstable_tree[nid] = RB_ROOT; 2265 2266 spin_lock(&ksm_mmlist_lock); 2267 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2268 ksm_scan.mm_slot = slot; 2269 spin_unlock(&ksm_mmlist_lock); 2270 /* 2271 * Although we tested list_empty() above, a racing __ksm_exit 2272 * of the last mm on the list may have removed it since then. 2273 */ 2274 if (slot == &ksm_mm_head) 2275 return NULL; 2276 next_mm: 2277 ksm_scan.address = 0; 2278 ksm_scan.rmap_list = &slot->rmap_list; 2279 } 2280 2281 mm = slot->mm; 2282 mmap_read_lock(mm); 2283 if (ksm_test_exit(mm)) 2284 vma = NULL; 2285 else 2286 vma = find_vma(mm, ksm_scan.address); 2287 2288 for (; vma; vma = vma->vm_next) { 2289 if (!(vma->vm_flags & VM_MERGEABLE)) 2290 continue; 2291 if (ksm_scan.address < vma->vm_start) 2292 ksm_scan.address = vma->vm_start; 2293 if (!vma->anon_vma) 2294 ksm_scan.address = vma->vm_end; 2295 2296 while (ksm_scan.address < vma->vm_end) { 2297 if (ksm_test_exit(mm)) 2298 break; 2299 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2300 if (IS_ERR_OR_NULL(*page)) { 2301 ksm_scan.address += PAGE_SIZE; 2302 cond_resched(); 2303 continue; 2304 } 2305 if (PageAnon(*page)) { 2306 flush_anon_page(vma, *page, ksm_scan.address); 2307 flush_dcache_page(*page); 2308 rmap_item = get_next_rmap_item(slot, 2309 ksm_scan.rmap_list, ksm_scan.address); 2310 if (rmap_item) { 2311 ksm_scan.rmap_list = 2312 &rmap_item->rmap_list; 2313 ksm_scan.address += PAGE_SIZE; 2314 } else 2315 put_page(*page); 2316 mmap_read_unlock(mm); 2317 return rmap_item; 2318 } 2319 put_page(*page); 2320 ksm_scan.address += PAGE_SIZE; 2321 cond_resched(); 2322 } 2323 } 2324 2325 if (ksm_test_exit(mm)) { 2326 ksm_scan.address = 0; 2327 ksm_scan.rmap_list = &slot->rmap_list; 2328 } 2329 /* 2330 * Nuke all the rmap_items that are above this current rmap: 2331 * because there were no VM_MERGEABLE vmas with such addresses. 2332 */ 2333 remove_trailing_rmap_items(ksm_scan.rmap_list); 2334 2335 spin_lock(&ksm_mmlist_lock); 2336 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2337 struct mm_slot, mm_list); 2338 if (ksm_scan.address == 0) { 2339 /* 2340 * We've completed a full scan of all vmas, holding mmap_lock 2341 * throughout, and found no VM_MERGEABLE: so do the same as 2342 * __ksm_exit does to remove this mm from all our lists now. 2343 * This applies either when cleaning up after __ksm_exit 2344 * (but beware: we can reach here even before __ksm_exit), 2345 * or when all VM_MERGEABLE areas have been unmapped (and 2346 * mmap_lock then protects against race with MADV_MERGEABLE). 2347 */ 2348 hash_del(&slot->link); 2349 list_del(&slot->mm_list); 2350 spin_unlock(&ksm_mmlist_lock); 2351 2352 free_mm_slot(slot); 2353 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2354 mmap_read_unlock(mm); 2355 mmdrop(mm); 2356 } else { 2357 mmap_read_unlock(mm); 2358 /* 2359 * mmap_read_unlock(mm) first because after 2360 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2361 * already have been freed under us by __ksm_exit() 2362 * because the "mm_slot" is still hashed and 2363 * ksm_scan.mm_slot doesn't point to it anymore. 2364 */ 2365 spin_unlock(&ksm_mmlist_lock); 2366 } 2367 2368 /* Repeat until we've completed scanning the whole list */ 2369 slot = ksm_scan.mm_slot; 2370 if (slot != &ksm_mm_head) 2371 goto next_mm; 2372 2373 ksm_scan.seqnr++; 2374 return NULL; 2375 } 2376 2377 /** 2378 * ksm_do_scan - the ksm scanner main worker function. 2379 * @scan_npages: number of pages we want to scan before we return. 2380 */ 2381 static void ksm_do_scan(unsigned int scan_npages) 2382 { 2383 struct rmap_item *rmap_item; 2384 struct page *page; 2385 2386 while (scan_npages-- && likely(!freezing(current))) { 2387 cond_resched(); 2388 rmap_item = scan_get_next_rmap_item(&page); 2389 if (!rmap_item) 2390 return; 2391 cmp_and_merge_page(page, rmap_item); 2392 put_page(page); 2393 } 2394 } 2395 2396 static int ksmd_should_run(void) 2397 { 2398 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2399 } 2400 2401 static int ksm_scan_thread(void *nothing) 2402 { 2403 unsigned int sleep_ms; 2404 2405 set_freezable(); 2406 set_user_nice(current, 5); 2407 2408 while (!kthread_should_stop()) { 2409 mutex_lock(&ksm_thread_mutex); 2410 wait_while_offlining(); 2411 if (ksmd_should_run()) 2412 ksm_do_scan(ksm_thread_pages_to_scan); 2413 mutex_unlock(&ksm_thread_mutex); 2414 2415 try_to_freeze(); 2416 2417 if (ksmd_should_run()) { 2418 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2419 wait_event_interruptible_timeout(ksm_iter_wait, 2420 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2421 msecs_to_jiffies(sleep_ms)); 2422 } else { 2423 wait_event_freezable(ksm_thread_wait, 2424 ksmd_should_run() || kthread_should_stop()); 2425 } 2426 } 2427 return 0; 2428 } 2429 2430 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2431 unsigned long end, int advice, unsigned long *vm_flags) 2432 { 2433 struct mm_struct *mm = vma->vm_mm; 2434 int err; 2435 2436 switch (advice) { 2437 case MADV_MERGEABLE: 2438 /* 2439 * Be somewhat over-protective for now! 2440 */ 2441 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2442 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2443 VM_HUGETLB | VM_MIXEDMAP)) 2444 return 0; /* just ignore the advice */ 2445 2446 if (vma_is_dax(vma)) 2447 return 0; 2448 2449 #ifdef VM_SAO 2450 if (*vm_flags & VM_SAO) 2451 return 0; 2452 #endif 2453 #ifdef VM_SPARC_ADI 2454 if (*vm_flags & VM_SPARC_ADI) 2455 return 0; 2456 #endif 2457 2458 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2459 err = __ksm_enter(mm); 2460 if (err) 2461 return err; 2462 } 2463 2464 *vm_flags |= VM_MERGEABLE; 2465 break; 2466 2467 case MADV_UNMERGEABLE: 2468 if (!(*vm_flags & VM_MERGEABLE)) 2469 return 0; /* just ignore the advice */ 2470 2471 if (vma->anon_vma) { 2472 err = unmerge_ksm_pages(vma, start, end); 2473 if (err) 2474 return err; 2475 } 2476 2477 *vm_flags &= ~VM_MERGEABLE; 2478 break; 2479 } 2480 2481 return 0; 2482 } 2483 EXPORT_SYMBOL_GPL(ksm_madvise); 2484 2485 int __ksm_enter(struct mm_struct *mm) 2486 { 2487 struct mm_slot *mm_slot; 2488 int needs_wakeup; 2489 2490 mm_slot = alloc_mm_slot(); 2491 if (!mm_slot) 2492 return -ENOMEM; 2493 2494 /* Check ksm_run too? Would need tighter locking */ 2495 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2496 2497 spin_lock(&ksm_mmlist_lock); 2498 insert_to_mm_slots_hash(mm, mm_slot); 2499 /* 2500 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2501 * insert just behind the scanning cursor, to let the area settle 2502 * down a little; when fork is followed by immediate exec, we don't 2503 * want ksmd to waste time setting up and tearing down an rmap_list. 2504 * 2505 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2506 * scanning cursor, otherwise KSM pages in newly forked mms will be 2507 * missed: then we might as well insert at the end of the list. 2508 */ 2509 if (ksm_run & KSM_RUN_UNMERGE) 2510 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2511 else 2512 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2513 spin_unlock(&ksm_mmlist_lock); 2514 2515 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2516 mmgrab(mm); 2517 2518 if (needs_wakeup) 2519 wake_up_interruptible(&ksm_thread_wait); 2520 2521 return 0; 2522 } 2523 2524 void __ksm_exit(struct mm_struct *mm) 2525 { 2526 struct mm_slot *mm_slot; 2527 int easy_to_free = 0; 2528 2529 /* 2530 * This process is exiting: if it's straightforward (as is the 2531 * case when ksmd was never running), free mm_slot immediately. 2532 * But if it's at the cursor or has rmap_items linked to it, use 2533 * mmap_lock to synchronize with any break_cows before pagetables 2534 * are freed, and leave the mm_slot on the list for ksmd to free. 2535 * Beware: ksm may already have noticed it exiting and freed the slot. 2536 */ 2537 2538 spin_lock(&ksm_mmlist_lock); 2539 mm_slot = get_mm_slot(mm); 2540 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2541 if (!mm_slot->rmap_list) { 2542 hash_del(&mm_slot->link); 2543 list_del(&mm_slot->mm_list); 2544 easy_to_free = 1; 2545 } else { 2546 list_move(&mm_slot->mm_list, 2547 &ksm_scan.mm_slot->mm_list); 2548 } 2549 } 2550 spin_unlock(&ksm_mmlist_lock); 2551 2552 if (easy_to_free) { 2553 free_mm_slot(mm_slot); 2554 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2555 mmdrop(mm); 2556 } else if (mm_slot) { 2557 mmap_write_lock(mm); 2558 mmap_write_unlock(mm); 2559 } 2560 } 2561 2562 struct page *ksm_might_need_to_copy(struct page *page, 2563 struct vm_area_struct *vma, unsigned long address) 2564 { 2565 struct folio *folio = page_folio(page); 2566 struct anon_vma *anon_vma = folio_anon_vma(folio); 2567 struct page *new_page; 2568 2569 if (PageKsm(page)) { 2570 if (page_stable_node(page) && 2571 !(ksm_run & KSM_RUN_UNMERGE)) 2572 return page; /* no need to copy it */ 2573 } else if (!anon_vma) { 2574 return page; /* no need to copy it */ 2575 } else if (page->index == linear_page_index(vma, address) && 2576 anon_vma->root == vma->anon_vma->root) { 2577 return page; /* still no need to copy it */ 2578 } 2579 if (!PageUptodate(page)) 2580 return page; /* let do_swap_page report the error */ 2581 2582 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2583 if (new_page && 2584 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2585 put_page(new_page); 2586 new_page = NULL; 2587 } 2588 if (new_page) { 2589 copy_user_highpage(new_page, page, address, vma); 2590 2591 SetPageDirty(new_page); 2592 __SetPageUptodate(new_page); 2593 __SetPageLocked(new_page); 2594 #ifdef CONFIG_SWAP 2595 count_vm_event(KSM_SWPIN_COPY); 2596 #endif 2597 } 2598 2599 return new_page; 2600 } 2601 2602 void rmap_walk_ksm(struct folio *folio, const struct rmap_walk_control *rwc) 2603 { 2604 struct stable_node *stable_node; 2605 struct rmap_item *rmap_item; 2606 int search_new_forks = 0; 2607 2608 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2609 2610 /* 2611 * Rely on the page lock to protect against concurrent modifications 2612 * to that page's node of the stable tree. 2613 */ 2614 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2615 2616 stable_node = folio_stable_node(folio); 2617 if (!stable_node) 2618 return; 2619 again: 2620 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2621 struct anon_vma *anon_vma = rmap_item->anon_vma; 2622 struct anon_vma_chain *vmac; 2623 struct vm_area_struct *vma; 2624 2625 cond_resched(); 2626 anon_vma_lock_read(anon_vma); 2627 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2628 0, ULONG_MAX) { 2629 unsigned long addr; 2630 2631 cond_resched(); 2632 vma = vmac->vma; 2633 2634 /* Ignore the stable/unstable/sqnr flags */ 2635 addr = rmap_item->address & PAGE_MASK; 2636 2637 if (addr < vma->vm_start || addr >= vma->vm_end) 2638 continue; 2639 /* 2640 * Initially we examine only the vma which covers this 2641 * rmap_item; but later, if there is still work to do, 2642 * we examine covering vmas in other mms: in case they 2643 * were forked from the original since ksmd passed. 2644 */ 2645 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2646 continue; 2647 2648 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2649 continue; 2650 2651 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2652 anon_vma_unlock_read(anon_vma); 2653 return; 2654 } 2655 if (rwc->done && rwc->done(folio)) { 2656 anon_vma_unlock_read(anon_vma); 2657 return; 2658 } 2659 } 2660 anon_vma_unlock_read(anon_vma); 2661 } 2662 if (!search_new_forks++) 2663 goto again; 2664 } 2665 2666 #ifdef CONFIG_MIGRATION 2667 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2668 { 2669 struct stable_node *stable_node; 2670 2671 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2672 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2673 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2674 2675 stable_node = folio_stable_node(folio); 2676 if (stable_node) { 2677 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2678 stable_node->kpfn = folio_pfn(newfolio); 2679 /* 2680 * newfolio->mapping was set in advance; now we need smp_wmb() 2681 * to make sure that the new stable_node->kpfn is visible 2682 * to get_ksm_page() before it can see that folio->mapping 2683 * has gone stale (or that folio_test_swapcache has been cleared). 2684 */ 2685 smp_wmb(); 2686 set_page_stable_node(&folio->page, NULL); 2687 } 2688 } 2689 #endif /* CONFIG_MIGRATION */ 2690 2691 #ifdef CONFIG_MEMORY_HOTREMOVE 2692 static void wait_while_offlining(void) 2693 { 2694 while (ksm_run & KSM_RUN_OFFLINE) { 2695 mutex_unlock(&ksm_thread_mutex); 2696 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2697 TASK_UNINTERRUPTIBLE); 2698 mutex_lock(&ksm_thread_mutex); 2699 } 2700 } 2701 2702 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2703 unsigned long start_pfn, 2704 unsigned long end_pfn) 2705 { 2706 if (stable_node->kpfn >= start_pfn && 2707 stable_node->kpfn < end_pfn) { 2708 /* 2709 * Don't get_ksm_page, page has already gone: 2710 * which is why we keep kpfn instead of page* 2711 */ 2712 remove_node_from_stable_tree(stable_node); 2713 return true; 2714 } 2715 return false; 2716 } 2717 2718 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2719 unsigned long start_pfn, 2720 unsigned long end_pfn, 2721 struct rb_root *root) 2722 { 2723 struct stable_node *dup; 2724 struct hlist_node *hlist_safe; 2725 2726 if (!is_stable_node_chain(stable_node)) { 2727 VM_BUG_ON(is_stable_node_dup(stable_node)); 2728 return stable_node_dup_remove_range(stable_node, start_pfn, 2729 end_pfn); 2730 } 2731 2732 hlist_for_each_entry_safe(dup, hlist_safe, 2733 &stable_node->hlist, hlist_dup) { 2734 VM_BUG_ON(!is_stable_node_dup(dup)); 2735 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2736 } 2737 if (hlist_empty(&stable_node->hlist)) { 2738 free_stable_node_chain(stable_node, root); 2739 return true; /* notify caller that tree was rebalanced */ 2740 } else 2741 return false; 2742 } 2743 2744 static void ksm_check_stable_tree(unsigned long start_pfn, 2745 unsigned long end_pfn) 2746 { 2747 struct stable_node *stable_node, *next; 2748 struct rb_node *node; 2749 int nid; 2750 2751 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2752 node = rb_first(root_stable_tree + nid); 2753 while (node) { 2754 stable_node = rb_entry(node, struct stable_node, node); 2755 if (stable_node_chain_remove_range(stable_node, 2756 start_pfn, end_pfn, 2757 root_stable_tree + 2758 nid)) 2759 node = rb_first(root_stable_tree + nid); 2760 else 2761 node = rb_next(node); 2762 cond_resched(); 2763 } 2764 } 2765 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2766 if (stable_node->kpfn >= start_pfn && 2767 stable_node->kpfn < end_pfn) 2768 remove_node_from_stable_tree(stable_node); 2769 cond_resched(); 2770 } 2771 } 2772 2773 static int ksm_memory_callback(struct notifier_block *self, 2774 unsigned long action, void *arg) 2775 { 2776 struct memory_notify *mn = arg; 2777 2778 switch (action) { 2779 case MEM_GOING_OFFLINE: 2780 /* 2781 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2782 * and remove_all_stable_nodes() while memory is going offline: 2783 * it is unsafe for them to touch the stable tree at this time. 2784 * But unmerge_ksm_pages(), rmap lookups and other entry points 2785 * which do not need the ksm_thread_mutex are all safe. 2786 */ 2787 mutex_lock(&ksm_thread_mutex); 2788 ksm_run |= KSM_RUN_OFFLINE; 2789 mutex_unlock(&ksm_thread_mutex); 2790 break; 2791 2792 case MEM_OFFLINE: 2793 /* 2794 * Most of the work is done by page migration; but there might 2795 * be a few stable_nodes left over, still pointing to struct 2796 * pages which have been offlined: prune those from the tree, 2797 * otherwise get_ksm_page() might later try to access a 2798 * non-existent struct page. 2799 */ 2800 ksm_check_stable_tree(mn->start_pfn, 2801 mn->start_pfn + mn->nr_pages); 2802 fallthrough; 2803 case MEM_CANCEL_OFFLINE: 2804 mutex_lock(&ksm_thread_mutex); 2805 ksm_run &= ~KSM_RUN_OFFLINE; 2806 mutex_unlock(&ksm_thread_mutex); 2807 2808 smp_mb(); /* wake_up_bit advises this */ 2809 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2810 break; 2811 } 2812 return NOTIFY_OK; 2813 } 2814 #else 2815 static void wait_while_offlining(void) 2816 { 2817 } 2818 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2819 2820 #ifdef CONFIG_SYSFS 2821 /* 2822 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2823 */ 2824 2825 #define KSM_ATTR_RO(_name) \ 2826 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2827 #define KSM_ATTR(_name) \ 2828 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 2829 2830 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2831 struct kobj_attribute *attr, char *buf) 2832 { 2833 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2834 } 2835 2836 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2837 struct kobj_attribute *attr, 2838 const char *buf, size_t count) 2839 { 2840 unsigned int msecs; 2841 int err; 2842 2843 err = kstrtouint(buf, 10, &msecs); 2844 if (err) 2845 return -EINVAL; 2846 2847 ksm_thread_sleep_millisecs = msecs; 2848 wake_up_interruptible(&ksm_iter_wait); 2849 2850 return count; 2851 } 2852 KSM_ATTR(sleep_millisecs); 2853 2854 static ssize_t pages_to_scan_show(struct kobject *kobj, 2855 struct kobj_attribute *attr, char *buf) 2856 { 2857 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2858 } 2859 2860 static ssize_t pages_to_scan_store(struct kobject *kobj, 2861 struct kobj_attribute *attr, 2862 const char *buf, size_t count) 2863 { 2864 unsigned int nr_pages; 2865 int err; 2866 2867 err = kstrtouint(buf, 10, &nr_pages); 2868 if (err) 2869 return -EINVAL; 2870 2871 ksm_thread_pages_to_scan = nr_pages; 2872 2873 return count; 2874 } 2875 KSM_ATTR(pages_to_scan); 2876 2877 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2878 char *buf) 2879 { 2880 return sysfs_emit(buf, "%lu\n", ksm_run); 2881 } 2882 2883 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2884 const char *buf, size_t count) 2885 { 2886 unsigned int flags; 2887 int err; 2888 2889 err = kstrtouint(buf, 10, &flags); 2890 if (err) 2891 return -EINVAL; 2892 if (flags > KSM_RUN_UNMERGE) 2893 return -EINVAL; 2894 2895 /* 2896 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2897 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2898 * breaking COW to free the pages_shared (but leaves mm_slots 2899 * on the list for when ksmd may be set running again). 2900 */ 2901 2902 mutex_lock(&ksm_thread_mutex); 2903 wait_while_offlining(); 2904 if (ksm_run != flags) { 2905 ksm_run = flags; 2906 if (flags & KSM_RUN_UNMERGE) { 2907 set_current_oom_origin(); 2908 err = unmerge_and_remove_all_rmap_items(); 2909 clear_current_oom_origin(); 2910 if (err) { 2911 ksm_run = KSM_RUN_STOP; 2912 count = err; 2913 } 2914 } 2915 } 2916 mutex_unlock(&ksm_thread_mutex); 2917 2918 if (flags & KSM_RUN_MERGE) 2919 wake_up_interruptible(&ksm_thread_wait); 2920 2921 return count; 2922 } 2923 KSM_ATTR(run); 2924 2925 #ifdef CONFIG_NUMA 2926 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2927 struct kobj_attribute *attr, char *buf) 2928 { 2929 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2930 } 2931 2932 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2933 struct kobj_attribute *attr, 2934 const char *buf, size_t count) 2935 { 2936 int err; 2937 unsigned long knob; 2938 2939 err = kstrtoul(buf, 10, &knob); 2940 if (err) 2941 return err; 2942 if (knob > 1) 2943 return -EINVAL; 2944 2945 mutex_lock(&ksm_thread_mutex); 2946 wait_while_offlining(); 2947 if (ksm_merge_across_nodes != knob) { 2948 if (ksm_pages_shared || remove_all_stable_nodes()) 2949 err = -EBUSY; 2950 else if (root_stable_tree == one_stable_tree) { 2951 struct rb_root *buf; 2952 /* 2953 * This is the first time that we switch away from the 2954 * default of merging across nodes: must now allocate 2955 * a buffer to hold as many roots as may be needed. 2956 * Allocate stable and unstable together: 2957 * MAXSMP NODES_SHIFT 10 will use 16kB. 2958 */ 2959 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2960 GFP_KERNEL); 2961 /* Let us assume that RB_ROOT is NULL is zero */ 2962 if (!buf) 2963 err = -ENOMEM; 2964 else { 2965 root_stable_tree = buf; 2966 root_unstable_tree = buf + nr_node_ids; 2967 /* Stable tree is empty but not the unstable */ 2968 root_unstable_tree[0] = one_unstable_tree[0]; 2969 } 2970 } 2971 if (!err) { 2972 ksm_merge_across_nodes = knob; 2973 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2974 } 2975 } 2976 mutex_unlock(&ksm_thread_mutex); 2977 2978 return err ? err : count; 2979 } 2980 KSM_ATTR(merge_across_nodes); 2981 #endif 2982 2983 static ssize_t use_zero_pages_show(struct kobject *kobj, 2984 struct kobj_attribute *attr, char *buf) 2985 { 2986 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 2987 } 2988 static ssize_t use_zero_pages_store(struct kobject *kobj, 2989 struct kobj_attribute *attr, 2990 const char *buf, size_t count) 2991 { 2992 int err; 2993 bool value; 2994 2995 err = kstrtobool(buf, &value); 2996 if (err) 2997 return -EINVAL; 2998 2999 ksm_use_zero_pages = value; 3000 3001 return count; 3002 } 3003 KSM_ATTR(use_zero_pages); 3004 3005 static ssize_t max_page_sharing_show(struct kobject *kobj, 3006 struct kobj_attribute *attr, char *buf) 3007 { 3008 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3009 } 3010 3011 static ssize_t max_page_sharing_store(struct kobject *kobj, 3012 struct kobj_attribute *attr, 3013 const char *buf, size_t count) 3014 { 3015 int err; 3016 int knob; 3017 3018 err = kstrtoint(buf, 10, &knob); 3019 if (err) 3020 return err; 3021 /* 3022 * When a KSM page is created it is shared by 2 mappings. This 3023 * being a signed comparison, it implicitly verifies it's not 3024 * negative. 3025 */ 3026 if (knob < 2) 3027 return -EINVAL; 3028 3029 if (READ_ONCE(ksm_max_page_sharing) == knob) 3030 return count; 3031 3032 mutex_lock(&ksm_thread_mutex); 3033 wait_while_offlining(); 3034 if (ksm_max_page_sharing != knob) { 3035 if (ksm_pages_shared || remove_all_stable_nodes()) 3036 err = -EBUSY; 3037 else 3038 ksm_max_page_sharing = knob; 3039 } 3040 mutex_unlock(&ksm_thread_mutex); 3041 3042 return err ? err : count; 3043 } 3044 KSM_ATTR(max_page_sharing); 3045 3046 static ssize_t pages_shared_show(struct kobject *kobj, 3047 struct kobj_attribute *attr, char *buf) 3048 { 3049 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3050 } 3051 KSM_ATTR_RO(pages_shared); 3052 3053 static ssize_t pages_sharing_show(struct kobject *kobj, 3054 struct kobj_attribute *attr, char *buf) 3055 { 3056 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3057 } 3058 KSM_ATTR_RO(pages_sharing); 3059 3060 static ssize_t pages_unshared_show(struct kobject *kobj, 3061 struct kobj_attribute *attr, char *buf) 3062 { 3063 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3064 } 3065 KSM_ATTR_RO(pages_unshared); 3066 3067 static ssize_t pages_volatile_show(struct kobject *kobj, 3068 struct kobj_attribute *attr, char *buf) 3069 { 3070 long ksm_pages_volatile; 3071 3072 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3073 - ksm_pages_sharing - ksm_pages_unshared; 3074 /* 3075 * It was not worth any locking to calculate that statistic, 3076 * but it might therefore sometimes be negative: conceal that. 3077 */ 3078 if (ksm_pages_volatile < 0) 3079 ksm_pages_volatile = 0; 3080 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3081 } 3082 KSM_ATTR_RO(pages_volatile); 3083 3084 static ssize_t stable_node_dups_show(struct kobject *kobj, 3085 struct kobj_attribute *attr, char *buf) 3086 { 3087 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3088 } 3089 KSM_ATTR_RO(stable_node_dups); 3090 3091 static ssize_t stable_node_chains_show(struct kobject *kobj, 3092 struct kobj_attribute *attr, char *buf) 3093 { 3094 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3095 } 3096 KSM_ATTR_RO(stable_node_chains); 3097 3098 static ssize_t 3099 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3100 struct kobj_attribute *attr, 3101 char *buf) 3102 { 3103 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3104 } 3105 3106 static ssize_t 3107 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3108 struct kobj_attribute *attr, 3109 const char *buf, size_t count) 3110 { 3111 unsigned int msecs; 3112 int err; 3113 3114 err = kstrtouint(buf, 10, &msecs); 3115 if (err) 3116 return -EINVAL; 3117 3118 ksm_stable_node_chains_prune_millisecs = msecs; 3119 3120 return count; 3121 } 3122 KSM_ATTR(stable_node_chains_prune_millisecs); 3123 3124 static ssize_t full_scans_show(struct kobject *kobj, 3125 struct kobj_attribute *attr, char *buf) 3126 { 3127 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3128 } 3129 KSM_ATTR_RO(full_scans); 3130 3131 static struct attribute *ksm_attrs[] = { 3132 &sleep_millisecs_attr.attr, 3133 &pages_to_scan_attr.attr, 3134 &run_attr.attr, 3135 &pages_shared_attr.attr, 3136 &pages_sharing_attr.attr, 3137 &pages_unshared_attr.attr, 3138 &pages_volatile_attr.attr, 3139 &full_scans_attr.attr, 3140 #ifdef CONFIG_NUMA 3141 &merge_across_nodes_attr.attr, 3142 #endif 3143 &max_page_sharing_attr.attr, 3144 &stable_node_chains_attr.attr, 3145 &stable_node_dups_attr.attr, 3146 &stable_node_chains_prune_millisecs_attr.attr, 3147 &use_zero_pages_attr.attr, 3148 NULL, 3149 }; 3150 3151 static const struct attribute_group ksm_attr_group = { 3152 .attrs = ksm_attrs, 3153 .name = "ksm", 3154 }; 3155 #endif /* CONFIG_SYSFS */ 3156 3157 static int __init ksm_init(void) 3158 { 3159 struct task_struct *ksm_thread; 3160 int err; 3161 3162 /* The correct value depends on page size and endianness */ 3163 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3164 /* Default to false for backwards compatibility */ 3165 ksm_use_zero_pages = false; 3166 3167 err = ksm_slab_init(); 3168 if (err) 3169 goto out; 3170 3171 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3172 if (IS_ERR(ksm_thread)) { 3173 pr_err("ksm: creating kthread failed\n"); 3174 err = PTR_ERR(ksm_thread); 3175 goto out_free; 3176 } 3177 3178 #ifdef CONFIG_SYSFS 3179 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3180 if (err) { 3181 pr_err("ksm: register sysfs failed\n"); 3182 kthread_stop(ksm_thread); 3183 goto out_free; 3184 } 3185 #else 3186 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3187 3188 #endif /* CONFIG_SYSFS */ 3189 3190 #ifdef CONFIG_MEMORY_HOTREMOVE 3191 /* There is no significance to this priority 100 */ 3192 hotplug_memory_notifier(ksm_memory_callback, 100); 3193 #endif 3194 return 0; 3195 3196 out_free: 3197 ksm_slab_free(); 3198 out: 3199 return err; 3200 } 3201 subsys_initcall(ksm_init); 3202