xref: /openbmc/linux/mm/ksm.c (revision 8a10bc9d)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)		(x)
46 #define DO_NUMA(x)	do { (x); } while (0)
47 #else
48 #define NUMA(x)		(0)
49 #define DO_NUMA(x)	do { } while (0)
50 #endif
51 
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94 
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103 	struct hlist_node link;
104 	struct list_head mm_list;
105 	struct rmap_item *rmap_list;
106 	struct mm_struct *mm;
107 };
108 
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119 	struct mm_slot *mm_slot;
120 	unsigned long address;
121 	struct rmap_item **rmap_list;
122 	unsigned long seqnr;
123 };
124 
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135 	union {
136 		struct rb_node node;	/* when node of stable tree */
137 		struct {		/* when listed for migration */
138 			struct list_head *head;
139 			struct list_head list;
140 		};
141 	};
142 	struct hlist_head hlist;
143 	unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 	int nid;
146 #endif
147 };
148 
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162 	struct rmap_item *rmap_list;
163 	union {
164 		struct anon_vma *anon_vma;	/* when stable */
165 #ifdef CONFIG_NUMA
166 		int nid;		/* when node of unstable tree */
167 #endif
168 	};
169 	struct mm_struct *mm;
170 	unsigned long address;		/* + low bits used for flags below */
171 	unsigned int oldchecksum;	/* when unstable */
172 	union {
173 		struct rb_node node;	/* when node of unstable tree */
174 		struct {		/* when listed from stable tree */
175 			struct stable_node *head;
176 			struct hlist_node hlist;
177 		};
178 	};
179 };
180 
181 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
184 
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190 
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193 
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196 
197 static struct mm_slot ksm_mm_head = {
198 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 	.mm_slot = &ksm_mm_head,
202 };
203 
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207 
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210 
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213 
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216 
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219 
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222 
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225 
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes	1U
232 #define ksm_nr_node_ids		1
233 #endif
234 
235 #define KSM_RUN_STOP	0
236 #define KSM_RUN_MERGE	1
237 #define KSM_RUN_UNMERGE	2
238 #define KSM_RUN_OFFLINE	4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241 
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245 
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 		sizeof(struct __struct), __alignof__(struct __struct),\
248 		(__flags), NULL)
249 
250 static int __init ksm_slab_init(void)
251 {
252 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 	if (!rmap_item_cache)
254 		goto out;
255 
256 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 	if (!stable_node_cache)
258 		goto out_free1;
259 
260 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 	if (!mm_slot_cache)
262 		goto out_free2;
263 
264 	return 0;
265 
266 out_free2:
267 	kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 	kmem_cache_destroy(rmap_item_cache);
270 out:
271 	return -ENOMEM;
272 }
273 
274 static void __init ksm_slab_free(void)
275 {
276 	kmem_cache_destroy(mm_slot_cache);
277 	kmem_cache_destroy(stable_node_cache);
278 	kmem_cache_destroy(rmap_item_cache);
279 	mm_slot_cache = NULL;
280 }
281 
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 	struct rmap_item *rmap_item;
285 
286 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 	if (rmap_item)
288 		ksm_rmap_items++;
289 	return rmap_item;
290 }
291 
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294 	ksm_rmap_items--;
295 	rmap_item->mm = NULL;	/* debug safety */
296 	kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298 
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303 
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306 	kmem_cache_free(stable_node_cache, stable_node);
307 }
308 
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311 	if (!mm_slot_cache)	/* initialization failed */
312 		return NULL;
313 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315 
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318 	kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320 
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323 	struct mm_slot *slot;
324 
325 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326 		if (slot->mm == mm)
327 			return slot;
328 
329 	return NULL;
330 }
331 
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 				    struct mm_slot *mm_slot)
334 {
335 	mm_slot->mm = mm;
336 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338 
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349 	return atomic_read(&mm->mm_users) == 0;
350 }
351 
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356  *		put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  */
363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
364 {
365 	struct page *page;
366 	int ret = 0;
367 
368 	do {
369 		cond_resched();
370 		page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
371 		if (IS_ERR_OR_NULL(page))
372 			break;
373 		if (PageKsm(page))
374 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
375 							FAULT_FLAG_WRITE);
376 		else
377 			ret = VM_FAULT_WRITE;
378 		put_page(page);
379 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
380 	/*
381 	 * We must loop because handle_mm_fault() may back out if there's
382 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
383 	 *
384 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385 	 * COW has been broken, even if the vma does not permit VM_WRITE;
386 	 * but note that a concurrent fault might break PageKsm for us.
387 	 *
388 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389 	 * backing file, which also invalidates anonymous pages: that's
390 	 * okay, that truncation will have unmapped the PageKsm for us.
391 	 *
392 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
395 	 * to user; and ksmd, having no mm, would never be chosen for that.
396 	 *
397 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
398 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399 	 * even ksmd can fail in this way - though it's usually breaking ksm
400 	 * just to undo a merge it made a moment before, so unlikely to oom.
401 	 *
402 	 * That's a pity: we might therefore have more kernel pages allocated
403 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
404 	 * will retry to break_cow on each pass, so should recover the page
405 	 * in due course.  The important thing is to not let VM_MERGEABLE
406 	 * be cleared while any such pages might remain in the area.
407 	 */
408 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
409 }
410 
411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412 		unsigned long addr)
413 {
414 	struct vm_area_struct *vma;
415 	if (ksm_test_exit(mm))
416 		return NULL;
417 	vma = find_vma(mm, addr);
418 	if (!vma || vma->vm_start > addr)
419 		return NULL;
420 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421 		return NULL;
422 	return vma;
423 }
424 
425 static void break_cow(struct rmap_item *rmap_item)
426 {
427 	struct mm_struct *mm = rmap_item->mm;
428 	unsigned long addr = rmap_item->address;
429 	struct vm_area_struct *vma;
430 
431 	/*
432 	 * It is not an accident that whenever we want to break COW
433 	 * to undo, we also need to drop a reference to the anon_vma.
434 	 */
435 	put_anon_vma(rmap_item->anon_vma);
436 
437 	down_read(&mm->mmap_sem);
438 	vma = find_mergeable_vma(mm, addr);
439 	if (vma)
440 		break_ksm(vma, addr);
441 	up_read(&mm->mmap_sem);
442 }
443 
444 static struct page *page_trans_compound_anon(struct page *page)
445 {
446 	if (PageTransCompound(page)) {
447 		struct page *head = compound_trans_head(page);
448 		/*
449 		 * head may actually be splitted and freed from under
450 		 * us but it's ok here.
451 		 */
452 		if (PageAnon(head))
453 			return head;
454 	}
455 	return NULL;
456 }
457 
458 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
459 {
460 	struct mm_struct *mm = rmap_item->mm;
461 	unsigned long addr = rmap_item->address;
462 	struct vm_area_struct *vma;
463 	struct page *page;
464 
465 	down_read(&mm->mmap_sem);
466 	vma = find_mergeable_vma(mm, addr);
467 	if (!vma)
468 		goto out;
469 
470 	page = follow_page(vma, addr, FOLL_GET);
471 	if (IS_ERR_OR_NULL(page))
472 		goto out;
473 	if (PageAnon(page) || page_trans_compound_anon(page)) {
474 		flush_anon_page(vma, page, addr);
475 		flush_dcache_page(page);
476 	} else {
477 		put_page(page);
478 out:		page = NULL;
479 	}
480 	up_read(&mm->mmap_sem);
481 	return page;
482 }
483 
484 /*
485  * This helper is used for getting right index into array of tree roots.
486  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
487  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
488  * every node has its own stable and unstable tree.
489  */
490 static inline int get_kpfn_nid(unsigned long kpfn)
491 {
492 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
493 }
494 
495 static void remove_node_from_stable_tree(struct stable_node *stable_node)
496 {
497 	struct rmap_item *rmap_item;
498 
499 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
500 		if (rmap_item->hlist.next)
501 			ksm_pages_sharing--;
502 		else
503 			ksm_pages_shared--;
504 		put_anon_vma(rmap_item->anon_vma);
505 		rmap_item->address &= PAGE_MASK;
506 		cond_resched();
507 	}
508 
509 	if (stable_node->head == &migrate_nodes)
510 		list_del(&stable_node->list);
511 	else
512 		rb_erase(&stable_node->node,
513 			 root_stable_tree + NUMA(stable_node->nid));
514 	free_stable_node(stable_node);
515 }
516 
517 /*
518  * get_ksm_page: checks if the page indicated by the stable node
519  * is still its ksm page, despite having held no reference to it.
520  * In which case we can trust the content of the page, and it
521  * returns the gotten page; but if the page has now been zapped,
522  * remove the stale node from the stable tree and return NULL.
523  * But beware, the stable node's page might be being migrated.
524  *
525  * You would expect the stable_node to hold a reference to the ksm page.
526  * But if it increments the page's count, swapping out has to wait for
527  * ksmd to come around again before it can free the page, which may take
528  * seconds or even minutes: much too unresponsive.  So instead we use a
529  * "keyhole reference": access to the ksm page from the stable node peeps
530  * out through its keyhole to see if that page still holds the right key,
531  * pointing back to this stable node.  This relies on freeing a PageAnon
532  * page to reset its page->mapping to NULL, and relies on no other use of
533  * a page to put something that might look like our key in page->mapping.
534  * is on its way to being freed; but it is an anomaly to bear in mind.
535  */
536 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
537 {
538 	struct page *page;
539 	void *expected_mapping;
540 	unsigned long kpfn;
541 
542 	expected_mapping = (void *)stable_node +
543 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
544 again:
545 	kpfn = ACCESS_ONCE(stable_node->kpfn);
546 	page = pfn_to_page(kpfn);
547 
548 	/*
549 	 * page is computed from kpfn, so on most architectures reading
550 	 * page->mapping is naturally ordered after reading node->kpfn,
551 	 * but on Alpha we need to be more careful.
552 	 */
553 	smp_read_barrier_depends();
554 	if (ACCESS_ONCE(page->mapping) != expected_mapping)
555 		goto stale;
556 
557 	/*
558 	 * We cannot do anything with the page while its refcount is 0.
559 	 * Usually 0 means free, or tail of a higher-order page: in which
560 	 * case this node is no longer referenced, and should be freed;
561 	 * however, it might mean that the page is under page_freeze_refs().
562 	 * The __remove_mapping() case is easy, again the node is now stale;
563 	 * but if page is swapcache in migrate_page_move_mapping(), it might
564 	 * still be our page, in which case it's essential to keep the node.
565 	 */
566 	while (!get_page_unless_zero(page)) {
567 		/*
568 		 * Another check for page->mapping != expected_mapping would
569 		 * work here too.  We have chosen the !PageSwapCache test to
570 		 * optimize the common case, when the page is or is about to
571 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
572 		 * in the freeze_refs section of __remove_mapping(); but Anon
573 		 * page->mapping reset to NULL later, in free_pages_prepare().
574 		 */
575 		if (!PageSwapCache(page))
576 			goto stale;
577 		cpu_relax();
578 	}
579 
580 	if (ACCESS_ONCE(page->mapping) != expected_mapping) {
581 		put_page(page);
582 		goto stale;
583 	}
584 
585 	if (lock_it) {
586 		lock_page(page);
587 		if (ACCESS_ONCE(page->mapping) != expected_mapping) {
588 			unlock_page(page);
589 			put_page(page);
590 			goto stale;
591 		}
592 	}
593 	return page;
594 
595 stale:
596 	/*
597 	 * We come here from above when page->mapping or !PageSwapCache
598 	 * suggests that the node is stale; but it might be under migration.
599 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
600 	 * before checking whether node->kpfn has been changed.
601 	 */
602 	smp_rmb();
603 	if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
604 		goto again;
605 	remove_node_from_stable_tree(stable_node);
606 	return NULL;
607 }
608 
609 /*
610  * Removing rmap_item from stable or unstable tree.
611  * This function will clean the information from the stable/unstable tree.
612  */
613 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
614 {
615 	if (rmap_item->address & STABLE_FLAG) {
616 		struct stable_node *stable_node;
617 		struct page *page;
618 
619 		stable_node = rmap_item->head;
620 		page = get_ksm_page(stable_node, true);
621 		if (!page)
622 			goto out;
623 
624 		hlist_del(&rmap_item->hlist);
625 		unlock_page(page);
626 		put_page(page);
627 
628 		if (stable_node->hlist.first)
629 			ksm_pages_sharing--;
630 		else
631 			ksm_pages_shared--;
632 
633 		put_anon_vma(rmap_item->anon_vma);
634 		rmap_item->address &= PAGE_MASK;
635 
636 	} else if (rmap_item->address & UNSTABLE_FLAG) {
637 		unsigned char age;
638 		/*
639 		 * Usually ksmd can and must skip the rb_erase, because
640 		 * root_unstable_tree was already reset to RB_ROOT.
641 		 * But be careful when an mm is exiting: do the rb_erase
642 		 * if this rmap_item was inserted by this scan, rather
643 		 * than left over from before.
644 		 */
645 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
646 		BUG_ON(age > 1);
647 		if (!age)
648 			rb_erase(&rmap_item->node,
649 				 root_unstable_tree + NUMA(rmap_item->nid));
650 		ksm_pages_unshared--;
651 		rmap_item->address &= PAGE_MASK;
652 	}
653 out:
654 	cond_resched();		/* we're called from many long loops */
655 }
656 
657 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
658 				       struct rmap_item **rmap_list)
659 {
660 	while (*rmap_list) {
661 		struct rmap_item *rmap_item = *rmap_list;
662 		*rmap_list = rmap_item->rmap_list;
663 		remove_rmap_item_from_tree(rmap_item);
664 		free_rmap_item(rmap_item);
665 	}
666 }
667 
668 /*
669  * Though it's very tempting to unmerge rmap_items from stable tree rather
670  * than check every pte of a given vma, the locking doesn't quite work for
671  * that - an rmap_item is assigned to the stable tree after inserting ksm
672  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
673  * rmap_items from parent to child at fork time (so as not to waste time
674  * if exit comes before the next scan reaches it).
675  *
676  * Similarly, although we'd like to remove rmap_items (so updating counts
677  * and freeing memory) when unmerging an area, it's easier to leave that
678  * to the next pass of ksmd - consider, for example, how ksmd might be
679  * in cmp_and_merge_page on one of the rmap_items we would be removing.
680  */
681 static int unmerge_ksm_pages(struct vm_area_struct *vma,
682 			     unsigned long start, unsigned long end)
683 {
684 	unsigned long addr;
685 	int err = 0;
686 
687 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
688 		if (ksm_test_exit(vma->vm_mm))
689 			break;
690 		if (signal_pending(current))
691 			err = -ERESTARTSYS;
692 		else
693 			err = break_ksm(vma, addr);
694 	}
695 	return err;
696 }
697 
698 #ifdef CONFIG_SYSFS
699 /*
700  * Only called through the sysfs control interface:
701  */
702 static int remove_stable_node(struct stable_node *stable_node)
703 {
704 	struct page *page;
705 	int err;
706 
707 	page = get_ksm_page(stable_node, true);
708 	if (!page) {
709 		/*
710 		 * get_ksm_page did remove_node_from_stable_tree itself.
711 		 */
712 		return 0;
713 	}
714 
715 	if (WARN_ON_ONCE(page_mapped(page))) {
716 		/*
717 		 * This should not happen: but if it does, just refuse to let
718 		 * merge_across_nodes be switched - there is no need to panic.
719 		 */
720 		err = -EBUSY;
721 	} else {
722 		/*
723 		 * The stable node did not yet appear stale to get_ksm_page(),
724 		 * since that allows for an unmapped ksm page to be recognized
725 		 * right up until it is freed; but the node is safe to remove.
726 		 * This page might be in a pagevec waiting to be freed,
727 		 * or it might be PageSwapCache (perhaps under writeback),
728 		 * or it might have been removed from swapcache a moment ago.
729 		 */
730 		set_page_stable_node(page, NULL);
731 		remove_node_from_stable_tree(stable_node);
732 		err = 0;
733 	}
734 
735 	unlock_page(page);
736 	put_page(page);
737 	return err;
738 }
739 
740 static int remove_all_stable_nodes(void)
741 {
742 	struct stable_node *stable_node;
743 	struct list_head *this, *next;
744 	int nid;
745 	int err = 0;
746 
747 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
748 		while (root_stable_tree[nid].rb_node) {
749 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
750 						struct stable_node, node);
751 			if (remove_stable_node(stable_node)) {
752 				err = -EBUSY;
753 				break;	/* proceed to next nid */
754 			}
755 			cond_resched();
756 		}
757 	}
758 	list_for_each_safe(this, next, &migrate_nodes) {
759 		stable_node = list_entry(this, struct stable_node, list);
760 		if (remove_stable_node(stable_node))
761 			err = -EBUSY;
762 		cond_resched();
763 	}
764 	return err;
765 }
766 
767 static int unmerge_and_remove_all_rmap_items(void)
768 {
769 	struct mm_slot *mm_slot;
770 	struct mm_struct *mm;
771 	struct vm_area_struct *vma;
772 	int err = 0;
773 
774 	spin_lock(&ksm_mmlist_lock);
775 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
776 						struct mm_slot, mm_list);
777 	spin_unlock(&ksm_mmlist_lock);
778 
779 	for (mm_slot = ksm_scan.mm_slot;
780 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
781 		mm = mm_slot->mm;
782 		down_read(&mm->mmap_sem);
783 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
784 			if (ksm_test_exit(mm))
785 				break;
786 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
787 				continue;
788 			err = unmerge_ksm_pages(vma,
789 						vma->vm_start, vma->vm_end);
790 			if (err)
791 				goto error;
792 		}
793 
794 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
795 
796 		spin_lock(&ksm_mmlist_lock);
797 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
798 						struct mm_slot, mm_list);
799 		if (ksm_test_exit(mm)) {
800 			hash_del(&mm_slot->link);
801 			list_del(&mm_slot->mm_list);
802 			spin_unlock(&ksm_mmlist_lock);
803 
804 			free_mm_slot(mm_slot);
805 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
806 			up_read(&mm->mmap_sem);
807 			mmdrop(mm);
808 		} else {
809 			spin_unlock(&ksm_mmlist_lock);
810 			up_read(&mm->mmap_sem);
811 		}
812 	}
813 
814 	/* Clean up stable nodes, but don't worry if some are still busy */
815 	remove_all_stable_nodes();
816 	ksm_scan.seqnr = 0;
817 	return 0;
818 
819 error:
820 	up_read(&mm->mmap_sem);
821 	spin_lock(&ksm_mmlist_lock);
822 	ksm_scan.mm_slot = &ksm_mm_head;
823 	spin_unlock(&ksm_mmlist_lock);
824 	return err;
825 }
826 #endif /* CONFIG_SYSFS */
827 
828 static u32 calc_checksum(struct page *page)
829 {
830 	u32 checksum;
831 	void *addr = kmap_atomic(page);
832 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
833 	kunmap_atomic(addr);
834 	return checksum;
835 }
836 
837 static int memcmp_pages(struct page *page1, struct page *page2)
838 {
839 	char *addr1, *addr2;
840 	int ret;
841 
842 	addr1 = kmap_atomic(page1);
843 	addr2 = kmap_atomic(page2);
844 	ret = memcmp(addr1, addr2, PAGE_SIZE);
845 	kunmap_atomic(addr2);
846 	kunmap_atomic(addr1);
847 	return ret;
848 }
849 
850 static inline int pages_identical(struct page *page1, struct page *page2)
851 {
852 	return !memcmp_pages(page1, page2);
853 }
854 
855 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
856 			      pte_t *orig_pte)
857 {
858 	struct mm_struct *mm = vma->vm_mm;
859 	unsigned long addr;
860 	pte_t *ptep;
861 	spinlock_t *ptl;
862 	int swapped;
863 	int err = -EFAULT;
864 	unsigned long mmun_start;	/* For mmu_notifiers */
865 	unsigned long mmun_end;		/* For mmu_notifiers */
866 
867 	addr = page_address_in_vma(page, vma);
868 	if (addr == -EFAULT)
869 		goto out;
870 
871 	BUG_ON(PageTransCompound(page));
872 
873 	mmun_start = addr;
874 	mmun_end   = addr + PAGE_SIZE;
875 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
876 
877 	ptep = page_check_address(page, mm, addr, &ptl, 0);
878 	if (!ptep)
879 		goto out_mn;
880 
881 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
882 		pte_t entry;
883 
884 		swapped = PageSwapCache(page);
885 		flush_cache_page(vma, addr, page_to_pfn(page));
886 		/*
887 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
888 		 * take any lock, therefore the check that we are going to make
889 		 * with the pagecount against the mapcount is racey and
890 		 * O_DIRECT can happen right after the check.
891 		 * So we clear the pte and flush the tlb before the check
892 		 * this assure us that no O_DIRECT can happen after the check
893 		 * or in the middle of the check.
894 		 */
895 		entry = ptep_clear_flush(vma, addr, ptep);
896 		/*
897 		 * Check that no O_DIRECT or similar I/O is in progress on the
898 		 * page
899 		 */
900 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
901 			set_pte_at(mm, addr, ptep, entry);
902 			goto out_unlock;
903 		}
904 		if (pte_dirty(entry))
905 			set_page_dirty(page);
906 		entry = pte_mkclean(pte_wrprotect(entry));
907 		set_pte_at_notify(mm, addr, ptep, entry);
908 	}
909 	*orig_pte = *ptep;
910 	err = 0;
911 
912 out_unlock:
913 	pte_unmap_unlock(ptep, ptl);
914 out_mn:
915 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
916 out:
917 	return err;
918 }
919 
920 /**
921  * replace_page - replace page in vma by new ksm page
922  * @vma:      vma that holds the pte pointing to page
923  * @page:     the page we are replacing by kpage
924  * @kpage:    the ksm page we replace page by
925  * @orig_pte: the original value of the pte
926  *
927  * Returns 0 on success, -EFAULT on failure.
928  */
929 static int replace_page(struct vm_area_struct *vma, struct page *page,
930 			struct page *kpage, pte_t orig_pte)
931 {
932 	struct mm_struct *mm = vma->vm_mm;
933 	pmd_t *pmd;
934 	pte_t *ptep;
935 	spinlock_t *ptl;
936 	unsigned long addr;
937 	int err = -EFAULT;
938 	unsigned long mmun_start;	/* For mmu_notifiers */
939 	unsigned long mmun_end;		/* For mmu_notifiers */
940 
941 	addr = page_address_in_vma(page, vma);
942 	if (addr == -EFAULT)
943 		goto out;
944 
945 	pmd = mm_find_pmd(mm, addr);
946 	if (!pmd)
947 		goto out;
948 	BUG_ON(pmd_trans_huge(*pmd));
949 
950 	mmun_start = addr;
951 	mmun_end   = addr + PAGE_SIZE;
952 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
953 
954 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
955 	if (!pte_same(*ptep, orig_pte)) {
956 		pte_unmap_unlock(ptep, ptl);
957 		goto out_mn;
958 	}
959 
960 	get_page(kpage);
961 	page_add_anon_rmap(kpage, vma, addr);
962 
963 	flush_cache_page(vma, addr, pte_pfn(*ptep));
964 	ptep_clear_flush(vma, addr, ptep);
965 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
966 
967 	page_remove_rmap(page);
968 	if (!page_mapped(page))
969 		try_to_free_swap(page);
970 	put_page(page);
971 
972 	pte_unmap_unlock(ptep, ptl);
973 	err = 0;
974 out_mn:
975 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
976 out:
977 	return err;
978 }
979 
980 static int page_trans_compound_anon_split(struct page *page)
981 {
982 	int ret = 0;
983 	struct page *transhuge_head = page_trans_compound_anon(page);
984 	if (transhuge_head) {
985 		/* Get the reference on the head to split it. */
986 		if (get_page_unless_zero(transhuge_head)) {
987 			/*
988 			 * Recheck we got the reference while the head
989 			 * was still anonymous.
990 			 */
991 			if (PageAnon(transhuge_head))
992 				ret = split_huge_page(transhuge_head);
993 			else
994 				/*
995 				 * Retry later if split_huge_page run
996 				 * from under us.
997 				 */
998 				ret = 1;
999 			put_page(transhuge_head);
1000 		} else
1001 			/* Retry later if split_huge_page run from under us. */
1002 			ret = 1;
1003 	}
1004 	return ret;
1005 }
1006 
1007 /*
1008  * try_to_merge_one_page - take two pages and merge them into one
1009  * @vma: the vma that holds the pte pointing to page
1010  * @page: the PageAnon page that we want to replace with kpage
1011  * @kpage: the PageKsm page that we want to map instead of page,
1012  *         or NULL the first time when we want to use page as kpage.
1013  *
1014  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1015  */
1016 static int try_to_merge_one_page(struct vm_area_struct *vma,
1017 				 struct page *page, struct page *kpage)
1018 {
1019 	pte_t orig_pte = __pte(0);
1020 	int err = -EFAULT;
1021 
1022 	if (page == kpage)			/* ksm page forked */
1023 		return 0;
1024 
1025 	if (!(vma->vm_flags & VM_MERGEABLE))
1026 		goto out;
1027 	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1028 		goto out;
1029 	BUG_ON(PageTransCompound(page));
1030 	if (!PageAnon(page))
1031 		goto out;
1032 
1033 	/*
1034 	 * We need the page lock to read a stable PageSwapCache in
1035 	 * write_protect_page().  We use trylock_page() instead of
1036 	 * lock_page() because we don't want to wait here - we
1037 	 * prefer to continue scanning and merging different pages,
1038 	 * then come back to this page when it is unlocked.
1039 	 */
1040 	if (!trylock_page(page))
1041 		goto out;
1042 	/*
1043 	 * If this anonymous page is mapped only here, its pte may need
1044 	 * to be write-protected.  If it's mapped elsewhere, all of its
1045 	 * ptes are necessarily already write-protected.  But in either
1046 	 * case, we need to lock and check page_count is not raised.
1047 	 */
1048 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1049 		if (!kpage) {
1050 			/*
1051 			 * While we hold page lock, upgrade page from
1052 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1053 			 * stable_tree_insert() will update stable_node.
1054 			 */
1055 			set_page_stable_node(page, NULL);
1056 			mark_page_accessed(page);
1057 			err = 0;
1058 		} else if (pages_identical(page, kpage))
1059 			err = replace_page(vma, page, kpage, orig_pte);
1060 	}
1061 
1062 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1063 		munlock_vma_page(page);
1064 		if (!PageMlocked(kpage)) {
1065 			unlock_page(page);
1066 			lock_page(kpage);
1067 			mlock_vma_page(kpage);
1068 			page = kpage;		/* for final unlock */
1069 		}
1070 	}
1071 
1072 	unlock_page(page);
1073 out:
1074 	return err;
1075 }
1076 
1077 /*
1078  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1079  * but no new kernel page is allocated: kpage must already be a ksm page.
1080  *
1081  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1082  */
1083 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1084 				      struct page *page, struct page *kpage)
1085 {
1086 	struct mm_struct *mm = rmap_item->mm;
1087 	struct vm_area_struct *vma;
1088 	int err = -EFAULT;
1089 
1090 	down_read(&mm->mmap_sem);
1091 	if (ksm_test_exit(mm))
1092 		goto out;
1093 	vma = find_vma(mm, rmap_item->address);
1094 	if (!vma || vma->vm_start > rmap_item->address)
1095 		goto out;
1096 
1097 	err = try_to_merge_one_page(vma, page, kpage);
1098 	if (err)
1099 		goto out;
1100 
1101 	/* Unstable nid is in union with stable anon_vma: remove first */
1102 	remove_rmap_item_from_tree(rmap_item);
1103 
1104 	/* Must get reference to anon_vma while still holding mmap_sem */
1105 	rmap_item->anon_vma = vma->anon_vma;
1106 	get_anon_vma(vma->anon_vma);
1107 out:
1108 	up_read(&mm->mmap_sem);
1109 	return err;
1110 }
1111 
1112 /*
1113  * try_to_merge_two_pages - take two identical pages and prepare them
1114  * to be merged into one page.
1115  *
1116  * This function returns the kpage if we successfully merged two identical
1117  * pages into one ksm page, NULL otherwise.
1118  *
1119  * Note that this function upgrades page to ksm page: if one of the pages
1120  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1121  */
1122 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1123 					   struct page *page,
1124 					   struct rmap_item *tree_rmap_item,
1125 					   struct page *tree_page)
1126 {
1127 	int err;
1128 
1129 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1130 	if (!err) {
1131 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1132 							tree_page, page);
1133 		/*
1134 		 * If that fails, we have a ksm page with only one pte
1135 		 * pointing to it: so break it.
1136 		 */
1137 		if (err)
1138 			break_cow(rmap_item);
1139 	}
1140 	return err ? NULL : page;
1141 }
1142 
1143 /*
1144  * stable_tree_search - search for page inside the stable tree
1145  *
1146  * This function checks if there is a page inside the stable tree
1147  * with identical content to the page that we are scanning right now.
1148  *
1149  * This function returns the stable tree node of identical content if found,
1150  * NULL otherwise.
1151  */
1152 static struct page *stable_tree_search(struct page *page)
1153 {
1154 	int nid;
1155 	struct rb_root *root;
1156 	struct rb_node **new;
1157 	struct rb_node *parent;
1158 	struct stable_node *stable_node;
1159 	struct stable_node *page_node;
1160 
1161 	page_node = page_stable_node(page);
1162 	if (page_node && page_node->head != &migrate_nodes) {
1163 		/* ksm page forked */
1164 		get_page(page);
1165 		return page;
1166 	}
1167 
1168 	nid = get_kpfn_nid(page_to_pfn(page));
1169 	root = root_stable_tree + nid;
1170 again:
1171 	new = &root->rb_node;
1172 	parent = NULL;
1173 
1174 	while (*new) {
1175 		struct page *tree_page;
1176 		int ret;
1177 
1178 		cond_resched();
1179 		stable_node = rb_entry(*new, struct stable_node, node);
1180 		tree_page = get_ksm_page(stable_node, false);
1181 		if (!tree_page)
1182 			return NULL;
1183 
1184 		ret = memcmp_pages(page, tree_page);
1185 		put_page(tree_page);
1186 
1187 		parent = *new;
1188 		if (ret < 0)
1189 			new = &parent->rb_left;
1190 		else if (ret > 0)
1191 			new = &parent->rb_right;
1192 		else {
1193 			/*
1194 			 * Lock and unlock the stable_node's page (which
1195 			 * might already have been migrated) so that page
1196 			 * migration is sure to notice its raised count.
1197 			 * It would be more elegant to return stable_node
1198 			 * than kpage, but that involves more changes.
1199 			 */
1200 			tree_page = get_ksm_page(stable_node, true);
1201 			if (tree_page) {
1202 				unlock_page(tree_page);
1203 				if (get_kpfn_nid(stable_node->kpfn) !=
1204 						NUMA(stable_node->nid)) {
1205 					put_page(tree_page);
1206 					goto replace;
1207 				}
1208 				return tree_page;
1209 			}
1210 			/*
1211 			 * There is now a place for page_node, but the tree may
1212 			 * have been rebalanced, so re-evaluate parent and new.
1213 			 */
1214 			if (page_node)
1215 				goto again;
1216 			return NULL;
1217 		}
1218 	}
1219 
1220 	if (!page_node)
1221 		return NULL;
1222 
1223 	list_del(&page_node->list);
1224 	DO_NUMA(page_node->nid = nid);
1225 	rb_link_node(&page_node->node, parent, new);
1226 	rb_insert_color(&page_node->node, root);
1227 	get_page(page);
1228 	return page;
1229 
1230 replace:
1231 	if (page_node) {
1232 		list_del(&page_node->list);
1233 		DO_NUMA(page_node->nid = nid);
1234 		rb_replace_node(&stable_node->node, &page_node->node, root);
1235 		get_page(page);
1236 	} else {
1237 		rb_erase(&stable_node->node, root);
1238 		page = NULL;
1239 	}
1240 	stable_node->head = &migrate_nodes;
1241 	list_add(&stable_node->list, stable_node->head);
1242 	return page;
1243 }
1244 
1245 /*
1246  * stable_tree_insert - insert stable tree node pointing to new ksm page
1247  * into the stable tree.
1248  *
1249  * This function returns the stable tree node just allocated on success,
1250  * NULL otherwise.
1251  */
1252 static struct stable_node *stable_tree_insert(struct page *kpage)
1253 {
1254 	int nid;
1255 	unsigned long kpfn;
1256 	struct rb_root *root;
1257 	struct rb_node **new;
1258 	struct rb_node *parent = NULL;
1259 	struct stable_node *stable_node;
1260 
1261 	kpfn = page_to_pfn(kpage);
1262 	nid = get_kpfn_nid(kpfn);
1263 	root = root_stable_tree + nid;
1264 	new = &root->rb_node;
1265 
1266 	while (*new) {
1267 		struct page *tree_page;
1268 		int ret;
1269 
1270 		cond_resched();
1271 		stable_node = rb_entry(*new, struct stable_node, node);
1272 		tree_page = get_ksm_page(stable_node, false);
1273 		if (!tree_page)
1274 			return NULL;
1275 
1276 		ret = memcmp_pages(kpage, tree_page);
1277 		put_page(tree_page);
1278 
1279 		parent = *new;
1280 		if (ret < 0)
1281 			new = &parent->rb_left;
1282 		else if (ret > 0)
1283 			new = &parent->rb_right;
1284 		else {
1285 			/*
1286 			 * It is not a bug that stable_tree_search() didn't
1287 			 * find this node: because at that time our page was
1288 			 * not yet write-protected, so may have changed since.
1289 			 */
1290 			return NULL;
1291 		}
1292 	}
1293 
1294 	stable_node = alloc_stable_node();
1295 	if (!stable_node)
1296 		return NULL;
1297 
1298 	INIT_HLIST_HEAD(&stable_node->hlist);
1299 	stable_node->kpfn = kpfn;
1300 	set_page_stable_node(kpage, stable_node);
1301 	DO_NUMA(stable_node->nid = nid);
1302 	rb_link_node(&stable_node->node, parent, new);
1303 	rb_insert_color(&stable_node->node, root);
1304 
1305 	return stable_node;
1306 }
1307 
1308 /*
1309  * unstable_tree_search_insert - search for identical page,
1310  * else insert rmap_item into the unstable tree.
1311  *
1312  * This function searches for a page in the unstable tree identical to the
1313  * page currently being scanned; and if no identical page is found in the
1314  * tree, we insert rmap_item as a new object into the unstable tree.
1315  *
1316  * This function returns pointer to rmap_item found to be identical
1317  * to the currently scanned page, NULL otherwise.
1318  *
1319  * This function does both searching and inserting, because they share
1320  * the same walking algorithm in an rbtree.
1321  */
1322 static
1323 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1324 					      struct page *page,
1325 					      struct page **tree_pagep)
1326 {
1327 	struct rb_node **new;
1328 	struct rb_root *root;
1329 	struct rb_node *parent = NULL;
1330 	int nid;
1331 
1332 	nid = get_kpfn_nid(page_to_pfn(page));
1333 	root = root_unstable_tree + nid;
1334 	new = &root->rb_node;
1335 
1336 	while (*new) {
1337 		struct rmap_item *tree_rmap_item;
1338 		struct page *tree_page;
1339 		int ret;
1340 
1341 		cond_resched();
1342 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1343 		tree_page = get_mergeable_page(tree_rmap_item);
1344 		if (IS_ERR_OR_NULL(tree_page))
1345 			return NULL;
1346 
1347 		/*
1348 		 * Don't substitute a ksm page for a forked page.
1349 		 */
1350 		if (page == tree_page) {
1351 			put_page(tree_page);
1352 			return NULL;
1353 		}
1354 
1355 		ret = memcmp_pages(page, tree_page);
1356 
1357 		parent = *new;
1358 		if (ret < 0) {
1359 			put_page(tree_page);
1360 			new = &parent->rb_left;
1361 		} else if (ret > 0) {
1362 			put_page(tree_page);
1363 			new = &parent->rb_right;
1364 		} else if (!ksm_merge_across_nodes &&
1365 			   page_to_nid(tree_page) != nid) {
1366 			/*
1367 			 * If tree_page has been migrated to another NUMA node,
1368 			 * it will be flushed out and put in the right unstable
1369 			 * tree next time: only merge with it when across_nodes.
1370 			 */
1371 			put_page(tree_page);
1372 			return NULL;
1373 		} else {
1374 			*tree_pagep = tree_page;
1375 			return tree_rmap_item;
1376 		}
1377 	}
1378 
1379 	rmap_item->address |= UNSTABLE_FLAG;
1380 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1381 	DO_NUMA(rmap_item->nid = nid);
1382 	rb_link_node(&rmap_item->node, parent, new);
1383 	rb_insert_color(&rmap_item->node, root);
1384 
1385 	ksm_pages_unshared++;
1386 	return NULL;
1387 }
1388 
1389 /*
1390  * stable_tree_append - add another rmap_item to the linked list of
1391  * rmap_items hanging off a given node of the stable tree, all sharing
1392  * the same ksm page.
1393  */
1394 static void stable_tree_append(struct rmap_item *rmap_item,
1395 			       struct stable_node *stable_node)
1396 {
1397 	rmap_item->head = stable_node;
1398 	rmap_item->address |= STABLE_FLAG;
1399 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1400 
1401 	if (rmap_item->hlist.next)
1402 		ksm_pages_sharing++;
1403 	else
1404 		ksm_pages_shared++;
1405 }
1406 
1407 /*
1408  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1409  * if not, compare checksum to previous and if it's the same, see if page can
1410  * be inserted into the unstable tree, or merged with a page already there and
1411  * both transferred to the stable tree.
1412  *
1413  * @page: the page that we are searching identical page to.
1414  * @rmap_item: the reverse mapping into the virtual address of this page
1415  */
1416 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1417 {
1418 	struct rmap_item *tree_rmap_item;
1419 	struct page *tree_page = NULL;
1420 	struct stable_node *stable_node;
1421 	struct page *kpage;
1422 	unsigned int checksum;
1423 	int err;
1424 
1425 	stable_node = page_stable_node(page);
1426 	if (stable_node) {
1427 		if (stable_node->head != &migrate_nodes &&
1428 		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1429 			rb_erase(&stable_node->node,
1430 				 root_stable_tree + NUMA(stable_node->nid));
1431 			stable_node->head = &migrate_nodes;
1432 			list_add(&stable_node->list, stable_node->head);
1433 		}
1434 		if (stable_node->head != &migrate_nodes &&
1435 		    rmap_item->head == stable_node)
1436 			return;
1437 	}
1438 
1439 	/* We first start with searching the page inside the stable tree */
1440 	kpage = stable_tree_search(page);
1441 	if (kpage == page && rmap_item->head == stable_node) {
1442 		put_page(kpage);
1443 		return;
1444 	}
1445 
1446 	remove_rmap_item_from_tree(rmap_item);
1447 
1448 	if (kpage) {
1449 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1450 		if (!err) {
1451 			/*
1452 			 * The page was successfully merged:
1453 			 * add its rmap_item to the stable tree.
1454 			 */
1455 			lock_page(kpage);
1456 			stable_tree_append(rmap_item, page_stable_node(kpage));
1457 			unlock_page(kpage);
1458 		}
1459 		put_page(kpage);
1460 		return;
1461 	}
1462 
1463 	/*
1464 	 * If the hash value of the page has changed from the last time
1465 	 * we calculated it, this page is changing frequently: therefore we
1466 	 * don't want to insert it in the unstable tree, and we don't want
1467 	 * to waste our time searching for something identical to it there.
1468 	 */
1469 	checksum = calc_checksum(page);
1470 	if (rmap_item->oldchecksum != checksum) {
1471 		rmap_item->oldchecksum = checksum;
1472 		return;
1473 	}
1474 
1475 	tree_rmap_item =
1476 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1477 	if (tree_rmap_item) {
1478 		kpage = try_to_merge_two_pages(rmap_item, page,
1479 						tree_rmap_item, tree_page);
1480 		put_page(tree_page);
1481 		if (kpage) {
1482 			/*
1483 			 * The pages were successfully merged: insert new
1484 			 * node in the stable tree and add both rmap_items.
1485 			 */
1486 			lock_page(kpage);
1487 			stable_node = stable_tree_insert(kpage);
1488 			if (stable_node) {
1489 				stable_tree_append(tree_rmap_item, stable_node);
1490 				stable_tree_append(rmap_item, stable_node);
1491 			}
1492 			unlock_page(kpage);
1493 
1494 			/*
1495 			 * If we fail to insert the page into the stable tree,
1496 			 * we will have 2 virtual addresses that are pointing
1497 			 * to a ksm page left outside the stable tree,
1498 			 * in which case we need to break_cow on both.
1499 			 */
1500 			if (!stable_node) {
1501 				break_cow(tree_rmap_item);
1502 				break_cow(rmap_item);
1503 			}
1504 		}
1505 	}
1506 }
1507 
1508 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1509 					    struct rmap_item **rmap_list,
1510 					    unsigned long addr)
1511 {
1512 	struct rmap_item *rmap_item;
1513 
1514 	while (*rmap_list) {
1515 		rmap_item = *rmap_list;
1516 		if ((rmap_item->address & PAGE_MASK) == addr)
1517 			return rmap_item;
1518 		if (rmap_item->address > addr)
1519 			break;
1520 		*rmap_list = rmap_item->rmap_list;
1521 		remove_rmap_item_from_tree(rmap_item);
1522 		free_rmap_item(rmap_item);
1523 	}
1524 
1525 	rmap_item = alloc_rmap_item();
1526 	if (rmap_item) {
1527 		/* It has already been zeroed */
1528 		rmap_item->mm = mm_slot->mm;
1529 		rmap_item->address = addr;
1530 		rmap_item->rmap_list = *rmap_list;
1531 		*rmap_list = rmap_item;
1532 	}
1533 	return rmap_item;
1534 }
1535 
1536 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1537 {
1538 	struct mm_struct *mm;
1539 	struct mm_slot *slot;
1540 	struct vm_area_struct *vma;
1541 	struct rmap_item *rmap_item;
1542 	int nid;
1543 
1544 	if (list_empty(&ksm_mm_head.mm_list))
1545 		return NULL;
1546 
1547 	slot = ksm_scan.mm_slot;
1548 	if (slot == &ksm_mm_head) {
1549 		/*
1550 		 * A number of pages can hang around indefinitely on per-cpu
1551 		 * pagevecs, raised page count preventing write_protect_page
1552 		 * from merging them.  Though it doesn't really matter much,
1553 		 * it is puzzling to see some stuck in pages_volatile until
1554 		 * other activity jostles them out, and they also prevented
1555 		 * LTP's KSM test from succeeding deterministically; so drain
1556 		 * them here (here rather than on entry to ksm_do_scan(),
1557 		 * so we don't IPI too often when pages_to_scan is set low).
1558 		 */
1559 		lru_add_drain_all();
1560 
1561 		/*
1562 		 * Whereas stale stable_nodes on the stable_tree itself
1563 		 * get pruned in the regular course of stable_tree_search(),
1564 		 * those moved out to the migrate_nodes list can accumulate:
1565 		 * so prune them once before each full scan.
1566 		 */
1567 		if (!ksm_merge_across_nodes) {
1568 			struct stable_node *stable_node;
1569 			struct list_head *this, *next;
1570 			struct page *page;
1571 
1572 			list_for_each_safe(this, next, &migrate_nodes) {
1573 				stable_node = list_entry(this,
1574 						struct stable_node, list);
1575 				page = get_ksm_page(stable_node, false);
1576 				if (page)
1577 					put_page(page);
1578 				cond_resched();
1579 			}
1580 		}
1581 
1582 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1583 			root_unstable_tree[nid] = RB_ROOT;
1584 
1585 		spin_lock(&ksm_mmlist_lock);
1586 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1587 		ksm_scan.mm_slot = slot;
1588 		spin_unlock(&ksm_mmlist_lock);
1589 		/*
1590 		 * Although we tested list_empty() above, a racing __ksm_exit
1591 		 * of the last mm on the list may have removed it since then.
1592 		 */
1593 		if (slot == &ksm_mm_head)
1594 			return NULL;
1595 next_mm:
1596 		ksm_scan.address = 0;
1597 		ksm_scan.rmap_list = &slot->rmap_list;
1598 	}
1599 
1600 	mm = slot->mm;
1601 	down_read(&mm->mmap_sem);
1602 	if (ksm_test_exit(mm))
1603 		vma = NULL;
1604 	else
1605 		vma = find_vma(mm, ksm_scan.address);
1606 
1607 	for (; vma; vma = vma->vm_next) {
1608 		if (!(vma->vm_flags & VM_MERGEABLE))
1609 			continue;
1610 		if (ksm_scan.address < vma->vm_start)
1611 			ksm_scan.address = vma->vm_start;
1612 		if (!vma->anon_vma)
1613 			ksm_scan.address = vma->vm_end;
1614 
1615 		while (ksm_scan.address < vma->vm_end) {
1616 			if (ksm_test_exit(mm))
1617 				break;
1618 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1619 			if (IS_ERR_OR_NULL(*page)) {
1620 				ksm_scan.address += PAGE_SIZE;
1621 				cond_resched();
1622 				continue;
1623 			}
1624 			if (PageAnon(*page) ||
1625 			    page_trans_compound_anon(*page)) {
1626 				flush_anon_page(vma, *page, ksm_scan.address);
1627 				flush_dcache_page(*page);
1628 				rmap_item = get_next_rmap_item(slot,
1629 					ksm_scan.rmap_list, ksm_scan.address);
1630 				if (rmap_item) {
1631 					ksm_scan.rmap_list =
1632 							&rmap_item->rmap_list;
1633 					ksm_scan.address += PAGE_SIZE;
1634 				} else
1635 					put_page(*page);
1636 				up_read(&mm->mmap_sem);
1637 				return rmap_item;
1638 			}
1639 			put_page(*page);
1640 			ksm_scan.address += PAGE_SIZE;
1641 			cond_resched();
1642 		}
1643 	}
1644 
1645 	if (ksm_test_exit(mm)) {
1646 		ksm_scan.address = 0;
1647 		ksm_scan.rmap_list = &slot->rmap_list;
1648 	}
1649 	/*
1650 	 * Nuke all the rmap_items that are above this current rmap:
1651 	 * because there were no VM_MERGEABLE vmas with such addresses.
1652 	 */
1653 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1654 
1655 	spin_lock(&ksm_mmlist_lock);
1656 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1657 						struct mm_slot, mm_list);
1658 	if (ksm_scan.address == 0) {
1659 		/*
1660 		 * We've completed a full scan of all vmas, holding mmap_sem
1661 		 * throughout, and found no VM_MERGEABLE: so do the same as
1662 		 * __ksm_exit does to remove this mm from all our lists now.
1663 		 * This applies either when cleaning up after __ksm_exit
1664 		 * (but beware: we can reach here even before __ksm_exit),
1665 		 * or when all VM_MERGEABLE areas have been unmapped (and
1666 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1667 		 */
1668 		hash_del(&slot->link);
1669 		list_del(&slot->mm_list);
1670 		spin_unlock(&ksm_mmlist_lock);
1671 
1672 		free_mm_slot(slot);
1673 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1674 		up_read(&mm->mmap_sem);
1675 		mmdrop(mm);
1676 	} else {
1677 		spin_unlock(&ksm_mmlist_lock);
1678 		up_read(&mm->mmap_sem);
1679 	}
1680 
1681 	/* Repeat until we've completed scanning the whole list */
1682 	slot = ksm_scan.mm_slot;
1683 	if (slot != &ksm_mm_head)
1684 		goto next_mm;
1685 
1686 	ksm_scan.seqnr++;
1687 	return NULL;
1688 }
1689 
1690 /**
1691  * ksm_do_scan  - the ksm scanner main worker function.
1692  * @scan_npages - number of pages we want to scan before we return.
1693  */
1694 static void ksm_do_scan(unsigned int scan_npages)
1695 {
1696 	struct rmap_item *rmap_item;
1697 	struct page *uninitialized_var(page);
1698 
1699 	while (scan_npages-- && likely(!freezing(current))) {
1700 		cond_resched();
1701 		rmap_item = scan_get_next_rmap_item(&page);
1702 		if (!rmap_item)
1703 			return;
1704 		cmp_and_merge_page(page, rmap_item);
1705 		put_page(page);
1706 	}
1707 }
1708 
1709 static int ksmd_should_run(void)
1710 {
1711 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1712 }
1713 
1714 static int ksm_scan_thread(void *nothing)
1715 {
1716 	set_freezable();
1717 	set_user_nice(current, 5);
1718 
1719 	while (!kthread_should_stop()) {
1720 		mutex_lock(&ksm_thread_mutex);
1721 		wait_while_offlining();
1722 		if (ksmd_should_run())
1723 			ksm_do_scan(ksm_thread_pages_to_scan);
1724 		mutex_unlock(&ksm_thread_mutex);
1725 
1726 		try_to_freeze();
1727 
1728 		if (ksmd_should_run()) {
1729 			schedule_timeout_interruptible(
1730 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1731 		} else {
1732 			wait_event_freezable(ksm_thread_wait,
1733 				ksmd_should_run() || kthread_should_stop());
1734 		}
1735 	}
1736 	return 0;
1737 }
1738 
1739 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1740 		unsigned long end, int advice, unsigned long *vm_flags)
1741 {
1742 	struct mm_struct *mm = vma->vm_mm;
1743 	int err;
1744 
1745 	switch (advice) {
1746 	case MADV_MERGEABLE:
1747 		/*
1748 		 * Be somewhat over-protective for now!
1749 		 */
1750 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1751 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1752 				 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1753 			return 0;		/* just ignore the advice */
1754 
1755 #ifdef VM_SAO
1756 		if (*vm_flags & VM_SAO)
1757 			return 0;
1758 #endif
1759 
1760 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1761 			err = __ksm_enter(mm);
1762 			if (err)
1763 				return err;
1764 		}
1765 
1766 		*vm_flags |= VM_MERGEABLE;
1767 		break;
1768 
1769 	case MADV_UNMERGEABLE:
1770 		if (!(*vm_flags & VM_MERGEABLE))
1771 			return 0;		/* just ignore the advice */
1772 
1773 		if (vma->anon_vma) {
1774 			err = unmerge_ksm_pages(vma, start, end);
1775 			if (err)
1776 				return err;
1777 		}
1778 
1779 		*vm_flags &= ~VM_MERGEABLE;
1780 		break;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 int __ksm_enter(struct mm_struct *mm)
1787 {
1788 	struct mm_slot *mm_slot;
1789 	int needs_wakeup;
1790 
1791 	mm_slot = alloc_mm_slot();
1792 	if (!mm_slot)
1793 		return -ENOMEM;
1794 
1795 	/* Check ksm_run too?  Would need tighter locking */
1796 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1797 
1798 	spin_lock(&ksm_mmlist_lock);
1799 	insert_to_mm_slots_hash(mm, mm_slot);
1800 	/*
1801 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1802 	 * insert just behind the scanning cursor, to let the area settle
1803 	 * down a little; when fork is followed by immediate exec, we don't
1804 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1805 	 *
1806 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1807 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1808 	 * missed: then we might as well insert at the end of the list.
1809 	 */
1810 	if (ksm_run & KSM_RUN_UNMERGE)
1811 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1812 	else
1813 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1814 	spin_unlock(&ksm_mmlist_lock);
1815 
1816 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1817 	atomic_inc(&mm->mm_count);
1818 
1819 	if (needs_wakeup)
1820 		wake_up_interruptible(&ksm_thread_wait);
1821 
1822 	return 0;
1823 }
1824 
1825 void __ksm_exit(struct mm_struct *mm)
1826 {
1827 	struct mm_slot *mm_slot;
1828 	int easy_to_free = 0;
1829 
1830 	/*
1831 	 * This process is exiting: if it's straightforward (as is the
1832 	 * case when ksmd was never running), free mm_slot immediately.
1833 	 * But if it's at the cursor or has rmap_items linked to it, use
1834 	 * mmap_sem to synchronize with any break_cows before pagetables
1835 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1836 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1837 	 */
1838 
1839 	spin_lock(&ksm_mmlist_lock);
1840 	mm_slot = get_mm_slot(mm);
1841 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1842 		if (!mm_slot->rmap_list) {
1843 			hash_del(&mm_slot->link);
1844 			list_del(&mm_slot->mm_list);
1845 			easy_to_free = 1;
1846 		} else {
1847 			list_move(&mm_slot->mm_list,
1848 				  &ksm_scan.mm_slot->mm_list);
1849 		}
1850 	}
1851 	spin_unlock(&ksm_mmlist_lock);
1852 
1853 	if (easy_to_free) {
1854 		free_mm_slot(mm_slot);
1855 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1856 		mmdrop(mm);
1857 	} else if (mm_slot) {
1858 		down_write(&mm->mmap_sem);
1859 		up_write(&mm->mmap_sem);
1860 	}
1861 }
1862 
1863 struct page *ksm_might_need_to_copy(struct page *page,
1864 			struct vm_area_struct *vma, unsigned long address)
1865 {
1866 	struct anon_vma *anon_vma = page_anon_vma(page);
1867 	struct page *new_page;
1868 
1869 	if (PageKsm(page)) {
1870 		if (page_stable_node(page) &&
1871 		    !(ksm_run & KSM_RUN_UNMERGE))
1872 			return page;	/* no need to copy it */
1873 	} else if (!anon_vma) {
1874 		return page;		/* no need to copy it */
1875 	} else if (anon_vma->root == vma->anon_vma->root &&
1876 		 page->index == linear_page_index(vma, address)) {
1877 		return page;		/* still no need to copy it */
1878 	}
1879 	if (!PageUptodate(page))
1880 		return page;		/* let do_swap_page report the error */
1881 
1882 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1883 	if (new_page) {
1884 		copy_user_highpage(new_page, page, address, vma);
1885 
1886 		SetPageDirty(new_page);
1887 		__SetPageUptodate(new_page);
1888 		__set_page_locked(new_page);
1889 	}
1890 
1891 	return new_page;
1892 }
1893 
1894 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1895 {
1896 	struct stable_node *stable_node;
1897 	struct rmap_item *rmap_item;
1898 	int ret = SWAP_AGAIN;
1899 	int search_new_forks = 0;
1900 
1901 	VM_BUG_ON_PAGE(!PageKsm(page), page);
1902 
1903 	/*
1904 	 * Rely on the page lock to protect against concurrent modifications
1905 	 * to that page's node of the stable tree.
1906 	 */
1907 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1908 
1909 	stable_node = page_stable_node(page);
1910 	if (!stable_node)
1911 		return ret;
1912 again:
1913 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1914 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1915 		struct anon_vma_chain *vmac;
1916 		struct vm_area_struct *vma;
1917 
1918 		anon_vma_lock_read(anon_vma);
1919 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1920 					       0, ULONG_MAX) {
1921 			vma = vmac->vma;
1922 			if (rmap_item->address < vma->vm_start ||
1923 			    rmap_item->address >= vma->vm_end)
1924 				continue;
1925 			/*
1926 			 * Initially we examine only the vma which covers this
1927 			 * rmap_item; but later, if there is still work to do,
1928 			 * we examine covering vmas in other mms: in case they
1929 			 * were forked from the original since ksmd passed.
1930 			 */
1931 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1932 				continue;
1933 
1934 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1935 				continue;
1936 
1937 			ret = rwc->rmap_one(page, vma,
1938 					rmap_item->address, rwc->arg);
1939 			if (ret != SWAP_AGAIN) {
1940 				anon_vma_unlock_read(anon_vma);
1941 				goto out;
1942 			}
1943 			if (rwc->done && rwc->done(page)) {
1944 				anon_vma_unlock_read(anon_vma);
1945 				goto out;
1946 			}
1947 		}
1948 		anon_vma_unlock_read(anon_vma);
1949 	}
1950 	if (!search_new_forks++)
1951 		goto again;
1952 out:
1953 	return ret;
1954 }
1955 
1956 #ifdef CONFIG_MIGRATION
1957 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1958 {
1959 	struct stable_node *stable_node;
1960 
1961 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1962 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1963 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1964 
1965 	stable_node = page_stable_node(newpage);
1966 	if (stable_node) {
1967 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1968 		stable_node->kpfn = page_to_pfn(newpage);
1969 		/*
1970 		 * newpage->mapping was set in advance; now we need smp_wmb()
1971 		 * to make sure that the new stable_node->kpfn is visible
1972 		 * to get_ksm_page() before it can see that oldpage->mapping
1973 		 * has gone stale (or that PageSwapCache has been cleared).
1974 		 */
1975 		smp_wmb();
1976 		set_page_stable_node(oldpage, NULL);
1977 	}
1978 }
1979 #endif /* CONFIG_MIGRATION */
1980 
1981 #ifdef CONFIG_MEMORY_HOTREMOVE
1982 static int just_wait(void *word)
1983 {
1984 	schedule();
1985 	return 0;
1986 }
1987 
1988 static void wait_while_offlining(void)
1989 {
1990 	while (ksm_run & KSM_RUN_OFFLINE) {
1991 		mutex_unlock(&ksm_thread_mutex);
1992 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1993 				just_wait, TASK_UNINTERRUPTIBLE);
1994 		mutex_lock(&ksm_thread_mutex);
1995 	}
1996 }
1997 
1998 static void ksm_check_stable_tree(unsigned long start_pfn,
1999 				  unsigned long end_pfn)
2000 {
2001 	struct stable_node *stable_node;
2002 	struct list_head *this, *next;
2003 	struct rb_node *node;
2004 	int nid;
2005 
2006 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2007 		node = rb_first(root_stable_tree + nid);
2008 		while (node) {
2009 			stable_node = rb_entry(node, struct stable_node, node);
2010 			if (stable_node->kpfn >= start_pfn &&
2011 			    stable_node->kpfn < end_pfn) {
2012 				/*
2013 				 * Don't get_ksm_page, page has already gone:
2014 				 * which is why we keep kpfn instead of page*
2015 				 */
2016 				remove_node_from_stable_tree(stable_node);
2017 				node = rb_first(root_stable_tree + nid);
2018 			} else
2019 				node = rb_next(node);
2020 			cond_resched();
2021 		}
2022 	}
2023 	list_for_each_safe(this, next, &migrate_nodes) {
2024 		stable_node = list_entry(this, struct stable_node, list);
2025 		if (stable_node->kpfn >= start_pfn &&
2026 		    stable_node->kpfn < end_pfn)
2027 			remove_node_from_stable_tree(stable_node);
2028 		cond_resched();
2029 	}
2030 }
2031 
2032 static int ksm_memory_callback(struct notifier_block *self,
2033 			       unsigned long action, void *arg)
2034 {
2035 	struct memory_notify *mn = arg;
2036 
2037 	switch (action) {
2038 	case MEM_GOING_OFFLINE:
2039 		/*
2040 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2041 		 * and remove_all_stable_nodes() while memory is going offline:
2042 		 * it is unsafe for them to touch the stable tree at this time.
2043 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2044 		 * which do not need the ksm_thread_mutex are all safe.
2045 		 */
2046 		mutex_lock(&ksm_thread_mutex);
2047 		ksm_run |= KSM_RUN_OFFLINE;
2048 		mutex_unlock(&ksm_thread_mutex);
2049 		break;
2050 
2051 	case MEM_OFFLINE:
2052 		/*
2053 		 * Most of the work is done by page migration; but there might
2054 		 * be a few stable_nodes left over, still pointing to struct
2055 		 * pages which have been offlined: prune those from the tree,
2056 		 * otherwise get_ksm_page() might later try to access a
2057 		 * non-existent struct page.
2058 		 */
2059 		ksm_check_stable_tree(mn->start_pfn,
2060 				      mn->start_pfn + mn->nr_pages);
2061 		/* fallthrough */
2062 
2063 	case MEM_CANCEL_OFFLINE:
2064 		mutex_lock(&ksm_thread_mutex);
2065 		ksm_run &= ~KSM_RUN_OFFLINE;
2066 		mutex_unlock(&ksm_thread_mutex);
2067 
2068 		smp_mb();	/* wake_up_bit advises this */
2069 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2070 		break;
2071 	}
2072 	return NOTIFY_OK;
2073 }
2074 #else
2075 static void wait_while_offlining(void)
2076 {
2077 }
2078 #endif /* CONFIG_MEMORY_HOTREMOVE */
2079 
2080 #ifdef CONFIG_SYSFS
2081 /*
2082  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2083  */
2084 
2085 #define KSM_ATTR_RO(_name) \
2086 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2087 #define KSM_ATTR(_name) \
2088 	static struct kobj_attribute _name##_attr = \
2089 		__ATTR(_name, 0644, _name##_show, _name##_store)
2090 
2091 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2092 				    struct kobj_attribute *attr, char *buf)
2093 {
2094 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2095 }
2096 
2097 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2098 				     struct kobj_attribute *attr,
2099 				     const char *buf, size_t count)
2100 {
2101 	unsigned long msecs;
2102 	int err;
2103 
2104 	err = kstrtoul(buf, 10, &msecs);
2105 	if (err || msecs > UINT_MAX)
2106 		return -EINVAL;
2107 
2108 	ksm_thread_sleep_millisecs = msecs;
2109 
2110 	return count;
2111 }
2112 KSM_ATTR(sleep_millisecs);
2113 
2114 static ssize_t pages_to_scan_show(struct kobject *kobj,
2115 				  struct kobj_attribute *attr, char *buf)
2116 {
2117 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2118 }
2119 
2120 static ssize_t pages_to_scan_store(struct kobject *kobj,
2121 				   struct kobj_attribute *attr,
2122 				   const char *buf, size_t count)
2123 {
2124 	int err;
2125 	unsigned long nr_pages;
2126 
2127 	err = kstrtoul(buf, 10, &nr_pages);
2128 	if (err || nr_pages > UINT_MAX)
2129 		return -EINVAL;
2130 
2131 	ksm_thread_pages_to_scan = nr_pages;
2132 
2133 	return count;
2134 }
2135 KSM_ATTR(pages_to_scan);
2136 
2137 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2138 			char *buf)
2139 {
2140 	return sprintf(buf, "%lu\n", ksm_run);
2141 }
2142 
2143 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2144 			 const char *buf, size_t count)
2145 {
2146 	int err;
2147 	unsigned long flags;
2148 
2149 	err = kstrtoul(buf, 10, &flags);
2150 	if (err || flags > UINT_MAX)
2151 		return -EINVAL;
2152 	if (flags > KSM_RUN_UNMERGE)
2153 		return -EINVAL;
2154 
2155 	/*
2156 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2157 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2158 	 * breaking COW to free the pages_shared (but leaves mm_slots
2159 	 * on the list for when ksmd may be set running again).
2160 	 */
2161 
2162 	mutex_lock(&ksm_thread_mutex);
2163 	wait_while_offlining();
2164 	if (ksm_run != flags) {
2165 		ksm_run = flags;
2166 		if (flags & KSM_RUN_UNMERGE) {
2167 			set_current_oom_origin();
2168 			err = unmerge_and_remove_all_rmap_items();
2169 			clear_current_oom_origin();
2170 			if (err) {
2171 				ksm_run = KSM_RUN_STOP;
2172 				count = err;
2173 			}
2174 		}
2175 	}
2176 	mutex_unlock(&ksm_thread_mutex);
2177 
2178 	if (flags & KSM_RUN_MERGE)
2179 		wake_up_interruptible(&ksm_thread_wait);
2180 
2181 	return count;
2182 }
2183 KSM_ATTR(run);
2184 
2185 #ifdef CONFIG_NUMA
2186 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2187 				struct kobj_attribute *attr, char *buf)
2188 {
2189 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2190 }
2191 
2192 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2193 				   struct kobj_attribute *attr,
2194 				   const char *buf, size_t count)
2195 {
2196 	int err;
2197 	unsigned long knob;
2198 
2199 	err = kstrtoul(buf, 10, &knob);
2200 	if (err)
2201 		return err;
2202 	if (knob > 1)
2203 		return -EINVAL;
2204 
2205 	mutex_lock(&ksm_thread_mutex);
2206 	wait_while_offlining();
2207 	if (ksm_merge_across_nodes != knob) {
2208 		if (ksm_pages_shared || remove_all_stable_nodes())
2209 			err = -EBUSY;
2210 		else if (root_stable_tree == one_stable_tree) {
2211 			struct rb_root *buf;
2212 			/*
2213 			 * This is the first time that we switch away from the
2214 			 * default of merging across nodes: must now allocate
2215 			 * a buffer to hold as many roots as may be needed.
2216 			 * Allocate stable and unstable together:
2217 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2218 			 */
2219 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2220 				      GFP_KERNEL);
2221 			/* Let us assume that RB_ROOT is NULL is zero */
2222 			if (!buf)
2223 				err = -ENOMEM;
2224 			else {
2225 				root_stable_tree = buf;
2226 				root_unstable_tree = buf + nr_node_ids;
2227 				/* Stable tree is empty but not the unstable */
2228 				root_unstable_tree[0] = one_unstable_tree[0];
2229 			}
2230 		}
2231 		if (!err) {
2232 			ksm_merge_across_nodes = knob;
2233 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2234 		}
2235 	}
2236 	mutex_unlock(&ksm_thread_mutex);
2237 
2238 	return err ? err : count;
2239 }
2240 KSM_ATTR(merge_across_nodes);
2241 #endif
2242 
2243 static ssize_t pages_shared_show(struct kobject *kobj,
2244 				 struct kobj_attribute *attr, char *buf)
2245 {
2246 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2247 }
2248 KSM_ATTR_RO(pages_shared);
2249 
2250 static ssize_t pages_sharing_show(struct kobject *kobj,
2251 				  struct kobj_attribute *attr, char *buf)
2252 {
2253 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2254 }
2255 KSM_ATTR_RO(pages_sharing);
2256 
2257 static ssize_t pages_unshared_show(struct kobject *kobj,
2258 				   struct kobj_attribute *attr, char *buf)
2259 {
2260 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2261 }
2262 KSM_ATTR_RO(pages_unshared);
2263 
2264 static ssize_t pages_volatile_show(struct kobject *kobj,
2265 				   struct kobj_attribute *attr, char *buf)
2266 {
2267 	long ksm_pages_volatile;
2268 
2269 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2270 				- ksm_pages_sharing - ksm_pages_unshared;
2271 	/*
2272 	 * It was not worth any locking to calculate that statistic,
2273 	 * but it might therefore sometimes be negative: conceal that.
2274 	 */
2275 	if (ksm_pages_volatile < 0)
2276 		ksm_pages_volatile = 0;
2277 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2278 }
2279 KSM_ATTR_RO(pages_volatile);
2280 
2281 static ssize_t full_scans_show(struct kobject *kobj,
2282 			       struct kobj_attribute *attr, char *buf)
2283 {
2284 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2285 }
2286 KSM_ATTR_RO(full_scans);
2287 
2288 static struct attribute *ksm_attrs[] = {
2289 	&sleep_millisecs_attr.attr,
2290 	&pages_to_scan_attr.attr,
2291 	&run_attr.attr,
2292 	&pages_shared_attr.attr,
2293 	&pages_sharing_attr.attr,
2294 	&pages_unshared_attr.attr,
2295 	&pages_volatile_attr.attr,
2296 	&full_scans_attr.attr,
2297 #ifdef CONFIG_NUMA
2298 	&merge_across_nodes_attr.attr,
2299 #endif
2300 	NULL,
2301 };
2302 
2303 static struct attribute_group ksm_attr_group = {
2304 	.attrs = ksm_attrs,
2305 	.name = "ksm",
2306 };
2307 #endif /* CONFIG_SYSFS */
2308 
2309 static int __init ksm_init(void)
2310 {
2311 	struct task_struct *ksm_thread;
2312 	int err;
2313 
2314 	err = ksm_slab_init();
2315 	if (err)
2316 		goto out;
2317 
2318 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2319 	if (IS_ERR(ksm_thread)) {
2320 		printk(KERN_ERR "ksm: creating kthread failed\n");
2321 		err = PTR_ERR(ksm_thread);
2322 		goto out_free;
2323 	}
2324 
2325 #ifdef CONFIG_SYSFS
2326 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2327 	if (err) {
2328 		printk(KERN_ERR "ksm: register sysfs failed\n");
2329 		kthread_stop(ksm_thread);
2330 		goto out_free;
2331 	}
2332 #else
2333 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2334 
2335 #endif /* CONFIG_SYSFS */
2336 
2337 #ifdef CONFIG_MEMORY_HOTREMOVE
2338 	/* There is no significance to this priority 100 */
2339 	hotplug_memory_notifier(ksm_memory_callback, 100);
2340 #endif
2341 	return 0;
2342 
2343 out_free:
2344 	ksm_slab_free();
2345 out:
2346 	return err;
2347 }
2348 subsys_initcall(ksm_init);
2349