1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/rwsem.h> 23 #include <linux/pagemap.h> 24 #include <linux/rmap.h> 25 #include <linux/spinlock.h> 26 #include <linux/jhash.h> 27 #include <linux/delay.h> 28 #include <linux/kthread.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/rbtree.h> 32 #include <linux/memory.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/swap.h> 35 #include <linux/ksm.h> 36 #include <linux/hashtable.h> 37 #include <linux/freezer.h> 38 #include <linux/oom.h> 39 #include <linux/numa.h> 40 41 #include <asm/tlbflush.h> 42 #include "internal.h" 43 44 #ifdef CONFIG_NUMA 45 #define NUMA(x) (x) 46 #define DO_NUMA(x) do { (x); } while (0) 47 #else 48 #define NUMA(x) (0) 49 #define DO_NUMA(x) do { } while (0) 50 #endif 51 52 /* 53 * A few notes about the KSM scanning process, 54 * to make it easier to understand the data structures below: 55 * 56 * In order to reduce excessive scanning, KSM sorts the memory pages by their 57 * contents into a data structure that holds pointers to the pages' locations. 58 * 59 * Since the contents of the pages may change at any moment, KSM cannot just 60 * insert the pages into a normal sorted tree and expect it to find anything. 61 * Therefore KSM uses two data structures - the stable and the unstable tree. 62 * 63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 64 * by their contents. Because each such page is write-protected, searching on 65 * this tree is fully assured to be working (except when pages are unmapped), 66 * and therefore this tree is called the stable tree. 67 * 68 * In addition to the stable tree, KSM uses a second data structure called the 69 * unstable tree: this tree holds pointers to pages which have been found to 70 * be "unchanged for a period of time". The unstable tree sorts these pages 71 * by their contents, but since they are not write-protected, KSM cannot rely 72 * upon the unstable tree to work correctly - the unstable tree is liable to 73 * be corrupted as its contents are modified, and so it is called unstable. 74 * 75 * KSM solves this problem by several techniques: 76 * 77 * 1) The unstable tree is flushed every time KSM completes scanning all 78 * memory areas, and then the tree is rebuilt again from the beginning. 79 * 2) KSM will only insert into the unstable tree, pages whose hash value 80 * has not changed since the previous scan of all memory areas. 81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 82 * colors of the nodes and not on their contents, assuring that even when 83 * the tree gets "corrupted" it won't get out of balance, so scanning time 84 * remains the same (also, searching and inserting nodes in an rbtree uses 85 * the same algorithm, so we have no overhead when we flush and rebuild). 86 * 4) KSM never flushes the stable tree, which means that even if it were to 87 * take 10 attempts to find a page in the unstable tree, once it is found, 88 * it is secured in the stable tree. (When we scan a new page, we first 89 * compare it against the stable tree, and then against the unstable tree.) 90 * 91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 92 * stable trees and multiple unstable trees: one of each for each NUMA node. 93 */ 94 95 /** 96 * struct mm_slot - ksm information per mm that is being scanned 97 * @link: link to the mm_slots hash list 98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 100 * @mm: the mm that this information is valid for 101 */ 102 struct mm_slot { 103 struct hlist_node link; 104 struct list_head mm_list; 105 struct rmap_item *rmap_list; 106 struct mm_struct *mm; 107 }; 108 109 /** 110 * struct ksm_scan - cursor for scanning 111 * @mm_slot: the current mm_slot we are scanning 112 * @address: the next address inside that to be scanned 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list 114 * @seqnr: count of completed full scans (needed when removing unstable node) 115 * 116 * There is only the one ksm_scan instance of this cursor structure. 117 */ 118 struct ksm_scan { 119 struct mm_slot *mm_slot; 120 unsigned long address; 121 struct rmap_item **rmap_list; 122 unsigned long seqnr; 123 }; 124 125 /** 126 * struct stable_node - node of the stable rbtree 127 * @node: rb node of this ksm page in the stable tree 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 129 * @list: linked into migrate_nodes, pending placement in the proper node tree 130 * @hlist: hlist head of rmap_items using this ksm page 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 133 */ 134 struct stable_node { 135 union { 136 struct rb_node node; /* when node of stable tree */ 137 struct { /* when listed for migration */ 138 struct list_head *head; 139 struct list_head list; 140 }; 141 }; 142 struct hlist_head hlist; 143 unsigned long kpfn; 144 #ifdef CONFIG_NUMA 145 int nid; 146 #endif 147 }; 148 149 /** 150 * struct rmap_item - reverse mapping item for virtual addresses 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 153 * @nid: NUMA node id of unstable tree in which linked (may not match page) 154 * @mm: the memory structure this rmap_item is pointing into 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 156 * @oldchecksum: previous checksum of the page at that virtual address 157 * @node: rb node of this rmap_item in the unstable tree 158 * @head: pointer to stable_node heading this list in the stable tree 159 * @hlist: link into hlist of rmap_items hanging off that stable_node 160 */ 161 struct rmap_item { 162 struct rmap_item *rmap_list; 163 union { 164 struct anon_vma *anon_vma; /* when stable */ 165 #ifdef CONFIG_NUMA 166 int nid; /* when node of unstable tree */ 167 #endif 168 }; 169 struct mm_struct *mm; 170 unsigned long address; /* + low bits used for flags below */ 171 unsigned int oldchecksum; /* when unstable */ 172 union { 173 struct rb_node node; /* when node of unstable tree */ 174 struct { /* when listed from stable tree */ 175 struct stable_node *head; 176 struct hlist_node hlist; 177 }; 178 }; 179 }; 180 181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 184 185 /* The stable and unstable tree heads */ 186 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 187 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 188 static struct rb_root *root_stable_tree = one_stable_tree; 189 static struct rb_root *root_unstable_tree = one_unstable_tree; 190 191 /* Recently migrated nodes of stable tree, pending proper placement */ 192 static LIST_HEAD(migrate_nodes); 193 194 #define MM_SLOTS_HASH_BITS 10 195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 196 197 static struct mm_slot ksm_mm_head = { 198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 199 }; 200 static struct ksm_scan ksm_scan = { 201 .mm_slot = &ksm_mm_head, 202 }; 203 204 static struct kmem_cache *rmap_item_cache; 205 static struct kmem_cache *stable_node_cache; 206 static struct kmem_cache *mm_slot_cache; 207 208 /* The number of nodes in the stable tree */ 209 static unsigned long ksm_pages_shared; 210 211 /* The number of page slots additionally sharing those nodes */ 212 static unsigned long ksm_pages_sharing; 213 214 /* The number of nodes in the unstable tree */ 215 static unsigned long ksm_pages_unshared; 216 217 /* The number of rmap_items in use: to calculate pages_volatile */ 218 static unsigned long ksm_rmap_items; 219 220 /* Number of pages ksmd should scan in one batch */ 221 static unsigned int ksm_thread_pages_to_scan = 100; 222 223 /* Milliseconds ksmd should sleep between batches */ 224 static unsigned int ksm_thread_sleep_millisecs = 20; 225 226 #ifdef CONFIG_NUMA 227 /* Zeroed when merging across nodes is not allowed */ 228 static unsigned int ksm_merge_across_nodes = 1; 229 static int ksm_nr_node_ids = 1; 230 #else 231 #define ksm_merge_across_nodes 1U 232 #define ksm_nr_node_ids 1 233 #endif 234 235 #define KSM_RUN_STOP 0 236 #define KSM_RUN_MERGE 1 237 #define KSM_RUN_UNMERGE 2 238 #define KSM_RUN_OFFLINE 4 239 static unsigned long ksm_run = KSM_RUN_STOP; 240 static void wait_while_offlining(void); 241 242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 243 static DEFINE_MUTEX(ksm_thread_mutex); 244 static DEFINE_SPINLOCK(ksm_mmlist_lock); 245 246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 247 sizeof(struct __struct), __alignof__(struct __struct),\ 248 (__flags), NULL) 249 250 static int __init ksm_slab_init(void) 251 { 252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 253 if (!rmap_item_cache) 254 goto out; 255 256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 257 if (!stable_node_cache) 258 goto out_free1; 259 260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 261 if (!mm_slot_cache) 262 goto out_free2; 263 264 return 0; 265 266 out_free2: 267 kmem_cache_destroy(stable_node_cache); 268 out_free1: 269 kmem_cache_destroy(rmap_item_cache); 270 out: 271 return -ENOMEM; 272 } 273 274 static void __init ksm_slab_free(void) 275 { 276 kmem_cache_destroy(mm_slot_cache); 277 kmem_cache_destroy(stable_node_cache); 278 kmem_cache_destroy(rmap_item_cache); 279 mm_slot_cache = NULL; 280 } 281 282 static inline struct rmap_item *alloc_rmap_item(void) 283 { 284 struct rmap_item *rmap_item; 285 286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 287 __GFP_NORETRY | __GFP_NOWARN); 288 if (rmap_item) 289 ksm_rmap_items++; 290 return rmap_item; 291 } 292 293 static inline void free_rmap_item(struct rmap_item *rmap_item) 294 { 295 ksm_rmap_items--; 296 rmap_item->mm = NULL; /* debug safety */ 297 kmem_cache_free(rmap_item_cache, rmap_item); 298 } 299 300 static inline struct stable_node *alloc_stable_node(void) 301 { 302 /* 303 * The allocation can take too long with GFP_KERNEL when memory is under 304 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 305 * grants access to memory reserves, helping to avoid this problem. 306 */ 307 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 308 } 309 310 static inline void free_stable_node(struct stable_node *stable_node) 311 { 312 kmem_cache_free(stable_node_cache, stable_node); 313 } 314 315 static inline struct mm_slot *alloc_mm_slot(void) 316 { 317 if (!mm_slot_cache) /* initialization failed */ 318 return NULL; 319 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 320 } 321 322 static inline void free_mm_slot(struct mm_slot *mm_slot) 323 { 324 kmem_cache_free(mm_slot_cache, mm_slot); 325 } 326 327 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 328 { 329 struct mm_slot *slot; 330 331 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 332 if (slot->mm == mm) 333 return slot; 334 335 return NULL; 336 } 337 338 static void insert_to_mm_slots_hash(struct mm_struct *mm, 339 struct mm_slot *mm_slot) 340 { 341 mm_slot->mm = mm; 342 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 343 } 344 345 /* 346 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 347 * page tables after it has passed through ksm_exit() - which, if necessary, 348 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 349 * a special flag: they can just back out as soon as mm_users goes to zero. 350 * ksm_test_exit() is used throughout to make this test for exit: in some 351 * places for correctness, in some places just to avoid unnecessary work. 352 */ 353 static inline bool ksm_test_exit(struct mm_struct *mm) 354 { 355 return atomic_read(&mm->mm_users) == 0; 356 } 357 358 /* 359 * We use break_ksm to break COW on a ksm page: it's a stripped down 360 * 361 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 362 * put_page(page); 363 * 364 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 365 * in case the application has unmapped and remapped mm,addr meanwhile. 366 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 367 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 368 * 369 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 370 * of the process that owns 'vma'. We also do not want to enforce 371 * protection keys here anyway. 372 */ 373 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 374 { 375 struct page *page; 376 int ret = 0; 377 378 do { 379 cond_resched(); 380 page = follow_page(vma, addr, 381 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 382 if (IS_ERR_OR_NULL(page)) 383 break; 384 if (PageKsm(page)) 385 ret = handle_mm_fault(vma, addr, 386 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 387 else 388 ret = VM_FAULT_WRITE; 389 put_page(page); 390 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 391 /* 392 * We must loop because handle_mm_fault() may back out if there's 393 * any difficulty e.g. if pte accessed bit gets updated concurrently. 394 * 395 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 396 * COW has been broken, even if the vma does not permit VM_WRITE; 397 * but note that a concurrent fault might break PageKsm for us. 398 * 399 * VM_FAULT_SIGBUS could occur if we race with truncation of the 400 * backing file, which also invalidates anonymous pages: that's 401 * okay, that truncation will have unmapped the PageKsm for us. 402 * 403 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 404 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 405 * current task has TIF_MEMDIE set, and will be OOM killed on return 406 * to user; and ksmd, having no mm, would never be chosen for that. 407 * 408 * But if the mm is in a limited mem_cgroup, then the fault may fail 409 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 410 * even ksmd can fail in this way - though it's usually breaking ksm 411 * just to undo a merge it made a moment before, so unlikely to oom. 412 * 413 * That's a pity: we might therefore have more kernel pages allocated 414 * than we're counting as nodes in the stable tree; but ksm_do_scan 415 * will retry to break_cow on each pass, so should recover the page 416 * in due course. The important thing is to not let VM_MERGEABLE 417 * be cleared while any such pages might remain in the area. 418 */ 419 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 420 } 421 422 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 423 unsigned long addr) 424 { 425 struct vm_area_struct *vma; 426 if (ksm_test_exit(mm)) 427 return NULL; 428 vma = find_vma(mm, addr); 429 if (!vma || vma->vm_start > addr) 430 return NULL; 431 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 432 return NULL; 433 return vma; 434 } 435 436 static void break_cow(struct rmap_item *rmap_item) 437 { 438 struct mm_struct *mm = rmap_item->mm; 439 unsigned long addr = rmap_item->address; 440 struct vm_area_struct *vma; 441 442 /* 443 * It is not an accident that whenever we want to break COW 444 * to undo, we also need to drop a reference to the anon_vma. 445 */ 446 put_anon_vma(rmap_item->anon_vma); 447 448 down_read(&mm->mmap_sem); 449 vma = find_mergeable_vma(mm, addr); 450 if (vma) 451 break_ksm(vma, addr); 452 up_read(&mm->mmap_sem); 453 } 454 455 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 456 { 457 struct mm_struct *mm = rmap_item->mm; 458 unsigned long addr = rmap_item->address; 459 struct vm_area_struct *vma; 460 struct page *page; 461 462 down_read(&mm->mmap_sem); 463 vma = find_mergeable_vma(mm, addr); 464 if (!vma) 465 goto out; 466 467 page = follow_page(vma, addr, FOLL_GET); 468 if (IS_ERR_OR_NULL(page)) 469 goto out; 470 if (PageAnon(page)) { 471 flush_anon_page(vma, page, addr); 472 flush_dcache_page(page); 473 } else { 474 put_page(page); 475 out: 476 page = NULL; 477 } 478 up_read(&mm->mmap_sem); 479 return page; 480 } 481 482 /* 483 * This helper is used for getting right index into array of tree roots. 484 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 485 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 486 * every node has its own stable and unstable tree. 487 */ 488 static inline int get_kpfn_nid(unsigned long kpfn) 489 { 490 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 491 } 492 493 static void remove_node_from_stable_tree(struct stable_node *stable_node) 494 { 495 struct rmap_item *rmap_item; 496 497 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 498 if (rmap_item->hlist.next) 499 ksm_pages_sharing--; 500 else 501 ksm_pages_shared--; 502 put_anon_vma(rmap_item->anon_vma); 503 rmap_item->address &= PAGE_MASK; 504 cond_resched(); 505 } 506 507 if (stable_node->head == &migrate_nodes) 508 list_del(&stable_node->list); 509 else 510 rb_erase(&stable_node->node, 511 root_stable_tree + NUMA(stable_node->nid)); 512 free_stable_node(stable_node); 513 } 514 515 /* 516 * get_ksm_page: checks if the page indicated by the stable node 517 * is still its ksm page, despite having held no reference to it. 518 * In which case we can trust the content of the page, and it 519 * returns the gotten page; but if the page has now been zapped, 520 * remove the stale node from the stable tree and return NULL. 521 * But beware, the stable node's page might be being migrated. 522 * 523 * You would expect the stable_node to hold a reference to the ksm page. 524 * But if it increments the page's count, swapping out has to wait for 525 * ksmd to come around again before it can free the page, which may take 526 * seconds or even minutes: much too unresponsive. So instead we use a 527 * "keyhole reference": access to the ksm page from the stable node peeps 528 * out through its keyhole to see if that page still holds the right key, 529 * pointing back to this stable node. This relies on freeing a PageAnon 530 * page to reset its page->mapping to NULL, and relies on no other use of 531 * a page to put something that might look like our key in page->mapping. 532 * is on its way to being freed; but it is an anomaly to bear in mind. 533 */ 534 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 535 { 536 struct page *page; 537 void *expected_mapping; 538 unsigned long kpfn; 539 540 expected_mapping = (void *)((unsigned long)stable_node | 541 PAGE_MAPPING_KSM); 542 again: 543 kpfn = READ_ONCE(stable_node->kpfn); 544 page = pfn_to_page(kpfn); 545 546 /* 547 * page is computed from kpfn, so on most architectures reading 548 * page->mapping is naturally ordered after reading node->kpfn, 549 * but on Alpha we need to be more careful. 550 */ 551 smp_read_barrier_depends(); 552 if (READ_ONCE(page->mapping) != expected_mapping) 553 goto stale; 554 555 /* 556 * We cannot do anything with the page while its refcount is 0. 557 * Usually 0 means free, or tail of a higher-order page: in which 558 * case this node is no longer referenced, and should be freed; 559 * however, it might mean that the page is under page_freeze_refs(). 560 * The __remove_mapping() case is easy, again the node is now stale; 561 * but if page is swapcache in migrate_page_move_mapping(), it might 562 * still be our page, in which case it's essential to keep the node. 563 */ 564 while (!get_page_unless_zero(page)) { 565 /* 566 * Another check for page->mapping != expected_mapping would 567 * work here too. We have chosen the !PageSwapCache test to 568 * optimize the common case, when the page is or is about to 569 * be freed: PageSwapCache is cleared (under spin_lock_irq) 570 * in the freeze_refs section of __remove_mapping(); but Anon 571 * page->mapping reset to NULL later, in free_pages_prepare(). 572 */ 573 if (!PageSwapCache(page)) 574 goto stale; 575 cpu_relax(); 576 } 577 578 if (READ_ONCE(page->mapping) != expected_mapping) { 579 put_page(page); 580 goto stale; 581 } 582 583 if (lock_it) { 584 lock_page(page); 585 if (READ_ONCE(page->mapping) != expected_mapping) { 586 unlock_page(page); 587 put_page(page); 588 goto stale; 589 } 590 } 591 return page; 592 593 stale: 594 /* 595 * We come here from above when page->mapping or !PageSwapCache 596 * suggests that the node is stale; but it might be under migration. 597 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 598 * before checking whether node->kpfn has been changed. 599 */ 600 smp_rmb(); 601 if (READ_ONCE(stable_node->kpfn) != kpfn) 602 goto again; 603 remove_node_from_stable_tree(stable_node); 604 return NULL; 605 } 606 607 /* 608 * Removing rmap_item from stable or unstable tree. 609 * This function will clean the information from the stable/unstable tree. 610 */ 611 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 612 { 613 if (rmap_item->address & STABLE_FLAG) { 614 struct stable_node *stable_node; 615 struct page *page; 616 617 stable_node = rmap_item->head; 618 page = get_ksm_page(stable_node, true); 619 if (!page) 620 goto out; 621 622 hlist_del(&rmap_item->hlist); 623 unlock_page(page); 624 put_page(page); 625 626 if (!hlist_empty(&stable_node->hlist)) 627 ksm_pages_sharing--; 628 else 629 ksm_pages_shared--; 630 631 put_anon_vma(rmap_item->anon_vma); 632 rmap_item->address &= PAGE_MASK; 633 634 } else if (rmap_item->address & UNSTABLE_FLAG) { 635 unsigned char age; 636 /* 637 * Usually ksmd can and must skip the rb_erase, because 638 * root_unstable_tree was already reset to RB_ROOT. 639 * But be careful when an mm is exiting: do the rb_erase 640 * if this rmap_item was inserted by this scan, rather 641 * than left over from before. 642 */ 643 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 644 BUG_ON(age > 1); 645 if (!age) 646 rb_erase(&rmap_item->node, 647 root_unstable_tree + NUMA(rmap_item->nid)); 648 ksm_pages_unshared--; 649 rmap_item->address &= PAGE_MASK; 650 } 651 out: 652 cond_resched(); /* we're called from many long loops */ 653 } 654 655 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 656 struct rmap_item **rmap_list) 657 { 658 while (*rmap_list) { 659 struct rmap_item *rmap_item = *rmap_list; 660 *rmap_list = rmap_item->rmap_list; 661 remove_rmap_item_from_tree(rmap_item); 662 free_rmap_item(rmap_item); 663 } 664 } 665 666 /* 667 * Though it's very tempting to unmerge rmap_items from stable tree rather 668 * than check every pte of a given vma, the locking doesn't quite work for 669 * that - an rmap_item is assigned to the stable tree after inserting ksm 670 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 671 * rmap_items from parent to child at fork time (so as not to waste time 672 * if exit comes before the next scan reaches it). 673 * 674 * Similarly, although we'd like to remove rmap_items (so updating counts 675 * and freeing memory) when unmerging an area, it's easier to leave that 676 * to the next pass of ksmd - consider, for example, how ksmd might be 677 * in cmp_and_merge_page on one of the rmap_items we would be removing. 678 */ 679 static int unmerge_ksm_pages(struct vm_area_struct *vma, 680 unsigned long start, unsigned long end) 681 { 682 unsigned long addr; 683 int err = 0; 684 685 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 686 if (ksm_test_exit(vma->vm_mm)) 687 break; 688 if (signal_pending(current)) 689 err = -ERESTARTSYS; 690 else 691 err = break_ksm(vma, addr); 692 } 693 return err; 694 } 695 696 #ifdef CONFIG_SYSFS 697 /* 698 * Only called through the sysfs control interface: 699 */ 700 static int remove_stable_node(struct stable_node *stable_node) 701 { 702 struct page *page; 703 int err; 704 705 page = get_ksm_page(stable_node, true); 706 if (!page) { 707 /* 708 * get_ksm_page did remove_node_from_stable_tree itself. 709 */ 710 return 0; 711 } 712 713 if (WARN_ON_ONCE(page_mapped(page))) { 714 /* 715 * This should not happen: but if it does, just refuse to let 716 * merge_across_nodes be switched - there is no need to panic. 717 */ 718 err = -EBUSY; 719 } else { 720 /* 721 * The stable node did not yet appear stale to get_ksm_page(), 722 * since that allows for an unmapped ksm page to be recognized 723 * right up until it is freed; but the node is safe to remove. 724 * This page might be in a pagevec waiting to be freed, 725 * or it might be PageSwapCache (perhaps under writeback), 726 * or it might have been removed from swapcache a moment ago. 727 */ 728 set_page_stable_node(page, NULL); 729 remove_node_from_stable_tree(stable_node); 730 err = 0; 731 } 732 733 unlock_page(page); 734 put_page(page); 735 return err; 736 } 737 738 static int remove_all_stable_nodes(void) 739 { 740 struct stable_node *stable_node, *next; 741 int nid; 742 int err = 0; 743 744 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 745 while (root_stable_tree[nid].rb_node) { 746 stable_node = rb_entry(root_stable_tree[nid].rb_node, 747 struct stable_node, node); 748 if (remove_stable_node(stable_node)) { 749 err = -EBUSY; 750 break; /* proceed to next nid */ 751 } 752 cond_resched(); 753 } 754 } 755 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 756 if (remove_stable_node(stable_node)) 757 err = -EBUSY; 758 cond_resched(); 759 } 760 return err; 761 } 762 763 static int unmerge_and_remove_all_rmap_items(void) 764 { 765 struct mm_slot *mm_slot; 766 struct mm_struct *mm; 767 struct vm_area_struct *vma; 768 int err = 0; 769 770 spin_lock(&ksm_mmlist_lock); 771 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 772 struct mm_slot, mm_list); 773 spin_unlock(&ksm_mmlist_lock); 774 775 for (mm_slot = ksm_scan.mm_slot; 776 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 777 mm = mm_slot->mm; 778 down_read(&mm->mmap_sem); 779 for (vma = mm->mmap; vma; vma = vma->vm_next) { 780 if (ksm_test_exit(mm)) 781 break; 782 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 783 continue; 784 err = unmerge_ksm_pages(vma, 785 vma->vm_start, vma->vm_end); 786 if (err) 787 goto error; 788 } 789 790 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 791 up_read(&mm->mmap_sem); 792 793 spin_lock(&ksm_mmlist_lock); 794 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 795 struct mm_slot, mm_list); 796 if (ksm_test_exit(mm)) { 797 hash_del(&mm_slot->link); 798 list_del(&mm_slot->mm_list); 799 spin_unlock(&ksm_mmlist_lock); 800 801 free_mm_slot(mm_slot); 802 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 803 mmdrop(mm); 804 } else 805 spin_unlock(&ksm_mmlist_lock); 806 } 807 808 /* Clean up stable nodes, but don't worry if some are still busy */ 809 remove_all_stable_nodes(); 810 ksm_scan.seqnr = 0; 811 return 0; 812 813 error: 814 up_read(&mm->mmap_sem); 815 spin_lock(&ksm_mmlist_lock); 816 ksm_scan.mm_slot = &ksm_mm_head; 817 spin_unlock(&ksm_mmlist_lock); 818 return err; 819 } 820 #endif /* CONFIG_SYSFS */ 821 822 static u32 calc_checksum(struct page *page) 823 { 824 u32 checksum; 825 void *addr = kmap_atomic(page); 826 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 827 kunmap_atomic(addr); 828 return checksum; 829 } 830 831 static int memcmp_pages(struct page *page1, struct page *page2) 832 { 833 char *addr1, *addr2; 834 int ret; 835 836 addr1 = kmap_atomic(page1); 837 addr2 = kmap_atomic(page2); 838 ret = memcmp(addr1, addr2, PAGE_SIZE); 839 kunmap_atomic(addr2); 840 kunmap_atomic(addr1); 841 return ret; 842 } 843 844 static inline int pages_identical(struct page *page1, struct page *page2) 845 { 846 return !memcmp_pages(page1, page2); 847 } 848 849 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 850 pte_t *orig_pte) 851 { 852 struct mm_struct *mm = vma->vm_mm; 853 unsigned long addr; 854 pte_t *ptep; 855 spinlock_t *ptl; 856 int swapped; 857 int err = -EFAULT; 858 unsigned long mmun_start; /* For mmu_notifiers */ 859 unsigned long mmun_end; /* For mmu_notifiers */ 860 861 addr = page_address_in_vma(page, vma); 862 if (addr == -EFAULT) 863 goto out; 864 865 BUG_ON(PageTransCompound(page)); 866 867 mmun_start = addr; 868 mmun_end = addr + PAGE_SIZE; 869 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 870 871 ptep = page_check_address(page, mm, addr, &ptl, 0); 872 if (!ptep) 873 goto out_mn; 874 875 if (pte_write(*ptep) || pte_dirty(*ptep)) { 876 pte_t entry; 877 878 swapped = PageSwapCache(page); 879 flush_cache_page(vma, addr, page_to_pfn(page)); 880 /* 881 * Ok this is tricky, when get_user_pages_fast() run it doesn't 882 * take any lock, therefore the check that we are going to make 883 * with the pagecount against the mapcount is racey and 884 * O_DIRECT can happen right after the check. 885 * So we clear the pte and flush the tlb before the check 886 * this assure us that no O_DIRECT can happen after the check 887 * or in the middle of the check. 888 */ 889 entry = ptep_clear_flush_notify(vma, addr, ptep); 890 /* 891 * Check that no O_DIRECT or similar I/O is in progress on the 892 * page 893 */ 894 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 895 set_pte_at(mm, addr, ptep, entry); 896 goto out_unlock; 897 } 898 if (pte_dirty(entry)) 899 set_page_dirty(page); 900 entry = pte_mkclean(pte_wrprotect(entry)); 901 set_pte_at_notify(mm, addr, ptep, entry); 902 } 903 *orig_pte = *ptep; 904 err = 0; 905 906 out_unlock: 907 pte_unmap_unlock(ptep, ptl); 908 out_mn: 909 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 910 out: 911 return err; 912 } 913 914 /** 915 * replace_page - replace page in vma by new ksm page 916 * @vma: vma that holds the pte pointing to page 917 * @page: the page we are replacing by kpage 918 * @kpage: the ksm page we replace page by 919 * @orig_pte: the original value of the pte 920 * 921 * Returns 0 on success, -EFAULT on failure. 922 */ 923 static int replace_page(struct vm_area_struct *vma, struct page *page, 924 struct page *kpage, pte_t orig_pte) 925 { 926 struct mm_struct *mm = vma->vm_mm; 927 pmd_t *pmd; 928 pte_t *ptep; 929 spinlock_t *ptl; 930 unsigned long addr; 931 int err = -EFAULT; 932 unsigned long mmun_start; /* For mmu_notifiers */ 933 unsigned long mmun_end; /* For mmu_notifiers */ 934 935 addr = page_address_in_vma(page, vma); 936 if (addr == -EFAULT) 937 goto out; 938 939 pmd = mm_find_pmd(mm, addr); 940 if (!pmd) 941 goto out; 942 943 mmun_start = addr; 944 mmun_end = addr + PAGE_SIZE; 945 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 946 947 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 948 if (!pte_same(*ptep, orig_pte)) { 949 pte_unmap_unlock(ptep, ptl); 950 goto out_mn; 951 } 952 953 get_page(kpage); 954 page_add_anon_rmap(kpage, vma, addr, false); 955 956 flush_cache_page(vma, addr, pte_pfn(*ptep)); 957 ptep_clear_flush_notify(vma, addr, ptep); 958 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 959 960 page_remove_rmap(page, false); 961 if (!page_mapped(page)) 962 try_to_free_swap(page); 963 put_page(page); 964 965 pte_unmap_unlock(ptep, ptl); 966 err = 0; 967 out_mn: 968 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 969 out: 970 return err; 971 } 972 973 /* 974 * try_to_merge_one_page - take two pages and merge them into one 975 * @vma: the vma that holds the pte pointing to page 976 * @page: the PageAnon page that we want to replace with kpage 977 * @kpage: the PageKsm page that we want to map instead of page, 978 * or NULL the first time when we want to use page as kpage. 979 * 980 * This function returns 0 if the pages were merged, -EFAULT otherwise. 981 */ 982 static int try_to_merge_one_page(struct vm_area_struct *vma, 983 struct page *page, struct page *kpage) 984 { 985 pte_t orig_pte = __pte(0); 986 int err = -EFAULT; 987 988 if (page == kpage) /* ksm page forked */ 989 return 0; 990 991 if (!PageAnon(page)) 992 goto out; 993 994 /* 995 * We need the page lock to read a stable PageSwapCache in 996 * write_protect_page(). We use trylock_page() instead of 997 * lock_page() because we don't want to wait here - we 998 * prefer to continue scanning and merging different pages, 999 * then come back to this page when it is unlocked. 1000 */ 1001 if (!trylock_page(page)) 1002 goto out; 1003 1004 if (PageTransCompound(page)) { 1005 err = split_huge_page(page); 1006 if (err) 1007 goto out_unlock; 1008 } 1009 1010 /* 1011 * If this anonymous page is mapped only here, its pte may need 1012 * to be write-protected. If it's mapped elsewhere, all of its 1013 * ptes are necessarily already write-protected. But in either 1014 * case, we need to lock and check page_count is not raised. 1015 */ 1016 if (write_protect_page(vma, page, &orig_pte) == 0) { 1017 if (!kpage) { 1018 /* 1019 * While we hold page lock, upgrade page from 1020 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1021 * stable_tree_insert() will update stable_node. 1022 */ 1023 set_page_stable_node(page, NULL); 1024 mark_page_accessed(page); 1025 /* 1026 * Page reclaim just frees a clean page with no dirty 1027 * ptes: make sure that the ksm page would be swapped. 1028 */ 1029 if (!PageDirty(page)) 1030 SetPageDirty(page); 1031 err = 0; 1032 } else if (pages_identical(page, kpage)) 1033 err = replace_page(vma, page, kpage, orig_pte); 1034 } 1035 1036 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1037 munlock_vma_page(page); 1038 if (!PageMlocked(kpage)) { 1039 unlock_page(page); 1040 lock_page(kpage); 1041 mlock_vma_page(kpage); 1042 page = kpage; /* for final unlock */ 1043 } 1044 } 1045 1046 out_unlock: 1047 unlock_page(page); 1048 out: 1049 return err; 1050 } 1051 1052 /* 1053 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1054 * but no new kernel page is allocated: kpage must already be a ksm page. 1055 * 1056 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1057 */ 1058 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1059 struct page *page, struct page *kpage) 1060 { 1061 struct mm_struct *mm = rmap_item->mm; 1062 struct vm_area_struct *vma; 1063 int err = -EFAULT; 1064 1065 down_read(&mm->mmap_sem); 1066 vma = find_mergeable_vma(mm, rmap_item->address); 1067 if (!vma) 1068 goto out; 1069 1070 err = try_to_merge_one_page(vma, page, kpage); 1071 if (err) 1072 goto out; 1073 1074 /* Unstable nid is in union with stable anon_vma: remove first */ 1075 remove_rmap_item_from_tree(rmap_item); 1076 1077 /* Must get reference to anon_vma while still holding mmap_sem */ 1078 rmap_item->anon_vma = vma->anon_vma; 1079 get_anon_vma(vma->anon_vma); 1080 out: 1081 up_read(&mm->mmap_sem); 1082 return err; 1083 } 1084 1085 /* 1086 * try_to_merge_two_pages - take two identical pages and prepare them 1087 * to be merged into one page. 1088 * 1089 * This function returns the kpage if we successfully merged two identical 1090 * pages into one ksm page, NULL otherwise. 1091 * 1092 * Note that this function upgrades page to ksm page: if one of the pages 1093 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1094 */ 1095 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1096 struct page *page, 1097 struct rmap_item *tree_rmap_item, 1098 struct page *tree_page) 1099 { 1100 int err; 1101 1102 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1103 if (!err) { 1104 err = try_to_merge_with_ksm_page(tree_rmap_item, 1105 tree_page, page); 1106 /* 1107 * If that fails, we have a ksm page with only one pte 1108 * pointing to it: so break it. 1109 */ 1110 if (err) 1111 break_cow(rmap_item); 1112 } 1113 return err ? NULL : page; 1114 } 1115 1116 /* 1117 * stable_tree_search - search for page inside the stable tree 1118 * 1119 * This function checks if there is a page inside the stable tree 1120 * with identical content to the page that we are scanning right now. 1121 * 1122 * This function returns the stable tree node of identical content if found, 1123 * NULL otherwise. 1124 */ 1125 static struct page *stable_tree_search(struct page *page) 1126 { 1127 int nid; 1128 struct rb_root *root; 1129 struct rb_node **new; 1130 struct rb_node *parent; 1131 struct stable_node *stable_node; 1132 struct stable_node *page_node; 1133 1134 page_node = page_stable_node(page); 1135 if (page_node && page_node->head != &migrate_nodes) { 1136 /* ksm page forked */ 1137 get_page(page); 1138 return page; 1139 } 1140 1141 nid = get_kpfn_nid(page_to_pfn(page)); 1142 root = root_stable_tree + nid; 1143 again: 1144 new = &root->rb_node; 1145 parent = NULL; 1146 1147 while (*new) { 1148 struct page *tree_page; 1149 int ret; 1150 1151 cond_resched(); 1152 stable_node = rb_entry(*new, struct stable_node, node); 1153 tree_page = get_ksm_page(stable_node, false); 1154 if (!tree_page) { 1155 /* 1156 * If we walked over a stale stable_node, 1157 * get_ksm_page() will call rb_erase() and it 1158 * may rebalance the tree from under us. So 1159 * restart the search from scratch. Returning 1160 * NULL would be safe too, but we'd generate 1161 * false negative insertions just because some 1162 * stable_node was stale. 1163 */ 1164 goto again; 1165 } 1166 1167 ret = memcmp_pages(page, tree_page); 1168 put_page(tree_page); 1169 1170 parent = *new; 1171 if (ret < 0) 1172 new = &parent->rb_left; 1173 else if (ret > 0) 1174 new = &parent->rb_right; 1175 else { 1176 /* 1177 * Lock and unlock the stable_node's page (which 1178 * might already have been migrated) so that page 1179 * migration is sure to notice its raised count. 1180 * It would be more elegant to return stable_node 1181 * than kpage, but that involves more changes. 1182 */ 1183 tree_page = get_ksm_page(stable_node, true); 1184 if (tree_page) { 1185 unlock_page(tree_page); 1186 if (get_kpfn_nid(stable_node->kpfn) != 1187 NUMA(stable_node->nid)) { 1188 put_page(tree_page); 1189 goto replace; 1190 } 1191 return tree_page; 1192 } 1193 /* 1194 * There is now a place for page_node, but the tree may 1195 * have been rebalanced, so re-evaluate parent and new. 1196 */ 1197 if (page_node) 1198 goto again; 1199 return NULL; 1200 } 1201 } 1202 1203 if (!page_node) 1204 return NULL; 1205 1206 list_del(&page_node->list); 1207 DO_NUMA(page_node->nid = nid); 1208 rb_link_node(&page_node->node, parent, new); 1209 rb_insert_color(&page_node->node, root); 1210 get_page(page); 1211 return page; 1212 1213 replace: 1214 if (page_node) { 1215 list_del(&page_node->list); 1216 DO_NUMA(page_node->nid = nid); 1217 rb_replace_node(&stable_node->node, &page_node->node, root); 1218 get_page(page); 1219 } else { 1220 rb_erase(&stable_node->node, root); 1221 page = NULL; 1222 } 1223 stable_node->head = &migrate_nodes; 1224 list_add(&stable_node->list, stable_node->head); 1225 return page; 1226 } 1227 1228 /* 1229 * stable_tree_insert - insert stable tree node pointing to new ksm page 1230 * into the stable tree. 1231 * 1232 * This function returns the stable tree node just allocated on success, 1233 * NULL otherwise. 1234 */ 1235 static struct stable_node *stable_tree_insert(struct page *kpage) 1236 { 1237 int nid; 1238 unsigned long kpfn; 1239 struct rb_root *root; 1240 struct rb_node **new; 1241 struct rb_node *parent; 1242 struct stable_node *stable_node; 1243 1244 kpfn = page_to_pfn(kpage); 1245 nid = get_kpfn_nid(kpfn); 1246 root = root_stable_tree + nid; 1247 again: 1248 parent = NULL; 1249 new = &root->rb_node; 1250 1251 while (*new) { 1252 struct page *tree_page; 1253 int ret; 1254 1255 cond_resched(); 1256 stable_node = rb_entry(*new, struct stable_node, node); 1257 tree_page = get_ksm_page(stable_node, false); 1258 if (!tree_page) { 1259 /* 1260 * If we walked over a stale stable_node, 1261 * get_ksm_page() will call rb_erase() and it 1262 * may rebalance the tree from under us. So 1263 * restart the search from scratch. Returning 1264 * NULL would be safe too, but we'd generate 1265 * false negative insertions just because some 1266 * stable_node was stale. 1267 */ 1268 goto again; 1269 } 1270 1271 ret = memcmp_pages(kpage, tree_page); 1272 put_page(tree_page); 1273 1274 parent = *new; 1275 if (ret < 0) 1276 new = &parent->rb_left; 1277 else if (ret > 0) 1278 new = &parent->rb_right; 1279 else { 1280 /* 1281 * It is not a bug that stable_tree_search() didn't 1282 * find this node: because at that time our page was 1283 * not yet write-protected, so may have changed since. 1284 */ 1285 return NULL; 1286 } 1287 } 1288 1289 stable_node = alloc_stable_node(); 1290 if (!stable_node) 1291 return NULL; 1292 1293 INIT_HLIST_HEAD(&stable_node->hlist); 1294 stable_node->kpfn = kpfn; 1295 set_page_stable_node(kpage, stable_node); 1296 DO_NUMA(stable_node->nid = nid); 1297 rb_link_node(&stable_node->node, parent, new); 1298 rb_insert_color(&stable_node->node, root); 1299 1300 return stable_node; 1301 } 1302 1303 /* 1304 * unstable_tree_search_insert - search for identical page, 1305 * else insert rmap_item into the unstable tree. 1306 * 1307 * This function searches for a page in the unstable tree identical to the 1308 * page currently being scanned; and if no identical page is found in the 1309 * tree, we insert rmap_item as a new object into the unstable tree. 1310 * 1311 * This function returns pointer to rmap_item found to be identical 1312 * to the currently scanned page, NULL otherwise. 1313 * 1314 * This function does both searching and inserting, because they share 1315 * the same walking algorithm in an rbtree. 1316 */ 1317 static 1318 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1319 struct page *page, 1320 struct page **tree_pagep) 1321 { 1322 struct rb_node **new; 1323 struct rb_root *root; 1324 struct rb_node *parent = NULL; 1325 int nid; 1326 1327 nid = get_kpfn_nid(page_to_pfn(page)); 1328 root = root_unstable_tree + nid; 1329 new = &root->rb_node; 1330 1331 while (*new) { 1332 struct rmap_item *tree_rmap_item; 1333 struct page *tree_page; 1334 int ret; 1335 1336 cond_resched(); 1337 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1338 tree_page = get_mergeable_page(tree_rmap_item); 1339 if (!tree_page) 1340 return NULL; 1341 1342 /* 1343 * Don't substitute a ksm page for a forked page. 1344 */ 1345 if (page == tree_page) { 1346 put_page(tree_page); 1347 return NULL; 1348 } 1349 1350 ret = memcmp_pages(page, tree_page); 1351 1352 parent = *new; 1353 if (ret < 0) { 1354 put_page(tree_page); 1355 new = &parent->rb_left; 1356 } else if (ret > 0) { 1357 put_page(tree_page); 1358 new = &parent->rb_right; 1359 } else if (!ksm_merge_across_nodes && 1360 page_to_nid(tree_page) != nid) { 1361 /* 1362 * If tree_page has been migrated to another NUMA node, 1363 * it will be flushed out and put in the right unstable 1364 * tree next time: only merge with it when across_nodes. 1365 */ 1366 put_page(tree_page); 1367 return NULL; 1368 } else { 1369 *tree_pagep = tree_page; 1370 return tree_rmap_item; 1371 } 1372 } 1373 1374 rmap_item->address |= UNSTABLE_FLAG; 1375 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1376 DO_NUMA(rmap_item->nid = nid); 1377 rb_link_node(&rmap_item->node, parent, new); 1378 rb_insert_color(&rmap_item->node, root); 1379 1380 ksm_pages_unshared++; 1381 return NULL; 1382 } 1383 1384 /* 1385 * stable_tree_append - add another rmap_item to the linked list of 1386 * rmap_items hanging off a given node of the stable tree, all sharing 1387 * the same ksm page. 1388 */ 1389 static void stable_tree_append(struct rmap_item *rmap_item, 1390 struct stable_node *stable_node) 1391 { 1392 rmap_item->head = stable_node; 1393 rmap_item->address |= STABLE_FLAG; 1394 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1395 1396 if (rmap_item->hlist.next) 1397 ksm_pages_sharing++; 1398 else 1399 ksm_pages_shared++; 1400 } 1401 1402 /* 1403 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1404 * if not, compare checksum to previous and if it's the same, see if page can 1405 * be inserted into the unstable tree, or merged with a page already there and 1406 * both transferred to the stable tree. 1407 * 1408 * @page: the page that we are searching identical page to. 1409 * @rmap_item: the reverse mapping into the virtual address of this page 1410 */ 1411 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1412 { 1413 struct rmap_item *tree_rmap_item; 1414 struct page *tree_page = NULL; 1415 struct stable_node *stable_node; 1416 struct page *kpage; 1417 unsigned int checksum; 1418 int err; 1419 1420 stable_node = page_stable_node(page); 1421 if (stable_node) { 1422 if (stable_node->head != &migrate_nodes && 1423 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) { 1424 rb_erase(&stable_node->node, 1425 root_stable_tree + NUMA(stable_node->nid)); 1426 stable_node->head = &migrate_nodes; 1427 list_add(&stable_node->list, stable_node->head); 1428 } 1429 if (stable_node->head != &migrate_nodes && 1430 rmap_item->head == stable_node) 1431 return; 1432 } 1433 1434 /* We first start with searching the page inside the stable tree */ 1435 kpage = stable_tree_search(page); 1436 if (kpage == page && rmap_item->head == stable_node) { 1437 put_page(kpage); 1438 return; 1439 } 1440 1441 remove_rmap_item_from_tree(rmap_item); 1442 1443 if (kpage) { 1444 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 1445 if (!err) { 1446 /* 1447 * The page was successfully merged: 1448 * add its rmap_item to the stable tree. 1449 */ 1450 lock_page(kpage); 1451 stable_tree_append(rmap_item, page_stable_node(kpage)); 1452 unlock_page(kpage); 1453 } 1454 put_page(kpage); 1455 return; 1456 } 1457 1458 /* 1459 * If the hash value of the page has changed from the last time 1460 * we calculated it, this page is changing frequently: therefore we 1461 * don't want to insert it in the unstable tree, and we don't want 1462 * to waste our time searching for something identical to it there. 1463 */ 1464 checksum = calc_checksum(page); 1465 if (rmap_item->oldchecksum != checksum) { 1466 rmap_item->oldchecksum = checksum; 1467 return; 1468 } 1469 1470 tree_rmap_item = 1471 unstable_tree_search_insert(rmap_item, page, &tree_page); 1472 if (tree_rmap_item) { 1473 kpage = try_to_merge_two_pages(rmap_item, page, 1474 tree_rmap_item, tree_page); 1475 put_page(tree_page); 1476 if (kpage) { 1477 /* 1478 * The pages were successfully merged: insert new 1479 * node in the stable tree and add both rmap_items. 1480 */ 1481 lock_page(kpage); 1482 stable_node = stable_tree_insert(kpage); 1483 if (stable_node) { 1484 stable_tree_append(tree_rmap_item, stable_node); 1485 stable_tree_append(rmap_item, stable_node); 1486 } 1487 unlock_page(kpage); 1488 1489 /* 1490 * If we fail to insert the page into the stable tree, 1491 * we will have 2 virtual addresses that are pointing 1492 * to a ksm page left outside the stable tree, 1493 * in which case we need to break_cow on both. 1494 */ 1495 if (!stable_node) { 1496 break_cow(tree_rmap_item); 1497 break_cow(rmap_item); 1498 } 1499 } 1500 } 1501 } 1502 1503 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 1504 struct rmap_item **rmap_list, 1505 unsigned long addr) 1506 { 1507 struct rmap_item *rmap_item; 1508 1509 while (*rmap_list) { 1510 rmap_item = *rmap_list; 1511 if ((rmap_item->address & PAGE_MASK) == addr) 1512 return rmap_item; 1513 if (rmap_item->address > addr) 1514 break; 1515 *rmap_list = rmap_item->rmap_list; 1516 remove_rmap_item_from_tree(rmap_item); 1517 free_rmap_item(rmap_item); 1518 } 1519 1520 rmap_item = alloc_rmap_item(); 1521 if (rmap_item) { 1522 /* It has already been zeroed */ 1523 rmap_item->mm = mm_slot->mm; 1524 rmap_item->address = addr; 1525 rmap_item->rmap_list = *rmap_list; 1526 *rmap_list = rmap_item; 1527 } 1528 return rmap_item; 1529 } 1530 1531 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 1532 { 1533 struct mm_struct *mm; 1534 struct mm_slot *slot; 1535 struct vm_area_struct *vma; 1536 struct rmap_item *rmap_item; 1537 int nid; 1538 1539 if (list_empty(&ksm_mm_head.mm_list)) 1540 return NULL; 1541 1542 slot = ksm_scan.mm_slot; 1543 if (slot == &ksm_mm_head) { 1544 /* 1545 * A number of pages can hang around indefinitely on per-cpu 1546 * pagevecs, raised page count preventing write_protect_page 1547 * from merging them. Though it doesn't really matter much, 1548 * it is puzzling to see some stuck in pages_volatile until 1549 * other activity jostles them out, and they also prevented 1550 * LTP's KSM test from succeeding deterministically; so drain 1551 * them here (here rather than on entry to ksm_do_scan(), 1552 * so we don't IPI too often when pages_to_scan is set low). 1553 */ 1554 lru_add_drain_all(); 1555 1556 /* 1557 * Whereas stale stable_nodes on the stable_tree itself 1558 * get pruned in the regular course of stable_tree_search(), 1559 * those moved out to the migrate_nodes list can accumulate: 1560 * so prune them once before each full scan. 1561 */ 1562 if (!ksm_merge_across_nodes) { 1563 struct stable_node *stable_node, *next; 1564 struct page *page; 1565 1566 list_for_each_entry_safe(stable_node, next, 1567 &migrate_nodes, list) { 1568 page = get_ksm_page(stable_node, false); 1569 if (page) 1570 put_page(page); 1571 cond_resched(); 1572 } 1573 } 1574 1575 for (nid = 0; nid < ksm_nr_node_ids; nid++) 1576 root_unstable_tree[nid] = RB_ROOT; 1577 1578 spin_lock(&ksm_mmlist_lock); 1579 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 1580 ksm_scan.mm_slot = slot; 1581 spin_unlock(&ksm_mmlist_lock); 1582 /* 1583 * Although we tested list_empty() above, a racing __ksm_exit 1584 * of the last mm on the list may have removed it since then. 1585 */ 1586 if (slot == &ksm_mm_head) 1587 return NULL; 1588 next_mm: 1589 ksm_scan.address = 0; 1590 ksm_scan.rmap_list = &slot->rmap_list; 1591 } 1592 1593 mm = slot->mm; 1594 down_read(&mm->mmap_sem); 1595 if (ksm_test_exit(mm)) 1596 vma = NULL; 1597 else 1598 vma = find_vma(mm, ksm_scan.address); 1599 1600 for (; vma; vma = vma->vm_next) { 1601 if (!(vma->vm_flags & VM_MERGEABLE)) 1602 continue; 1603 if (ksm_scan.address < vma->vm_start) 1604 ksm_scan.address = vma->vm_start; 1605 if (!vma->anon_vma) 1606 ksm_scan.address = vma->vm_end; 1607 1608 while (ksm_scan.address < vma->vm_end) { 1609 if (ksm_test_exit(mm)) 1610 break; 1611 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 1612 if (IS_ERR_OR_NULL(*page)) { 1613 ksm_scan.address += PAGE_SIZE; 1614 cond_resched(); 1615 continue; 1616 } 1617 if (PageAnon(*page)) { 1618 flush_anon_page(vma, *page, ksm_scan.address); 1619 flush_dcache_page(*page); 1620 rmap_item = get_next_rmap_item(slot, 1621 ksm_scan.rmap_list, ksm_scan.address); 1622 if (rmap_item) { 1623 ksm_scan.rmap_list = 1624 &rmap_item->rmap_list; 1625 ksm_scan.address += PAGE_SIZE; 1626 } else 1627 put_page(*page); 1628 up_read(&mm->mmap_sem); 1629 return rmap_item; 1630 } 1631 put_page(*page); 1632 ksm_scan.address += PAGE_SIZE; 1633 cond_resched(); 1634 } 1635 } 1636 1637 if (ksm_test_exit(mm)) { 1638 ksm_scan.address = 0; 1639 ksm_scan.rmap_list = &slot->rmap_list; 1640 } 1641 /* 1642 * Nuke all the rmap_items that are above this current rmap: 1643 * because there were no VM_MERGEABLE vmas with such addresses. 1644 */ 1645 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 1646 1647 spin_lock(&ksm_mmlist_lock); 1648 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 1649 struct mm_slot, mm_list); 1650 if (ksm_scan.address == 0) { 1651 /* 1652 * We've completed a full scan of all vmas, holding mmap_sem 1653 * throughout, and found no VM_MERGEABLE: so do the same as 1654 * __ksm_exit does to remove this mm from all our lists now. 1655 * This applies either when cleaning up after __ksm_exit 1656 * (but beware: we can reach here even before __ksm_exit), 1657 * or when all VM_MERGEABLE areas have been unmapped (and 1658 * mmap_sem then protects against race with MADV_MERGEABLE). 1659 */ 1660 hash_del(&slot->link); 1661 list_del(&slot->mm_list); 1662 spin_unlock(&ksm_mmlist_lock); 1663 1664 free_mm_slot(slot); 1665 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1666 up_read(&mm->mmap_sem); 1667 mmdrop(mm); 1668 } else { 1669 up_read(&mm->mmap_sem); 1670 /* 1671 * up_read(&mm->mmap_sem) first because after 1672 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 1673 * already have been freed under us by __ksm_exit() 1674 * because the "mm_slot" is still hashed and 1675 * ksm_scan.mm_slot doesn't point to it anymore. 1676 */ 1677 spin_unlock(&ksm_mmlist_lock); 1678 } 1679 1680 /* Repeat until we've completed scanning the whole list */ 1681 slot = ksm_scan.mm_slot; 1682 if (slot != &ksm_mm_head) 1683 goto next_mm; 1684 1685 ksm_scan.seqnr++; 1686 return NULL; 1687 } 1688 1689 /** 1690 * ksm_do_scan - the ksm scanner main worker function. 1691 * @scan_npages - number of pages we want to scan before we return. 1692 */ 1693 static void ksm_do_scan(unsigned int scan_npages) 1694 { 1695 struct rmap_item *rmap_item; 1696 struct page *uninitialized_var(page); 1697 1698 while (scan_npages-- && likely(!freezing(current))) { 1699 cond_resched(); 1700 rmap_item = scan_get_next_rmap_item(&page); 1701 if (!rmap_item) 1702 return; 1703 cmp_and_merge_page(page, rmap_item); 1704 put_page(page); 1705 } 1706 } 1707 1708 static int ksmd_should_run(void) 1709 { 1710 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 1711 } 1712 1713 static int ksm_scan_thread(void *nothing) 1714 { 1715 set_freezable(); 1716 set_user_nice(current, 5); 1717 1718 while (!kthread_should_stop()) { 1719 mutex_lock(&ksm_thread_mutex); 1720 wait_while_offlining(); 1721 if (ksmd_should_run()) 1722 ksm_do_scan(ksm_thread_pages_to_scan); 1723 mutex_unlock(&ksm_thread_mutex); 1724 1725 try_to_freeze(); 1726 1727 if (ksmd_should_run()) { 1728 schedule_timeout_interruptible( 1729 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 1730 } else { 1731 wait_event_freezable(ksm_thread_wait, 1732 ksmd_should_run() || kthread_should_stop()); 1733 } 1734 } 1735 return 0; 1736 } 1737 1738 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1739 unsigned long end, int advice, unsigned long *vm_flags) 1740 { 1741 struct mm_struct *mm = vma->vm_mm; 1742 int err; 1743 1744 switch (advice) { 1745 case MADV_MERGEABLE: 1746 /* 1747 * Be somewhat over-protective for now! 1748 */ 1749 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 1750 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 1751 VM_HUGETLB | VM_MIXEDMAP)) 1752 return 0; /* just ignore the advice */ 1753 1754 #ifdef VM_SAO 1755 if (*vm_flags & VM_SAO) 1756 return 0; 1757 #endif 1758 1759 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 1760 err = __ksm_enter(mm); 1761 if (err) 1762 return err; 1763 } 1764 1765 *vm_flags |= VM_MERGEABLE; 1766 break; 1767 1768 case MADV_UNMERGEABLE: 1769 if (!(*vm_flags & VM_MERGEABLE)) 1770 return 0; /* just ignore the advice */ 1771 1772 if (vma->anon_vma) { 1773 err = unmerge_ksm_pages(vma, start, end); 1774 if (err) 1775 return err; 1776 } 1777 1778 *vm_flags &= ~VM_MERGEABLE; 1779 break; 1780 } 1781 1782 return 0; 1783 } 1784 1785 int __ksm_enter(struct mm_struct *mm) 1786 { 1787 struct mm_slot *mm_slot; 1788 int needs_wakeup; 1789 1790 mm_slot = alloc_mm_slot(); 1791 if (!mm_slot) 1792 return -ENOMEM; 1793 1794 /* Check ksm_run too? Would need tighter locking */ 1795 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 1796 1797 spin_lock(&ksm_mmlist_lock); 1798 insert_to_mm_slots_hash(mm, mm_slot); 1799 /* 1800 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 1801 * insert just behind the scanning cursor, to let the area settle 1802 * down a little; when fork is followed by immediate exec, we don't 1803 * want ksmd to waste time setting up and tearing down an rmap_list. 1804 * 1805 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 1806 * scanning cursor, otherwise KSM pages in newly forked mms will be 1807 * missed: then we might as well insert at the end of the list. 1808 */ 1809 if (ksm_run & KSM_RUN_UNMERGE) 1810 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 1811 else 1812 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 1813 spin_unlock(&ksm_mmlist_lock); 1814 1815 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1816 atomic_inc(&mm->mm_count); 1817 1818 if (needs_wakeup) 1819 wake_up_interruptible(&ksm_thread_wait); 1820 1821 return 0; 1822 } 1823 1824 void __ksm_exit(struct mm_struct *mm) 1825 { 1826 struct mm_slot *mm_slot; 1827 int easy_to_free = 0; 1828 1829 /* 1830 * This process is exiting: if it's straightforward (as is the 1831 * case when ksmd was never running), free mm_slot immediately. 1832 * But if it's at the cursor or has rmap_items linked to it, use 1833 * mmap_sem to synchronize with any break_cows before pagetables 1834 * are freed, and leave the mm_slot on the list for ksmd to free. 1835 * Beware: ksm may already have noticed it exiting and freed the slot. 1836 */ 1837 1838 spin_lock(&ksm_mmlist_lock); 1839 mm_slot = get_mm_slot(mm); 1840 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 1841 if (!mm_slot->rmap_list) { 1842 hash_del(&mm_slot->link); 1843 list_del(&mm_slot->mm_list); 1844 easy_to_free = 1; 1845 } else { 1846 list_move(&mm_slot->mm_list, 1847 &ksm_scan.mm_slot->mm_list); 1848 } 1849 } 1850 spin_unlock(&ksm_mmlist_lock); 1851 1852 if (easy_to_free) { 1853 free_mm_slot(mm_slot); 1854 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1855 mmdrop(mm); 1856 } else if (mm_slot) { 1857 down_write(&mm->mmap_sem); 1858 up_write(&mm->mmap_sem); 1859 } 1860 } 1861 1862 struct page *ksm_might_need_to_copy(struct page *page, 1863 struct vm_area_struct *vma, unsigned long address) 1864 { 1865 struct anon_vma *anon_vma = page_anon_vma(page); 1866 struct page *new_page; 1867 1868 if (PageKsm(page)) { 1869 if (page_stable_node(page) && 1870 !(ksm_run & KSM_RUN_UNMERGE)) 1871 return page; /* no need to copy it */ 1872 } else if (!anon_vma) { 1873 return page; /* no need to copy it */ 1874 } else if (anon_vma->root == vma->anon_vma->root && 1875 page->index == linear_page_index(vma, address)) { 1876 return page; /* still no need to copy it */ 1877 } 1878 if (!PageUptodate(page)) 1879 return page; /* let do_swap_page report the error */ 1880 1881 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1882 if (new_page) { 1883 copy_user_highpage(new_page, page, address, vma); 1884 1885 SetPageDirty(new_page); 1886 __SetPageUptodate(new_page); 1887 __SetPageLocked(new_page); 1888 } 1889 1890 return new_page; 1891 } 1892 1893 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 1894 { 1895 struct stable_node *stable_node; 1896 struct rmap_item *rmap_item; 1897 int ret = SWAP_AGAIN; 1898 int search_new_forks = 0; 1899 1900 VM_BUG_ON_PAGE(!PageKsm(page), page); 1901 1902 /* 1903 * Rely on the page lock to protect against concurrent modifications 1904 * to that page's node of the stable tree. 1905 */ 1906 VM_BUG_ON_PAGE(!PageLocked(page), page); 1907 1908 stable_node = page_stable_node(page); 1909 if (!stable_node) 1910 return ret; 1911 again: 1912 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 1913 struct anon_vma *anon_vma = rmap_item->anon_vma; 1914 struct anon_vma_chain *vmac; 1915 struct vm_area_struct *vma; 1916 1917 cond_resched(); 1918 anon_vma_lock_read(anon_vma); 1919 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 1920 0, ULONG_MAX) { 1921 cond_resched(); 1922 vma = vmac->vma; 1923 if (rmap_item->address < vma->vm_start || 1924 rmap_item->address >= vma->vm_end) 1925 continue; 1926 /* 1927 * Initially we examine only the vma which covers this 1928 * rmap_item; but later, if there is still work to do, 1929 * we examine covering vmas in other mms: in case they 1930 * were forked from the original since ksmd passed. 1931 */ 1932 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 1933 continue; 1934 1935 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1936 continue; 1937 1938 ret = rwc->rmap_one(page, vma, 1939 rmap_item->address, rwc->arg); 1940 if (ret != SWAP_AGAIN) { 1941 anon_vma_unlock_read(anon_vma); 1942 goto out; 1943 } 1944 if (rwc->done && rwc->done(page)) { 1945 anon_vma_unlock_read(anon_vma); 1946 goto out; 1947 } 1948 } 1949 anon_vma_unlock_read(anon_vma); 1950 } 1951 if (!search_new_forks++) 1952 goto again; 1953 out: 1954 return ret; 1955 } 1956 1957 #ifdef CONFIG_MIGRATION 1958 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 1959 { 1960 struct stable_node *stable_node; 1961 1962 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 1963 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1964 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 1965 1966 stable_node = page_stable_node(newpage); 1967 if (stable_node) { 1968 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 1969 stable_node->kpfn = page_to_pfn(newpage); 1970 /* 1971 * newpage->mapping was set in advance; now we need smp_wmb() 1972 * to make sure that the new stable_node->kpfn is visible 1973 * to get_ksm_page() before it can see that oldpage->mapping 1974 * has gone stale (or that PageSwapCache has been cleared). 1975 */ 1976 smp_wmb(); 1977 set_page_stable_node(oldpage, NULL); 1978 } 1979 } 1980 #endif /* CONFIG_MIGRATION */ 1981 1982 #ifdef CONFIG_MEMORY_HOTREMOVE 1983 static void wait_while_offlining(void) 1984 { 1985 while (ksm_run & KSM_RUN_OFFLINE) { 1986 mutex_unlock(&ksm_thread_mutex); 1987 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 1988 TASK_UNINTERRUPTIBLE); 1989 mutex_lock(&ksm_thread_mutex); 1990 } 1991 } 1992 1993 static void ksm_check_stable_tree(unsigned long start_pfn, 1994 unsigned long end_pfn) 1995 { 1996 struct stable_node *stable_node, *next; 1997 struct rb_node *node; 1998 int nid; 1999 2000 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2001 node = rb_first(root_stable_tree + nid); 2002 while (node) { 2003 stable_node = rb_entry(node, struct stable_node, node); 2004 if (stable_node->kpfn >= start_pfn && 2005 stable_node->kpfn < end_pfn) { 2006 /* 2007 * Don't get_ksm_page, page has already gone: 2008 * which is why we keep kpfn instead of page* 2009 */ 2010 remove_node_from_stable_tree(stable_node); 2011 node = rb_first(root_stable_tree + nid); 2012 } else 2013 node = rb_next(node); 2014 cond_resched(); 2015 } 2016 } 2017 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2018 if (stable_node->kpfn >= start_pfn && 2019 stable_node->kpfn < end_pfn) 2020 remove_node_from_stable_tree(stable_node); 2021 cond_resched(); 2022 } 2023 } 2024 2025 static int ksm_memory_callback(struct notifier_block *self, 2026 unsigned long action, void *arg) 2027 { 2028 struct memory_notify *mn = arg; 2029 2030 switch (action) { 2031 case MEM_GOING_OFFLINE: 2032 /* 2033 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2034 * and remove_all_stable_nodes() while memory is going offline: 2035 * it is unsafe for them to touch the stable tree at this time. 2036 * But unmerge_ksm_pages(), rmap lookups and other entry points 2037 * which do not need the ksm_thread_mutex are all safe. 2038 */ 2039 mutex_lock(&ksm_thread_mutex); 2040 ksm_run |= KSM_RUN_OFFLINE; 2041 mutex_unlock(&ksm_thread_mutex); 2042 break; 2043 2044 case MEM_OFFLINE: 2045 /* 2046 * Most of the work is done by page migration; but there might 2047 * be a few stable_nodes left over, still pointing to struct 2048 * pages which have been offlined: prune those from the tree, 2049 * otherwise get_ksm_page() might later try to access a 2050 * non-existent struct page. 2051 */ 2052 ksm_check_stable_tree(mn->start_pfn, 2053 mn->start_pfn + mn->nr_pages); 2054 /* fallthrough */ 2055 2056 case MEM_CANCEL_OFFLINE: 2057 mutex_lock(&ksm_thread_mutex); 2058 ksm_run &= ~KSM_RUN_OFFLINE; 2059 mutex_unlock(&ksm_thread_mutex); 2060 2061 smp_mb(); /* wake_up_bit advises this */ 2062 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2063 break; 2064 } 2065 return NOTIFY_OK; 2066 } 2067 #else 2068 static void wait_while_offlining(void) 2069 { 2070 } 2071 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2072 2073 #ifdef CONFIG_SYSFS 2074 /* 2075 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2076 */ 2077 2078 #define KSM_ATTR_RO(_name) \ 2079 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2080 #define KSM_ATTR(_name) \ 2081 static struct kobj_attribute _name##_attr = \ 2082 __ATTR(_name, 0644, _name##_show, _name##_store) 2083 2084 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2085 struct kobj_attribute *attr, char *buf) 2086 { 2087 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2088 } 2089 2090 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2091 struct kobj_attribute *attr, 2092 const char *buf, size_t count) 2093 { 2094 unsigned long msecs; 2095 int err; 2096 2097 err = kstrtoul(buf, 10, &msecs); 2098 if (err || msecs > UINT_MAX) 2099 return -EINVAL; 2100 2101 ksm_thread_sleep_millisecs = msecs; 2102 2103 return count; 2104 } 2105 KSM_ATTR(sleep_millisecs); 2106 2107 static ssize_t pages_to_scan_show(struct kobject *kobj, 2108 struct kobj_attribute *attr, char *buf) 2109 { 2110 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2111 } 2112 2113 static ssize_t pages_to_scan_store(struct kobject *kobj, 2114 struct kobj_attribute *attr, 2115 const char *buf, size_t count) 2116 { 2117 int err; 2118 unsigned long nr_pages; 2119 2120 err = kstrtoul(buf, 10, &nr_pages); 2121 if (err || nr_pages > UINT_MAX) 2122 return -EINVAL; 2123 2124 ksm_thread_pages_to_scan = nr_pages; 2125 2126 return count; 2127 } 2128 KSM_ATTR(pages_to_scan); 2129 2130 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2131 char *buf) 2132 { 2133 return sprintf(buf, "%lu\n", ksm_run); 2134 } 2135 2136 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2137 const char *buf, size_t count) 2138 { 2139 int err; 2140 unsigned long flags; 2141 2142 err = kstrtoul(buf, 10, &flags); 2143 if (err || flags > UINT_MAX) 2144 return -EINVAL; 2145 if (flags > KSM_RUN_UNMERGE) 2146 return -EINVAL; 2147 2148 /* 2149 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2150 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2151 * breaking COW to free the pages_shared (but leaves mm_slots 2152 * on the list for when ksmd may be set running again). 2153 */ 2154 2155 mutex_lock(&ksm_thread_mutex); 2156 wait_while_offlining(); 2157 if (ksm_run != flags) { 2158 ksm_run = flags; 2159 if (flags & KSM_RUN_UNMERGE) { 2160 set_current_oom_origin(); 2161 err = unmerge_and_remove_all_rmap_items(); 2162 clear_current_oom_origin(); 2163 if (err) { 2164 ksm_run = KSM_RUN_STOP; 2165 count = err; 2166 } 2167 } 2168 } 2169 mutex_unlock(&ksm_thread_mutex); 2170 2171 if (flags & KSM_RUN_MERGE) 2172 wake_up_interruptible(&ksm_thread_wait); 2173 2174 return count; 2175 } 2176 KSM_ATTR(run); 2177 2178 #ifdef CONFIG_NUMA 2179 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2180 struct kobj_attribute *attr, char *buf) 2181 { 2182 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2183 } 2184 2185 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2186 struct kobj_attribute *attr, 2187 const char *buf, size_t count) 2188 { 2189 int err; 2190 unsigned long knob; 2191 2192 err = kstrtoul(buf, 10, &knob); 2193 if (err) 2194 return err; 2195 if (knob > 1) 2196 return -EINVAL; 2197 2198 mutex_lock(&ksm_thread_mutex); 2199 wait_while_offlining(); 2200 if (ksm_merge_across_nodes != knob) { 2201 if (ksm_pages_shared || remove_all_stable_nodes()) 2202 err = -EBUSY; 2203 else if (root_stable_tree == one_stable_tree) { 2204 struct rb_root *buf; 2205 /* 2206 * This is the first time that we switch away from the 2207 * default of merging across nodes: must now allocate 2208 * a buffer to hold as many roots as may be needed. 2209 * Allocate stable and unstable together: 2210 * MAXSMP NODES_SHIFT 10 will use 16kB. 2211 */ 2212 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2213 GFP_KERNEL); 2214 /* Let us assume that RB_ROOT is NULL is zero */ 2215 if (!buf) 2216 err = -ENOMEM; 2217 else { 2218 root_stable_tree = buf; 2219 root_unstable_tree = buf + nr_node_ids; 2220 /* Stable tree is empty but not the unstable */ 2221 root_unstable_tree[0] = one_unstable_tree[0]; 2222 } 2223 } 2224 if (!err) { 2225 ksm_merge_across_nodes = knob; 2226 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2227 } 2228 } 2229 mutex_unlock(&ksm_thread_mutex); 2230 2231 return err ? err : count; 2232 } 2233 KSM_ATTR(merge_across_nodes); 2234 #endif 2235 2236 static ssize_t pages_shared_show(struct kobject *kobj, 2237 struct kobj_attribute *attr, char *buf) 2238 { 2239 return sprintf(buf, "%lu\n", ksm_pages_shared); 2240 } 2241 KSM_ATTR_RO(pages_shared); 2242 2243 static ssize_t pages_sharing_show(struct kobject *kobj, 2244 struct kobj_attribute *attr, char *buf) 2245 { 2246 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2247 } 2248 KSM_ATTR_RO(pages_sharing); 2249 2250 static ssize_t pages_unshared_show(struct kobject *kobj, 2251 struct kobj_attribute *attr, char *buf) 2252 { 2253 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2254 } 2255 KSM_ATTR_RO(pages_unshared); 2256 2257 static ssize_t pages_volatile_show(struct kobject *kobj, 2258 struct kobj_attribute *attr, char *buf) 2259 { 2260 long ksm_pages_volatile; 2261 2262 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2263 - ksm_pages_sharing - ksm_pages_unshared; 2264 /* 2265 * It was not worth any locking to calculate that statistic, 2266 * but it might therefore sometimes be negative: conceal that. 2267 */ 2268 if (ksm_pages_volatile < 0) 2269 ksm_pages_volatile = 0; 2270 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2271 } 2272 KSM_ATTR_RO(pages_volatile); 2273 2274 static ssize_t full_scans_show(struct kobject *kobj, 2275 struct kobj_attribute *attr, char *buf) 2276 { 2277 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 2278 } 2279 KSM_ATTR_RO(full_scans); 2280 2281 static struct attribute *ksm_attrs[] = { 2282 &sleep_millisecs_attr.attr, 2283 &pages_to_scan_attr.attr, 2284 &run_attr.attr, 2285 &pages_shared_attr.attr, 2286 &pages_sharing_attr.attr, 2287 &pages_unshared_attr.attr, 2288 &pages_volatile_attr.attr, 2289 &full_scans_attr.attr, 2290 #ifdef CONFIG_NUMA 2291 &merge_across_nodes_attr.attr, 2292 #endif 2293 NULL, 2294 }; 2295 2296 static struct attribute_group ksm_attr_group = { 2297 .attrs = ksm_attrs, 2298 .name = "ksm", 2299 }; 2300 #endif /* CONFIG_SYSFS */ 2301 2302 static int __init ksm_init(void) 2303 { 2304 struct task_struct *ksm_thread; 2305 int err; 2306 2307 err = ksm_slab_init(); 2308 if (err) 2309 goto out; 2310 2311 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 2312 if (IS_ERR(ksm_thread)) { 2313 pr_err("ksm: creating kthread failed\n"); 2314 err = PTR_ERR(ksm_thread); 2315 goto out_free; 2316 } 2317 2318 #ifdef CONFIG_SYSFS 2319 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 2320 if (err) { 2321 pr_err("ksm: register sysfs failed\n"); 2322 kthread_stop(ksm_thread); 2323 goto out_free; 2324 } 2325 #else 2326 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 2327 2328 #endif /* CONFIG_SYSFS */ 2329 2330 #ifdef CONFIG_MEMORY_HOTREMOVE 2331 /* There is no significance to this priority 100 */ 2332 hotplug_memory_notifier(ksm_memory_callback, 100); 2333 #endif 2334 return 0; 2335 2336 out_free: 2337 ksm_slab_free(); 2338 out: 2339 return err; 2340 } 2341 subsys_initcall(ksm_init); 2342