xref: /openbmc/linux/mm/ksm.c (revision 84764a41)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hash.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 
40 #include <asm/tlbflush.h>
41 #include "internal.h"
42 
43 /*
44  * A few notes about the KSM scanning process,
45  * to make it easier to understand the data structures below:
46  *
47  * In order to reduce excessive scanning, KSM sorts the memory pages by their
48  * contents into a data structure that holds pointers to the pages' locations.
49  *
50  * Since the contents of the pages may change at any moment, KSM cannot just
51  * insert the pages into a normal sorted tree and expect it to find anything.
52  * Therefore KSM uses two data structures - the stable and the unstable tree.
53  *
54  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
55  * by their contents.  Because each such page is write-protected, searching on
56  * this tree is fully assured to be working (except when pages are unmapped),
57  * and therefore this tree is called the stable tree.
58  *
59  * In addition to the stable tree, KSM uses a second data structure called the
60  * unstable tree: this tree holds pointers to pages which have been found to
61  * be "unchanged for a period of time".  The unstable tree sorts these pages
62  * by their contents, but since they are not write-protected, KSM cannot rely
63  * upon the unstable tree to work correctly - the unstable tree is liable to
64  * be corrupted as its contents are modified, and so it is called unstable.
65  *
66  * KSM solves this problem by several techniques:
67  *
68  * 1) The unstable tree is flushed every time KSM completes scanning all
69  *    memory areas, and then the tree is rebuilt again from the beginning.
70  * 2) KSM will only insert into the unstable tree, pages whose hash value
71  *    has not changed since the previous scan of all memory areas.
72  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
73  *    colors of the nodes and not on their contents, assuring that even when
74  *    the tree gets "corrupted" it won't get out of balance, so scanning time
75  *    remains the same (also, searching and inserting nodes in an rbtree uses
76  *    the same algorithm, so we have no overhead when we flush and rebuild).
77  * 4) KSM never flushes the stable tree, which means that even if it were to
78  *    take 10 attempts to find a page in the unstable tree, once it is found,
79  *    it is secured in the stable tree.  (When we scan a new page, we first
80  *    compare it against the stable tree, and then against the unstable tree.)
81  */
82 
83 /**
84  * struct mm_slot - ksm information per mm that is being scanned
85  * @link: link to the mm_slots hash list
86  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
87  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
88  * @mm: the mm that this information is valid for
89  */
90 struct mm_slot {
91 	struct hlist_node link;
92 	struct list_head mm_list;
93 	struct rmap_item *rmap_list;
94 	struct mm_struct *mm;
95 };
96 
97 /**
98  * struct ksm_scan - cursor for scanning
99  * @mm_slot: the current mm_slot we are scanning
100  * @address: the next address inside that to be scanned
101  * @rmap_list: link to the next rmap to be scanned in the rmap_list
102  * @seqnr: count of completed full scans (needed when removing unstable node)
103  *
104  * There is only the one ksm_scan instance of this cursor structure.
105  */
106 struct ksm_scan {
107 	struct mm_slot *mm_slot;
108 	unsigned long address;
109 	struct rmap_item **rmap_list;
110 	unsigned long seqnr;
111 };
112 
113 /**
114  * struct stable_node - node of the stable rbtree
115  * @node: rb node of this ksm page in the stable tree
116  * @hlist: hlist head of rmap_items using this ksm page
117  * @kpfn: page frame number of this ksm page
118  */
119 struct stable_node {
120 	struct rb_node node;
121 	struct hlist_head hlist;
122 	unsigned long kpfn;
123 };
124 
125 /**
126  * struct rmap_item - reverse mapping item for virtual addresses
127  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
128  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
129  * @mm: the memory structure this rmap_item is pointing into
130  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
131  * @oldchecksum: previous checksum of the page at that virtual address
132  * @node: rb node of this rmap_item in the unstable tree
133  * @head: pointer to stable_node heading this list in the stable tree
134  * @hlist: link into hlist of rmap_items hanging off that stable_node
135  */
136 struct rmap_item {
137 	struct rmap_item *rmap_list;
138 	struct anon_vma *anon_vma;	/* when stable */
139 	struct mm_struct *mm;
140 	unsigned long address;		/* + low bits used for flags below */
141 	unsigned int oldchecksum;	/* when unstable */
142 	union {
143 		struct rb_node node;	/* when node of unstable tree */
144 		struct {		/* when listed from stable tree */
145 			struct stable_node *head;
146 			struct hlist_node hlist;
147 		};
148 	};
149 };
150 
151 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
152 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
153 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
154 
155 /* The stable and unstable tree heads */
156 static struct rb_root root_stable_tree = RB_ROOT;
157 static struct rb_root root_unstable_tree = RB_ROOT;
158 
159 #define MM_SLOTS_HASH_SHIFT 10
160 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
161 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
162 
163 static struct mm_slot ksm_mm_head = {
164 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
165 };
166 static struct ksm_scan ksm_scan = {
167 	.mm_slot = &ksm_mm_head,
168 };
169 
170 static struct kmem_cache *rmap_item_cache;
171 static struct kmem_cache *stable_node_cache;
172 static struct kmem_cache *mm_slot_cache;
173 
174 /* The number of nodes in the stable tree */
175 static unsigned long ksm_pages_shared;
176 
177 /* The number of page slots additionally sharing those nodes */
178 static unsigned long ksm_pages_sharing;
179 
180 /* The number of nodes in the unstable tree */
181 static unsigned long ksm_pages_unshared;
182 
183 /* The number of rmap_items in use: to calculate pages_volatile */
184 static unsigned long ksm_rmap_items;
185 
186 /* Number of pages ksmd should scan in one batch */
187 static unsigned int ksm_thread_pages_to_scan = 100;
188 
189 /* Milliseconds ksmd should sleep between batches */
190 static unsigned int ksm_thread_sleep_millisecs = 20;
191 
192 #define KSM_RUN_STOP	0
193 #define KSM_RUN_MERGE	1
194 #define KSM_RUN_UNMERGE	2
195 static unsigned int ksm_run = KSM_RUN_STOP;
196 
197 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
198 static DEFINE_MUTEX(ksm_thread_mutex);
199 static DEFINE_SPINLOCK(ksm_mmlist_lock);
200 
201 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
202 		sizeof(struct __struct), __alignof__(struct __struct),\
203 		(__flags), NULL)
204 
205 static int __init ksm_slab_init(void)
206 {
207 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
208 	if (!rmap_item_cache)
209 		goto out;
210 
211 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
212 	if (!stable_node_cache)
213 		goto out_free1;
214 
215 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
216 	if (!mm_slot_cache)
217 		goto out_free2;
218 
219 	return 0;
220 
221 out_free2:
222 	kmem_cache_destroy(stable_node_cache);
223 out_free1:
224 	kmem_cache_destroy(rmap_item_cache);
225 out:
226 	return -ENOMEM;
227 }
228 
229 static void __init ksm_slab_free(void)
230 {
231 	kmem_cache_destroy(mm_slot_cache);
232 	kmem_cache_destroy(stable_node_cache);
233 	kmem_cache_destroy(rmap_item_cache);
234 	mm_slot_cache = NULL;
235 }
236 
237 static inline struct rmap_item *alloc_rmap_item(void)
238 {
239 	struct rmap_item *rmap_item;
240 
241 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
242 	if (rmap_item)
243 		ksm_rmap_items++;
244 	return rmap_item;
245 }
246 
247 static inline void free_rmap_item(struct rmap_item *rmap_item)
248 {
249 	ksm_rmap_items--;
250 	rmap_item->mm = NULL;	/* debug safety */
251 	kmem_cache_free(rmap_item_cache, rmap_item);
252 }
253 
254 static inline struct stable_node *alloc_stable_node(void)
255 {
256 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
257 }
258 
259 static inline void free_stable_node(struct stable_node *stable_node)
260 {
261 	kmem_cache_free(stable_node_cache, stable_node);
262 }
263 
264 static inline struct mm_slot *alloc_mm_slot(void)
265 {
266 	if (!mm_slot_cache)	/* initialization failed */
267 		return NULL;
268 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
269 }
270 
271 static inline void free_mm_slot(struct mm_slot *mm_slot)
272 {
273 	kmem_cache_free(mm_slot_cache, mm_slot);
274 }
275 
276 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
277 {
278 	struct mm_slot *mm_slot;
279 	struct hlist_head *bucket;
280 	struct hlist_node *node;
281 
282 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
283 	hlist_for_each_entry(mm_slot, node, bucket, link) {
284 		if (mm == mm_slot->mm)
285 			return mm_slot;
286 	}
287 	return NULL;
288 }
289 
290 static void insert_to_mm_slots_hash(struct mm_struct *mm,
291 				    struct mm_slot *mm_slot)
292 {
293 	struct hlist_head *bucket;
294 
295 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
296 	mm_slot->mm = mm;
297 	hlist_add_head(&mm_slot->link, bucket);
298 }
299 
300 static inline int in_stable_tree(struct rmap_item *rmap_item)
301 {
302 	return rmap_item->address & STABLE_FLAG;
303 }
304 
305 /*
306  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
307  * page tables after it has passed through ksm_exit() - which, if necessary,
308  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
309  * a special flag: they can just back out as soon as mm_users goes to zero.
310  * ksm_test_exit() is used throughout to make this test for exit: in some
311  * places for correctness, in some places just to avoid unnecessary work.
312  */
313 static inline bool ksm_test_exit(struct mm_struct *mm)
314 {
315 	return atomic_read(&mm->mm_users) == 0;
316 }
317 
318 /*
319  * We use break_ksm to break COW on a ksm page: it's a stripped down
320  *
321  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
322  *		put_page(page);
323  *
324  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
325  * in case the application has unmapped and remapped mm,addr meanwhile.
326  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
327  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
328  */
329 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
330 {
331 	struct page *page;
332 	int ret = 0;
333 
334 	do {
335 		cond_resched();
336 		page = follow_page(vma, addr, FOLL_GET);
337 		if (IS_ERR_OR_NULL(page))
338 			break;
339 		if (PageKsm(page))
340 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
341 							FAULT_FLAG_WRITE);
342 		else
343 			ret = VM_FAULT_WRITE;
344 		put_page(page);
345 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
346 	/*
347 	 * We must loop because handle_mm_fault() may back out if there's
348 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
349 	 *
350 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
351 	 * COW has been broken, even if the vma does not permit VM_WRITE;
352 	 * but note that a concurrent fault might break PageKsm for us.
353 	 *
354 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
355 	 * backing file, which also invalidates anonymous pages: that's
356 	 * okay, that truncation will have unmapped the PageKsm for us.
357 	 *
358 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
359 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
360 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
361 	 * to user; and ksmd, having no mm, would never be chosen for that.
362 	 *
363 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
364 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
365 	 * even ksmd can fail in this way - though it's usually breaking ksm
366 	 * just to undo a merge it made a moment before, so unlikely to oom.
367 	 *
368 	 * That's a pity: we might therefore have more kernel pages allocated
369 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
370 	 * will retry to break_cow on each pass, so should recover the page
371 	 * in due course.  The important thing is to not let VM_MERGEABLE
372 	 * be cleared while any such pages might remain in the area.
373 	 */
374 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
375 }
376 
377 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
378 		unsigned long addr)
379 {
380 	struct vm_area_struct *vma;
381 	if (ksm_test_exit(mm))
382 		return NULL;
383 	vma = find_vma(mm, addr);
384 	if (!vma || vma->vm_start > addr)
385 		return NULL;
386 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
387 		return NULL;
388 	return vma;
389 }
390 
391 static void break_cow(struct rmap_item *rmap_item)
392 {
393 	struct mm_struct *mm = rmap_item->mm;
394 	unsigned long addr = rmap_item->address;
395 	struct vm_area_struct *vma;
396 
397 	/*
398 	 * It is not an accident that whenever we want to break COW
399 	 * to undo, we also need to drop a reference to the anon_vma.
400 	 */
401 	put_anon_vma(rmap_item->anon_vma);
402 
403 	down_read(&mm->mmap_sem);
404 	vma = find_mergeable_vma(mm, addr);
405 	if (vma)
406 		break_ksm(vma, addr);
407 	up_read(&mm->mmap_sem);
408 }
409 
410 static struct page *page_trans_compound_anon(struct page *page)
411 {
412 	if (PageTransCompound(page)) {
413 		struct page *head = compound_trans_head(page);
414 		/*
415 		 * head may actually be splitted and freed from under
416 		 * us but it's ok here.
417 		 */
418 		if (PageAnon(head))
419 			return head;
420 	}
421 	return NULL;
422 }
423 
424 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
425 {
426 	struct mm_struct *mm = rmap_item->mm;
427 	unsigned long addr = rmap_item->address;
428 	struct vm_area_struct *vma;
429 	struct page *page;
430 
431 	down_read(&mm->mmap_sem);
432 	vma = find_mergeable_vma(mm, addr);
433 	if (!vma)
434 		goto out;
435 
436 	page = follow_page(vma, addr, FOLL_GET);
437 	if (IS_ERR_OR_NULL(page))
438 		goto out;
439 	if (PageAnon(page) || page_trans_compound_anon(page)) {
440 		flush_anon_page(vma, page, addr);
441 		flush_dcache_page(page);
442 	} else {
443 		put_page(page);
444 out:		page = NULL;
445 	}
446 	up_read(&mm->mmap_sem);
447 	return page;
448 }
449 
450 static void remove_node_from_stable_tree(struct stable_node *stable_node)
451 {
452 	struct rmap_item *rmap_item;
453 	struct hlist_node *hlist;
454 
455 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
456 		if (rmap_item->hlist.next)
457 			ksm_pages_sharing--;
458 		else
459 			ksm_pages_shared--;
460 		put_anon_vma(rmap_item->anon_vma);
461 		rmap_item->address &= PAGE_MASK;
462 		cond_resched();
463 	}
464 
465 	rb_erase(&stable_node->node, &root_stable_tree);
466 	free_stable_node(stable_node);
467 }
468 
469 /*
470  * get_ksm_page: checks if the page indicated by the stable node
471  * is still its ksm page, despite having held no reference to it.
472  * In which case we can trust the content of the page, and it
473  * returns the gotten page; but if the page has now been zapped,
474  * remove the stale node from the stable tree and return NULL.
475  *
476  * You would expect the stable_node to hold a reference to the ksm page.
477  * But if it increments the page's count, swapping out has to wait for
478  * ksmd to come around again before it can free the page, which may take
479  * seconds or even minutes: much too unresponsive.  So instead we use a
480  * "keyhole reference": access to the ksm page from the stable node peeps
481  * out through its keyhole to see if that page still holds the right key,
482  * pointing back to this stable node.  This relies on freeing a PageAnon
483  * page to reset its page->mapping to NULL, and relies on no other use of
484  * a page to put something that might look like our key in page->mapping.
485  *
486  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
487  * but this is different - made simpler by ksm_thread_mutex being held, but
488  * interesting for assuming that no other use of the struct page could ever
489  * put our expected_mapping into page->mapping (or a field of the union which
490  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
491  * to keep the page_count protocol described with page_cache_get_speculative.
492  *
493  * Note: it is possible that get_ksm_page() will return NULL one moment,
494  * then page the next, if the page is in between page_freeze_refs() and
495  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
496  * is on its way to being freed; but it is an anomaly to bear in mind.
497  */
498 static struct page *get_ksm_page(struct stable_node *stable_node)
499 {
500 	struct page *page;
501 	void *expected_mapping;
502 
503 	page = pfn_to_page(stable_node->kpfn);
504 	expected_mapping = (void *)stable_node +
505 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
506 	rcu_read_lock();
507 	if (page->mapping != expected_mapping)
508 		goto stale;
509 	if (!get_page_unless_zero(page))
510 		goto stale;
511 	if (page->mapping != expected_mapping) {
512 		put_page(page);
513 		goto stale;
514 	}
515 	rcu_read_unlock();
516 	return page;
517 stale:
518 	rcu_read_unlock();
519 	remove_node_from_stable_tree(stable_node);
520 	return NULL;
521 }
522 
523 /*
524  * Removing rmap_item from stable or unstable tree.
525  * This function will clean the information from the stable/unstable tree.
526  */
527 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
528 {
529 	if (rmap_item->address & STABLE_FLAG) {
530 		struct stable_node *stable_node;
531 		struct page *page;
532 
533 		stable_node = rmap_item->head;
534 		page = get_ksm_page(stable_node);
535 		if (!page)
536 			goto out;
537 
538 		lock_page(page);
539 		hlist_del(&rmap_item->hlist);
540 		unlock_page(page);
541 		put_page(page);
542 
543 		if (stable_node->hlist.first)
544 			ksm_pages_sharing--;
545 		else
546 			ksm_pages_shared--;
547 
548 		put_anon_vma(rmap_item->anon_vma);
549 		rmap_item->address &= PAGE_MASK;
550 
551 	} else if (rmap_item->address & UNSTABLE_FLAG) {
552 		unsigned char age;
553 		/*
554 		 * Usually ksmd can and must skip the rb_erase, because
555 		 * root_unstable_tree was already reset to RB_ROOT.
556 		 * But be careful when an mm is exiting: do the rb_erase
557 		 * if this rmap_item was inserted by this scan, rather
558 		 * than left over from before.
559 		 */
560 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
561 		BUG_ON(age > 1);
562 		if (!age)
563 			rb_erase(&rmap_item->node, &root_unstable_tree);
564 
565 		ksm_pages_unshared--;
566 		rmap_item->address &= PAGE_MASK;
567 	}
568 out:
569 	cond_resched();		/* we're called from many long loops */
570 }
571 
572 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
573 				       struct rmap_item **rmap_list)
574 {
575 	while (*rmap_list) {
576 		struct rmap_item *rmap_item = *rmap_list;
577 		*rmap_list = rmap_item->rmap_list;
578 		remove_rmap_item_from_tree(rmap_item);
579 		free_rmap_item(rmap_item);
580 	}
581 }
582 
583 /*
584  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
585  * than check every pte of a given vma, the locking doesn't quite work for
586  * that - an rmap_item is assigned to the stable tree after inserting ksm
587  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
588  * rmap_items from parent to child at fork time (so as not to waste time
589  * if exit comes before the next scan reaches it).
590  *
591  * Similarly, although we'd like to remove rmap_items (so updating counts
592  * and freeing memory) when unmerging an area, it's easier to leave that
593  * to the next pass of ksmd - consider, for example, how ksmd might be
594  * in cmp_and_merge_page on one of the rmap_items we would be removing.
595  */
596 static int unmerge_ksm_pages(struct vm_area_struct *vma,
597 			     unsigned long start, unsigned long end)
598 {
599 	unsigned long addr;
600 	int err = 0;
601 
602 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
603 		if (ksm_test_exit(vma->vm_mm))
604 			break;
605 		if (signal_pending(current))
606 			err = -ERESTARTSYS;
607 		else
608 			err = break_ksm(vma, addr);
609 	}
610 	return err;
611 }
612 
613 #ifdef CONFIG_SYSFS
614 /*
615  * Only called through the sysfs control interface:
616  */
617 static int unmerge_and_remove_all_rmap_items(void)
618 {
619 	struct mm_slot *mm_slot;
620 	struct mm_struct *mm;
621 	struct vm_area_struct *vma;
622 	int err = 0;
623 
624 	spin_lock(&ksm_mmlist_lock);
625 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
626 						struct mm_slot, mm_list);
627 	spin_unlock(&ksm_mmlist_lock);
628 
629 	for (mm_slot = ksm_scan.mm_slot;
630 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
631 		mm = mm_slot->mm;
632 		down_read(&mm->mmap_sem);
633 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
634 			if (ksm_test_exit(mm))
635 				break;
636 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
637 				continue;
638 			err = unmerge_ksm_pages(vma,
639 						vma->vm_start, vma->vm_end);
640 			if (err)
641 				goto error;
642 		}
643 
644 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
645 
646 		spin_lock(&ksm_mmlist_lock);
647 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
648 						struct mm_slot, mm_list);
649 		if (ksm_test_exit(mm)) {
650 			hlist_del(&mm_slot->link);
651 			list_del(&mm_slot->mm_list);
652 			spin_unlock(&ksm_mmlist_lock);
653 
654 			free_mm_slot(mm_slot);
655 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
656 			up_read(&mm->mmap_sem);
657 			mmdrop(mm);
658 		} else {
659 			spin_unlock(&ksm_mmlist_lock);
660 			up_read(&mm->mmap_sem);
661 		}
662 	}
663 
664 	ksm_scan.seqnr = 0;
665 	return 0;
666 
667 error:
668 	up_read(&mm->mmap_sem);
669 	spin_lock(&ksm_mmlist_lock);
670 	ksm_scan.mm_slot = &ksm_mm_head;
671 	spin_unlock(&ksm_mmlist_lock);
672 	return err;
673 }
674 #endif /* CONFIG_SYSFS */
675 
676 static u32 calc_checksum(struct page *page)
677 {
678 	u32 checksum;
679 	void *addr = kmap_atomic(page);
680 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
681 	kunmap_atomic(addr);
682 	return checksum;
683 }
684 
685 static int memcmp_pages(struct page *page1, struct page *page2)
686 {
687 	char *addr1, *addr2;
688 	int ret;
689 
690 	addr1 = kmap_atomic(page1);
691 	addr2 = kmap_atomic(page2);
692 	ret = memcmp(addr1, addr2, PAGE_SIZE);
693 	kunmap_atomic(addr2);
694 	kunmap_atomic(addr1);
695 	return ret;
696 }
697 
698 static inline int pages_identical(struct page *page1, struct page *page2)
699 {
700 	return !memcmp_pages(page1, page2);
701 }
702 
703 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
704 			      pte_t *orig_pte)
705 {
706 	struct mm_struct *mm = vma->vm_mm;
707 	unsigned long addr;
708 	pte_t *ptep;
709 	spinlock_t *ptl;
710 	int swapped;
711 	int err = -EFAULT;
712 	unsigned long mmun_start;	/* For mmu_notifiers */
713 	unsigned long mmun_end;		/* For mmu_notifiers */
714 
715 	addr = page_address_in_vma(page, vma);
716 	if (addr == -EFAULT)
717 		goto out;
718 
719 	BUG_ON(PageTransCompound(page));
720 
721 	mmun_start = addr;
722 	mmun_end   = addr + PAGE_SIZE;
723 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
724 
725 	ptep = page_check_address(page, mm, addr, &ptl, 0);
726 	if (!ptep)
727 		goto out_mn;
728 
729 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
730 		pte_t entry;
731 
732 		swapped = PageSwapCache(page);
733 		flush_cache_page(vma, addr, page_to_pfn(page));
734 		/*
735 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
736 		 * take any lock, therefore the check that we are going to make
737 		 * with the pagecount against the mapcount is racey and
738 		 * O_DIRECT can happen right after the check.
739 		 * So we clear the pte and flush the tlb before the check
740 		 * this assure us that no O_DIRECT can happen after the check
741 		 * or in the middle of the check.
742 		 */
743 		entry = ptep_clear_flush(vma, addr, ptep);
744 		/*
745 		 * Check that no O_DIRECT or similar I/O is in progress on the
746 		 * page
747 		 */
748 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
749 			set_pte_at(mm, addr, ptep, entry);
750 			goto out_unlock;
751 		}
752 		if (pte_dirty(entry))
753 			set_page_dirty(page);
754 		entry = pte_mkclean(pte_wrprotect(entry));
755 		set_pte_at_notify(mm, addr, ptep, entry);
756 	}
757 	*orig_pte = *ptep;
758 	err = 0;
759 
760 out_unlock:
761 	pte_unmap_unlock(ptep, ptl);
762 out_mn:
763 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
764 out:
765 	return err;
766 }
767 
768 /**
769  * replace_page - replace page in vma by new ksm page
770  * @vma:      vma that holds the pte pointing to page
771  * @page:     the page we are replacing by kpage
772  * @kpage:    the ksm page we replace page by
773  * @orig_pte: the original value of the pte
774  *
775  * Returns 0 on success, -EFAULT on failure.
776  */
777 static int replace_page(struct vm_area_struct *vma, struct page *page,
778 			struct page *kpage, pte_t orig_pte)
779 {
780 	struct mm_struct *mm = vma->vm_mm;
781 	pgd_t *pgd;
782 	pud_t *pud;
783 	pmd_t *pmd;
784 	pte_t *ptep;
785 	spinlock_t *ptl;
786 	unsigned long addr;
787 	int err = -EFAULT;
788 	unsigned long mmun_start;	/* For mmu_notifiers */
789 	unsigned long mmun_end;		/* For mmu_notifiers */
790 
791 	addr = page_address_in_vma(page, vma);
792 	if (addr == -EFAULT)
793 		goto out;
794 
795 	pgd = pgd_offset(mm, addr);
796 	if (!pgd_present(*pgd))
797 		goto out;
798 
799 	pud = pud_offset(pgd, addr);
800 	if (!pud_present(*pud))
801 		goto out;
802 
803 	pmd = pmd_offset(pud, addr);
804 	BUG_ON(pmd_trans_huge(*pmd));
805 	if (!pmd_present(*pmd))
806 		goto out;
807 
808 	mmun_start = addr;
809 	mmun_end   = addr + PAGE_SIZE;
810 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
811 
812 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
813 	if (!pte_same(*ptep, orig_pte)) {
814 		pte_unmap_unlock(ptep, ptl);
815 		goto out_mn;
816 	}
817 
818 	get_page(kpage);
819 	page_add_anon_rmap(kpage, vma, addr);
820 
821 	flush_cache_page(vma, addr, pte_pfn(*ptep));
822 	ptep_clear_flush(vma, addr, ptep);
823 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
824 
825 	page_remove_rmap(page);
826 	if (!page_mapped(page))
827 		try_to_free_swap(page);
828 	put_page(page);
829 
830 	pte_unmap_unlock(ptep, ptl);
831 	err = 0;
832 out_mn:
833 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
834 out:
835 	return err;
836 }
837 
838 static int page_trans_compound_anon_split(struct page *page)
839 {
840 	int ret = 0;
841 	struct page *transhuge_head = page_trans_compound_anon(page);
842 	if (transhuge_head) {
843 		/* Get the reference on the head to split it. */
844 		if (get_page_unless_zero(transhuge_head)) {
845 			/*
846 			 * Recheck we got the reference while the head
847 			 * was still anonymous.
848 			 */
849 			if (PageAnon(transhuge_head))
850 				ret = split_huge_page(transhuge_head);
851 			else
852 				/*
853 				 * Retry later if split_huge_page run
854 				 * from under us.
855 				 */
856 				ret = 1;
857 			put_page(transhuge_head);
858 		} else
859 			/* Retry later if split_huge_page run from under us. */
860 			ret = 1;
861 	}
862 	return ret;
863 }
864 
865 /*
866  * try_to_merge_one_page - take two pages and merge them into one
867  * @vma: the vma that holds the pte pointing to page
868  * @page: the PageAnon page that we want to replace with kpage
869  * @kpage: the PageKsm page that we want to map instead of page,
870  *         or NULL the first time when we want to use page as kpage.
871  *
872  * This function returns 0 if the pages were merged, -EFAULT otherwise.
873  */
874 static int try_to_merge_one_page(struct vm_area_struct *vma,
875 				 struct page *page, struct page *kpage)
876 {
877 	pte_t orig_pte = __pte(0);
878 	int err = -EFAULT;
879 
880 	if (page == kpage)			/* ksm page forked */
881 		return 0;
882 
883 	if (!(vma->vm_flags & VM_MERGEABLE))
884 		goto out;
885 	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
886 		goto out;
887 	BUG_ON(PageTransCompound(page));
888 	if (!PageAnon(page))
889 		goto out;
890 
891 	/*
892 	 * We need the page lock to read a stable PageSwapCache in
893 	 * write_protect_page().  We use trylock_page() instead of
894 	 * lock_page() because we don't want to wait here - we
895 	 * prefer to continue scanning and merging different pages,
896 	 * then come back to this page when it is unlocked.
897 	 */
898 	if (!trylock_page(page))
899 		goto out;
900 	/*
901 	 * If this anonymous page is mapped only here, its pte may need
902 	 * to be write-protected.  If it's mapped elsewhere, all of its
903 	 * ptes are necessarily already write-protected.  But in either
904 	 * case, we need to lock and check page_count is not raised.
905 	 */
906 	if (write_protect_page(vma, page, &orig_pte) == 0) {
907 		if (!kpage) {
908 			/*
909 			 * While we hold page lock, upgrade page from
910 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
911 			 * stable_tree_insert() will update stable_node.
912 			 */
913 			set_page_stable_node(page, NULL);
914 			mark_page_accessed(page);
915 			err = 0;
916 		} else if (pages_identical(page, kpage))
917 			err = replace_page(vma, page, kpage, orig_pte);
918 	}
919 
920 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
921 		munlock_vma_page(page);
922 		if (!PageMlocked(kpage)) {
923 			unlock_page(page);
924 			lock_page(kpage);
925 			mlock_vma_page(kpage);
926 			page = kpage;		/* for final unlock */
927 		}
928 	}
929 
930 	unlock_page(page);
931 out:
932 	return err;
933 }
934 
935 /*
936  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
937  * but no new kernel page is allocated: kpage must already be a ksm page.
938  *
939  * This function returns 0 if the pages were merged, -EFAULT otherwise.
940  */
941 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
942 				      struct page *page, struct page *kpage)
943 {
944 	struct mm_struct *mm = rmap_item->mm;
945 	struct vm_area_struct *vma;
946 	int err = -EFAULT;
947 
948 	down_read(&mm->mmap_sem);
949 	if (ksm_test_exit(mm))
950 		goto out;
951 	vma = find_vma(mm, rmap_item->address);
952 	if (!vma || vma->vm_start > rmap_item->address)
953 		goto out;
954 
955 	err = try_to_merge_one_page(vma, page, kpage);
956 	if (err)
957 		goto out;
958 
959 	/* Must get reference to anon_vma while still holding mmap_sem */
960 	rmap_item->anon_vma = vma->anon_vma;
961 	get_anon_vma(vma->anon_vma);
962 out:
963 	up_read(&mm->mmap_sem);
964 	return err;
965 }
966 
967 /*
968  * try_to_merge_two_pages - take two identical pages and prepare them
969  * to be merged into one page.
970  *
971  * This function returns the kpage if we successfully merged two identical
972  * pages into one ksm page, NULL otherwise.
973  *
974  * Note that this function upgrades page to ksm page: if one of the pages
975  * is already a ksm page, try_to_merge_with_ksm_page should be used.
976  */
977 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
978 					   struct page *page,
979 					   struct rmap_item *tree_rmap_item,
980 					   struct page *tree_page)
981 {
982 	int err;
983 
984 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
985 	if (!err) {
986 		err = try_to_merge_with_ksm_page(tree_rmap_item,
987 							tree_page, page);
988 		/*
989 		 * If that fails, we have a ksm page with only one pte
990 		 * pointing to it: so break it.
991 		 */
992 		if (err)
993 			break_cow(rmap_item);
994 	}
995 	return err ? NULL : page;
996 }
997 
998 /*
999  * stable_tree_search - search for page inside the stable tree
1000  *
1001  * This function checks if there is a page inside the stable tree
1002  * with identical content to the page that we are scanning right now.
1003  *
1004  * This function returns the stable tree node of identical content if found,
1005  * NULL otherwise.
1006  */
1007 static struct page *stable_tree_search(struct page *page)
1008 {
1009 	struct rb_node *node = root_stable_tree.rb_node;
1010 	struct stable_node *stable_node;
1011 
1012 	stable_node = page_stable_node(page);
1013 	if (stable_node) {			/* ksm page forked */
1014 		get_page(page);
1015 		return page;
1016 	}
1017 
1018 	while (node) {
1019 		struct page *tree_page;
1020 		int ret;
1021 
1022 		cond_resched();
1023 		stable_node = rb_entry(node, struct stable_node, node);
1024 		tree_page = get_ksm_page(stable_node);
1025 		if (!tree_page)
1026 			return NULL;
1027 
1028 		ret = memcmp_pages(page, tree_page);
1029 
1030 		if (ret < 0) {
1031 			put_page(tree_page);
1032 			node = node->rb_left;
1033 		} else if (ret > 0) {
1034 			put_page(tree_page);
1035 			node = node->rb_right;
1036 		} else
1037 			return tree_page;
1038 	}
1039 
1040 	return NULL;
1041 }
1042 
1043 /*
1044  * stable_tree_insert - insert rmap_item pointing to new ksm page
1045  * into the stable tree.
1046  *
1047  * This function returns the stable tree node just allocated on success,
1048  * NULL otherwise.
1049  */
1050 static struct stable_node *stable_tree_insert(struct page *kpage)
1051 {
1052 	struct rb_node **new = &root_stable_tree.rb_node;
1053 	struct rb_node *parent = NULL;
1054 	struct stable_node *stable_node;
1055 
1056 	while (*new) {
1057 		struct page *tree_page;
1058 		int ret;
1059 
1060 		cond_resched();
1061 		stable_node = rb_entry(*new, struct stable_node, node);
1062 		tree_page = get_ksm_page(stable_node);
1063 		if (!tree_page)
1064 			return NULL;
1065 
1066 		ret = memcmp_pages(kpage, tree_page);
1067 		put_page(tree_page);
1068 
1069 		parent = *new;
1070 		if (ret < 0)
1071 			new = &parent->rb_left;
1072 		else if (ret > 0)
1073 			new = &parent->rb_right;
1074 		else {
1075 			/*
1076 			 * It is not a bug that stable_tree_search() didn't
1077 			 * find this node: because at that time our page was
1078 			 * not yet write-protected, so may have changed since.
1079 			 */
1080 			return NULL;
1081 		}
1082 	}
1083 
1084 	stable_node = alloc_stable_node();
1085 	if (!stable_node)
1086 		return NULL;
1087 
1088 	rb_link_node(&stable_node->node, parent, new);
1089 	rb_insert_color(&stable_node->node, &root_stable_tree);
1090 
1091 	INIT_HLIST_HEAD(&stable_node->hlist);
1092 
1093 	stable_node->kpfn = page_to_pfn(kpage);
1094 	set_page_stable_node(kpage, stable_node);
1095 
1096 	return stable_node;
1097 }
1098 
1099 /*
1100  * unstable_tree_search_insert - search for identical page,
1101  * else insert rmap_item into the unstable tree.
1102  *
1103  * This function searches for a page in the unstable tree identical to the
1104  * page currently being scanned; and if no identical page is found in the
1105  * tree, we insert rmap_item as a new object into the unstable tree.
1106  *
1107  * This function returns pointer to rmap_item found to be identical
1108  * to the currently scanned page, NULL otherwise.
1109  *
1110  * This function does both searching and inserting, because they share
1111  * the same walking algorithm in an rbtree.
1112  */
1113 static
1114 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1115 					      struct page *page,
1116 					      struct page **tree_pagep)
1117 
1118 {
1119 	struct rb_node **new = &root_unstable_tree.rb_node;
1120 	struct rb_node *parent = NULL;
1121 
1122 	while (*new) {
1123 		struct rmap_item *tree_rmap_item;
1124 		struct page *tree_page;
1125 		int ret;
1126 
1127 		cond_resched();
1128 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1129 		tree_page = get_mergeable_page(tree_rmap_item);
1130 		if (IS_ERR_OR_NULL(tree_page))
1131 			return NULL;
1132 
1133 		/*
1134 		 * Don't substitute a ksm page for a forked page.
1135 		 */
1136 		if (page == tree_page) {
1137 			put_page(tree_page);
1138 			return NULL;
1139 		}
1140 
1141 		ret = memcmp_pages(page, tree_page);
1142 
1143 		parent = *new;
1144 		if (ret < 0) {
1145 			put_page(tree_page);
1146 			new = &parent->rb_left;
1147 		} else if (ret > 0) {
1148 			put_page(tree_page);
1149 			new = &parent->rb_right;
1150 		} else {
1151 			*tree_pagep = tree_page;
1152 			return tree_rmap_item;
1153 		}
1154 	}
1155 
1156 	rmap_item->address |= UNSTABLE_FLAG;
1157 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1158 	rb_link_node(&rmap_item->node, parent, new);
1159 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1160 
1161 	ksm_pages_unshared++;
1162 	return NULL;
1163 }
1164 
1165 /*
1166  * stable_tree_append - add another rmap_item to the linked list of
1167  * rmap_items hanging off a given node of the stable tree, all sharing
1168  * the same ksm page.
1169  */
1170 static void stable_tree_append(struct rmap_item *rmap_item,
1171 			       struct stable_node *stable_node)
1172 {
1173 	rmap_item->head = stable_node;
1174 	rmap_item->address |= STABLE_FLAG;
1175 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1176 
1177 	if (rmap_item->hlist.next)
1178 		ksm_pages_sharing++;
1179 	else
1180 		ksm_pages_shared++;
1181 }
1182 
1183 /*
1184  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1185  * if not, compare checksum to previous and if it's the same, see if page can
1186  * be inserted into the unstable tree, or merged with a page already there and
1187  * both transferred to the stable tree.
1188  *
1189  * @page: the page that we are searching identical page to.
1190  * @rmap_item: the reverse mapping into the virtual address of this page
1191  */
1192 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1193 {
1194 	struct rmap_item *tree_rmap_item;
1195 	struct page *tree_page = NULL;
1196 	struct stable_node *stable_node;
1197 	struct page *kpage;
1198 	unsigned int checksum;
1199 	int err;
1200 
1201 	remove_rmap_item_from_tree(rmap_item);
1202 
1203 	/* We first start with searching the page inside the stable tree */
1204 	kpage = stable_tree_search(page);
1205 	if (kpage) {
1206 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1207 		if (!err) {
1208 			/*
1209 			 * The page was successfully merged:
1210 			 * add its rmap_item to the stable tree.
1211 			 */
1212 			lock_page(kpage);
1213 			stable_tree_append(rmap_item, page_stable_node(kpage));
1214 			unlock_page(kpage);
1215 		}
1216 		put_page(kpage);
1217 		return;
1218 	}
1219 
1220 	/*
1221 	 * If the hash value of the page has changed from the last time
1222 	 * we calculated it, this page is changing frequently: therefore we
1223 	 * don't want to insert it in the unstable tree, and we don't want
1224 	 * to waste our time searching for something identical to it there.
1225 	 */
1226 	checksum = calc_checksum(page);
1227 	if (rmap_item->oldchecksum != checksum) {
1228 		rmap_item->oldchecksum = checksum;
1229 		return;
1230 	}
1231 
1232 	tree_rmap_item =
1233 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1234 	if (tree_rmap_item) {
1235 		kpage = try_to_merge_two_pages(rmap_item, page,
1236 						tree_rmap_item, tree_page);
1237 		put_page(tree_page);
1238 		/*
1239 		 * As soon as we merge this page, we want to remove the
1240 		 * rmap_item of the page we have merged with from the unstable
1241 		 * tree, and insert it instead as new node in the stable tree.
1242 		 */
1243 		if (kpage) {
1244 			remove_rmap_item_from_tree(tree_rmap_item);
1245 
1246 			lock_page(kpage);
1247 			stable_node = stable_tree_insert(kpage);
1248 			if (stable_node) {
1249 				stable_tree_append(tree_rmap_item, stable_node);
1250 				stable_tree_append(rmap_item, stable_node);
1251 			}
1252 			unlock_page(kpage);
1253 
1254 			/*
1255 			 * If we fail to insert the page into the stable tree,
1256 			 * we will have 2 virtual addresses that are pointing
1257 			 * to a ksm page left outside the stable tree,
1258 			 * in which case we need to break_cow on both.
1259 			 */
1260 			if (!stable_node) {
1261 				break_cow(tree_rmap_item);
1262 				break_cow(rmap_item);
1263 			}
1264 		}
1265 	}
1266 }
1267 
1268 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1269 					    struct rmap_item **rmap_list,
1270 					    unsigned long addr)
1271 {
1272 	struct rmap_item *rmap_item;
1273 
1274 	while (*rmap_list) {
1275 		rmap_item = *rmap_list;
1276 		if ((rmap_item->address & PAGE_MASK) == addr)
1277 			return rmap_item;
1278 		if (rmap_item->address > addr)
1279 			break;
1280 		*rmap_list = rmap_item->rmap_list;
1281 		remove_rmap_item_from_tree(rmap_item);
1282 		free_rmap_item(rmap_item);
1283 	}
1284 
1285 	rmap_item = alloc_rmap_item();
1286 	if (rmap_item) {
1287 		/* It has already been zeroed */
1288 		rmap_item->mm = mm_slot->mm;
1289 		rmap_item->address = addr;
1290 		rmap_item->rmap_list = *rmap_list;
1291 		*rmap_list = rmap_item;
1292 	}
1293 	return rmap_item;
1294 }
1295 
1296 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1297 {
1298 	struct mm_struct *mm;
1299 	struct mm_slot *slot;
1300 	struct vm_area_struct *vma;
1301 	struct rmap_item *rmap_item;
1302 
1303 	if (list_empty(&ksm_mm_head.mm_list))
1304 		return NULL;
1305 
1306 	slot = ksm_scan.mm_slot;
1307 	if (slot == &ksm_mm_head) {
1308 		/*
1309 		 * A number of pages can hang around indefinitely on per-cpu
1310 		 * pagevecs, raised page count preventing write_protect_page
1311 		 * from merging them.  Though it doesn't really matter much,
1312 		 * it is puzzling to see some stuck in pages_volatile until
1313 		 * other activity jostles them out, and they also prevented
1314 		 * LTP's KSM test from succeeding deterministically; so drain
1315 		 * them here (here rather than on entry to ksm_do_scan(),
1316 		 * so we don't IPI too often when pages_to_scan is set low).
1317 		 */
1318 		lru_add_drain_all();
1319 
1320 		root_unstable_tree = RB_ROOT;
1321 
1322 		spin_lock(&ksm_mmlist_lock);
1323 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1324 		ksm_scan.mm_slot = slot;
1325 		spin_unlock(&ksm_mmlist_lock);
1326 		/*
1327 		 * Although we tested list_empty() above, a racing __ksm_exit
1328 		 * of the last mm on the list may have removed it since then.
1329 		 */
1330 		if (slot == &ksm_mm_head)
1331 			return NULL;
1332 next_mm:
1333 		ksm_scan.address = 0;
1334 		ksm_scan.rmap_list = &slot->rmap_list;
1335 	}
1336 
1337 	mm = slot->mm;
1338 	down_read(&mm->mmap_sem);
1339 	if (ksm_test_exit(mm))
1340 		vma = NULL;
1341 	else
1342 		vma = find_vma(mm, ksm_scan.address);
1343 
1344 	for (; vma; vma = vma->vm_next) {
1345 		if (!(vma->vm_flags & VM_MERGEABLE))
1346 			continue;
1347 		if (ksm_scan.address < vma->vm_start)
1348 			ksm_scan.address = vma->vm_start;
1349 		if (!vma->anon_vma)
1350 			ksm_scan.address = vma->vm_end;
1351 
1352 		while (ksm_scan.address < vma->vm_end) {
1353 			if (ksm_test_exit(mm))
1354 				break;
1355 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1356 			if (IS_ERR_OR_NULL(*page)) {
1357 				ksm_scan.address += PAGE_SIZE;
1358 				cond_resched();
1359 				continue;
1360 			}
1361 			if (PageAnon(*page) ||
1362 			    page_trans_compound_anon(*page)) {
1363 				flush_anon_page(vma, *page, ksm_scan.address);
1364 				flush_dcache_page(*page);
1365 				rmap_item = get_next_rmap_item(slot,
1366 					ksm_scan.rmap_list, ksm_scan.address);
1367 				if (rmap_item) {
1368 					ksm_scan.rmap_list =
1369 							&rmap_item->rmap_list;
1370 					ksm_scan.address += PAGE_SIZE;
1371 				} else
1372 					put_page(*page);
1373 				up_read(&mm->mmap_sem);
1374 				return rmap_item;
1375 			}
1376 			put_page(*page);
1377 			ksm_scan.address += PAGE_SIZE;
1378 			cond_resched();
1379 		}
1380 	}
1381 
1382 	if (ksm_test_exit(mm)) {
1383 		ksm_scan.address = 0;
1384 		ksm_scan.rmap_list = &slot->rmap_list;
1385 	}
1386 	/*
1387 	 * Nuke all the rmap_items that are above this current rmap:
1388 	 * because there were no VM_MERGEABLE vmas with such addresses.
1389 	 */
1390 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1391 
1392 	spin_lock(&ksm_mmlist_lock);
1393 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1394 						struct mm_slot, mm_list);
1395 	if (ksm_scan.address == 0) {
1396 		/*
1397 		 * We've completed a full scan of all vmas, holding mmap_sem
1398 		 * throughout, and found no VM_MERGEABLE: so do the same as
1399 		 * __ksm_exit does to remove this mm from all our lists now.
1400 		 * This applies either when cleaning up after __ksm_exit
1401 		 * (but beware: we can reach here even before __ksm_exit),
1402 		 * or when all VM_MERGEABLE areas have been unmapped (and
1403 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1404 		 */
1405 		hlist_del(&slot->link);
1406 		list_del(&slot->mm_list);
1407 		spin_unlock(&ksm_mmlist_lock);
1408 
1409 		free_mm_slot(slot);
1410 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1411 		up_read(&mm->mmap_sem);
1412 		mmdrop(mm);
1413 	} else {
1414 		spin_unlock(&ksm_mmlist_lock);
1415 		up_read(&mm->mmap_sem);
1416 	}
1417 
1418 	/* Repeat until we've completed scanning the whole list */
1419 	slot = ksm_scan.mm_slot;
1420 	if (slot != &ksm_mm_head)
1421 		goto next_mm;
1422 
1423 	ksm_scan.seqnr++;
1424 	return NULL;
1425 }
1426 
1427 /**
1428  * ksm_do_scan  - the ksm scanner main worker function.
1429  * @scan_npages - number of pages we want to scan before we return.
1430  */
1431 static void ksm_do_scan(unsigned int scan_npages)
1432 {
1433 	struct rmap_item *rmap_item;
1434 	struct page *uninitialized_var(page);
1435 
1436 	while (scan_npages-- && likely(!freezing(current))) {
1437 		cond_resched();
1438 		rmap_item = scan_get_next_rmap_item(&page);
1439 		if (!rmap_item)
1440 			return;
1441 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1442 			cmp_and_merge_page(page, rmap_item);
1443 		put_page(page);
1444 	}
1445 }
1446 
1447 static int ksmd_should_run(void)
1448 {
1449 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1450 }
1451 
1452 static int ksm_scan_thread(void *nothing)
1453 {
1454 	set_freezable();
1455 	set_user_nice(current, 5);
1456 
1457 	while (!kthread_should_stop()) {
1458 		mutex_lock(&ksm_thread_mutex);
1459 		if (ksmd_should_run())
1460 			ksm_do_scan(ksm_thread_pages_to_scan);
1461 		mutex_unlock(&ksm_thread_mutex);
1462 
1463 		try_to_freeze();
1464 
1465 		if (ksmd_should_run()) {
1466 			schedule_timeout_interruptible(
1467 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1468 		} else {
1469 			wait_event_freezable(ksm_thread_wait,
1470 				ksmd_should_run() || kthread_should_stop());
1471 		}
1472 	}
1473 	return 0;
1474 }
1475 
1476 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1477 		unsigned long end, int advice, unsigned long *vm_flags)
1478 {
1479 	struct mm_struct *mm = vma->vm_mm;
1480 	int err;
1481 
1482 	switch (advice) {
1483 	case MADV_MERGEABLE:
1484 		/*
1485 		 * Be somewhat over-protective for now!
1486 		 */
1487 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1488 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1489 				 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1490 			return 0;		/* just ignore the advice */
1491 
1492 #ifdef VM_SAO
1493 		if (*vm_flags & VM_SAO)
1494 			return 0;
1495 #endif
1496 
1497 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1498 			err = __ksm_enter(mm);
1499 			if (err)
1500 				return err;
1501 		}
1502 
1503 		*vm_flags |= VM_MERGEABLE;
1504 		break;
1505 
1506 	case MADV_UNMERGEABLE:
1507 		if (!(*vm_flags & VM_MERGEABLE))
1508 			return 0;		/* just ignore the advice */
1509 
1510 		if (vma->anon_vma) {
1511 			err = unmerge_ksm_pages(vma, start, end);
1512 			if (err)
1513 				return err;
1514 		}
1515 
1516 		*vm_flags &= ~VM_MERGEABLE;
1517 		break;
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 int __ksm_enter(struct mm_struct *mm)
1524 {
1525 	struct mm_slot *mm_slot;
1526 	int needs_wakeup;
1527 
1528 	mm_slot = alloc_mm_slot();
1529 	if (!mm_slot)
1530 		return -ENOMEM;
1531 
1532 	/* Check ksm_run too?  Would need tighter locking */
1533 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1534 
1535 	spin_lock(&ksm_mmlist_lock);
1536 	insert_to_mm_slots_hash(mm, mm_slot);
1537 	/*
1538 	 * Insert just behind the scanning cursor, to let the area settle
1539 	 * down a little; when fork is followed by immediate exec, we don't
1540 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1541 	 */
1542 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1543 	spin_unlock(&ksm_mmlist_lock);
1544 
1545 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1546 	atomic_inc(&mm->mm_count);
1547 
1548 	if (needs_wakeup)
1549 		wake_up_interruptible(&ksm_thread_wait);
1550 
1551 	return 0;
1552 }
1553 
1554 void __ksm_exit(struct mm_struct *mm)
1555 {
1556 	struct mm_slot *mm_slot;
1557 	int easy_to_free = 0;
1558 
1559 	/*
1560 	 * This process is exiting: if it's straightforward (as is the
1561 	 * case when ksmd was never running), free mm_slot immediately.
1562 	 * But if it's at the cursor or has rmap_items linked to it, use
1563 	 * mmap_sem to synchronize with any break_cows before pagetables
1564 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1565 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1566 	 */
1567 
1568 	spin_lock(&ksm_mmlist_lock);
1569 	mm_slot = get_mm_slot(mm);
1570 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1571 		if (!mm_slot->rmap_list) {
1572 			hlist_del(&mm_slot->link);
1573 			list_del(&mm_slot->mm_list);
1574 			easy_to_free = 1;
1575 		} else {
1576 			list_move(&mm_slot->mm_list,
1577 				  &ksm_scan.mm_slot->mm_list);
1578 		}
1579 	}
1580 	spin_unlock(&ksm_mmlist_lock);
1581 
1582 	if (easy_to_free) {
1583 		free_mm_slot(mm_slot);
1584 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1585 		mmdrop(mm);
1586 	} else if (mm_slot) {
1587 		down_write(&mm->mmap_sem);
1588 		up_write(&mm->mmap_sem);
1589 	}
1590 }
1591 
1592 struct page *ksm_does_need_to_copy(struct page *page,
1593 			struct vm_area_struct *vma, unsigned long address)
1594 {
1595 	struct page *new_page;
1596 
1597 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1598 	if (new_page) {
1599 		copy_user_highpage(new_page, page, address, vma);
1600 
1601 		SetPageDirty(new_page);
1602 		__SetPageUptodate(new_page);
1603 		SetPageSwapBacked(new_page);
1604 		__set_page_locked(new_page);
1605 
1606 		if (!mlocked_vma_newpage(vma, new_page))
1607 			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1608 		else
1609 			add_page_to_unevictable_list(new_page);
1610 	}
1611 
1612 	return new_page;
1613 }
1614 
1615 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1616 			unsigned long *vm_flags)
1617 {
1618 	struct stable_node *stable_node;
1619 	struct rmap_item *rmap_item;
1620 	struct hlist_node *hlist;
1621 	unsigned int mapcount = page_mapcount(page);
1622 	int referenced = 0;
1623 	int search_new_forks = 0;
1624 
1625 	VM_BUG_ON(!PageKsm(page));
1626 	VM_BUG_ON(!PageLocked(page));
1627 
1628 	stable_node = page_stable_node(page);
1629 	if (!stable_node)
1630 		return 0;
1631 again:
1632 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1633 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1634 		struct anon_vma_chain *vmac;
1635 		struct vm_area_struct *vma;
1636 
1637 		anon_vma_lock(anon_vma);
1638 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1639 					       0, ULONG_MAX) {
1640 			vma = vmac->vma;
1641 			if (rmap_item->address < vma->vm_start ||
1642 			    rmap_item->address >= vma->vm_end)
1643 				continue;
1644 			/*
1645 			 * Initially we examine only the vma which covers this
1646 			 * rmap_item; but later, if there is still work to do,
1647 			 * we examine covering vmas in other mms: in case they
1648 			 * were forked from the original since ksmd passed.
1649 			 */
1650 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1651 				continue;
1652 
1653 			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1654 				continue;
1655 
1656 			referenced += page_referenced_one(page, vma,
1657 				rmap_item->address, &mapcount, vm_flags);
1658 			if (!search_new_forks || !mapcount)
1659 				break;
1660 		}
1661 		anon_vma_unlock(anon_vma);
1662 		if (!mapcount)
1663 			goto out;
1664 	}
1665 	if (!search_new_forks++)
1666 		goto again;
1667 out:
1668 	return referenced;
1669 }
1670 
1671 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1672 {
1673 	struct stable_node *stable_node;
1674 	struct hlist_node *hlist;
1675 	struct rmap_item *rmap_item;
1676 	int ret = SWAP_AGAIN;
1677 	int search_new_forks = 0;
1678 
1679 	VM_BUG_ON(!PageKsm(page));
1680 	VM_BUG_ON(!PageLocked(page));
1681 
1682 	stable_node = page_stable_node(page);
1683 	if (!stable_node)
1684 		return SWAP_FAIL;
1685 again:
1686 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1687 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1688 		struct anon_vma_chain *vmac;
1689 		struct vm_area_struct *vma;
1690 
1691 		anon_vma_lock(anon_vma);
1692 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1693 					       0, ULONG_MAX) {
1694 			vma = vmac->vma;
1695 			if (rmap_item->address < vma->vm_start ||
1696 			    rmap_item->address >= vma->vm_end)
1697 				continue;
1698 			/*
1699 			 * Initially we examine only the vma which covers this
1700 			 * rmap_item; but later, if there is still work to do,
1701 			 * we examine covering vmas in other mms: in case they
1702 			 * were forked from the original since ksmd passed.
1703 			 */
1704 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1705 				continue;
1706 
1707 			ret = try_to_unmap_one(page, vma,
1708 					rmap_item->address, flags);
1709 			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1710 				anon_vma_unlock(anon_vma);
1711 				goto out;
1712 			}
1713 		}
1714 		anon_vma_unlock(anon_vma);
1715 	}
1716 	if (!search_new_forks++)
1717 		goto again;
1718 out:
1719 	return ret;
1720 }
1721 
1722 #ifdef CONFIG_MIGRATION
1723 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1724 		  struct vm_area_struct *, unsigned long, void *), void *arg)
1725 {
1726 	struct stable_node *stable_node;
1727 	struct hlist_node *hlist;
1728 	struct rmap_item *rmap_item;
1729 	int ret = SWAP_AGAIN;
1730 	int search_new_forks = 0;
1731 
1732 	VM_BUG_ON(!PageKsm(page));
1733 	VM_BUG_ON(!PageLocked(page));
1734 
1735 	stable_node = page_stable_node(page);
1736 	if (!stable_node)
1737 		return ret;
1738 again:
1739 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1740 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1741 		struct anon_vma_chain *vmac;
1742 		struct vm_area_struct *vma;
1743 
1744 		anon_vma_lock(anon_vma);
1745 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1746 					       0, ULONG_MAX) {
1747 			vma = vmac->vma;
1748 			if (rmap_item->address < vma->vm_start ||
1749 			    rmap_item->address >= vma->vm_end)
1750 				continue;
1751 			/*
1752 			 * Initially we examine only the vma which covers this
1753 			 * rmap_item; but later, if there is still work to do,
1754 			 * we examine covering vmas in other mms: in case they
1755 			 * were forked from the original since ksmd passed.
1756 			 */
1757 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1758 				continue;
1759 
1760 			ret = rmap_one(page, vma, rmap_item->address, arg);
1761 			if (ret != SWAP_AGAIN) {
1762 				anon_vma_unlock(anon_vma);
1763 				goto out;
1764 			}
1765 		}
1766 		anon_vma_unlock(anon_vma);
1767 	}
1768 	if (!search_new_forks++)
1769 		goto again;
1770 out:
1771 	return ret;
1772 }
1773 
1774 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1775 {
1776 	struct stable_node *stable_node;
1777 
1778 	VM_BUG_ON(!PageLocked(oldpage));
1779 	VM_BUG_ON(!PageLocked(newpage));
1780 	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1781 
1782 	stable_node = page_stable_node(newpage);
1783 	if (stable_node) {
1784 		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1785 		stable_node->kpfn = page_to_pfn(newpage);
1786 	}
1787 }
1788 #endif /* CONFIG_MIGRATION */
1789 
1790 #ifdef CONFIG_MEMORY_HOTREMOVE
1791 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1792 						 unsigned long end_pfn)
1793 {
1794 	struct rb_node *node;
1795 
1796 	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1797 		struct stable_node *stable_node;
1798 
1799 		stable_node = rb_entry(node, struct stable_node, node);
1800 		if (stable_node->kpfn >= start_pfn &&
1801 		    stable_node->kpfn < end_pfn)
1802 			return stable_node;
1803 	}
1804 	return NULL;
1805 }
1806 
1807 static int ksm_memory_callback(struct notifier_block *self,
1808 			       unsigned long action, void *arg)
1809 {
1810 	struct memory_notify *mn = arg;
1811 	struct stable_node *stable_node;
1812 
1813 	switch (action) {
1814 	case MEM_GOING_OFFLINE:
1815 		/*
1816 		 * Keep it very simple for now: just lock out ksmd and
1817 		 * MADV_UNMERGEABLE while any memory is going offline.
1818 		 * mutex_lock_nested() is necessary because lockdep was alarmed
1819 		 * that here we take ksm_thread_mutex inside notifier chain
1820 		 * mutex, and later take notifier chain mutex inside
1821 		 * ksm_thread_mutex to unlock it.   But that's safe because both
1822 		 * are inside mem_hotplug_mutex.
1823 		 */
1824 		mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1825 		break;
1826 
1827 	case MEM_OFFLINE:
1828 		/*
1829 		 * Most of the work is done by page migration; but there might
1830 		 * be a few stable_nodes left over, still pointing to struct
1831 		 * pages which have been offlined: prune those from the tree.
1832 		 */
1833 		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1834 					mn->start_pfn + mn->nr_pages)) != NULL)
1835 			remove_node_from_stable_tree(stable_node);
1836 		/* fallthrough */
1837 
1838 	case MEM_CANCEL_OFFLINE:
1839 		mutex_unlock(&ksm_thread_mutex);
1840 		break;
1841 	}
1842 	return NOTIFY_OK;
1843 }
1844 #endif /* CONFIG_MEMORY_HOTREMOVE */
1845 
1846 #ifdef CONFIG_SYSFS
1847 /*
1848  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1849  */
1850 
1851 #define KSM_ATTR_RO(_name) \
1852 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1853 #define KSM_ATTR(_name) \
1854 	static struct kobj_attribute _name##_attr = \
1855 		__ATTR(_name, 0644, _name##_show, _name##_store)
1856 
1857 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1858 				    struct kobj_attribute *attr, char *buf)
1859 {
1860 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1861 }
1862 
1863 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1864 				     struct kobj_attribute *attr,
1865 				     const char *buf, size_t count)
1866 {
1867 	unsigned long msecs;
1868 	int err;
1869 
1870 	err = strict_strtoul(buf, 10, &msecs);
1871 	if (err || msecs > UINT_MAX)
1872 		return -EINVAL;
1873 
1874 	ksm_thread_sleep_millisecs = msecs;
1875 
1876 	return count;
1877 }
1878 KSM_ATTR(sleep_millisecs);
1879 
1880 static ssize_t pages_to_scan_show(struct kobject *kobj,
1881 				  struct kobj_attribute *attr, char *buf)
1882 {
1883 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1884 }
1885 
1886 static ssize_t pages_to_scan_store(struct kobject *kobj,
1887 				   struct kobj_attribute *attr,
1888 				   const char *buf, size_t count)
1889 {
1890 	int err;
1891 	unsigned long nr_pages;
1892 
1893 	err = strict_strtoul(buf, 10, &nr_pages);
1894 	if (err || nr_pages > UINT_MAX)
1895 		return -EINVAL;
1896 
1897 	ksm_thread_pages_to_scan = nr_pages;
1898 
1899 	return count;
1900 }
1901 KSM_ATTR(pages_to_scan);
1902 
1903 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1904 			char *buf)
1905 {
1906 	return sprintf(buf, "%u\n", ksm_run);
1907 }
1908 
1909 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1910 			 const char *buf, size_t count)
1911 {
1912 	int err;
1913 	unsigned long flags;
1914 
1915 	err = strict_strtoul(buf, 10, &flags);
1916 	if (err || flags > UINT_MAX)
1917 		return -EINVAL;
1918 	if (flags > KSM_RUN_UNMERGE)
1919 		return -EINVAL;
1920 
1921 	/*
1922 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1923 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1924 	 * breaking COW to free the pages_shared (but leaves mm_slots
1925 	 * on the list for when ksmd may be set running again).
1926 	 */
1927 
1928 	mutex_lock(&ksm_thread_mutex);
1929 	if (ksm_run != flags) {
1930 		ksm_run = flags;
1931 		if (flags & KSM_RUN_UNMERGE) {
1932 			int oom_score_adj;
1933 
1934 			oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1935 			err = unmerge_and_remove_all_rmap_items();
1936 			compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX,
1937 								oom_score_adj);
1938 			if (err) {
1939 				ksm_run = KSM_RUN_STOP;
1940 				count = err;
1941 			}
1942 		}
1943 	}
1944 	mutex_unlock(&ksm_thread_mutex);
1945 
1946 	if (flags & KSM_RUN_MERGE)
1947 		wake_up_interruptible(&ksm_thread_wait);
1948 
1949 	return count;
1950 }
1951 KSM_ATTR(run);
1952 
1953 static ssize_t pages_shared_show(struct kobject *kobj,
1954 				 struct kobj_attribute *attr, char *buf)
1955 {
1956 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1957 }
1958 KSM_ATTR_RO(pages_shared);
1959 
1960 static ssize_t pages_sharing_show(struct kobject *kobj,
1961 				  struct kobj_attribute *attr, char *buf)
1962 {
1963 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1964 }
1965 KSM_ATTR_RO(pages_sharing);
1966 
1967 static ssize_t pages_unshared_show(struct kobject *kobj,
1968 				   struct kobj_attribute *attr, char *buf)
1969 {
1970 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1971 }
1972 KSM_ATTR_RO(pages_unshared);
1973 
1974 static ssize_t pages_volatile_show(struct kobject *kobj,
1975 				   struct kobj_attribute *attr, char *buf)
1976 {
1977 	long ksm_pages_volatile;
1978 
1979 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1980 				- ksm_pages_sharing - ksm_pages_unshared;
1981 	/*
1982 	 * It was not worth any locking to calculate that statistic,
1983 	 * but it might therefore sometimes be negative: conceal that.
1984 	 */
1985 	if (ksm_pages_volatile < 0)
1986 		ksm_pages_volatile = 0;
1987 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1988 }
1989 KSM_ATTR_RO(pages_volatile);
1990 
1991 static ssize_t full_scans_show(struct kobject *kobj,
1992 			       struct kobj_attribute *attr, char *buf)
1993 {
1994 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1995 }
1996 KSM_ATTR_RO(full_scans);
1997 
1998 static struct attribute *ksm_attrs[] = {
1999 	&sleep_millisecs_attr.attr,
2000 	&pages_to_scan_attr.attr,
2001 	&run_attr.attr,
2002 	&pages_shared_attr.attr,
2003 	&pages_sharing_attr.attr,
2004 	&pages_unshared_attr.attr,
2005 	&pages_volatile_attr.attr,
2006 	&full_scans_attr.attr,
2007 	NULL,
2008 };
2009 
2010 static struct attribute_group ksm_attr_group = {
2011 	.attrs = ksm_attrs,
2012 	.name = "ksm",
2013 };
2014 #endif /* CONFIG_SYSFS */
2015 
2016 static int __init ksm_init(void)
2017 {
2018 	struct task_struct *ksm_thread;
2019 	int err;
2020 
2021 	err = ksm_slab_init();
2022 	if (err)
2023 		goto out;
2024 
2025 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2026 	if (IS_ERR(ksm_thread)) {
2027 		printk(KERN_ERR "ksm: creating kthread failed\n");
2028 		err = PTR_ERR(ksm_thread);
2029 		goto out_free;
2030 	}
2031 
2032 #ifdef CONFIG_SYSFS
2033 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2034 	if (err) {
2035 		printk(KERN_ERR "ksm: register sysfs failed\n");
2036 		kthread_stop(ksm_thread);
2037 		goto out_free;
2038 	}
2039 #else
2040 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2041 
2042 #endif /* CONFIG_SYSFS */
2043 
2044 #ifdef CONFIG_MEMORY_HOTREMOVE
2045 	/*
2046 	 * Choose a high priority since the callback takes ksm_thread_mutex:
2047 	 * later callbacks could only be taking locks which nest within that.
2048 	 */
2049 	hotplug_memory_notifier(ksm_memory_callback, 100);
2050 #endif
2051 	return 0;
2052 
2053 out_free:
2054 	ksm_slab_free();
2055 out:
2056 	return err;
2057 }
2058 module_init(ksm_init)
2059