xref: /openbmc/linux/mm/ksm.c (revision 7d9e5f422150ed00de744e02a80734d74cc9704d)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Memory merging support.
4   *
5   * This code enables dynamic sharing of identical pages found in different
6   * memory areas, even if they are not shared by fork()
7   *
8   * Copyright (C) 2008-2009 Red Hat, Inc.
9   * Authors:
10   *	Izik Eidus
11   *	Andrea Arcangeli
12   *	Chris Wright
13   *	Hugh Dickins
14   */
15  
16  #include <linux/errno.h>
17  #include <linux/mm.h>
18  #include <linux/fs.h>
19  #include <linux/mman.h>
20  #include <linux/sched.h>
21  #include <linux/sched/mm.h>
22  #include <linux/sched/coredump.h>
23  #include <linux/rwsem.h>
24  #include <linux/pagemap.h>
25  #include <linux/rmap.h>
26  #include <linux/spinlock.h>
27  #include <linux/xxhash.h>
28  #include <linux/delay.h>
29  #include <linux/kthread.h>
30  #include <linux/wait.h>
31  #include <linux/slab.h>
32  #include <linux/rbtree.h>
33  #include <linux/memory.h>
34  #include <linux/mmu_notifier.h>
35  #include <linux/swap.h>
36  #include <linux/ksm.h>
37  #include <linux/hashtable.h>
38  #include <linux/freezer.h>
39  #include <linux/oom.h>
40  #include <linux/numa.h>
41  
42  #include <asm/tlbflush.h>
43  #include "internal.h"
44  
45  #ifdef CONFIG_NUMA
46  #define NUMA(x)		(x)
47  #define DO_NUMA(x)	do { (x); } while (0)
48  #else
49  #define NUMA(x)		(0)
50  #define DO_NUMA(x)	do { } while (0)
51  #endif
52  
53  /**
54   * DOC: Overview
55   *
56   * A few notes about the KSM scanning process,
57   * to make it easier to understand the data structures below:
58   *
59   * In order to reduce excessive scanning, KSM sorts the memory pages by their
60   * contents into a data structure that holds pointers to the pages' locations.
61   *
62   * Since the contents of the pages may change at any moment, KSM cannot just
63   * insert the pages into a normal sorted tree and expect it to find anything.
64   * Therefore KSM uses two data structures - the stable and the unstable tree.
65   *
66   * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67   * by their contents.  Because each such page is write-protected, searching on
68   * this tree is fully assured to be working (except when pages are unmapped),
69   * and therefore this tree is called the stable tree.
70   *
71   * The stable tree node includes information required for reverse
72   * mapping from a KSM page to virtual addresses that map this page.
73   *
74   * In order to avoid large latencies of the rmap walks on KSM pages,
75   * KSM maintains two types of nodes in the stable tree:
76   *
77   * * the regular nodes that keep the reverse mapping structures in a
78   *   linked list
79   * * the "chains" that link nodes ("dups") that represent the same
80   *   write protected memory content, but each "dup" corresponds to a
81   *   different KSM page copy of that content
82   *
83   * Internally, the regular nodes, "dups" and "chains" are represented
84   * using the same :c:type:`struct stable_node` structure.
85   *
86   * In addition to the stable tree, KSM uses a second data structure called the
87   * unstable tree: this tree holds pointers to pages which have been found to
88   * be "unchanged for a period of time".  The unstable tree sorts these pages
89   * by their contents, but since they are not write-protected, KSM cannot rely
90   * upon the unstable tree to work correctly - the unstable tree is liable to
91   * be corrupted as its contents are modified, and so it is called unstable.
92   *
93   * KSM solves this problem by several techniques:
94   *
95   * 1) The unstable tree is flushed every time KSM completes scanning all
96   *    memory areas, and then the tree is rebuilt again from the beginning.
97   * 2) KSM will only insert into the unstable tree, pages whose hash value
98   *    has not changed since the previous scan of all memory areas.
99   * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100   *    colors of the nodes and not on their contents, assuring that even when
101   *    the tree gets "corrupted" it won't get out of balance, so scanning time
102   *    remains the same (also, searching and inserting nodes in an rbtree uses
103   *    the same algorithm, so we have no overhead when we flush and rebuild).
104   * 4) KSM never flushes the stable tree, which means that even if it were to
105   *    take 10 attempts to find a page in the unstable tree, once it is found,
106   *    it is secured in the stable tree.  (When we scan a new page, we first
107   *    compare it against the stable tree, and then against the unstable tree.)
108   *
109   * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110   * stable trees and multiple unstable trees: one of each for each NUMA node.
111   */
112  
113  /**
114   * struct mm_slot - ksm information per mm that is being scanned
115   * @link: link to the mm_slots hash list
116   * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117   * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118   * @mm: the mm that this information is valid for
119   */
120  struct mm_slot {
121  	struct hlist_node link;
122  	struct list_head mm_list;
123  	struct rmap_item *rmap_list;
124  	struct mm_struct *mm;
125  };
126  
127  /**
128   * struct ksm_scan - cursor for scanning
129   * @mm_slot: the current mm_slot we are scanning
130   * @address: the next address inside that to be scanned
131   * @rmap_list: link to the next rmap to be scanned in the rmap_list
132   * @seqnr: count of completed full scans (needed when removing unstable node)
133   *
134   * There is only the one ksm_scan instance of this cursor structure.
135   */
136  struct ksm_scan {
137  	struct mm_slot *mm_slot;
138  	unsigned long address;
139  	struct rmap_item **rmap_list;
140  	unsigned long seqnr;
141  };
142  
143  /**
144   * struct stable_node - node of the stable rbtree
145   * @node: rb node of this ksm page in the stable tree
146   * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147   * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148   * @list: linked into migrate_nodes, pending placement in the proper node tree
149   * @hlist: hlist head of rmap_items using this ksm page
150   * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151   * @chain_prune_time: time of the last full garbage collection
152   * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153   * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154   */
155  struct stable_node {
156  	union {
157  		struct rb_node node;	/* when node of stable tree */
158  		struct {		/* when listed for migration */
159  			struct list_head *head;
160  			struct {
161  				struct hlist_node hlist_dup;
162  				struct list_head list;
163  			};
164  		};
165  	};
166  	struct hlist_head hlist;
167  	union {
168  		unsigned long kpfn;
169  		unsigned long chain_prune_time;
170  	};
171  	/*
172  	 * STABLE_NODE_CHAIN can be any negative number in
173  	 * rmap_hlist_len negative range, but better not -1 to be able
174  	 * to reliably detect underflows.
175  	 */
176  #define STABLE_NODE_CHAIN -1024
177  	int rmap_hlist_len;
178  #ifdef CONFIG_NUMA
179  	int nid;
180  #endif
181  };
182  
183  /**
184   * struct rmap_item - reverse mapping item for virtual addresses
185   * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186   * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187   * @nid: NUMA node id of unstable tree in which linked (may not match page)
188   * @mm: the memory structure this rmap_item is pointing into
189   * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190   * @oldchecksum: previous checksum of the page at that virtual address
191   * @node: rb node of this rmap_item in the unstable tree
192   * @head: pointer to stable_node heading this list in the stable tree
193   * @hlist: link into hlist of rmap_items hanging off that stable_node
194   */
195  struct rmap_item {
196  	struct rmap_item *rmap_list;
197  	union {
198  		struct anon_vma *anon_vma;	/* when stable */
199  #ifdef CONFIG_NUMA
200  		int nid;		/* when node of unstable tree */
201  #endif
202  	};
203  	struct mm_struct *mm;
204  	unsigned long address;		/* + low bits used for flags below */
205  	unsigned int oldchecksum;	/* when unstable */
206  	union {
207  		struct rb_node node;	/* when node of unstable tree */
208  		struct {		/* when listed from stable tree */
209  			struct stable_node *head;
210  			struct hlist_node hlist;
211  		};
212  	};
213  };
214  
215  #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
216  #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
217  #define STABLE_FLAG	0x200	/* is listed from the stable tree */
218  #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
219  				/* to mask all the flags */
220  
221  /* The stable and unstable tree heads */
222  static struct rb_root one_stable_tree[1] = { RB_ROOT };
223  static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224  static struct rb_root *root_stable_tree = one_stable_tree;
225  static struct rb_root *root_unstable_tree = one_unstable_tree;
226  
227  /* Recently migrated nodes of stable tree, pending proper placement */
228  static LIST_HEAD(migrate_nodes);
229  #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230  
231  #define MM_SLOTS_HASH_BITS 10
232  static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233  
234  static struct mm_slot ksm_mm_head = {
235  	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
236  };
237  static struct ksm_scan ksm_scan = {
238  	.mm_slot = &ksm_mm_head,
239  };
240  
241  static struct kmem_cache *rmap_item_cache;
242  static struct kmem_cache *stable_node_cache;
243  static struct kmem_cache *mm_slot_cache;
244  
245  /* The number of nodes in the stable tree */
246  static unsigned long ksm_pages_shared;
247  
248  /* The number of page slots additionally sharing those nodes */
249  static unsigned long ksm_pages_sharing;
250  
251  /* The number of nodes in the unstable tree */
252  static unsigned long ksm_pages_unshared;
253  
254  /* The number of rmap_items in use: to calculate pages_volatile */
255  static unsigned long ksm_rmap_items;
256  
257  /* The number of stable_node chains */
258  static unsigned long ksm_stable_node_chains;
259  
260  /* The number of stable_node dups linked to the stable_node chains */
261  static unsigned long ksm_stable_node_dups;
262  
263  /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264  static int ksm_stable_node_chains_prune_millisecs = 2000;
265  
266  /* Maximum number of page slots sharing a stable node */
267  static int ksm_max_page_sharing = 256;
268  
269  /* Number of pages ksmd should scan in one batch */
270  static unsigned int ksm_thread_pages_to_scan = 100;
271  
272  /* Milliseconds ksmd should sleep between batches */
273  static unsigned int ksm_thread_sleep_millisecs = 20;
274  
275  /* Checksum of an empty (zeroed) page */
276  static unsigned int zero_checksum __read_mostly;
277  
278  /* Whether to merge empty (zeroed) pages with actual zero pages */
279  static bool ksm_use_zero_pages __read_mostly;
280  
281  #ifdef CONFIG_NUMA
282  /* Zeroed when merging across nodes is not allowed */
283  static unsigned int ksm_merge_across_nodes = 1;
284  static int ksm_nr_node_ids = 1;
285  #else
286  #define ksm_merge_across_nodes	1U
287  #define ksm_nr_node_ids		1
288  #endif
289  
290  #define KSM_RUN_STOP	0
291  #define KSM_RUN_MERGE	1
292  #define KSM_RUN_UNMERGE	2
293  #define KSM_RUN_OFFLINE	4
294  static unsigned long ksm_run = KSM_RUN_STOP;
295  static void wait_while_offlining(void);
296  
297  static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298  static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299  static DEFINE_MUTEX(ksm_thread_mutex);
300  static DEFINE_SPINLOCK(ksm_mmlist_lock);
301  
302  #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303  		sizeof(struct __struct), __alignof__(struct __struct),\
304  		(__flags), NULL)
305  
306  static int __init ksm_slab_init(void)
307  {
308  	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
309  	if (!rmap_item_cache)
310  		goto out;
311  
312  	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
313  	if (!stable_node_cache)
314  		goto out_free1;
315  
316  	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
317  	if (!mm_slot_cache)
318  		goto out_free2;
319  
320  	return 0;
321  
322  out_free2:
323  	kmem_cache_destroy(stable_node_cache);
324  out_free1:
325  	kmem_cache_destroy(rmap_item_cache);
326  out:
327  	return -ENOMEM;
328  }
329  
330  static void __init ksm_slab_free(void)
331  {
332  	kmem_cache_destroy(mm_slot_cache);
333  	kmem_cache_destroy(stable_node_cache);
334  	kmem_cache_destroy(rmap_item_cache);
335  	mm_slot_cache = NULL;
336  }
337  
338  static __always_inline bool is_stable_node_chain(struct stable_node *chain)
339  {
340  	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341  }
342  
343  static __always_inline bool is_stable_node_dup(struct stable_node *dup)
344  {
345  	return dup->head == STABLE_NODE_DUP_HEAD;
346  }
347  
348  static inline void stable_node_chain_add_dup(struct stable_node *dup,
349  					     struct stable_node *chain)
350  {
351  	VM_BUG_ON(is_stable_node_dup(dup));
352  	dup->head = STABLE_NODE_DUP_HEAD;
353  	VM_BUG_ON(!is_stable_node_chain(chain));
354  	hlist_add_head(&dup->hlist_dup, &chain->hlist);
355  	ksm_stable_node_dups++;
356  }
357  
358  static inline void __stable_node_dup_del(struct stable_node *dup)
359  {
360  	VM_BUG_ON(!is_stable_node_dup(dup));
361  	hlist_del(&dup->hlist_dup);
362  	ksm_stable_node_dups--;
363  }
364  
365  static inline void stable_node_dup_del(struct stable_node *dup)
366  {
367  	VM_BUG_ON(is_stable_node_chain(dup));
368  	if (is_stable_node_dup(dup))
369  		__stable_node_dup_del(dup);
370  	else
371  		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372  #ifdef CONFIG_DEBUG_VM
373  	dup->head = NULL;
374  #endif
375  }
376  
377  static inline struct rmap_item *alloc_rmap_item(void)
378  {
379  	struct rmap_item *rmap_item;
380  
381  	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382  						__GFP_NORETRY | __GFP_NOWARN);
383  	if (rmap_item)
384  		ksm_rmap_items++;
385  	return rmap_item;
386  }
387  
388  static inline void free_rmap_item(struct rmap_item *rmap_item)
389  {
390  	ksm_rmap_items--;
391  	rmap_item->mm = NULL;	/* debug safety */
392  	kmem_cache_free(rmap_item_cache, rmap_item);
393  }
394  
395  static inline struct stable_node *alloc_stable_node(void)
396  {
397  	/*
398  	 * The allocation can take too long with GFP_KERNEL when memory is under
399  	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
400  	 * grants access to memory reserves, helping to avoid this problem.
401  	 */
402  	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
403  }
404  
405  static inline void free_stable_node(struct stable_node *stable_node)
406  {
407  	VM_BUG_ON(stable_node->rmap_hlist_len &&
408  		  !is_stable_node_chain(stable_node));
409  	kmem_cache_free(stable_node_cache, stable_node);
410  }
411  
412  static inline struct mm_slot *alloc_mm_slot(void)
413  {
414  	if (!mm_slot_cache)	/* initialization failed */
415  		return NULL;
416  	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
417  }
418  
419  static inline void free_mm_slot(struct mm_slot *mm_slot)
420  {
421  	kmem_cache_free(mm_slot_cache, mm_slot);
422  }
423  
424  static struct mm_slot *get_mm_slot(struct mm_struct *mm)
425  {
426  	struct mm_slot *slot;
427  
428  	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
429  		if (slot->mm == mm)
430  			return slot;
431  
432  	return NULL;
433  }
434  
435  static void insert_to_mm_slots_hash(struct mm_struct *mm,
436  				    struct mm_slot *mm_slot)
437  {
438  	mm_slot->mm = mm;
439  	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
440  }
441  
442  /*
443   * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444   * page tables after it has passed through ksm_exit() - which, if necessary,
445   * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
446   * a special flag: they can just back out as soon as mm_users goes to zero.
447   * ksm_test_exit() is used throughout to make this test for exit: in some
448   * places for correctness, in some places just to avoid unnecessary work.
449   */
450  static inline bool ksm_test_exit(struct mm_struct *mm)
451  {
452  	return atomic_read(&mm->mm_users) == 0;
453  }
454  
455  /*
456   * We use break_ksm to break COW on a ksm page: it's a stripped down
457   *
458   *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
459   *		put_page(page);
460   *
461   * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462   * in case the application has unmapped and remapped mm,addr meanwhile.
463   * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
464   * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
465   *
466   * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467   * of the process that owns 'vma'.  We also do not want to enforce
468   * protection keys here anyway.
469   */
470  static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
471  {
472  	struct page *page;
473  	vm_fault_t ret = 0;
474  
475  	do {
476  		cond_resched();
477  		page = follow_page(vma, addr,
478  				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
479  		if (IS_ERR_OR_NULL(page))
480  			break;
481  		if (PageKsm(page))
482  			ret = handle_mm_fault(vma, addr,
483  					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
484  		else
485  			ret = VM_FAULT_WRITE;
486  		put_page(page);
487  	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488  	/*
489  	 * We must loop because handle_mm_fault() may back out if there's
490  	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491  	 *
492  	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493  	 * COW has been broken, even if the vma does not permit VM_WRITE;
494  	 * but note that a concurrent fault might break PageKsm for us.
495  	 *
496  	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497  	 * backing file, which also invalidates anonymous pages: that's
498  	 * okay, that truncation will have unmapped the PageKsm for us.
499  	 *
500  	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501  	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502  	 * current task has TIF_MEMDIE set, and will be OOM killed on return
503  	 * to user; and ksmd, having no mm, would never be chosen for that.
504  	 *
505  	 * But if the mm is in a limited mem_cgroup, then the fault may fail
506  	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507  	 * even ksmd can fail in this way - though it's usually breaking ksm
508  	 * just to undo a merge it made a moment before, so unlikely to oom.
509  	 *
510  	 * That's a pity: we might therefore have more kernel pages allocated
511  	 * than we're counting as nodes in the stable tree; but ksm_do_scan
512  	 * will retry to break_cow on each pass, so should recover the page
513  	 * in due course.  The important thing is to not let VM_MERGEABLE
514  	 * be cleared while any such pages might remain in the area.
515  	 */
516  	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517  }
518  
519  static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520  		unsigned long addr)
521  {
522  	struct vm_area_struct *vma;
523  	if (ksm_test_exit(mm))
524  		return NULL;
525  	vma = find_vma(mm, addr);
526  	if (!vma || vma->vm_start > addr)
527  		return NULL;
528  	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
529  		return NULL;
530  	return vma;
531  }
532  
533  static void break_cow(struct rmap_item *rmap_item)
534  {
535  	struct mm_struct *mm = rmap_item->mm;
536  	unsigned long addr = rmap_item->address;
537  	struct vm_area_struct *vma;
538  
539  	/*
540  	 * It is not an accident that whenever we want to break COW
541  	 * to undo, we also need to drop a reference to the anon_vma.
542  	 */
543  	put_anon_vma(rmap_item->anon_vma);
544  
545  	down_read(&mm->mmap_sem);
546  	vma = find_mergeable_vma(mm, addr);
547  	if (vma)
548  		break_ksm(vma, addr);
549  	up_read(&mm->mmap_sem);
550  }
551  
552  static struct page *get_mergeable_page(struct rmap_item *rmap_item)
553  {
554  	struct mm_struct *mm = rmap_item->mm;
555  	unsigned long addr = rmap_item->address;
556  	struct vm_area_struct *vma;
557  	struct page *page;
558  
559  	down_read(&mm->mmap_sem);
560  	vma = find_mergeable_vma(mm, addr);
561  	if (!vma)
562  		goto out;
563  
564  	page = follow_page(vma, addr, FOLL_GET);
565  	if (IS_ERR_OR_NULL(page))
566  		goto out;
567  	if (PageAnon(page)) {
568  		flush_anon_page(vma, page, addr);
569  		flush_dcache_page(page);
570  	} else {
571  		put_page(page);
572  out:
573  		page = NULL;
574  	}
575  	up_read(&mm->mmap_sem);
576  	return page;
577  }
578  
579  /*
580   * This helper is used for getting right index into array of tree roots.
581   * When merge_across_nodes knob is set to 1, there are only two rb-trees for
582   * stable and unstable pages from all nodes with roots in index 0. Otherwise,
583   * every node has its own stable and unstable tree.
584   */
585  static inline int get_kpfn_nid(unsigned long kpfn)
586  {
587  	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
588  }
589  
590  static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
591  						   struct rb_root *root)
592  {
593  	struct stable_node *chain = alloc_stable_node();
594  	VM_BUG_ON(is_stable_node_chain(dup));
595  	if (likely(chain)) {
596  		INIT_HLIST_HEAD(&chain->hlist);
597  		chain->chain_prune_time = jiffies;
598  		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
599  #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
600  		chain->nid = NUMA_NO_NODE; /* debug */
601  #endif
602  		ksm_stable_node_chains++;
603  
604  		/*
605  		 * Put the stable node chain in the first dimension of
606  		 * the stable tree and at the same time remove the old
607  		 * stable node.
608  		 */
609  		rb_replace_node(&dup->node, &chain->node, root);
610  
611  		/*
612  		 * Move the old stable node to the second dimension
613  		 * queued in the hlist_dup. The invariant is that all
614  		 * dup stable_nodes in the chain->hlist point to pages
615  		 * that are wrprotected and have the exact same
616  		 * content.
617  		 */
618  		stable_node_chain_add_dup(dup, chain);
619  	}
620  	return chain;
621  }
622  
623  static inline void free_stable_node_chain(struct stable_node *chain,
624  					  struct rb_root *root)
625  {
626  	rb_erase(&chain->node, root);
627  	free_stable_node(chain);
628  	ksm_stable_node_chains--;
629  }
630  
631  static void remove_node_from_stable_tree(struct stable_node *stable_node)
632  {
633  	struct rmap_item *rmap_item;
634  
635  	/* check it's not STABLE_NODE_CHAIN or negative */
636  	BUG_ON(stable_node->rmap_hlist_len < 0);
637  
638  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
639  		if (rmap_item->hlist.next)
640  			ksm_pages_sharing--;
641  		else
642  			ksm_pages_shared--;
643  		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644  		stable_node->rmap_hlist_len--;
645  		put_anon_vma(rmap_item->anon_vma);
646  		rmap_item->address &= PAGE_MASK;
647  		cond_resched();
648  	}
649  
650  	/*
651  	 * We need the second aligned pointer of the migrate_nodes
652  	 * list_head to stay clear from the rb_parent_color union
653  	 * (aligned and different than any node) and also different
654  	 * from &migrate_nodes. This will verify that future list.h changes
655  	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
656  	 */
657  #if defined(GCC_VERSION) && GCC_VERSION >= 40903
658  	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659  	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660  #endif
661  
662  	if (stable_node->head == &migrate_nodes)
663  		list_del(&stable_node->list);
664  	else
665  		stable_node_dup_del(stable_node);
666  	free_stable_node(stable_node);
667  }
668  
669  enum get_ksm_page_flags {
670  	GET_KSM_PAGE_NOLOCK,
671  	GET_KSM_PAGE_LOCK,
672  	GET_KSM_PAGE_TRYLOCK
673  };
674  
675  /*
676   * get_ksm_page: checks if the page indicated by the stable node
677   * is still its ksm page, despite having held no reference to it.
678   * In which case we can trust the content of the page, and it
679   * returns the gotten page; but if the page has now been zapped,
680   * remove the stale node from the stable tree and return NULL.
681   * But beware, the stable node's page might be being migrated.
682   *
683   * You would expect the stable_node to hold a reference to the ksm page.
684   * But if it increments the page's count, swapping out has to wait for
685   * ksmd to come around again before it can free the page, which may take
686   * seconds or even minutes: much too unresponsive.  So instead we use a
687   * "keyhole reference": access to the ksm page from the stable node peeps
688   * out through its keyhole to see if that page still holds the right key,
689   * pointing back to this stable node.  This relies on freeing a PageAnon
690   * page to reset its page->mapping to NULL, and relies on no other use of
691   * a page to put something that might look like our key in page->mapping.
692   * is on its way to being freed; but it is an anomaly to bear in mind.
693   */
694  static struct page *get_ksm_page(struct stable_node *stable_node,
695  				 enum get_ksm_page_flags flags)
696  {
697  	struct page *page;
698  	void *expected_mapping;
699  	unsigned long kpfn;
700  
701  	expected_mapping = (void *)((unsigned long)stable_node |
702  					PAGE_MAPPING_KSM);
703  again:
704  	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
705  	page = pfn_to_page(kpfn);
706  	if (READ_ONCE(page->mapping) != expected_mapping)
707  		goto stale;
708  
709  	/*
710  	 * We cannot do anything with the page while its refcount is 0.
711  	 * Usually 0 means free, or tail of a higher-order page: in which
712  	 * case this node is no longer referenced, and should be freed;
713  	 * however, it might mean that the page is under page_ref_freeze().
714  	 * The __remove_mapping() case is easy, again the node is now stale;
715  	 * the same is in reuse_ksm_page() case; but if page is swapcache
716  	 * in migrate_page_move_mapping(), it might still be our page,
717  	 * in which case it's essential to keep the node.
718  	 */
719  	while (!get_page_unless_zero(page)) {
720  		/*
721  		 * Another check for page->mapping != expected_mapping would
722  		 * work here too.  We have chosen the !PageSwapCache test to
723  		 * optimize the common case, when the page is or is about to
724  		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
725  		 * in the ref_freeze section of __remove_mapping(); but Anon
726  		 * page->mapping reset to NULL later, in free_pages_prepare().
727  		 */
728  		if (!PageSwapCache(page))
729  			goto stale;
730  		cpu_relax();
731  	}
732  
733  	if (READ_ONCE(page->mapping) != expected_mapping) {
734  		put_page(page);
735  		goto stale;
736  	}
737  
738  	if (flags == GET_KSM_PAGE_TRYLOCK) {
739  		if (!trylock_page(page)) {
740  			put_page(page);
741  			return ERR_PTR(-EBUSY);
742  		}
743  	} else if (flags == GET_KSM_PAGE_LOCK)
744  		lock_page(page);
745  
746  	if (flags != GET_KSM_PAGE_NOLOCK) {
747  		if (READ_ONCE(page->mapping) != expected_mapping) {
748  			unlock_page(page);
749  			put_page(page);
750  			goto stale;
751  		}
752  	}
753  	return page;
754  
755  stale:
756  	/*
757  	 * We come here from above when page->mapping or !PageSwapCache
758  	 * suggests that the node is stale; but it might be under migration.
759  	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
760  	 * before checking whether node->kpfn has been changed.
761  	 */
762  	smp_rmb();
763  	if (READ_ONCE(stable_node->kpfn) != kpfn)
764  		goto again;
765  	remove_node_from_stable_tree(stable_node);
766  	return NULL;
767  }
768  
769  /*
770   * Removing rmap_item from stable or unstable tree.
771   * This function will clean the information from the stable/unstable tree.
772   */
773  static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
774  {
775  	if (rmap_item->address & STABLE_FLAG) {
776  		struct stable_node *stable_node;
777  		struct page *page;
778  
779  		stable_node = rmap_item->head;
780  		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
781  		if (!page)
782  			goto out;
783  
784  		hlist_del(&rmap_item->hlist);
785  		unlock_page(page);
786  		put_page(page);
787  
788  		if (!hlist_empty(&stable_node->hlist))
789  			ksm_pages_sharing--;
790  		else
791  			ksm_pages_shared--;
792  		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
793  		stable_node->rmap_hlist_len--;
794  
795  		put_anon_vma(rmap_item->anon_vma);
796  		rmap_item->address &= PAGE_MASK;
797  
798  	} else if (rmap_item->address & UNSTABLE_FLAG) {
799  		unsigned char age;
800  		/*
801  		 * Usually ksmd can and must skip the rb_erase, because
802  		 * root_unstable_tree was already reset to RB_ROOT.
803  		 * But be careful when an mm is exiting: do the rb_erase
804  		 * if this rmap_item was inserted by this scan, rather
805  		 * than left over from before.
806  		 */
807  		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
808  		BUG_ON(age > 1);
809  		if (!age)
810  			rb_erase(&rmap_item->node,
811  				 root_unstable_tree + NUMA(rmap_item->nid));
812  		ksm_pages_unshared--;
813  		rmap_item->address &= PAGE_MASK;
814  	}
815  out:
816  	cond_resched();		/* we're called from many long loops */
817  }
818  
819  static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
820  				       struct rmap_item **rmap_list)
821  {
822  	while (*rmap_list) {
823  		struct rmap_item *rmap_item = *rmap_list;
824  		*rmap_list = rmap_item->rmap_list;
825  		remove_rmap_item_from_tree(rmap_item);
826  		free_rmap_item(rmap_item);
827  	}
828  }
829  
830  /*
831   * Though it's very tempting to unmerge rmap_items from stable tree rather
832   * than check every pte of a given vma, the locking doesn't quite work for
833   * that - an rmap_item is assigned to the stable tree after inserting ksm
834   * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
835   * rmap_items from parent to child at fork time (so as not to waste time
836   * if exit comes before the next scan reaches it).
837   *
838   * Similarly, although we'd like to remove rmap_items (so updating counts
839   * and freeing memory) when unmerging an area, it's easier to leave that
840   * to the next pass of ksmd - consider, for example, how ksmd might be
841   * in cmp_and_merge_page on one of the rmap_items we would be removing.
842   */
843  static int unmerge_ksm_pages(struct vm_area_struct *vma,
844  			     unsigned long start, unsigned long end)
845  {
846  	unsigned long addr;
847  	int err = 0;
848  
849  	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
850  		if (ksm_test_exit(vma->vm_mm))
851  			break;
852  		if (signal_pending(current))
853  			err = -ERESTARTSYS;
854  		else
855  			err = break_ksm(vma, addr);
856  	}
857  	return err;
858  }
859  
860  static inline struct stable_node *page_stable_node(struct page *page)
861  {
862  	return PageKsm(page) ? page_rmapping(page) : NULL;
863  }
864  
865  static inline void set_page_stable_node(struct page *page,
866  					struct stable_node *stable_node)
867  {
868  	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
869  }
870  
871  #ifdef CONFIG_SYSFS
872  /*
873   * Only called through the sysfs control interface:
874   */
875  static int remove_stable_node(struct stable_node *stable_node)
876  {
877  	struct page *page;
878  	int err;
879  
880  	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
881  	if (!page) {
882  		/*
883  		 * get_ksm_page did remove_node_from_stable_tree itself.
884  		 */
885  		return 0;
886  	}
887  
888  	if (WARN_ON_ONCE(page_mapped(page))) {
889  		/*
890  		 * This should not happen: but if it does, just refuse to let
891  		 * merge_across_nodes be switched - there is no need to panic.
892  		 */
893  		err = -EBUSY;
894  	} else {
895  		/*
896  		 * The stable node did not yet appear stale to get_ksm_page(),
897  		 * since that allows for an unmapped ksm page to be recognized
898  		 * right up until it is freed; but the node is safe to remove.
899  		 * This page might be in a pagevec waiting to be freed,
900  		 * or it might be PageSwapCache (perhaps under writeback),
901  		 * or it might have been removed from swapcache a moment ago.
902  		 */
903  		set_page_stable_node(page, NULL);
904  		remove_node_from_stable_tree(stable_node);
905  		err = 0;
906  	}
907  
908  	unlock_page(page);
909  	put_page(page);
910  	return err;
911  }
912  
913  static int remove_stable_node_chain(struct stable_node *stable_node,
914  				    struct rb_root *root)
915  {
916  	struct stable_node *dup;
917  	struct hlist_node *hlist_safe;
918  
919  	if (!is_stable_node_chain(stable_node)) {
920  		VM_BUG_ON(is_stable_node_dup(stable_node));
921  		if (remove_stable_node(stable_node))
922  			return true;
923  		else
924  			return false;
925  	}
926  
927  	hlist_for_each_entry_safe(dup, hlist_safe,
928  				  &stable_node->hlist, hlist_dup) {
929  		VM_BUG_ON(!is_stable_node_dup(dup));
930  		if (remove_stable_node(dup))
931  			return true;
932  	}
933  	BUG_ON(!hlist_empty(&stable_node->hlist));
934  	free_stable_node_chain(stable_node, root);
935  	return false;
936  }
937  
938  static int remove_all_stable_nodes(void)
939  {
940  	struct stable_node *stable_node, *next;
941  	int nid;
942  	int err = 0;
943  
944  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
945  		while (root_stable_tree[nid].rb_node) {
946  			stable_node = rb_entry(root_stable_tree[nid].rb_node,
947  						struct stable_node, node);
948  			if (remove_stable_node_chain(stable_node,
949  						     root_stable_tree + nid)) {
950  				err = -EBUSY;
951  				break;	/* proceed to next nid */
952  			}
953  			cond_resched();
954  		}
955  	}
956  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
957  		if (remove_stable_node(stable_node))
958  			err = -EBUSY;
959  		cond_resched();
960  	}
961  	return err;
962  }
963  
964  static int unmerge_and_remove_all_rmap_items(void)
965  {
966  	struct mm_slot *mm_slot;
967  	struct mm_struct *mm;
968  	struct vm_area_struct *vma;
969  	int err = 0;
970  
971  	spin_lock(&ksm_mmlist_lock);
972  	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
973  						struct mm_slot, mm_list);
974  	spin_unlock(&ksm_mmlist_lock);
975  
976  	for (mm_slot = ksm_scan.mm_slot;
977  			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
978  		mm = mm_slot->mm;
979  		down_read(&mm->mmap_sem);
980  		for (vma = mm->mmap; vma; vma = vma->vm_next) {
981  			if (ksm_test_exit(mm))
982  				break;
983  			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
984  				continue;
985  			err = unmerge_ksm_pages(vma,
986  						vma->vm_start, vma->vm_end);
987  			if (err)
988  				goto error;
989  		}
990  
991  		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
992  		up_read(&mm->mmap_sem);
993  
994  		spin_lock(&ksm_mmlist_lock);
995  		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
996  						struct mm_slot, mm_list);
997  		if (ksm_test_exit(mm)) {
998  			hash_del(&mm_slot->link);
999  			list_del(&mm_slot->mm_list);
1000  			spin_unlock(&ksm_mmlist_lock);
1001  
1002  			free_mm_slot(mm_slot);
1003  			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1004  			mmdrop(mm);
1005  		} else
1006  			spin_unlock(&ksm_mmlist_lock);
1007  	}
1008  
1009  	/* Clean up stable nodes, but don't worry if some are still busy */
1010  	remove_all_stable_nodes();
1011  	ksm_scan.seqnr = 0;
1012  	return 0;
1013  
1014  error:
1015  	up_read(&mm->mmap_sem);
1016  	spin_lock(&ksm_mmlist_lock);
1017  	ksm_scan.mm_slot = &ksm_mm_head;
1018  	spin_unlock(&ksm_mmlist_lock);
1019  	return err;
1020  }
1021  #endif /* CONFIG_SYSFS */
1022  
1023  static u32 calc_checksum(struct page *page)
1024  {
1025  	u32 checksum;
1026  	void *addr = kmap_atomic(page);
1027  	checksum = xxhash(addr, PAGE_SIZE, 0);
1028  	kunmap_atomic(addr);
1029  	return checksum;
1030  }
1031  
1032  static int memcmp_pages(struct page *page1, struct page *page2)
1033  {
1034  	char *addr1, *addr2;
1035  	int ret;
1036  
1037  	addr1 = kmap_atomic(page1);
1038  	addr2 = kmap_atomic(page2);
1039  	ret = memcmp(addr1, addr2, PAGE_SIZE);
1040  	kunmap_atomic(addr2);
1041  	kunmap_atomic(addr1);
1042  	return ret;
1043  }
1044  
1045  static inline int pages_identical(struct page *page1, struct page *page2)
1046  {
1047  	return !memcmp_pages(page1, page2);
1048  }
1049  
1050  static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1051  			      pte_t *orig_pte)
1052  {
1053  	struct mm_struct *mm = vma->vm_mm;
1054  	struct page_vma_mapped_walk pvmw = {
1055  		.page = page,
1056  		.vma = vma,
1057  	};
1058  	int swapped;
1059  	int err = -EFAULT;
1060  	struct mmu_notifier_range range;
1061  
1062  	pvmw.address = page_address_in_vma(page, vma);
1063  	if (pvmw.address == -EFAULT)
1064  		goto out;
1065  
1066  	BUG_ON(PageTransCompound(page));
1067  
1068  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1069  				pvmw.address,
1070  				pvmw.address + PAGE_SIZE);
1071  	mmu_notifier_invalidate_range_start(&range);
1072  
1073  	if (!page_vma_mapped_walk(&pvmw))
1074  		goto out_mn;
1075  	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1076  		goto out_unlock;
1077  
1078  	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1079  	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1080  						mm_tlb_flush_pending(mm)) {
1081  		pte_t entry;
1082  
1083  		swapped = PageSwapCache(page);
1084  		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1085  		/*
1086  		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1087  		 * take any lock, therefore the check that we are going to make
1088  		 * with the pagecount against the mapcount is racey and
1089  		 * O_DIRECT can happen right after the check.
1090  		 * So we clear the pte and flush the tlb before the check
1091  		 * this assure us that no O_DIRECT can happen after the check
1092  		 * or in the middle of the check.
1093  		 *
1094  		 * No need to notify as we are downgrading page table to read
1095  		 * only not changing it to point to a new page.
1096  		 *
1097  		 * See Documentation/vm/mmu_notifier.rst
1098  		 */
1099  		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1100  		/*
1101  		 * Check that no O_DIRECT or similar I/O is in progress on the
1102  		 * page
1103  		 */
1104  		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1105  			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1106  			goto out_unlock;
1107  		}
1108  		if (pte_dirty(entry))
1109  			set_page_dirty(page);
1110  
1111  		if (pte_protnone(entry))
1112  			entry = pte_mkclean(pte_clear_savedwrite(entry));
1113  		else
1114  			entry = pte_mkclean(pte_wrprotect(entry));
1115  		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1116  	}
1117  	*orig_pte = *pvmw.pte;
1118  	err = 0;
1119  
1120  out_unlock:
1121  	page_vma_mapped_walk_done(&pvmw);
1122  out_mn:
1123  	mmu_notifier_invalidate_range_end(&range);
1124  out:
1125  	return err;
1126  }
1127  
1128  /**
1129   * replace_page - replace page in vma by new ksm page
1130   * @vma:      vma that holds the pte pointing to page
1131   * @page:     the page we are replacing by kpage
1132   * @kpage:    the ksm page we replace page by
1133   * @orig_pte: the original value of the pte
1134   *
1135   * Returns 0 on success, -EFAULT on failure.
1136   */
1137  static int replace_page(struct vm_area_struct *vma, struct page *page,
1138  			struct page *kpage, pte_t orig_pte)
1139  {
1140  	struct mm_struct *mm = vma->vm_mm;
1141  	pmd_t *pmd;
1142  	pte_t *ptep;
1143  	pte_t newpte;
1144  	spinlock_t *ptl;
1145  	unsigned long addr;
1146  	int err = -EFAULT;
1147  	struct mmu_notifier_range range;
1148  
1149  	addr = page_address_in_vma(page, vma);
1150  	if (addr == -EFAULT)
1151  		goto out;
1152  
1153  	pmd = mm_find_pmd(mm, addr);
1154  	if (!pmd)
1155  		goto out;
1156  
1157  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1158  				addr + PAGE_SIZE);
1159  	mmu_notifier_invalidate_range_start(&range);
1160  
1161  	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1162  	if (!pte_same(*ptep, orig_pte)) {
1163  		pte_unmap_unlock(ptep, ptl);
1164  		goto out_mn;
1165  	}
1166  
1167  	/*
1168  	 * No need to check ksm_use_zero_pages here: we can only have a
1169  	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1170  	 */
1171  	if (!is_zero_pfn(page_to_pfn(kpage))) {
1172  		get_page(kpage);
1173  		page_add_anon_rmap(kpage, vma, addr, false);
1174  		newpte = mk_pte(kpage, vma->vm_page_prot);
1175  	} else {
1176  		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1177  					       vma->vm_page_prot));
1178  		/*
1179  		 * We're replacing an anonymous page with a zero page, which is
1180  		 * not anonymous. We need to do proper accounting otherwise we
1181  		 * will get wrong values in /proc, and a BUG message in dmesg
1182  		 * when tearing down the mm.
1183  		 */
1184  		dec_mm_counter(mm, MM_ANONPAGES);
1185  	}
1186  
1187  	flush_cache_page(vma, addr, pte_pfn(*ptep));
1188  	/*
1189  	 * No need to notify as we are replacing a read only page with another
1190  	 * read only page with the same content.
1191  	 *
1192  	 * See Documentation/vm/mmu_notifier.rst
1193  	 */
1194  	ptep_clear_flush(vma, addr, ptep);
1195  	set_pte_at_notify(mm, addr, ptep, newpte);
1196  
1197  	page_remove_rmap(page, false);
1198  	if (!page_mapped(page))
1199  		try_to_free_swap(page);
1200  	put_page(page);
1201  
1202  	pte_unmap_unlock(ptep, ptl);
1203  	err = 0;
1204  out_mn:
1205  	mmu_notifier_invalidate_range_end(&range);
1206  out:
1207  	return err;
1208  }
1209  
1210  /*
1211   * try_to_merge_one_page - take two pages and merge them into one
1212   * @vma: the vma that holds the pte pointing to page
1213   * @page: the PageAnon page that we want to replace with kpage
1214   * @kpage: the PageKsm page that we want to map instead of page,
1215   *         or NULL the first time when we want to use page as kpage.
1216   *
1217   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1218   */
1219  static int try_to_merge_one_page(struct vm_area_struct *vma,
1220  				 struct page *page, struct page *kpage)
1221  {
1222  	pte_t orig_pte = __pte(0);
1223  	int err = -EFAULT;
1224  
1225  	if (page == kpage)			/* ksm page forked */
1226  		return 0;
1227  
1228  	if (!PageAnon(page))
1229  		goto out;
1230  
1231  	/*
1232  	 * We need the page lock to read a stable PageSwapCache in
1233  	 * write_protect_page().  We use trylock_page() instead of
1234  	 * lock_page() because we don't want to wait here - we
1235  	 * prefer to continue scanning and merging different pages,
1236  	 * then come back to this page when it is unlocked.
1237  	 */
1238  	if (!trylock_page(page))
1239  		goto out;
1240  
1241  	if (PageTransCompound(page)) {
1242  		if (split_huge_page(page))
1243  			goto out_unlock;
1244  	}
1245  
1246  	/*
1247  	 * If this anonymous page is mapped only here, its pte may need
1248  	 * to be write-protected.  If it's mapped elsewhere, all of its
1249  	 * ptes are necessarily already write-protected.  But in either
1250  	 * case, we need to lock and check page_count is not raised.
1251  	 */
1252  	if (write_protect_page(vma, page, &orig_pte) == 0) {
1253  		if (!kpage) {
1254  			/*
1255  			 * While we hold page lock, upgrade page from
1256  			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1257  			 * stable_tree_insert() will update stable_node.
1258  			 */
1259  			set_page_stable_node(page, NULL);
1260  			mark_page_accessed(page);
1261  			/*
1262  			 * Page reclaim just frees a clean page with no dirty
1263  			 * ptes: make sure that the ksm page would be swapped.
1264  			 */
1265  			if (!PageDirty(page))
1266  				SetPageDirty(page);
1267  			err = 0;
1268  		} else if (pages_identical(page, kpage))
1269  			err = replace_page(vma, page, kpage, orig_pte);
1270  	}
1271  
1272  	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1273  		munlock_vma_page(page);
1274  		if (!PageMlocked(kpage)) {
1275  			unlock_page(page);
1276  			lock_page(kpage);
1277  			mlock_vma_page(kpage);
1278  			page = kpage;		/* for final unlock */
1279  		}
1280  	}
1281  
1282  out_unlock:
1283  	unlock_page(page);
1284  out:
1285  	return err;
1286  }
1287  
1288  /*
1289   * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1290   * but no new kernel page is allocated: kpage must already be a ksm page.
1291   *
1292   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1293   */
1294  static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1295  				      struct page *page, struct page *kpage)
1296  {
1297  	struct mm_struct *mm = rmap_item->mm;
1298  	struct vm_area_struct *vma;
1299  	int err = -EFAULT;
1300  
1301  	down_read(&mm->mmap_sem);
1302  	vma = find_mergeable_vma(mm, rmap_item->address);
1303  	if (!vma)
1304  		goto out;
1305  
1306  	err = try_to_merge_one_page(vma, page, kpage);
1307  	if (err)
1308  		goto out;
1309  
1310  	/* Unstable nid is in union with stable anon_vma: remove first */
1311  	remove_rmap_item_from_tree(rmap_item);
1312  
1313  	/* Must get reference to anon_vma while still holding mmap_sem */
1314  	rmap_item->anon_vma = vma->anon_vma;
1315  	get_anon_vma(vma->anon_vma);
1316  out:
1317  	up_read(&mm->mmap_sem);
1318  	return err;
1319  }
1320  
1321  /*
1322   * try_to_merge_two_pages - take two identical pages and prepare them
1323   * to be merged into one page.
1324   *
1325   * This function returns the kpage if we successfully merged two identical
1326   * pages into one ksm page, NULL otherwise.
1327   *
1328   * Note that this function upgrades page to ksm page: if one of the pages
1329   * is already a ksm page, try_to_merge_with_ksm_page should be used.
1330   */
1331  static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1332  					   struct page *page,
1333  					   struct rmap_item *tree_rmap_item,
1334  					   struct page *tree_page)
1335  {
1336  	int err;
1337  
1338  	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1339  	if (!err) {
1340  		err = try_to_merge_with_ksm_page(tree_rmap_item,
1341  							tree_page, page);
1342  		/*
1343  		 * If that fails, we have a ksm page with only one pte
1344  		 * pointing to it: so break it.
1345  		 */
1346  		if (err)
1347  			break_cow(rmap_item);
1348  	}
1349  	return err ? NULL : page;
1350  }
1351  
1352  static __always_inline
1353  bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1354  {
1355  	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1356  	/*
1357  	 * Check that at least one mapping still exists, otherwise
1358  	 * there's no much point to merge and share with this
1359  	 * stable_node, as the underlying tree_page of the other
1360  	 * sharer is going to be freed soon.
1361  	 */
1362  	return stable_node->rmap_hlist_len &&
1363  		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1364  }
1365  
1366  static __always_inline
1367  bool is_page_sharing_candidate(struct stable_node *stable_node)
1368  {
1369  	return __is_page_sharing_candidate(stable_node, 0);
1370  }
1371  
1372  static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1373  				    struct stable_node **_stable_node,
1374  				    struct rb_root *root,
1375  				    bool prune_stale_stable_nodes)
1376  {
1377  	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1378  	struct hlist_node *hlist_safe;
1379  	struct page *_tree_page, *tree_page = NULL;
1380  	int nr = 0;
1381  	int found_rmap_hlist_len;
1382  
1383  	if (!prune_stale_stable_nodes ||
1384  	    time_before(jiffies, stable_node->chain_prune_time +
1385  			msecs_to_jiffies(
1386  				ksm_stable_node_chains_prune_millisecs)))
1387  		prune_stale_stable_nodes = false;
1388  	else
1389  		stable_node->chain_prune_time = jiffies;
1390  
1391  	hlist_for_each_entry_safe(dup, hlist_safe,
1392  				  &stable_node->hlist, hlist_dup) {
1393  		cond_resched();
1394  		/*
1395  		 * We must walk all stable_node_dup to prune the stale
1396  		 * stable nodes during lookup.
1397  		 *
1398  		 * get_ksm_page can drop the nodes from the
1399  		 * stable_node->hlist if they point to freed pages
1400  		 * (that's why we do a _safe walk). The "dup"
1401  		 * stable_node parameter itself will be freed from
1402  		 * under us if it returns NULL.
1403  		 */
1404  		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1405  		if (!_tree_page)
1406  			continue;
1407  		nr += 1;
1408  		if (is_page_sharing_candidate(dup)) {
1409  			if (!found ||
1410  			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1411  				if (found)
1412  					put_page(tree_page);
1413  				found = dup;
1414  				found_rmap_hlist_len = found->rmap_hlist_len;
1415  				tree_page = _tree_page;
1416  
1417  				/* skip put_page for found dup */
1418  				if (!prune_stale_stable_nodes)
1419  					break;
1420  				continue;
1421  			}
1422  		}
1423  		put_page(_tree_page);
1424  	}
1425  
1426  	if (found) {
1427  		/*
1428  		 * nr is counting all dups in the chain only if
1429  		 * prune_stale_stable_nodes is true, otherwise we may
1430  		 * break the loop at nr == 1 even if there are
1431  		 * multiple entries.
1432  		 */
1433  		if (prune_stale_stable_nodes && nr == 1) {
1434  			/*
1435  			 * If there's not just one entry it would
1436  			 * corrupt memory, better BUG_ON. In KSM
1437  			 * context with no lock held it's not even
1438  			 * fatal.
1439  			 */
1440  			BUG_ON(stable_node->hlist.first->next);
1441  
1442  			/*
1443  			 * There's just one entry and it is below the
1444  			 * deduplication limit so drop the chain.
1445  			 */
1446  			rb_replace_node(&stable_node->node, &found->node,
1447  					root);
1448  			free_stable_node(stable_node);
1449  			ksm_stable_node_chains--;
1450  			ksm_stable_node_dups--;
1451  			/*
1452  			 * NOTE: the caller depends on the stable_node
1453  			 * to be equal to stable_node_dup if the chain
1454  			 * was collapsed.
1455  			 */
1456  			*_stable_node = found;
1457  			/*
1458  			 * Just for robustneess as stable_node is
1459  			 * otherwise left as a stable pointer, the
1460  			 * compiler shall optimize it away at build
1461  			 * time.
1462  			 */
1463  			stable_node = NULL;
1464  		} else if (stable_node->hlist.first != &found->hlist_dup &&
1465  			   __is_page_sharing_candidate(found, 1)) {
1466  			/*
1467  			 * If the found stable_node dup can accept one
1468  			 * more future merge (in addition to the one
1469  			 * that is underway) and is not at the head of
1470  			 * the chain, put it there so next search will
1471  			 * be quicker in the !prune_stale_stable_nodes
1472  			 * case.
1473  			 *
1474  			 * NOTE: it would be inaccurate to use nr > 1
1475  			 * instead of checking the hlist.first pointer
1476  			 * directly, because in the
1477  			 * prune_stale_stable_nodes case "nr" isn't
1478  			 * the position of the found dup in the chain,
1479  			 * but the total number of dups in the chain.
1480  			 */
1481  			hlist_del(&found->hlist_dup);
1482  			hlist_add_head(&found->hlist_dup,
1483  				       &stable_node->hlist);
1484  		}
1485  	}
1486  
1487  	*_stable_node_dup = found;
1488  	return tree_page;
1489  }
1490  
1491  static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1492  					       struct rb_root *root)
1493  {
1494  	if (!is_stable_node_chain(stable_node))
1495  		return stable_node;
1496  	if (hlist_empty(&stable_node->hlist)) {
1497  		free_stable_node_chain(stable_node, root);
1498  		return NULL;
1499  	}
1500  	return hlist_entry(stable_node->hlist.first,
1501  			   typeof(*stable_node), hlist_dup);
1502  }
1503  
1504  /*
1505   * Like for get_ksm_page, this function can free the *_stable_node and
1506   * *_stable_node_dup if the returned tree_page is NULL.
1507   *
1508   * It can also free and overwrite *_stable_node with the found
1509   * stable_node_dup if the chain is collapsed (in which case
1510   * *_stable_node will be equal to *_stable_node_dup like if the chain
1511   * never existed). It's up to the caller to verify tree_page is not
1512   * NULL before dereferencing *_stable_node or *_stable_node_dup.
1513   *
1514   * *_stable_node_dup is really a second output parameter of this
1515   * function and will be overwritten in all cases, the caller doesn't
1516   * need to initialize it.
1517   */
1518  static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1519  					struct stable_node **_stable_node,
1520  					struct rb_root *root,
1521  					bool prune_stale_stable_nodes)
1522  {
1523  	struct stable_node *stable_node = *_stable_node;
1524  	if (!is_stable_node_chain(stable_node)) {
1525  		if (is_page_sharing_candidate(stable_node)) {
1526  			*_stable_node_dup = stable_node;
1527  			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1528  		}
1529  		/*
1530  		 * _stable_node_dup set to NULL means the stable_node
1531  		 * reached the ksm_max_page_sharing limit.
1532  		 */
1533  		*_stable_node_dup = NULL;
1534  		return NULL;
1535  	}
1536  	return stable_node_dup(_stable_node_dup, _stable_node, root,
1537  			       prune_stale_stable_nodes);
1538  }
1539  
1540  static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1541  						struct stable_node **s_n,
1542  						struct rb_root *root)
1543  {
1544  	return __stable_node_chain(s_n_d, s_n, root, true);
1545  }
1546  
1547  static __always_inline struct page *chain(struct stable_node **s_n_d,
1548  					  struct stable_node *s_n,
1549  					  struct rb_root *root)
1550  {
1551  	struct stable_node *old_stable_node = s_n;
1552  	struct page *tree_page;
1553  
1554  	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1555  	/* not pruning dups so s_n cannot have changed */
1556  	VM_BUG_ON(s_n != old_stable_node);
1557  	return tree_page;
1558  }
1559  
1560  /*
1561   * stable_tree_search - search for page inside the stable tree
1562   *
1563   * This function checks if there is a page inside the stable tree
1564   * with identical content to the page that we are scanning right now.
1565   *
1566   * This function returns the stable tree node of identical content if found,
1567   * NULL otherwise.
1568   */
1569  static struct page *stable_tree_search(struct page *page)
1570  {
1571  	int nid;
1572  	struct rb_root *root;
1573  	struct rb_node **new;
1574  	struct rb_node *parent;
1575  	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1576  	struct stable_node *page_node;
1577  
1578  	page_node = page_stable_node(page);
1579  	if (page_node && page_node->head != &migrate_nodes) {
1580  		/* ksm page forked */
1581  		get_page(page);
1582  		return page;
1583  	}
1584  
1585  	nid = get_kpfn_nid(page_to_pfn(page));
1586  	root = root_stable_tree + nid;
1587  again:
1588  	new = &root->rb_node;
1589  	parent = NULL;
1590  
1591  	while (*new) {
1592  		struct page *tree_page;
1593  		int ret;
1594  
1595  		cond_resched();
1596  		stable_node = rb_entry(*new, struct stable_node, node);
1597  		stable_node_any = NULL;
1598  		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1599  		/*
1600  		 * NOTE: stable_node may have been freed by
1601  		 * chain_prune() if the returned stable_node_dup is
1602  		 * not NULL. stable_node_dup may have been inserted in
1603  		 * the rbtree instead as a regular stable_node (in
1604  		 * order to collapse the stable_node chain if a single
1605  		 * stable_node dup was found in it). In such case the
1606  		 * stable_node is overwritten by the calleee to point
1607  		 * to the stable_node_dup that was collapsed in the
1608  		 * stable rbtree and stable_node will be equal to
1609  		 * stable_node_dup like if the chain never existed.
1610  		 */
1611  		if (!stable_node_dup) {
1612  			/*
1613  			 * Either all stable_node dups were full in
1614  			 * this stable_node chain, or this chain was
1615  			 * empty and should be rb_erased.
1616  			 */
1617  			stable_node_any = stable_node_dup_any(stable_node,
1618  							      root);
1619  			if (!stable_node_any) {
1620  				/* rb_erase just run */
1621  				goto again;
1622  			}
1623  			/*
1624  			 * Take any of the stable_node dups page of
1625  			 * this stable_node chain to let the tree walk
1626  			 * continue. All KSM pages belonging to the
1627  			 * stable_node dups in a stable_node chain
1628  			 * have the same content and they're
1629  			 * wrprotected at all times. Any will work
1630  			 * fine to continue the walk.
1631  			 */
1632  			tree_page = get_ksm_page(stable_node_any,
1633  						 GET_KSM_PAGE_NOLOCK);
1634  		}
1635  		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1636  		if (!tree_page) {
1637  			/*
1638  			 * If we walked over a stale stable_node,
1639  			 * get_ksm_page() will call rb_erase() and it
1640  			 * may rebalance the tree from under us. So
1641  			 * restart the search from scratch. Returning
1642  			 * NULL would be safe too, but we'd generate
1643  			 * false negative insertions just because some
1644  			 * stable_node was stale.
1645  			 */
1646  			goto again;
1647  		}
1648  
1649  		ret = memcmp_pages(page, tree_page);
1650  		put_page(tree_page);
1651  
1652  		parent = *new;
1653  		if (ret < 0)
1654  			new = &parent->rb_left;
1655  		else if (ret > 0)
1656  			new = &parent->rb_right;
1657  		else {
1658  			if (page_node) {
1659  				VM_BUG_ON(page_node->head != &migrate_nodes);
1660  				/*
1661  				 * Test if the migrated page should be merged
1662  				 * into a stable node dup. If the mapcount is
1663  				 * 1 we can migrate it with another KSM page
1664  				 * without adding it to the chain.
1665  				 */
1666  				if (page_mapcount(page) > 1)
1667  					goto chain_append;
1668  			}
1669  
1670  			if (!stable_node_dup) {
1671  				/*
1672  				 * If the stable_node is a chain and
1673  				 * we got a payload match in memcmp
1674  				 * but we cannot merge the scanned
1675  				 * page in any of the existing
1676  				 * stable_node dups because they're
1677  				 * all full, we need to wait the
1678  				 * scanned page to find itself a match
1679  				 * in the unstable tree to create a
1680  				 * brand new KSM page to add later to
1681  				 * the dups of this stable_node.
1682  				 */
1683  				return NULL;
1684  			}
1685  
1686  			/*
1687  			 * Lock and unlock the stable_node's page (which
1688  			 * might already have been migrated) so that page
1689  			 * migration is sure to notice its raised count.
1690  			 * It would be more elegant to return stable_node
1691  			 * than kpage, but that involves more changes.
1692  			 */
1693  			tree_page = get_ksm_page(stable_node_dup,
1694  						 GET_KSM_PAGE_TRYLOCK);
1695  
1696  			if (PTR_ERR(tree_page) == -EBUSY)
1697  				return ERR_PTR(-EBUSY);
1698  
1699  			if (unlikely(!tree_page))
1700  				/*
1701  				 * The tree may have been rebalanced,
1702  				 * so re-evaluate parent and new.
1703  				 */
1704  				goto again;
1705  			unlock_page(tree_page);
1706  
1707  			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1708  			    NUMA(stable_node_dup->nid)) {
1709  				put_page(tree_page);
1710  				goto replace;
1711  			}
1712  			return tree_page;
1713  		}
1714  	}
1715  
1716  	if (!page_node)
1717  		return NULL;
1718  
1719  	list_del(&page_node->list);
1720  	DO_NUMA(page_node->nid = nid);
1721  	rb_link_node(&page_node->node, parent, new);
1722  	rb_insert_color(&page_node->node, root);
1723  out:
1724  	if (is_page_sharing_candidate(page_node)) {
1725  		get_page(page);
1726  		return page;
1727  	} else
1728  		return NULL;
1729  
1730  replace:
1731  	/*
1732  	 * If stable_node was a chain and chain_prune collapsed it,
1733  	 * stable_node has been updated to be the new regular
1734  	 * stable_node. A collapse of the chain is indistinguishable
1735  	 * from the case there was no chain in the stable
1736  	 * rbtree. Otherwise stable_node is the chain and
1737  	 * stable_node_dup is the dup to replace.
1738  	 */
1739  	if (stable_node_dup == stable_node) {
1740  		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1741  		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1742  		/* there is no chain */
1743  		if (page_node) {
1744  			VM_BUG_ON(page_node->head != &migrate_nodes);
1745  			list_del(&page_node->list);
1746  			DO_NUMA(page_node->nid = nid);
1747  			rb_replace_node(&stable_node_dup->node,
1748  					&page_node->node,
1749  					root);
1750  			if (is_page_sharing_candidate(page_node))
1751  				get_page(page);
1752  			else
1753  				page = NULL;
1754  		} else {
1755  			rb_erase(&stable_node_dup->node, root);
1756  			page = NULL;
1757  		}
1758  	} else {
1759  		VM_BUG_ON(!is_stable_node_chain(stable_node));
1760  		__stable_node_dup_del(stable_node_dup);
1761  		if (page_node) {
1762  			VM_BUG_ON(page_node->head != &migrate_nodes);
1763  			list_del(&page_node->list);
1764  			DO_NUMA(page_node->nid = nid);
1765  			stable_node_chain_add_dup(page_node, stable_node);
1766  			if (is_page_sharing_candidate(page_node))
1767  				get_page(page);
1768  			else
1769  				page = NULL;
1770  		} else {
1771  			page = NULL;
1772  		}
1773  	}
1774  	stable_node_dup->head = &migrate_nodes;
1775  	list_add(&stable_node_dup->list, stable_node_dup->head);
1776  	return page;
1777  
1778  chain_append:
1779  	/* stable_node_dup could be null if it reached the limit */
1780  	if (!stable_node_dup)
1781  		stable_node_dup = stable_node_any;
1782  	/*
1783  	 * If stable_node was a chain and chain_prune collapsed it,
1784  	 * stable_node has been updated to be the new regular
1785  	 * stable_node. A collapse of the chain is indistinguishable
1786  	 * from the case there was no chain in the stable
1787  	 * rbtree. Otherwise stable_node is the chain and
1788  	 * stable_node_dup is the dup to replace.
1789  	 */
1790  	if (stable_node_dup == stable_node) {
1791  		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1792  		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1793  		/* chain is missing so create it */
1794  		stable_node = alloc_stable_node_chain(stable_node_dup,
1795  						      root);
1796  		if (!stable_node)
1797  			return NULL;
1798  	}
1799  	/*
1800  	 * Add this stable_node dup that was
1801  	 * migrated to the stable_node chain
1802  	 * of the current nid for this page
1803  	 * content.
1804  	 */
1805  	VM_BUG_ON(!is_stable_node_chain(stable_node));
1806  	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1807  	VM_BUG_ON(page_node->head != &migrate_nodes);
1808  	list_del(&page_node->list);
1809  	DO_NUMA(page_node->nid = nid);
1810  	stable_node_chain_add_dup(page_node, stable_node);
1811  	goto out;
1812  }
1813  
1814  /*
1815   * stable_tree_insert - insert stable tree node pointing to new ksm page
1816   * into the stable tree.
1817   *
1818   * This function returns the stable tree node just allocated on success,
1819   * NULL otherwise.
1820   */
1821  static struct stable_node *stable_tree_insert(struct page *kpage)
1822  {
1823  	int nid;
1824  	unsigned long kpfn;
1825  	struct rb_root *root;
1826  	struct rb_node **new;
1827  	struct rb_node *parent;
1828  	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1829  	bool need_chain = false;
1830  
1831  	kpfn = page_to_pfn(kpage);
1832  	nid = get_kpfn_nid(kpfn);
1833  	root = root_stable_tree + nid;
1834  again:
1835  	parent = NULL;
1836  	new = &root->rb_node;
1837  
1838  	while (*new) {
1839  		struct page *tree_page;
1840  		int ret;
1841  
1842  		cond_resched();
1843  		stable_node = rb_entry(*new, struct stable_node, node);
1844  		stable_node_any = NULL;
1845  		tree_page = chain(&stable_node_dup, stable_node, root);
1846  		if (!stable_node_dup) {
1847  			/*
1848  			 * Either all stable_node dups were full in
1849  			 * this stable_node chain, or this chain was
1850  			 * empty and should be rb_erased.
1851  			 */
1852  			stable_node_any = stable_node_dup_any(stable_node,
1853  							      root);
1854  			if (!stable_node_any) {
1855  				/* rb_erase just run */
1856  				goto again;
1857  			}
1858  			/*
1859  			 * Take any of the stable_node dups page of
1860  			 * this stable_node chain to let the tree walk
1861  			 * continue. All KSM pages belonging to the
1862  			 * stable_node dups in a stable_node chain
1863  			 * have the same content and they're
1864  			 * wrprotected at all times. Any will work
1865  			 * fine to continue the walk.
1866  			 */
1867  			tree_page = get_ksm_page(stable_node_any,
1868  						 GET_KSM_PAGE_NOLOCK);
1869  		}
1870  		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1871  		if (!tree_page) {
1872  			/*
1873  			 * If we walked over a stale stable_node,
1874  			 * get_ksm_page() will call rb_erase() and it
1875  			 * may rebalance the tree from under us. So
1876  			 * restart the search from scratch. Returning
1877  			 * NULL would be safe too, but we'd generate
1878  			 * false negative insertions just because some
1879  			 * stable_node was stale.
1880  			 */
1881  			goto again;
1882  		}
1883  
1884  		ret = memcmp_pages(kpage, tree_page);
1885  		put_page(tree_page);
1886  
1887  		parent = *new;
1888  		if (ret < 0)
1889  			new = &parent->rb_left;
1890  		else if (ret > 0)
1891  			new = &parent->rb_right;
1892  		else {
1893  			need_chain = true;
1894  			break;
1895  		}
1896  	}
1897  
1898  	stable_node_dup = alloc_stable_node();
1899  	if (!stable_node_dup)
1900  		return NULL;
1901  
1902  	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1903  	stable_node_dup->kpfn = kpfn;
1904  	set_page_stable_node(kpage, stable_node_dup);
1905  	stable_node_dup->rmap_hlist_len = 0;
1906  	DO_NUMA(stable_node_dup->nid = nid);
1907  	if (!need_chain) {
1908  		rb_link_node(&stable_node_dup->node, parent, new);
1909  		rb_insert_color(&stable_node_dup->node, root);
1910  	} else {
1911  		if (!is_stable_node_chain(stable_node)) {
1912  			struct stable_node *orig = stable_node;
1913  			/* chain is missing so create it */
1914  			stable_node = alloc_stable_node_chain(orig, root);
1915  			if (!stable_node) {
1916  				free_stable_node(stable_node_dup);
1917  				return NULL;
1918  			}
1919  		}
1920  		stable_node_chain_add_dup(stable_node_dup, stable_node);
1921  	}
1922  
1923  	return stable_node_dup;
1924  }
1925  
1926  /*
1927   * unstable_tree_search_insert - search for identical page,
1928   * else insert rmap_item into the unstable tree.
1929   *
1930   * This function searches for a page in the unstable tree identical to the
1931   * page currently being scanned; and if no identical page is found in the
1932   * tree, we insert rmap_item as a new object into the unstable tree.
1933   *
1934   * This function returns pointer to rmap_item found to be identical
1935   * to the currently scanned page, NULL otherwise.
1936   *
1937   * This function does both searching and inserting, because they share
1938   * the same walking algorithm in an rbtree.
1939   */
1940  static
1941  struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1942  					      struct page *page,
1943  					      struct page **tree_pagep)
1944  {
1945  	struct rb_node **new;
1946  	struct rb_root *root;
1947  	struct rb_node *parent = NULL;
1948  	int nid;
1949  
1950  	nid = get_kpfn_nid(page_to_pfn(page));
1951  	root = root_unstable_tree + nid;
1952  	new = &root->rb_node;
1953  
1954  	while (*new) {
1955  		struct rmap_item *tree_rmap_item;
1956  		struct page *tree_page;
1957  		int ret;
1958  
1959  		cond_resched();
1960  		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1961  		tree_page = get_mergeable_page(tree_rmap_item);
1962  		if (!tree_page)
1963  			return NULL;
1964  
1965  		/*
1966  		 * Don't substitute a ksm page for a forked page.
1967  		 */
1968  		if (page == tree_page) {
1969  			put_page(tree_page);
1970  			return NULL;
1971  		}
1972  
1973  		ret = memcmp_pages(page, tree_page);
1974  
1975  		parent = *new;
1976  		if (ret < 0) {
1977  			put_page(tree_page);
1978  			new = &parent->rb_left;
1979  		} else if (ret > 0) {
1980  			put_page(tree_page);
1981  			new = &parent->rb_right;
1982  		} else if (!ksm_merge_across_nodes &&
1983  			   page_to_nid(tree_page) != nid) {
1984  			/*
1985  			 * If tree_page has been migrated to another NUMA node,
1986  			 * it will be flushed out and put in the right unstable
1987  			 * tree next time: only merge with it when across_nodes.
1988  			 */
1989  			put_page(tree_page);
1990  			return NULL;
1991  		} else {
1992  			*tree_pagep = tree_page;
1993  			return tree_rmap_item;
1994  		}
1995  	}
1996  
1997  	rmap_item->address |= UNSTABLE_FLAG;
1998  	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1999  	DO_NUMA(rmap_item->nid = nid);
2000  	rb_link_node(&rmap_item->node, parent, new);
2001  	rb_insert_color(&rmap_item->node, root);
2002  
2003  	ksm_pages_unshared++;
2004  	return NULL;
2005  }
2006  
2007  /*
2008   * stable_tree_append - add another rmap_item to the linked list of
2009   * rmap_items hanging off a given node of the stable tree, all sharing
2010   * the same ksm page.
2011   */
2012  static void stable_tree_append(struct rmap_item *rmap_item,
2013  			       struct stable_node *stable_node,
2014  			       bool max_page_sharing_bypass)
2015  {
2016  	/*
2017  	 * rmap won't find this mapping if we don't insert the
2018  	 * rmap_item in the right stable_node
2019  	 * duplicate. page_migration could break later if rmap breaks,
2020  	 * so we can as well crash here. We really need to check for
2021  	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2022  	 * for other negative values as an undeflow if detected here
2023  	 * for the first time (and not when decreasing rmap_hlist_len)
2024  	 * would be sign of memory corruption in the stable_node.
2025  	 */
2026  	BUG_ON(stable_node->rmap_hlist_len < 0);
2027  
2028  	stable_node->rmap_hlist_len++;
2029  	if (!max_page_sharing_bypass)
2030  		/* possibly non fatal but unexpected overflow, only warn */
2031  		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2032  			     ksm_max_page_sharing);
2033  
2034  	rmap_item->head = stable_node;
2035  	rmap_item->address |= STABLE_FLAG;
2036  	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2037  
2038  	if (rmap_item->hlist.next)
2039  		ksm_pages_sharing++;
2040  	else
2041  		ksm_pages_shared++;
2042  }
2043  
2044  /*
2045   * cmp_and_merge_page - first see if page can be merged into the stable tree;
2046   * if not, compare checksum to previous and if it's the same, see if page can
2047   * be inserted into the unstable tree, or merged with a page already there and
2048   * both transferred to the stable tree.
2049   *
2050   * @page: the page that we are searching identical page to.
2051   * @rmap_item: the reverse mapping into the virtual address of this page
2052   */
2053  static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2054  {
2055  	struct mm_struct *mm = rmap_item->mm;
2056  	struct rmap_item *tree_rmap_item;
2057  	struct page *tree_page = NULL;
2058  	struct stable_node *stable_node;
2059  	struct page *kpage;
2060  	unsigned int checksum;
2061  	int err;
2062  	bool max_page_sharing_bypass = false;
2063  
2064  	stable_node = page_stable_node(page);
2065  	if (stable_node) {
2066  		if (stable_node->head != &migrate_nodes &&
2067  		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2068  		    NUMA(stable_node->nid)) {
2069  			stable_node_dup_del(stable_node);
2070  			stable_node->head = &migrate_nodes;
2071  			list_add(&stable_node->list, stable_node->head);
2072  		}
2073  		if (stable_node->head != &migrate_nodes &&
2074  		    rmap_item->head == stable_node)
2075  			return;
2076  		/*
2077  		 * If it's a KSM fork, allow it to go over the sharing limit
2078  		 * without warnings.
2079  		 */
2080  		if (!is_page_sharing_candidate(stable_node))
2081  			max_page_sharing_bypass = true;
2082  	}
2083  
2084  	/* We first start with searching the page inside the stable tree */
2085  	kpage = stable_tree_search(page);
2086  	if (kpage == page && rmap_item->head == stable_node) {
2087  		put_page(kpage);
2088  		return;
2089  	}
2090  
2091  	remove_rmap_item_from_tree(rmap_item);
2092  
2093  	if (kpage) {
2094  		if (PTR_ERR(kpage) == -EBUSY)
2095  			return;
2096  
2097  		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2098  		if (!err) {
2099  			/*
2100  			 * The page was successfully merged:
2101  			 * add its rmap_item to the stable tree.
2102  			 */
2103  			lock_page(kpage);
2104  			stable_tree_append(rmap_item, page_stable_node(kpage),
2105  					   max_page_sharing_bypass);
2106  			unlock_page(kpage);
2107  		}
2108  		put_page(kpage);
2109  		return;
2110  	}
2111  
2112  	/*
2113  	 * If the hash value of the page has changed from the last time
2114  	 * we calculated it, this page is changing frequently: therefore we
2115  	 * don't want to insert it in the unstable tree, and we don't want
2116  	 * to waste our time searching for something identical to it there.
2117  	 */
2118  	checksum = calc_checksum(page);
2119  	if (rmap_item->oldchecksum != checksum) {
2120  		rmap_item->oldchecksum = checksum;
2121  		return;
2122  	}
2123  
2124  	/*
2125  	 * Same checksum as an empty page. We attempt to merge it with the
2126  	 * appropriate zero page if the user enabled this via sysfs.
2127  	 */
2128  	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2129  		struct vm_area_struct *vma;
2130  
2131  		down_read(&mm->mmap_sem);
2132  		vma = find_mergeable_vma(mm, rmap_item->address);
2133  		err = try_to_merge_one_page(vma, page,
2134  					    ZERO_PAGE(rmap_item->address));
2135  		up_read(&mm->mmap_sem);
2136  		/*
2137  		 * In case of failure, the page was not really empty, so we
2138  		 * need to continue. Otherwise we're done.
2139  		 */
2140  		if (!err)
2141  			return;
2142  	}
2143  	tree_rmap_item =
2144  		unstable_tree_search_insert(rmap_item, page, &tree_page);
2145  	if (tree_rmap_item) {
2146  		bool split;
2147  
2148  		kpage = try_to_merge_two_pages(rmap_item, page,
2149  						tree_rmap_item, tree_page);
2150  		/*
2151  		 * If both pages we tried to merge belong to the same compound
2152  		 * page, then we actually ended up increasing the reference
2153  		 * count of the same compound page twice, and split_huge_page
2154  		 * failed.
2155  		 * Here we set a flag if that happened, and we use it later to
2156  		 * try split_huge_page again. Since we call put_page right
2157  		 * afterwards, the reference count will be correct and
2158  		 * split_huge_page should succeed.
2159  		 */
2160  		split = PageTransCompound(page)
2161  			&& compound_head(page) == compound_head(tree_page);
2162  		put_page(tree_page);
2163  		if (kpage) {
2164  			/*
2165  			 * The pages were successfully merged: insert new
2166  			 * node in the stable tree and add both rmap_items.
2167  			 */
2168  			lock_page(kpage);
2169  			stable_node = stable_tree_insert(kpage);
2170  			if (stable_node) {
2171  				stable_tree_append(tree_rmap_item, stable_node,
2172  						   false);
2173  				stable_tree_append(rmap_item, stable_node,
2174  						   false);
2175  			}
2176  			unlock_page(kpage);
2177  
2178  			/*
2179  			 * If we fail to insert the page into the stable tree,
2180  			 * we will have 2 virtual addresses that are pointing
2181  			 * to a ksm page left outside the stable tree,
2182  			 * in which case we need to break_cow on both.
2183  			 */
2184  			if (!stable_node) {
2185  				break_cow(tree_rmap_item);
2186  				break_cow(rmap_item);
2187  			}
2188  		} else if (split) {
2189  			/*
2190  			 * We are here if we tried to merge two pages and
2191  			 * failed because they both belonged to the same
2192  			 * compound page. We will split the page now, but no
2193  			 * merging will take place.
2194  			 * We do not want to add the cost of a full lock; if
2195  			 * the page is locked, it is better to skip it and
2196  			 * perhaps try again later.
2197  			 */
2198  			if (!trylock_page(page))
2199  				return;
2200  			split_huge_page(page);
2201  			unlock_page(page);
2202  		}
2203  	}
2204  }
2205  
2206  static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2207  					    struct rmap_item **rmap_list,
2208  					    unsigned long addr)
2209  {
2210  	struct rmap_item *rmap_item;
2211  
2212  	while (*rmap_list) {
2213  		rmap_item = *rmap_list;
2214  		if ((rmap_item->address & PAGE_MASK) == addr)
2215  			return rmap_item;
2216  		if (rmap_item->address > addr)
2217  			break;
2218  		*rmap_list = rmap_item->rmap_list;
2219  		remove_rmap_item_from_tree(rmap_item);
2220  		free_rmap_item(rmap_item);
2221  	}
2222  
2223  	rmap_item = alloc_rmap_item();
2224  	if (rmap_item) {
2225  		/* It has already been zeroed */
2226  		rmap_item->mm = mm_slot->mm;
2227  		rmap_item->address = addr;
2228  		rmap_item->rmap_list = *rmap_list;
2229  		*rmap_list = rmap_item;
2230  	}
2231  	return rmap_item;
2232  }
2233  
2234  static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2235  {
2236  	struct mm_struct *mm;
2237  	struct mm_slot *slot;
2238  	struct vm_area_struct *vma;
2239  	struct rmap_item *rmap_item;
2240  	int nid;
2241  
2242  	if (list_empty(&ksm_mm_head.mm_list))
2243  		return NULL;
2244  
2245  	slot = ksm_scan.mm_slot;
2246  	if (slot == &ksm_mm_head) {
2247  		/*
2248  		 * A number of pages can hang around indefinitely on per-cpu
2249  		 * pagevecs, raised page count preventing write_protect_page
2250  		 * from merging them.  Though it doesn't really matter much,
2251  		 * it is puzzling to see some stuck in pages_volatile until
2252  		 * other activity jostles them out, and they also prevented
2253  		 * LTP's KSM test from succeeding deterministically; so drain
2254  		 * them here (here rather than on entry to ksm_do_scan(),
2255  		 * so we don't IPI too often when pages_to_scan is set low).
2256  		 */
2257  		lru_add_drain_all();
2258  
2259  		/*
2260  		 * Whereas stale stable_nodes on the stable_tree itself
2261  		 * get pruned in the regular course of stable_tree_search(),
2262  		 * those moved out to the migrate_nodes list can accumulate:
2263  		 * so prune them once before each full scan.
2264  		 */
2265  		if (!ksm_merge_across_nodes) {
2266  			struct stable_node *stable_node, *next;
2267  			struct page *page;
2268  
2269  			list_for_each_entry_safe(stable_node, next,
2270  						 &migrate_nodes, list) {
2271  				page = get_ksm_page(stable_node,
2272  						    GET_KSM_PAGE_NOLOCK);
2273  				if (page)
2274  					put_page(page);
2275  				cond_resched();
2276  			}
2277  		}
2278  
2279  		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2280  			root_unstable_tree[nid] = RB_ROOT;
2281  
2282  		spin_lock(&ksm_mmlist_lock);
2283  		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2284  		ksm_scan.mm_slot = slot;
2285  		spin_unlock(&ksm_mmlist_lock);
2286  		/*
2287  		 * Although we tested list_empty() above, a racing __ksm_exit
2288  		 * of the last mm on the list may have removed it since then.
2289  		 */
2290  		if (slot == &ksm_mm_head)
2291  			return NULL;
2292  next_mm:
2293  		ksm_scan.address = 0;
2294  		ksm_scan.rmap_list = &slot->rmap_list;
2295  	}
2296  
2297  	mm = slot->mm;
2298  	down_read(&mm->mmap_sem);
2299  	if (ksm_test_exit(mm))
2300  		vma = NULL;
2301  	else
2302  		vma = find_vma(mm, ksm_scan.address);
2303  
2304  	for (; vma; vma = vma->vm_next) {
2305  		if (!(vma->vm_flags & VM_MERGEABLE))
2306  			continue;
2307  		if (ksm_scan.address < vma->vm_start)
2308  			ksm_scan.address = vma->vm_start;
2309  		if (!vma->anon_vma)
2310  			ksm_scan.address = vma->vm_end;
2311  
2312  		while (ksm_scan.address < vma->vm_end) {
2313  			if (ksm_test_exit(mm))
2314  				break;
2315  			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2316  			if (IS_ERR_OR_NULL(*page)) {
2317  				ksm_scan.address += PAGE_SIZE;
2318  				cond_resched();
2319  				continue;
2320  			}
2321  			if (PageAnon(*page)) {
2322  				flush_anon_page(vma, *page, ksm_scan.address);
2323  				flush_dcache_page(*page);
2324  				rmap_item = get_next_rmap_item(slot,
2325  					ksm_scan.rmap_list, ksm_scan.address);
2326  				if (rmap_item) {
2327  					ksm_scan.rmap_list =
2328  							&rmap_item->rmap_list;
2329  					ksm_scan.address += PAGE_SIZE;
2330  				} else
2331  					put_page(*page);
2332  				up_read(&mm->mmap_sem);
2333  				return rmap_item;
2334  			}
2335  			put_page(*page);
2336  			ksm_scan.address += PAGE_SIZE;
2337  			cond_resched();
2338  		}
2339  	}
2340  
2341  	if (ksm_test_exit(mm)) {
2342  		ksm_scan.address = 0;
2343  		ksm_scan.rmap_list = &slot->rmap_list;
2344  	}
2345  	/*
2346  	 * Nuke all the rmap_items that are above this current rmap:
2347  	 * because there were no VM_MERGEABLE vmas with such addresses.
2348  	 */
2349  	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2350  
2351  	spin_lock(&ksm_mmlist_lock);
2352  	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2353  						struct mm_slot, mm_list);
2354  	if (ksm_scan.address == 0) {
2355  		/*
2356  		 * We've completed a full scan of all vmas, holding mmap_sem
2357  		 * throughout, and found no VM_MERGEABLE: so do the same as
2358  		 * __ksm_exit does to remove this mm from all our lists now.
2359  		 * This applies either when cleaning up after __ksm_exit
2360  		 * (but beware: we can reach here even before __ksm_exit),
2361  		 * or when all VM_MERGEABLE areas have been unmapped (and
2362  		 * mmap_sem then protects against race with MADV_MERGEABLE).
2363  		 */
2364  		hash_del(&slot->link);
2365  		list_del(&slot->mm_list);
2366  		spin_unlock(&ksm_mmlist_lock);
2367  
2368  		free_mm_slot(slot);
2369  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2370  		up_read(&mm->mmap_sem);
2371  		mmdrop(mm);
2372  	} else {
2373  		up_read(&mm->mmap_sem);
2374  		/*
2375  		 * up_read(&mm->mmap_sem) first because after
2376  		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2377  		 * already have been freed under us by __ksm_exit()
2378  		 * because the "mm_slot" is still hashed and
2379  		 * ksm_scan.mm_slot doesn't point to it anymore.
2380  		 */
2381  		spin_unlock(&ksm_mmlist_lock);
2382  	}
2383  
2384  	/* Repeat until we've completed scanning the whole list */
2385  	slot = ksm_scan.mm_slot;
2386  	if (slot != &ksm_mm_head)
2387  		goto next_mm;
2388  
2389  	ksm_scan.seqnr++;
2390  	return NULL;
2391  }
2392  
2393  /**
2394   * ksm_do_scan  - the ksm scanner main worker function.
2395   * @scan_npages:  number of pages we want to scan before we return.
2396   */
2397  static void ksm_do_scan(unsigned int scan_npages)
2398  {
2399  	struct rmap_item *rmap_item;
2400  	struct page *uninitialized_var(page);
2401  
2402  	while (scan_npages-- && likely(!freezing(current))) {
2403  		cond_resched();
2404  		rmap_item = scan_get_next_rmap_item(&page);
2405  		if (!rmap_item)
2406  			return;
2407  		cmp_and_merge_page(page, rmap_item);
2408  		put_page(page);
2409  	}
2410  }
2411  
2412  static int ksmd_should_run(void)
2413  {
2414  	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2415  }
2416  
2417  static int ksm_scan_thread(void *nothing)
2418  {
2419  	unsigned int sleep_ms;
2420  
2421  	set_freezable();
2422  	set_user_nice(current, 5);
2423  
2424  	while (!kthread_should_stop()) {
2425  		mutex_lock(&ksm_thread_mutex);
2426  		wait_while_offlining();
2427  		if (ksmd_should_run())
2428  			ksm_do_scan(ksm_thread_pages_to_scan);
2429  		mutex_unlock(&ksm_thread_mutex);
2430  
2431  		try_to_freeze();
2432  
2433  		if (ksmd_should_run()) {
2434  			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2435  			wait_event_interruptible_timeout(ksm_iter_wait,
2436  				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2437  				msecs_to_jiffies(sleep_ms));
2438  		} else {
2439  			wait_event_freezable(ksm_thread_wait,
2440  				ksmd_should_run() || kthread_should_stop());
2441  		}
2442  	}
2443  	return 0;
2444  }
2445  
2446  int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2447  		unsigned long end, int advice, unsigned long *vm_flags)
2448  {
2449  	struct mm_struct *mm = vma->vm_mm;
2450  	int err;
2451  
2452  	switch (advice) {
2453  	case MADV_MERGEABLE:
2454  		/*
2455  		 * Be somewhat over-protective for now!
2456  		 */
2457  		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2458  				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2459  				 VM_HUGETLB | VM_MIXEDMAP))
2460  			return 0;		/* just ignore the advice */
2461  
2462  		if (vma_is_dax(vma))
2463  			return 0;
2464  
2465  #ifdef VM_SAO
2466  		if (*vm_flags & VM_SAO)
2467  			return 0;
2468  #endif
2469  #ifdef VM_SPARC_ADI
2470  		if (*vm_flags & VM_SPARC_ADI)
2471  			return 0;
2472  #endif
2473  
2474  		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2475  			err = __ksm_enter(mm);
2476  			if (err)
2477  				return err;
2478  		}
2479  
2480  		*vm_flags |= VM_MERGEABLE;
2481  		break;
2482  
2483  	case MADV_UNMERGEABLE:
2484  		if (!(*vm_flags & VM_MERGEABLE))
2485  			return 0;		/* just ignore the advice */
2486  
2487  		if (vma->anon_vma) {
2488  			err = unmerge_ksm_pages(vma, start, end);
2489  			if (err)
2490  				return err;
2491  		}
2492  
2493  		*vm_flags &= ~VM_MERGEABLE;
2494  		break;
2495  	}
2496  
2497  	return 0;
2498  }
2499  
2500  int __ksm_enter(struct mm_struct *mm)
2501  {
2502  	struct mm_slot *mm_slot;
2503  	int needs_wakeup;
2504  
2505  	mm_slot = alloc_mm_slot();
2506  	if (!mm_slot)
2507  		return -ENOMEM;
2508  
2509  	/* Check ksm_run too?  Would need tighter locking */
2510  	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2511  
2512  	spin_lock(&ksm_mmlist_lock);
2513  	insert_to_mm_slots_hash(mm, mm_slot);
2514  	/*
2515  	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2516  	 * insert just behind the scanning cursor, to let the area settle
2517  	 * down a little; when fork is followed by immediate exec, we don't
2518  	 * want ksmd to waste time setting up and tearing down an rmap_list.
2519  	 *
2520  	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2521  	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2522  	 * missed: then we might as well insert at the end of the list.
2523  	 */
2524  	if (ksm_run & KSM_RUN_UNMERGE)
2525  		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2526  	else
2527  		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2528  	spin_unlock(&ksm_mmlist_lock);
2529  
2530  	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2531  	mmgrab(mm);
2532  
2533  	if (needs_wakeup)
2534  		wake_up_interruptible(&ksm_thread_wait);
2535  
2536  	return 0;
2537  }
2538  
2539  void __ksm_exit(struct mm_struct *mm)
2540  {
2541  	struct mm_slot *mm_slot;
2542  	int easy_to_free = 0;
2543  
2544  	/*
2545  	 * This process is exiting: if it's straightforward (as is the
2546  	 * case when ksmd was never running), free mm_slot immediately.
2547  	 * But if it's at the cursor or has rmap_items linked to it, use
2548  	 * mmap_sem to synchronize with any break_cows before pagetables
2549  	 * are freed, and leave the mm_slot on the list for ksmd to free.
2550  	 * Beware: ksm may already have noticed it exiting and freed the slot.
2551  	 */
2552  
2553  	spin_lock(&ksm_mmlist_lock);
2554  	mm_slot = get_mm_slot(mm);
2555  	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2556  		if (!mm_slot->rmap_list) {
2557  			hash_del(&mm_slot->link);
2558  			list_del(&mm_slot->mm_list);
2559  			easy_to_free = 1;
2560  		} else {
2561  			list_move(&mm_slot->mm_list,
2562  				  &ksm_scan.mm_slot->mm_list);
2563  		}
2564  	}
2565  	spin_unlock(&ksm_mmlist_lock);
2566  
2567  	if (easy_to_free) {
2568  		free_mm_slot(mm_slot);
2569  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2570  		mmdrop(mm);
2571  	} else if (mm_slot) {
2572  		down_write(&mm->mmap_sem);
2573  		up_write(&mm->mmap_sem);
2574  	}
2575  }
2576  
2577  struct page *ksm_might_need_to_copy(struct page *page,
2578  			struct vm_area_struct *vma, unsigned long address)
2579  {
2580  	struct anon_vma *anon_vma = page_anon_vma(page);
2581  	struct page *new_page;
2582  
2583  	if (PageKsm(page)) {
2584  		if (page_stable_node(page) &&
2585  		    !(ksm_run & KSM_RUN_UNMERGE))
2586  			return page;	/* no need to copy it */
2587  	} else if (!anon_vma) {
2588  		return page;		/* no need to copy it */
2589  	} else if (anon_vma->root == vma->anon_vma->root &&
2590  		 page->index == linear_page_index(vma, address)) {
2591  		return page;		/* still no need to copy it */
2592  	}
2593  	if (!PageUptodate(page))
2594  		return page;		/* let do_swap_page report the error */
2595  
2596  	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2597  	if (new_page) {
2598  		copy_user_highpage(new_page, page, address, vma);
2599  
2600  		SetPageDirty(new_page);
2601  		__SetPageUptodate(new_page);
2602  		__SetPageLocked(new_page);
2603  	}
2604  
2605  	return new_page;
2606  }
2607  
2608  void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2609  {
2610  	struct stable_node *stable_node;
2611  	struct rmap_item *rmap_item;
2612  	int search_new_forks = 0;
2613  
2614  	VM_BUG_ON_PAGE(!PageKsm(page), page);
2615  
2616  	/*
2617  	 * Rely on the page lock to protect against concurrent modifications
2618  	 * to that page's node of the stable tree.
2619  	 */
2620  	VM_BUG_ON_PAGE(!PageLocked(page), page);
2621  
2622  	stable_node = page_stable_node(page);
2623  	if (!stable_node)
2624  		return;
2625  again:
2626  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2627  		struct anon_vma *anon_vma = rmap_item->anon_vma;
2628  		struct anon_vma_chain *vmac;
2629  		struct vm_area_struct *vma;
2630  
2631  		cond_resched();
2632  		anon_vma_lock_read(anon_vma);
2633  		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2634  					       0, ULONG_MAX) {
2635  			unsigned long addr;
2636  
2637  			cond_resched();
2638  			vma = vmac->vma;
2639  
2640  			/* Ignore the stable/unstable/sqnr flags */
2641  			addr = rmap_item->address & ~KSM_FLAG_MASK;
2642  
2643  			if (addr < vma->vm_start || addr >= vma->vm_end)
2644  				continue;
2645  			/*
2646  			 * Initially we examine only the vma which covers this
2647  			 * rmap_item; but later, if there is still work to do,
2648  			 * we examine covering vmas in other mms: in case they
2649  			 * were forked from the original since ksmd passed.
2650  			 */
2651  			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2652  				continue;
2653  
2654  			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2655  				continue;
2656  
2657  			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2658  				anon_vma_unlock_read(anon_vma);
2659  				return;
2660  			}
2661  			if (rwc->done && rwc->done(page)) {
2662  				anon_vma_unlock_read(anon_vma);
2663  				return;
2664  			}
2665  		}
2666  		anon_vma_unlock_read(anon_vma);
2667  	}
2668  	if (!search_new_forks++)
2669  		goto again;
2670  }
2671  
2672  bool reuse_ksm_page(struct page *page,
2673  		    struct vm_area_struct *vma,
2674  		    unsigned long address)
2675  {
2676  #ifdef CONFIG_DEBUG_VM
2677  	if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2678  			WARN_ON(!page_mapped(page)) ||
2679  			WARN_ON(!PageLocked(page))) {
2680  		dump_page(page, "reuse_ksm_page");
2681  		return false;
2682  	}
2683  #endif
2684  
2685  	if (PageSwapCache(page) || !page_stable_node(page))
2686  		return false;
2687  	/* Prohibit parallel get_ksm_page() */
2688  	if (!page_ref_freeze(page, 1))
2689  		return false;
2690  
2691  	page_move_anon_rmap(page, vma);
2692  	page->index = linear_page_index(vma, address);
2693  	page_ref_unfreeze(page, 1);
2694  
2695  	return true;
2696  }
2697  #ifdef CONFIG_MIGRATION
2698  void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2699  {
2700  	struct stable_node *stable_node;
2701  
2702  	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2703  	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2704  	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2705  
2706  	stable_node = page_stable_node(newpage);
2707  	if (stable_node) {
2708  		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2709  		stable_node->kpfn = page_to_pfn(newpage);
2710  		/*
2711  		 * newpage->mapping was set in advance; now we need smp_wmb()
2712  		 * to make sure that the new stable_node->kpfn is visible
2713  		 * to get_ksm_page() before it can see that oldpage->mapping
2714  		 * has gone stale (or that PageSwapCache has been cleared).
2715  		 */
2716  		smp_wmb();
2717  		set_page_stable_node(oldpage, NULL);
2718  	}
2719  }
2720  #endif /* CONFIG_MIGRATION */
2721  
2722  #ifdef CONFIG_MEMORY_HOTREMOVE
2723  static void wait_while_offlining(void)
2724  {
2725  	while (ksm_run & KSM_RUN_OFFLINE) {
2726  		mutex_unlock(&ksm_thread_mutex);
2727  		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2728  			    TASK_UNINTERRUPTIBLE);
2729  		mutex_lock(&ksm_thread_mutex);
2730  	}
2731  }
2732  
2733  static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2734  					 unsigned long start_pfn,
2735  					 unsigned long end_pfn)
2736  {
2737  	if (stable_node->kpfn >= start_pfn &&
2738  	    stable_node->kpfn < end_pfn) {
2739  		/*
2740  		 * Don't get_ksm_page, page has already gone:
2741  		 * which is why we keep kpfn instead of page*
2742  		 */
2743  		remove_node_from_stable_tree(stable_node);
2744  		return true;
2745  	}
2746  	return false;
2747  }
2748  
2749  static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2750  					   unsigned long start_pfn,
2751  					   unsigned long end_pfn,
2752  					   struct rb_root *root)
2753  {
2754  	struct stable_node *dup;
2755  	struct hlist_node *hlist_safe;
2756  
2757  	if (!is_stable_node_chain(stable_node)) {
2758  		VM_BUG_ON(is_stable_node_dup(stable_node));
2759  		return stable_node_dup_remove_range(stable_node, start_pfn,
2760  						    end_pfn);
2761  	}
2762  
2763  	hlist_for_each_entry_safe(dup, hlist_safe,
2764  				  &stable_node->hlist, hlist_dup) {
2765  		VM_BUG_ON(!is_stable_node_dup(dup));
2766  		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2767  	}
2768  	if (hlist_empty(&stable_node->hlist)) {
2769  		free_stable_node_chain(stable_node, root);
2770  		return true; /* notify caller that tree was rebalanced */
2771  	} else
2772  		return false;
2773  }
2774  
2775  static void ksm_check_stable_tree(unsigned long start_pfn,
2776  				  unsigned long end_pfn)
2777  {
2778  	struct stable_node *stable_node, *next;
2779  	struct rb_node *node;
2780  	int nid;
2781  
2782  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2783  		node = rb_first(root_stable_tree + nid);
2784  		while (node) {
2785  			stable_node = rb_entry(node, struct stable_node, node);
2786  			if (stable_node_chain_remove_range(stable_node,
2787  							   start_pfn, end_pfn,
2788  							   root_stable_tree +
2789  							   nid))
2790  				node = rb_first(root_stable_tree + nid);
2791  			else
2792  				node = rb_next(node);
2793  			cond_resched();
2794  		}
2795  	}
2796  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2797  		if (stable_node->kpfn >= start_pfn &&
2798  		    stable_node->kpfn < end_pfn)
2799  			remove_node_from_stable_tree(stable_node);
2800  		cond_resched();
2801  	}
2802  }
2803  
2804  static int ksm_memory_callback(struct notifier_block *self,
2805  			       unsigned long action, void *arg)
2806  {
2807  	struct memory_notify *mn = arg;
2808  
2809  	switch (action) {
2810  	case MEM_GOING_OFFLINE:
2811  		/*
2812  		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2813  		 * and remove_all_stable_nodes() while memory is going offline:
2814  		 * it is unsafe for them to touch the stable tree at this time.
2815  		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2816  		 * which do not need the ksm_thread_mutex are all safe.
2817  		 */
2818  		mutex_lock(&ksm_thread_mutex);
2819  		ksm_run |= KSM_RUN_OFFLINE;
2820  		mutex_unlock(&ksm_thread_mutex);
2821  		break;
2822  
2823  	case MEM_OFFLINE:
2824  		/*
2825  		 * Most of the work is done by page migration; but there might
2826  		 * be a few stable_nodes left over, still pointing to struct
2827  		 * pages which have been offlined: prune those from the tree,
2828  		 * otherwise get_ksm_page() might later try to access a
2829  		 * non-existent struct page.
2830  		 */
2831  		ksm_check_stable_tree(mn->start_pfn,
2832  				      mn->start_pfn + mn->nr_pages);
2833  		/* fallthrough */
2834  
2835  	case MEM_CANCEL_OFFLINE:
2836  		mutex_lock(&ksm_thread_mutex);
2837  		ksm_run &= ~KSM_RUN_OFFLINE;
2838  		mutex_unlock(&ksm_thread_mutex);
2839  
2840  		smp_mb();	/* wake_up_bit advises this */
2841  		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2842  		break;
2843  	}
2844  	return NOTIFY_OK;
2845  }
2846  #else
2847  static void wait_while_offlining(void)
2848  {
2849  }
2850  #endif /* CONFIG_MEMORY_HOTREMOVE */
2851  
2852  #ifdef CONFIG_SYSFS
2853  /*
2854   * This all compiles without CONFIG_SYSFS, but is a waste of space.
2855   */
2856  
2857  #define KSM_ATTR_RO(_name) \
2858  	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2859  #define KSM_ATTR(_name) \
2860  	static struct kobj_attribute _name##_attr = \
2861  		__ATTR(_name, 0644, _name##_show, _name##_store)
2862  
2863  static ssize_t sleep_millisecs_show(struct kobject *kobj,
2864  				    struct kobj_attribute *attr, char *buf)
2865  {
2866  	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2867  }
2868  
2869  static ssize_t sleep_millisecs_store(struct kobject *kobj,
2870  				     struct kobj_attribute *attr,
2871  				     const char *buf, size_t count)
2872  {
2873  	unsigned long msecs;
2874  	int err;
2875  
2876  	err = kstrtoul(buf, 10, &msecs);
2877  	if (err || msecs > UINT_MAX)
2878  		return -EINVAL;
2879  
2880  	ksm_thread_sleep_millisecs = msecs;
2881  	wake_up_interruptible(&ksm_iter_wait);
2882  
2883  	return count;
2884  }
2885  KSM_ATTR(sleep_millisecs);
2886  
2887  static ssize_t pages_to_scan_show(struct kobject *kobj,
2888  				  struct kobj_attribute *attr, char *buf)
2889  {
2890  	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2891  }
2892  
2893  static ssize_t pages_to_scan_store(struct kobject *kobj,
2894  				   struct kobj_attribute *attr,
2895  				   const char *buf, size_t count)
2896  {
2897  	int err;
2898  	unsigned long nr_pages;
2899  
2900  	err = kstrtoul(buf, 10, &nr_pages);
2901  	if (err || nr_pages > UINT_MAX)
2902  		return -EINVAL;
2903  
2904  	ksm_thread_pages_to_scan = nr_pages;
2905  
2906  	return count;
2907  }
2908  KSM_ATTR(pages_to_scan);
2909  
2910  static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2911  			char *buf)
2912  {
2913  	return sprintf(buf, "%lu\n", ksm_run);
2914  }
2915  
2916  static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2917  			 const char *buf, size_t count)
2918  {
2919  	int err;
2920  	unsigned long flags;
2921  
2922  	err = kstrtoul(buf, 10, &flags);
2923  	if (err || flags > UINT_MAX)
2924  		return -EINVAL;
2925  	if (flags > KSM_RUN_UNMERGE)
2926  		return -EINVAL;
2927  
2928  	/*
2929  	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2930  	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2931  	 * breaking COW to free the pages_shared (but leaves mm_slots
2932  	 * on the list for when ksmd may be set running again).
2933  	 */
2934  
2935  	mutex_lock(&ksm_thread_mutex);
2936  	wait_while_offlining();
2937  	if (ksm_run != flags) {
2938  		ksm_run = flags;
2939  		if (flags & KSM_RUN_UNMERGE) {
2940  			set_current_oom_origin();
2941  			err = unmerge_and_remove_all_rmap_items();
2942  			clear_current_oom_origin();
2943  			if (err) {
2944  				ksm_run = KSM_RUN_STOP;
2945  				count = err;
2946  			}
2947  		}
2948  	}
2949  	mutex_unlock(&ksm_thread_mutex);
2950  
2951  	if (flags & KSM_RUN_MERGE)
2952  		wake_up_interruptible(&ksm_thread_wait);
2953  
2954  	return count;
2955  }
2956  KSM_ATTR(run);
2957  
2958  #ifdef CONFIG_NUMA
2959  static ssize_t merge_across_nodes_show(struct kobject *kobj,
2960  				struct kobj_attribute *attr, char *buf)
2961  {
2962  	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2963  }
2964  
2965  static ssize_t merge_across_nodes_store(struct kobject *kobj,
2966  				   struct kobj_attribute *attr,
2967  				   const char *buf, size_t count)
2968  {
2969  	int err;
2970  	unsigned long knob;
2971  
2972  	err = kstrtoul(buf, 10, &knob);
2973  	if (err)
2974  		return err;
2975  	if (knob > 1)
2976  		return -EINVAL;
2977  
2978  	mutex_lock(&ksm_thread_mutex);
2979  	wait_while_offlining();
2980  	if (ksm_merge_across_nodes != knob) {
2981  		if (ksm_pages_shared || remove_all_stable_nodes())
2982  			err = -EBUSY;
2983  		else if (root_stable_tree == one_stable_tree) {
2984  			struct rb_root *buf;
2985  			/*
2986  			 * This is the first time that we switch away from the
2987  			 * default of merging across nodes: must now allocate
2988  			 * a buffer to hold as many roots as may be needed.
2989  			 * Allocate stable and unstable together:
2990  			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2991  			 */
2992  			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2993  				      GFP_KERNEL);
2994  			/* Let us assume that RB_ROOT is NULL is zero */
2995  			if (!buf)
2996  				err = -ENOMEM;
2997  			else {
2998  				root_stable_tree = buf;
2999  				root_unstable_tree = buf + nr_node_ids;
3000  				/* Stable tree is empty but not the unstable */
3001  				root_unstable_tree[0] = one_unstable_tree[0];
3002  			}
3003  		}
3004  		if (!err) {
3005  			ksm_merge_across_nodes = knob;
3006  			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3007  		}
3008  	}
3009  	mutex_unlock(&ksm_thread_mutex);
3010  
3011  	return err ? err : count;
3012  }
3013  KSM_ATTR(merge_across_nodes);
3014  #endif
3015  
3016  static ssize_t use_zero_pages_show(struct kobject *kobj,
3017  				struct kobj_attribute *attr, char *buf)
3018  {
3019  	return sprintf(buf, "%u\n", ksm_use_zero_pages);
3020  }
3021  static ssize_t use_zero_pages_store(struct kobject *kobj,
3022  				   struct kobj_attribute *attr,
3023  				   const char *buf, size_t count)
3024  {
3025  	int err;
3026  	bool value;
3027  
3028  	err = kstrtobool(buf, &value);
3029  	if (err)
3030  		return -EINVAL;
3031  
3032  	ksm_use_zero_pages = value;
3033  
3034  	return count;
3035  }
3036  KSM_ATTR(use_zero_pages);
3037  
3038  static ssize_t max_page_sharing_show(struct kobject *kobj,
3039  				     struct kobj_attribute *attr, char *buf)
3040  {
3041  	return sprintf(buf, "%u\n", ksm_max_page_sharing);
3042  }
3043  
3044  static ssize_t max_page_sharing_store(struct kobject *kobj,
3045  				      struct kobj_attribute *attr,
3046  				      const char *buf, size_t count)
3047  {
3048  	int err;
3049  	int knob;
3050  
3051  	err = kstrtoint(buf, 10, &knob);
3052  	if (err)
3053  		return err;
3054  	/*
3055  	 * When a KSM page is created it is shared by 2 mappings. This
3056  	 * being a signed comparison, it implicitly verifies it's not
3057  	 * negative.
3058  	 */
3059  	if (knob < 2)
3060  		return -EINVAL;
3061  
3062  	if (READ_ONCE(ksm_max_page_sharing) == knob)
3063  		return count;
3064  
3065  	mutex_lock(&ksm_thread_mutex);
3066  	wait_while_offlining();
3067  	if (ksm_max_page_sharing != knob) {
3068  		if (ksm_pages_shared || remove_all_stable_nodes())
3069  			err = -EBUSY;
3070  		else
3071  			ksm_max_page_sharing = knob;
3072  	}
3073  	mutex_unlock(&ksm_thread_mutex);
3074  
3075  	return err ? err : count;
3076  }
3077  KSM_ATTR(max_page_sharing);
3078  
3079  static ssize_t pages_shared_show(struct kobject *kobj,
3080  				 struct kobj_attribute *attr, char *buf)
3081  {
3082  	return sprintf(buf, "%lu\n", ksm_pages_shared);
3083  }
3084  KSM_ATTR_RO(pages_shared);
3085  
3086  static ssize_t pages_sharing_show(struct kobject *kobj,
3087  				  struct kobj_attribute *attr, char *buf)
3088  {
3089  	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3090  }
3091  KSM_ATTR_RO(pages_sharing);
3092  
3093  static ssize_t pages_unshared_show(struct kobject *kobj,
3094  				   struct kobj_attribute *attr, char *buf)
3095  {
3096  	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3097  }
3098  KSM_ATTR_RO(pages_unshared);
3099  
3100  static ssize_t pages_volatile_show(struct kobject *kobj,
3101  				   struct kobj_attribute *attr, char *buf)
3102  {
3103  	long ksm_pages_volatile;
3104  
3105  	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3106  				- ksm_pages_sharing - ksm_pages_unshared;
3107  	/*
3108  	 * It was not worth any locking to calculate that statistic,
3109  	 * but it might therefore sometimes be negative: conceal that.
3110  	 */
3111  	if (ksm_pages_volatile < 0)
3112  		ksm_pages_volatile = 0;
3113  	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3114  }
3115  KSM_ATTR_RO(pages_volatile);
3116  
3117  static ssize_t stable_node_dups_show(struct kobject *kobj,
3118  				     struct kobj_attribute *attr, char *buf)
3119  {
3120  	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3121  }
3122  KSM_ATTR_RO(stable_node_dups);
3123  
3124  static ssize_t stable_node_chains_show(struct kobject *kobj,
3125  				       struct kobj_attribute *attr, char *buf)
3126  {
3127  	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3128  }
3129  KSM_ATTR_RO(stable_node_chains);
3130  
3131  static ssize_t
3132  stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3133  					struct kobj_attribute *attr,
3134  					char *buf)
3135  {
3136  	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3137  }
3138  
3139  static ssize_t
3140  stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3141  					 struct kobj_attribute *attr,
3142  					 const char *buf, size_t count)
3143  {
3144  	unsigned long msecs;
3145  	int err;
3146  
3147  	err = kstrtoul(buf, 10, &msecs);
3148  	if (err || msecs > UINT_MAX)
3149  		return -EINVAL;
3150  
3151  	ksm_stable_node_chains_prune_millisecs = msecs;
3152  
3153  	return count;
3154  }
3155  KSM_ATTR(stable_node_chains_prune_millisecs);
3156  
3157  static ssize_t full_scans_show(struct kobject *kobj,
3158  			       struct kobj_attribute *attr, char *buf)
3159  {
3160  	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3161  }
3162  KSM_ATTR_RO(full_scans);
3163  
3164  static struct attribute *ksm_attrs[] = {
3165  	&sleep_millisecs_attr.attr,
3166  	&pages_to_scan_attr.attr,
3167  	&run_attr.attr,
3168  	&pages_shared_attr.attr,
3169  	&pages_sharing_attr.attr,
3170  	&pages_unshared_attr.attr,
3171  	&pages_volatile_attr.attr,
3172  	&full_scans_attr.attr,
3173  #ifdef CONFIG_NUMA
3174  	&merge_across_nodes_attr.attr,
3175  #endif
3176  	&max_page_sharing_attr.attr,
3177  	&stable_node_chains_attr.attr,
3178  	&stable_node_dups_attr.attr,
3179  	&stable_node_chains_prune_millisecs_attr.attr,
3180  	&use_zero_pages_attr.attr,
3181  	NULL,
3182  };
3183  
3184  static const struct attribute_group ksm_attr_group = {
3185  	.attrs = ksm_attrs,
3186  	.name = "ksm",
3187  };
3188  #endif /* CONFIG_SYSFS */
3189  
3190  static int __init ksm_init(void)
3191  {
3192  	struct task_struct *ksm_thread;
3193  	int err;
3194  
3195  	/* The correct value depends on page size and endianness */
3196  	zero_checksum = calc_checksum(ZERO_PAGE(0));
3197  	/* Default to false for backwards compatibility */
3198  	ksm_use_zero_pages = false;
3199  
3200  	err = ksm_slab_init();
3201  	if (err)
3202  		goto out;
3203  
3204  	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3205  	if (IS_ERR(ksm_thread)) {
3206  		pr_err("ksm: creating kthread failed\n");
3207  		err = PTR_ERR(ksm_thread);
3208  		goto out_free;
3209  	}
3210  
3211  #ifdef CONFIG_SYSFS
3212  	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3213  	if (err) {
3214  		pr_err("ksm: register sysfs failed\n");
3215  		kthread_stop(ksm_thread);
3216  		goto out_free;
3217  	}
3218  #else
3219  	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3220  
3221  #endif /* CONFIG_SYSFS */
3222  
3223  #ifdef CONFIG_MEMORY_HOTREMOVE
3224  	/* There is no significance to this priority 100 */
3225  	hotplug_memory_notifier(ksm_memory_callback, 100);
3226  #endif
3227  	return 0;
3228  
3229  out_free:
3230  	ksm_slab_free();
3231  out:
3232  	return err;
3233  }
3234  subsys_initcall(ksm_init);
3235