xref: /openbmc/linux/mm/ksm.c (revision 7a2eb736)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41 
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44 
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)		(x)
47 #define DO_NUMA(x)	do { (x); } while (0)
48 #else
49 #define NUMA(x)		(0)
50 #define DO_NUMA(x)	do { } while (0)
51 #endif
52 
53 /**
54  * DOC: Overview
55  *
56  * A few notes about the KSM scanning process,
57  * to make it easier to understand the data structures below:
58  *
59  * In order to reduce excessive scanning, KSM sorts the memory pages by their
60  * contents into a data structure that holds pointers to the pages' locations.
61  *
62  * Since the contents of the pages may change at any moment, KSM cannot just
63  * insert the pages into a normal sorted tree and expect it to find anything.
64  * Therefore KSM uses two data structures - the stable and the unstable tree.
65  *
66  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67  * by their contents.  Because each such page is write-protected, searching on
68  * this tree is fully assured to be working (except when pages are unmapped),
69  * and therefore this tree is called the stable tree.
70  *
71  * The stable tree node includes information required for reverse
72  * mapping from a KSM page to virtual addresses that map this page.
73  *
74  * In order to avoid large latencies of the rmap walks on KSM pages,
75  * KSM maintains two types of nodes in the stable tree:
76  *
77  * * the regular nodes that keep the reverse mapping structures in a
78  *   linked list
79  * * the "chains" that link nodes ("dups") that represent the same
80  *   write protected memory content, but each "dup" corresponds to a
81  *   different KSM page copy of that content
82  *
83  * Internally, the regular nodes, "dups" and "chains" are represented
84  * using the same :c:type:`struct stable_node` structure.
85  *
86  * In addition to the stable tree, KSM uses a second data structure called the
87  * unstable tree: this tree holds pointers to pages which have been found to
88  * be "unchanged for a period of time".  The unstable tree sorts these pages
89  * by their contents, but since they are not write-protected, KSM cannot rely
90  * upon the unstable tree to work correctly - the unstable tree is liable to
91  * be corrupted as its contents are modified, and so it is called unstable.
92  *
93  * KSM solves this problem by several techniques:
94  *
95  * 1) The unstable tree is flushed every time KSM completes scanning all
96  *    memory areas, and then the tree is rebuilt again from the beginning.
97  * 2) KSM will only insert into the unstable tree, pages whose hash value
98  *    has not changed since the previous scan of all memory areas.
99  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100  *    colors of the nodes and not on their contents, assuring that even when
101  *    the tree gets "corrupted" it won't get out of balance, so scanning time
102  *    remains the same (also, searching and inserting nodes in an rbtree uses
103  *    the same algorithm, so we have no overhead when we flush and rebuild).
104  * 4) KSM never flushes the stable tree, which means that even if it were to
105  *    take 10 attempts to find a page in the unstable tree, once it is found,
106  *    it is secured in the stable tree.  (When we scan a new page, we first
107  *    compare it against the stable tree, and then against the unstable tree.)
108  *
109  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110  * stable trees and multiple unstable trees: one of each for each NUMA node.
111  */
112 
113 /**
114  * struct mm_slot - ksm information per mm that is being scanned
115  * @link: link to the mm_slots hash list
116  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118  * @mm: the mm that this information is valid for
119  */
120 struct mm_slot {
121 	struct hlist_node link;
122 	struct list_head mm_list;
123 	struct rmap_item *rmap_list;
124 	struct mm_struct *mm;
125 };
126 
127 /**
128  * struct ksm_scan - cursor for scanning
129  * @mm_slot: the current mm_slot we are scanning
130  * @address: the next address inside that to be scanned
131  * @rmap_list: link to the next rmap to be scanned in the rmap_list
132  * @seqnr: count of completed full scans (needed when removing unstable node)
133  *
134  * There is only the one ksm_scan instance of this cursor structure.
135  */
136 struct ksm_scan {
137 	struct mm_slot *mm_slot;
138 	unsigned long address;
139 	struct rmap_item **rmap_list;
140 	unsigned long seqnr;
141 };
142 
143 /**
144  * struct stable_node - node of the stable rbtree
145  * @node: rb node of this ksm page in the stable tree
146  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148  * @list: linked into migrate_nodes, pending placement in the proper node tree
149  * @hlist: hlist head of rmap_items using this ksm page
150  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151  * @chain_prune_time: time of the last full garbage collection
152  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154  */
155 struct stable_node {
156 	union {
157 		struct rb_node node;	/* when node of stable tree */
158 		struct {		/* when listed for migration */
159 			struct list_head *head;
160 			struct {
161 				struct hlist_node hlist_dup;
162 				struct list_head list;
163 			};
164 		};
165 	};
166 	struct hlist_head hlist;
167 	union {
168 		unsigned long kpfn;
169 		unsigned long chain_prune_time;
170 	};
171 	/*
172 	 * STABLE_NODE_CHAIN can be any negative number in
173 	 * rmap_hlist_len negative range, but better not -1 to be able
174 	 * to reliably detect underflows.
175 	 */
176 #define STABLE_NODE_CHAIN -1024
177 	int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 	int nid;
180 #endif
181 };
182 
183 /**
184  * struct rmap_item - reverse mapping item for virtual addresses
185  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187  * @nid: NUMA node id of unstable tree in which linked (may not match page)
188  * @mm: the memory structure this rmap_item is pointing into
189  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190  * @oldchecksum: previous checksum of the page at that virtual address
191  * @node: rb node of this rmap_item in the unstable tree
192  * @head: pointer to stable_node heading this list in the stable tree
193  * @hlist: link into hlist of rmap_items hanging off that stable_node
194  */
195 struct rmap_item {
196 	struct rmap_item *rmap_list;
197 	union {
198 		struct anon_vma *anon_vma;	/* when stable */
199 #ifdef CONFIG_NUMA
200 		int nid;		/* when node of unstable tree */
201 #endif
202 	};
203 	struct mm_struct *mm;
204 	unsigned long address;		/* + low bits used for flags below */
205 	unsigned int oldchecksum;	/* when unstable */
206 	union {
207 		struct rb_node node;	/* when node of unstable tree */
208 		struct {		/* when listed from stable tree */
209 			struct stable_node *head;
210 			struct hlist_node hlist;
211 		};
212 	};
213 };
214 
215 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
217 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
218 #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
219 				/* to mask all the flags */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct mm_slot ksm_mm_head = {
235 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247 
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250 
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253 
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256 
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259 
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262 
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static int ksm_stable_node_chains_prune_millisecs = 2000;
265 
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268 
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271 
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274 
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277 
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280 
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes	1U
287 #define ksm_nr_node_ids		1
288 #endif
289 
290 #define KSM_RUN_STOP	0
291 #define KSM_RUN_MERGE	1
292 #define KSM_RUN_UNMERGE	2
293 #define KSM_RUN_OFFLINE	4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296 
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301 
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303 		sizeof(struct __struct), __alignof__(struct __struct),\
304 		(__flags), NULL)
305 
306 static int __init ksm_slab_init(void)
307 {
308 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
309 	if (!rmap_item_cache)
310 		goto out;
311 
312 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
313 	if (!stable_node_cache)
314 		goto out_free1;
315 
316 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
317 	if (!mm_slot_cache)
318 		goto out_free2;
319 
320 	return 0;
321 
322 out_free2:
323 	kmem_cache_destroy(stable_node_cache);
324 out_free1:
325 	kmem_cache_destroy(rmap_item_cache);
326 out:
327 	return -ENOMEM;
328 }
329 
330 static void __init ksm_slab_free(void)
331 {
332 	kmem_cache_destroy(mm_slot_cache);
333 	kmem_cache_destroy(stable_node_cache);
334 	kmem_cache_destroy(rmap_item_cache);
335 	mm_slot_cache = NULL;
336 }
337 
338 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
339 {
340 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342 
343 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
344 {
345 	return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347 
348 static inline void stable_node_chain_add_dup(struct stable_node *dup,
349 					     struct stable_node *chain)
350 {
351 	VM_BUG_ON(is_stable_node_dup(dup));
352 	dup->head = STABLE_NODE_DUP_HEAD;
353 	VM_BUG_ON(!is_stable_node_chain(chain));
354 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 	ksm_stable_node_dups++;
356 }
357 
358 static inline void __stable_node_dup_del(struct stable_node *dup)
359 {
360 	VM_BUG_ON(!is_stable_node_dup(dup));
361 	hlist_del(&dup->hlist_dup);
362 	ksm_stable_node_dups--;
363 }
364 
365 static inline void stable_node_dup_del(struct stable_node *dup)
366 {
367 	VM_BUG_ON(is_stable_node_chain(dup));
368 	if (is_stable_node_dup(dup))
369 		__stable_node_dup_del(dup);
370 	else
371 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373 	dup->head = NULL;
374 #endif
375 }
376 
377 static inline struct rmap_item *alloc_rmap_item(void)
378 {
379 	struct rmap_item *rmap_item;
380 
381 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 						__GFP_NORETRY | __GFP_NOWARN);
383 	if (rmap_item)
384 		ksm_rmap_items++;
385 	return rmap_item;
386 }
387 
388 static inline void free_rmap_item(struct rmap_item *rmap_item)
389 {
390 	ksm_rmap_items--;
391 	rmap_item->mm = NULL;	/* debug safety */
392 	kmem_cache_free(rmap_item_cache, rmap_item);
393 }
394 
395 static inline struct stable_node *alloc_stable_node(void)
396 {
397 	/*
398 	 * The allocation can take too long with GFP_KERNEL when memory is under
399 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
400 	 * grants access to memory reserves, helping to avoid this problem.
401 	 */
402 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
403 }
404 
405 static inline void free_stable_node(struct stable_node *stable_node)
406 {
407 	VM_BUG_ON(stable_node->rmap_hlist_len &&
408 		  !is_stable_node_chain(stable_node));
409 	kmem_cache_free(stable_node_cache, stable_node);
410 }
411 
412 static inline struct mm_slot *alloc_mm_slot(void)
413 {
414 	if (!mm_slot_cache)	/* initialization failed */
415 		return NULL;
416 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
417 }
418 
419 static inline void free_mm_slot(struct mm_slot *mm_slot)
420 {
421 	kmem_cache_free(mm_slot_cache, mm_slot);
422 }
423 
424 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
425 {
426 	struct mm_slot *slot;
427 
428 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
429 		if (slot->mm == mm)
430 			return slot;
431 
432 	return NULL;
433 }
434 
435 static void insert_to_mm_slots_hash(struct mm_struct *mm,
436 				    struct mm_slot *mm_slot)
437 {
438 	mm_slot->mm = mm;
439 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
440 }
441 
442 /*
443  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444  * page tables after it has passed through ksm_exit() - which, if necessary,
445  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
446  * a special flag: they can just back out as soon as mm_users goes to zero.
447  * ksm_test_exit() is used throughout to make this test for exit: in some
448  * places for correctness, in some places just to avoid unnecessary work.
449  */
450 static inline bool ksm_test_exit(struct mm_struct *mm)
451 {
452 	return atomic_read(&mm->mm_users) == 0;
453 }
454 
455 /*
456  * We use break_ksm to break COW on a ksm page: it's a stripped down
457  *
458  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
459  *		put_page(page);
460  *
461  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462  * in case the application has unmapped and remapped mm,addr meanwhile.
463  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
464  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
465  *
466  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467  * of the process that owns 'vma'.  We also do not want to enforce
468  * protection keys here anyway.
469  */
470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
471 {
472 	struct page *page;
473 	vm_fault_t ret = 0;
474 
475 	do {
476 		cond_resched();
477 		page = follow_page(vma, addr,
478 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
479 		if (IS_ERR_OR_NULL(page))
480 			break;
481 		if (PageKsm(page))
482 			ret = handle_mm_fault(vma, addr,
483 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
484 		else
485 			ret = VM_FAULT_WRITE;
486 		put_page(page);
487 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488 	/*
489 	 * We must loop because handle_mm_fault() may back out if there's
490 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491 	 *
492 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 	 * COW has been broken, even if the vma does not permit VM_WRITE;
494 	 * but note that a concurrent fault might break PageKsm for us.
495 	 *
496 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 	 * backing file, which also invalidates anonymous pages: that's
498 	 * okay, that truncation will have unmapped the PageKsm for us.
499 	 *
500 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 	 * to user; and ksmd, having no mm, would never be chosen for that.
504 	 *
505 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 	 * even ksmd can fail in this way - though it's usually breaking ksm
508 	 * just to undo a merge it made a moment before, so unlikely to oom.
509 	 *
510 	 * That's a pity: we might therefore have more kernel pages allocated
511 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 	 * will retry to break_cow on each pass, so should recover the page
513 	 * in due course.  The important thing is to not let VM_MERGEABLE
514 	 * be cleared while any such pages might remain in the area.
515 	 */
516 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518 
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520 		unsigned long addr)
521 {
522 	struct vm_area_struct *vma;
523 	if (ksm_test_exit(mm))
524 		return NULL;
525 	vma = find_vma(mm, addr);
526 	if (!vma || vma->vm_start > addr)
527 		return NULL;
528 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
529 		return NULL;
530 	return vma;
531 }
532 
533 static void break_cow(struct rmap_item *rmap_item)
534 {
535 	struct mm_struct *mm = rmap_item->mm;
536 	unsigned long addr = rmap_item->address;
537 	struct vm_area_struct *vma;
538 
539 	/*
540 	 * It is not an accident that whenever we want to break COW
541 	 * to undo, we also need to drop a reference to the anon_vma.
542 	 */
543 	put_anon_vma(rmap_item->anon_vma);
544 
545 	down_read(&mm->mmap_sem);
546 	vma = find_mergeable_vma(mm, addr);
547 	if (vma)
548 		break_ksm(vma, addr);
549 	up_read(&mm->mmap_sem);
550 }
551 
552 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
553 {
554 	struct mm_struct *mm = rmap_item->mm;
555 	unsigned long addr = rmap_item->address;
556 	struct vm_area_struct *vma;
557 	struct page *page;
558 
559 	down_read(&mm->mmap_sem);
560 	vma = find_mergeable_vma(mm, addr);
561 	if (!vma)
562 		goto out;
563 
564 	page = follow_page(vma, addr, FOLL_GET);
565 	if (IS_ERR_OR_NULL(page))
566 		goto out;
567 	if (PageAnon(page)) {
568 		flush_anon_page(vma, page, addr);
569 		flush_dcache_page(page);
570 	} else {
571 		put_page(page);
572 out:
573 		page = NULL;
574 	}
575 	up_read(&mm->mmap_sem);
576 	return page;
577 }
578 
579 /*
580  * This helper is used for getting right index into array of tree roots.
581  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
582  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
583  * every node has its own stable and unstable tree.
584  */
585 static inline int get_kpfn_nid(unsigned long kpfn)
586 {
587 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
588 }
589 
590 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
591 						   struct rb_root *root)
592 {
593 	struct stable_node *chain = alloc_stable_node();
594 	VM_BUG_ON(is_stable_node_chain(dup));
595 	if (likely(chain)) {
596 		INIT_HLIST_HEAD(&chain->hlist);
597 		chain->chain_prune_time = jiffies;
598 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
599 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
600 		chain->nid = NUMA_NO_NODE; /* debug */
601 #endif
602 		ksm_stable_node_chains++;
603 
604 		/*
605 		 * Put the stable node chain in the first dimension of
606 		 * the stable tree and at the same time remove the old
607 		 * stable node.
608 		 */
609 		rb_replace_node(&dup->node, &chain->node, root);
610 
611 		/*
612 		 * Move the old stable node to the second dimension
613 		 * queued in the hlist_dup. The invariant is that all
614 		 * dup stable_nodes in the chain->hlist point to pages
615 		 * that are wrprotected and have the exact same
616 		 * content.
617 		 */
618 		stable_node_chain_add_dup(dup, chain);
619 	}
620 	return chain;
621 }
622 
623 static inline void free_stable_node_chain(struct stable_node *chain,
624 					  struct rb_root *root)
625 {
626 	rb_erase(&chain->node, root);
627 	free_stable_node(chain);
628 	ksm_stable_node_chains--;
629 }
630 
631 static void remove_node_from_stable_tree(struct stable_node *stable_node)
632 {
633 	struct rmap_item *rmap_item;
634 
635 	/* check it's not STABLE_NODE_CHAIN or negative */
636 	BUG_ON(stable_node->rmap_hlist_len < 0);
637 
638 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
639 		if (rmap_item->hlist.next)
640 			ksm_pages_sharing--;
641 		else
642 			ksm_pages_shared--;
643 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644 		stable_node->rmap_hlist_len--;
645 		put_anon_vma(rmap_item->anon_vma);
646 		rmap_item->address &= PAGE_MASK;
647 		cond_resched();
648 	}
649 
650 	/*
651 	 * We need the second aligned pointer of the migrate_nodes
652 	 * list_head to stay clear from the rb_parent_color union
653 	 * (aligned and different than any node) and also different
654 	 * from &migrate_nodes. This will verify that future list.h changes
655 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
656 	 */
657 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
658 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660 #endif
661 
662 	if (stable_node->head == &migrate_nodes)
663 		list_del(&stable_node->list);
664 	else
665 		stable_node_dup_del(stable_node);
666 	free_stable_node(stable_node);
667 }
668 
669 enum get_ksm_page_flags {
670 	GET_KSM_PAGE_NOLOCK,
671 	GET_KSM_PAGE_LOCK,
672 	GET_KSM_PAGE_TRYLOCK
673 };
674 
675 /*
676  * get_ksm_page: checks if the page indicated by the stable node
677  * is still its ksm page, despite having held no reference to it.
678  * In which case we can trust the content of the page, and it
679  * returns the gotten page; but if the page has now been zapped,
680  * remove the stale node from the stable tree and return NULL.
681  * But beware, the stable node's page might be being migrated.
682  *
683  * You would expect the stable_node to hold a reference to the ksm page.
684  * But if it increments the page's count, swapping out has to wait for
685  * ksmd to come around again before it can free the page, which may take
686  * seconds or even minutes: much too unresponsive.  So instead we use a
687  * "keyhole reference": access to the ksm page from the stable node peeps
688  * out through its keyhole to see if that page still holds the right key,
689  * pointing back to this stable node.  This relies on freeing a PageAnon
690  * page to reset its page->mapping to NULL, and relies on no other use of
691  * a page to put something that might look like our key in page->mapping.
692  * is on its way to being freed; but it is an anomaly to bear in mind.
693  */
694 static struct page *get_ksm_page(struct stable_node *stable_node,
695 				 enum get_ksm_page_flags flags)
696 {
697 	struct page *page;
698 	void *expected_mapping;
699 	unsigned long kpfn;
700 
701 	expected_mapping = (void *)((unsigned long)stable_node |
702 					PAGE_MAPPING_KSM);
703 again:
704 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
705 	page = pfn_to_page(kpfn);
706 	if (READ_ONCE(page->mapping) != expected_mapping)
707 		goto stale;
708 
709 	/*
710 	 * We cannot do anything with the page while its refcount is 0.
711 	 * Usually 0 means free, or tail of a higher-order page: in which
712 	 * case this node is no longer referenced, and should be freed;
713 	 * however, it might mean that the page is under page_ref_freeze().
714 	 * The __remove_mapping() case is easy, again the node is now stale;
715 	 * the same is in reuse_ksm_page() case; but if page is swapcache
716 	 * in migrate_page_move_mapping(), it might still be our page,
717 	 * in which case it's essential to keep the node.
718 	 */
719 	while (!get_page_unless_zero(page)) {
720 		/*
721 		 * Another check for page->mapping != expected_mapping would
722 		 * work here too.  We have chosen the !PageSwapCache test to
723 		 * optimize the common case, when the page is or is about to
724 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
725 		 * in the ref_freeze section of __remove_mapping(); but Anon
726 		 * page->mapping reset to NULL later, in free_pages_prepare().
727 		 */
728 		if (!PageSwapCache(page))
729 			goto stale;
730 		cpu_relax();
731 	}
732 
733 	if (READ_ONCE(page->mapping) != expected_mapping) {
734 		put_page(page);
735 		goto stale;
736 	}
737 
738 	if (flags == GET_KSM_PAGE_TRYLOCK) {
739 		if (!trylock_page(page)) {
740 			put_page(page);
741 			return ERR_PTR(-EBUSY);
742 		}
743 	} else if (flags == GET_KSM_PAGE_LOCK)
744 		lock_page(page);
745 
746 	if (flags != GET_KSM_PAGE_NOLOCK) {
747 		if (READ_ONCE(page->mapping) != expected_mapping) {
748 			unlock_page(page);
749 			put_page(page);
750 			goto stale;
751 		}
752 	}
753 	return page;
754 
755 stale:
756 	/*
757 	 * We come here from above when page->mapping or !PageSwapCache
758 	 * suggests that the node is stale; but it might be under migration.
759 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
760 	 * before checking whether node->kpfn has been changed.
761 	 */
762 	smp_rmb();
763 	if (READ_ONCE(stable_node->kpfn) != kpfn)
764 		goto again;
765 	remove_node_from_stable_tree(stable_node);
766 	return NULL;
767 }
768 
769 /*
770  * Removing rmap_item from stable or unstable tree.
771  * This function will clean the information from the stable/unstable tree.
772  */
773 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
774 {
775 	if (rmap_item->address & STABLE_FLAG) {
776 		struct stable_node *stable_node;
777 		struct page *page;
778 
779 		stable_node = rmap_item->head;
780 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
781 		if (!page)
782 			goto out;
783 
784 		hlist_del(&rmap_item->hlist);
785 		unlock_page(page);
786 		put_page(page);
787 
788 		if (!hlist_empty(&stable_node->hlist))
789 			ksm_pages_sharing--;
790 		else
791 			ksm_pages_shared--;
792 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
793 		stable_node->rmap_hlist_len--;
794 
795 		put_anon_vma(rmap_item->anon_vma);
796 		rmap_item->address &= PAGE_MASK;
797 
798 	} else if (rmap_item->address & UNSTABLE_FLAG) {
799 		unsigned char age;
800 		/*
801 		 * Usually ksmd can and must skip the rb_erase, because
802 		 * root_unstable_tree was already reset to RB_ROOT.
803 		 * But be careful when an mm is exiting: do the rb_erase
804 		 * if this rmap_item was inserted by this scan, rather
805 		 * than left over from before.
806 		 */
807 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
808 		BUG_ON(age > 1);
809 		if (!age)
810 			rb_erase(&rmap_item->node,
811 				 root_unstable_tree + NUMA(rmap_item->nid));
812 		ksm_pages_unshared--;
813 		rmap_item->address &= PAGE_MASK;
814 	}
815 out:
816 	cond_resched();		/* we're called from many long loops */
817 }
818 
819 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
820 				       struct rmap_item **rmap_list)
821 {
822 	while (*rmap_list) {
823 		struct rmap_item *rmap_item = *rmap_list;
824 		*rmap_list = rmap_item->rmap_list;
825 		remove_rmap_item_from_tree(rmap_item);
826 		free_rmap_item(rmap_item);
827 	}
828 }
829 
830 /*
831  * Though it's very tempting to unmerge rmap_items from stable tree rather
832  * than check every pte of a given vma, the locking doesn't quite work for
833  * that - an rmap_item is assigned to the stable tree after inserting ksm
834  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
835  * rmap_items from parent to child at fork time (so as not to waste time
836  * if exit comes before the next scan reaches it).
837  *
838  * Similarly, although we'd like to remove rmap_items (so updating counts
839  * and freeing memory) when unmerging an area, it's easier to leave that
840  * to the next pass of ksmd - consider, for example, how ksmd might be
841  * in cmp_and_merge_page on one of the rmap_items we would be removing.
842  */
843 static int unmerge_ksm_pages(struct vm_area_struct *vma,
844 			     unsigned long start, unsigned long end)
845 {
846 	unsigned long addr;
847 	int err = 0;
848 
849 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
850 		if (ksm_test_exit(vma->vm_mm))
851 			break;
852 		if (signal_pending(current))
853 			err = -ERESTARTSYS;
854 		else
855 			err = break_ksm(vma, addr);
856 	}
857 	return err;
858 }
859 
860 static inline struct stable_node *page_stable_node(struct page *page)
861 {
862 	return PageKsm(page) ? page_rmapping(page) : NULL;
863 }
864 
865 static inline void set_page_stable_node(struct page *page,
866 					struct stable_node *stable_node)
867 {
868 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
869 }
870 
871 #ifdef CONFIG_SYSFS
872 /*
873  * Only called through the sysfs control interface:
874  */
875 static int remove_stable_node(struct stable_node *stable_node)
876 {
877 	struct page *page;
878 	int err;
879 
880 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
881 	if (!page) {
882 		/*
883 		 * get_ksm_page did remove_node_from_stable_tree itself.
884 		 */
885 		return 0;
886 	}
887 
888 	if (WARN_ON_ONCE(page_mapped(page))) {
889 		/*
890 		 * This should not happen: but if it does, just refuse to let
891 		 * merge_across_nodes be switched - there is no need to panic.
892 		 */
893 		err = -EBUSY;
894 	} else {
895 		/*
896 		 * The stable node did not yet appear stale to get_ksm_page(),
897 		 * since that allows for an unmapped ksm page to be recognized
898 		 * right up until it is freed; but the node is safe to remove.
899 		 * This page might be in a pagevec waiting to be freed,
900 		 * or it might be PageSwapCache (perhaps under writeback),
901 		 * or it might have been removed from swapcache a moment ago.
902 		 */
903 		set_page_stable_node(page, NULL);
904 		remove_node_from_stable_tree(stable_node);
905 		err = 0;
906 	}
907 
908 	unlock_page(page);
909 	put_page(page);
910 	return err;
911 }
912 
913 static int remove_stable_node_chain(struct stable_node *stable_node,
914 				    struct rb_root *root)
915 {
916 	struct stable_node *dup;
917 	struct hlist_node *hlist_safe;
918 
919 	if (!is_stable_node_chain(stable_node)) {
920 		VM_BUG_ON(is_stable_node_dup(stable_node));
921 		if (remove_stable_node(stable_node))
922 			return true;
923 		else
924 			return false;
925 	}
926 
927 	hlist_for_each_entry_safe(dup, hlist_safe,
928 				  &stable_node->hlist, hlist_dup) {
929 		VM_BUG_ON(!is_stable_node_dup(dup));
930 		if (remove_stable_node(dup))
931 			return true;
932 	}
933 	BUG_ON(!hlist_empty(&stable_node->hlist));
934 	free_stable_node_chain(stable_node, root);
935 	return false;
936 }
937 
938 static int remove_all_stable_nodes(void)
939 {
940 	struct stable_node *stable_node, *next;
941 	int nid;
942 	int err = 0;
943 
944 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
945 		while (root_stable_tree[nid].rb_node) {
946 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
947 						struct stable_node, node);
948 			if (remove_stable_node_chain(stable_node,
949 						     root_stable_tree + nid)) {
950 				err = -EBUSY;
951 				break;	/* proceed to next nid */
952 			}
953 			cond_resched();
954 		}
955 	}
956 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
957 		if (remove_stable_node(stable_node))
958 			err = -EBUSY;
959 		cond_resched();
960 	}
961 	return err;
962 }
963 
964 static int unmerge_and_remove_all_rmap_items(void)
965 {
966 	struct mm_slot *mm_slot;
967 	struct mm_struct *mm;
968 	struct vm_area_struct *vma;
969 	int err = 0;
970 
971 	spin_lock(&ksm_mmlist_lock);
972 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
973 						struct mm_slot, mm_list);
974 	spin_unlock(&ksm_mmlist_lock);
975 
976 	for (mm_slot = ksm_scan.mm_slot;
977 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
978 		mm = mm_slot->mm;
979 		down_read(&mm->mmap_sem);
980 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
981 			if (ksm_test_exit(mm))
982 				break;
983 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
984 				continue;
985 			err = unmerge_ksm_pages(vma,
986 						vma->vm_start, vma->vm_end);
987 			if (err)
988 				goto error;
989 		}
990 
991 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
992 		up_read(&mm->mmap_sem);
993 
994 		spin_lock(&ksm_mmlist_lock);
995 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
996 						struct mm_slot, mm_list);
997 		if (ksm_test_exit(mm)) {
998 			hash_del(&mm_slot->link);
999 			list_del(&mm_slot->mm_list);
1000 			spin_unlock(&ksm_mmlist_lock);
1001 
1002 			free_mm_slot(mm_slot);
1003 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1004 			mmdrop(mm);
1005 		} else
1006 			spin_unlock(&ksm_mmlist_lock);
1007 	}
1008 
1009 	/* Clean up stable nodes, but don't worry if some are still busy */
1010 	remove_all_stable_nodes();
1011 	ksm_scan.seqnr = 0;
1012 	return 0;
1013 
1014 error:
1015 	up_read(&mm->mmap_sem);
1016 	spin_lock(&ksm_mmlist_lock);
1017 	ksm_scan.mm_slot = &ksm_mm_head;
1018 	spin_unlock(&ksm_mmlist_lock);
1019 	return err;
1020 }
1021 #endif /* CONFIG_SYSFS */
1022 
1023 static u32 calc_checksum(struct page *page)
1024 {
1025 	u32 checksum;
1026 	void *addr = kmap_atomic(page);
1027 	checksum = xxhash(addr, PAGE_SIZE, 0);
1028 	kunmap_atomic(addr);
1029 	return checksum;
1030 }
1031 
1032 static int memcmp_pages(struct page *page1, struct page *page2)
1033 {
1034 	char *addr1, *addr2;
1035 	int ret;
1036 
1037 	addr1 = kmap_atomic(page1);
1038 	addr2 = kmap_atomic(page2);
1039 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1040 	kunmap_atomic(addr2);
1041 	kunmap_atomic(addr1);
1042 	return ret;
1043 }
1044 
1045 static inline int pages_identical(struct page *page1, struct page *page2)
1046 {
1047 	return !memcmp_pages(page1, page2);
1048 }
1049 
1050 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1051 			      pte_t *orig_pte)
1052 {
1053 	struct mm_struct *mm = vma->vm_mm;
1054 	struct page_vma_mapped_walk pvmw = {
1055 		.page = page,
1056 		.vma = vma,
1057 	};
1058 	int swapped;
1059 	int err = -EFAULT;
1060 	struct mmu_notifier_range range;
1061 
1062 	pvmw.address = page_address_in_vma(page, vma);
1063 	if (pvmw.address == -EFAULT)
1064 		goto out;
1065 
1066 	BUG_ON(PageTransCompound(page));
1067 
1068 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1069 				pvmw.address,
1070 				pvmw.address + PAGE_SIZE);
1071 	mmu_notifier_invalidate_range_start(&range);
1072 
1073 	if (!page_vma_mapped_walk(&pvmw))
1074 		goto out_mn;
1075 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1076 		goto out_unlock;
1077 
1078 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1079 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1080 						mm_tlb_flush_pending(mm)) {
1081 		pte_t entry;
1082 
1083 		swapped = PageSwapCache(page);
1084 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1085 		/*
1086 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1087 		 * take any lock, therefore the check that we are going to make
1088 		 * with the pagecount against the mapcount is racey and
1089 		 * O_DIRECT can happen right after the check.
1090 		 * So we clear the pte and flush the tlb before the check
1091 		 * this assure us that no O_DIRECT can happen after the check
1092 		 * or in the middle of the check.
1093 		 *
1094 		 * No need to notify as we are downgrading page table to read
1095 		 * only not changing it to point to a new page.
1096 		 *
1097 		 * See Documentation/vm/mmu_notifier.rst
1098 		 */
1099 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1100 		/*
1101 		 * Check that no O_DIRECT or similar I/O is in progress on the
1102 		 * page
1103 		 */
1104 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1105 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1106 			goto out_unlock;
1107 		}
1108 		if (pte_dirty(entry))
1109 			set_page_dirty(page);
1110 
1111 		if (pte_protnone(entry))
1112 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1113 		else
1114 			entry = pte_mkclean(pte_wrprotect(entry));
1115 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1116 	}
1117 	*orig_pte = *pvmw.pte;
1118 	err = 0;
1119 
1120 out_unlock:
1121 	page_vma_mapped_walk_done(&pvmw);
1122 out_mn:
1123 	mmu_notifier_invalidate_range_end(&range);
1124 out:
1125 	return err;
1126 }
1127 
1128 /**
1129  * replace_page - replace page in vma by new ksm page
1130  * @vma:      vma that holds the pte pointing to page
1131  * @page:     the page we are replacing by kpage
1132  * @kpage:    the ksm page we replace page by
1133  * @orig_pte: the original value of the pte
1134  *
1135  * Returns 0 on success, -EFAULT on failure.
1136  */
1137 static int replace_page(struct vm_area_struct *vma, struct page *page,
1138 			struct page *kpage, pte_t orig_pte)
1139 {
1140 	struct mm_struct *mm = vma->vm_mm;
1141 	pmd_t *pmd;
1142 	pte_t *ptep;
1143 	pte_t newpte;
1144 	spinlock_t *ptl;
1145 	unsigned long addr;
1146 	int err = -EFAULT;
1147 	struct mmu_notifier_range range;
1148 
1149 	addr = page_address_in_vma(page, vma);
1150 	if (addr == -EFAULT)
1151 		goto out;
1152 
1153 	pmd = mm_find_pmd(mm, addr);
1154 	if (!pmd)
1155 		goto out;
1156 
1157 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1158 				addr + PAGE_SIZE);
1159 	mmu_notifier_invalidate_range_start(&range);
1160 
1161 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1162 	if (!pte_same(*ptep, orig_pte)) {
1163 		pte_unmap_unlock(ptep, ptl);
1164 		goto out_mn;
1165 	}
1166 
1167 	/*
1168 	 * No need to check ksm_use_zero_pages here: we can only have a
1169 	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1170 	 */
1171 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1172 		get_page(kpage);
1173 		page_add_anon_rmap(kpage, vma, addr, false);
1174 		newpte = mk_pte(kpage, vma->vm_page_prot);
1175 	} else {
1176 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1177 					       vma->vm_page_prot));
1178 		/*
1179 		 * We're replacing an anonymous page with a zero page, which is
1180 		 * not anonymous. We need to do proper accounting otherwise we
1181 		 * will get wrong values in /proc, and a BUG message in dmesg
1182 		 * when tearing down the mm.
1183 		 */
1184 		dec_mm_counter(mm, MM_ANONPAGES);
1185 	}
1186 
1187 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1188 	/*
1189 	 * No need to notify as we are replacing a read only page with another
1190 	 * read only page with the same content.
1191 	 *
1192 	 * See Documentation/vm/mmu_notifier.rst
1193 	 */
1194 	ptep_clear_flush(vma, addr, ptep);
1195 	set_pte_at_notify(mm, addr, ptep, newpte);
1196 
1197 	page_remove_rmap(page, false);
1198 	if (!page_mapped(page))
1199 		try_to_free_swap(page);
1200 	put_page(page);
1201 
1202 	pte_unmap_unlock(ptep, ptl);
1203 	err = 0;
1204 out_mn:
1205 	mmu_notifier_invalidate_range_end(&range);
1206 out:
1207 	return err;
1208 }
1209 
1210 /*
1211  * try_to_merge_one_page - take two pages and merge them into one
1212  * @vma: the vma that holds the pte pointing to page
1213  * @page: the PageAnon page that we want to replace with kpage
1214  * @kpage: the PageKsm page that we want to map instead of page,
1215  *         or NULL the first time when we want to use page as kpage.
1216  *
1217  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1218  */
1219 static int try_to_merge_one_page(struct vm_area_struct *vma,
1220 				 struct page *page, struct page *kpage)
1221 {
1222 	pte_t orig_pte = __pte(0);
1223 	int err = -EFAULT;
1224 
1225 	if (page == kpage)			/* ksm page forked */
1226 		return 0;
1227 
1228 	if (!PageAnon(page))
1229 		goto out;
1230 
1231 	/*
1232 	 * We need the page lock to read a stable PageSwapCache in
1233 	 * write_protect_page().  We use trylock_page() instead of
1234 	 * lock_page() because we don't want to wait here - we
1235 	 * prefer to continue scanning and merging different pages,
1236 	 * then come back to this page when it is unlocked.
1237 	 */
1238 	if (!trylock_page(page))
1239 		goto out;
1240 
1241 	if (PageTransCompound(page)) {
1242 		if (split_huge_page(page))
1243 			goto out_unlock;
1244 	}
1245 
1246 	/*
1247 	 * If this anonymous page is mapped only here, its pte may need
1248 	 * to be write-protected.  If it's mapped elsewhere, all of its
1249 	 * ptes are necessarily already write-protected.  But in either
1250 	 * case, we need to lock and check page_count is not raised.
1251 	 */
1252 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1253 		if (!kpage) {
1254 			/*
1255 			 * While we hold page lock, upgrade page from
1256 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1257 			 * stable_tree_insert() will update stable_node.
1258 			 */
1259 			set_page_stable_node(page, NULL);
1260 			mark_page_accessed(page);
1261 			/*
1262 			 * Page reclaim just frees a clean page with no dirty
1263 			 * ptes: make sure that the ksm page would be swapped.
1264 			 */
1265 			if (!PageDirty(page))
1266 				SetPageDirty(page);
1267 			err = 0;
1268 		} else if (pages_identical(page, kpage))
1269 			err = replace_page(vma, page, kpage, orig_pte);
1270 	}
1271 
1272 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1273 		munlock_vma_page(page);
1274 		if (!PageMlocked(kpage)) {
1275 			unlock_page(page);
1276 			lock_page(kpage);
1277 			mlock_vma_page(kpage);
1278 			page = kpage;		/* for final unlock */
1279 		}
1280 	}
1281 
1282 out_unlock:
1283 	unlock_page(page);
1284 out:
1285 	return err;
1286 }
1287 
1288 /*
1289  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1290  * but no new kernel page is allocated: kpage must already be a ksm page.
1291  *
1292  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1293  */
1294 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1295 				      struct page *page, struct page *kpage)
1296 {
1297 	struct mm_struct *mm = rmap_item->mm;
1298 	struct vm_area_struct *vma;
1299 	int err = -EFAULT;
1300 
1301 	down_read(&mm->mmap_sem);
1302 	vma = find_mergeable_vma(mm, rmap_item->address);
1303 	if (!vma)
1304 		goto out;
1305 
1306 	err = try_to_merge_one_page(vma, page, kpage);
1307 	if (err)
1308 		goto out;
1309 
1310 	/* Unstable nid is in union with stable anon_vma: remove first */
1311 	remove_rmap_item_from_tree(rmap_item);
1312 
1313 	/* Must get reference to anon_vma while still holding mmap_sem */
1314 	rmap_item->anon_vma = vma->anon_vma;
1315 	get_anon_vma(vma->anon_vma);
1316 out:
1317 	up_read(&mm->mmap_sem);
1318 	return err;
1319 }
1320 
1321 /*
1322  * try_to_merge_two_pages - take two identical pages and prepare them
1323  * to be merged into one page.
1324  *
1325  * This function returns the kpage if we successfully merged two identical
1326  * pages into one ksm page, NULL otherwise.
1327  *
1328  * Note that this function upgrades page to ksm page: if one of the pages
1329  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1330  */
1331 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1332 					   struct page *page,
1333 					   struct rmap_item *tree_rmap_item,
1334 					   struct page *tree_page)
1335 {
1336 	int err;
1337 
1338 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1339 	if (!err) {
1340 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1341 							tree_page, page);
1342 		/*
1343 		 * If that fails, we have a ksm page with only one pte
1344 		 * pointing to it: so break it.
1345 		 */
1346 		if (err)
1347 			break_cow(rmap_item);
1348 	}
1349 	return err ? NULL : page;
1350 }
1351 
1352 static __always_inline
1353 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1354 {
1355 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1356 	/*
1357 	 * Check that at least one mapping still exists, otherwise
1358 	 * there's no much point to merge and share with this
1359 	 * stable_node, as the underlying tree_page of the other
1360 	 * sharer is going to be freed soon.
1361 	 */
1362 	return stable_node->rmap_hlist_len &&
1363 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1364 }
1365 
1366 static __always_inline
1367 bool is_page_sharing_candidate(struct stable_node *stable_node)
1368 {
1369 	return __is_page_sharing_candidate(stable_node, 0);
1370 }
1371 
1372 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1373 				    struct stable_node **_stable_node,
1374 				    struct rb_root *root,
1375 				    bool prune_stale_stable_nodes)
1376 {
1377 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1378 	struct hlist_node *hlist_safe;
1379 	struct page *_tree_page, *tree_page = NULL;
1380 	int nr = 0;
1381 	int found_rmap_hlist_len;
1382 
1383 	if (!prune_stale_stable_nodes ||
1384 	    time_before(jiffies, stable_node->chain_prune_time +
1385 			msecs_to_jiffies(
1386 				ksm_stable_node_chains_prune_millisecs)))
1387 		prune_stale_stable_nodes = false;
1388 	else
1389 		stable_node->chain_prune_time = jiffies;
1390 
1391 	hlist_for_each_entry_safe(dup, hlist_safe,
1392 				  &stable_node->hlist, hlist_dup) {
1393 		cond_resched();
1394 		/*
1395 		 * We must walk all stable_node_dup to prune the stale
1396 		 * stable nodes during lookup.
1397 		 *
1398 		 * get_ksm_page can drop the nodes from the
1399 		 * stable_node->hlist if they point to freed pages
1400 		 * (that's why we do a _safe walk). The "dup"
1401 		 * stable_node parameter itself will be freed from
1402 		 * under us if it returns NULL.
1403 		 */
1404 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1405 		if (!_tree_page)
1406 			continue;
1407 		nr += 1;
1408 		if (is_page_sharing_candidate(dup)) {
1409 			if (!found ||
1410 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1411 				if (found)
1412 					put_page(tree_page);
1413 				found = dup;
1414 				found_rmap_hlist_len = found->rmap_hlist_len;
1415 				tree_page = _tree_page;
1416 
1417 				/* skip put_page for found dup */
1418 				if (!prune_stale_stable_nodes)
1419 					break;
1420 				continue;
1421 			}
1422 		}
1423 		put_page(_tree_page);
1424 	}
1425 
1426 	if (found) {
1427 		/*
1428 		 * nr is counting all dups in the chain only if
1429 		 * prune_stale_stable_nodes is true, otherwise we may
1430 		 * break the loop at nr == 1 even if there are
1431 		 * multiple entries.
1432 		 */
1433 		if (prune_stale_stable_nodes && nr == 1) {
1434 			/*
1435 			 * If there's not just one entry it would
1436 			 * corrupt memory, better BUG_ON. In KSM
1437 			 * context with no lock held it's not even
1438 			 * fatal.
1439 			 */
1440 			BUG_ON(stable_node->hlist.first->next);
1441 
1442 			/*
1443 			 * There's just one entry and it is below the
1444 			 * deduplication limit so drop the chain.
1445 			 */
1446 			rb_replace_node(&stable_node->node, &found->node,
1447 					root);
1448 			free_stable_node(stable_node);
1449 			ksm_stable_node_chains--;
1450 			ksm_stable_node_dups--;
1451 			/*
1452 			 * NOTE: the caller depends on the stable_node
1453 			 * to be equal to stable_node_dup if the chain
1454 			 * was collapsed.
1455 			 */
1456 			*_stable_node = found;
1457 			/*
1458 			 * Just for robustneess as stable_node is
1459 			 * otherwise left as a stable pointer, the
1460 			 * compiler shall optimize it away at build
1461 			 * time.
1462 			 */
1463 			stable_node = NULL;
1464 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1465 			   __is_page_sharing_candidate(found, 1)) {
1466 			/*
1467 			 * If the found stable_node dup can accept one
1468 			 * more future merge (in addition to the one
1469 			 * that is underway) and is not at the head of
1470 			 * the chain, put it there so next search will
1471 			 * be quicker in the !prune_stale_stable_nodes
1472 			 * case.
1473 			 *
1474 			 * NOTE: it would be inaccurate to use nr > 1
1475 			 * instead of checking the hlist.first pointer
1476 			 * directly, because in the
1477 			 * prune_stale_stable_nodes case "nr" isn't
1478 			 * the position of the found dup in the chain,
1479 			 * but the total number of dups in the chain.
1480 			 */
1481 			hlist_del(&found->hlist_dup);
1482 			hlist_add_head(&found->hlist_dup,
1483 				       &stable_node->hlist);
1484 		}
1485 	}
1486 
1487 	*_stable_node_dup = found;
1488 	return tree_page;
1489 }
1490 
1491 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1492 					       struct rb_root *root)
1493 {
1494 	if (!is_stable_node_chain(stable_node))
1495 		return stable_node;
1496 	if (hlist_empty(&stable_node->hlist)) {
1497 		free_stable_node_chain(stable_node, root);
1498 		return NULL;
1499 	}
1500 	return hlist_entry(stable_node->hlist.first,
1501 			   typeof(*stable_node), hlist_dup);
1502 }
1503 
1504 /*
1505  * Like for get_ksm_page, this function can free the *_stable_node and
1506  * *_stable_node_dup if the returned tree_page is NULL.
1507  *
1508  * It can also free and overwrite *_stable_node with the found
1509  * stable_node_dup if the chain is collapsed (in which case
1510  * *_stable_node will be equal to *_stable_node_dup like if the chain
1511  * never existed). It's up to the caller to verify tree_page is not
1512  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1513  *
1514  * *_stable_node_dup is really a second output parameter of this
1515  * function and will be overwritten in all cases, the caller doesn't
1516  * need to initialize it.
1517  */
1518 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1519 					struct stable_node **_stable_node,
1520 					struct rb_root *root,
1521 					bool prune_stale_stable_nodes)
1522 {
1523 	struct stable_node *stable_node = *_stable_node;
1524 	if (!is_stable_node_chain(stable_node)) {
1525 		if (is_page_sharing_candidate(stable_node)) {
1526 			*_stable_node_dup = stable_node;
1527 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1528 		}
1529 		/*
1530 		 * _stable_node_dup set to NULL means the stable_node
1531 		 * reached the ksm_max_page_sharing limit.
1532 		 */
1533 		*_stable_node_dup = NULL;
1534 		return NULL;
1535 	}
1536 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1537 			       prune_stale_stable_nodes);
1538 }
1539 
1540 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1541 						struct stable_node **s_n,
1542 						struct rb_root *root)
1543 {
1544 	return __stable_node_chain(s_n_d, s_n, root, true);
1545 }
1546 
1547 static __always_inline struct page *chain(struct stable_node **s_n_d,
1548 					  struct stable_node *s_n,
1549 					  struct rb_root *root)
1550 {
1551 	struct stable_node *old_stable_node = s_n;
1552 	struct page *tree_page;
1553 
1554 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1555 	/* not pruning dups so s_n cannot have changed */
1556 	VM_BUG_ON(s_n != old_stable_node);
1557 	return tree_page;
1558 }
1559 
1560 /*
1561  * stable_tree_search - search for page inside the stable tree
1562  *
1563  * This function checks if there is a page inside the stable tree
1564  * with identical content to the page that we are scanning right now.
1565  *
1566  * This function returns the stable tree node of identical content if found,
1567  * NULL otherwise.
1568  */
1569 static struct page *stable_tree_search(struct page *page)
1570 {
1571 	int nid;
1572 	struct rb_root *root;
1573 	struct rb_node **new;
1574 	struct rb_node *parent;
1575 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1576 	struct stable_node *page_node;
1577 
1578 	page_node = page_stable_node(page);
1579 	if (page_node && page_node->head != &migrate_nodes) {
1580 		/* ksm page forked */
1581 		get_page(page);
1582 		return page;
1583 	}
1584 
1585 	nid = get_kpfn_nid(page_to_pfn(page));
1586 	root = root_stable_tree + nid;
1587 again:
1588 	new = &root->rb_node;
1589 	parent = NULL;
1590 
1591 	while (*new) {
1592 		struct page *tree_page;
1593 		int ret;
1594 
1595 		cond_resched();
1596 		stable_node = rb_entry(*new, struct stable_node, node);
1597 		stable_node_any = NULL;
1598 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1599 		/*
1600 		 * NOTE: stable_node may have been freed by
1601 		 * chain_prune() if the returned stable_node_dup is
1602 		 * not NULL. stable_node_dup may have been inserted in
1603 		 * the rbtree instead as a regular stable_node (in
1604 		 * order to collapse the stable_node chain if a single
1605 		 * stable_node dup was found in it). In such case the
1606 		 * stable_node is overwritten by the calleee to point
1607 		 * to the stable_node_dup that was collapsed in the
1608 		 * stable rbtree and stable_node will be equal to
1609 		 * stable_node_dup like if the chain never existed.
1610 		 */
1611 		if (!stable_node_dup) {
1612 			/*
1613 			 * Either all stable_node dups were full in
1614 			 * this stable_node chain, or this chain was
1615 			 * empty and should be rb_erased.
1616 			 */
1617 			stable_node_any = stable_node_dup_any(stable_node,
1618 							      root);
1619 			if (!stable_node_any) {
1620 				/* rb_erase just run */
1621 				goto again;
1622 			}
1623 			/*
1624 			 * Take any of the stable_node dups page of
1625 			 * this stable_node chain to let the tree walk
1626 			 * continue. All KSM pages belonging to the
1627 			 * stable_node dups in a stable_node chain
1628 			 * have the same content and they're
1629 			 * wrprotected at all times. Any will work
1630 			 * fine to continue the walk.
1631 			 */
1632 			tree_page = get_ksm_page(stable_node_any,
1633 						 GET_KSM_PAGE_NOLOCK);
1634 		}
1635 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1636 		if (!tree_page) {
1637 			/*
1638 			 * If we walked over a stale stable_node,
1639 			 * get_ksm_page() will call rb_erase() and it
1640 			 * may rebalance the tree from under us. So
1641 			 * restart the search from scratch. Returning
1642 			 * NULL would be safe too, but we'd generate
1643 			 * false negative insertions just because some
1644 			 * stable_node was stale.
1645 			 */
1646 			goto again;
1647 		}
1648 
1649 		ret = memcmp_pages(page, tree_page);
1650 		put_page(tree_page);
1651 
1652 		parent = *new;
1653 		if (ret < 0)
1654 			new = &parent->rb_left;
1655 		else if (ret > 0)
1656 			new = &parent->rb_right;
1657 		else {
1658 			if (page_node) {
1659 				VM_BUG_ON(page_node->head != &migrate_nodes);
1660 				/*
1661 				 * Test if the migrated page should be merged
1662 				 * into a stable node dup. If the mapcount is
1663 				 * 1 we can migrate it with another KSM page
1664 				 * without adding it to the chain.
1665 				 */
1666 				if (page_mapcount(page) > 1)
1667 					goto chain_append;
1668 			}
1669 
1670 			if (!stable_node_dup) {
1671 				/*
1672 				 * If the stable_node is a chain and
1673 				 * we got a payload match in memcmp
1674 				 * but we cannot merge the scanned
1675 				 * page in any of the existing
1676 				 * stable_node dups because they're
1677 				 * all full, we need to wait the
1678 				 * scanned page to find itself a match
1679 				 * in the unstable tree to create a
1680 				 * brand new KSM page to add later to
1681 				 * the dups of this stable_node.
1682 				 */
1683 				return NULL;
1684 			}
1685 
1686 			/*
1687 			 * Lock and unlock the stable_node's page (which
1688 			 * might already have been migrated) so that page
1689 			 * migration is sure to notice its raised count.
1690 			 * It would be more elegant to return stable_node
1691 			 * than kpage, but that involves more changes.
1692 			 */
1693 			tree_page = get_ksm_page(stable_node_dup,
1694 						 GET_KSM_PAGE_TRYLOCK);
1695 
1696 			if (PTR_ERR(tree_page) == -EBUSY)
1697 				return ERR_PTR(-EBUSY);
1698 
1699 			if (unlikely(!tree_page))
1700 				/*
1701 				 * The tree may have been rebalanced,
1702 				 * so re-evaluate parent and new.
1703 				 */
1704 				goto again;
1705 			unlock_page(tree_page);
1706 
1707 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1708 			    NUMA(stable_node_dup->nid)) {
1709 				put_page(tree_page);
1710 				goto replace;
1711 			}
1712 			return tree_page;
1713 		}
1714 	}
1715 
1716 	if (!page_node)
1717 		return NULL;
1718 
1719 	list_del(&page_node->list);
1720 	DO_NUMA(page_node->nid = nid);
1721 	rb_link_node(&page_node->node, parent, new);
1722 	rb_insert_color(&page_node->node, root);
1723 out:
1724 	if (is_page_sharing_candidate(page_node)) {
1725 		get_page(page);
1726 		return page;
1727 	} else
1728 		return NULL;
1729 
1730 replace:
1731 	/*
1732 	 * If stable_node was a chain and chain_prune collapsed it,
1733 	 * stable_node has been updated to be the new regular
1734 	 * stable_node. A collapse of the chain is indistinguishable
1735 	 * from the case there was no chain in the stable
1736 	 * rbtree. Otherwise stable_node is the chain and
1737 	 * stable_node_dup is the dup to replace.
1738 	 */
1739 	if (stable_node_dup == stable_node) {
1740 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1741 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1742 		/* there is no chain */
1743 		if (page_node) {
1744 			VM_BUG_ON(page_node->head != &migrate_nodes);
1745 			list_del(&page_node->list);
1746 			DO_NUMA(page_node->nid = nid);
1747 			rb_replace_node(&stable_node_dup->node,
1748 					&page_node->node,
1749 					root);
1750 			if (is_page_sharing_candidate(page_node))
1751 				get_page(page);
1752 			else
1753 				page = NULL;
1754 		} else {
1755 			rb_erase(&stable_node_dup->node, root);
1756 			page = NULL;
1757 		}
1758 	} else {
1759 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1760 		__stable_node_dup_del(stable_node_dup);
1761 		if (page_node) {
1762 			VM_BUG_ON(page_node->head != &migrate_nodes);
1763 			list_del(&page_node->list);
1764 			DO_NUMA(page_node->nid = nid);
1765 			stable_node_chain_add_dup(page_node, stable_node);
1766 			if (is_page_sharing_candidate(page_node))
1767 				get_page(page);
1768 			else
1769 				page = NULL;
1770 		} else {
1771 			page = NULL;
1772 		}
1773 	}
1774 	stable_node_dup->head = &migrate_nodes;
1775 	list_add(&stable_node_dup->list, stable_node_dup->head);
1776 	return page;
1777 
1778 chain_append:
1779 	/* stable_node_dup could be null if it reached the limit */
1780 	if (!stable_node_dup)
1781 		stable_node_dup = stable_node_any;
1782 	/*
1783 	 * If stable_node was a chain and chain_prune collapsed it,
1784 	 * stable_node has been updated to be the new regular
1785 	 * stable_node. A collapse of the chain is indistinguishable
1786 	 * from the case there was no chain in the stable
1787 	 * rbtree. Otherwise stable_node is the chain and
1788 	 * stable_node_dup is the dup to replace.
1789 	 */
1790 	if (stable_node_dup == stable_node) {
1791 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1792 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1793 		/* chain is missing so create it */
1794 		stable_node = alloc_stable_node_chain(stable_node_dup,
1795 						      root);
1796 		if (!stable_node)
1797 			return NULL;
1798 	}
1799 	/*
1800 	 * Add this stable_node dup that was
1801 	 * migrated to the stable_node chain
1802 	 * of the current nid for this page
1803 	 * content.
1804 	 */
1805 	VM_BUG_ON(!is_stable_node_chain(stable_node));
1806 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1807 	VM_BUG_ON(page_node->head != &migrate_nodes);
1808 	list_del(&page_node->list);
1809 	DO_NUMA(page_node->nid = nid);
1810 	stable_node_chain_add_dup(page_node, stable_node);
1811 	goto out;
1812 }
1813 
1814 /*
1815  * stable_tree_insert - insert stable tree node pointing to new ksm page
1816  * into the stable tree.
1817  *
1818  * This function returns the stable tree node just allocated on success,
1819  * NULL otherwise.
1820  */
1821 static struct stable_node *stable_tree_insert(struct page *kpage)
1822 {
1823 	int nid;
1824 	unsigned long kpfn;
1825 	struct rb_root *root;
1826 	struct rb_node **new;
1827 	struct rb_node *parent;
1828 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1829 	bool need_chain = false;
1830 
1831 	kpfn = page_to_pfn(kpage);
1832 	nid = get_kpfn_nid(kpfn);
1833 	root = root_stable_tree + nid;
1834 again:
1835 	parent = NULL;
1836 	new = &root->rb_node;
1837 
1838 	while (*new) {
1839 		struct page *tree_page;
1840 		int ret;
1841 
1842 		cond_resched();
1843 		stable_node = rb_entry(*new, struct stable_node, node);
1844 		stable_node_any = NULL;
1845 		tree_page = chain(&stable_node_dup, stable_node, root);
1846 		if (!stable_node_dup) {
1847 			/*
1848 			 * Either all stable_node dups were full in
1849 			 * this stable_node chain, or this chain was
1850 			 * empty and should be rb_erased.
1851 			 */
1852 			stable_node_any = stable_node_dup_any(stable_node,
1853 							      root);
1854 			if (!stable_node_any) {
1855 				/* rb_erase just run */
1856 				goto again;
1857 			}
1858 			/*
1859 			 * Take any of the stable_node dups page of
1860 			 * this stable_node chain to let the tree walk
1861 			 * continue. All KSM pages belonging to the
1862 			 * stable_node dups in a stable_node chain
1863 			 * have the same content and they're
1864 			 * wrprotected at all times. Any will work
1865 			 * fine to continue the walk.
1866 			 */
1867 			tree_page = get_ksm_page(stable_node_any,
1868 						 GET_KSM_PAGE_NOLOCK);
1869 		}
1870 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1871 		if (!tree_page) {
1872 			/*
1873 			 * If we walked over a stale stable_node,
1874 			 * get_ksm_page() will call rb_erase() and it
1875 			 * may rebalance the tree from under us. So
1876 			 * restart the search from scratch. Returning
1877 			 * NULL would be safe too, but we'd generate
1878 			 * false negative insertions just because some
1879 			 * stable_node was stale.
1880 			 */
1881 			goto again;
1882 		}
1883 
1884 		ret = memcmp_pages(kpage, tree_page);
1885 		put_page(tree_page);
1886 
1887 		parent = *new;
1888 		if (ret < 0)
1889 			new = &parent->rb_left;
1890 		else if (ret > 0)
1891 			new = &parent->rb_right;
1892 		else {
1893 			need_chain = true;
1894 			break;
1895 		}
1896 	}
1897 
1898 	stable_node_dup = alloc_stable_node();
1899 	if (!stable_node_dup)
1900 		return NULL;
1901 
1902 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1903 	stable_node_dup->kpfn = kpfn;
1904 	set_page_stable_node(kpage, stable_node_dup);
1905 	stable_node_dup->rmap_hlist_len = 0;
1906 	DO_NUMA(stable_node_dup->nid = nid);
1907 	if (!need_chain) {
1908 		rb_link_node(&stable_node_dup->node, parent, new);
1909 		rb_insert_color(&stable_node_dup->node, root);
1910 	} else {
1911 		if (!is_stable_node_chain(stable_node)) {
1912 			struct stable_node *orig = stable_node;
1913 			/* chain is missing so create it */
1914 			stable_node = alloc_stable_node_chain(orig, root);
1915 			if (!stable_node) {
1916 				free_stable_node(stable_node_dup);
1917 				return NULL;
1918 			}
1919 		}
1920 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1921 	}
1922 
1923 	return stable_node_dup;
1924 }
1925 
1926 /*
1927  * unstable_tree_search_insert - search for identical page,
1928  * else insert rmap_item into the unstable tree.
1929  *
1930  * This function searches for a page in the unstable tree identical to the
1931  * page currently being scanned; and if no identical page is found in the
1932  * tree, we insert rmap_item as a new object into the unstable tree.
1933  *
1934  * This function returns pointer to rmap_item found to be identical
1935  * to the currently scanned page, NULL otherwise.
1936  *
1937  * This function does both searching and inserting, because they share
1938  * the same walking algorithm in an rbtree.
1939  */
1940 static
1941 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1942 					      struct page *page,
1943 					      struct page **tree_pagep)
1944 {
1945 	struct rb_node **new;
1946 	struct rb_root *root;
1947 	struct rb_node *parent = NULL;
1948 	int nid;
1949 
1950 	nid = get_kpfn_nid(page_to_pfn(page));
1951 	root = root_unstable_tree + nid;
1952 	new = &root->rb_node;
1953 
1954 	while (*new) {
1955 		struct rmap_item *tree_rmap_item;
1956 		struct page *tree_page;
1957 		int ret;
1958 
1959 		cond_resched();
1960 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1961 		tree_page = get_mergeable_page(tree_rmap_item);
1962 		if (!tree_page)
1963 			return NULL;
1964 
1965 		/*
1966 		 * Don't substitute a ksm page for a forked page.
1967 		 */
1968 		if (page == tree_page) {
1969 			put_page(tree_page);
1970 			return NULL;
1971 		}
1972 
1973 		ret = memcmp_pages(page, tree_page);
1974 
1975 		parent = *new;
1976 		if (ret < 0) {
1977 			put_page(tree_page);
1978 			new = &parent->rb_left;
1979 		} else if (ret > 0) {
1980 			put_page(tree_page);
1981 			new = &parent->rb_right;
1982 		} else if (!ksm_merge_across_nodes &&
1983 			   page_to_nid(tree_page) != nid) {
1984 			/*
1985 			 * If tree_page has been migrated to another NUMA node,
1986 			 * it will be flushed out and put in the right unstable
1987 			 * tree next time: only merge with it when across_nodes.
1988 			 */
1989 			put_page(tree_page);
1990 			return NULL;
1991 		} else {
1992 			*tree_pagep = tree_page;
1993 			return tree_rmap_item;
1994 		}
1995 	}
1996 
1997 	rmap_item->address |= UNSTABLE_FLAG;
1998 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1999 	DO_NUMA(rmap_item->nid = nid);
2000 	rb_link_node(&rmap_item->node, parent, new);
2001 	rb_insert_color(&rmap_item->node, root);
2002 
2003 	ksm_pages_unshared++;
2004 	return NULL;
2005 }
2006 
2007 /*
2008  * stable_tree_append - add another rmap_item to the linked list of
2009  * rmap_items hanging off a given node of the stable tree, all sharing
2010  * the same ksm page.
2011  */
2012 static void stable_tree_append(struct rmap_item *rmap_item,
2013 			       struct stable_node *stable_node,
2014 			       bool max_page_sharing_bypass)
2015 {
2016 	/*
2017 	 * rmap won't find this mapping if we don't insert the
2018 	 * rmap_item in the right stable_node
2019 	 * duplicate. page_migration could break later if rmap breaks,
2020 	 * so we can as well crash here. We really need to check for
2021 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2022 	 * for other negative values as an undeflow if detected here
2023 	 * for the first time (and not when decreasing rmap_hlist_len)
2024 	 * would be sign of memory corruption in the stable_node.
2025 	 */
2026 	BUG_ON(stable_node->rmap_hlist_len < 0);
2027 
2028 	stable_node->rmap_hlist_len++;
2029 	if (!max_page_sharing_bypass)
2030 		/* possibly non fatal but unexpected overflow, only warn */
2031 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2032 			     ksm_max_page_sharing);
2033 
2034 	rmap_item->head = stable_node;
2035 	rmap_item->address |= STABLE_FLAG;
2036 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2037 
2038 	if (rmap_item->hlist.next)
2039 		ksm_pages_sharing++;
2040 	else
2041 		ksm_pages_shared++;
2042 }
2043 
2044 /*
2045  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2046  * if not, compare checksum to previous and if it's the same, see if page can
2047  * be inserted into the unstable tree, or merged with a page already there and
2048  * both transferred to the stable tree.
2049  *
2050  * @page: the page that we are searching identical page to.
2051  * @rmap_item: the reverse mapping into the virtual address of this page
2052  */
2053 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2054 {
2055 	struct mm_struct *mm = rmap_item->mm;
2056 	struct rmap_item *tree_rmap_item;
2057 	struct page *tree_page = NULL;
2058 	struct stable_node *stable_node;
2059 	struct page *kpage;
2060 	unsigned int checksum;
2061 	int err;
2062 	bool max_page_sharing_bypass = false;
2063 
2064 	stable_node = page_stable_node(page);
2065 	if (stable_node) {
2066 		if (stable_node->head != &migrate_nodes &&
2067 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2068 		    NUMA(stable_node->nid)) {
2069 			stable_node_dup_del(stable_node);
2070 			stable_node->head = &migrate_nodes;
2071 			list_add(&stable_node->list, stable_node->head);
2072 		}
2073 		if (stable_node->head != &migrate_nodes &&
2074 		    rmap_item->head == stable_node)
2075 			return;
2076 		/*
2077 		 * If it's a KSM fork, allow it to go over the sharing limit
2078 		 * without warnings.
2079 		 */
2080 		if (!is_page_sharing_candidate(stable_node))
2081 			max_page_sharing_bypass = true;
2082 	}
2083 
2084 	/* We first start with searching the page inside the stable tree */
2085 	kpage = stable_tree_search(page);
2086 	if (kpage == page && rmap_item->head == stable_node) {
2087 		put_page(kpage);
2088 		return;
2089 	}
2090 
2091 	remove_rmap_item_from_tree(rmap_item);
2092 
2093 	if (kpage) {
2094 		if (PTR_ERR(kpage) == -EBUSY)
2095 			return;
2096 
2097 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2098 		if (!err) {
2099 			/*
2100 			 * The page was successfully merged:
2101 			 * add its rmap_item to the stable tree.
2102 			 */
2103 			lock_page(kpage);
2104 			stable_tree_append(rmap_item, page_stable_node(kpage),
2105 					   max_page_sharing_bypass);
2106 			unlock_page(kpage);
2107 		}
2108 		put_page(kpage);
2109 		return;
2110 	}
2111 
2112 	/*
2113 	 * If the hash value of the page has changed from the last time
2114 	 * we calculated it, this page is changing frequently: therefore we
2115 	 * don't want to insert it in the unstable tree, and we don't want
2116 	 * to waste our time searching for something identical to it there.
2117 	 */
2118 	checksum = calc_checksum(page);
2119 	if (rmap_item->oldchecksum != checksum) {
2120 		rmap_item->oldchecksum = checksum;
2121 		return;
2122 	}
2123 
2124 	/*
2125 	 * Same checksum as an empty page. We attempt to merge it with the
2126 	 * appropriate zero page if the user enabled this via sysfs.
2127 	 */
2128 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2129 		struct vm_area_struct *vma;
2130 
2131 		down_read(&mm->mmap_sem);
2132 		vma = find_mergeable_vma(mm, rmap_item->address);
2133 		err = try_to_merge_one_page(vma, page,
2134 					    ZERO_PAGE(rmap_item->address));
2135 		up_read(&mm->mmap_sem);
2136 		/*
2137 		 * In case of failure, the page was not really empty, so we
2138 		 * need to continue. Otherwise we're done.
2139 		 */
2140 		if (!err)
2141 			return;
2142 	}
2143 	tree_rmap_item =
2144 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2145 	if (tree_rmap_item) {
2146 		bool split;
2147 
2148 		kpage = try_to_merge_two_pages(rmap_item, page,
2149 						tree_rmap_item, tree_page);
2150 		/*
2151 		 * If both pages we tried to merge belong to the same compound
2152 		 * page, then we actually ended up increasing the reference
2153 		 * count of the same compound page twice, and split_huge_page
2154 		 * failed.
2155 		 * Here we set a flag if that happened, and we use it later to
2156 		 * try split_huge_page again. Since we call put_page right
2157 		 * afterwards, the reference count will be correct and
2158 		 * split_huge_page should succeed.
2159 		 */
2160 		split = PageTransCompound(page)
2161 			&& compound_head(page) == compound_head(tree_page);
2162 		put_page(tree_page);
2163 		if (kpage) {
2164 			/*
2165 			 * The pages were successfully merged: insert new
2166 			 * node in the stable tree and add both rmap_items.
2167 			 */
2168 			lock_page(kpage);
2169 			stable_node = stable_tree_insert(kpage);
2170 			if (stable_node) {
2171 				stable_tree_append(tree_rmap_item, stable_node,
2172 						   false);
2173 				stable_tree_append(rmap_item, stable_node,
2174 						   false);
2175 			}
2176 			unlock_page(kpage);
2177 
2178 			/*
2179 			 * If we fail to insert the page into the stable tree,
2180 			 * we will have 2 virtual addresses that are pointing
2181 			 * to a ksm page left outside the stable tree,
2182 			 * in which case we need to break_cow on both.
2183 			 */
2184 			if (!stable_node) {
2185 				break_cow(tree_rmap_item);
2186 				break_cow(rmap_item);
2187 			}
2188 		} else if (split) {
2189 			/*
2190 			 * We are here if we tried to merge two pages and
2191 			 * failed because they both belonged to the same
2192 			 * compound page. We will split the page now, but no
2193 			 * merging will take place.
2194 			 * We do not want to add the cost of a full lock; if
2195 			 * the page is locked, it is better to skip it and
2196 			 * perhaps try again later.
2197 			 */
2198 			if (!trylock_page(page))
2199 				return;
2200 			split_huge_page(page);
2201 			unlock_page(page);
2202 		}
2203 	}
2204 }
2205 
2206 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2207 					    struct rmap_item **rmap_list,
2208 					    unsigned long addr)
2209 {
2210 	struct rmap_item *rmap_item;
2211 
2212 	while (*rmap_list) {
2213 		rmap_item = *rmap_list;
2214 		if ((rmap_item->address & PAGE_MASK) == addr)
2215 			return rmap_item;
2216 		if (rmap_item->address > addr)
2217 			break;
2218 		*rmap_list = rmap_item->rmap_list;
2219 		remove_rmap_item_from_tree(rmap_item);
2220 		free_rmap_item(rmap_item);
2221 	}
2222 
2223 	rmap_item = alloc_rmap_item();
2224 	if (rmap_item) {
2225 		/* It has already been zeroed */
2226 		rmap_item->mm = mm_slot->mm;
2227 		rmap_item->address = addr;
2228 		rmap_item->rmap_list = *rmap_list;
2229 		*rmap_list = rmap_item;
2230 	}
2231 	return rmap_item;
2232 }
2233 
2234 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2235 {
2236 	struct mm_struct *mm;
2237 	struct mm_slot *slot;
2238 	struct vm_area_struct *vma;
2239 	struct rmap_item *rmap_item;
2240 	int nid;
2241 
2242 	if (list_empty(&ksm_mm_head.mm_list))
2243 		return NULL;
2244 
2245 	slot = ksm_scan.mm_slot;
2246 	if (slot == &ksm_mm_head) {
2247 		/*
2248 		 * A number of pages can hang around indefinitely on per-cpu
2249 		 * pagevecs, raised page count preventing write_protect_page
2250 		 * from merging them.  Though it doesn't really matter much,
2251 		 * it is puzzling to see some stuck in pages_volatile until
2252 		 * other activity jostles them out, and they also prevented
2253 		 * LTP's KSM test from succeeding deterministically; so drain
2254 		 * them here (here rather than on entry to ksm_do_scan(),
2255 		 * so we don't IPI too often when pages_to_scan is set low).
2256 		 */
2257 		lru_add_drain_all();
2258 
2259 		/*
2260 		 * Whereas stale stable_nodes on the stable_tree itself
2261 		 * get pruned in the regular course of stable_tree_search(),
2262 		 * those moved out to the migrate_nodes list can accumulate:
2263 		 * so prune them once before each full scan.
2264 		 */
2265 		if (!ksm_merge_across_nodes) {
2266 			struct stable_node *stable_node, *next;
2267 			struct page *page;
2268 
2269 			list_for_each_entry_safe(stable_node, next,
2270 						 &migrate_nodes, list) {
2271 				page = get_ksm_page(stable_node,
2272 						    GET_KSM_PAGE_NOLOCK);
2273 				if (page)
2274 					put_page(page);
2275 				cond_resched();
2276 			}
2277 		}
2278 
2279 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2280 			root_unstable_tree[nid] = RB_ROOT;
2281 
2282 		spin_lock(&ksm_mmlist_lock);
2283 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2284 		ksm_scan.mm_slot = slot;
2285 		spin_unlock(&ksm_mmlist_lock);
2286 		/*
2287 		 * Although we tested list_empty() above, a racing __ksm_exit
2288 		 * of the last mm on the list may have removed it since then.
2289 		 */
2290 		if (slot == &ksm_mm_head)
2291 			return NULL;
2292 next_mm:
2293 		ksm_scan.address = 0;
2294 		ksm_scan.rmap_list = &slot->rmap_list;
2295 	}
2296 
2297 	mm = slot->mm;
2298 	down_read(&mm->mmap_sem);
2299 	if (ksm_test_exit(mm))
2300 		vma = NULL;
2301 	else
2302 		vma = find_vma(mm, ksm_scan.address);
2303 
2304 	for (; vma; vma = vma->vm_next) {
2305 		if (!(vma->vm_flags & VM_MERGEABLE))
2306 			continue;
2307 		if (ksm_scan.address < vma->vm_start)
2308 			ksm_scan.address = vma->vm_start;
2309 		if (!vma->anon_vma)
2310 			ksm_scan.address = vma->vm_end;
2311 
2312 		while (ksm_scan.address < vma->vm_end) {
2313 			if (ksm_test_exit(mm))
2314 				break;
2315 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2316 			if (IS_ERR_OR_NULL(*page)) {
2317 				ksm_scan.address += PAGE_SIZE;
2318 				cond_resched();
2319 				continue;
2320 			}
2321 			if (PageAnon(*page)) {
2322 				flush_anon_page(vma, *page, ksm_scan.address);
2323 				flush_dcache_page(*page);
2324 				rmap_item = get_next_rmap_item(slot,
2325 					ksm_scan.rmap_list, ksm_scan.address);
2326 				if (rmap_item) {
2327 					ksm_scan.rmap_list =
2328 							&rmap_item->rmap_list;
2329 					ksm_scan.address += PAGE_SIZE;
2330 				} else
2331 					put_page(*page);
2332 				up_read(&mm->mmap_sem);
2333 				return rmap_item;
2334 			}
2335 			put_page(*page);
2336 			ksm_scan.address += PAGE_SIZE;
2337 			cond_resched();
2338 		}
2339 	}
2340 
2341 	if (ksm_test_exit(mm)) {
2342 		ksm_scan.address = 0;
2343 		ksm_scan.rmap_list = &slot->rmap_list;
2344 	}
2345 	/*
2346 	 * Nuke all the rmap_items that are above this current rmap:
2347 	 * because there were no VM_MERGEABLE vmas with such addresses.
2348 	 */
2349 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2350 
2351 	spin_lock(&ksm_mmlist_lock);
2352 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2353 						struct mm_slot, mm_list);
2354 	if (ksm_scan.address == 0) {
2355 		/*
2356 		 * We've completed a full scan of all vmas, holding mmap_sem
2357 		 * throughout, and found no VM_MERGEABLE: so do the same as
2358 		 * __ksm_exit does to remove this mm from all our lists now.
2359 		 * This applies either when cleaning up after __ksm_exit
2360 		 * (but beware: we can reach here even before __ksm_exit),
2361 		 * or when all VM_MERGEABLE areas have been unmapped (and
2362 		 * mmap_sem then protects against race with MADV_MERGEABLE).
2363 		 */
2364 		hash_del(&slot->link);
2365 		list_del(&slot->mm_list);
2366 		spin_unlock(&ksm_mmlist_lock);
2367 
2368 		free_mm_slot(slot);
2369 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2370 		up_read(&mm->mmap_sem);
2371 		mmdrop(mm);
2372 	} else {
2373 		up_read(&mm->mmap_sem);
2374 		/*
2375 		 * up_read(&mm->mmap_sem) first because after
2376 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2377 		 * already have been freed under us by __ksm_exit()
2378 		 * because the "mm_slot" is still hashed and
2379 		 * ksm_scan.mm_slot doesn't point to it anymore.
2380 		 */
2381 		spin_unlock(&ksm_mmlist_lock);
2382 	}
2383 
2384 	/* Repeat until we've completed scanning the whole list */
2385 	slot = ksm_scan.mm_slot;
2386 	if (slot != &ksm_mm_head)
2387 		goto next_mm;
2388 
2389 	ksm_scan.seqnr++;
2390 	return NULL;
2391 }
2392 
2393 /**
2394  * ksm_do_scan  - the ksm scanner main worker function.
2395  * @scan_npages:  number of pages we want to scan before we return.
2396  */
2397 static void ksm_do_scan(unsigned int scan_npages)
2398 {
2399 	struct rmap_item *rmap_item;
2400 	struct page *uninitialized_var(page);
2401 
2402 	while (scan_npages-- && likely(!freezing(current))) {
2403 		cond_resched();
2404 		rmap_item = scan_get_next_rmap_item(&page);
2405 		if (!rmap_item)
2406 			return;
2407 		cmp_and_merge_page(page, rmap_item);
2408 		put_page(page);
2409 	}
2410 }
2411 
2412 static int ksmd_should_run(void)
2413 {
2414 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2415 }
2416 
2417 static int ksm_scan_thread(void *nothing)
2418 {
2419 	unsigned int sleep_ms;
2420 
2421 	set_freezable();
2422 	set_user_nice(current, 5);
2423 
2424 	while (!kthread_should_stop()) {
2425 		mutex_lock(&ksm_thread_mutex);
2426 		wait_while_offlining();
2427 		if (ksmd_should_run())
2428 			ksm_do_scan(ksm_thread_pages_to_scan);
2429 		mutex_unlock(&ksm_thread_mutex);
2430 
2431 		try_to_freeze();
2432 
2433 		if (ksmd_should_run()) {
2434 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2435 			wait_event_interruptible_timeout(ksm_iter_wait,
2436 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2437 				msecs_to_jiffies(sleep_ms));
2438 		} else {
2439 			wait_event_freezable(ksm_thread_wait,
2440 				ksmd_should_run() || kthread_should_stop());
2441 		}
2442 	}
2443 	return 0;
2444 }
2445 
2446 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2447 		unsigned long end, int advice, unsigned long *vm_flags)
2448 {
2449 	struct mm_struct *mm = vma->vm_mm;
2450 	int err;
2451 
2452 	switch (advice) {
2453 	case MADV_MERGEABLE:
2454 		/*
2455 		 * Be somewhat over-protective for now!
2456 		 */
2457 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2458 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2459 				 VM_HUGETLB | VM_MIXEDMAP))
2460 			return 0;		/* just ignore the advice */
2461 
2462 		if (vma_is_dax(vma))
2463 			return 0;
2464 
2465 #ifdef VM_SAO
2466 		if (*vm_flags & VM_SAO)
2467 			return 0;
2468 #endif
2469 #ifdef VM_SPARC_ADI
2470 		if (*vm_flags & VM_SPARC_ADI)
2471 			return 0;
2472 #endif
2473 
2474 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2475 			err = __ksm_enter(mm);
2476 			if (err)
2477 				return err;
2478 		}
2479 
2480 		*vm_flags |= VM_MERGEABLE;
2481 		break;
2482 
2483 	case MADV_UNMERGEABLE:
2484 		if (!(*vm_flags & VM_MERGEABLE))
2485 			return 0;		/* just ignore the advice */
2486 
2487 		if (vma->anon_vma) {
2488 			err = unmerge_ksm_pages(vma, start, end);
2489 			if (err)
2490 				return err;
2491 		}
2492 
2493 		*vm_flags &= ~VM_MERGEABLE;
2494 		break;
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 int __ksm_enter(struct mm_struct *mm)
2501 {
2502 	struct mm_slot *mm_slot;
2503 	int needs_wakeup;
2504 
2505 	mm_slot = alloc_mm_slot();
2506 	if (!mm_slot)
2507 		return -ENOMEM;
2508 
2509 	/* Check ksm_run too?  Would need tighter locking */
2510 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2511 
2512 	spin_lock(&ksm_mmlist_lock);
2513 	insert_to_mm_slots_hash(mm, mm_slot);
2514 	/*
2515 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2516 	 * insert just behind the scanning cursor, to let the area settle
2517 	 * down a little; when fork is followed by immediate exec, we don't
2518 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2519 	 *
2520 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2521 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2522 	 * missed: then we might as well insert at the end of the list.
2523 	 */
2524 	if (ksm_run & KSM_RUN_UNMERGE)
2525 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2526 	else
2527 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2528 	spin_unlock(&ksm_mmlist_lock);
2529 
2530 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2531 	mmgrab(mm);
2532 
2533 	if (needs_wakeup)
2534 		wake_up_interruptible(&ksm_thread_wait);
2535 
2536 	return 0;
2537 }
2538 
2539 void __ksm_exit(struct mm_struct *mm)
2540 {
2541 	struct mm_slot *mm_slot;
2542 	int easy_to_free = 0;
2543 
2544 	/*
2545 	 * This process is exiting: if it's straightforward (as is the
2546 	 * case when ksmd was never running), free mm_slot immediately.
2547 	 * But if it's at the cursor or has rmap_items linked to it, use
2548 	 * mmap_sem to synchronize with any break_cows before pagetables
2549 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2550 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2551 	 */
2552 
2553 	spin_lock(&ksm_mmlist_lock);
2554 	mm_slot = get_mm_slot(mm);
2555 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2556 		if (!mm_slot->rmap_list) {
2557 			hash_del(&mm_slot->link);
2558 			list_del(&mm_slot->mm_list);
2559 			easy_to_free = 1;
2560 		} else {
2561 			list_move(&mm_slot->mm_list,
2562 				  &ksm_scan.mm_slot->mm_list);
2563 		}
2564 	}
2565 	spin_unlock(&ksm_mmlist_lock);
2566 
2567 	if (easy_to_free) {
2568 		free_mm_slot(mm_slot);
2569 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2570 		mmdrop(mm);
2571 	} else if (mm_slot) {
2572 		down_write(&mm->mmap_sem);
2573 		up_write(&mm->mmap_sem);
2574 	}
2575 }
2576 
2577 struct page *ksm_might_need_to_copy(struct page *page,
2578 			struct vm_area_struct *vma, unsigned long address)
2579 {
2580 	struct anon_vma *anon_vma = page_anon_vma(page);
2581 	struct page *new_page;
2582 
2583 	if (PageKsm(page)) {
2584 		if (page_stable_node(page) &&
2585 		    !(ksm_run & KSM_RUN_UNMERGE))
2586 			return page;	/* no need to copy it */
2587 	} else if (!anon_vma) {
2588 		return page;		/* no need to copy it */
2589 	} else if (anon_vma->root == vma->anon_vma->root &&
2590 		 page->index == linear_page_index(vma, address)) {
2591 		return page;		/* still no need to copy it */
2592 	}
2593 	if (!PageUptodate(page))
2594 		return page;		/* let do_swap_page report the error */
2595 
2596 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2597 	if (new_page) {
2598 		copy_user_highpage(new_page, page, address, vma);
2599 
2600 		SetPageDirty(new_page);
2601 		__SetPageUptodate(new_page);
2602 		__SetPageLocked(new_page);
2603 	}
2604 
2605 	return new_page;
2606 }
2607 
2608 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2609 {
2610 	struct stable_node *stable_node;
2611 	struct rmap_item *rmap_item;
2612 	int search_new_forks = 0;
2613 
2614 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2615 
2616 	/*
2617 	 * Rely on the page lock to protect against concurrent modifications
2618 	 * to that page's node of the stable tree.
2619 	 */
2620 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2621 
2622 	stable_node = page_stable_node(page);
2623 	if (!stable_node)
2624 		return;
2625 again:
2626 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2627 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2628 		struct anon_vma_chain *vmac;
2629 		struct vm_area_struct *vma;
2630 
2631 		cond_resched();
2632 		anon_vma_lock_read(anon_vma);
2633 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2634 					       0, ULONG_MAX) {
2635 			unsigned long addr;
2636 
2637 			cond_resched();
2638 			vma = vmac->vma;
2639 
2640 			/* Ignore the stable/unstable/sqnr flags */
2641 			addr = rmap_item->address & ~KSM_FLAG_MASK;
2642 
2643 			if (addr < vma->vm_start || addr >= vma->vm_end)
2644 				continue;
2645 			/*
2646 			 * Initially we examine only the vma which covers this
2647 			 * rmap_item; but later, if there is still work to do,
2648 			 * we examine covering vmas in other mms: in case they
2649 			 * were forked from the original since ksmd passed.
2650 			 */
2651 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2652 				continue;
2653 
2654 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2655 				continue;
2656 
2657 			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2658 				anon_vma_unlock_read(anon_vma);
2659 				return;
2660 			}
2661 			if (rwc->done && rwc->done(page)) {
2662 				anon_vma_unlock_read(anon_vma);
2663 				return;
2664 			}
2665 		}
2666 		anon_vma_unlock_read(anon_vma);
2667 	}
2668 	if (!search_new_forks++)
2669 		goto again;
2670 }
2671 
2672 bool reuse_ksm_page(struct page *page,
2673 		    struct vm_area_struct *vma,
2674 		    unsigned long address)
2675 {
2676 #ifdef CONFIG_DEBUG_VM
2677 	if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2678 			WARN_ON(!page_mapped(page)) ||
2679 			WARN_ON(!PageLocked(page))) {
2680 		dump_page(page, "reuse_ksm_page");
2681 		return false;
2682 	}
2683 #endif
2684 
2685 	if (PageSwapCache(page) || !page_stable_node(page))
2686 		return false;
2687 	/* Prohibit parallel get_ksm_page() */
2688 	if (!page_ref_freeze(page, 1))
2689 		return false;
2690 
2691 	page_move_anon_rmap(page, vma);
2692 	page->index = linear_page_index(vma, address);
2693 	page_ref_unfreeze(page, 1);
2694 
2695 	return true;
2696 }
2697 #ifdef CONFIG_MIGRATION
2698 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2699 {
2700 	struct stable_node *stable_node;
2701 
2702 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2703 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2704 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2705 
2706 	stable_node = page_stable_node(newpage);
2707 	if (stable_node) {
2708 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2709 		stable_node->kpfn = page_to_pfn(newpage);
2710 		/*
2711 		 * newpage->mapping was set in advance; now we need smp_wmb()
2712 		 * to make sure that the new stable_node->kpfn is visible
2713 		 * to get_ksm_page() before it can see that oldpage->mapping
2714 		 * has gone stale (or that PageSwapCache has been cleared).
2715 		 */
2716 		smp_wmb();
2717 		set_page_stable_node(oldpage, NULL);
2718 	}
2719 }
2720 #endif /* CONFIG_MIGRATION */
2721 
2722 #ifdef CONFIG_MEMORY_HOTREMOVE
2723 static void wait_while_offlining(void)
2724 {
2725 	while (ksm_run & KSM_RUN_OFFLINE) {
2726 		mutex_unlock(&ksm_thread_mutex);
2727 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2728 			    TASK_UNINTERRUPTIBLE);
2729 		mutex_lock(&ksm_thread_mutex);
2730 	}
2731 }
2732 
2733 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2734 					 unsigned long start_pfn,
2735 					 unsigned long end_pfn)
2736 {
2737 	if (stable_node->kpfn >= start_pfn &&
2738 	    stable_node->kpfn < end_pfn) {
2739 		/*
2740 		 * Don't get_ksm_page, page has already gone:
2741 		 * which is why we keep kpfn instead of page*
2742 		 */
2743 		remove_node_from_stable_tree(stable_node);
2744 		return true;
2745 	}
2746 	return false;
2747 }
2748 
2749 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2750 					   unsigned long start_pfn,
2751 					   unsigned long end_pfn,
2752 					   struct rb_root *root)
2753 {
2754 	struct stable_node *dup;
2755 	struct hlist_node *hlist_safe;
2756 
2757 	if (!is_stable_node_chain(stable_node)) {
2758 		VM_BUG_ON(is_stable_node_dup(stable_node));
2759 		return stable_node_dup_remove_range(stable_node, start_pfn,
2760 						    end_pfn);
2761 	}
2762 
2763 	hlist_for_each_entry_safe(dup, hlist_safe,
2764 				  &stable_node->hlist, hlist_dup) {
2765 		VM_BUG_ON(!is_stable_node_dup(dup));
2766 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2767 	}
2768 	if (hlist_empty(&stable_node->hlist)) {
2769 		free_stable_node_chain(stable_node, root);
2770 		return true; /* notify caller that tree was rebalanced */
2771 	} else
2772 		return false;
2773 }
2774 
2775 static void ksm_check_stable_tree(unsigned long start_pfn,
2776 				  unsigned long end_pfn)
2777 {
2778 	struct stable_node *stable_node, *next;
2779 	struct rb_node *node;
2780 	int nid;
2781 
2782 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2783 		node = rb_first(root_stable_tree + nid);
2784 		while (node) {
2785 			stable_node = rb_entry(node, struct stable_node, node);
2786 			if (stable_node_chain_remove_range(stable_node,
2787 							   start_pfn, end_pfn,
2788 							   root_stable_tree +
2789 							   nid))
2790 				node = rb_first(root_stable_tree + nid);
2791 			else
2792 				node = rb_next(node);
2793 			cond_resched();
2794 		}
2795 	}
2796 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2797 		if (stable_node->kpfn >= start_pfn &&
2798 		    stable_node->kpfn < end_pfn)
2799 			remove_node_from_stable_tree(stable_node);
2800 		cond_resched();
2801 	}
2802 }
2803 
2804 static int ksm_memory_callback(struct notifier_block *self,
2805 			       unsigned long action, void *arg)
2806 {
2807 	struct memory_notify *mn = arg;
2808 
2809 	switch (action) {
2810 	case MEM_GOING_OFFLINE:
2811 		/*
2812 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2813 		 * and remove_all_stable_nodes() while memory is going offline:
2814 		 * it is unsafe for them to touch the stable tree at this time.
2815 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2816 		 * which do not need the ksm_thread_mutex are all safe.
2817 		 */
2818 		mutex_lock(&ksm_thread_mutex);
2819 		ksm_run |= KSM_RUN_OFFLINE;
2820 		mutex_unlock(&ksm_thread_mutex);
2821 		break;
2822 
2823 	case MEM_OFFLINE:
2824 		/*
2825 		 * Most of the work is done by page migration; but there might
2826 		 * be a few stable_nodes left over, still pointing to struct
2827 		 * pages which have been offlined: prune those from the tree,
2828 		 * otherwise get_ksm_page() might later try to access a
2829 		 * non-existent struct page.
2830 		 */
2831 		ksm_check_stable_tree(mn->start_pfn,
2832 				      mn->start_pfn + mn->nr_pages);
2833 		/* fallthrough */
2834 
2835 	case MEM_CANCEL_OFFLINE:
2836 		mutex_lock(&ksm_thread_mutex);
2837 		ksm_run &= ~KSM_RUN_OFFLINE;
2838 		mutex_unlock(&ksm_thread_mutex);
2839 
2840 		smp_mb();	/* wake_up_bit advises this */
2841 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2842 		break;
2843 	}
2844 	return NOTIFY_OK;
2845 }
2846 #else
2847 static void wait_while_offlining(void)
2848 {
2849 }
2850 #endif /* CONFIG_MEMORY_HOTREMOVE */
2851 
2852 #ifdef CONFIG_SYSFS
2853 /*
2854  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2855  */
2856 
2857 #define KSM_ATTR_RO(_name) \
2858 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2859 #define KSM_ATTR(_name) \
2860 	static struct kobj_attribute _name##_attr = \
2861 		__ATTR(_name, 0644, _name##_show, _name##_store)
2862 
2863 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2864 				    struct kobj_attribute *attr, char *buf)
2865 {
2866 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2867 }
2868 
2869 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2870 				     struct kobj_attribute *attr,
2871 				     const char *buf, size_t count)
2872 {
2873 	unsigned long msecs;
2874 	int err;
2875 
2876 	err = kstrtoul(buf, 10, &msecs);
2877 	if (err || msecs > UINT_MAX)
2878 		return -EINVAL;
2879 
2880 	ksm_thread_sleep_millisecs = msecs;
2881 	wake_up_interruptible(&ksm_iter_wait);
2882 
2883 	return count;
2884 }
2885 KSM_ATTR(sleep_millisecs);
2886 
2887 static ssize_t pages_to_scan_show(struct kobject *kobj,
2888 				  struct kobj_attribute *attr, char *buf)
2889 {
2890 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2891 }
2892 
2893 static ssize_t pages_to_scan_store(struct kobject *kobj,
2894 				   struct kobj_attribute *attr,
2895 				   const char *buf, size_t count)
2896 {
2897 	int err;
2898 	unsigned long nr_pages;
2899 
2900 	err = kstrtoul(buf, 10, &nr_pages);
2901 	if (err || nr_pages > UINT_MAX)
2902 		return -EINVAL;
2903 
2904 	ksm_thread_pages_to_scan = nr_pages;
2905 
2906 	return count;
2907 }
2908 KSM_ATTR(pages_to_scan);
2909 
2910 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2911 			char *buf)
2912 {
2913 	return sprintf(buf, "%lu\n", ksm_run);
2914 }
2915 
2916 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2917 			 const char *buf, size_t count)
2918 {
2919 	int err;
2920 	unsigned long flags;
2921 
2922 	err = kstrtoul(buf, 10, &flags);
2923 	if (err || flags > UINT_MAX)
2924 		return -EINVAL;
2925 	if (flags > KSM_RUN_UNMERGE)
2926 		return -EINVAL;
2927 
2928 	/*
2929 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2930 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2931 	 * breaking COW to free the pages_shared (but leaves mm_slots
2932 	 * on the list for when ksmd may be set running again).
2933 	 */
2934 
2935 	mutex_lock(&ksm_thread_mutex);
2936 	wait_while_offlining();
2937 	if (ksm_run != flags) {
2938 		ksm_run = flags;
2939 		if (flags & KSM_RUN_UNMERGE) {
2940 			set_current_oom_origin();
2941 			err = unmerge_and_remove_all_rmap_items();
2942 			clear_current_oom_origin();
2943 			if (err) {
2944 				ksm_run = KSM_RUN_STOP;
2945 				count = err;
2946 			}
2947 		}
2948 	}
2949 	mutex_unlock(&ksm_thread_mutex);
2950 
2951 	if (flags & KSM_RUN_MERGE)
2952 		wake_up_interruptible(&ksm_thread_wait);
2953 
2954 	return count;
2955 }
2956 KSM_ATTR(run);
2957 
2958 #ifdef CONFIG_NUMA
2959 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2960 				struct kobj_attribute *attr, char *buf)
2961 {
2962 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2963 }
2964 
2965 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2966 				   struct kobj_attribute *attr,
2967 				   const char *buf, size_t count)
2968 {
2969 	int err;
2970 	unsigned long knob;
2971 
2972 	err = kstrtoul(buf, 10, &knob);
2973 	if (err)
2974 		return err;
2975 	if (knob > 1)
2976 		return -EINVAL;
2977 
2978 	mutex_lock(&ksm_thread_mutex);
2979 	wait_while_offlining();
2980 	if (ksm_merge_across_nodes != knob) {
2981 		if (ksm_pages_shared || remove_all_stable_nodes())
2982 			err = -EBUSY;
2983 		else if (root_stable_tree == one_stable_tree) {
2984 			struct rb_root *buf;
2985 			/*
2986 			 * This is the first time that we switch away from the
2987 			 * default of merging across nodes: must now allocate
2988 			 * a buffer to hold as many roots as may be needed.
2989 			 * Allocate stable and unstable together:
2990 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2991 			 */
2992 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2993 				      GFP_KERNEL);
2994 			/* Let us assume that RB_ROOT is NULL is zero */
2995 			if (!buf)
2996 				err = -ENOMEM;
2997 			else {
2998 				root_stable_tree = buf;
2999 				root_unstable_tree = buf + nr_node_ids;
3000 				/* Stable tree is empty but not the unstable */
3001 				root_unstable_tree[0] = one_unstable_tree[0];
3002 			}
3003 		}
3004 		if (!err) {
3005 			ksm_merge_across_nodes = knob;
3006 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3007 		}
3008 	}
3009 	mutex_unlock(&ksm_thread_mutex);
3010 
3011 	return err ? err : count;
3012 }
3013 KSM_ATTR(merge_across_nodes);
3014 #endif
3015 
3016 static ssize_t use_zero_pages_show(struct kobject *kobj,
3017 				struct kobj_attribute *attr, char *buf)
3018 {
3019 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
3020 }
3021 static ssize_t use_zero_pages_store(struct kobject *kobj,
3022 				   struct kobj_attribute *attr,
3023 				   const char *buf, size_t count)
3024 {
3025 	int err;
3026 	bool value;
3027 
3028 	err = kstrtobool(buf, &value);
3029 	if (err)
3030 		return -EINVAL;
3031 
3032 	ksm_use_zero_pages = value;
3033 
3034 	return count;
3035 }
3036 KSM_ATTR(use_zero_pages);
3037 
3038 static ssize_t max_page_sharing_show(struct kobject *kobj,
3039 				     struct kobj_attribute *attr, char *buf)
3040 {
3041 	return sprintf(buf, "%u\n", ksm_max_page_sharing);
3042 }
3043 
3044 static ssize_t max_page_sharing_store(struct kobject *kobj,
3045 				      struct kobj_attribute *attr,
3046 				      const char *buf, size_t count)
3047 {
3048 	int err;
3049 	int knob;
3050 
3051 	err = kstrtoint(buf, 10, &knob);
3052 	if (err)
3053 		return err;
3054 	/*
3055 	 * When a KSM page is created it is shared by 2 mappings. This
3056 	 * being a signed comparison, it implicitly verifies it's not
3057 	 * negative.
3058 	 */
3059 	if (knob < 2)
3060 		return -EINVAL;
3061 
3062 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3063 		return count;
3064 
3065 	mutex_lock(&ksm_thread_mutex);
3066 	wait_while_offlining();
3067 	if (ksm_max_page_sharing != knob) {
3068 		if (ksm_pages_shared || remove_all_stable_nodes())
3069 			err = -EBUSY;
3070 		else
3071 			ksm_max_page_sharing = knob;
3072 	}
3073 	mutex_unlock(&ksm_thread_mutex);
3074 
3075 	return err ? err : count;
3076 }
3077 KSM_ATTR(max_page_sharing);
3078 
3079 static ssize_t pages_shared_show(struct kobject *kobj,
3080 				 struct kobj_attribute *attr, char *buf)
3081 {
3082 	return sprintf(buf, "%lu\n", ksm_pages_shared);
3083 }
3084 KSM_ATTR_RO(pages_shared);
3085 
3086 static ssize_t pages_sharing_show(struct kobject *kobj,
3087 				  struct kobj_attribute *attr, char *buf)
3088 {
3089 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3090 }
3091 KSM_ATTR_RO(pages_sharing);
3092 
3093 static ssize_t pages_unshared_show(struct kobject *kobj,
3094 				   struct kobj_attribute *attr, char *buf)
3095 {
3096 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3097 }
3098 KSM_ATTR_RO(pages_unshared);
3099 
3100 static ssize_t pages_volatile_show(struct kobject *kobj,
3101 				   struct kobj_attribute *attr, char *buf)
3102 {
3103 	long ksm_pages_volatile;
3104 
3105 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3106 				- ksm_pages_sharing - ksm_pages_unshared;
3107 	/*
3108 	 * It was not worth any locking to calculate that statistic,
3109 	 * but it might therefore sometimes be negative: conceal that.
3110 	 */
3111 	if (ksm_pages_volatile < 0)
3112 		ksm_pages_volatile = 0;
3113 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3114 }
3115 KSM_ATTR_RO(pages_volatile);
3116 
3117 static ssize_t stable_node_dups_show(struct kobject *kobj,
3118 				     struct kobj_attribute *attr, char *buf)
3119 {
3120 	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3121 }
3122 KSM_ATTR_RO(stable_node_dups);
3123 
3124 static ssize_t stable_node_chains_show(struct kobject *kobj,
3125 				       struct kobj_attribute *attr, char *buf)
3126 {
3127 	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3128 }
3129 KSM_ATTR_RO(stable_node_chains);
3130 
3131 static ssize_t
3132 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3133 					struct kobj_attribute *attr,
3134 					char *buf)
3135 {
3136 	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3137 }
3138 
3139 static ssize_t
3140 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3141 					 struct kobj_attribute *attr,
3142 					 const char *buf, size_t count)
3143 {
3144 	unsigned long msecs;
3145 	int err;
3146 
3147 	err = kstrtoul(buf, 10, &msecs);
3148 	if (err || msecs > UINT_MAX)
3149 		return -EINVAL;
3150 
3151 	ksm_stable_node_chains_prune_millisecs = msecs;
3152 
3153 	return count;
3154 }
3155 KSM_ATTR(stable_node_chains_prune_millisecs);
3156 
3157 static ssize_t full_scans_show(struct kobject *kobj,
3158 			       struct kobj_attribute *attr, char *buf)
3159 {
3160 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3161 }
3162 KSM_ATTR_RO(full_scans);
3163 
3164 static struct attribute *ksm_attrs[] = {
3165 	&sleep_millisecs_attr.attr,
3166 	&pages_to_scan_attr.attr,
3167 	&run_attr.attr,
3168 	&pages_shared_attr.attr,
3169 	&pages_sharing_attr.attr,
3170 	&pages_unshared_attr.attr,
3171 	&pages_volatile_attr.attr,
3172 	&full_scans_attr.attr,
3173 #ifdef CONFIG_NUMA
3174 	&merge_across_nodes_attr.attr,
3175 #endif
3176 	&max_page_sharing_attr.attr,
3177 	&stable_node_chains_attr.attr,
3178 	&stable_node_dups_attr.attr,
3179 	&stable_node_chains_prune_millisecs_attr.attr,
3180 	&use_zero_pages_attr.attr,
3181 	NULL,
3182 };
3183 
3184 static const struct attribute_group ksm_attr_group = {
3185 	.attrs = ksm_attrs,
3186 	.name = "ksm",
3187 };
3188 #endif /* CONFIG_SYSFS */
3189 
3190 static int __init ksm_init(void)
3191 {
3192 	struct task_struct *ksm_thread;
3193 	int err;
3194 
3195 	/* The correct value depends on page size and endianness */
3196 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3197 	/* Default to false for backwards compatibility */
3198 	ksm_use_zero_pages = false;
3199 
3200 	err = ksm_slab_init();
3201 	if (err)
3202 		goto out;
3203 
3204 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3205 	if (IS_ERR(ksm_thread)) {
3206 		pr_err("ksm: creating kthread failed\n");
3207 		err = PTR_ERR(ksm_thread);
3208 		goto out_free;
3209 	}
3210 
3211 #ifdef CONFIG_SYSFS
3212 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3213 	if (err) {
3214 		pr_err("ksm: register sysfs failed\n");
3215 		kthread_stop(ksm_thread);
3216 		goto out_free;
3217 	}
3218 #else
3219 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3220 
3221 #endif /* CONFIG_SYSFS */
3222 
3223 #ifdef CONFIG_MEMORY_HOTREMOVE
3224 	/* There is no significance to this priority 100 */
3225 	hotplug_memory_notifier(ksm_memory_callback, 100);
3226 #endif
3227 	return 0;
3228 
3229 out_free:
3230 	ksm_slab_free();
3231 out:
3232 	return err;
3233 }
3234 subsys_initcall(ksm_init);
3235