1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/fs.h> 19 #include <linux/mman.h> 20 #include <linux/sched.h> 21 #include <linux/sched/mm.h> 22 #include <linux/sched/coredump.h> 23 #include <linux/rwsem.h> 24 #include <linux/pagemap.h> 25 #include <linux/rmap.h> 26 #include <linux/spinlock.h> 27 #include <linux/xxhash.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/wait.h> 31 #include <linux/slab.h> 32 #include <linux/rbtree.h> 33 #include <linux/memory.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/swap.h> 36 #include <linux/ksm.h> 37 #include <linux/hashtable.h> 38 #include <linux/freezer.h> 39 #include <linux/oom.h> 40 #include <linux/numa.h> 41 42 #include <asm/tlbflush.h> 43 #include "internal.h" 44 45 #ifdef CONFIG_NUMA 46 #define NUMA(x) (x) 47 #define DO_NUMA(x) do { (x); } while (0) 48 #else 49 #define NUMA(x) (0) 50 #define DO_NUMA(x) do { } while (0) 51 #endif 52 53 /** 54 * DOC: Overview 55 * 56 * A few notes about the KSM scanning process, 57 * to make it easier to understand the data structures below: 58 * 59 * In order to reduce excessive scanning, KSM sorts the memory pages by their 60 * contents into a data structure that holds pointers to the pages' locations. 61 * 62 * Since the contents of the pages may change at any moment, KSM cannot just 63 * insert the pages into a normal sorted tree and expect it to find anything. 64 * Therefore KSM uses two data structures - the stable and the unstable tree. 65 * 66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 67 * by their contents. Because each such page is write-protected, searching on 68 * this tree is fully assured to be working (except when pages are unmapped), 69 * and therefore this tree is called the stable tree. 70 * 71 * The stable tree node includes information required for reverse 72 * mapping from a KSM page to virtual addresses that map this page. 73 * 74 * In order to avoid large latencies of the rmap walks on KSM pages, 75 * KSM maintains two types of nodes in the stable tree: 76 * 77 * * the regular nodes that keep the reverse mapping structures in a 78 * linked list 79 * * the "chains" that link nodes ("dups") that represent the same 80 * write protected memory content, but each "dup" corresponds to a 81 * different KSM page copy of that content 82 * 83 * Internally, the regular nodes, "dups" and "chains" are represented 84 * using the same struct stable_node structure. 85 * 86 * In addition to the stable tree, KSM uses a second data structure called the 87 * unstable tree: this tree holds pointers to pages which have been found to 88 * be "unchanged for a period of time". The unstable tree sorts these pages 89 * by their contents, but since they are not write-protected, KSM cannot rely 90 * upon the unstable tree to work correctly - the unstable tree is liable to 91 * be corrupted as its contents are modified, and so it is called unstable. 92 * 93 * KSM solves this problem by several techniques: 94 * 95 * 1) The unstable tree is flushed every time KSM completes scanning all 96 * memory areas, and then the tree is rebuilt again from the beginning. 97 * 2) KSM will only insert into the unstable tree, pages whose hash value 98 * has not changed since the previous scan of all memory areas. 99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 100 * colors of the nodes and not on their contents, assuring that even when 101 * the tree gets "corrupted" it won't get out of balance, so scanning time 102 * remains the same (also, searching and inserting nodes in an rbtree uses 103 * the same algorithm, so we have no overhead when we flush and rebuild). 104 * 4) KSM never flushes the stable tree, which means that even if it were to 105 * take 10 attempts to find a page in the unstable tree, once it is found, 106 * it is secured in the stable tree. (When we scan a new page, we first 107 * compare it against the stable tree, and then against the unstable tree.) 108 * 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 110 * stable trees and multiple unstable trees: one of each for each NUMA node. 111 */ 112 113 /** 114 * struct mm_slot - ksm information per mm that is being scanned 115 * @link: link to the mm_slots hash list 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 118 * @mm: the mm that this information is valid for 119 */ 120 struct mm_slot { 121 struct hlist_node link; 122 struct list_head mm_list; 123 struct rmap_item *rmap_list; 124 struct mm_struct *mm; 125 }; 126 127 /** 128 * struct ksm_scan - cursor for scanning 129 * @mm_slot: the current mm_slot we are scanning 130 * @address: the next address inside that to be scanned 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list 132 * @seqnr: count of completed full scans (needed when removing unstable node) 133 * 134 * There is only the one ksm_scan instance of this cursor structure. 135 */ 136 struct ksm_scan { 137 struct mm_slot *mm_slot; 138 unsigned long address; 139 struct rmap_item **rmap_list; 140 unsigned long seqnr; 141 }; 142 143 /** 144 * struct stable_node - node of the stable rbtree 145 * @node: rb node of this ksm page in the stable tree 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 148 * @list: linked into migrate_nodes, pending placement in the proper node tree 149 * @hlist: hlist head of rmap_items using this ksm page 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 151 * @chain_prune_time: time of the last full garbage collection 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 154 */ 155 struct stable_node { 156 union { 157 struct rb_node node; /* when node of stable tree */ 158 struct { /* when listed for migration */ 159 struct list_head *head; 160 struct { 161 struct hlist_node hlist_dup; 162 struct list_head list; 163 }; 164 }; 165 }; 166 struct hlist_head hlist; 167 union { 168 unsigned long kpfn; 169 unsigned long chain_prune_time; 170 }; 171 /* 172 * STABLE_NODE_CHAIN can be any negative number in 173 * rmap_hlist_len negative range, but better not -1 to be able 174 * to reliably detect underflows. 175 */ 176 #define STABLE_NODE_CHAIN -1024 177 int rmap_hlist_len; 178 #ifdef CONFIG_NUMA 179 int nid; 180 #endif 181 }; 182 183 /** 184 * struct rmap_item - reverse mapping item for virtual addresses 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 187 * @nid: NUMA node id of unstable tree in which linked (may not match page) 188 * @mm: the memory structure this rmap_item is pointing into 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 190 * @oldchecksum: previous checksum of the page at that virtual address 191 * @node: rb node of this rmap_item in the unstable tree 192 * @head: pointer to stable_node heading this list in the stable tree 193 * @hlist: link into hlist of rmap_items hanging off that stable_node 194 */ 195 struct rmap_item { 196 struct rmap_item *rmap_list; 197 union { 198 struct anon_vma *anon_vma; /* when stable */ 199 #ifdef CONFIG_NUMA 200 int nid; /* when node of unstable tree */ 201 #endif 202 }; 203 struct mm_struct *mm; 204 unsigned long address; /* + low bits used for flags below */ 205 unsigned int oldchecksum; /* when unstable */ 206 union { 207 struct rb_node node; /* when node of unstable tree */ 208 struct { /* when listed from stable tree */ 209 struct stable_node *head; 210 struct hlist_node hlist; 211 }; 212 }; 213 }; 214 215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 218 219 /* The stable and unstable tree heads */ 220 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 221 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 222 static struct rb_root *root_stable_tree = one_stable_tree; 223 static struct rb_root *root_unstable_tree = one_unstable_tree; 224 225 /* Recently migrated nodes of stable tree, pending proper placement */ 226 static LIST_HEAD(migrate_nodes); 227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 228 229 #define MM_SLOTS_HASH_BITS 10 230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 231 232 static struct mm_slot ksm_mm_head = { 233 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 234 }; 235 static struct ksm_scan ksm_scan = { 236 .mm_slot = &ksm_mm_head, 237 }; 238 239 static struct kmem_cache *rmap_item_cache; 240 static struct kmem_cache *stable_node_cache; 241 static struct kmem_cache *mm_slot_cache; 242 243 /* The number of nodes in the stable tree */ 244 static unsigned long ksm_pages_shared; 245 246 /* The number of page slots additionally sharing those nodes */ 247 static unsigned long ksm_pages_sharing; 248 249 /* The number of nodes in the unstable tree */ 250 static unsigned long ksm_pages_unshared; 251 252 /* The number of rmap_items in use: to calculate pages_volatile */ 253 static unsigned long ksm_rmap_items; 254 255 /* The number of stable_node chains */ 256 static unsigned long ksm_stable_node_chains; 257 258 /* The number of stable_node dups linked to the stable_node chains */ 259 static unsigned long ksm_stable_node_dups; 260 261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 262 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 263 264 /* Maximum number of page slots sharing a stable node */ 265 static int ksm_max_page_sharing = 256; 266 267 /* Number of pages ksmd should scan in one batch */ 268 static unsigned int ksm_thread_pages_to_scan = 100; 269 270 /* Milliseconds ksmd should sleep between batches */ 271 static unsigned int ksm_thread_sleep_millisecs = 20; 272 273 /* Checksum of an empty (zeroed) page */ 274 static unsigned int zero_checksum __read_mostly; 275 276 /* Whether to merge empty (zeroed) pages with actual zero pages */ 277 static bool ksm_use_zero_pages __read_mostly; 278 279 #ifdef CONFIG_NUMA 280 /* Zeroed when merging across nodes is not allowed */ 281 static unsigned int ksm_merge_across_nodes = 1; 282 static int ksm_nr_node_ids = 1; 283 #else 284 #define ksm_merge_across_nodes 1U 285 #define ksm_nr_node_ids 1 286 #endif 287 288 #define KSM_RUN_STOP 0 289 #define KSM_RUN_MERGE 1 290 #define KSM_RUN_UNMERGE 2 291 #define KSM_RUN_OFFLINE 4 292 static unsigned long ksm_run = KSM_RUN_STOP; 293 static void wait_while_offlining(void); 294 295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 297 static DEFINE_MUTEX(ksm_thread_mutex); 298 static DEFINE_SPINLOCK(ksm_mmlist_lock); 299 300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 301 sizeof(struct __struct), __alignof__(struct __struct),\ 302 (__flags), NULL) 303 304 static int __init ksm_slab_init(void) 305 { 306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 307 if (!rmap_item_cache) 308 goto out; 309 310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 311 if (!stable_node_cache) 312 goto out_free1; 313 314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 315 if (!mm_slot_cache) 316 goto out_free2; 317 318 return 0; 319 320 out_free2: 321 kmem_cache_destroy(stable_node_cache); 322 out_free1: 323 kmem_cache_destroy(rmap_item_cache); 324 out: 325 return -ENOMEM; 326 } 327 328 static void __init ksm_slab_free(void) 329 { 330 kmem_cache_destroy(mm_slot_cache); 331 kmem_cache_destroy(stable_node_cache); 332 kmem_cache_destroy(rmap_item_cache); 333 mm_slot_cache = NULL; 334 } 335 336 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 337 { 338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 339 } 340 341 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 342 { 343 return dup->head == STABLE_NODE_DUP_HEAD; 344 } 345 346 static inline void stable_node_chain_add_dup(struct stable_node *dup, 347 struct stable_node *chain) 348 { 349 VM_BUG_ON(is_stable_node_dup(dup)); 350 dup->head = STABLE_NODE_DUP_HEAD; 351 VM_BUG_ON(!is_stable_node_chain(chain)); 352 hlist_add_head(&dup->hlist_dup, &chain->hlist); 353 ksm_stable_node_dups++; 354 } 355 356 static inline void __stable_node_dup_del(struct stable_node *dup) 357 { 358 VM_BUG_ON(!is_stable_node_dup(dup)); 359 hlist_del(&dup->hlist_dup); 360 ksm_stable_node_dups--; 361 } 362 363 static inline void stable_node_dup_del(struct stable_node *dup) 364 { 365 VM_BUG_ON(is_stable_node_chain(dup)); 366 if (is_stable_node_dup(dup)) 367 __stable_node_dup_del(dup); 368 else 369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 370 #ifdef CONFIG_DEBUG_VM 371 dup->head = NULL; 372 #endif 373 } 374 375 static inline struct rmap_item *alloc_rmap_item(void) 376 { 377 struct rmap_item *rmap_item; 378 379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 380 __GFP_NORETRY | __GFP_NOWARN); 381 if (rmap_item) 382 ksm_rmap_items++; 383 return rmap_item; 384 } 385 386 static inline void free_rmap_item(struct rmap_item *rmap_item) 387 { 388 ksm_rmap_items--; 389 rmap_item->mm = NULL; /* debug safety */ 390 kmem_cache_free(rmap_item_cache, rmap_item); 391 } 392 393 static inline struct stable_node *alloc_stable_node(void) 394 { 395 /* 396 * The allocation can take too long with GFP_KERNEL when memory is under 397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 398 * grants access to memory reserves, helping to avoid this problem. 399 */ 400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 401 } 402 403 static inline void free_stable_node(struct stable_node *stable_node) 404 { 405 VM_BUG_ON(stable_node->rmap_hlist_len && 406 !is_stable_node_chain(stable_node)); 407 kmem_cache_free(stable_node_cache, stable_node); 408 } 409 410 static inline struct mm_slot *alloc_mm_slot(void) 411 { 412 if (!mm_slot_cache) /* initialization failed */ 413 return NULL; 414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 415 } 416 417 static inline void free_mm_slot(struct mm_slot *mm_slot) 418 { 419 kmem_cache_free(mm_slot_cache, mm_slot); 420 } 421 422 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 423 { 424 struct mm_slot *slot; 425 426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 427 if (slot->mm == mm) 428 return slot; 429 430 return NULL; 431 } 432 433 static void insert_to_mm_slots_hash(struct mm_struct *mm, 434 struct mm_slot *mm_slot) 435 { 436 mm_slot->mm = mm; 437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 438 } 439 440 /* 441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 442 * page tables after it has passed through ksm_exit() - which, if necessary, 443 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 444 * a special flag: they can just back out as soon as mm_users goes to zero. 445 * ksm_test_exit() is used throughout to make this test for exit: in some 446 * places for correctness, in some places just to avoid unnecessary work. 447 */ 448 static inline bool ksm_test_exit(struct mm_struct *mm) 449 { 450 return atomic_read(&mm->mm_users) == 0; 451 } 452 453 /* 454 * We use break_ksm to break COW on a ksm page: it's a stripped down 455 * 456 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 457 * put_page(page); 458 * 459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 460 * in case the application has unmapped and remapped mm,addr meanwhile. 461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 462 * mmap of /dev/mem, where we would not want to touch it. 463 * 464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 465 * of the process that owns 'vma'. We also do not want to enforce 466 * protection keys here anyway. 467 */ 468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 469 { 470 struct page *page; 471 vm_fault_t ret = 0; 472 473 do { 474 cond_resched(); 475 page = follow_page(vma, addr, 476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 477 if (IS_ERR_OR_NULL(page)) 478 break; 479 if (PageKsm(page)) 480 ret = handle_mm_fault(vma, addr, 481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 482 NULL); 483 else 484 ret = VM_FAULT_WRITE; 485 put_page(page); 486 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 487 /* 488 * We must loop because handle_mm_fault() may back out if there's 489 * any difficulty e.g. if pte accessed bit gets updated concurrently. 490 * 491 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 492 * COW has been broken, even if the vma does not permit VM_WRITE; 493 * but note that a concurrent fault might break PageKsm for us. 494 * 495 * VM_FAULT_SIGBUS could occur if we race with truncation of the 496 * backing file, which also invalidates anonymous pages: that's 497 * okay, that truncation will have unmapped the PageKsm for us. 498 * 499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 501 * current task has TIF_MEMDIE set, and will be OOM killed on return 502 * to user; and ksmd, having no mm, would never be chosen for that. 503 * 504 * But if the mm is in a limited mem_cgroup, then the fault may fail 505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 506 * even ksmd can fail in this way - though it's usually breaking ksm 507 * just to undo a merge it made a moment before, so unlikely to oom. 508 * 509 * That's a pity: we might therefore have more kernel pages allocated 510 * than we're counting as nodes in the stable tree; but ksm_do_scan 511 * will retry to break_cow on each pass, so should recover the page 512 * in due course. The important thing is to not let VM_MERGEABLE 513 * be cleared while any such pages might remain in the area. 514 */ 515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 516 } 517 518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 519 unsigned long addr) 520 { 521 struct vm_area_struct *vma; 522 if (ksm_test_exit(mm)) 523 return NULL; 524 vma = vma_lookup(mm, addr); 525 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 526 return NULL; 527 return vma; 528 } 529 530 static void break_cow(struct rmap_item *rmap_item) 531 { 532 struct mm_struct *mm = rmap_item->mm; 533 unsigned long addr = rmap_item->address; 534 struct vm_area_struct *vma; 535 536 /* 537 * It is not an accident that whenever we want to break COW 538 * to undo, we also need to drop a reference to the anon_vma. 539 */ 540 put_anon_vma(rmap_item->anon_vma); 541 542 mmap_read_lock(mm); 543 vma = find_mergeable_vma(mm, addr); 544 if (vma) 545 break_ksm(vma, addr); 546 mmap_read_unlock(mm); 547 } 548 549 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 550 { 551 struct mm_struct *mm = rmap_item->mm; 552 unsigned long addr = rmap_item->address; 553 struct vm_area_struct *vma; 554 struct page *page; 555 556 mmap_read_lock(mm); 557 vma = find_mergeable_vma(mm, addr); 558 if (!vma) 559 goto out; 560 561 page = follow_page(vma, addr, FOLL_GET); 562 if (IS_ERR_OR_NULL(page)) 563 goto out; 564 if (PageAnon(page)) { 565 flush_anon_page(vma, page, addr); 566 flush_dcache_page(page); 567 } else { 568 put_page(page); 569 out: 570 page = NULL; 571 } 572 mmap_read_unlock(mm); 573 return page; 574 } 575 576 /* 577 * This helper is used for getting right index into array of tree roots. 578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 579 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 580 * every node has its own stable and unstable tree. 581 */ 582 static inline int get_kpfn_nid(unsigned long kpfn) 583 { 584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 585 } 586 587 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 588 struct rb_root *root) 589 { 590 struct stable_node *chain = alloc_stable_node(); 591 VM_BUG_ON(is_stable_node_chain(dup)); 592 if (likely(chain)) { 593 INIT_HLIST_HEAD(&chain->hlist); 594 chain->chain_prune_time = jiffies; 595 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 597 chain->nid = NUMA_NO_NODE; /* debug */ 598 #endif 599 ksm_stable_node_chains++; 600 601 /* 602 * Put the stable node chain in the first dimension of 603 * the stable tree and at the same time remove the old 604 * stable node. 605 */ 606 rb_replace_node(&dup->node, &chain->node, root); 607 608 /* 609 * Move the old stable node to the second dimension 610 * queued in the hlist_dup. The invariant is that all 611 * dup stable_nodes in the chain->hlist point to pages 612 * that are write protected and have the exact same 613 * content. 614 */ 615 stable_node_chain_add_dup(dup, chain); 616 } 617 return chain; 618 } 619 620 static inline void free_stable_node_chain(struct stable_node *chain, 621 struct rb_root *root) 622 { 623 rb_erase(&chain->node, root); 624 free_stable_node(chain); 625 ksm_stable_node_chains--; 626 } 627 628 static void remove_node_from_stable_tree(struct stable_node *stable_node) 629 { 630 struct rmap_item *rmap_item; 631 632 /* check it's not STABLE_NODE_CHAIN or negative */ 633 BUG_ON(stable_node->rmap_hlist_len < 0); 634 635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 636 if (rmap_item->hlist.next) 637 ksm_pages_sharing--; 638 else 639 ksm_pages_shared--; 640 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 641 stable_node->rmap_hlist_len--; 642 put_anon_vma(rmap_item->anon_vma); 643 rmap_item->address &= PAGE_MASK; 644 cond_resched(); 645 } 646 647 /* 648 * We need the second aligned pointer of the migrate_nodes 649 * list_head to stay clear from the rb_parent_color union 650 * (aligned and different than any node) and also different 651 * from &migrate_nodes. This will verify that future list.h changes 652 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 653 */ 654 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 656 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 657 #endif 658 659 if (stable_node->head == &migrate_nodes) 660 list_del(&stable_node->list); 661 else 662 stable_node_dup_del(stable_node); 663 free_stable_node(stable_node); 664 } 665 666 enum get_ksm_page_flags { 667 GET_KSM_PAGE_NOLOCK, 668 GET_KSM_PAGE_LOCK, 669 GET_KSM_PAGE_TRYLOCK 670 }; 671 672 /* 673 * get_ksm_page: checks if the page indicated by the stable node 674 * is still its ksm page, despite having held no reference to it. 675 * In which case we can trust the content of the page, and it 676 * returns the gotten page; but if the page has now been zapped, 677 * remove the stale node from the stable tree and return NULL. 678 * But beware, the stable node's page might be being migrated. 679 * 680 * You would expect the stable_node to hold a reference to the ksm page. 681 * But if it increments the page's count, swapping out has to wait for 682 * ksmd to come around again before it can free the page, which may take 683 * seconds or even minutes: much too unresponsive. So instead we use a 684 * "keyhole reference": access to the ksm page from the stable node peeps 685 * out through its keyhole to see if that page still holds the right key, 686 * pointing back to this stable node. This relies on freeing a PageAnon 687 * page to reset its page->mapping to NULL, and relies on no other use of 688 * a page to put something that might look like our key in page->mapping. 689 * is on its way to being freed; but it is an anomaly to bear in mind. 690 */ 691 static struct page *get_ksm_page(struct stable_node *stable_node, 692 enum get_ksm_page_flags flags) 693 { 694 struct page *page; 695 void *expected_mapping; 696 unsigned long kpfn; 697 698 expected_mapping = (void *)((unsigned long)stable_node | 699 PAGE_MAPPING_KSM); 700 again: 701 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 702 page = pfn_to_page(kpfn); 703 if (READ_ONCE(page->mapping) != expected_mapping) 704 goto stale; 705 706 /* 707 * We cannot do anything with the page while its refcount is 0. 708 * Usually 0 means free, or tail of a higher-order page: in which 709 * case this node is no longer referenced, and should be freed; 710 * however, it might mean that the page is under page_ref_freeze(). 711 * The __remove_mapping() case is easy, again the node is now stale; 712 * the same is in reuse_ksm_page() case; but if page is swapcache 713 * in migrate_page_move_mapping(), it might still be our page, 714 * in which case it's essential to keep the node. 715 */ 716 while (!get_page_unless_zero(page)) { 717 /* 718 * Another check for page->mapping != expected_mapping would 719 * work here too. We have chosen the !PageSwapCache test to 720 * optimize the common case, when the page is or is about to 721 * be freed: PageSwapCache is cleared (under spin_lock_irq) 722 * in the ref_freeze section of __remove_mapping(); but Anon 723 * page->mapping reset to NULL later, in free_pages_prepare(). 724 */ 725 if (!PageSwapCache(page)) 726 goto stale; 727 cpu_relax(); 728 } 729 730 if (READ_ONCE(page->mapping) != expected_mapping) { 731 put_page(page); 732 goto stale; 733 } 734 735 if (flags == GET_KSM_PAGE_TRYLOCK) { 736 if (!trylock_page(page)) { 737 put_page(page); 738 return ERR_PTR(-EBUSY); 739 } 740 } else if (flags == GET_KSM_PAGE_LOCK) 741 lock_page(page); 742 743 if (flags != GET_KSM_PAGE_NOLOCK) { 744 if (READ_ONCE(page->mapping) != expected_mapping) { 745 unlock_page(page); 746 put_page(page); 747 goto stale; 748 } 749 } 750 return page; 751 752 stale: 753 /* 754 * We come here from above when page->mapping or !PageSwapCache 755 * suggests that the node is stale; but it might be under migration. 756 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 757 * before checking whether node->kpfn has been changed. 758 */ 759 smp_rmb(); 760 if (READ_ONCE(stable_node->kpfn) != kpfn) 761 goto again; 762 remove_node_from_stable_tree(stable_node); 763 return NULL; 764 } 765 766 /* 767 * Removing rmap_item from stable or unstable tree. 768 * This function will clean the information from the stable/unstable tree. 769 */ 770 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 771 { 772 if (rmap_item->address & STABLE_FLAG) { 773 struct stable_node *stable_node; 774 struct page *page; 775 776 stable_node = rmap_item->head; 777 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 778 if (!page) 779 goto out; 780 781 hlist_del(&rmap_item->hlist); 782 unlock_page(page); 783 put_page(page); 784 785 if (!hlist_empty(&stable_node->hlist)) 786 ksm_pages_sharing--; 787 else 788 ksm_pages_shared--; 789 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 790 stable_node->rmap_hlist_len--; 791 792 put_anon_vma(rmap_item->anon_vma); 793 rmap_item->head = NULL; 794 rmap_item->address &= PAGE_MASK; 795 796 } else if (rmap_item->address & UNSTABLE_FLAG) { 797 unsigned char age; 798 /* 799 * Usually ksmd can and must skip the rb_erase, because 800 * root_unstable_tree was already reset to RB_ROOT. 801 * But be careful when an mm is exiting: do the rb_erase 802 * if this rmap_item was inserted by this scan, rather 803 * than left over from before. 804 */ 805 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 806 BUG_ON(age > 1); 807 if (!age) 808 rb_erase(&rmap_item->node, 809 root_unstable_tree + NUMA(rmap_item->nid)); 810 ksm_pages_unshared--; 811 rmap_item->address &= PAGE_MASK; 812 } 813 out: 814 cond_resched(); /* we're called from many long loops */ 815 } 816 817 static void remove_trailing_rmap_items(struct rmap_item **rmap_list) 818 { 819 while (*rmap_list) { 820 struct rmap_item *rmap_item = *rmap_list; 821 *rmap_list = rmap_item->rmap_list; 822 remove_rmap_item_from_tree(rmap_item); 823 free_rmap_item(rmap_item); 824 } 825 } 826 827 /* 828 * Though it's very tempting to unmerge rmap_items from stable tree rather 829 * than check every pte of a given vma, the locking doesn't quite work for 830 * that - an rmap_item is assigned to the stable tree after inserting ksm 831 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 832 * rmap_items from parent to child at fork time (so as not to waste time 833 * if exit comes before the next scan reaches it). 834 * 835 * Similarly, although we'd like to remove rmap_items (so updating counts 836 * and freeing memory) when unmerging an area, it's easier to leave that 837 * to the next pass of ksmd - consider, for example, how ksmd might be 838 * in cmp_and_merge_page on one of the rmap_items we would be removing. 839 */ 840 static int unmerge_ksm_pages(struct vm_area_struct *vma, 841 unsigned long start, unsigned long end) 842 { 843 unsigned long addr; 844 int err = 0; 845 846 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 847 if (ksm_test_exit(vma->vm_mm)) 848 break; 849 if (signal_pending(current)) 850 err = -ERESTARTSYS; 851 else 852 err = break_ksm(vma, addr); 853 } 854 return err; 855 } 856 857 static inline struct stable_node *page_stable_node(struct page *page) 858 { 859 return PageKsm(page) ? page_rmapping(page) : NULL; 860 } 861 862 static inline void set_page_stable_node(struct page *page, 863 struct stable_node *stable_node) 864 { 865 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 866 } 867 868 #ifdef CONFIG_SYSFS 869 /* 870 * Only called through the sysfs control interface: 871 */ 872 static int remove_stable_node(struct stable_node *stable_node) 873 { 874 struct page *page; 875 int err; 876 877 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 878 if (!page) { 879 /* 880 * get_ksm_page did remove_node_from_stable_tree itself. 881 */ 882 return 0; 883 } 884 885 /* 886 * Page could be still mapped if this races with __mmput() running in 887 * between ksm_exit() and exit_mmap(). Just refuse to let 888 * merge_across_nodes/max_page_sharing be switched. 889 */ 890 err = -EBUSY; 891 if (!page_mapped(page)) { 892 /* 893 * The stable node did not yet appear stale to get_ksm_page(), 894 * since that allows for an unmapped ksm page to be recognized 895 * right up until it is freed; but the node is safe to remove. 896 * This page might be in a pagevec waiting to be freed, 897 * or it might be PageSwapCache (perhaps under writeback), 898 * or it might have been removed from swapcache a moment ago. 899 */ 900 set_page_stable_node(page, NULL); 901 remove_node_from_stable_tree(stable_node); 902 err = 0; 903 } 904 905 unlock_page(page); 906 put_page(page); 907 return err; 908 } 909 910 static int remove_stable_node_chain(struct stable_node *stable_node, 911 struct rb_root *root) 912 { 913 struct stable_node *dup; 914 struct hlist_node *hlist_safe; 915 916 if (!is_stable_node_chain(stable_node)) { 917 VM_BUG_ON(is_stable_node_dup(stable_node)); 918 if (remove_stable_node(stable_node)) 919 return true; 920 else 921 return false; 922 } 923 924 hlist_for_each_entry_safe(dup, hlist_safe, 925 &stable_node->hlist, hlist_dup) { 926 VM_BUG_ON(!is_stable_node_dup(dup)); 927 if (remove_stable_node(dup)) 928 return true; 929 } 930 BUG_ON(!hlist_empty(&stable_node->hlist)); 931 free_stable_node_chain(stable_node, root); 932 return false; 933 } 934 935 static int remove_all_stable_nodes(void) 936 { 937 struct stable_node *stable_node, *next; 938 int nid; 939 int err = 0; 940 941 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 942 while (root_stable_tree[nid].rb_node) { 943 stable_node = rb_entry(root_stable_tree[nid].rb_node, 944 struct stable_node, node); 945 if (remove_stable_node_chain(stable_node, 946 root_stable_tree + nid)) { 947 err = -EBUSY; 948 break; /* proceed to next nid */ 949 } 950 cond_resched(); 951 } 952 } 953 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 954 if (remove_stable_node(stable_node)) 955 err = -EBUSY; 956 cond_resched(); 957 } 958 return err; 959 } 960 961 static int unmerge_and_remove_all_rmap_items(void) 962 { 963 struct mm_slot *mm_slot; 964 struct mm_struct *mm; 965 struct vm_area_struct *vma; 966 int err = 0; 967 968 spin_lock(&ksm_mmlist_lock); 969 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 970 struct mm_slot, mm_list); 971 spin_unlock(&ksm_mmlist_lock); 972 973 for (mm_slot = ksm_scan.mm_slot; 974 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 975 mm = mm_slot->mm; 976 mmap_read_lock(mm); 977 for (vma = mm->mmap; vma; vma = vma->vm_next) { 978 if (ksm_test_exit(mm)) 979 break; 980 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 981 continue; 982 err = unmerge_ksm_pages(vma, 983 vma->vm_start, vma->vm_end); 984 if (err) 985 goto error; 986 } 987 988 remove_trailing_rmap_items(&mm_slot->rmap_list); 989 mmap_read_unlock(mm); 990 991 spin_lock(&ksm_mmlist_lock); 992 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 993 struct mm_slot, mm_list); 994 if (ksm_test_exit(mm)) { 995 hash_del(&mm_slot->link); 996 list_del(&mm_slot->mm_list); 997 spin_unlock(&ksm_mmlist_lock); 998 999 free_mm_slot(mm_slot); 1000 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1001 mmdrop(mm); 1002 } else 1003 spin_unlock(&ksm_mmlist_lock); 1004 } 1005 1006 /* Clean up stable nodes, but don't worry if some are still busy */ 1007 remove_all_stable_nodes(); 1008 ksm_scan.seqnr = 0; 1009 return 0; 1010 1011 error: 1012 mmap_read_unlock(mm); 1013 spin_lock(&ksm_mmlist_lock); 1014 ksm_scan.mm_slot = &ksm_mm_head; 1015 spin_unlock(&ksm_mmlist_lock); 1016 return err; 1017 } 1018 #endif /* CONFIG_SYSFS */ 1019 1020 static u32 calc_checksum(struct page *page) 1021 { 1022 u32 checksum; 1023 void *addr = kmap_atomic(page); 1024 checksum = xxhash(addr, PAGE_SIZE, 0); 1025 kunmap_atomic(addr); 1026 return checksum; 1027 } 1028 1029 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1030 pte_t *orig_pte) 1031 { 1032 struct mm_struct *mm = vma->vm_mm; 1033 struct page_vma_mapped_walk pvmw = { 1034 .page = page, 1035 .vma = vma, 1036 }; 1037 int swapped; 1038 int err = -EFAULT; 1039 struct mmu_notifier_range range; 1040 1041 pvmw.address = page_address_in_vma(page, vma); 1042 if (pvmw.address == -EFAULT) 1043 goto out; 1044 1045 BUG_ON(PageTransCompound(page)); 1046 1047 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1048 pvmw.address, 1049 pvmw.address + PAGE_SIZE); 1050 mmu_notifier_invalidate_range_start(&range); 1051 1052 if (!page_vma_mapped_walk(&pvmw)) 1053 goto out_mn; 1054 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1055 goto out_unlock; 1056 1057 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1058 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1059 mm_tlb_flush_pending(mm)) { 1060 pte_t entry; 1061 1062 swapped = PageSwapCache(page); 1063 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1064 /* 1065 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1066 * take any lock, therefore the check that we are going to make 1067 * with the pagecount against the mapcount is racy and 1068 * O_DIRECT can happen right after the check. 1069 * So we clear the pte and flush the tlb before the check 1070 * this assure us that no O_DIRECT can happen after the check 1071 * or in the middle of the check. 1072 * 1073 * No need to notify as we are downgrading page table to read 1074 * only not changing it to point to a new page. 1075 * 1076 * See Documentation/vm/mmu_notifier.rst 1077 */ 1078 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1079 /* 1080 * Check that no O_DIRECT or similar I/O is in progress on the 1081 * page 1082 */ 1083 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1084 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1085 goto out_unlock; 1086 } 1087 if (pte_dirty(entry)) 1088 set_page_dirty(page); 1089 1090 if (pte_protnone(entry)) 1091 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1092 else 1093 entry = pte_mkclean(pte_wrprotect(entry)); 1094 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1095 } 1096 *orig_pte = *pvmw.pte; 1097 err = 0; 1098 1099 out_unlock: 1100 page_vma_mapped_walk_done(&pvmw); 1101 out_mn: 1102 mmu_notifier_invalidate_range_end(&range); 1103 out: 1104 return err; 1105 } 1106 1107 /** 1108 * replace_page - replace page in vma by new ksm page 1109 * @vma: vma that holds the pte pointing to page 1110 * @page: the page we are replacing by kpage 1111 * @kpage: the ksm page we replace page by 1112 * @orig_pte: the original value of the pte 1113 * 1114 * Returns 0 on success, -EFAULT on failure. 1115 */ 1116 static int replace_page(struct vm_area_struct *vma, struct page *page, 1117 struct page *kpage, pte_t orig_pte) 1118 { 1119 struct mm_struct *mm = vma->vm_mm; 1120 pmd_t *pmd; 1121 pte_t *ptep; 1122 pte_t newpte; 1123 spinlock_t *ptl; 1124 unsigned long addr; 1125 int err = -EFAULT; 1126 struct mmu_notifier_range range; 1127 1128 addr = page_address_in_vma(page, vma); 1129 if (addr == -EFAULT) 1130 goto out; 1131 1132 pmd = mm_find_pmd(mm, addr); 1133 if (!pmd) 1134 goto out; 1135 1136 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1137 addr + PAGE_SIZE); 1138 mmu_notifier_invalidate_range_start(&range); 1139 1140 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1141 if (!pte_same(*ptep, orig_pte)) { 1142 pte_unmap_unlock(ptep, ptl); 1143 goto out_mn; 1144 } 1145 1146 /* 1147 * No need to check ksm_use_zero_pages here: we can only have a 1148 * zero_page here if ksm_use_zero_pages was enabled already. 1149 */ 1150 if (!is_zero_pfn(page_to_pfn(kpage))) { 1151 get_page(kpage); 1152 page_add_anon_rmap(kpage, vma, addr, false); 1153 newpte = mk_pte(kpage, vma->vm_page_prot); 1154 } else { 1155 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1156 vma->vm_page_prot)); 1157 /* 1158 * We're replacing an anonymous page with a zero page, which is 1159 * not anonymous. We need to do proper accounting otherwise we 1160 * will get wrong values in /proc, and a BUG message in dmesg 1161 * when tearing down the mm. 1162 */ 1163 dec_mm_counter(mm, MM_ANONPAGES); 1164 } 1165 1166 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1167 /* 1168 * No need to notify as we are replacing a read only page with another 1169 * read only page with the same content. 1170 * 1171 * See Documentation/vm/mmu_notifier.rst 1172 */ 1173 ptep_clear_flush(vma, addr, ptep); 1174 set_pte_at_notify(mm, addr, ptep, newpte); 1175 1176 page_remove_rmap(page, false); 1177 if (!page_mapped(page)) 1178 try_to_free_swap(page); 1179 put_page(page); 1180 1181 pte_unmap_unlock(ptep, ptl); 1182 err = 0; 1183 out_mn: 1184 mmu_notifier_invalidate_range_end(&range); 1185 out: 1186 return err; 1187 } 1188 1189 /* 1190 * try_to_merge_one_page - take two pages and merge them into one 1191 * @vma: the vma that holds the pte pointing to page 1192 * @page: the PageAnon page that we want to replace with kpage 1193 * @kpage: the PageKsm page that we want to map instead of page, 1194 * or NULL the first time when we want to use page as kpage. 1195 * 1196 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1197 */ 1198 static int try_to_merge_one_page(struct vm_area_struct *vma, 1199 struct page *page, struct page *kpage) 1200 { 1201 pte_t orig_pte = __pte(0); 1202 int err = -EFAULT; 1203 1204 if (page == kpage) /* ksm page forked */ 1205 return 0; 1206 1207 if (!PageAnon(page)) 1208 goto out; 1209 1210 /* 1211 * We need the page lock to read a stable PageSwapCache in 1212 * write_protect_page(). We use trylock_page() instead of 1213 * lock_page() because we don't want to wait here - we 1214 * prefer to continue scanning and merging different pages, 1215 * then come back to this page when it is unlocked. 1216 */ 1217 if (!trylock_page(page)) 1218 goto out; 1219 1220 if (PageTransCompound(page)) { 1221 if (split_huge_page(page)) 1222 goto out_unlock; 1223 } 1224 1225 /* 1226 * If this anonymous page is mapped only here, its pte may need 1227 * to be write-protected. If it's mapped elsewhere, all of its 1228 * ptes are necessarily already write-protected. But in either 1229 * case, we need to lock and check page_count is not raised. 1230 */ 1231 if (write_protect_page(vma, page, &orig_pte) == 0) { 1232 if (!kpage) { 1233 /* 1234 * While we hold page lock, upgrade page from 1235 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1236 * stable_tree_insert() will update stable_node. 1237 */ 1238 set_page_stable_node(page, NULL); 1239 mark_page_accessed(page); 1240 /* 1241 * Page reclaim just frees a clean page with no dirty 1242 * ptes: make sure that the ksm page would be swapped. 1243 */ 1244 if (!PageDirty(page)) 1245 SetPageDirty(page); 1246 err = 0; 1247 } else if (pages_identical(page, kpage)) 1248 err = replace_page(vma, page, kpage, orig_pte); 1249 } 1250 1251 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1252 munlock_vma_page(page); 1253 if (!PageMlocked(kpage)) { 1254 unlock_page(page); 1255 lock_page(kpage); 1256 mlock_vma_page(kpage); 1257 page = kpage; /* for final unlock */ 1258 } 1259 } 1260 1261 out_unlock: 1262 unlock_page(page); 1263 out: 1264 return err; 1265 } 1266 1267 /* 1268 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1269 * but no new kernel page is allocated: kpage must already be a ksm page. 1270 * 1271 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1272 */ 1273 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1274 struct page *page, struct page *kpage) 1275 { 1276 struct mm_struct *mm = rmap_item->mm; 1277 struct vm_area_struct *vma; 1278 int err = -EFAULT; 1279 1280 mmap_read_lock(mm); 1281 vma = find_mergeable_vma(mm, rmap_item->address); 1282 if (!vma) 1283 goto out; 1284 1285 err = try_to_merge_one_page(vma, page, kpage); 1286 if (err) 1287 goto out; 1288 1289 /* Unstable nid is in union with stable anon_vma: remove first */ 1290 remove_rmap_item_from_tree(rmap_item); 1291 1292 /* Must get reference to anon_vma while still holding mmap_lock */ 1293 rmap_item->anon_vma = vma->anon_vma; 1294 get_anon_vma(vma->anon_vma); 1295 out: 1296 mmap_read_unlock(mm); 1297 return err; 1298 } 1299 1300 /* 1301 * try_to_merge_two_pages - take two identical pages and prepare them 1302 * to be merged into one page. 1303 * 1304 * This function returns the kpage if we successfully merged two identical 1305 * pages into one ksm page, NULL otherwise. 1306 * 1307 * Note that this function upgrades page to ksm page: if one of the pages 1308 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1309 */ 1310 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1311 struct page *page, 1312 struct rmap_item *tree_rmap_item, 1313 struct page *tree_page) 1314 { 1315 int err; 1316 1317 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1318 if (!err) { 1319 err = try_to_merge_with_ksm_page(tree_rmap_item, 1320 tree_page, page); 1321 /* 1322 * If that fails, we have a ksm page with only one pte 1323 * pointing to it: so break it. 1324 */ 1325 if (err) 1326 break_cow(rmap_item); 1327 } 1328 return err ? NULL : page; 1329 } 1330 1331 static __always_inline 1332 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1333 { 1334 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1335 /* 1336 * Check that at least one mapping still exists, otherwise 1337 * there's no much point to merge and share with this 1338 * stable_node, as the underlying tree_page of the other 1339 * sharer is going to be freed soon. 1340 */ 1341 return stable_node->rmap_hlist_len && 1342 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1343 } 1344 1345 static __always_inline 1346 bool is_page_sharing_candidate(struct stable_node *stable_node) 1347 { 1348 return __is_page_sharing_candidate(stable_node, 0); 1349 } 1350 1351 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1352 struct stable_node **_stable_node, 1353 struct rb_root *root, 1354 bool prune_stale_stable_nodes) 1355 { 1356 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1357 struct hlist_node *hlist_safe; 1358 struct page *_tree_page, *tree_page = NULL; 1359 int nr = 0; 1360 int found_rmap_hlist_len; 1361 1362 if (!prune_stale_stable_nodes || 1363 time_before(jiffies, stable_node->chain_prune_time + 1364 msecs_to_jiffies( 1365 ksm_stable_node_chains_prune_millisecs))) 1366 prune_stale_stable_nodes = false; 1367 else 1368 stable_node->chain_prune_time = jiffies; 1369 1370 hlist_for_each_entry_safe(dup, hlist_safe, 1371 &stable_node->hlist, hlist_dup) { 1372 cond_resched(); 1373 /* 1374 * We must walk all stable_node_dup to prune the stale 1375 * stable nodes during lookup. 1376 * 1377 * get_ksm_page can drop the nodes from the 1378 * stable_node->hlist if they point to freed pages 1379 * (that's why we do a _safe walk). The "dup" 1380 * stable_node parameter itself will be freed from 1381 * under us if it returns NULL. 1382 */ 1383 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1384 if (!_tree_page) 1385 continue; 1386 nr += 1; 1387 if (is_page_sharing_candidate(dup)) { 1388 if (!found || 1389 dup->rmap_hlist_len > found_rmap_hlist_len) { 1390 if (found) 1391 put_page(tree_page); 1392 found = dup; 1393 found_rmap_hlist_len = found->rmap_hlist_len; 1394 tree_page = _tree_page; 1395 1396 /* skip put_page for found dup */ 1397 if (!prune_stale_stable_nodes) 1398 break; 1399 continue; 1400 } 1401 } 1402 put_page(_tree_page); 1403 } 1404 1405 if (found) { 1406 /* 1407 * nr is counting all dups in the chain only if 1408 * prune_stale_stable_nodes is true, otherwise we may 1409 * break the loop at nr == 1 even if there are 1410 * multiple entries. 1411 */ 1412 if (prune_stale_stable_nodes && nr == 1) { 1413 /* 1414 * If there's not just one entry it would 1415 * corrupt memory, better BUG_ON. In KSM 1416 * context with no lock held it's not even 1417 * fatal. 1418 */ 1419 BUG_ON(stable_node->hlist.first->next); 1420 1421 /* 1422 * There's just one entry and it is below the 1423 * deduplication limit so drop the chain. 1424 */ 1425 rb_replace_node(&stable_node->node, &found->node, 1426 root); 1427 free_stable_node(stable_node); 1428 ksm_stable_node_chains--; 1429 ksm_stable_node_dups--; 1430 /* 1431 * NOTE: the caller depends on the stable_node 1432 * to be equal to stable_node_dup if the chain 1433 * was collapsed. 1434 */ 1435 *_stable_node = found; 1436 /* 1437 * Just for robustness, as stable_node is 1438 * otherwise left as a stable pointer, the 1439 * compiler shall optimize it away at build 1440 * time. 1441 */ 1442 stable_node = NULL; 1443 } else if (stable_node->hlist.first != &found->hlist_dup && 1444 __is_page_sharing_candidate(found, 1)) { 1445 /* 1446 * If the found stable_node dup can accept one 1447 * more future merge (in addition to the one 1448 * that is underway) and is not at the head of 1449 * the chain, put it there so next search will 1450 * be quicker in the !prune_stale_stable_nodes 1451 * case. 1452 * 1453 * NOTE: it would be inaccurate to use nr > 1 1454 * instead of checking the hlist.first pointer 1455 * directly, because in the 1456 * prune_stale_stable_nodes case "nr" isn't 1457 * the position of the found dup in the chain, 1458 * but the total number of dups in the chain. 1459 */ 1460 hlist_del(&found->hlist_dup); 1461 hlist_add_head(&found->hlist_dup, 1462 &stable_node->hlist); 1463 } 1464 } 1465 1466 *_stable_node_dup = found; 1467 return tree_page; 1468 } 1469 1470 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1471 struct rb_root *root) 1472 { 1473 if (!is_stable_node_chain(stable_node)) 1474 return stable_node; 1475 if (hlist_empty(&stable_node->hlist)) { 1476 free_stable_node_chain(stable_node, root); 1477 return NULL; 1478 } 1479 return hlist_entry(stable_node->hlist.first, 1480 typeof(*stable_node), hlist_dup); 1481 } 1482 1483 /* 1484 * Like for get_ksm_page, this function can free the *_stable_node and 1485 * *_stable_node_dup if the returned tree_page is NULL. 1486 * 1487 * It can also free and overwrite *_stable_node with the found 1488 * stable_node_dup if the chain is collapsed (in which case 1489 * *_stable_node will be equal to *_stable_node_dup like if the chain 1490 * never existed). It's up to the caller to verify tree_page is not 1491 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1492 * 1493 * *_stable_node_dup is really a second output parameter of this 1494 * function and will be overwritten in all cases, the caller doesn't 1495 * need to initialize it. 1496 */ 1497 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1498 struct stable_node **_stable_node, 1499 struct rb_root *root, 1500 bool prune_stale_stable_nodes) 1501 { 1502 struct stable_node *stable_node = *_stable_node; 1503 if (!is_stable_node_chain(stable_node)) { 1504 if (is_page_sharing_candidate(stable_node)) { 1505 *_stable_node_dup = stable_node; 1506 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1507 } 1508 /* 1509 * _stable_node_dup set to NULL means the stable_node 1510 * reached the ksm_max_page_sharing limit. 1511 */ 1512 *_stable_node_dup = NULL; 1513 return NULL; 1514 } 1515 return stable_node_dup(_stable_node_dup, _stable_node, root, 1516 prune_stale_stable_nodes); 1517 } 1518 1519 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1520 struct stable_node **s_n, 1521 struct rb_root *root) 1522 { 1523 return __stable_node_chain(s_n_d, s_n, root, true); 1524 } 1525 1526 static __always_inline struct page *chain(struct stable_node **s_n_d, 1527 struct stable_node *s_n, 1528 struct rb_root *root) 1529 { 1530 struct stable_node *old_stable_node = s_n; 1531 struct page *tree_page; 1532 1533 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1534 /* not pruning dups so s_n cannot have changed */ 1535 VM_BUG_ON(s_n != old_stable_node); 1536 return tree_page; 1537 } 1538 1539 /* 1540 * stable_tree_search - search for page inside the stable tree 1541 * 1542 * This function checks if there is a page inside the stable tree 1543 * with identical content to the page that we are scanning right now. 1544 * 1545 * This function returns the stable tree node of identical content if found, 1546 * NULL otherwise. 1547 */ 1548 static struct page *stable_tree_search(struct page *page) 1549 { 1550 int nid; 1551 struct rb_root *root; 1552 struct rb_node **new; 1553 struct rb_node *parent; 1554 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1555 struct stable_node *page_node; 1556 1557 page_node = page_stable_node(page); 1558 if (page_node && page_node->head != &migrate_nodes) { 1559 /* ksm page forked */ 1560 get_page(page); 1561 return page; 1562 } 1563 1564 nid = get_kpfn_nid(page_to_pfn(page)); 1565 root = root_stable_tree + nid; 1566 again: 1567 new = &root->rb_node; 1568 parent = NULL; 1569 1570 while (*new) { 1571 struct page *tree_page; 1572 int ret; 1573 1574 cond_resched(); 1575 stable_node = rb_entry(*new, struct stable_node, node); 1576 stable_node_any = NULL; 1577 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1578 /* 1579 * NOTE: stable_node may have been freed by 1580 * chain_prune() if the returned stable_node_dup is 1581 * not NULL. stable_node_dup may have been inserted in 1582 * the rbtree instead as a regular stable_node (in 1583 * order to collapse the stable_node chain if a single 1584 * stable_node dup was found in it). In such case the 1585 * stable_node is overwritten by the calleee to point 1586 * to the stable_node_dup that was collapsed in the 1587 * stable rbtree and stable_node will be equal to 1588 * stable_node_dup like if the chain never existed. 1589 */ 1590 if (!stable_node_dup) { 1591 /* 1592 * Either all stable_node dups were full in 1593 * this stable_node chain, or this chain was 1594 * empty and should be rb_erased. 1595 */ 1596 stable_node_any = stable_node_dup_any(stable_node, 1597 root); 1598 if (!stable_node_any) { 1599 /* rb_erase just run */ 1600 goto again; 1601 } 1602 /* 1603 * Take any of the stable_node dups page of 1604 * this stable_node chain to let the tree walk 1605 * continue. All KSM pages belonging to the 1606 * stable_node dups in a stable_node chain 1607 * have the same content and they're 1608 * write protected at all times. Any will work 1609 * fine to continue the walk. 1610 */ 1611 tree_page = get_ksm_page(stable_node_any, 1612 GET_KSM_PAGE_NOLOCK); 1613 } 1614 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1615 if (!tree_page) { 1616 /* 1617 * If we walked over a stale stable_node, 1618 * get_ksm_page() will call rb_erase() and it 1619 * may rebalance the tree from under us. So 1620 * restart the search from scratch. Returning 1621 * NULL would be safe too, but we'd generate 1622 * false negative insertions just because some 1623 * stable_node was stale. 1624 */ 1625 goto again; 1626 } 1627 1628 ret = memcmp_pages(page, tree_page); 1629 put_page(tree_page); 1630 1631 parent = *new; 1632 if (ret < 0) 1633 new = &parent->rb_left; 1634 else if (ret > 0) 1635 new = &parent->rb_right; 1636 else { 1637 if (page_node) { 1638 VM_BUG_ON(page_node->head != &migrate_nodes); 1639 /* 1640 * Test if the migrated page should be merged 1641 * into a stable node dup. If the mapcount is 1642 * 1 we can migrate it with another KSM page 1643 * without adding it to the chain. 1644 */ 1645 if (page_mapcount(page) > 1) 1646 goto chain_append; 1647 } 1648 1649 if (!stable_node_dup) { 1650 /* 1651 * If the stable_node is a chain and 1652 * we got a payload match in memcmp 1653 * but we cannot merge the scanned 1654 * page in any of the existing 1655 * stable_node dups because they're 1656 * all full, we need to wait the 1657 * scanned page to find itself a match 1658 * in the unstable tree to create a 1659 * brand new KSM page to add later to 1660 * the dups of this stable_node. 1661 */ 1662 return NULL; 1663 } 1664 1665 /* 1666 * Lock and unlock the stable_node's page (which 1667 * might already have been migrated) so that page 1668 * migration is sure to notice its raised count. 1669 * It would be more elegant to return stable_node 1670 * than kpage, but that involves more changes. 1671 */ 1672 tree_page = get_ksm_page(stable_node_dup, 1673 GET_KSM_PAGE_TRYLOCK); 1674 1675 if (PTR_ERR(tree_page) == -EBUSY) 1676 return ERR_PTR(-EBUSY); 1677 1678 if (unlikely(!tree_page)) 1679 /* 1680 * The tree may have been rebalanced, 1681 * so re-evaluate parent and new. 1682 */ 1683 goto again; 1684 unlock_page(tree_page); 1685 1686 if (get_kpfn_nid(stable_node_dup->kpfn) != 1687 NUMA(stable_node_dup->nid)) { 1688 put_page(tree_page); 1689 goto replace; 1690 } 1691 return tree_page; 1692 } 1693 } 1694 1695 if (!page_node) 1696 return NULL; 1697 1698 list_del(&page_node->list); 1699 DO_NUMA(page_node->nid = nid); 1700 rb_link_node(&page_node->node, parent, new); 1701 rb_insert_color(&page_node->node, root); 1702 out: 1703 if (is_page_sharing_candidate(page_node)) { 1704 get_page(page); 1705 return page; 1706 } else 1707 return NULL; 1708 1709 replace: 1710 /* 1711 * If stable_node was a chain and chain_prune collapsed it, 1712 * stable_node has been updated to be the new regular 1713 * stable_node. A collapse of the chain is indistinguishable 1714 * from the case there was no chain in the stable 1715 * rbtree. Otherwise stable_node is the chain and 1716 * stable_node_dup is the dup to replace. 1717 */ 1718 if (stable_node_dup == stable_node) { 1719 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1720 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1721 /* there is no chain */ 1722 if (page_node) { 1723 VM_BUG_ON(page_node->head != &migrate_nodes); 1724 list_del(&page_node->list); 1725 DO_NUMA(page_node->nid = nid); 1726 rb_replace_node(&stable_node_dup->node, 1727 &page_node->node, 1728 root); 1729 if (is_page_sharing_candidate(page_node)) 1730 get_page(page); 1731 else 1732 page = NULL; 1733 } else { 1734 rb_erase(&stable_node_dup->node, root); 1735 page = NULL; 1736 } 1737 } else { 1738 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1739 __stable_node_dup_del(stable_node_dup); 1740 if (page_node) { 1741 VM_BUG_ON(page_node->head != &migrate_nodes); 1742 list_del(&page_node->list); 1743 DO_NUMA(page_node->nid = nid); 1744 stable_node_chain_add_dup(page_node, stable_node); 1745 if (is_page_sharing_candidate(page_node)) 1746 get_page(page); 1747 else 1748 page = NULL; 1749 } else { 1750 page = NULL; 1751 } 1752 } 1753 stable_node_dup->head = &migrate_nodes; 1754 list_add(&stable_node_dup->list, stable_node_dup->head); 1755 return page; 1756 1757 chain_append: 1758 /* stable_node_dup could be null if it reached the limit */ 1759 if (!stable_node_dup) 1760 stable_node_dup = stable_node_any; 1761 /* 1762 * If stable_node was a chain and chain_prune collapsed it, 1763 * stable_node has been updated to be the new regular 1764 * stable_node. A collapse of the chain is indistinguishable 1765 * from the case there was no chain in the stable 1766 * rbtree. Otherwise stable_node is the chain and 1767 * stable_node_dup is the dup to replace. 1768 */ 1769 if (stable_node_dup == stable_node) { 1770 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1771 /* chain is missing so create it */ 1772 stable_node = alloc_stable_node_chain(stable_node_dup, 1773 root); 1774 if (!stable_node) 1775 return NULL; 1776 } 1777 /* 1778 * Add this stable_node dup that was 1779 * migrated to the stable_node chain 1780 * of the current nid for this page 1781 * content. 1782 */ 1783 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1784 VM_BUG_ON(page_node->head != &migrate_nodes); 1785 list_del(&page_node->list); 1786 DO_NUMA(page_node->nid = nid); 1787 stable_node_chain_add_dup(page_node, stable_node); 1788 goto out; 1789 } 1790 1791 /* 1792 * stable_tree_insert - insert stable tree node pointing to new ksm page 1793 * into the stable tree. 1794 * 1795 * This function returns the stable tree node just allocated on success, 1796 * NULL otherwise. 1797 */ 1798 static struct stable_node *stable_tree_insert(struct page *kpage) 1799 { 1800 int nid; 1801 unsigned long kpfn; 1802 struct rb_root *root; 1803 struct rb_node **new; 1804 struct rb_node *parent; 1805 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1806 bool need_chain = false; 1807 1808 kpfn = page_to_pfn(kpage); 1809 nid = get_kpfn_nid(kpfn); 1810 root = root_stable_tree + nid; 1811 again: 1812 parent = NULL; 1813 new = &root->rb_node; 1814 1815 while (*new) { 1816 struct page *tree_page; 1817 int ret; 1818 1819 cond_resched(); 1820 stable_node = rb_entry(*new, struct stable_node, node); 1821 stable_node_any = NULL; 1822 tree_page = chain(&stable_node_dup, stable_node, root); 1823 if (!stable_node_dup) { 1824 /* 1825 * Either all stable_node dups were full in 1826 * this stable_node chain, or this chain was 1827 * empty and should be rb_erased. 1828 */ 1829 stable_node_any = stable_node_dup_any(stable_node, 1830 root); 1831 if (!stable_node_any) { 1832 /* rb_erase just run */ 1833 goto again; 1834 } 1835 /* 1836 * Take any of the stable_node dups page of 1837 * this stable_node chain to let the tree walk 1838 * continue. All KSM pages belonging to the 1839 * stable_node dups in a stable_node chain 1840 * have the same content and they're 1841 * write protected at all times. Any will work 1842 * fine to continue the walk. 1843 */ 1844 tree_page = get_ksm_page(stable_node_any, 1845 GET_KSM_PAGE_NOLOCK); 1846 } 1847 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1848 if (!tree_page) { 1849 /* 1850 * If we walked over a stale stable_node, 1851 * get_ksm_page() will call rb_erase() and it 1852 * may rebalance the tree from under us. So 1853 * restart the search from scratch. Returning 1854 * NULL would be safe too, but we'd generate 1855 * false negative insertions just because some 1856 * stable_node was stale. 1857 */ 1858 goto again; 1859 } 1860 1861 ret = memcmp_pages(kpage, tree_page); 1862 put_page(tree_page); 1863 1864 parent = *new; 1865 if (ret < 0) 1866 new = &parent->rb_left; 1867 else if (ret > 0) 1868 new = &parent->rb_right; 1869 else { 1870 need_chain = true; 1871 break; 1872 } 1873 } 1874 1875 stable_node_dup = alloc_stable_node(); 1876 if (!stable_node_dup) 1877 return NULL; 1878 1879 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1880 stable_node_dup->kpfn = kpfn; 1881 set_page_stable_node(kpage, stable_node_dup); 1882 stable_node_dup->rmap_hlist_len = 0; 1883 DO_NUMA(stable_node_dup->nid = nid); 1884 if (!need_chain) { 1885 rb_link_node(&stable_node_dup->node, parent, new); 1886 rb_insert_color(&stable_node_dup->node, root); 1887 } else { 1888 if (!is_stable_node_chain(stable_node)) { 1889 struct stable_node *orig = stable_node; 1890 /* chain is missing so create it */ 1891 stable_node = alloc_stable_node_chain(orig, root); 1892 if (!stable_node) { 1893 free_stable_node(stable_node_dup); 1894 return NULL; 1895 } 1896 } 1897 stable_node_chain_add_dup(stable_node_dup, stable_node); 1898 } 1899 1900 return stable_node_dup; 1901 } 1902 1903 /* 1904 * unstable_tree_search_insert - search for identical page, 1905 * else insert rmap_item into the unstable tree. 1906 * 1907 * This function searches for a page in the unstable tree identical to the 1908 * page currently being scanned; and if no identical page is found in the 1909 * tree, we insert rmap_item as a new object into the unstable tree. 1910 * 1911 * This function returns pointer to rmap_item found to be identical 1912 * to the currently scanned page, NULL otherwise. 1913 * 1914 * This function does both searching and inserting, because they share 1915 * the same walking algorithm in an rbtree. 1916 */ 1917 static 1918 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1919 struct page *page, 1920 struct page **tree_pagep) 1921 { 1922 struct rb_node **new; 1923 struct rb_root *root; 1924 struct rb_node *parent = NULL; 1925 int nid; 1926 1927 nid = get_kpfn_nid(page_to_pfn(page)); 1928 root = root_unstable_tree + nid; 1929 new = &root->rb_node; 1930 1931 while (*new) { 1932 struct rmap_item *tree_rmap_item; 1933 struct page *tree_page; 1934 int ret; 1935 1936 cond_resched(); 1937 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1938 tree_page = get_mergeable_page(tree_rmap_item); 1939 if (!tree_page) 1940 return NULL; 1941 1942 /* 1943 * Don't substitute a ksm page for a forked page. 1944 */ 1945 if (page == tree_page) { 1946 put_page(tree_page); 1947 return NULL; 1948 } 1949 1950 ret = memcmp_pages(page, tree_page); 1951 1952 parent = *new; 1953 if (ret < 0) { 1954 put_page(tree_page); 1955 new = &parent->rb_left; 1956 } else if (ret > 0) { 1957 put_page(tree_page); 1958 new = &parent->rb_right; 1959 } else if (!ksm_merge_across_nodes && 1960 page_to_nid(tree_page) != nid) { 1961 /* 1962 * If tree_page has been migrated to another NUMA node, 1963 * it will be flushed out and put in the right unstable 1964 * tree next time: only merge with it when across_nodes. 1965 */ 1966 put_page(tree_page); 1967 return NULL; 1968 } else { 1969 *tree_pagep = tree_page; 1970 return tree_rmap_item; 1971 } 1972 } 1973 1974 rmap_item->address |= UNSTABLE_FLAG; 1975 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1976 DO_NUMA(rmap_item->nid = nid); 1977 rb_link_node(&rmap_item->node, parent, new); 1978 rb_insert_color(&rmap_item->node, root); 1979 1980 ksm_pages_unshared++; 1981 return NULL; 1982 } 1983 1984 /* 1985 * stable_tree_append - add another rmap_item to the linked list of 1986 * rmap_items hanging off a given node of the stable tree, all sharing 1987 * the same ksm page. 1988 */ 1989 static void stable_tree_append(struct rmap_item *rmap_item, 1990 struct stable_node *stable_node, 1991 bool max_page_sharing_bypass) 1992 { 1993 /* 1994 * rmap won't find this mapping if we don't insert the 1995 * rmap_item in the right stable_node 1996 * duplicate. page_migration could break later if rmap breaks, 1997 * so we can as well crash here. We really need to check for 1998 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1999 * for other negative values as an underflow if detected here 2000 * for the first time (and not when decreasing rmap_hlist_len) 2001 * would be sign of memory corruption in the stable_node. 2002 */ 2003 BUG_ON(stable_node->rmap_hlist_len < 0); 2004 2005 stable_node->rmap_hlist_len++; 2006 if (!max_page_sharing_bypass) 2007 /* possibly non fatal but unexpected overflow, only warn */ 2008 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2009 ksm_max_page_sharing); 2010 2011 rmap_item->head = stable_node; 2012 rmap_item->address |= STABLE_FLAG; 2013 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2014 2015 if (rmap_item->hlist.next) 2016 ksm_pages_sharing++; 2017 else 2018 ksm_pages_shared++; 2019 } 2020 2021 /* 2022 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2023 * if not, compare checksum to previous and if it's the same, see if page can 2024 * be inserted into the unstable tree, or merged with a page already there and 2025 * both transferred to the stable tree. 2026 * 2027 * @page: the page that we are searching identical page to. 2028 * @rmap_item: the reverse mapping into the virtual address of this page 2029 */ 2030 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2031 { 2032 struct mm_struct *mm = rmap_item->mm; 2033 struct rmap_item *tree_rmap_item; 2034 struct page *tree_page = NULL; 2035 struct stable_node *stable_node; 2036 struct page *kpage; 2037 unsigned int checksum; 2038 int err; 2039 bool max_page_sharing_bypass = false; 2040 2041 stable_node = page_stable_node(page); 2042 if (stable_node) { 2043 if (stable_node->head != &migrate_nodes && 2044 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2045 NUMA(stable_node->nid)) { 2046 stable_node_dup_del(stable_node); 2047 stable_node->head = &migrate_nodes; 2048 list_add(&stable_node->list, stable_node->head); 2049 } 2050 if (stable_node->head != &migrate_nodes && 2051 rmap_item->head == stable_node) 2052 return; 2053 /* 2054 * If it's a KSM fork, allow it to go over the sharing limit 2055 * without warnings. 2056 */ 2057 if (!is_page_sharing_candidate(stable_node)) 2058 max_page_sharing_bypass = true; 2059 } 2060 2061 /* We first start with searching the page inside the stable tree */ 2062 kpage = stable_tree_search(page); 2063 if (kpage == page && rmap_item->head == stable_node) { 2064 put_page(kpage); 2065 return; 2066 } 2067 2068 remove_rmap_item_from_tree(rmap_item); 2069 2070 if (kpage) { 2071 if (PTR_ERR(kpage) == -EBUSY) 2072 return; 2073 2074 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2075 if (!err) { 2076 /* 2077 * The page was successfully merged: 2078 * add its rmap_item to the stable tree. 2079 */ 2080 lock_page(kpage); 2081 stable_tree_append(rmap_item, page_stable_node(kpage), 2082 max_page_sharing_bypass); 2083 unlock_page(kpage); 2084 } 2085 put_page(kpage); 2086 return; 2087 } 2088 2089 /* 2090 * If the hash value of the page has changed from the last time 2091 * we calculated it, this page is changing frequently: therefore we 2092 * don't want to insert it in the unstable tree, and we don't want 2093 * to waste our time searching for something identical to it there. 2094 */ 2095 checksum = calc_checksum(page); 2096 if (rmap_item->oldchecksum != checksum) { 2097 rmap_item->oldchecksum = checksum; 2098 return; 2099 } 2100 2101 /* 2102 * Same checksum as an empty page. We attempt to merge it with the 2103 * appropriate zero page if the user enabled this via sysfs. 2104 */ 2105 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2106 struct vm_area_struct *vma; 2107 2108 mmap_read_lock(mm); 2109 vma = find_mergeable_vma(mm, rmap_item->address); 2110 if (vma) { 2111 err = try_to_merge_one_page(vma, page, 2112 ZERO_PAGE(rmap_item->address)); 2113 } else { 2114 /* 2115 * If the vma is out of date, we do not need to 2116 * continue. 2117 */ 2118 err = 0; 2119 } 2120 mmap_read_unlock(mm); 2121 /* 2122 * In case of failure, the page was not really empty, so we 2123 * need to continue. Otherwise we're done. 2124 */ 2125 if (!err) 2126 return; 2127 } 2128 tree_rmap_item = 2129 unstable_tree_search_insert(rmap_item, page, &tree_page); 2130 if (tree_rmap_item) { 2131 bool split; 2132 2133 kpage = try_to_merge_two_pages(rmap_item, page, 2134 tree_rmap_item, tree_page); 2135 /* 2136 * If both pages we tried to merge belong to the same compound 2137 * page, then we actually ended up increasing the reference 2138 * count of the same compound page twice, and split_huge_page 2139 * failed. 2140 * Here we set a flag if that happened, and we use it later to 2141 * try split_huge_page again. Since we call put_page right 2142 * afterwards, the reference count will be correct and 2143 * split_huge_page should succeed. 2144 */ 2145 split = PageTransCompound(page) 2146 && compound_head(page) == compound_head(tree_page); 2147 put_page(tree_page); 2148 if (kpage) { 2149 /* 2150 * The pages were successfully merged: insert new 2151 * node in the stable tree and add both rmap_items. 2152 */ 2153 lock_page(kpage); 2154 stable_node = stable_tree_insert(kpage); 2155 if (stable_node) { 2156 stable_tree_append(tree_rmap_item, stable_node, 2157 false); 2158 stable_tree_append(rmap_item, stable_node, 2159 false); 2160 } 2161 unlock_page(kpage); 2162 2163 /* 2164 * If we fail to insert the page into the stable tree, 2165 * we will have 2 virtual addresses that are pointing 2166 * to a ksm page left outside the stable tree, 2167 * in which case we need to break_cow on both. 2168 */ 2169 if (!stable_node) { 2170 break_cow(tree_rmap_item); 2171 break_cow(rmap_item); 2172 } 2173 } else if (split) { 2174 /* 2175 * We are here if we tried to merge two pages and 2176 * failed because they both belonged to the same 2177 * compound page. We will split the page now, but no 2178 * merging will take place. 2179 * We do not want to add the cost of a full lock; if 2180 * the page is locked, it is better to skip it and 2181 * perhaps try again later. 2182 */ 2183 if (!trylock_page(page)) 2184 return; 2185 split_huge_page(page); 2186 unlock_page(page); 2187 } 2188 } 2189 } 2190 2191 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2192 struct rmap_item **rmap_list, 2193 unsigned long addr) 2194 { 2195 struct rmap_item *rmap_item; 2196 2197 while (*rmap_list) { 2198 rmap_item = *rmap_list; 2199 if ((rmap_item->address & PAGE_MASK) == addr) 2200 return rmap_item; 2201 if (rmap_item->address > addr) 2202 break; 2203 *rmap_list = rmap_item->rmap_list; 2204 remove_rmap_item_from_tree(rmap_item); 2205 free_rmap_item(rmap_item); 2206 } 2207 2208 rmap_item = alloc_rmap_item(); 2209 if (rmap_item) { 2210 /* It has already been zeroed */ 2211 rmap_item->mm = mm_slot->mm; 2212 rmap_item->address = addr; 2213 rmap_item->rmap_list = *rmap_list; 2214 *rmap_list = rmap_item; 2215 } 2216 return rmap_item; 2217 } 2218 2219 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2220 { 2221 struct mm_struct *mm; 2222 struct mm_slot *slot; 2223 struct vm_area_struct *vma; 2224 struct rmap_item *rmap_item; 2225 int nid; 2226 2227 if (list_empty(&ksm_mm_head.mm_list)) 2228 return NULL; 2229 2230 slot = ksm_scan.mm_slot; 2231 if (slot == &ksm_mm_head) { 2232 /* 2233 * A number of pages can hang around indefinitely on per-cpu 2234 * pagevecs, raised page count preventing write_protect_page 2235 * from merging them. Though it doesn't really matter much, 2236 * it is puzzling to see some stuck in pages_volatile until 2237 * other activity jostles them out, and they also prevented 2238 * LTP's KSM test from succeeding deterministically; so drain 2239 * them here (here rather than on entry to ksm_do_scan(), 2240 * so we don't IPI too often when pages_to_scan is set low). 2241 */ 2242 lru_add_drain_all(); 2243 2244 /* 2245 * Whereas stale stable_nodes on the stable_tree itself 2246 * get pruned in the regular course of stable_tree_search(), 2247 * those moved out to the migrate_nodes list can accumulate: 2248 * so prune them once before each full scan. 2249 */ 2250 if (!ksm_merge_across_nodes) { 2251 struct stable_node *stable_node, *next; 2252 struct page *page; 2253 2254 list_for_each_entry_safe(stable_node, next, 2255 &migrate_nodes, list) { 2256 page = get_ksm_page(stable_node, 2257 GET_KSM_PAGE_NOLOCK); 2258 if (page) 2259 put_page(page); 2260 cond_resched(); 2261 } 2262 } 2263 2264 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2265 root_unstable_tree[nid] = RB_ROOT; 2266 2267 spin_lock(&ksm_mmlist_lock); 2268 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2269 ksm_scan.mm_slot = slot; 2270 spin_unlock(&ksm_mmlist_lock); 2271 /* 2272 * Although we tested list_empty() above, a racing __ksm_exit 2273 * of the last mm on the list may have removed it since then. 2274 */ 2275 if (slot == &ksm_mm_head) 2276 return NULL; 2277 next_mm: 2278 ksm_scan.address = 0; 2279 ksm_scan.rmap_list = &slot->rmap_list; 2280 } 2281 2282 mm = slot->mm; 2283 mmap_read_lock(mm); 2284 if (ksm_test_exit(mm)) 2285 vma = NULL; 2286 else 2287 vma = find_vma(mm, ksm_scan.address); 2288 2289 for (; vma; vma = vma->vm_next) { 2290 if (!(vma->vm_flags & VM_MERGEABLE)) 2291 continue; 2292 if (ksm_scan.address < vma->vm_start) 2293 ksm_scan.address = vma->vm_start; 2294 if (!vma->anon_vma) 2295 ksm_scan.address = vma->vm_end; 2296 2297 while (ksm_scan.address < vma->vm_end) { 2298 if (ksm_test_exit(mm)) 2299 break; 2300 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2301 if (IS_ERR_OR_NULL(*page)) { 2302 ksm_scan.address += PAGE_SIZE; 2303 cond_resched(); 2304 continue; 2305 } 2306 if (PageAnon(*page)) { 2307 flush_anon_page(vma, *page, ksm_scan.address); 2308 flush_dcache_page(*page); 2309 rmap_item = get_next_rmap_item(slot, 2310 ksm_scan.rmap_list, ksm_scan.address); 2311 if (rmap_item) { 2312 ksm_scan.rmap_list = 2313 &rmap_item->rmap_list; 2314 ksm_scan.address += PAGE_SIZE; 2315 } else 2316 put_page(*page); 2317 mmap_read_unlock(mm); 2318 return rmap_item; 2319 } 2320 put_page(*page); 2321 ksm_scan.address += PAGE_SIZE; 2322 cond_resched(); 2323 } 2324 } 2325 2326 if (ksm_test_exit(mm)) { 2327 ksm_scan.address = 0; 2328 ksm_scan.rmap_list = &slot->rmap_list; 2329 } 2330 /* 2331 * Nuke all the rmap_items that are above this current rmap: 2332 * because there were no VM_MERGEABLE vmas with such addresses. 2333 */ 2334 remove_trailing_rmap_items(ksm_scan.rmap_list); 2335 2336 spin_lock(&ksm_mmlist_lock); 2337 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2338 struct mm_slot, mm_list); 2339 if (ksm_scan.address == 0) { 2340 /* 2341 * We've completed a full scan of all vmas, holding mmap_lock 2342 * throughout, and found no VM_MERGEABLE: so do the same as 2343 * __ksm_exit does to remove this mm from all our lists now. 2344 * This applies either when cleaning up after __ksm_exit 2345 * (but beware: we can reach here even before __ksm_exit), 2346 * or when all VM_MERGEABLE areas have been unmapped (and 2347 * mmap_lock then protects against race with MADV_MERGEABLE). 2348 */ 2349 hash_del(&slot->link); 2350 list_del(&slot->mm_list); 2351 spin_unlock(&ksm_mmlist_lock); 2352 2353 free_mm_slot(slot); 2354 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2355 mmap_read_unlock(mm); 2356 mmdrop(mm); 2357 } else { 2358 mmap_read_unlock(mm); 2359 /* 2360 * mmap_read_unlock(mm) first because after 2361 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2362 * already have been freed under us by __ksm_exit() 2363 * because the "mm_slot" is still hashed and 2364 * ksm_scan.mm_slot doesn't point to it anymore. 2365 */ 2366 spin_unlock(&ksm_mmlist_lock); 2367 } 2368 2369 /* Repeat until we've completed scanning the whole list */ 2370 slot = ksm_scan.mm_slot; 2371 if (slot != &ksm_mm_head) 2372 goto next_mm; 2373 2374 ksm_scan.seqnr++; 2375 return NULL; 2376 } 2377 2378 /** 2379 * ksm_do_scan - the ksm scanner main worker function. 2380 * @scan_npages: number of pages we want to scan before we return. 2381 */ 2382 static void ksm_do_scan(unsigned int scan_npages) 2383 { 2384 struct rmap_item *rmap_item; 2385 struct page *page; 2386 2387 while (scan_npages-- && likely(!freezing(current))) { 2388 cond_resched(); 2389 rmap_item = scan_get_next_rmap_item(&page); 2390 if (!rmap_item) 2391 return; 2392 cmp_and_merge_page(page, rmap_item); 2393 put_page(page); 2394 } 2395 } 2396 2397 static int ksmd_should_run(void) 2398 { 2399 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2400 } 2401 2402 static int ksm_scan_thread(void *nothing) 2403 { 2404 unsigned int sleep_ms; 2405 2406 set_freezable(); 2407 set_user_nice(current, 5); 2408 2409 while (!kthread_should_stop()) { 2410 mutex_lock(&ksm_thread_mutex); 2411 wait_while_offlining(); 2412 if (ksmd_should_run()) 2413 ksm_do_scan(ksm_thread_pages_to_scan); 2414 mutex_unlock(&ksm_thread_mutex); 2415 2416 try_to_freeze(); 2417 2418 if (ksmd_should_run()) { 2419 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2420 wait_event_interruptible_timeout(ksm_iter_wait, 2421 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2422 msecs_to_jiffies(sleep_ms)); 2423 } else { 2424 wait_event_freezable(ksm_thread_wait, 2425 ksmd_should_run() || kthread_should_stop()); 2426 } 2427 } 2428 return 0; 2429 } 2430 2431 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2432 unsigned long end, int advice, unsigned long *vm_flags) 2433 { 2434 struct mm_struct *mm = vma->vm_mm; 2435 int err; 2436 2437 switch (advice) { 2438 case MADV_MERGEABLE: 2439 /* 2440 * Be somewhat over-protective for now! 2441 */ 2442 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2443 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2444 VM_HUGETLB | VM_MIXEDMAP)) 2445 return 0; /* just ignore the advice */ 2446 2447 if (vma_is_dax(vma)) 2448 return 0; 2449 2450 #ifdef VM_SAO 2451 if (*vm_flags & VM_SAO) 2452 return 0; 2453 #endif 2454 #ifdef VM_SPARC_ADI 2455 if (*vm_flags & VM_SPARC_ADI) 2456 return 0; 2457 #endif 2458 2459 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2460 err = __ksm_enter(mm); 2461 if (err) 2462 return err; 2463 } 2464 2465 *vm_flags |= VM_MERGEABLE; 2466 break; 2467 2468 case MADV_UNMERGEABLE: 2469 if (!(*vm_flags & VM_MERGEABLE)) 2470 return 0; /* just ignore the advice */ 2471 2472 if (vma->anon_vma) { 2473 err = unmerge_ksm_pages(vma, start, end); 2474 if (err) 2475 return err; 2476 } 2477 2478 *vm_flags &= ~VM_MERGEABLE; 2479 break; 2480 } 2481 2482 return 0; 2483 } 2484 EXPORT_SYMBOL_GPL(ksm_madvise); 2485 2486 int __ksm_enter(struct mm_struct *mm) 2487 { 2488 struct mm_slot *mm_slot; 2489 int needs_wakeup; 2490 2491 mm_slot = alloc_mm_slot(); 2492 if (!mm_slot) 2493 return -ENOMEM; 2494 2495 /* Check ksm_run too? Would need tighter locking */ 2496 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2497 2498 spin_lock(&ksm_mmlist_lock); 2499 insert_to_mm_slots_hash(mm, mm_slot); 2500 /* 2501 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2502 * insert just behind the scanning cursor, to let the area settle 2503 * down a little; when fork is followed by immediate exec, we don't 2504 * want ksmd to waste time setting up and tearing down an rmap_list. 2505 * 2506 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2507 * scanning cursor, otherwise KSM pages in newly forked mms will be 2508 * missed: then we might as well insert at the end of the list. 2509 */ 2510 if (ksm_run & KSM_RUN_UNMERGE) 2511 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2512 else 2513 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2514 spin_unlock(&ksm_mmlist_lock); 2515 2516 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2517 mmgrab(mm); 2518 2519 if (needs_wakeup) 2520 wake_up_interruptible(&ksm_thread_wait); 2521 2522 return 0; 2523 } 2524 2525 void __ksm_exit(struct mm_struct *mm) 2526 { 2527 struct mm_slot *mm_slot; 2528 int easy_to_free = 0; 2529 2530 /* 2531 * This process is exiting: if it's straightforward (as is the 2532 * case when ksmd was never running), free mm_slot immediately. 2533 * But if it's at the cursor or has rmap_items linked to it, use 2534 * mmap_lock to synchronize with any break_cows before pagetables 2535 * are freed, and leave the mm_slot on the list for ksmd to free. 2536 * Beware: ksm may already have noticed it exiting and freed the slot. 2537 */ 2538 2539 spin_lock(&ksm_mmlist_lock); 2540 mm_slot = get_mm_slot(mm); 2541 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2542 if (!mm_slot->rmap_list) { 2543 hash_del(&mm_slot->link); 2544 list_del(&mm_slot->mm_list); 2545 easy_to_free = 1; 2546 } else { 2547 list_move(&mm_slot->mm_list, 2548 &ksm_scan.mm_slot->mm_list); 2549 } 2550 } 2551 spin_unlock(&ksm_mmlist_lock); 2552 2553 if (easy_to_free) { 2554 free_mm_slot(mm_slot); 2555 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2556 mmdrop(mm); 2557 } else if (mm_slot) { 2558 mmap_write_lock(mm); 2559 mmap_write_unlock(mm); 2560 } 2561 } 2562 2563 struct page *ksm_might_need_to_copy(struct page *page, 2564 struct vm_area_struct *vma, unsigned long address) 2565 { 2566 struct anon_vma *anon_vma = page_anon_vma(page); 2567 struct page *new_page; 2568 2569 if (PageKsm(page)) { 2570 if (page_stable_node(page) && 2571 !(ksm_run & KSM_RUN_UNMERGE)) 2572 return page; /* no need to copy it */ 2573 } else if (!anon_vma) { 2574 return page; /* no need to copy it */ 2575 } else if (anon_vma->root == vma->anon_vma->root && 2576 page->index == linear_page_index(vma, address)) { 2577 return page; /* still no need to copy it */ 2578 } 2579 if (!PageUptodate(page)) 2580 return page; /* let do_swap_page report the error */ 2581 2582 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2583 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) { 2584 put_page(new_page); 2585 new_page = NULL; 2586 } 2587 if (new_page) { 2588 copy_user_highpage(new_page, page, address, vma); 2589 2590 SetPageDirty(new_page); 2591 __SetPageUptodate(new_page); 2592 __SetPageLocked(new_page); 2593 } 2594 2595 return new_page; 2596 } 2597 2598 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2599 { 2600 struct stable_node *stable_node; 2601 struct rmap_item *rmap_item; 2602 int search_new_forks = 0; 2603 2604 VM_BUG_ON_PAGE(!PageKsm(page), page); 2605 2606 /* 2607 * Rely on the page lock to protect against concurrent modifications 2608 * to that page's node of the stable tree. 2609 */ 2610 VM_BUG_ON_PAGE(!PageLocked(page), page); 2611 2612 stable_node = page_stable_node(page); 2613 if (!stable_node) 2614 return; 2615 again: 2616 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2617 struct anon_vma *anon_vma = rmap_item->anon_vma; 2618 struct anon_vma_chain *vmac; 2619 struct vm_area_struct *vma; 2620 2621 cond_resched(); 2622 anon_vma_lock_read(anon_vma); 2623 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2624 0, ULONG_MAX) { 2625 unsigned long addr; 2626 2627 cond_resched(); 2628 vma = vmac->vma; 2629 2630 /* Ignore the stable/unstable/sqnr flags */ 2631 addr = rmap_item->address & PAGE_MASK; 2632 2633 if (addr < vma->vm_start || addr >= vma->vm_end) 2634 continue; 2635 /* 2636 * Initially we examine only the vma which covers this 2637 * rmap_item; but later, if there is still work to do, 2638 * we examine covering vmas in other mms: in case they 2639 * were forked from the original since ksmd passed. 2640 */ 2641 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2642 continue; 2643 2644 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2645 continue; 2646 2647 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2648 anon_vma_unlock_read(anon_vma); 2649 return; 2650 } 2651 if (rwc->done && rwc->done(page)) { 2652 anon_vma_unlock_read(anon_vma); 2653 return; 2654 } 2655 } 2656 anon_vma_unlock_read(anon_vma); 2657 } 2658 if (!search_new_forks++) 2659 goto again; 2660 } 2661 2662 #ifdef CONFIG_MIGRATION 2663 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2664 { 2665 struct stable_node *stable_node; 2666 2667 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2668 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2669 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2670 2671 stable_node = page_stable_node(newpage); 2672 if (stable_node) { 2673 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2674 stable_node->kpfn = page_to_pfn(newpage); 2675 /* 2676 * newpage->mapping was set in advance; now we need smp_wmb() 2677 * to make sure that the new stable_node->kpfn is visible 2678 * to get_ksm_page() before it can see that oldpage->mapping 2679 * has gone stale (or that PageSwapCache has been cleared). 2680 */ 2681 smp_wmb(); 2682 set_page_stable_node(oldpage, NULL); 2683 } 2684 } 2685 #endif /* CONFIG_MIGRATION */ 2686 2687 #ifdef CONFIG_MEMORY_HOTREMOVE 2688 static void wait_while_offlining(void) 2689 { 2690 while (ksm_run & KSM_RUN_OFFLINE) { 2691 mutex_unlock(&ksm_thread_mutex); 2692 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2693 TASK_UNINTERRUPTIBLE); 2694 mutex_lock(&ksm_thread_mutex); 2695 } 2696 } 2697 2698 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2699 unsigned long start_pfn, 2700 unsigned long end_pfn) 2701 { 2702 if (stable_node->kpfn >= start_pfn && 2703 stable_node->kpfn < end_pfn) { 2704 /* 2705 * Don't get_ksm_page, page has already gone: 2706 * which is why we keep kpfn instead of page* 2707 */ 2708 remove_node_from_stable_tree(stable_node); 2709 return true; 2710 } 2711 return false; 2712 } 2713 2714 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2715 unsigned long start_pfn, 2716 unsigned long end_pfn, 2717 struct rb_root *root) 2718 { 2719 struct stable_node *dup; 2720 struct hlist_node *hlist_safe; 2721 2722 if (!is_stable_node_chain(stable_node)) { 2723 VM_BUG_ON(is_stable_node_dup(stable_node)); 2724 return stable_node_dup_remove_range(stable_node, start_pfn, 2725 end_pfn); 2726 } 2727 2728 hlist_for_each_entry_safe(dup, hlist_safe, 2729 &stable_node->hlist, hlist_dup) { 2730 VM_BUG_ON(!is_stable_node_dup(dup)); 2731 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2732 } 2733 if (hlist_empty(&stable_node->hlist)) { 2734 free_stable_node_chain(stable_node, root); 2735 return true; /* notify caller that tree was rebalanced */ 2736 } else 2737 return false; 2738 } 2739 2740 static void ksm_check_stable_tree(unsigned long start_pfn, 2741 unsigned long end_pfn) 2742 { 2743 struct stable_node *stable_node, *next; 2744 struct rb_node *node; 2745 int nid; 2746 2747 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2748 node = rb_first(root_stable_tree + nid); 2749 while (node) { 2750 stable_node = rb_entry(node, struct stable_node, node); 2751 if (stable_node_chain_remove_range(stable_node, 2752 start_pfn, end_pfn, 2753 root_stable_tree + 2754 nid)) 2755 node = rb_first(root_stable_tree + nid); 2756 else 2757 node = rb_next(node); 2758 cond_resched(); 2759 } 2760 } 2761 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2762 if (stable_node->kpfn >= start_pfn && 2763 stable_node->kpfn < end_pfn) 2764 remove_node_from_stable_tree(stable_node); 2765 cond_resched(); 2766 } 2767 } 2768 2769 static int ksm_memory_callback(struct notifier_block *self, 2770 unsigned long action, void *arg) 2771 { 2772 struct memory_notify *mn = arg; 2773 2774 switch (action) { 2775 case MEM_GOING_OFFLINE: 2776 /* 2777 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2778 * and remove_all_stable_nodes() while memory is going offline: 2779 * it is unsafe for them to touch the stable tree at this time. 2780 * But unmerge_ksm_pages(), rmap lookups and other entry points 2781 * which do not need the ksm_thread_mutex are all safe. 2782 */ 2783 mutex_lock(&ksm_thread_mutex); 2784 ksm_run |= KSM_RUN_OFFLINE; 2785 mutex_unlock(&ksm_thread_mutex); 2786 break; 2787 2788 case MEM_OFFLINE: 2789 /* 2790 * Most of the work is done by page migration; but there might 2791 * be a few stable_nodes left over, still pointing to struct 2792 * pages which have been offlined: prune those from the tree, 2793 * otherwise get_ksm_page() might later try to access a 2794 * non-existent struct page. 2795 */ 2796 ksm_check_stable_tree(mn->start_pfn, 2797 mn->start_pfn + mn->nr_pages); 2798 fallthrough; 2799 case MEM_CANCEL_OFFLINE: 2800 mutex_lock(&ksm_thread_mutex); 2801 ksm_run &= ~KSM_RUN_OFFLINE; 2802 mutex_unlock(&ksm_thread_mutex); 2803 2804 smp_mb(); /* wake_up_bit advises this */ 2805 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2806 break; 2807 } 2808 return NOTIFY_OK; 2809 } 2810 #else 2811 static void wait_while_offlining(void) 2812 { 2813 } 2814 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2815 2816 #ifdef CONFIG_SYSFS 2817 /* 2818 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2819 */ 2820 2821 #define KSM_ATTR_RO(_name) \ 2822 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2823 #define KSM_ATTR(_name) \ 2824 static struct kobj_attribute _name##_attr = \ 2825 __ATTR(_name, 0644, _name##_show, _name##_store) 2826 2827 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2828 struct kobj_attribute *attr, char *buf) 2829 { 2830 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2831 } 2832 2833 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2834 struct kobj_attribute *attr, 2835 const char *buf, size_t count) 2836 { 2837 unsigned int msecs; 2838 int err; 2839 2840 err = kstrtouint(buf, 10, &msecs); 2841 if (err) 2842 return -EINVAL; 2843 2844 ksm_thread_sleep_millisecs = msecs; 2845 wake_up_interruptible(&ksm_iter_wait); 2846 2847 return count; 2848 } 2849 KSM_ATTR(sleep_millisecs); 2850 2851 static ssize_t pages_to_scan_show(struct kobject *kobj, 2852 struct kobj_attribute *attr, char *buf) 2853 { 2854 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2855 } 2856 2857 static ssize_t pages_to_scan_store(struct kobject *kobj, 2858 struct kobj_attribute *attr, 2859 const char *buf, size_t count) 2860 { 2861 unsigned int nr_pages; 2862 int err; 2863 2864 err = kstrtouint(buf, 10, &nr_pages); 2865 if (err) 2866 return -EINVAL; 2867 2868 ksm_thread_pages_to_scan = nr_pages; 2869 2870 return count; 2871 } 2872 KSM_ATTR(pages_to_scan); 2873 2874 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2875 char *buf) 2876 { 2877 return sysfs_emit(buf, "%lu\n", ksm_run); 2878 } 2879 2880 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2881 const char *buf, size_t count) 2882 { 2883 unsigned int flags; 2884 int err; 2885 2886 err = kstrtouint(buf, 10, &flags); 2887 if (err) 2888 return -EINVAL; 2889 if (flags > KSM_RUN_UNMERGE) 2890 return -EINVAL; 2891 2892 /* 2893 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2894 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2895 * breaking COW to free the pages_shared (but leaves mm_slots 2896 * on the list for when ksmd may be set running again). 2897 */ 2898 2899 mutex_lock(&ksm_thread_mutex); 2900 wait_while_offlining(); 2901 if (ksm_run != flags) { 2902 ksm_run = flags; 2903 if (flags & KSM_RUN_UNMERGE) { 2904 set_current_oom_origin(); 2905 err = unmerge_and_remove_all_rmap_items(); 2906 clear_current_oom_origin(); 2907 if (err) { 2908 ksm_run = KSM_RUN_STOP; 2909 count = err; 2910 } 2911 } 2912 } 2913 mutex_unlock(&ksm_thread_mutex); 2914 2915 if (flags & KSM_RUN_MERGE) 2916 wake_up_interruptible(&ksm_thread_wait); 2917 2918 return count; 2919 } 2920 KSM_ATTR(run); 2921 2922 #ifdef CONFIG_NUMA 2923 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2924 struct kobj_attribute *attr, char *buf) 2925 { 2926 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2927 } 2928 2929 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2930 struct kobj_attribute *attr, 2931 const char *buf, size_t count) 2932 { 2933 int err; 2934 unsigned long knob; 2935 2936 err = kstrtoul(buf, 10, &knob); 2937 if (err) 2938 return err; 2939 if (knob > 1) 2940 return -EINVAL; 2941 2942 mutex_lock(&ksm_thread_mutex); 2943 wait_while_offlining(); 2944 if (ksm_merge_across_nodes != knob) { 2945 if (ksm_pages_shared || remove_all_stable_nodes()) 2946 err = -EBUSY; 2947 else if (root_stable_tree == one_stable_tree) { 2948 struct rb_root *buf; 2949 /* 2950 * This is the first time that we switch away from the 2951 * default of merging across nodes: must now allocate 2952 * a buffer to hold as many roots as may be needed. 2953 * Allocate stable and unstable together: 2954 * MAXSMP NODES_SHIFT 10 will use 16kB. 2955 */ 2956 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2957 GFP_KERNEL); 2958 /* Let us assume that RB_ROOT is NULL is zero */ 2959 if (!buf) 2960 err = -ENOMEM; 2961 else { 2962 root_stable_tree = buf; 2963 root_unstable_tree = buf + nr_node_ids; 2964 /* Stable tree is empty but not the unstable */ 2965 root_unstable_tree[0] = one_unstable_tree[0]; 2966 } 2967 } 2968 if (!err) { 2969 ksm_merge_across_nodes = knob; 2970 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2971 } 2972 } 2973 mutex_unlock(&ksm_thread_mutex); 2974 2975 return err ? err : count; 2976 } 2977 KSM_ATTR(merge_across_nodes); 2978 #endif 2979 2980 static ssize_t use_zero_pages_show(struct kobject *kobj, 2981 struct kobj_attribute *attr, char *buf) 2982 { 2983 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 2984 } 2985 static ssize_t use_zero_pages_store(struct kobject *kobj, 2986 struct kobj_attribute *attr, 2987 const char *buf, size_t count) 2988 { 2989 int err; 2990 bool value; 2991 2992 err = kstrtobool(buf, &value); 2993 if (err) 2994 return -EINVAL; 2995 2996 ksm_use_zero_pages = value; 2997 2998 return count; 2999 } 3000 KSM_ATTR(use_zero_pages); 3001 3002 static ssize_t max_page_sharing_show(struct kobject *kobj, 3003 struct kobj_attribute *attr, char *buf) 3004 { 3005 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3006 } 3007 3008 static ssize_t max_page_sharing_store(struct kobject *kobj, 3009 struct kobj_attribute *attr, 3010 const char *buf, size_t count) 3011 { 3012 int err; 3013 int knob; 3014 3015 err = kstrtoint(buf, 10, &knob); 3016 if (err) 3017 return err; 3018 /* 3019 * When a KSM page is created it is shared by 2 mappings. This 3020 * being a signed comparison, it implicitly verifies it's not 3021 * negative. 3022 */ 3023 if (knob < 2) 3024 return -EINVAL; 3025 3026 if (READ_ONCE(ksm_max_page_sharing) == knob) 3027 return count; 3028 3029 mutex_lock(&ksm_thread_mutex); 3030 wait_while_offlining(); 3031 if (ksm_max_page_sharing != knob) { 3032 if (ksm_pages_shared || remove_all_stable_nodes()) 3033 err = -EBUSY; 3034 else 3035 ksm_max_page_sharing = knob; 3036 } 3037 mutex_unlock(&ksm_thread_mutex); 3038 3039 return err ? err : count; 3040 } 3041 KSM_ATTR(max_page_sharing); 3042 3043 static ssize_t pages_shared_show(struct kobject *kobj, 3044 struct kobj_attribute *attr, char *buf) 3045 { 3046 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3047 } 3048 KSM_ATTR_RO(pages_shared); 3049 3050 static ssize_t pages_sharing_show(struct kobject *kobj, 3051 struct kobj_attribute *attr, char *buf) 3052 { 3053 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3054 } 3055 KSM_ATTR_RO(pages_sharing); 3056 3057 static ssize_t pages_unshared_show(struct kobject *kobj, 3058 struct kobj_attribute *attr, char *buf) 3059 { 3060 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3061 } 3062 KSM_ATTR_RO(pages_unshared); 3063 3064 static ssize_t pages_volatile_show(struct kobject *kobj, 3065 struct kobj_attribute *attr, char *buf) 3066 { 3067 long ksm_pages_volatile; 3068 3069 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3070 - ksm_pages_sharing - ksm_pages_unshared; 3071 /* 3072 * It was not worth any locking to calculate that statistic, 3073 * but it might therefore sometimes be negative: conceal that. 3074 */ 3075 if (ksm_pages_volatile < 0) 3076 ksm_pages_volatile = 0; 3077 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3078 } 3079 KSM_ATTR_RO(pages_volatile); 3080 3081 static ssize_t stable_node_dups_show(struct kobject *kobj, 3082 struct kobj_attribute *attr, char *buf) 3083 { 3084 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3085 } 3086 KSM_ATTR_RO(stable_node_dups); 3087 3088 static ssize_t stable_node_chains_show(struct kobject *kobj, 3089 struct kobj_attribute *attr, char *buf) 3090 { 3091 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3092 } 3093 KSM_ATTR_RO(stable_node_chains); 3094 3095 static ssize_t 3096 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3097 struct kobj_attribute *attr, 3098 char *buf) 3099 { 3100 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3101 } 3102 3103 static ssize_t 3104 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3105 struct kobj_attribute *attr, 3106 const char *buf, size_t count) 3107 { 3108 unsigned int msecs; 3109 int err; 3110 3111 err = kstrtouint(buf, 10, &msecs); 3112 if (err) 3113 return -EINVAL; 3114 3115 ksm_stable_node_chains_prune_millisecs = msecs; 3116 3117 return count; 3118 } 3119 KSM_ATTR(stable_node_chains_prune_millisecs); 3120 3121 static ssize_t full_scans_show(struct kobject *kobj, 3122 struct kobj_attribute *attr, char *buf) 3123 { 3124 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3125 } 3126 KSM_ATTR_RO(full_scans); 3127 3128 static struct attribute *ksm_attrs[] = { 3129 &sleep_millisecs_attr.attr, 3130 &pages_to_scan_attr.attr, 3131 &run_attr.attr, 3132 &pages_shared_attr.attr, 3133 &pages_sharing_attr.attr, 3134 &pages_unshared_attr.attr, 3135 &pages_volatile_attr.attr, 3136 &full_scans_attr.attr, 3137 #ifdef CONFIG_NUMA 3138 &merge_across_nodes_attr.attr, 3139 #endif 3140 &max_page_sharing_attr.attr, 3141 &stable_node_chains_attr.attr, 3142 &stable_node_dups_attr.attr, 3143 &stable_node_chains_prune_millisecs_attr.attr, 3144 &use_zero_pages_attr.attr, 3145 NULL, 3146 }; 3147 3148 static const struct attribute_group ksm_attr_group = { 3149 .attrs = ksm_attrs, 3150 .name = "ksm", 3151 }; 3152 #endif /* CONFIG_SYSFS */ 3153 3154 static int __init ksm_init(void) 3155 { 3156 struct task_struct *ksm_thread; 3157 int err; 3158 3159 /* The correct value depends on page size and endianness */ 3160 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3161 /* Default to false for backwards compatibility */ 3162 ksm_use_zero_pages = false; 3163 3164 err = ksm_slab_init(); 3165 if (err) 3166 goto out; 3167 3168 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3169 if (IS_ERR(ksm_thread)) { 3170 pr_err("ksm: creating kthread failed\n"); 3171 err = PTR_ERR(ksm_thread); 3172 goto out_free; 3173 } 3174 3175 #ifdef CONFIG_SYSFS 3176 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3177 if (err) { 3178 pr_err("ksm: register sysfs failed\n"); 3179 kthread_stop(ksm_thread); 3180 goto out_free; 3181 } 3182 #else 3183 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3184 3185 #endif /* CONFIG_SYSFS */ 3186 3187 #ifdef CONFIG_MEMORY_HOTREMOVE 3188 /* There is no significance to this priority 100 */ 3189 hotplug_memory_notifier(ksm_memory_callback, 100); 3190 #endif 3191 return 0; 3192 3193 out_free: 3194 ksm_slab_free(); 3195 out: 3196 return err; 3197 } 3198 subsys_initcall(ksm_init); 3199