xref: /openbmc/linux/mm/ksm.c (revision 62a9bbf2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #ifdef CONFIG_NUMA
49 #define NUMA(x)		(x)
50 #define DO_NUMA(x)	do { (x); } while (0)
51 #else
52 #define NUMA(x)		(0)
53 #define DO_NUMA(x)	do { } while (0)
54 #endif
55 
56 /**
57  * DOC: Overview
58  *
59  * A few notes about the KSM scanning process,
60  * to make it easier to understand the data structures below:
61  *
62  * In order to reduce excessive scanning, KSM sorts the memory pages by their
63  * contents into a data structure that holds pointers to the pages' locations.
64  *
65  * Since the contents of the pages may change at any moment, KSM cannot just
66  * insert the pages into a normal sorted tree and expect it to find anything.
67  * Therefore KSM uses two data structures - the stable and the unstable tree.
68  *
69  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
70  * by their contents.  Because each such page is write-protected, searching on
71  * this tree is fully assured to be working (except when pages are unmapped),
72  * and therefore this tree is called the stable tree.
73  *
74  * The stable tree node includes information required for reverse
75  * mapping from a KSM page to virtual addresses that map this page.
76  *
77  * In order to avoid large latencies of the rmap walks on KSM pages,
78  * KSM maintains two types of nodes in the stable tree:
79  *
80  * * the regular nodes that keep the reverse mapping structures in a
81  *   linked list
82  * * the "chains" that link nodes ("dups") that represent the same
83  *   write protected memory content, but each "dup" corresponds to a
84  *   different KSM page copy of that content
85  *
86  * Internally, the regular nodes, "dups" and "chains" are represented
87  * using the same struct ksm_stable_node structure.
88  *
89  * In addition to the stable tree, KSM uses a second data structure called the
90  * unstable tree: this tree holds pointers to pages which have been found to
91  * be "unchanged for a period of time".  The unstable tree sorts these pages
92  * by their contents, but since they are not write-protected, KSM cannot rely
93  * upon the unstable tree to work correctly - the unstable tree is liable to
94  * be corrupted as its contents are modified, and so it is called unstable.
95  *
96  * KSM solves this problem by several techniques:
97  *
98  * 1) The unstable tree is flushed every time KSM completes scanning all
99  *    memory areas, and then the tree is rebuilt again from the beginning.
100  * 2) KSM will only insert into the unstable tree, pages whose hash value
101  *    has not changed since the previous scan of all memory areas.
102  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
103  *    colors of the nodes and not on their contents, assuring that even when
104  *    the tree gets "corrupted" it won't get out of balance, so scanning time
105  *    remains the same (also, searching and inserting nodes in an rbtree uses
106  *    the same algorithm, so we have no overhead when we flush and rebuild).
107  * 4) KSM never flushes the stable tree, which means that even if it were to
108  *    take 10 attempts to find a page in the unstable tree, once it is found,
109  *    it is secured in the stable tree.  (When we scan a new page, we first
110  *    compare it against the stable tree, and then against the unstable tree.)
111  *
112  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
113  * stable trees and multiple unstable trees: one of each for each NUMA node.
114  */
115 
116 /**
117  * struct ksm_mm_slot - ksm information per mm that is being scanned
118  * @slot: hash lookup from mm to mm_slot
119  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
120  */
121 struct ksm_mm_slot {
122 	struct mm_slot slot;
123 	struct ksm_rmap_item *rmap_list;
124 };
125 
126 /**
127  * struct ksm_scan - cursor for scanning
128  * @mm_slot: the current mm_slot we are scanning
129  * @address: the next address inside that to be scanned
130  * @rmap_list: link to the next rmap to be scanned in the rmap_list
131  * @seqnr: count of completed full scans (needed when removing unstable node)
132  *
133  * There is only the one ksm_scan instance of this cursor structure.
134  */
135 struct ksm_scan {
136 	struct ksm_mm_slot *mm_slot;
137 	unsigned long address;
138 	struct ksm_rmap_item **rmap_list;
139 	unsigned long seqnr;
140 };
141 
142 /**
143  * struct ksm_stable_node - node of the stable rbtree
144  * @node: rb node of this ksm page in the stable tree
145  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
146  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
147  * @list: linked into migrate_nodes, pending placement in the proper node tree
148  * @hlist: hlist head of rmap_items using this ksm page
149  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
150  * @chain_prune_time: time of the last full garbage collection
151  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
152  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
153  */
154 struct ksm_stable_node {
155 	union {
156 		struct rb_node node;	/* when node of stable tree */
157 		struct {		/* when listed for migration */
158 			struct list_head *head;
159 			struct {
160 				struct hlist_node hlist_dup;
161 				struct list_head list;
162 			};
163 		};
164 	};
165 	struct hlist_head hlist;
166 	union {
167 		unsigned long kpfn;
168 		unsigned long chain_prune_time;
169 	};
170 	/*
171 	 * STABLE_NODE_CHAIN can be any negative number in
172 	 * rmap_hlist_len negative range, but better not -1 to be able
173 	 * to reliably detect underflows.
174 	 */
175 #define STABLE_NODE_CHAIN -1024
176 	int rmap_hlist_len;
177 #ifdef CONFIG_NUMA
178 	int nid;
179 #endif
180 };
181 
182 /**
183  * struct ksm_rmap_item - reverse mapping item for virtual addresses
184  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
185  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
186  * @nid: NUMA node id of unstable tree in which linked (may not match page)
187  * @mm: the memory structure this rmap_item is pointing into
188  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
189  * @oldchecksum: previous checksum of the page at that virtual address
190  * @node: rb node of this rmap_item in the unstable tree
191  * @head: pointer to stable_node heading this list in the stable tree
192  * @hlist: link into hlist of rmap_items hanging off that stable_node
193  */
194 struct ksm_rmap_item {
195 	struct ksm_rmap_item *rmap_list;
196 	union {
197 		struct anon_vma *anon_vma;	/* when stable */
198 #ifdef CONFIG_NUMA
199 		int nid;		/* when node of unstable tree */
200 #endif
201 	};
202 	struct mm_struct *mm;
203 	unsigned long address;		/* + low bits used for flags below */
204 	unsigned int oldchecksum;	/* when unstable */
205 	union {
206 		struct rb_node node;	/* when node of unstable tree */
207 		struct {		/* when listed from stable tree */
208 			struct ksm_stable_node *head;
209 			struct hlist_node hlist;
210 		};
211 	};
212 };
213 
214 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
215 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
216 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
217 
218 /* The stable and unstable tree heads */
219 static struct rb_root one_stable_tree[1] = { RB_ROOT };
220 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
221 static struct rb_root *root_stable_tree = one_stable_tree;
222 static struct rb_root *root_unstable_tree = one_unstable_tree;
223 
224 /* Recently migrated nodes of stable tree, pending proper placement */
225 static LIST_HEAD(migrate_nodes);
226 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
227 
228 #define MM_SLOTS_HASH_BITS 10
229 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
230 
231 static struct ksm_mm_slot ksm_mm_head = {
232 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
233 };
234 static struct ksm_scan ksm_scan = {
235 	.mm_slot = &ksm_mm_head,
236 };
237 
238 static struct kmem_cache *rmap_item_cache;
239 static struct kmem_cache *stable_node_cache;
240 static struct kmem_cache *mm_slot_cache;
241 
242 /* The number of nodes in the stable tree */
243 static unsigned long ksm_pages_shared;
244 
245 /* The number of page slots additionally sharing those nodes */
246 static unsigned long ksm_pages_sharing;
247 
248 /* The number of nodes in the unstable tree */
249 static unsigned long ksm_pages_unshared;
250 
251 /* The number of rmap_items in use: to calculate pages_volatile */
252 static unsigned long ksm_rmap_items;
253 
254 /* The number of stable_node chains */
255 static unsigned long ksm_stable_node_chains;
256 
257 /* The number of stable_node dups linked to the stable_node chains */
258 static unsigned long ksm_stable_node_dups;
259 
260 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
261 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
262 
263 /* Maximum number of page slots sharing a stable node */
264 static int ksm_max_page_sharing = 256;
265 
266 /* Number of pages ksmd should scan in one batch */
267 static unsigned int ksm_thread_pages_to_scan = 100;
268 
269 /* Milliseconds ksmd should sleep between batches */
270 static unsigned int ksm_thread_sleep_millisecs = 20;
271 
272 /* Checksum of an empty (zeroed) page */
273 static unsigned int zero_checksum __read_mostly;
274 
275 /* Whether to merge empty (zeroed) pages with actual zero pages */
276 static bool ksm_use_zero_pages __read_mostly;
277 
278 #ifdef CONFIG_NUMA
279 /* Zeroed when merging across nodes is not allowed */
280 static unsigned int ksm_merge_across_nodes = 1;
281 static int ksm_nr_node_ids = 1;
282 #else
283 #define ksm_merge_across_nodes	1U
284 #define ksm_nr_node_ids		1
285 #endif
286 
287 #define KSM_RUN_STOP	0
288 #define KSM_RUN_MERGE	1
289 #define KSM_RUN_UNMERGE	2
290 #define KSM_RUN_OFFLINE	4
291 static unsigned long ksm_run = KSM_RUN_STOP;
292 static void wait_while_offlining(void);
293 
294 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
296 static DEFINE_MUTEX(ksm_thread_mutex);
297 static DEFINE_SPINLOCK(ksm_mmlist_lock);
298 
299 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
300 		sizeof(struct __struct), __alignof__(struct __struct),\
301 		(__flags), NULL)
302 
303 static int __init ksm_slab_init(void)
304 {
305 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
306 	if (!rmap_item_cache)
307 		goto out;
308 
309 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
310 	if (!stable_node_cache)
311 		goto out_free1;
312 
313 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
314 	if (!mm_slot_cache)
315 		goto out_free2;
316 
317 	return 0;
318 
319 out_free2:
320 	kmem_cache_destroy(stable_node_cache);
321 out_free1:
322 	kmem_cache_destroy(rmap_item_cache);
323 out:
324 	return -ENOMEM;
325 }
326 
327 static void __init ksm_slab_free(void)
328 {
329 	kmem_cache_destroy(mm_slot_cache);
330 	kmem_cache_destroy(stable_node_cache);
331 	kmem_cache_destroy(rmap_item_cache);
332 	mm_slot_cache = NULL;
333 }
334 
335 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
336 {
337 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
338 }
339 
340 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
341 {
342 	return dup->head == STABLE_NODE_DUP_HEAD;
343 }
344 
345 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
346 					     struct ksm_stable_node *chain)
347 {
348 	VM_BUG_ON(is_stable_node_dup(dup));
349 	dup->head = STABLE_NODE_DUP_HEAD;
350 	VM_BUG_ON(!is_stable_node_chain(chain));
351 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
352 	ksm_stable_node_dups++;
353 }
354 
355 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
356 {
357 	VM_BUG_ON(!is_stable_node_dup(dup));
358 	hlist_del(&dup->hlist_dup);
359 	ksm_stable_node_dups--;
360 }
361 
362 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
363 {
364 	VM_BUG_ON(is_stable_node_chain(dup));
365 	if (is_stable_node_dup(dup))
366 		__stable_node_dup_del(dup);
367 	else
368 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
369 #ifdef CONFIG_DEBUG_VM
370 	dup->head = NULL;
371 #endif
372 }
373 
374 static inline struct ksm_rmap_item *alloc_rmap_item(void)
375 {
376 	struct ksm_rmap_item *rmap_item;
377 
378 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
379 						__GFP_NORETRY | __GFP_NOWARN);
380 	if (rmap_item)
381 		ksm_rmap_items++;
382 	return rmap_item;
383 }
384 
385 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
386 {
387 	ksm_rmap_items--;
388 	rmap_item->mm->ksm_rmap_items--;
389 	rmap_item->mm = NULL;	/* debug safety */
390 	kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392 
393 static inline struct ksm_stable_node *alloc_stable_node(void)
394 {
395 	/*
396 	 * The allocation can take too long with GFP_KERNEL when memory is under
397 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398 	 * grants access to memory reserves, helping to avoid this problem.
399 	 */
400 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402 
403 static inline void free_stable_node(struct ksm_stable_node *stable_node)
404 {
405 	VM_BUG_ON(stable_node->rmap_hlist_len &&
406 		  !is_stable_node_chain(stable_node));
407 	kmem_cache_free(stable_node_cache, stable_node);
408 }
409 
410 /*
411  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
412  * page tables after it has passed through ksm_exit() - which, if necessary,
413  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
414  * a special flag: they can just back out as soon as mm_users goes to zero.
415  * ksm_test_exit() is used throughout to make this test for exit: in some
416  * places for correctness, in some places just to avoid unnecessary work.
417  */
418 static inline bool ksm_test_exit(struct mm_struct *mm)
419 {
420 	return atomic_read(&mm->mm_users) == 0;
421 }
422 
423 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
424 			struct mm_walk *walk)
425 {
426 	struct page *page = NULL;
427 	spinlock_t *ptl;
428 	pte_t *pte;
429 	int ret;
430 
431 	if (pmd_leaf(*pmd) || !pmd_present(*pmd))
432 		return 0;
433 
434 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
435 	if (pte_present(*pte)) {
436 		page = vm_normal_page(walk->vma, addr, *pte);
437 	} else if (!pte_none(*pte)) {
438 		swp_entry_t entry = pte_to_swp_entry(*pte);
439 
440 		/*
441 		 * As KSM pages remain KSM pages until freed, no need to wait
442 		 * here for migration to end.
443 		 */
444 		if (is_migration_entry(entry))
445 			page = pfn_swap_entry_to_page(entry);
446 	}
447 	ret = page && PageKsm(page);
448 	pte_unmap_unlock(pte, ptl);
449 	return ret;
450 }
451 
452 static const struct mm_walk_ops break_ksm_ops = {
453 	.pmd_entry = break_ksm_pmd_entry,
454 };
455 
456 /*
457  * We use break_ksm to break COW on a ksm page by triggering unsharing,
458  * such that the ksm page will get replaced by an exclusive anonymous page.
459  *
460  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
461  * in case the application has unmapped and remapped mm,addr meanwhile.
462  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
463  * mmap of /dev/mem, where we would not want to touch it.
464  *
465  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
466  * of the process that owns 'vma'.  We also do not want to enforce
467  * protection keys here anyway.
468  */
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
470 {
471 	vm_fault_t ret = 0;
472 
473 	do {
474 		int ksm_page;
475 
476 		cond_resched();
477 		ksm_page = walk_page_range_vma(vma, addr, addr + 1,
478 					       &break_ksm_ops, NULL);
479 		if (WARN_ON_ONCE(ksm_page < 0))
480 			return ksm_page;
481 		if (!ksm_page)
482 			return 0;
483 		ret = handle_mm_fault(vma, addr,
484 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
485 				      NULL);
486 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487 	/*
488 	 * We must loop until we no longer find a KSM page because
489 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
490 	 * pte accessed bit gets updated concurrently.
491 	 *
492 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
493 	 * backing file, which also invalidates anonymous pages: that's
494 	 * okay, that truncation will have unmapped the PageKsm for us.
495 	 *
496 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
497 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
498 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
499 	 * to user; and ksmd, having no mm, would never be chosen for that.
500 	 *
501 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
502 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
503 	 * even ksmd can fail in this way - though it's usually breaking ksm
504 	 * just to undo a merge it made a moment before, so unlikely to oom.
505 	 *
506 	 * That's a pity: we might therefore have more kernel pages allocated
507 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
508 	 * will retry to break_cow on each pass, so should recover the page
509 	 * in due course.  The important thing is to not let VM_MERGEABLE
510 	 * be cleared while any such pages might remain in the area.
511 	 */
512 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
513 }
514 
515 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
516 		unsigned long addr)
517 {
518 	struct vm_area_struct *vma;
519 	if (ksm_test_exit(mm))
520 		return NULL;
521 	vma = vma_lookup(mm, addr);
522 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
523 		return NULL;
524 	return vma;
525 }
526 
527 static void break_cow(struct ksm_rmap_item *rmap_item)
528 {
529 	struct mm_struct *mm = rmap_item->mm;
530 	unsigned long addr = rmap_item->address;
531 	struct vm_area_struct *vma;
532 
533 	/*
534 	 * It is not an accident that whenever we want to break COW
535 	 * to undo, we also need to drop a reference to the anon_vma.
536 	 */
537 	put_anon_vma(rmap_item->anon_vma);
538 
539 	mmap_read_lock(mm);
540 	vma = find_mergeable_vma(mm, addr);
541 	if (vma)
542 		break_ksm(vma, addr);
543 	mmap_read_unlock(mm);
544 }
545 
546 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
547 {
548 	struct mm_struct *mm = rmap_item->mm;
549 	unsigned long addr = rmap_item->address;
550 	struct vm_area_struct *vma;
551 	struct page *page;
552 
553 	mmap_read_lock(mm);
554 	vma = find_mergeable_vma(mm, addr);
555 	if (!vma)
556 		goto out;
557 
558 	page = follow_page(vma, addr, FOLL_GET);
559 	if (IS_ERR_OR_NULL(page))
560 		goto out;
561 	if (is_zone_device_page(page))
562 		goto out_putpage;
563 	if (PageAnon(page)) {
564 		flush_anon_page(vma, page, addr);
565 		flush_dcache_page(page);
566 	} else {
567 out_putpage:
568 		put_page(page);
569 out:
570 		page = NULL;
571 	}
572 	mmap_read_unlock(mm);
573 	return page;
574 }
575 
576 /*
577  * This helper is used for getting right index into array of tree roots.
578  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580  * every node has its own stable and unstable tree.
581  */
582 static inline int get_kpfn_nid(unsigned long kpfn)
583 {
584 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
585 }
586 
587 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
588 						   struct rb_root *root)
589 {
590 	struct ksm_stable_node *chain = alloc_stable_node();
591 	VM_BUG_ON(is_stable_node_chain(dup));
592 	if (likely(chain)) {
593 		INIT_HLIST_HEAD(&chain->hlist);
594 		chain->chain_prune_time = jiffies;
595 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
597 		chain->nid = NUMA_NO_NODE; /* debug */
598 #endif
599 		ksm_stable_node_chains++;
600 
601 		/*
602 		 * Put the stable node chain in the first dimension of
603 		 * the stable tree and at the same time remove the old
604 		 * stable node.
605 		 */
606 		rb_replace_node(&dup->node, &chain->node, root);
607 
608 		/*
609 		 * Move the old stable node to the second dimension
610 		 * queued in the hlist_dup. The invariant is that all
611 		 * dup stable_nodes in the chain->hlist point to pages
612 		 * that are write protected and have the exact same
613 		 * content.
614 		 */
615 		stable_node_chain_add_dup(dup, chain);
616 	}
617 	return chain;
618 }
619 
620 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
621 					  struct rb_root *root)
622 {
623 	rb_erase(&chain->node, root);
624 	free_stable_node(chain);
625 	ksm_stable_node_chains--;
626 }
627 
628 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
629 {
630 	struct ksm_rmap_item *rmap_item;
631 
632 	/* check it's not STABLE_NODE_CHAIN or negative */
633 	BUG_ON(stable_node->rmap_hlist_len < 0);
634 
635 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
636 		if (rmap_item->hlist.next)
637 			ksm_pages_sharing--;
638 		else
639 			ksm_pages_shared--;
640 
641 		rmap_item->mm->ksm_merging_pages--;
642 
643 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644 		stable_node->rmap_hlist_len--;
645 		put_anon_vma(rmap_item->anon_vma);
646 		rmap_item->address &= PAGE_MASK;
647 		cond_resched();
648 	}
649 
650 	/*
651 	 * We need the second aligned pointer of the migrate_nodes
652 	 * list_head to stay clear from the rb_parent_color union
653 	 * (aligned and different than any node) and also different
654 	 * from &migrate_nodes. This will verify that future list.h changes
655 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
656 	 */
657 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
659 
660 	if (stable_node->head == &migrate_nodes)
661 		list_del(&stable_node->list);
662 	else
663 		stable_node_dup_del(stable_node);
664 	free_stable_node(stable_node);
665 }
666 
667 enum get_ksm_page_flags {
668 	GET_KSM_PAGE_NOLOCK,
669 	GET_KSM_PAGE_LOCK,
670 	GET_KSM_PAGE_TRYLOCK
671 };
672 
673 /*
674  * get_ksm_page: checks if the page indicated by the stable node
675  * is still its ksm page, despite having held no reference to it.
676  * In which case we can trust the content of the page, and it
677  * returns the gotten page; but if the page has now been zapped,
678  * remove the stale node from the stable tree and return NULL.
679  * But beware, the stable node's page might be being migrated.
680  *
681  * You would expect the stable_node to hold a reference to the ksm page.
682  * But if it increments the page's count, swapping out has to wait for
683  * ksmd to come around again before it can free the page, which may take
684  * seconds or even minutes: much too unresponsive.  So instead we use a
685  * "keyhole reference": access to the ksm page from the stable node peeps
686  * out through its keyhole to see if that page still holds the right key,
687  * pointing back to this stable node.  This relies on freeing a PageAnon
688  * page to reset its page->mapping to NULL, and relies on no other use of
689  * a page to put something that might look like our key in page->mapping.
690  * is on its way to being freed; but it is an anomaly to bear in mind.
691  */
692 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
693 				 enum get_ksm_page_flags flags)
694 {
695 	struct page *page;
696 	void *expected_mapping;
697 	unsigned long kpfn;
698 
699 	expected_mapping = (void *)((unsigned long)stable_node |
700 					PAGE_MAPPING_KSM);
701 again:
702 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
703 	page = pfn_to_page(kpfn);
704 	if (READ_ONCE(page->mapping) != expected_mapping)
705 		goto stale;
706 
707 	/*
708 	 * We cannot do anything with the page while its refcount is 0.
709 	 * Usually 0 means free, or tail of a higher-order page: in which
710 	 * case this node is no longer referenced, and should be freed;
711 	 * however, it might mean that the page is under page_ref_freeze().
712 	 * The __remove_mapping() case is easy, again the node is now stale;
713 	 * the same is in reuse_ksm_page() case; but if page is swapcache
714 	 * in folio_migrate_mapping(), it might still be our page,
715 	 * in which case it's essential to keep the node.
716 	 */
717 	while (!get_page_unless_zero(page)) {
718 		/*
719 		 * Another check for page->mapping != expected_mapping would
720 		 * work here too.  We have chosen the !PageSwapCache test to
721 		 * optimize the common case, when the page is or is about to
722 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
723 		 * in the ref_freeze section of __remove_mapping(); but Anon
724 		 * page->mapping reset to NULL later, in free_pages_prepare().
725 		 */
726 		if (!PageSwapCache(page))
727 			goto stale;
728 		cpu_relax();
729 	}
730 
731 	if (READ_ONCE(page->mapping) != expected_mapping) {
732 		put_page(page);
733 		goto stale;
734 	}
735 
736 	if (flags == GET_KSM_PAGE_TRYLOCK) {
737 		if (!trylock_page(page)) {
738 			put_page(page);
739 			return ERR_PTR(-EBUSY);
740 		}
741 	} else if (flags == GET_KSM_PAGE_LOCK)
742 		lock_page(page);
743 
744 	if (flags != GET_KSM_PAGE_NOLOCK) {
745 		if (READ_ONCE(page->mapping) != expected_mapping) {
746 			unlock_page(page);
747 			put_page(page);
748 			goto stale;
749 		}
750 	}
751 	return page;
752 
753 stale:
754 	/*
755 	 * We come here from above when page->mapping or !PageSwapCache
756 	 * suggests that the node is stale; but it might be under migration.
757 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
758 	 * before checking whether node->kpfn has been changed.
759 	 */
760 	smp_rmb();
761 	if (READ_ONCE(stable_node->kpfn) != kpfn)
762 		goto again;
763 	remove_node_from_stable_tree(stable_node);
764 	return NULL;
765 }
766 
767 /*
768  * Removing rmap_item from stable or unstable tree.
769  * This function will clean the information from the stable/unstable tree.
770  */
771 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
772 {
773 	if (rmap_item->address & STABLE_FLAG) {
774 		struct ksm_stable_node *stable_node;
775 		struct page *page;
776 
777 		stable_node = rmap_item->head;
778 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
779 		if (!page)
780 			goto out;
781 
782 		hlist_del(&rmap_item->hlist);
783 		unlock_page(page);
784 		put_page(page);
785 
786 		if (!hlist_empty(&stable_node->hlist))
787 			ksm_pages_sharing--;
788 		else
789 			ksm_pages_shared--;
790 
791 		rmap_item->mm->ksm_merging_pages--;
792 
793 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794 		stable_node->rmap_hlist_len--;
795 
796 		put_anon_vma(rmap_item->anon_vma);
797 		rmap_item->head = NULL;
798 		rmap_item->address &= PAGE_MASK;
799 
800 	} else if (rmap_item->address & UNSTABLE_FLAG) {
801 		unsigned char age;
802 		/*
803 		 * Usually ksmd can and must skip the rb_erase, because
804 		 * root_unstable_tree was already reset to RB_ROOT.
805 		 * But be careful when an mm is exiting: do the rb_erase
806 		 * if this rmap_item was inserted by this scan, rather
807 		 * than left over from before.
808 		 */
809 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
810 		BUG_ON(age > 1);
811 		if (!age)
812 			rb_erase(&rmap_item->node,
813 				 root_unstable_tree + NUMA(rmap_item->nid));
814 		ksm_pages_unshared--;
815 		rmap_item->address &= PAGE_MASK;
816 	}
817 out:
818 	cond_resched();		/* we're called from many long loops */
819 }
820 
821 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
822 {
823 	while (*rmap_list) {
824 		struct ksm_rmap_item *rmap_item = *rmap_list;
825 		*rmap_list = rmap_item->rmap_list;
826 		remove_rmap_item_from_tree(rmap_item);
827 		free_rmap_item(rmap_item);
828 	}
829 }
830 
831 /*
832  * Though it's very tempting to unmerge rmap_items from stable tree rather
833  * than check every pte of a given vma, the locking doesn't quite work for
834  * that - an rmap_item is assigned to the stable tree after inserting ksm
835  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
836  * rmap_items from parent to child at fork time (so as not to waste time
837  * if exit comes before the next scan reaches it).
838  *
839  * Similarly, although we'd like to remove rmap_items (so updating counts
840  * and freeing memory) when unmerging an area, it's easier to leave that
841  * to the next pass of ksmd - consider, for example, how ksmd might be
842  * in cmp_and_merge_page on one of the rmap_items we would be removing.
843  */
844 static int unmerge_ksm_pages(struct vm_area_struct *vma,
845 			     unsigned long start, unsigned long end)
846 {
847 	unsigned long addr;
848 	int err = 0;
849 
850 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
851 		if (ksm_test_exit(vma->vm_mm))
852 			break;
853 		if (signal_pending(current))
854 			err = -ERESTARTSYS;
855 		else
856 			err = break_ksm(vma, addr);
857 	}
858 	return err;
859 }
860 
861 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
862 {
863 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
864 }
865 
866 static inline struct ksm_stable_node *page_stable_node(struct page *page)
867 {
868 	return folio_stable_node(page_folio(page));
869 }
870 
871 static inline void set_page_stable_node(struct page *page,
872 					struct ksm_stable_node *stable_node)
873 {
874 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
875 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
876 }
877 
878 #ifdef CONFIG_SYSFS
879 /*
880  * Only called through the sysfs control interface:
881  */
882 static int remove_stable_node(struct ksm_stable_node *stable_node)
883 {
884 	struct page *page;
885 	int err;
886 
887 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
888 	if (!page) {
889 		/*
890 		 * get_ksm_page did remove_node_from_stable_tree itself.
891 		 */
892 		return 0;
893 	}
894 
895 	/*
896 	 * Page could be still mapped if this races with __mmput() running in
897 	 * between ksm_exit() and exit_mmap(). Just refuse to let
898 	 * merge_across_nodes/max_page_sharing be switched.
899 	 */
900 	err = -EBUSY;
901 	if (!page_mapped(page)) {
902 		/*
903 		 * The stable node did not yet appear stale to get_ksm_page(),
904 		 * since that allows for an unmapped ksm page to be recognized
905 		 * right up until it is freed; but the node is safe to remove.
906 		 * This page might be in a pagevec waiting to be freed,
907 		 * or it might be PageSwapCache (perhaps under writeback),
908 		 * or it might have been removed from swapcache a moment ago.
909 		 */
910 		set_page_stable_node(page, NULL);
911 		remove_node_from_stable_tree(stable_node);
912 		err = 0;
913 	}
914 
915 	unlock_page(page);
916 	put_page(page);
917 	return err;
918 }
919 
920 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
921 				    struct rb_root *root)
922 {
923 	struct ksm_stable_node *dup;
924 	struct hlist_node *hlist_safe;
925 
926 	if (!is_stable_node_chain(stable_node)) {
927 		VM_BUG_ON(is_stable_node_dup(stable_node));
928 		if (remove_stable_node(stable_node))
929 			return true;
930 		else
931 			return false;
932 	}
933 
934 	hlist_for_each_entry_safe(dup, hlist_safe,
935 				  &stable_node->hlist, hlist_dup) {
936 		VM_BUG_ON(!is_stable_node_dup(dup));
937 		if (remove_stable_node(dup))
938 			return true;
939 	}
940 	BUG_ON(!hlist_empty(&stable_node->hlist));
941 	free_stable_node_chain(stable_node, root);
942 	return false;
943 }
944 
945 static int remove_all_stable_nodes(void)
946 {
947 	struct ksm_stable_node *stable_node, *next;
948 	int nid;
949 	int err = 0;
950 
951 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
952 		while (root_stable_tree[nid].rb_node) {
953 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
954 						struct ksm_stable_node, node);
955 			if (remove_stable_node_chain(stable_node,
956 						     root_stable_tree + nid)) {
957 				err = -EBUSY;
958 				break;	/* proceed to next nid */
959 			}
960 			cond_resched();
961 		}
962 	}
963 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
964 		if (remove_stable_node(stable_node))
965 			err = -EBUSY;
966 		cond_resched();
967 	}
968 	return err;
969 }
970 
971 static int unmerge_and_remove_all_rmap_items(void)
972 {
973 	struct ksm_mm_slot *mm_slot;
974 	struct mm_slot *slot;
975 	struct mm_struct *mm;
976 	struct vm_area_struct *vma;
977 	int err = 0;
978 
979 	spin_lock(&ksm_mmlist_lock);
980 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
981 			  struct mm_slot, mm_node);
982 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
983 	spin_unlock(&ksm_mmlist_lock);
984 
985 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
986 	     mm_slot = ksm_scan.mm_slot) {
987 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
988 
989 		mm = mm_slot->slot.mm;
990 		mmap_read_lock(mm);
991 		for_each_vma(vmi, vma) {
992 			if (ksm_test_exit(mm))
993 				break;
994 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
995 				continue;
996 			err = unmerge_ksm_pages(vma,
997 						vma->vm_start, vma->vm_end);
998 			if (err)
999 				goto error;
1000 		}
1001 
1002 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1003 		mmap_read_unlock(mm);
1004 
1005 		spin_lock(&ksm_mmlist_lock);
1006 		slot = list_entry(mm_slot->slot.mm_node.next,
1007 				  struct mm_slot, mm_node);
1008 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1009 		if (ksm_test_exit(mm)) {
1010 			hash_del(&mm_slot->slot.hash);
1011 			list_del(&mm_slot->slot.mm_node);
1012 			spin_unlock(&ksm_mmlist_lock);
1013 
1014 			mm_slot_free(mm_slot_cache, mm_slot);
1015 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1016 			mmdrop(mm);
1017 		} else
1018 			spin_unlock(&ksm_mmlist_lock);
1019 	}
1020 
1021 	/* Clean up stable nodes, but don't worry if some are still busy */
1022 	remove_all_stable_nodes();
1023 	ksm_scan.seqnr = 0;
1024 	return 0;
1025 
1026 error:
1027 	mmap_read_unlock(mm);
1028 	spin_lock(&ksm_mmlist_lock);
1029 	ksm_scan.mm_slot = &ksm_mm_head;
1030 	spin_unlock(&ksm_mmlist_lock);
1031 	return err;
1032 }
1033 #endif /* CONFIG_SYSFS */
1034 
1035 static u32 calc_checksum(struct page *page)
1036 {
1037 	u32 checksum;
1038 	void *addr = kmap_atomic(page);
1039 	checksum = xxhash(addr, PAGE_SIZE, 0);
1040 	kunmap_atomic(addr);
1041 	return checksum;
1042 }
1043 
1044 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1045 			      pte_t *orig_pte)
1046 {
1047 	struct mm_struct *mm = vma->vm_mm;
1048 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1049 	int swapped;
1050 	int err = -EFAULT;
1051 	struct mmu_notifier_range range;
1052 	bool anon_exclusive;
1053 
1054 	pvmw.address = page_address_in_vma(page, vma);
1055 	if (pvmw.address == -EFAULT)
1056 		goto out;
1057 
1058 	BUG_ON(PageTransCompound(page));
1059 
1060 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1061 				pvmw.address + PAGE_SIZE);
1062 	mmu_notifier_invalidate_range_start(&range);
1063 
1064 	if (!page_vma_mapped_walk(&pvmw))
1065 		goto out_mn;
1066 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1067 		goto out_unlock;
1068 
1069 	anon_exclusive = PageAnonExclusive(page);
1070 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1071 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1072 		pte_t entry;
1073 
1074 		swapped = PageSwapCache(page);
1075 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1076 		/*
1077 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1078 		 * take any lock, therefore the check that we are going to make
1079 		 * with the pagecount against the mapcount is racy and
1080 		 * O_DIRECT can happen right after the check.
1081 		 * So we clear the pte and flush the tlb before the check
1082 		 * this assure us that no O_DIRECT can happen after the check
1083 		 * or in the middle of the check.
1084 		 *
1085 		 * No need to notify as we are downgrading page table to read
1086 		 * only not changing it to point to a new page.
1087 		 *
1088 		 * See Documentation/mm/mmu_notifier.rst
1089 		 */
1090 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1091 		/*
1092 		 * Check that no O_DIRECT or similar I/O is in progress on the
1093 		 * page
1094 		 */
1095 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1096 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1097 			goto out_unlock;
1098 		}
1099 
1100 		/* See page_try_share_anon_rmap(): clear PTE first. */
1101 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1102 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1103 			goto out_unlock;
1104 		}
1105 
1106 		if (pte_dirty(entry))
1107 			set_page_dirty(page);
1108 		entry = pte_mkclean(entry);
1109 
1110 		if (pte_write(entry))
1111 			entry = pte_wrprotect(entry);
1112 
1113 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1114 	}
1115 	*orig_pte = *pvmw.pte;
1116 	err = 0;
1117 
1118 out_unlock:
1119 	page_vma_mapped_walk_done(&pvmw);
1120 out_mn:
1121 	mmu_notifier_invalidate_range_end(&range);
1122 out:
1123 	return err;
1124 }
1125 
1126 /**
1127  * replace_page - replace page in vma by new ksm page
1128  * @vma:      vma that holds the pte pointing to page
1129  * @page:     the page we are replacing by kpage
1130  * @kpage:    the ksm page we replace page by
1131  * @orig_pte: the original value of the pte
1132  *
1133  * Returns 0 on success, -EFAULT on failure.
1134  */
1135 static int replace_page(struct vm_area_struct *vma, struct page *page,
1136 			struct page *kpage, pte_t orig_pte)
1137 {
1138 	struct mm_struct *mm = vma->vm_mm;
1139 	struct folio *folio;
1140 	pmd_t *pmd;
1141 	pmd_t pmde;
1142 	pte_t *ptep;
1143 	pte_t newpte;
1144 	spinlock_t *ptl;
1145 	unsigned long addr;
1146 	int err = -EFAULT;
1147 	struct mmu_notifier_range range;
1148 
1149 	addr = page_address_in_vma(page, vma);
1150 	if (addr == -EFAULT)
1151 		goto out;
1152 
1153 	pmd = mm_find_pmd(mm, addr);
1154 	if (!pmd)
1155 		goto out;
1156 	/*
1157 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1158 	 * without holding anon_vma lock for write.  So when looking for a
1159 	 * genuine pmde (in which to find pte), test present and !THP together.
1160 	 */
1161 	pmde = *pmd;
1162 	barrier();
1163 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1164 		goto out;
1165 
1166 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1167 				addr + PAGE_SIZE);
1168 	mmu_notifier_invalidate_range_start(&range);
1169 
1170 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1171 	if (!pte_same(*ptep, orig_pte)) {
1172 		pte_unmap_unlock(ptep, ptl);
1173 		goto out_mn;
1174 	}
1175 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1176 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1177 
1178 	/*
1179 	 * No need to check ksm_use_zero_pages here: we can only have a
1180 	 * zero_page here if ksm_use_zero_pages was enabled already.
1181 	 */
1182 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1183 		get_page(kpage);
1184 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1185 		newpte = mk_pte(kpage, vma->vm_page_prot);
1186 	} else {
1187 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1188 					       vma->vm_page_prot));
1189 		/*
1190 		 * We're replacing an anonymous page with a zero page, which is
1191 		 * not anonymous. We need to do proper accounting otherwise we
1192 		 * will get wrong values in /proc, and a BUG message in dmesg
1193 		 * when tearing down the mm.
1194 		 */
1195 		dec_mm_counter(mm, MM_ANONPAGES);
1196 	}
1197 
1198 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1199 	/*
1200 	 * No need to notify as we are replacing a read only page with another
1201 	 * read only page with the same content.
1202 	 *
1203 	 * See Documentation/mm/mmu_notifier.rst
1204 	 */
1205 	ptep_clear_flush(vma, addr, ptep);
1206 	set_pte_at_notify(mm, addr, ptep, newpte);
1207 
1208 	folio = page_folio(page);
1209 	page_remove_rmap(page, vma, false);
1210 	if (!folio_mapped(folio))
1211 		folio_free_swap(folio);
1212 	folio_put(folio);
1213 
1214 	pte_unmap_unlock(ptep, ptl);
1215 	err = 0;
1216 out_mn:
1217 	mmu_notifier_invalidate_range_end(&range);
1218 out:
1219 	return err;
1220 }
1221 
1222 /*
1223  * try_to_merge_one_page - take two pages and merge them into one
1224  * @vma: the vma that holds the pte pointing to page
1225  * @page: the PageAnon page that we want to replace with kpage
1226  * @kpage: the PageKsm page that we want to map instead of page,
1227  *         or NULL the first time when we want to use page as kpage.
1228  *
1229  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1230  */
1231 static int try_to_merge_one_page(struct vm_area_struct *vma,
1232 				 struct page *page, struct page *kpage)
1233 {
1234 	pte_t orig_pte = __pte(0);
1235 	int err = -EFAULT;
1236 
1237 	if (page == kpage)			/* ksm page forked */
1238 		return 0;
1239 
1240 	if (!PageAnon(page))
1241 		goto out;
1242 
1243 	/*
1244 	 * We need the page lock to read a stable PageSwapCache in
1245 	 * write_protect_page().  We use trylock_page() instead of
1246 	 * lock_page() because we don't want to wait here - we
1247 	 * prefer to continue scanning and merging different pages,
1248 	 * then come back to this page when it is unlocked.
1249 	 */
1250 	if (!trylock_page(page))
1251 		goto out;
1252 
1253 	if (PageTransCompound(page)) {
1254 		if (split_huge_page(page))
1255 			goto out_unlock;
1256 	}
1257 
1258 	/*
1259 	 * If this anonymous page is mapped only here, its pte may need
1260 	 * to be write-protected.  If it's mapped elsewhere, all of its
1261 	 * ptes are necessarily already write-protected.  But in either
1262 	 * case, we need to lock and check page_count is not raised.
1263 	 */
1264 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1265 		if (!kpage) {
1266 			/*
1267 			 * While we hold page lock, upgrade page from
1268 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1269 			 * stable_tree_insert() will update stable_node.
1270 			 */
1271 			set_page_stable_node(page, NULL);
1272 			mark_page_accessed(page);
1273 			/*
1274 			 * Page reclaim just frees a clean page with no dirty
1275 			 * ptes: make sure that the ksm page would be swapped.
1276 			 */
1277 			if (!PageDirty(page))
1278 				SetPageDirty(page);
1279 			err = 0;
1280 		} else if (pages_identical(page, kpage))
1281 			err = replace_page(vma, page, kpage, orig_pte);
1282 	}
1283 
1284 out_unlock:
1285 	unlock_page(page);
1286 out:
1287 	return err;
1288 }
1289 
1290 /*
1291  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1292  * but no new kernel page is allocated: kpage must already be a ksm page.
1293  *
1294  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1295  */
1296 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1297 				      struct page *page, struct page *kpage)
1298 {
1299 	struct mm_struct *mm = rmap_item->mm;
1300 	struct vm_area_struct *vma;
1301 	int err = -EFAULT;
1302 
1303 	mmap_read_lock(mm);
1304 	vma = find_mergeable_vma(mm, rmap_item->address);
1305 	if (!vma)
1306 		goto out;
1307 
1308 	err = try_to_merge_one_page(vma, page, kpage);
1309 	if (err)
1310 		goto out;
1311 
1312 	/* Unstable nid is in union with stable anon_vma: remove first */
1313 	remove_rmap_item_from_tree(rmap_item);
1314 
1315 	/* Must get reference to anon_vma while still holding mmap_lock */
1316 	rmap_item->anon_vma = vma->anon_vma;
1317 	get_anon_vma(vma->anon_vma);
1318 out:
1319 	mmap_read_unlock(mm);
1320 	return err;
1321 }
1322 
1323 /*
1324  * try_to_merge_two_pages - take two identical pages and prepare them
1325  * to be merged into one page.
1326  *
1327  * This function returns the kpage if we successfully merged two identical
1328  * pages into one ksm page, NULL otherwise.
1329  *
1330  * Note that this function upgrades page to ksm page: if one of the pages
1331  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1332  */
1333 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1334 					   struct page *page,
1335 					   struct ksm_rmap_item *tree_rmap_item,
1336 					   struct page *tree_page)
1337 {
1338 	int err;
1339 
1340 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1341 	if (!err) {
1342 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1343 							tree_page, page);
1344 		/*
1345 		 * If that fails, we have a ksm page with only one pte
1346 		 * pointing to it: so break it.
1347 		 */
1348 		if (err)
1349 			break_cow(rmap_item);
1350 	}
1351 	return err ? NULL : page;
1352 }
1353 
1354 static __always_inline
1355 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1356 {
1357 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1358 	/*
1359 	 * Check that at least one mapping still exists, otherwise
1360 	 * there's no much point to merge and share with this
1361 	 * stable_node, as the underlying tree_page of the other
1362 	 * sharer is going to be freed soon.
1363 	 */
1364 	return stable_node->rmap_hlist_len &&
1365 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1366 }
1367 
1368 static __always_inline
1369 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1370 {
1371 	return __is_page_sharing_candidate(stable_node, 0);
1372 }
1373 
1374 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1375 				    struct ksm_stable_node **_stable_node,
1376 				    struct rb_root *root,
1377 				    bool prune_stale_stable_nodes)
1378 {
1379 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1380 	struct hlist_node *hlist_safe;
1381 	struct page *_tree_page, *tree_page = NULL;
1382 	int nr = 0;
1383 	int found_rmap_hlist_len;
1384 
1385 	if (!prune_stale_stable_nodes ||
1386 	    time_before(jiffies, stable_node->chain_prune_time +
1387 			msecs_to_jiffies(
1388 				ksm_stable_node_chains_prune_millisecs)))
1389 		prune_stale_stable_nodes = false;
1390 	else
1391 		stable_node->chain_prune_time = jiffies;
1392 
1393 	hlist_for_each_entry_safe(dup, hlist_safe,
1394 				  &stable_node->hlist, hlist_dup) {
1395 		cond_resched();
1396 		/*
1397 		 * We must walk all stable_node_dup to prune the stale
1398 		 * stable nodes during lookup.
1399 		 *
1400 		 * get_ksm_page can drop the nodes from the
1401 		 * stable_node->hlist if they point to freed pages
1402 		 * (that's why we do a _safe walk). The "dup"
1403 		 * stable_node parameter itself will be freed from
1404 		 * under us if it returns NULL.
1405 		 */
1406 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1407 		if (!_tree_page)
1408 			continue;
1409 		nr += 1;
1410 		if (is_page_sharing_candidate(dup)) {
1411 			if (!found ||
1412 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1413 				if (found)
1414 					put_page(tree_page);
1415 				found = dup;
1416 				found_rmap_hlist_len = found->rmap_hlist_len;
1417 				tree_page = _tree_page;
1418 
1419 				/* skip put_page for found dup */
1420 				if (!prune_stale_stable_nodes)
1421 					break;
1422 				continue;
1423 			}
1424 		}
1425 		put_page(_tree_page);
1426 	}
1427 
1428 	if (found) {
1429 		/*
1430 		 * nr is counting all dups in the chain only if
1431 		 * prune_stale_stable_nodes is true, otherwise we may
1432 		 * break the loop at nr == 1 even if there are
1433 		 * multiple entries.
1434 		 */
1435 		if (prune_stale_stable_nodes && nr == 1) {
1436 			/*
1437 			 * If there's not just one entry it would
1438 			 * corrupt memory, better BUG_ON. In KSM
1439 			 * context with no lock held it's not even
1440 			 * fatal.
1441 			 */
1442 			BUG_ON(stable_node->hlist.first->next);
1443 
1444 			/*
1445 			 * There's just one entry and it is below the
1446 			 * deduplication limit so drop the chain.
1447 			 */
1448 			rb_replace_node(&stable_node->node, &found->node,
1449 					root);
1450 			free_stable_node(stable_node);
1451 			ksm_stable_node_chains--;
1452 			ksm_stable_node_dups--;
1453 			/*
1454 			 * NOTE: the caller depends on the stable_node
1455 			 * to be equal to stable_node_dup if the chain
1456 			 * was collapsed.
1457 			 */
1458 			*_stable_node = found;
1459 			/*
1460 			 * Just for robustness, as stable_node is
1461 			 * otherwise left as a stable pointer, the
1462 			 * compiler shall optimize it away at build
1463 			 * time.
1464 			 */
1465 			stable_node = NULL;
1466 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1467 			   __is_page_sharing_candidate(found, 1)) {
1468 			/*
1469 			 * If the found stable_node dup can accept one
1470 			 * more future merge (in addition to the one
1471 			 * that is underway) and is not at the head of
1472 			 * the chain, put it there so next search will
1473 			 * be quicker in the !prune_stale_stable_nodes
1474 			 * case.
1475 			 *
1476 			 * NOTE: it would be inaccurate to use nr > 1
1477 			 * instead of checking the hlist.first pointer
1478 			 * directly, because in the
1479 			 * prune_stale_stable_nodes case "nr" isn't
1480 			 * the position of the found dup in the chain,
1481 			 * but the total number of dups in the chain.
1482 			 */
1483 			hlist_del(&found->hlist_dup);
1484 			hlist_add_head(&found->hlist_dup,
1485 				       &stable_node->hlist);
1486 		}
1487 	}
1488 
1489 	*_stable_node_dup = found;
1490 	return tree_page;
1491 }
1492 
1493 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1494 					       struct rb_root *root)
1495 {
1496 	if (!is_stable_node_chain(stable_node))
1497 		return stable_node;
1498 	if (hlist_empty(&stable_node->hlist)) {
1499 		free_stable_node_chain(stable_node, root);
1500 		return NULL;
1501 	}
1502 	return hlist_entry(stable_node->hlist.first,
1503 			   typeof(*stable_node), hlist_dup);
1504 }
1505 
1506 /*
1507  * Like for get_ksm_page, this function can free the *_stable_node and
1508  * *_stable_node_dup if the returned tree_page is NULL.
1509  *
1510  * It can also free and overwrite *_stable_node with the found
1511  * stable_node_dup if the chain is collapsed (in which case
1512  * *_stable_node will be equal to *_stable_node_dup like if the chain
1513  * never existed). It's up to the caller to verify tree_page is not
1514  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1515  *
1516  * *_stable_node_dup is really a second output parameter of this
1517  * function and will be overwritten in all cases, the caller doesn't
1518  * need to initialize it.
1519  */
1520 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1521 					struct ksm_stable_node **_stable_node,
1522 					struct rb_root *root,
1523 					bool prune_stale_stable_nodes)
1524 {
1525 	struct ksm_stable_node *stable_node = *_stable_node;
1526 	if (!is_stable_node_chain(stable_node)) {
1527 		if (is_page_sharing_candidate(stable_node)) {
1528 			*_stable_node_dup = stable_node;
1529 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1530 		}
1531 		/*
1532 		 * _stable_node_dup set to NULL means the stable_node
1533 		 * reached the ksm_max_page_sharing limit.
1534 		 */
1535 		*_stable_node_dup = NULL;
1536 		return NULL;
1537 	}
1538 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1539 			       prune_stale_stable_nodes);
1540 }
1541 
1542 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1543 						struct ksm_stable_node **s_n,
1544 						struct rb_root *root)
1545 {
1546 	return __stable_node_chain(s_n_d, s_n, root, true);
1547 }
1548 
1549 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1550 					  struct ksm_stable_node *s_n,
1551 					  struct rb_root *root)
1552 {
1553 	struct ksm_stable_node *old_stable_node = s_n;
1554 	struct page *tree_page;
1555 
1556 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1557 	/* not pruning dups so s_n cannot have changed */
1558 	VM_BUG_ON(s_n != old_stable_node);
1559 	return tree_page;
1560 }
1561 
1562 /*
1563  * stable_tree_search - search for page inside the stable tree
1564  *
1565  * This function checks if there is a page inside the stable tree
1566  * with identical content to the page that we are scanning right now.
1567  *
1568  * This function returns the stable tree node of identical content if found,
1569  * NULL otherwise.
1570  */
1571 static struct page *stable_tree_search(struct page *page)
1572 {
1573 	int nid;
1574 	struct rb_root *root;
1575 	struct rb_node **new;
1576 	struct rb_node *parent;
1577 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1578 	struct ksm_stable_node *page_node;
1579 
1580 	page_node = page_stable_node(page);
1581 	if (page_node && page_node->head != &migrate_nodes) {
1582 		/* ksm page forked */
1583 		get_page(page);
1584 		return page;
1585 	}
1586 
1587 	nid = get_kpfn_nid(page_to_pfn(page));
1588 	root = root_stable_tree + nid;
1589 again:
1590 	new = &root->rb_node;
1591 	parent = NULL;
1592 
1593 	while (*new) {
1594 		struct page *tree_page;
1595 		int ret;
1596 
1597 		cond_resched();
1598 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1599 		stable_node_any = NULL;
1600 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1601 		/*
1602 		 * NOTE: stable_node may have been freed by
1603 		 * chain_prune() if the returned stable_node_dup is
1604 		 * not NULL. stable_node_dup may have been inserted in
1605 		 * the rbtree instead as a regular stable_node (in
1606 		 * order to collapse the stable_node chain if a single
1607 		 * stable_node dup was found in it). In such case the
1608 		 * stable_node is overwritten by the callee to point
1609 		 * to the stable_node_dup that was collapsed in the
1610 		 * stable rbtree and stable_node will be equal to
1611 		 * stable_node_dup like if the chain never existed.
1612 		 */
1613 		if (!stable_node_dup) {
1614 			/*
1615 			 * Either all stable_node dups were full in
1616 			 * this stable_node chain, or this chain was
1617 			 * empty and should be rb_erased.
1618 			 */
1619 			stable_node_any = stable_node_dup_any(stable_node,
1620 							      root);
1621 			if (!stable_node_any) {
1622 				/* rb_erase just run */
1623 				goto again;
1624 			}
1625 			/*
1626 			 * Take any of the stable_node dups page of
1627 			 * this stable_node chain to let the tree walk
1628 			 * continue. All KSM pages belonging to the
1629 			 * stable_node dups in a stable_node chain
1630 			 * have the same content and they're
1631 			 * write protected at all times. Any will work
1632 			 * fine to continue the walk.
1633 			 */
1634 			tree_page = get_ksm_page(stable_node_any,
1635 						 GET_KSM_PAGE_NOLOCK);
1636 		}
1637 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1638 		if (!tree_page) {
1639 			/*
1640 			 * If we walked over a stale stable_node,
1641 			 * get_ksm_page() will call rb_erase() and it
1642 			 * may rebalance the tree from under us. So
1643 			 * restart the search from scratch. Returning
1644 			 * NULL would be safe too, but we'd generate
1645 			 * false negative insertions just because some
1646 			 * stable_node was stale.
1647 			 */
1648 			goto again;
1649 		}
1650 
1651 		ret = memcmp_pages(page, tree_page);
1652 		put_page(tree_page);
1653 
1654 		parent = *new;
1655 		if (ret < 0)
1656 			new = &parent->rb_left;
1657 		else if (ret > 0)
1658 			new = &parent->rb_right;
1659 		else {
1660 			if (page_node) {
1661 				VM_BUG_ON(page_node->head != &migrate_nodes);
1662 				/*
1663 				 * Test if the migrated page should be merged
1664 				 * into a stable node dup. If the mapcount is
1665 				 * 1 we can migrate it with another KSM page
1666 				 * without adding it to the chain.
1667 				 */
1668 				if (page_mapcount(page) > 1)
1669 					goto chain_append;
1670 			}
1671 
1672 			if (!stable_node_dup) {
1673 				/*
1674 				 * If the stable_node is a chain and
1675 				 * we got a payload match in memcmp
1676 				 * but we cannot merge the scanned
1677 				 * page in any of the existing
1678 				 * stable_node dups because they're
1679 				 * all full, we need to wait the
1680 				 * scanned page to find itself a match
1681 				 * in the unstable tree to create a
1682 				 * brand new KSM page to add later to
1683 				 * the dups of this stable_node.
1684 				 */
1685 				return NULL;
1686 			}
1687 
1688 			/*
1689 			 * Lock and unlock the stable_node's page (which
1690 			 * might already have been migrated) so that page
1691 			 * migration is sure to notice its raised count.
1692 			 * It would be more elegant to return stable_node
1693 			 * than kpage, but that involves more changes.
1694 			 */
1695 			tree_page = get_ksm_page(stable_node_dup,
1696 						 GET_KSM_PAGE_TRYLOCK);
1697 
1698 			if (PTR_ERR(tree_page) == -EBUSY)
1699 				return ERR_PTR(-EBUSY);
1700 
1701 			if (unlikely(!tree_page))
1702 				/*
1703 				 * The tree may have been rebalanced,
1704 				 * so re-evaluate parent and new.
1705 				 */
1706 				goto again;
1707 			unlock_page(tree_page);
1708 
1709 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1710 			    NUMA(stable_node_dup->nid)) {
1711 				put_page(tree_page);
1712 				goto replace;
1713 			}
1714 			return tree_page;
1715 		}
1716 	}
1717 
1718 	if (!page_node)
1719 		return NULL;
1720 
1721 	list_del(&page_node->list);
1722 	DO_NUMA(page_node->nid = nid);
1723 	rb_link_node(&page_node->node, parent, new);
1724 	rb_insert_color(&page_node->node, root);
1725 out:
1726 	if (is_page_sharing_candidate(page_node)) {
1727 		get_page(page);
1728 		return page;
1729 	} else
1730 		return NULL;
1731 
1732 replace:
1733 	/*
1734 	 * If stable_node was a chain and chain_prune collapsed it,
1735 	 * stable_node has been updated to be the new regular
1736 	 * stable_node. A collapse of the chain is indistinguishable
1737 	 * from the case there was no chain in the stable
1738 	 * rbtree. Otherwise stable_node is the chain and
1739 	 * stable_node_dup is the dup to replace.
1740 	 */
1741 	if (stable_node_dup == stable_node) {
1742 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1743 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1744 		/* there is no chain */
1745 		if (page_node) {
1746 			VM_BUG_ON(page_node->head != &migrate_nodes);
1747 			list_del(&page_node->list);
1748 			DO_NUMA(page_node->nid = nid);
1749 			rb_replace_node(&stable_node_dup->node,
1750 					&page_node->node,
1751 					root);
1752 			if (is_page_sharing_candidate(page_node))
1753 				get_page(page);
1754 			else
1755 				page = NULL;
1756 		} else {
1757 			rb_erase(&stable_node_dup->node, root);
1758 			page = NULL;
1759 		}
1760 	} else {
1761 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1762 		__stable_node_dup_del(stable_node_dup);
1763 		if (page_node) {
1764 			VM_BUG_ON(page_node->head != &migrate_nodes);
1765 			list_del(&page_node->list);
1766 			DO_NUMA(page_node->nid = nid);
1767 			stable_node_chain_add_dup(page_node, stable_node);
1768 			if (is_page_sharing_candidate(page_node))
1769 				get_page(page);
1770 			else
1771 				page = NULL;
1772 		} else {
1773 			page = NULL;
1774 		}
1775 	}
1776 	stable_node_dup->head = &migrate_nodes;
1777 	list_add(&stable_node_dup->list, stable_node_dup->head);
1778 	return page;
1779 
1780 chain_append:
1781 	/* stable_node_dup could be null if it reached the limit */
1782 	if (!stable_node_dup)
1783 		stable_node_dup = stable_node_any;
1784 	/*
1785 	 * If stable_node was a chain and chain_prune collapsed it,
1786 	 * stable_node has been updated to be the new regular
1787 	 * stable_node. A collapse of the chain is indistinguishable
1788 	 * from the case there was no chain in the stable
1789 	 * rbtree. Otherwise stable_node is the chain and
1790 	 * stable_node_dup is the dup to replace.
1791 	 */
1792 	if (stable_node_dup == stable_node) {
1793 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1794 		/* chain is missing so create it */
1795 		stable_node = alloc_stable_node_chain(stable_node_dup,
1796 						      root);
1797 		if (!stable_node)
1798 			return NULL;
1799 	}
1800 	/*
1801 	 * Add this stable_node dup that was
1802 	 * migrated to the stable_node chain
1803 	 * of the current nid for this page
1804 	 * content.
1805 	 */
1806 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1807 	VM_BUG_ON(page_node->head != &migrate_nodes);
1808 	list_del(&page_node->list);
1809 	DO_NUMA(page_node->nid = nid);
1810 	stable_node_chain_add_dup(page_node, stable_node);
1811 	goto out;
1812 }
1813 
1814 /*
1815  * stable_tree_insert - insert stable tree node pointing to new ksm page
1816  * into the stable tree.
1817  *
1818  * This function returns the stable tree node just allocated on success,
1819  * NULL otherwise.
1820  */
1821 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1822 {
1823 	int nid;
1824 	unsigned long kpfn;
1825 	struct rb_root *root;
1826 	struct rb_node **new;
1827 	struct rb_node *parent;
1828 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1829 	bool need_chain = false;
1830 
1831 	kpfn = page_to_pfn(kpage);
1832 	nid = get_kpfn_nid(kpfn);
1833 	root = root_stable_tree + nid;
1834 again:
1835 	parent = NULL;
1836 	new = &root->rb_node;
1837 
1838 	while (*new) {
1839 		struct page *tree_page;
1840 		int ret;
1841 
1842 		cond_resched();
1843 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1844 		stable_node_any = NULL;
1845 		tree_page = chain(&stable_node_dup, stable_node, root);
1846 		if (!stable_node_dup) {
1847 			/*
1848 			 * Either all stable_node dups were full in
1849 			 * this stable_node chain, or this chain was
1850 			 * empty and should be rb_erased.
1851 			 */
1852 			stable_node_any = stable_node_dup_any(stable_node,
1853 							      root);
1854 			if (!stable_node_any) {
1855 				/* rb_erase just run */
1856 				goto again;
1857 			}
1858 			/*
1859 			 * Take any of the stable_node dups page of
1860 			 * this stable_node chain to let the tree walk
1861 			 * continue. All KSM pages belonging to the
1862 			 * stable_node dups in a stable_node chain
1863 			 * have the same content and they're
1864 			 * write protected at all times. Any will work
1865 			 * fine to continue the walk.
1866 			 */
1867 			tree_page = get_ksm_page(stable_node_any,
1868 						 GET_KSM_PAGE_NOLOCK);
1869 		}
1870 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1871 		if (!tree_page) {
1872 			/*
1873 			 * If we walked over a stale stable_node,
1874 			 * get_ksm_page() will call rb_erase() and it
1875 			 * may rebalance the tree from under us. So
1876 			 * restart the search from scratch. Returning
1877 			 * NULL would be safe too, but we'd generate
1878 			 * false negative insertions just because some
1879 			 * stable_node was stale.
1880 			 */
1881 			goto again;
1882 		}
1883 
1884 		ret = memcmp_pages(kpage, tree_page);
1885 		put_page(tree_page);
1886 
1887 		parent = *new;
1888 		if (ret < 0)
1889 			new = &parent->rb_left;
1890 		else if (ret > 0)
1891 			new = &parent->rb_right;
1892 		else {
1893 			need_chain = true;
1894 			break;
1895 		}
1896 	}
1897 
1898 	stable_node_dup = alloc_stable_node();
1899 	if (!stable_node_dup)
1900 		return NULL;
1901 
1902 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1903 	stable_node_dup->kpfn = kpfn;
1904 	set_page_stable_node(kpage, stable_node_dup);
1905 	stable_node_dup->rmap_hlist_len = 0;
1906 	DO_NUMA(stable_node_dup->nid = nid);
1907 	if (!need_chain) {
1908 		rb_link_node(&stable_node_dup->node, parent, new);
1909 		rb_insert_color(&stable_node_dup->node, root);
1910 	} else {
1911 		if (!is_stable_node_chain(stable_node)) {
1912 			struct ksm_stable_node *orig = stable_node;
1913 			/* chain is missing so create it */
1914 			stable_node = alloc_stable_node_chain(orig, root);
1915 			if (!stable_node) {
1916 				free_stable_node(stable_node_dup);
1917 				return NULL;
1918 			}
1919 		}
1920 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1921 	}
1922 
1923 	return stable_node_dup;
1924 }
1925 
1926 /*
1927  * unstable_tree_search_insert - search for identical page,
1928  * else insert rmap_item into the unstable tree.
1929  *
1930  * This function searches for a page in the unstable tree identical to the
1931  * page currently being scanned; and if no identical page is found in the
1932  * tree, we insert rmap_item as a new object into the unstable tree.
1933  *
1934  * This function returns pointer to rmap_item found to be identical
1935  * to the currently scanned page, NULL otherwise.
1936  *
1937  * This function does both searching and inserting, because they share
1938  * the same walking algorithm in an rbtree.
1939  */
1940 static
1941 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1942 					      struct page *page,
1943 					      struct page **tree_pagep)
1944 {
1945 	struct rb_node **new;
1946 	struct rb_root *root;
1947 	struct rb_node *parent = NULL;
1948 	int nid;
1949 
1950 	nid = get_kpfn_nid(page_to_pfn(page));
1951 	root = root_unstable_tree + nid;
1952 	new = &root->rb_node;
1953 
1954 	while (*new) {
1955 		struct ksm_rmap_item *tree_rmap_item;
1956 		struct page *tree_page;
1957 		int ret;
1958 
1959 		cond_resched();
1960 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1961 		tree_page = get_mergeable_page(tree_rmap_item);
1962 		if (!tree_page)
1963 			return NULL;
1964 
1965 		/*
1966 		 * Don't substitute a ksm page for a forked page.
1967 		 */
1968 		if (page == tree_page) {
1969 			put_page(tree_page);
1970 			return NULL;
1971 		}
1972 
1973 		ret = memcmp_pages(page, tree_page);
1974 
1975 		parent = *new;
1976 		if (ret < 0) {
1977 			put_page(tree_page);
1978 			new = &parent->rb_left;
1979 		} else if (ret > 0) {
1980 			put_page(tree_page);
1981 			new = &parent->rb_right;
1982 		} else if (!ksm_merge_across_nodes &&
1983 			   page_to_nid(tree_page) != nid) {
1984 			/*
1985 			 * If tree_page has been migrated to another NUMA node,
1986 			 * it will be flushed out and put in the right unstable
1987 			 * tree next time: only merge with it when across_nodes.
1988 			 */
1989 			put_page(tree_page);
1990 			return NULL;
1991 		} else {
1992 			*tree_pagep = tree_page;
1993 			return tree_rmap_item;
1994 		}
1995 	}
1996 
1997 	rmap_item->address |= UNSTABLE_FLAG;
1998 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1999 	DO_NUMA(rmap_item->nid = nid);
2000 	rb_link_node(&rmap_item->node, parent, new);
2001 	rb_insert_color(&rmap_item->node, root);
2002 
2003 	ksm_pages_unshared++;
2004 	return NULL;
2005 }
2006 
2007 /*
2008  * stable_tree_append - add another rmap_item to the linked list of
2009  * rmap_items hanging off a given node of the stable tree, all sharing
2010  * the same ksm page.
2011  */
2012 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2013 			       struct ksm_stable_node *stable_node,
2014 			       bool max_page_sharing_bypass)
2015 {
2016 	/*
2017 	 * rmap won't find this mapping if we don't insert the
2018 	 * rmap_item in the right stable_node
2019 	 * duplicate. page_migration could break later if rmap breaks,
2020 	 * so we can as well crash here. We really need to check for
2021 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2022 	 * for other negative values as an underflow if detected here
2023 	 * for the first time (and not when decreasing rmap_hlist_len)
2024 	 * would be sign of memory corruption in the stable_node.
2025 	 */
2026 	BUG_ON(stable_node->rmap_hlist_len < 0);
2027 
2028 	stable_node->rmap_hlist_len++;
2029 	if (!max_page_sharing_bypass)
2030 		/* possibly non fatal but unexpected overflow, only warn */
2031 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2032 			     ksm_max_page_sharing);
2033 
2034 	rmap_item->head = stable_node;
2035 	rmap_item->address |= STABLE_FLAG;
2036 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2037 
2038 	if (rmap_item->hlist.next)
2039 		ksm_pages_sharing++;
2040 	else
2041 		ksm_pages_shared++;
2042 
2043 	rmap_item->mm->ksm_merging_pages++;
2044 }
2045 
2046 /*
2047  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2048  * if not, compare checksum to previous and if it's the same, see if page can
2049  * be inserted into the unstable tree, or merged with a page already there and
2050  * both transferred to the stable tree.
2051  *
2052  * @page: the page that we are searching identical page to.
2053  * @rmap_item: the reverse mapping into the virtual address of this page
2054  */
2055 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2056 {
2057 	struct mm_struct *mm = rmap_item->mm;
2058 	struct ksm_rmap_item *tree_rmap_item;
2059 	struct page *tree_page = NULL;
2060 	struct ksm_stable_node *stable_node;
2061 	struct page *kpage;
2062 	unsigned int checksum;
2063 	int err;
2064 	bool max_page_sharing_bypass = false;
2065 
2066 	stable_node = page_stable_node(page);
2067 	if (stable_node) {
2068 		if (stable_node->head != &migrate_nodes &&
2069 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2070 		    NUMA(stable_node->nid)) {
2071 			stable_node_dup_del(stable_node);
2072 			stable_node->head = &migrate_nodes;
2073 			list_add(&stable_node->list, stable_node->head);
2074 		}
2075 		if (stable_node->head != &migrate_nodes &&
2076 		    rmap_item->head == stable_node)
2077 			return;
2078 		/*
2079 		 * If it's a KSM fork, allow it to go over the sharing limit
2080 		 * without warnings.
2081 		 */
2082 		if (!is_page_sharing_candidate(stable_node))
2083 			max_page_sharing_bypass = true;
2084 	}
2085 
2086 	/* We first start with searching the page inside the stable tree */
2087 	kpage = stable_tree_search(page);
2088 	if (kpage == page && rmap_item->head == stable_node) {
2089 		put_page(kpage);
2090 		return;
2091 	}
2092 
2093 	remove_rmap_item_from_tree(rmap_item);
2094 
2095 	if (kpage) {
2096 		if (PTR_ERR(kpage) == -EBUSY)
2097 			return;
2098 
2099 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2100 		if (!err) {
2101 			/*
2102 			 * The page was successfully merged:
2103 			 * add its rmap_item to the stable tree.
2104 			 */
2105 			lock_page(kpage);
2106 			stable_tree_append(rmap_item, page_stable_node(kpage),
2107 					   max_page_sharing_bypass);
2108 			unlock_page(kpage);
2109 		}
2110 		put_page(kpage);
2111 		return;
2112 	}
2113 
2114 	/*
2115 	 * If the hash value of the page has changed from the last time
2116 	 * we calculated it, this page is changing frequently: therefore we
2117 	 * don't want to insert it in the unstable tree, and we don't want
2118 	 * to waste our time searching for something identical to it there.
2119 	 */
2120 	checksum = calc_checksum(page);
2121 	if (rmap_item->oldchecksum != checksum) {
2122 		rmap_item->oldchecksum = checksum;
2123 		return;
2124 	}
2125 
2126 	/*
2127 	 * Same checksum as an empty page. We attempt to merge it with the
2128 	 * appropriate zero page if the user enabled this via sysfs.
2129 	 */
2130 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2131 		struct vm_area_struct *vma;
2132 
2133 		mmap_read_lock(mm);
2134 		vma = find_mergeable_vma(mm, rmap_item->address);
2135 		if (vma) {
2136 			err = try_to_merge_one_page(vma, page,
2137 					ZERO_PAGE(rmap_item->address));
2138 		} else {
2139 			/*
2140 			 * If the vma is out of date, we do not need to
2141 			 * continue.
2142 			 */
2143 			err = 0;
2144 		}
2145 		mmap_read_unlock(mm);
2146 		/*
2147 		 * In case of failure, the page was not really empty, so we
2148 		 * need to continue. Otherwise we're done.
2149 		 */
2150 		if (!err)
2151 			return;
2152 	}
2153 	tree_rmap_item =
2154 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2155 	if (tree_rmap_item) {
2156 		bool split;
2157 
2158 		kpage = try_to_merge_two_pages(rmap_item, page,
2159 						tree_rmap_item, tree_page);
2160 		/*
2161 		 * If both pages we tried to merge belong to the same compound
2162 		 * page, then we actually ended up increasing the reference
2163 		 * count of the same compound page twice, and split_huge_page
2164 		 * failed.
2165 		 * Here we set a flag if that happened, and we use it later to
2166 		 * try split_huge_page again. Since we call put_page right
2167 		 * afterwards, the reference count will be correct and
2168 		 * split_huge_page should succeed.
2169 		 */
2170 		split = PageTransCompound(page)
2171 			&& compound_head(page) == compound_head(tree_page);
2172 		put_page(tree_page);
2173 		if (kpage) {
2174 			/*
2175 			 * The pages were successfully merged: insert new
2176 			 * node in the stable tree and add both rmap_items.
2177 			 */
2178 			lock_page(kpage);
2179 			stable_node = stable_tree_insert(kpage);
2180 			if (stable_node) {
2181 				stable_tree_append(tree_rmap_item, stable_node,
2182 						   false);
2183 				stable_tree_append(rmap_item, stable_node,
2184 						   false);
2185 			}
2186 			unlock_page(kpage);
2187 
2188 			/*
2189 			 * If we fail to insert the page into the stable tree,
2190 			 * we will have 2 virtual addresses that are pointing
2191 			 * to a ksm page left outside the stable tree,
2192 			 * in which case we need to break_cow on both.
2193 			 */
2194 			if (!stable_node) {
2195 				break_cow(tree_rmap_item);
2196 				break_cow(rmap_item);
2197 			}
2198 		} else if (split) {
2199 			/*
2200 			 * We are here if we tried to merge two pages and
2201 			 * failed because they both belonged to the same
2202 			 * compound page. We will split the page now, but no
2203 			 * merging will take place.
2204 			 * We do not want to add the cost of a full lock; if
2205 			 * the page is locked, it is better to skip it and
2206 			 * perhaps try again later.
2207 			 */
2208 			if (!trylock_page(page))
2209 				return;
2210 			split_huge_page(page);
2211 			unlock_page(page);
2212 		}
2213 	}
2214 }
2215 
2216 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2217 					    struct ksm_rmap_item **rmap_list,
2218 					    unsigned long addr)
2219 {
2220 	struct ksm_rmap_item *rmap_item;
2221 
2222 	while (*rmap_list) {
2223 		rmap_item = *rmap_list;
2224 		if ((rmap_item->address & PAGE_MASK) == addr)
2225 			return rmap_item;
2226 		if (rmap_item->address > addr)
2227 			break;
2228 		*rmap_list = rmap_item->rmap_list;
2229 		remove_rmap_item_from_tree(rmap_item);
2230 		free_rmap_item(rmap_item);
2231 	}
2232 
2233 	rmap_item = alloc_rmap_item();
2234 	if (rmap_item) {
2235 		/* It has already been zeroed */
2236 		rmap_item->mm = mm_slot->slot.mm;
2237 		rmap_item->mm->ksm_rmap_items++;
2238 		rmap_item->address = addr;
2239 		rmap_item->rmap_list = *rmap_list;
2240 		*rmap_list = rmap_item;
2241 	}
2242 	return rmap_item;
2243 }
2244 
2245 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2246 {
2247 	struct mm_struct *mm;
2248 	struct ksm_mm_slot *mm_slot;
2249 	struct mm_slot *slot;
2250 	struct vm_area_struct *vma;
2251 	struct ksm_rmap_item *rmap_item;
2252 	struct vma_iterator vmi;
2253 	int nid;
2254 
2255 	if (list_empty(&ksm_mm_head.slot.mm_node))
2256 		return NULL;
2257 
2258 	mm_slot = ksm_scan.mm_slot;
2259 	if (mm_slot == &ksm_mm_head) {
2260 		/*
2261 		 * A number of pages can hang around indefinitely on per-cpu
2262 		 * pagevecs, raised page count preventing write_protect_page
2263 		 * from merging them.  Though it doesn't really matter much,
2264 		 * it is puzzling to see some stuck in pages_volatile until
2265 		 * other activity jostles them out, and they also prevented
2266 		 * LTP's KSM test from succeeding deterministically; so drain
2267 		 * them here (here rather than on entry to ksm_do_scan(),
2268 		 * so we don't IPI too often when pages_to_scan is set low).
2269 		 */
2270 		lru_add_drain_all();
2271 
2272 		/*
2273 		 * Whereas stale stable_nodes on the stable_tree itself
2274 		 * get pruned in the regular course of stable_tree_search(),
2275 		 * those moved out to the migrate_nodes list can accumulate:
2276 		 * so prune them once before each full scan.
2277 		 */
2278 		if (!ksm_merge_across_nodes) {
2279 			struct ksm_stable_node *stable_node, *next;
2280 			struct page *page;
2281 
2282 			list_for_each_entry_safe(stable_node, next,
2283 						 &migrate_nodes, list) {
2284 				page = get_ksm_page(stable_node,
2285 						    GET_KSM_PAGE_NOLOCK);
2286 				if (page)
2287 					put_page(page);
2288 				cond_resched();
2289 			}
2290 		}
2291 
2292 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2293 			root_unstable_tree[nid] = RB_ROOT;
2294 
2295 		spin_lock(&ksm_mmlist_lock);
2296 		slot = list_entry(mm_slot->slot.mm_node.next,
2297 				  struct mm_slot, mm_node);
2298 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2299 		ksm_scan.mm_slot = mm_slot;
2300 		spin_unlock(&ksm_mmlist_lock);
2301 		/*
2302 		 * Although we tested list_empty() above, a racing __ksm_exit
2303 		 * of the last mm on the list may have removed it since then.
2304 		 */
2305 		if (mm_slot == &ksm_mm_head)
2306 			return NULL;
2307 next_mm:
2308 		ksm_scan.address = 0;
2309 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2310 	}
2311 
2312 	slot = &mm_slot->slot;
2313 	mm = slot->mm;
2314 	vma_iter_init(&vmi, mm, ksm_scan.address);
2315 
2316 	mmap_read_lock(mm);
2317 	if (ksm_test_exit(mm))
2318 		goto no_vmas;
2319 
2320 	for_each_vma(vmi, vma) {
2321 		if (!(vma->vm_flags & VM_MERGEABLE))
2322 			continue;
2323 		if (ksm_scan.address < vma->vm_start)
2324 			ksm_scan.address = vma->vm_start;
2325 		if (!vma->anon_vma)
2326 			ksm_scan.address = vma->vm_end;
2327 
2328 		while (ksm_scan.address < vma->vm_end) {
2329 			if (ksm_test_exit(mm))
2330 				break;
2331 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2332 			if (IS_ERR_OR_NULL(*page)) {
2333 				ksm_scan.address += PAGE_SIZE;
2334 				cond_resched();
2335 				continue;
2336 			}
2337 			if (is_zone_device_page(*page))
2338 				goto next_page;
2339 			if (PageAnon(*page)) {
2340 				flush_anon_page(vma, *page, ksm_scan.address);
2341 				flush_dcache_page(*page);
2342 				rmap_item = get_next_rmap_item(mm_slot,
2343 					ksm_scan.rmap_list, ksm_scan.address);
2344 				if (rmap_item) {
2345 					ksm_scan.rmap_list =
2346 							&rmap_item->rmap_list;
2347 					ksm_scan.address += PAGE_SIZE;
2348 				} else
2349 					put_page(*page);
2350 				mmap_read_unlock(mm);
2351 				return rmap_item;
2352 			}
2353 next_page:
2354 			put_page(*page);
2355 			ksm_scan.address += PAGE_SIZE;
2356 			cond_resched();
2357 		}
2358 	}
2359 
2360 	if (ksm_test_exit(mm)) {
2361 no_vmas:
2362 		ksm_scan.address = 0;
2363 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2364 	}
2365 	/*
2366 	 * Nuke all the rmap_items that are above this current rmap:
2367 	 * because there were no VM_MERGEABLE vmas with such addresses.
2368 	 */
2369 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2370 
2371 	spin_lock(&ksm_mmlist_lock);
2372 	slot = list_entry(mm_slot->slot.mm_node.next,
2373 			  struct mm_slot, mm_node);
2374 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2375 	if (ksm_scan.address == 0) {
2376 		/*
2377 		 * We've completed a full scan of all vmas, holding mmap_lock
2378 		 * throughout, and found no VM_MERGEABLE: so do the same as
2379 		 * __ksm_exit does to remove this mm from all our lists now.
2380 		 * This applies either when cleaning up after __ksm_exit
2381 		 * (but beware: we can reach here even before __ksm_exit),
2382 		 * or when all VM_MERGEABLE areas have been unmapped (and
2383 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2384 		 */
2385 		hash_del(&mm_slot->slot.hash);
2386 		list_del(&mm_slot->slot.mm_node);
2387 		spin_unlock(&ksm_mmlist_lock);
2388 
2389 		mm_slot_free(mm_slot_cache, mm_slot);
2390 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2391 		mmap_read_unlock(mm);
2392 		mmdrop(mm);
2393 	} else {
2394 		mmap_read_unlock(mm);
2395 		/*
2396 		 * mmap_read_unlock(mm) first because after
2397 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2398 		 * already have been freed under us by __ksm_exit()
2399 		 * because the "mm_slot" is still hashed and
2400 		 * ksm_scan.mm_slot doesn't point to it anymore.
2401 		 */
2402 		spin_unlock(&ksm_mmlist_lock);
2403 	}
2404 
2405 	/* Repeat until we've completed scanning the whole list */
2406 	mm_slot = ksm_scan.mm_slot;
2407 	if (mm_slot != &ksm_mm_head)
2408 		goto next_mm;
2409 
2410 	ksm_scan.seqnr++;
2411 	return NULL;
2412 }
2413 
2414 /**
2415  * ksm_do_scan  - the ksm scanner main worker function.
2416  * @scan_npages:  number of pages we want to scan before we return.
2417  */
2418 static void ksm_do_scan(unsigned int scan_npages)
2419 {
2420 	struct ksm_rmap_item *rmap_item;
2421 	struct page *page;
2422 
2423 	while (scan_npages-- && likely(!freezing(current))) {
2424 		cond_resched();
2425 		rmap_item = scan_get_next_rmap_item(&page);
2426 		if (!rmap_item)
2427 			return;
2428 		cmp_and_merge_page(page, rmap_item);
2429 		put_page(page);
2430 	}
2431 }
2432 
2433 static int ksmd_should_run(void)
2434 {
2435 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2436 }
2437 
2438 static int ksm_scan_thread(void *nothing)
2439 {
2440 	unsigned int sleep_ms;
2441 
2442 	set_freezable();
2443 	set_user_nice(current, 5);
2444 
2445 	while (!kthread_should_stop()) {
2446 		mutex_lock(&ksm_thread_mutex);
2447 		wait_while_offlining();
2448 		if (ksmd_should_run())
2449 			ksm_do_scan(ksm_thread_pages_to_scan);
2450 		mutex_unlock(&ksm_thread_mutex);
2451 
2452 		try_to_freeze();
2453 
2454 		if (ksmd_should_run()) {
2455 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2456 			wait_event_interruptible_timeout(ksm_iter_wait,
2457 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2458 				msecs_to_jiffies(sleep_ms));
2459 		} else {
2460 			wait_event_freezable(ksm_thread_wait,
2461 				ksmd_should_run() || kthread_should_stop());
2462 		}
2463 	}
2464 	return 0;
2465 }
2466 
2467 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2468 		unsigned long end, int advice, unsigned long *vm_flags)
2469 {
2470 	struct mm_struct *mm = vma->vm_mm;
2471 	int err;
2472 
2473 	switch (advice) {
2474 	case MADV_MERGEABLE:
2475 		/*
2476 		 * Be somewhat over-protective for now!
2477 		 */
2478 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2479 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2480 				 VM_HUGETLB | VM_MIXEDMAP))
2481 			return 0;		/* just ignore the advice */
2482 
2483 		if (vma_is_dax(vma))
2484 			return 0;
2485 
2486 #ifdef VM_SAO
2487 		if (*vm_flags & VM_SAO)
2488 			return 0;
2489 #endif
2490 #ifdef VM_SPARC_ADI
2491 		if (*vm_flags & VM_SPARC_ADI)
2492 			return 0;
2493 #endif
2494 
2495 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2496 			err = __ksm_enter(mm);
2497 			if (err)
2498 				return err;
2499 		}
2500 
2501 		*vm_flags |= VM_MERGEABLE;
2502 		break;
2503 
2504 	case MADV_UNMERGEABLE:
2505 		if (!(*vm_flags & VM_MERGEABLE))
2506 			return 0;		/* just ignore the advice */
2507 
2508 		if (vma->anon_vma) {
2509 			err = unmerge_ksm_pages(vma, start, end);
2510 			if (err)
2511 				return err;
2512 		}
2513 
2514 		*vm_flags &= ~VM_MERGEABLE;
2515 		break;
2516 	}
2517 
2518 	return 0;
2519 }
2520 EXPORT_SYMBOL_GPL(ksm_madvise);
2521 
2522 int __ksm_enter(struct mm_struct *mm)
2523 {
2524 	struct ksm_mm_slot *mm_slot;
2525 	struct mm_slot *slot;
2526 	int needs_wakeup;
2527 
2528 	mm_slot = mm_slot_alloc(mm_slot_cache);
2529 	if (!mm_slot)
2530 		return -ENOMEM;
2531 
2532 	slot = &mm_slot->slot;
2533 
2534 	/* Check ksm_run too?  Would need tighter locking */
2535 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2536 
2537 	spin_lock(&ksm_mmlist_lock);
2538 	mm_slot_insert(mm_slots_hash, mm, slot);
2539 	/*
2540 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2541 	 * insert just behind the scanning cursor, to let the area settle
2542 	 * down a little; when fork is followed by immediate exec, we don't
2543 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2544 	 *
2545 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2546 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2547 	 * missed: then we might as well insert at the end of the list.
2548 	 */
2549 	if (ksm_run & KSM_RUN_UNMERGE)
2550 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2551 	else
2552 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2553 	spin_unlock(&ksm_mmlist_lock);
2554 
2555 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2556 	mmgrab(mm);
2557 
2558 	if (needs_wakeup)
2559 		wake_up_interruptible(&ksm_thread_wait);
2560 
2561 	return 0;
2562 }
2563 
2564 void __ksm_exit(struct mm_struct *mm)
2565 {
2566 	struct ksm_mm_slot *mm_slot;
2567 	struct mm_slot *slot;
2568 	int easy_to_free = 0;
2569 
2570 	/*
2571 	 * This process is exiting: if it's straightforward (as is the
2572 	 * case when ksmd was never running), free mm_slot immediately.
2573 	 * But if it's at the cursor or has rmap_items linked to it, use
2574 	 * mmap_lock to synchronize with any break_cows before pagetables
2575 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2576 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2577 	 */
2578 
2579 	spin_lock(&ksm_mmlist_lock);
2580 	slot = mm_slot_lookup(mm_slots_hash, mm);
2581 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2582 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2583 		if (!mm_slot->rmap_list) {
2584 			hash_del(&slot->hash);
2585 			list_del(&slot->mm_node);
2586 			easy_to_free = 1;
2587 		} else {
2588 			list_move(&slot->mm_node,
2589 				  &ksm_scan.mm_slot->slot.mm_node);
2590 		}
2591 	}
2592 	spin_unlock(&ksm_mmlist_lock);
2593 
2594 	if (easy_to_free) {
2595 		mm_slot_free(mm_slot_cache, mm_slot);
2596 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2597 		mmdrop(mm);
2598 	} else if (mm_slot) {
2599 		mmap_write_lock(mm);
2600 		mmap_write_unlock(mm);
2601 	}
2602 }
2603 
2604 struct page *ksm_might_need_to_copy(struct page *page,
2605 			struct vm_area_struct *vma, unsigned long address)
2606 {
2607 	struct folio *folio = page_folio(page);
2608 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2609 	struct page *new_page;
2610 
2611 	if (PageKsm(page)) {
2612 		if (page_stable_node(page) &&
2613 		    !(ksm_run & KSM_RUN_UNMERGE))
2614 			return page;	/* no need to copy it */
2615 	} else if (!anon_vma) {
2616 		return page;		/* no need to copy it */
2617 	} else if (page->index == linear_page_index(vma, address) &&
2618 			anon_vma->root == vma->anon_vma->root) {
2619 		return page;		/* still no need to copy it */
2620 	}
2621 	if (!PageUptodate(page))
2622 		return page;		/* let do_swap_page report the error */
2623 
2624 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2625 	if (new_page &&
2626 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2627 		put_page(new_page);
2628 		new_page = NULL;
2629 	}
2630 	if (new_page) {
2631 		copy_user_highpage(new_page, page, address, vma);
2632 
2633 		SetPageDirty(new_page);
2634 		__SetPageUptodate(new_page);
2635 		__SetPageLocked(new_page);
2636 #ifdef CONFIG_SWAP
2637 		count_vm_event(KSM_SWPIN_COPY);
2638 #endif
2639 	}
2640 
2641 	return new_page;
2642 }
2643 
2644 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2645 {
2646 	struct ksm_stable_node *stable_node;
2647 	struct ksm_rmap_item *rmap_item;
2648 	int search_new_forks = 0;
2649 
2650 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2651 
2652 	/*
2653 	 * Rely on the page lock to protect against concurrent modifications
2654 	 * to that page's node of the stable tree.
2655 	 */
2656 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2657 
2658 	stable_node = folio_stable_node(folio);
2659 	if (!stable_node)
2660 		return;
2661 again:
2662 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2663 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2664 		struct anon_vma_chain *vmac;
2665 		struct vm_area_struct *vma;
2666 
2667 		cond_resched();
2668 		if (!anon_vma_trylock_read(anon_vma)) {
2669 			if (rwc->try_lock) {
2670 				rwc->contended = true;
2671 				return;
2672 			}
2673 			anon_vma_lock_read(anon_vma);
2674 		}
2675 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2676 					       0, ULONG_MAX) {
2677 			unsigned long addr;
2678 
2679 			cond_resched();
2680 			vma = vmac->vma;
2681 
2682 			/* Ignore the stable/unstable/sqnr flags */
2683 			addr = rmap_item->address & PAGE_MASK;
2684 
2685 			if (addr < vma->vm_start || addr >= vma->vm_end)
2686 				continue;
2687 			/*
2688 			 * Initially we examine only the vma which covers this
2689 			 * rmap_item; but later, if there is still work to do,
2690 			 * we examine covering vmas in other mms: in case they
2691 			 * were forked from the original since ksmd passed.
2692 			 */
2693 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2694 				continue;
2695 
2696 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2697 				continue;
2698 
2699 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2700 				anon_vma_unlock_read(anon_vma);
2701 				return;
2702 			}
2703 			if (rwc->done && rwc->done(folio)) {
2704 				anon_vma_unlock_read(anon_vma);
2705 				return;
2706 			}
2707 		}
2708 		anon_vma_unlock_read(anon_vma);
2709 	}
2710 	if (!search_new_forks++)
2711 		goto again;
2712 }
2713 
2714 #ifdef CONFIG_MIGRATION
2715 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2716 {
2717 	struct ksm_stable_node *stable_node;
2718 
2719 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2720 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2721 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2722 
2723 	stable_node = folio_stable_node(folio);
2724 	if (stable_node) {
2725 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2726 		stable_node->kpfn = folio_pfn(newfolio);
2727 		/*
2728 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2729 		 * to make sure that the new stable_node->kpfn is visible
2730 		 * to get_ksm_page() before it can see that folio->mapping
2731 		 * has gone stale (or that folio_test_swapcache has been cleared).
2732 		 */
2733 		smp_wmb();
2734 		set_page_stable_node(&folio->page, NULL);
2735 	}
2736 }
2737 #endif /* CONFIG_MIGRATION */
2738 
2739 #ifdef CONFIG_MEMORY_HOTREMOVE
2740 static void wait_while_offlining(void)
2741 {
2742 	while (ksm_run & KSM_RUN_OFFLINE) {
2743 		mutex_unlock(&ksm_thread_mutex);
2744 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2745 			    TASK_UNINTERRUPTIBLE);
2746 		mutex_lock(&ksm_thread_mutex);
2747 	}
2748 }
2749 
2750 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2751 					 unsigned long start_pfn,
2752 					 unsigned long end_pfn)
2753 {
2754 	if (stable_node->kpfn >= start_pfn &&
2755 	    stable_node->kpfn < end_pfn) {
2756 		/*
2757 		 * Don't get_ksm_page, page has already gone:
2758 		 * which is why we keep kpfn instead of page*
2759 		 */
2760 		remove_node_from_stable_tree(stable_node);
2761 		return true;
2762 	}
2763 	return false;
2764 }
2765 
2766 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2767 					   unsigned long start_pfn,
2768 					   unsigned long end_pfn,
2769 					   struct rb_root *root)
2770 {
2771 	struct ksm_stable_node *dup;
2772 	struct hlist_node *hlist_safe;
2773 
2774 	if (!is_stable_node_chain(stable_node)) {
2775 		VM_BUG_ON(is_stable_node_dup(stable_node));
2776 		return stable_node_dup_remove_range(stable_node, start_pfn,
2777 						    end_pfn);
2778 	}
2779 
2780 	hlist_for_each_entry_safe(dup, hlist_safe,
2781 				  &stable_node->hlist, hlist_dup) {
2782 		VM_BUG_ON(!is_stable_node_dup(dup));
2783 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2784 	}
2785 	if (hlist_empty(&stable_node->hlist)) {
2786 		free_stable_node_chain(stable_node, root);
2787 		return true; /* notify caller that tree was rebalanced */
2788 	} else
2789 		return false;
2790 }
2791 
2792 static void ksm_check_stable_tree(unsigned long start_pfn,
2793 				  unsigned long end_pfn)
2794 {
2795 	struct ksm_stable_node *stable_node, *next;
2796 	struct rb_node *node;
2797 	int nid;
2798 
2799 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2800 		node = rb_first(root_stable_tree + nid);
2801 		while (node) {
2802 			stable_node = rb_entry(node, struct ksm_stable_node, node);
2803 			if (stable_node_chain_remove_range(stable_node,
2804 							   start_pfn, end_pfn,
2805 							   root_stable_tree +
2806 							   nid))
2807 				node = rb_first(root_stable_tree + nid);
2808 			else
2809 				node = rb_next(node);
2810 			cond_resched();
2811 		}
2812 	}
2813 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2814 		if (stable_node->kpfn >= start_pfn &&
2815 		    stable_node->kpfn < end_pfn)
2816 			remove_node_from_stable_tree(stable_node);
2817 		cond_resched();
2818 	}
2819 }
2820 
2821 static int ksm_memory_callback(struct notifier_block *self,
2822 			       unsigned long action, void *arg)
2823 {
2824 	struct memory_notify *mn = arg;
2825 
2826 	switch (action) {
2827 	case MEM_GOING_OFFLINE:
2828 		/*
2829 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2830 		 * and remove_all_stable_nodes() while memory is going offline:
2831 		 * it is unsafe for them to touch the stable tree at this time.
2832 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2833 		 * which do not need the ksm_thread_mutex are all safe.
2834 		 */
2835 		mutex_lock(&ksm_thread_mutex);
2836 		ksm_run |= KSM_RUN_OFFLINE;
2837 		mutex_unlock(&ksm_thread_mutex);
2838 		break;
2839 
2840 	case MEM_OFFLINE:
2841 		/*
2842 		 * Most of the work is done by page migration; but there might
2843 		 * be a few stable_nodes left over, still pointing to struct
2844 		 * pages which have been offlined: prune those from the tree,
2845 		 * otherwise get_ksm_page() might later try to access a
2846 		 * non-existent struct page.
2847 		 */
2848 		ksm_check_stable_tree(mn->start_pfn,
2849 				      mn->start_pfn + mn->nr_pages);
2850 		fallthrough;
2851 	case MEM_CANCEL_OFFLINE:
2852 		mutex_lock(&ksm_thread_mutex);
2853 		ksm_run &= ~KSM_RUN_OFFLINE;
2854 		mutex_unlock(&ksm_thread_mutex);
2855 
2856 		smp_mb();	/* wake_up_bit advises this */
2857 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2858 		break;
2859 	}
2860 	return NOTIFY_OK;
2861 }
2862 #else
2863 static void wait_while_offlining(void)
2864 {
2865 }
2866 #endif /* CONFIG_MEMORY_HOTREMOVE */
2867 
2868 #ifdef CONFIG_SYSFS
2869 /*
2870  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2871  */
2872 
2873 #define KSM_ATTR_RO(_name) \
2874 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2875 #define KSM_ATTR(_name) \
2876 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2877 
2878 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2879 				    struct kobj_attribute *attr, char *buf)
2880 {
2881 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2882 }
2883 
2884 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2885 				     struct kobj_attribute *attr,
2886 				     const char *buf, size_t count)
2887 {
2888 	unsigned int msecs;
2889 	int err;
2890 
2891 	err = kstrtouint(buf, 10, &msecs);
2892 	if (err)
2893 		return -EINVAL;
2894 
2895 	ksm_thread_sleep_millisecs = msecs;
2896 	wake_up_interruptible(&ksm_iter_wait);
2897 
2898 	return count;
2899 }
2900 KSM_ATTR(sleep_millisecs);
2901 
2902 static ssize_t pages_to_scan_show(struct kobject *kobj,
2903 				  struct kobj_attribute *attr, char *buf)
2904 {
2905 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2906 }
2907 
2908 static ssize_t pages_to_scan_store(struct kobject *kobj,
2909 				   struct kobj_attribute *attr,
2910 				   const char *buf, size_t count)
2911 {
2912 	unsigned int nr_pages;
2913 	int err;
2914 
2915 	err = kstrtouint(buf, 10, &nr_pages);
2916 	if (err)
2917 		return -EINVAL;
2918 
2919 	ksm_thread_pages_to_scan = nr_pages;
2920 
2921 	return count;
2922 }
2923 KSM_ATTR(pages_to_scan);
2924 
2925 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2926 			char *buf)
2927 {
2928 	return sysfs_emit(buf, "%lu\n", ksm_run);
2929 }
2930 
2931 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2932 			 const char *buf, size_t count)
2933 {
2934 	unsigned int flags;
2935 	int err;
2936 
2937 	err = kstrtouint(buf, 10, &flags);
2938 	if (err)
2939 		return -EINVAL;
2940 	if (flags > KSM_RUN_UNMERGE)
2941 		return -EINVAL;
2942 
2943 	/*
2944 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2945 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2946 	 * breaking COW to free the pages_shared (but leaves mm_slots
2947 	 * on the list for when ksmd may be set running again).
2948 	 */
2949 
2950 	mutex_lock(&ksm_thread_mutex);
2951 	wait_while_offlining();
2952 	if (ksm_run != flags) {
2953 		ksm_run = flags;
2954 		if (flags & KSM_RUN_UNMERGE) {
2955 			set_current_oom_origin();
2956 			err = unmerge_and_remove_all_rmap_items();
2957 			clear_current_oom_origin();
2958 			if (err) {
2959 				ksm_run = KSM_RUN_STOP;
2960 				count = err;
2961 			}
2962 		}
2963 	}
2964 	mutex_unlock(&ksm_thread_mutex);
2965 
2966 	if (flags & KSM_RUN_MERGE)
2967 		wake_up_interruptible(&ksm_thread_wait);
2968 
2969 	return count;
2970 }
2971 KSM_ATTR(run);
2972 
2973 #ifdef CONFIG_NUMA
2974 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2975 				       struct kobj_attribute *attr, char *buf)
2976 {
2977 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2978 }
2979 
2980 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2981 				   struct kobj_attribute *attr,
2982 				   const char *buf, size_t count)
2983 {
2984 	int err;
2985 	unsigned long knob;
2986 
2987 	err = kstrtoul(buf, 10, &knob);
2988 	if (err)
2989 		return err;
2990 	if (knob > 1)
2991 		return -EINVAL;
2992 
2993 	mutex_lock(&ksm_thread_mutex);
2994 	wait_while_offlining();
2995 	if (ksm_merge_across_nodes != knob) {
2996 		if (ksm_pages_shared || remove_all_stable_nodes())
2997 			err = -EBUSY;
2998 		else if (root_stable_tree == one_stable_tree) {
2999 			struct rb_root *buf;
3000 			/*
3001 			 * This is the first time that we switch away from the
3002 			 * default of merging across nodes: must now allocate
3003 			 * a buffer to hold as many roots as may be needed.
3004 			 * Allocate stable and unstable together:
3005 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3006 			 */
3007 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3008 				      GFP_KERNEL);
3009 			/* Let us assume that RB_ROOT is NULL is zero */
3010 			if (!buf)
3011 				err = -ENOMEM;
3012 			else {
3013 				root_stable_tree = buf;
3014 				root_unstable_tree = buf + nr_node_ids;
3015 				/* Stable tree is empty but not the unstable */
3016 				root_unstable_tree[0] = one_unstable_tree[0];
3017 			}
3018 		}
3019 		if (!err) {
3020 			ksm_merge_across_nodes = knob;
3021 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3022 		}
3023 	}
3024 	mutex_unlock(&ksm_thread_mutex);
3025 
3026 	return err ? err : count;
3027 }
3028 KSM_ATTR(merge_across_nodes);
3029 #endif
3030 
3031 static ssize_t use_zero_pages_show(struct kobject *kobj,
3032 				   struct kobj_attribute *attr, char *buf)
3033 {
3034 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3035 }
3036 static ssize_t use_zero_pages_store(struct kobject *kobj,
3037 				   struct kobj_attribute *attr,
3038 				   const char *buf, size_t count)
3039 {
3040 	int err;
3041 	bool value;
3042 
3043 	err = kstrtobool(buf, &value);
3044 	if (err)
3045 		return -EINVAL;
3046 
3047 	ksm_use_zero_pages = value;
3048 
3049 	return count;
3050 }
3051 KSM_ATTR(use_zero_pages);
3052 
3053 static ssize_t max_page_sharing_show(struct kobject *kobj,
3054 				     struct kobj_attribute *attr, char *buf)
3055 {
3056 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3057 }
3058 
3059 static ssize_t max_page_sharing_store(struct kobject *kobj,
3060 				      struct kobj_attribute *attr,
3061 				      const char *buf, size_t count)
3062 {
3063 	int err;
3064 	int knob;
3065 
3066 	err = kstrtoint(buf, 10, &knob);
3067 	if (err)
3068 		return err;
3069 	/*
3070 	 * When a KSM page is created it is shared by 2 mappings. This
3071 	 * being a signed comparison, it implicitly verifies it's not
3072 	 * negative.
3073 	 */
3074 	if (knob < 2)
3075 		return -EINVAL;
3076 
3077 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3078 		return count;
3079 
3080 	mutex_lock(&ksm_thread_mutex);
3081 	wait_while_offlining();
3082 	if (ksm_max_page_sharing != knob) {
3083 		if (ksm_pages_shared || remove_all_stable_nodes())
3084 			err = -EBUSY;
3085 		else
3086 			ksm_max_page_sharing = knob;
3087 	}
3088 	mutex_unlock(&ksm_thread_mutex);
3089 
3090 	return err ? err : count;
3091 }
3092 KSM_ATTR(max_page_sharing);
3093 
3094 static ssize_t pages_shared_show(struct kobject *kobj,
3095 				 struct kobj_attribute *attr, char *buf)
3096 {
3097 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3098 }
3099 KSM_ATTR_RO(pages_shared);
3100 
3101 static ssize_t pages_sharing_show(struct kobject *kobj,
3102 				  struct kobj_attribute *attr, char *buf)
3103 {
3104 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3105 }
3106 KSM_ATTR_RO(pages_sharing);
3107 
3108 static ssize_t pages_unshared_show(struct kobject *kobj,
3109 				   struct kobj_attribute *attr, char *buf)
3110 {
3111 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3112 }
3113 KSM_ATTR_RO(pages_unshared);
3114 
3115 static ssize_t pages_volatile_show(struct kobject *kobj,
3116 				   struct kobj_attribute *attr, char *buf)
3117 {
3118 	long ksm_pages_volatile;
3119 
3120 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3121 				- ksm_pages_sharing - ksm_pages_unshared;
3122 	/*
3123 	 * It was not worth any locking to calculate that statistic,
3124 	 * but it might therefore sometimes be negative: conceal that.
3125 	 */
3126 	if (ksm_pages_volatile < 0)
3127 		ksm_pages_volatile = 0;
3128 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3129 }
3130 KSM_ATTR_RO(pages_volatile);
3131 
3132 static ssize_t stable_node_dups_show(struct kobject *kobj,
3133 				     struct kobj_attribute *attr, char *buf)
3134 {
3135 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3136 }
3137 KSM_ATTR_RO(stable_node_dups);
3138 
3139 static ssize_t stable_node_chains_show(struct kobject *kobj,
3140 				       struct kobj_attribute *attr, char *buf)
3141 {
3142 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3143 }
3144 KSM_ATTR_RO(stable_node_chains);
3145 
3146 static ssize_t
3147 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3148 					struct kobj_attribute *attr,
3149 					char *buf)
3150 {
3151 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3152 }
3153 
3154 static ssize_t
3155 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3156 					 struct kobj_attribute *attr,
3157 					 const char *buf, size_t count)
3158 {
3159 	unsigned int msecs;
3160 	int err;
3161 
3162 	err = kstrtouint(buf, 10, &msecs);
3163 	if (err)
3164 		return -EINVAL;
3165 
3166 	ksm_stable_node_chains_prune_millisecs = msecs;
3167 
3168 	return count;
3169 }
3170 KSM_ATTR(stable_node_chains_prune_millisecs);
3171 
3172 static ssize_t full_scans_show(struct kobject *kobj,
3173 			       struct kobj_attribute *attr, char *buf)
3174 {
3175 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3176 }
3177 KSM_ATTR_RO(full_scans);
3178 
3179 static struct attribute *ksm_attrs[] = {
3180 	&sleep_millisecs_attr.attr,
3181 	&pages_to_scan_attr.attr,
3182 	&run_attr.attr,
3183 	&pages_shared_attr.attr,
3184 	&pages_sharing_attr.attr,
3185 	&pages_unshared_attr.attr,
3186 	&pages_volatile_attr.attr,
3187 	&full_scans_attr.attr,
3188 #ifdef CONFIG_NUMA
3189 	&merge_across_nodes_attr.attr,
3190 #endif
3191 	&max_page_sharing_attr.attr,
3192 	&stable_node_chains_attr.attr,
3193 	&stable_node_dups_attr.attr,
3194 	&stable_node_chains_prune_millisecs_attr.attr,
3195 	&use_zero_pages_attr.attr,
3196 	NULL,
3197 };
3198 
3199 static const struct attribute_group ksm_attr_group = {
3200 	.attrs = ksm_attrs,
3201 	.name = "ksm",
3202 };
3203 #endif /* CONFIG_SYSFS */
3204 
3205 static int __init ksm_init(void)
3206 {
3207 	struct task_struct *ksm_thread;
3208 	int err;
3209 
3210 	/* The correct value depends on page size and endianness */
3211 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3212 	/* Default to false for backwards compatibility */
3213 	ksm_use_zero_pages = false;
3214 
3215 	err = ksm_slab_init();
3216 	if (err)
3217 		goto out;
3218 
3219 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3220 	if (IS_ERR(ksm_thread)) {
3221 		pr_err("ksm: creating kthread failed\n");
3222 		err = PTR_ERR(ksm_thread);
3223 		goto out_free;
3224 	}
3225 
3226 #ifdef CONFIG_SYSFS
3227 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3228 	if (err) {
3229 		pr_err("ksm: register sysfs failed\n");
3230 		kthread_stop(ksm_thread);
3231 		goto out_free;
3232 	}
3233 #else
3234 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3235 
3236 #endif /* CONFIG_SYSFS */
3237 
3238 #ifdef CONFIG_MEMORY_HOTREMOVE
3239 	/* There is no significance to this priority 100 */
3240 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3241 #endif
3242 	return 0;
3243 
3244 out_free:
3245 	ksm_slab_free();
3246 out:
3247 	return err;
3248 }
3249 subsys_initcall(ksm_init);
3250