xref: /openbmc/linux/mm/ksm.c (revision 5c88af59)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41 
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44 
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)		(x)
47 #define DO_NUMA(x)	do { (x); } while (0)
48 #else
49 #define NUMA(x)		(0)
50 #define DO_NUMA(x)	do { } while (0)
51 #endif
52 
53 /**
54  * DOC: Overview
55  *
56  * A few notes about the KSM scanning process,
57  * to make it easier to understand the data structures below:
58  *
59  * In order to reduce excessive scanning, KSM sorts the memory pages by their
60  * contents into a data structure that holds pointers to the pages' locations.
61  *
62  * Since the contents of the pages may change at any moment, KSM cannot just
63  * insert the pages into a normal sorted tree and expect it to find anything.
64  * Therefore KSM uses two data structures - the stable and the unstable tree.
65  *
66  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67  * by their contents.  Because each such page is write-protected, searching on
68  * this tree is fully assured to be working (except when pages are unmapped),
69  * and therefore this tree is called the stable tree.
70  *
71  * The stable tree node includes information required for reverse
72  * mapping from a KSM page to virtual addresses that map this page.
73  *
74  * In order to avoid large latencies of the rmap walks on KSM pages,
75  * KSM maintains two types of nodes in the stable tree:
76  *
77  * * the regular nodes that keep the reverse mapping structures in a
78  *   linked list
79  * * the "chains" that link nodes ("dups") that represent the same
80  *   write protected memory content, but each "dup" corresponds to a
81  *   different KSM page copy of that content
82  *
83  * Internally, the regular nodes, "dups" and "chains" are represented
84  * using the same struct stable_node structure.
85  *
86  * In addition to the stable tree, KSM uses a second data structure called the
87  * unstable tree: this tree holds pointers to pages which have been found to
88  * be "unchanged for a period of time".  The unstable tree sorts these pages
89  * by their contents, but since they are not write-protected, KSM cannot rely
90  * upon the unstable tree to work correctly - the unstable tree is liable to
91  * be corrupted as its contents are modified, and so it is called unstable.
92  *
93  * KSM solves this problem by several techniques:
94  *
95  * 1) The unstable tree is flushed every time KSM completes scanning all
96  *    memory areas, and then the tree is rebuilt again from the beginning.
97  * 2) KSM will only insert into the unstable tree, pages whose hash value
98  *    has not changed since the previous scan of all memory areas.
99  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100  *    colors of the nodes and not on their contents, assuring that even when
101  *    the tree gets "corrupted" it won't get out of balance, so scanning time
102  *    remains the same (also, searching and inserting nodes in an rbtree uses
103  *    the same algorithm, so we have no overhead when we flush and rebuild).
104  * 4) KSM never flushes the stable tree, which means that even if it were to
105  *    take 10 attempts to find a page in the unstable tree, once it is found,
106  *    it is secured in the stable tree.  (When we scan a new page, we first
107  *    compare it against the stable tree, and then against the unstable tree.)
108  *
109  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110  * stable trees and multiple unstable trees: one of each for each NUMA node.
111  */
112 
113 /**
114  * struct mm_slot - ksm information per mm that is being scanned
115  * @link: link to the mm_slots hash list
116  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118  * @mm: the mm that this information is valid for
119  */
120 struct mm_slot {
121 	struct hlist_node link;
122 	struct list_head mm_list;
123 	struct rmap_item *rmap_list;
124 	struct mm_struct *mm;
125 };
126 
127 /**
128  * struct ksm_scan - cursor for scanning
129  * @mm_slot: the current mm_slot we are scanning
130  * @address: the next address inside that to be scanned
131  * @rmap_list: link to the next rmap to be scanned in the rmap_list
132  * @seqnr: count of completed full scans (needed when removing unstable node)
133  *
134  * There is only the one ksm_scan instance of this cursor structure.
135  */
136 struct ksm_scan {
137 	struct mm_slot *mm_slot;
138 	unsigned long address;
139 	struct rmap_item **rmap_list;
140 	unsigned long seqnr;
141 };
142 
143 /**
144  * struct stable_node - node of the stable rbtree
145  * @node: rb node of this ksm page in the stable tree
146  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148  * @list: linked into migrate_nodes, pending placement in the proper node tree
149  * @hlist: hlist head of rmap_items using this ksm page
150  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151  * @chain_prune_time: time of the last full garbage collection
152  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154  */
155 struct stable_node {
156 	union {
157 		struct rb_node node;	/* when node of stable tree */
158 		struct {		/* when listed for migration */
159 			struct list_head *head;
160 			struct {
161 				struct hlist_node hlist_dup;
162 				struct list_head list;
163 			};
164 		};
165 	};
166 	struct hlist_head hlist;
167 	union {
168 		unsigned long kpfn;
169 		unsigned long chain_prune_time;
170 	};
171 	/*
172 	 * STABLE_NODE_CHAIN can be any negative number in
173 	 * rmap_hlist_len negative range, but better not -1 to be able
174 	 * to reliably detect underflows.
175 	 */
176 #define STABLE_NODE_CHAIN -1024
177 	int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 	int nid;
180 #endif
181 };
182 
183 /**
184  * struct rmap_item - reverse mapping item for virtual addresses
185  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187  * @nid: NUMA node id of unstable tree in which linked (may not match page)
188  * @mm: the memory structure this rmap_item is pointing into
189  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190  * @oldchecksum: previous checksum of the page at that virtual address
191  * @node: rb node of this rmap_item in the unstable tree
192  * @head: pointer to stable_node heading this list in the stable tree
193  * @hlist: link into hlist of rmap_items hanging off that stable_node
194  */
195 struct rmap_item {
196 	struct rmap_item *rmap_list;
197 	union {
198 		struct anon_vma *anon_vma;	/* when stable */
199 #ifdef CONFIG_NUMA
200 		int nid;		/* when node of unstable tree */
201 #endif
202 	};
203 	struct mm_struct *mm;
204 	unsigned long address;		/* + low bits used for flags below */
205 	unsigned int oldchecksum;	/* when unstable */
206 	union {
207 		struct rb_node node;	/* when node of unstable tree */
208 		struct {		/* when listed from stable tree */
209 			struct stable_node *head;
210 			struct hlist_node hlist;
211 		};
212 	};
213 };
214 
215 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
217 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
218 
219 /* The stable and unstable tree heads */
220 static struct rb_root one_stable_tree[1] = { RB_ROOT };
221 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222 static struct rb_root *root_stable_tree = one_stable_tree;
223 static struct rb_root *root_unstable_tree = one_unstable_tree;
224 
225 /* Recently migrated nodes of stable tree, pending proper placement */
226 static LIST_HEAD(migrate_nodes);
227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228 
229 #define MM_SLOTS_HASH_BITS 10
230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231 
232 static struct mm_slot ksm_mm_head = {
233 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234 };
235 static struct ksm_scan ksm_scan = {
236 	.mm_slot = &ksm_mm_head,
237 };
238 
239 static struct kmem_cache *rmap_item_cache;
240 static struct kmem_cache *stable_node_cache;
241 static struct kmem_cache *mm_slot_cache;
242 
243 /* The number of nodes in the stable tree */
244 static unsigned long ksm_pages_shared;
245 
246 /* The number of page slots additionally sharing those nodes */
247 static unsigned long ksm_pages_sharing;
248 
249 /* The number of nodes in the unstable tree */
250 static unsigned long ksm_pages_unshared;
251 
252 /* The number of rmap_items in use: to calculate pages_volatile */
253 static unsigned long ksm_rmap_items;
254 
255 /* The number of stable_node chains */
256 static unsigned long ksm_stable_node_chains;
257 
258 /* The number of stable_node dups linked to the stable_node chains */
259 static unsigned long ksm_stable_node_dups;
260 
261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
262 static int ksm_stable_node_chains_prune_millisecs = 2000;
263 
264 /* Maximum number of page slots sharing a stable node */
265 static int ksm_max_page_sharing = 256;
266 
267 /* Number of pages ksmd should scan in one batch */
268 static unsigned int ksm_thread_pages_to_scan = 100;
269 
270 /* Milliseconds ksmd should sleep between batches */
271 static unsigned int ksm_thread_sleep_millisecs = 20;
272 
273 /* Checksum of an empty (zeroed) page */
274 static unsigned int zero_checksum __read_mostly;
275 
276 /* Whether to merge empty (zeroed) pages with actual zero pages */
277 static bool ksm_use_zero_pages __read_mostly;
278 
279 #ifdef CONFIG_NUMA
280 /* Zeroed when merging across nodes is not allowed */
281 static unsigned int ksm_merge_across_nodes = 1;
282 static int ksm_nr_node_ids = 1;
283 #else
284 #define ksm_merge_across_nodes	1U
285 #define ksm_nr_node_ids		1
286 #endif
287 
288 #define KSM_RUN_STOP	0
289 #define KSM_RUN_MERGE	1
290 #define KSM_RUN_UNMERGE	2
291 #define KSM_RUN_OFFLINE	4
292 static unsigned long ksm_run = KSM_RUN_STOP;
293 static void wait_while_offlining(void);
294 
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299 
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301 		sizeof(struct __struct), __alignof__(struct __struct),\
302 		(__flags), NULL)
303 
304 static int __init ksm_slab_init(void)
305 {
306 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307 	if (!rmap_item_cache)
308 		goto out;
309 
310 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311 	if (!stable_node_cache)
312 		goto out_free1;
313 
314 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315 	if (!mm_slot_cache)
316 		goto out_free2;
317 
318 	return 0;
319 
320 out_free2:
321 	kmem_cache_destroy(stable_node_cache);
322 out_free1:
323 	kmem_cache_destroy(rmap_item_cache);
324 out:
325 	return -ENOMEM;
326 }
327 
328 static void __init ksm_slab_free(void)
329 {
330 	kmem_cache_destroy(mm_slot_cache);
331 	kmem_cache_destroy(stable_node_cache);
332 	kmem_cache_destroy(rmap_item_cache);
333 	mm_slot_cache = NULL;
334 }
335 
336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340 
341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343 	return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345 
346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347 					     struct stable_node *chain)
348 {
349 	VM_BUG_ON(is_stable_node_dup(dup));
350 	dup->head = STABLE_NODE_DUP_HEAD;
351 	VM_BUG_ON(!is_stable_node_chain(chain));
352 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
353 	ksm_stable_node_dups++;
354 }
355 
356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358 	VM_BUG_ON(!is_stable_node_dup(dup));
359 	hlist_del(&dup->hlist_dup);
360 	ksm_stable_node_dups--;
361 }
362 
363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365 	VM_BUG_ON(is_stable_node_chain(dup));
366 	if (is_stable_node_dup(dup))
367 		__stable_node_dup_del(dup);
368 	else
369 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371 	dup->head = NULL;
372 #endif
373 }
374 
375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377 	struct rmap_item *rmap_item;
378 
379 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380 						__GFP_NORETRY | __GFP_NOWARN);
381 	if (rmap_item)
382 		ksm_rmap_items++;
383 	return rmap_item;
384 }
385 
386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388 	ksm_rmap_items--;
389 	rmap_item->mm = NULL;	/* debug safety */
390 	kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392 
393 static inline struct stable_node *alloc_stable_node(void)
394 {
395 	/*
396 	 * The allocation can take too long with GFP_KERNEL when memory is under
397 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398 	 * grants access to memory reserves, helping to avoid this problem.
399 	 */
400 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402 
403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405 	VM_BUG_ON(stable_node->rmap_hlist_len &&
406 		  !is_stable_node_chain(stable_node));
407 	kmem_cache_free(stable_node_cache, stable_node);
408 }
409 
410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412 	if (!mm_slot_cache)	/* initialization failed */
413 		return NULL;
414 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416 
417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419 	kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421 
422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424 	struct mm_slot *slot;
425 
426 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427 		if (slot->mm == mm)
428 			return slot;
429 
430 	return NULL;
431 }
432 
433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434 				    struct mm_slot *mm_slot)
435 {
436 	mm_slot->mm = mm;
437 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439 
440 /*
441  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442  * page tables after it has passed through ksm_exit() - which, if necessary,
443  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
444  * a special flag: they can just back out as soon as mm_users goes to zero.
445  * ksm_test_exit() is used throughout to make this test for exit: in some
446  * places for correctness, in some places just to avoid unnecessary work.
447  */
448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450 	return atomic_read(&mm->mm_users) == 0;
451 }
452 
453 /*
454  * We use break_ksm to break COW on a ksm page: it's a stripped down
455  *
456  *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
457  *		put_page(page);
458  *
459  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460  * in case the application has unmapped and remapped mm,addr meanwhile.
461  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
462  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
463  *
464  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465  * of the process that owns 'vma'.  We also do not want to enforce
466  * protection keys here anyway.
467  */
468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470 	struct page *page;
471 	vm_fault_t ret = 0;
472 
473 	do {
474 		cond_resched();
475 		page = follow_page(vma, addr,
476 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477 		if (IS_ERR_OR_NULL(page))
478 			break;
479 		if (PageKsm(page))
480 			ret = handle_mm_fault(vma, addr,
481 					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482 					      NULL);
483 		else
484 			ret = VM_FAULT_WRITE;
485 		put_page(page);
486 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487 	/*
488 	 * We must loop because handle_mm_fault() may back out if there's
489 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
490 	 *
491 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492 	 * COW has been broken, even if the vma does not permit VM_WRITE;
493 	 * but note that a concurrent fault might break PageKsm for us.
494 	 *
495 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 	 * backing file, which also invalidates anonymous pages: that's
497 	 * okay, that truncation will have unmapped the PageKsm for us.
498 	 *
499 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 	 * to user; and ksmd, having no mm, would never be chosen for that.
503 	 *
504 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 	 * even ksmd can fail in this way - though it's usually breaking ksm
507 	 * just to undo a merge it made a moment before, so unlikely to oom.
508 	 *
509 	 * That's a pity: we might therefore have more kernel pages allocated
510 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 	 * will retry to break_cow on each pass, so should recover the page
512 	 * in due course.  The important thing is to not let VM_MERGEABLE
513 	 * be cleared while any such pages might remain in the area.
514 	 */
515 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517 
518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519 		unsigned long addr)
520 {
521 	struct vm_area_struct *vma;
522 	if (ksm_test_exit(mm))
523 		return NULL;
524 	vma = find_vma(mm, addr);
525 	if (!vma || vma->vm_start > addr)
526 		return NULL;
527 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
528 		return NULL;
529 	return vma;
530 }
531 
532 static void break_cow(struct rmap_item *rmap_item)
533 {
534 	struct mm_struct *mm = rmap_item->mm;
535 	unsigned long addr = rmap_item->address;
536 	struct vm_area_struct *vma;
537 
538 	/*
539 	 * It is not an accident that whenever we want to break COW
540 	 * to undo, we also need to drop a reference to the anon_vma.
541 	 */
542 	put_anon_vma(rmap_item->anon_vma);
543 
544 	mmap_read_lock(mm);
545 	vma = find_mergeable_vma(mm, addr);
546 	if (vma)
547 		break_ksm(vma, addr);
548 	mmap_read_unlock(mm);
549 }
550 
551 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
552 {
553 	struct mm_struct *mm = rmap_item->mm;
554 	unsigned long addr = rmap_item->address;
555 	struct vm_area_struct *vma;
556 	struct page *page;
557 
558 	mmap_read_lock(mm);
559 	vma = find_mergeable_vma(mm, addr);
560 	if (!vma)
561 		goto out;
562 
563 	page = follow_page(vma, addr, FOLL_GET);
564 	if (IS_ERR_OR_NULL(page))
565 		goto out;
566 	if (PageAnon(page)) {
567 		flush_anon_page(vma, page, addr);
568 		flush_dcache_page(page);
569 	} else {
570 		put_page(page);
571 out:
572 		page = NULL;
573 	}
574 	mmap_read_unlock(mm);
575 	return page;
576 }
577 
578 /*
579  * This helper is used for getting right index into array of tree roots.
580  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
581  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
582  * every node has its own stable and unstable tree.
583  */
584 static inline int get_kpfn_nid(unsigned long kpfn)
585 {
586 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
587 }
588 
589 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
590 						   struct rb_root *root)
591 {
592 	struct stable_node *chain = alloc_stable_node();
593 	VM_BUG_ON(is_stable_node_chain(dup));
594 	if (likely(chain)) {
595 		INIT_HLIST_HEAD(&chain->hlist);
596 		chain->chain_prune_time = jiffies;
597 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
598 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
599 		chain->nid = NUMA_NO_NODE; /* debug */
600 #endif
601 		ksm_stable_node_chains++;
602 
603 		/*
604 		 * Put the stable node chain in the first dimension of
605 		 * the stable tree and at the same time remove the old
606 		 * stable node.
607 		 */
608 		rb_replace_node(&dup->node, &chain->node, root);
609 
610 		/*
611 		 * Move the old stable node to the second dimension
612 		 * queued in the hlist_dup. The invariant is that all
613 		 * dup stable_nodes in the chain->hlist point to pages
614 		 * that are write protected and have the exact same
615 		 * content.
616 		 */
617 		stable_node_chain_add_dup(dup, chain);
618 	}
619 	return chain;
620 }
621 
622 static inline void free_stable_node_chain(struct stable_node *chain,
623 					  struct rb_root *root)
624 {
625 	rb_erase(&chain->node, root);
626 	free_stable_node(chain);
627 	ksm_stable_node_chains--;
628 }
629 
630 static void remove_node_from_stable_tree(struct stable_node *stable_node)
631 {
632 	struct rmap_item *rmap_item;
633 
634 	/* check it's not STABLE_NODE_CHAIN or negative */
635 	BUG_ON(stable_node->rmap_hlist_len < 0);
636 
637 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
638 		if (rmap_item->hlist.next)
639 			ksm_pages_sharing--;
640 		else
641 			ksm_pages_shared--;
642 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
643 		stable_node->rmap_hlist_len--;
644 		put_anon_vma(rmap_item->anon_vma);
645 		rmap_item->address &= PAGE_MASK;
646 		cond_resched();
647 	}
648 
649 	/*
650 	 * We need the second aligned pointer of the migrate_nodes
651 	 * list_head to stay clear from the rb_parent_color union
652 	 * (aligned and different than any node) and also different
653 	 * from &migrate_nodes. This will verify that future list.h changes
654 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
655 	 */
656 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
657 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
659 #endif
660 
661 	if (stable_node->head == &migrate_nodes)
662 		list_del(&stable_node->list);
663 	else
664 		stable_node_dup_del(stable_node);
665 	free_stable_node(stable_node);
666 }
667 
668 enum get_ksm_page_flags {
669 	GET_KSM_PAGE_NOLOCK,
670 	GET_KSM_PAGE_LOCK,
671 	GET_KSM_PAGE_TRYLOCK
672 };
673 
674 /*
675  * get_ksm_page: checks if the page indicated by the stable node
676  * is still its ksm page, despite having held no reference to it.
677  * In which case we can trust the content of the page, and it
678  * returns the gotten page; but if the page has now been zapped,
679  * remove the stale node from the stable tree and return NULL.
680  * But beware, the stable node's page might be being migrated.
681  *
682  * You would expect the stable_node to hold a reference to the ksm page.
683  * But if it increments the page's count, swapping out has to wait for
684  * ksmd to come around again before it can free the page, which may take
685  * seconds or even minutes: much too unresponsive.  So instead we use a
686  * "keyhole reference": access to the ksm page from the stable node peeps
687  * out through its keyhole to see if that page still holds the right key,
688  * pointing back to this stable node.  This relies on freeing a PageAnon
689  * page to reset its page->mapping to NULL, and relies on no other use of
690  * a page to put something that might look like our key in page->mapping.
691  * is on its way to being freed; but it is an anomaly to bear in mind.
692  */
693 static struct page *get_ksm_page(struct stable_node *stable_node,
694 				 enum get_ksm_page_flags flags)
695 {
696 	struct page *page;
697 	void *expected_mapping;
698 	unsigned long kpfn;
699 
700 	expected_mapping = (void *)((unsigned long)stable_node |
701 					PAGE_MAPPING_KSM);
702 again:
703 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
704 	page = pfn_to_page(kpfn);
705 	if (READ_ONCE(page->mapping) != expected_mapping)
706 		goto stale;
707 
708 	/*
709 	 * We cannot do anything with the page while its refcount is 0.
710 	 * Usually 0 means free, or tail of a higher-order page: in which
711 	 * case this node is no longer referenced, and should be freed;
712 	 * however, it might mean that the page is under page_ref_freeze().
713 	 * The __remove_mapping() case is easy, again the node is now stale;
714 	 * the same is in reuse_ksm_page() case; but if page is swapcache
715 	 * in migrate_page_move_mapping(), it might still be our page,
716 	 * in which case it's essential to keep the node.
717 	 */
718 	while (!get_page_unless_zero(page)) {
719 		/*
720 		 * Another check for page->mapping != expected_mapping would
721 		 * work here too.  We have chosen the !PageSwapCache test to
722 		 * optimize the common case, when the page is or is about to
723 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
724 		 * in the ref_freeze section of __remove_mapping(); but Anon
725 		 * page->mapping reset to NULL later, in free_pages_prepare().
726 		 */
727 		if (!PageSwapCache(page))
728 			goto stale;
729 		cpu_relax();
730 	}
731 
732 	if (READ_ONCE(page->mapping) != expected_mapping) {
733 		put_page(page);
734 		goto stale;
735 	}
736 
737 	if (flags == GET_KSM_PAGE_TRYLOCK) {
738 		if (!trylock_page(page)) {
739 			put_page(page);
740 			return ERR_PTR(-EBUSY);
741 		}
742 	} else if (flags == GET_KSM_PAGE_LOCK)
743 		lock_page(page);
744 
745 	if (flags != GET_KSM_PAGE_NOLOCK) {
746 		if (READ_ONCE(page->mapping) != expected_mapping) {
747 			unlock_page(page);
748 			put_page(page);
749 			goto stale;
750 		}
751 	}
752 	return page;
753 
754 stale:
755 	/*
756 	 * We come here from above when page->mapping or !PageSwapCache
757 	 * suggests that the node is stale; but it might be under migration.
758 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
759 	 * before checking whether node->kpfn has been changed.
760 	 */
761 	smp_rmb();
762 	if (READ_ONCE(stable_node->kpfn) != kpfn)
763 		goto again;
764 	remove_node_from_stable_tree(stable_node);
765 	return NULL;
766 }
767 
768 /*
769  * Removing rmap_item from stable or unstable tree.
770  * This function will clean the information from the stable/unstable tree.
771  */
772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773 {
774 	if (rmap_item->address & STABLE_FLAG) {
775 		struct stable_node *stable_node;
776 		struct page *page;
777 
778 		stable_node = rmap_item->head;
779 		page = get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
780 		if (!page)
781 			goto out;
782 
783 		hlist_del(&rmap_item->hlist);
784 		put_page(page);
785 
786 		if (!hlist_empty(&stable_node->hlist))
787 			ksm_pages_sharing--;
788 		else
789 			ksm_pages_shared--;
790 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
791 		stable_node->rmap_hlist_len--;
792 
793 		put_anon_vma(rmap_item->anon_vma);
794 		rmap_item->head = NULL;
795 		rmap_item->address &= PAGE_MASK;
796 
797 	} else if (rmap_item->address & UNSTABLE_FLAG) {
798 		unsigned char age;
799 		/*
800 		 * Usually ksmd can and must skip the rb_erase, because
801 		 * root_unstable_tree was already reset to RB_ROOT.
802 		 * But be careful when an mm is exiting: do the rb_erase
803 		 * if this rmap_item was inserted by this scan, rather
804 		 * than left over from before.
805 		 */
806 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
807 		BUG_ON(age > 1);
808 		if (!age)
809 			rb_erase(&rmap_item->node,
810 				 root_unstable_tree + NUMA(rmap_item->nid));
811 		ksm_pages_unshared--;
812 		rmap_item->address &= PAGE_MASK;
813 	}
814 out:
815 	cond_resched();		/* we're called from many long loops */
816 }
817 
818 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
819 {
820 	while (*rmap_list) {
821 		struct rmap_item *rmap_item = *rmap_list;
822 		*rmap_list = rmap_item->rmap_list;
823 		remove_rmap_item_from_tree(rmap_item);
824 		free_rmap_item(rmap_item);
825 	}
826 }
827 
828 /*
829  * Though it's very tempting to unmerge rmap_items from stable tree rather
830  * than check every pte of a given vma, the locking doesn't quite work for
831  * that - an rmap_item is assigned to the stable tree after inserting ksm
832  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
833  * rmap_items from parent to child at fork time (so as not to waste time
834  * if exit comes before the next scan reaches it).
835  *
836  * Similarly, although we'd like to remove rmap_items (so updating counts
837  * and freeing memory) when unmerging an area, it's easier to leave that
838  * to the next pass of ksmd - consider, for example, how ksmd might be
839  * in cmp_and_merge_page on one of the rmap_items we would be removing.
840  */
841 static int unmerge_ksm_pages(struct vm_area_struct *vma,
842 			     unsigned long start, unsigned long end)
843 {
844 	unsigned long addr;
845 	int err = 0;
846 
847 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
848 		if (ksm_test_exit(vma->vm_mm))
849 			break;
850 		if (signal_pending(current))
851 			err = -ERESTARTSYS;
852 		else
853 			err = break_ksm(vma, addr);
854 	}
855 	return err;
856 }
857 
858 static inline struct stable_node *page_stable_node(struct page *page)
859 {
860 	return PageKsm(page) ? page_rmapping(page) : NULL;
861 }
862 
863 static inline void set_page_stable_node(struct page *page,
864 					struct stable_node *stable_node)
865 {
866 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
867 }
868 
869 #ifdef CONFIG_SYSFS
870 /*
871  * Only called through the sysfs control interface:
872  */
873 static int remove_stable_node(struct stable_node *stable_node)
874 {
875 	struct page *page;
876 	int err;
877 
878 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
879 	if (!page) {
880 		/*
881 		 * get_ksm_page did remove_node_from_stable_tree itself.
882 		 */
883 		return 0;
884 	}
885 
886 	/*
887 	 * Page could be still mapped if this races with __mmput() running in
888 	 * between ksm_exit() and exit_mmap(). Just refuse to let
889 	 * merge_across_nodes/max_page_sharing be switched.
890 	 */
891 	err = -EBUSY;
892 	if (!page_mapped(page)) {
893 		/*
894 		 * The stable node did not yet appear stale to get_ksm_page(),
895 		 * since that allows for an unmapped ksm page to be recognized
896 		 * right up until it is freed; but the node is safe to remove.
897 		 * This page might be in a pagevec waiting to be freed,
898 		 * or it might be PageSwapCache (perhaps under writeback),
899 		 * or it might have been removed from swapcache a moment ago.
900 		 */
901 		set_page_stable_node(page, NULL);
902 		remove_node_from_stable_tree(stable_node);
903 		err = 0;
904 	}
905 
906 	unlock_page(page);
907 	put_page(page);
908 	return err;
909 }
910 
911 static int remove_stable_node_chain(struct stable_node *stable_node,
912 				    struct rb_root *root)
913 {
914 	struct stable_node *dup;
915 	struct hlist_node *hlist_safe;
916 
917 	if (!is_stable_node_chain(stable_node)) {
918 		VM_BUG_ON(is_stable_node_dup(stable_node));
919 		if (remove_stable_node(stable_node))
920 			return true;
921 		else
922 			return false;
923 	}
924 
925 	hlist_for_each_entry_safe(dup, hlist_safe,
926 				  &stable_node->hlist, hlist_dup) {
927 		VM_BUG_ON(!is_stable_node_dup(dup));
928 		if (remove_stable_node(dup))
929 			return true;
930 	}
931 	BUG_ON(!hlist_empty(&stable_node->hlist));
932 	free_stable_node_chain(stable_node, root);
933 	return false;
934 }
935 
936 static int remove_all_stable_nodes(void)
937 {
938 	struct stable_node *stable_node, *next;
939 	int nid;
940 	int err = 0;
941 
942 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
943 		while (root_stable_tree[nid].rb_node) {
944 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
945 						struct stable_node, node);
946 			if (remove_stable_node_chain(stable_node,
947 						     root_stable_tree + nid)) {
948 				err = -EBUSY;
949 				break;	/* proceed to next nid */
950 			}
951 			cond_resched();
952 		}
953 	}
954 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
955 		if (remove_stable_node(stable_node))
956 			err = -EBUSY;
957 		cond_resched();
958 	}
959 	return err;
960 }
961 
962 static int unmerge_and_remove_all_rmap_items(void)
963 {
964 	struct mm_slot *mm_slot;
965 	struct mm_struct *mm;
966 	struct vm_area_struct *vma;
967 	int err = 0;
968 
969 	spin_lock(&ksm_mmlist_lock);
970 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
971 						struct mm_slot, mm_list);
972 	spin_unlock(&ksm_mmlist_lock);
973 
974 	for (mm_slot = ksm_scan.mm_slot;
975 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
976 		mm = mm_slot->mm;
977 		mmap_read_lock(mm);
978 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
979 			if (ksm_test_exit(mm))
980 				break;
981 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
982 				continue;
983 			err = unmerge_ksm_pages(vma,
984 						vma->vm_start, vma->vm_end);
985 			if (err)
986 				goto error;
987 		}
988 
989 		remove_trailing_rmap_items(&mm_slot->rmap_list);
990 		mmap_read_unlock(mm);
991 
992 		spin_lock(&ksm_mmlist_lock);
993 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
994 						struct mm_slot, mm_list);
995 		if (ksm_test_exit(mm)) {
996 			hash_del(&mm_slot->link);
997 			list_del(&mm_slot->mm_list);
998 			spin_unlock(&ksm_mmlist_lock);
999 
1000 			free_mm_slot(mm_slot);
1001 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1002 			mmdrop(mm);
1003 		} else
1004 			spin_unlock(&ksm_mmlist_lock);
1005 	}
1006 
1007 	/* Clean up stable nodes, but don't worry if some are still busy */
1008 	remove_all_stable_nodes();
1009 	ksm_scan.seqnr = 0;
1010 	return 0;
1011 
1012 error:
1013 	mmap_read_unlock(mm);
1014 	spin_lock(&ksm_mmlist_lock);
1015 	ksm_scan.mm_slot = &ksm_mm_head;
1016 	spin_unlock(&ksm_mmlist_lock);
1017 	return err;
1018 }
1019 #endif /* CONFIG_SYSFS */
1020 
1021 static u32 calc_checksum(struct page *page)
1022 {
1023 	u32 checksum;
1024 	void *addr = kmap_atomic(page);
1025 	checksum = xxhash(addr, PAGE_SIZE, 0);
1026 	kunmap_atomic(addr);
1027 	return checksum;
1028 }
1029 
1030 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1031 			      pte_t *orig_pte)
1032 {
1033 	struct mm_struct *mm = vma->vm_mm;
1034 	struct page_vma_mapped_walk pvmw = {
1035 		.page = page,
1036 		.vma = vma,
1037 	};
1038 	int swapped;
1039 	int err = -EFAULT;
1040 	struct mmu_notifier_range range;
1041 
1042 	pvmw.address = page_address_in_vma(page, vma);
1043 	if (pvmw.address == -EFAULT)
1044 		goto out;
1045 
1046 	BUG_ON(PageTransCompound(page));
1047 
1048 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1049 				pvmw.address,
1050 				pvmw.address + PAGE_SIZE);
1051 	mmu_notifier_invalidate_range_start(&range);
1052 
1053 	if (!page_vma_mapped_walk(&pvmw))
1054 		goto out_mn;
1055 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1056 		goto out_unlock;
1057 
1058 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1059 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1060 						mm_tlb_flush_pending(mm)) {
1061 		pte_t entry;
1062 
1063 		swapped = PageSwapCache(page);
1064 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1065 		/*
1066 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1067 		 * take any lock, therefore the check that we are going to make
1068 		 * with the pagecount against the mapcount is racey and
1069 		 * O_DIRECT can happen right after the check.
1070 		 * So we clear the pte and flush the tlb before the check
1071 		 * this assure us that no O_DIRECT can happen after the check
1072 		 * or in the middle of the check.
1073 		 *
1074 		 * No need to notify as we are downgrading page table to read
1075 		 * only not changing it to point to a new page.
1076 		 *
1077 		 * See Documentation/vm/mmu_notifier.rst
1078 		 */
1079 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1080 		/*
1081 		 * Check that no O_DIRECT or similar I/O is in progress on the
1082 		 * page
1083 		 */
1084 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1085 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1086 			goto out_unlock;
1087 		}
1088 		if (pte_dirty(entry))
1089 			set_page_dirty(page);
1090 
1091 		if (pte_protnone(entry))
1092 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1093 		else
1094 			entry = pte_mkclean(pte_wrprotect(entry));
1095 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1096 	}
1097 	*orig_pte = *pvmw.pte;
1098 	err = 0;
1099 
1100 out_unlock:
1101 	page_vma_mapped_walk_done(&pvmw);
1102 out_mn:
1103 	mmu_notifier_invalidate_range_end(&range);
1104 out:
1105 	return err;
1106 }
1107 
1108 /**
1109  * replace_page - replace page in vma by new ksm page
1110  * @vma:      vma that holds the pte pointing to page
1111  * @page:     the page we are replacing by kpage
1112  * @kpage:    the ksm page we replace page by
1113  * @orig_pte: the original value of the pte
1114  *
1115  * Returns 0 on success, -EFAULT on failure.
1116  */
1117 static int replace_page(struct vm_area_struct *vma, struct page *page,
1118 			struct page *kpage, pte_t orig_pte)
1119 {
1120 	struct mm_struct *mm = vma->vm_mm;
1121 	pmd_t *pmd;
1122 	pte_t *ptep;
1123 	pte_t newpte;
1124 	spinlock_t *ptl;
1125 	unsigned long addr;
1126 	int err = -EFAULT;
1127 	struct mmu_notifier_range range;
1128 
1129 	addr = page_address_in_vma(page, vma);
1130 	if (addr == -EFAULT)
1131 		goto out;
1132 
1133 	pmd = mm_find_pmd(mm, addr);
1134 	if (!pmd)
1135 		goto out;
1136 
1137 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1138 				addr + PAGE_SIZE);
1139 	mmu_notifier_invalidate_range_start(&range);
1140 
1141 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1142 	if (!pte_same(*ptep, orig_pte)) {
1143 		pte_unmap_unlock(ptep, ptl);
1144 		goto out_mn;
1145 	}
1146 
1147 	/*
1148 	 * No need to check ksm_use_zero_pages here: we can only have a
1149 	 * zero_page here if ksm_use_zero_pages was enabled already.
1150 	 */
1151 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1152 		get_page(kpage);
1153 		page_add_anon_rmap(kpage, vma, addr, false);
1154 		newpte = mk_pte(kpage, vma->vm_page_prot);
1155 	} else {
1156 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1157 					       vma->vm_page_prot));
1158 		/*
1159 		 * We're replacing an anonymous page with a zero page, which is
1160 		 * not anonymous. We need to do proper accounting otherwise we
1161 		 * will get wrong values in /proc, and a BUG message in dmesg
1162 		 * when tearing down the mm.
1163 		 */
1164 		dec_mm_counter(mm, MM_ANONPAGES);
1165 	}
1166 
1167 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1168 	/*
1169 	 * No need to notify as we are replacing a read only page with another
1170 	 * read only page with the same content.
1171 	 *
1172 	 * See Documentation/vm/mmu_notifier.rst
1173 	 */
1174 	ptep_clear_flush(vma, addr, ptep);
1175 	set_pte_at_notify(mm, addr, ptep, newpte);
1176 
1177 	page_remove_rmap(page, false);
1178 	if (!page_mapped(page))
1179 		try_to_free_swap(page);
1180 	put_page(page);
1181 
1182 	pte_unmap_unlock(ptep, ptl);
1183 	err = 0;
1184 out_mn:
1185 	mmu_notifier_invalidate_range_end(&range);
1186 out:
1187 	return err;
1188 }
1189 
1190 /*
1191  * try_to_merge_one_page - take two pages and merge them into one
1192  * @vma: the vma that holds the pte pointing to page
1193  * @page: the PageAnon page that we want to replace with kpage
1194  * @kpage: the PageKsm page that we want to map instead of page,
1195  *         or NULL the first time when we want to use page as kpage.
1196  *
1197  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1198  */
1199 static int try_to_merge_one_page(struct vm_area_struct *vma,
1200 				 struct page *page, struct page *kpage)
1201 {
1202 	pte_t orig_pte = __pte(0);
1203 	int err = -EFAULT;
1204 
1205 	if (page == kpage)			/* ksm page forked */
1206 		return 0;
1207 
1208 	if (!PageAnon(page))
1209 		goto out;
1210 
1211 	/*
1212 	 * We need the page lock to read a stable PageSwapCache in
1213 	 * write_protect_page().  We use trylock_page() instead of
1214 	 * lock_page() because we don't want to wait here - we
1215 	 * prefer to continue scanning and merging different pages,
1216 	 * then come back to this page when it is unlocked.
1217 	 */
1218 	if (!trylock_page(page))
1219 		goto out;
1220 
1221 	if (PageTransCompound(page)) {
1222 		if (split_huge_page(page))
1223 			goto out_unlock;
1224 	}
1225 
1226 	/*
1227 	 * If this anonymous page is mapped only here, its pte may need
1228 	 * to be write-protected.  If it's mapped elsewhere, all of its
1229 	 * ptes are necessarily already write-protected.  But in either
1230 	 * case, we need to lock and check page_count is not raised.
1231 	 */
1232 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1233 		if (!kpage) {
1234 			/*
1235 			 * While we hold page lock, upgrade page from
1236 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1237 			 * stable_tree_insert() will update stable_node.
1238 			 */
1239 			set_page_stable_node(page, NULL);
1240 			mark_page_accessed(page);
1241 			/*
1242 			 * Page reclaim just frees a clean page with no dirty
1243 			 * ptes: make sure that the ksm page would be swapped.
1244 			 */
1245 			if (!PageDirty(page))
1246 				SetPageDirty(page);
1247 			err = 0;
1248 		} else if (pages_identical(page, kpage))
1249 			err = replace_page(vma, page, kpage, orig_pte);
1250 	}
1251 
1252 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1253 		munlock_vma_page(page);
1254 		if (!PageMlocked(kpage)) {
1255 			unlock_page(page);
1256 			lock_page(kpage);
1257 			mlock_vma_page(kpage);
1258 			page = kpage;		/* for final unlock */
1259 		}
1260 	}
1261 
1262 out_unlock:
1263 	unlock_page(page);
1264 out:
1265 	return err;
1266 }
1267 
1268 /*
1269  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1270  * but no new kernel page is allocated: kpage must already be a ksm page.
1271  *
1272  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1273  */
1274 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1275 				      struct page *page, struct page *kpage)
1276 {
1277 	struct mm_struct *mm = rmap_item->mm;
1278 	struct vm_area_struct *vma;
1279 	int err = -EFAULT;
1280 
1281 	mmap_read_lock(mm);
1282 	vma = find_mergeable_vma(mm, rmap_item->address);
1283 	if (!vma)
1284 		goto out;
1285 
1286 	err = try_to_merge_one_page(vma, page, kpage);
1287 	if (err)
1288 		goto out;
1289 
1290 	/* Unstable nid is in union with stable anon_vma: remove first */
1291 	remove_rmap_item_from_tree(rmap_item);
1292 
1293 	/* Must get reference to anon_vma while still holding mmap_lock */
1294 	rmap_item->anon_vma = vma->anon_vma;
1295 	get_anon_vma(vma->anon_vma);
1296 out:
1297 	mmap_read_unlock(mm);
1298 	return err;
1299 }
1300 
1301 /*
1302  * try_to_merge_two_pages - take two identical pages and prepare them
1303  * to be merged into one page.
1304  *
1305  * This function returns the kpage if we successfully merged two identical
1306  * pages into one ksm page, NULL otherwise.
1307  *
1308  * Note that this function upgrades page to ksm page: if one of the pages
1309  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1310  */
1311 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1312 					   struct page *page,
1313 					   struct rmap_item *tree_rmap_item,
1314 					   struct page *tree_page)
1315 {
1316 	int err;
1317 
1318 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1319 	if (!err) {
1320 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1321 							tree_page, page);
1322 		/*
1323 		 * If that fails, we have a ksm page with only one pte
1324 		 * pointing to it: so break it.
1325 		 */
1326 		if (err)
1327 			break_cow(rmap_item);
1328 	}
1329 	return err ? NULL : page;
1330 }
1331 
1332 static __always_inline
1333 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1334 {
1335 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1336 	/*
1337 	 * Check that at least one mapping still exists, otherwise
1338 	 * there's no much point to merge and share with this
1339 	 * stable_node, as the underlying tree_page of the other
1340 	 * sharer is going to be freed soon.
1341 	 */
1342 	return stable_node->rmap_hlist_len &&
1343 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1344 }
1345 
1346 static __always_inline
1347 bool is_page_sharing_candidate(struct stable_node *stable_node)
1348 {
1349 	return __is_page_sharing_candidate(stable_node, 0);
1350 }
1351 
1352 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1353 				    struct stable_node **_stable_node,
1354 				    struct rb_root *root,
1355 				    bool prune_stale_stable_nodes)
1356 {
1357 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1358 	struct hlist_node *hlist_safe;
1359 	struct page *_tree_page, *tree_page = NULL;
1360 	int nr = 0;
1361 	int found_rmap_hlist_len;
1362 
1363 	if (!prune_stale_stable_nodes ||
1364 	    time_before(jiffies, stable_node->chain_prune_time +
1365 			msecs_to_jiffies(
1366 				ksm_stable_node_chains_prune_millisecs)))
1367 		prune_stale_stable_nodes = false;
1368 	else
1369 		stable_node->chain_prune_time = jiffies;
1370 
1371 	hlist_for_each_entry_safe(dup, hlist_safe,
1372 				  &stable_node->hlist, hlist_dup) {
1373 		cond_resched();
1374 		/*
1375 		 * We must walk all stable_node_dup to prune the stale
1376 		 * stable nodes during lookup.
1377 		 *
1378 		 * get_ksm_page can drop the nodes from the
1379 		 * stable_node->hlist if they point to freed pages
1380 		 * (that's why we do a _safe walk). The "dup"
1381 		 * stable_node parameter itself will be freed from
1382 		 * under us if it returns NULL.
1383 		 */
1384 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1385 		if (!_tree_page)
1386 			continue;
1387 		nr += 1;
1388 		if (is_page_sharing_candidate(dup)) {
1389 			if (!found ||
1390 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1391 				if (found)
1392 					put_page(tree_page);
1393 				found = dup;
1394 				found_rmap_hlist_len = found->rmap_hlist_len;
1395 				tree_page = _tree_page;
1396 
1397 				/* skip put_page for found dup */
1398 				if (!prune_stale_stable_nodes)
1399 					break;
1400 				continue;
1401 			}
1402 		}
1403 		put_page(_tree_page);
1404 	}
1405 
1406 	if (found) {
1407 		/*
1408 		 * nr is counting all dups in the chain only if
1409 		 * prune_stale_stable_nodes is true, otherwise we may
1410 		 * break the loop at nr == 1 even if there are
1411 		 * multiple entries.
1412 		 */
1413 		if (prune_stale_stable_nodes && nr == 1) {
1414 			/*
1415 			 * If there's not just one entry it would
1416 			 * corrupt memory, better BUG_ON. In KSM
1417 			 * context with no lock held it's not even
1418 			 * fatal.
1419 			 */
1420 			BUG_ON(stable_node->hlist.first->next);
1421 
1422 			/*
1423 			 * There's just one entry and it is below the
1424 			 * deduplication limit so drop the chain.
1425 			 */
1426 			rb_replace_node(&stable_node->node, &found->node,
1427 					root);
1428 			free_stable_node(stable_node);
1429 			ksm_stable_node_chains--;
1430 			ksm_stable_node_dups--;
1431 			/*
1432 			 * NOTE: the caller depends on the stable_node
1433 			 * to be equal to stable_node_dup if the chain
1434 			 * was collapsed.
1435 			 */
1436 			*_stable_node = found;
1437 			/*
1438 			 * Just for robustneess as stable_node is
1439 			 * otherwise left as a stable pointer, the
1440 			 * compiler shall optimize it away at build
1441 			 * time.
1442 			 */
1443 			stable_node = NULL;
1444 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1445 			   __is_page_sharing_candidate(found, 1)) {
1446 			/*
1447 			 * If the found stable_node dup can accept one
1448 			 * more future merge (in addition to the one
1449 			 * that is underway) and is not at the head of
1450 			 * the chain, put it there so next search will
1451 			 * be quicker in the !prune_stale_stable_nodes
1452 			 * case.
1453 			 *
1454 			 * NOTE: it would be inaccurate to use nr > 1
1455 			 * instead of checking the hlist.first pointer
1456 			 * directly, because in the
1457 			 * prune_stale_stable_nodes case "nr" isn't
1458 			 * the position of the found dup in the chain,
1459 			 * but the total number of dups in the chain.
1460 			 */
1461 			hlist_del(&found->hlist_dup);
1462 			hlist_add_head(&found->hlist_dup,
1463 				       &stable_node->hlist);
1464 		}
1465 	}
1466 
1467 	*_stable_node_dup = found;
1468 	return tree_page;
1469 }
1470 
1471 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1472 					       struct rb_root *root)
1473 {
1474 	if (!is_stable_node_chain(stable_node))
1475 		return stable_node;
1476 	if (hlist_empty(&stable_node->hlist)) {
1477 		free_stable_node_chain(stable_node, root);
1478 		return NULL;
1479 	}
1480 	return hlist_entry(stable_node->hlist.first,
1481 			   typeof(*stable_node), hlist_dup);
1482 }
1483 
1484 /*
1485  * Like for get_ksm_page, this function can free the *_stable_node and
1486  * *_stable_node_dup if the returned tree_page is NULL.
1487  *
1488  * It can also free and overwrite *_stable_node with the found
1489  * stable_node_dup if the chain is collapsed (in which case
1490  * *_stable_node will be equal to *_stable_node_dup like if the chain
1491  * never existed). It's up to the caller to verify tree_page is not
1492  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1493  *
1494  * *_stable_node_dup is really a second output parameter of this
1495  * function and will be overwritten in all cases, the caller doesn't
1496  * need to initialize it.
1497  */
1498 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1499 					struct stable_node **_stable_node,
1500 					struct rb_root *root,
1501 					bool prune_stale_stable_nodes)
1502 {
1503 	struct stable_node *stable_node = *_stable_node;
1504 	if (!is_stable_node_chain(stable_node)) {
1505 		if (is_page_sharing_candidate(stable_node)) {
1506 			*_stable_node_dup = stable_node;
1507 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1508 		}
1509 		/*
1510 		 * _stable_node_dup set to NULL means the stable_node
1511 		 * reached the ksm_max_page_sharing limit.
1512 		 */
1513 		*_stable_node_dup = NULL;
1514 		return NULL;
1515 	}
1516 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1517 			       prune_stale_stable_nodes);
1518 }
1519 
1520 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1521 						struct stable_node **s_n,
1522 						struct rb_root *root)
1523 {
1524 	return __stable_node_chain(s_n_d, s_n, root, true);
1525 }
1526 
1527 static __always_inline struct page *chain(struct stable_node **s_n_d,
1528 					  struct stable_node *s_n,
1529 					  struct rb_root *root)
1530 {
1531 	struct stable_node *old_stable_node = s_n;
1532 	struct page *tree_page;
1533 
1534 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1535 	/* not pruning dups so s_n cannot have changed */
1536 	VM_BUG_ON(s_n != old_stable_node);
1537 	return tree_page;
1538 }
1539 
1540 /*
1541  * stable_tree_search - search for page inside the stable tree
1542  *
1543  * This function checks if there is a page inside the stable tree
1544  * with identical content to the page that we are scanning right now.
1545  *
1546  * This function returns the stable tree node of identical content if found,
1547  * NULL otherwise.
1548  */
1549 static struct page *stable_tree_search(struct page *page)
1550 {
1551 	int nid;
1552 	struct rb_root *root;
1553 	struct rb_node **new;
1554 	struct rb_node *parent;
1555 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1556 	struct stable_node *page_node;
1557 
1558 	page_node = page_stable_node(page);
1559 	if (page_node && page_node->head != &migrate_nodes) {
1560 		/* ksm page forked */
1561 		get_page(page);
1562 		return page;
1563 	}
1564 
1565 	nid = get_kpfn_nid(page_to_pfn(page));
1566 	root = root_stable_tree + nid;
1567 again:
1568 	new = &root->rb_node;
1569 	parent = NULL;
1570 
1571 	while (*new) {
1572 		struct page *tree_page;
1573 		int ret;
1574 
1575 		cond_resched();
1576 		stable_node = rb_entry(*new, struct stable_node, node);
1577 		stable_node_any = NULL;
1578 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1579 		/*
1580 		 * NOTE: stable_node may have been freed by
1581 		 * chain_prune() if the returned stable_node_dup is
1582 		 * not NULL. stable_node_dup may have been inserted in
1583 		 * the rbtree instead as a regular stable_node (in
1584 		 * order to collapse the stable_node chain if a single
1585 		 * stable_node dup was found in it). In such case the
1586 		 * stable_node is overwritten by the calleee to point
1587 		 * to the stable_node_dup that was collapsed in the
1588 		 * stable rbtree and stable_node will be equal to
1589 		 * stable_node_dup like if the chain never existed.
1590 		 */
1591 		if (!stable_node_dup) {
1592 			/*
1593 			 * Either all stable_node dups were full in
1594 			 * this stable_node chain, or this chain was
1595 			 * empty and should be rb_erased.
1596 			 */
1597 			stable_node_any = stable_node_dup_any(stable_node,
1598 							      root);
1599 			if (!stable_node_any) {
1600 				/* rb_erase just run */
1601 				goto again;
1602 			}
1603 			/*
1604 			 * Take any of the stable_node dups page of
1605 			 * this stable_node chain to let the tree walk
1606 			 * continue. All KSM pages belonging to the
1607 			 * stable_node dups in a stable_node chain
1608 			 * have the same content and they're
1609 			 * write protected at all times. Any will work
1610 			 * fine to continue the walk.
1611 			 */
1612 			tree_page = get_ksm_page(stable_node_any,
1613 						 GET_KSM_PAGE_NOLOCK);
1614 		}
1615 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1616 		if (!tree_page) {
1617 			/*
1618 			 * If we walked over a stale stable_node,
1619 			 * get_ksm_page() will call rb_erase() and it
1620 			 * may rebalance the tree from under us. So
1621 			 * restart the search from scratch. Returning
1622 			 * NULL would be safe too, but we'd generate
1623 			 * false negative insertions just because some
1624 			 * stable_node was stale.
1625 			 */
1626 			goto again;
1627 		}
1628 
1629 		ret = memcmp_pages(page, tree_page);
1630 		put_page(tree_page);
1631 
1632 		parent = *new;
1633 		if (ret < 0)
1634 			new = &parent->rb_left;
1635 		else if (ret > 0)
1636 			new = &parent->rb_right;
1637 		else {
1638 			if (page_node) {
1639 				VM_BUG_ON(page_node->head != &migrate_nodes);
1640 				/*
1641 				 * Test if the migrated page should be merged
1642 				 * into a stable node dup. If the mapcount is
1643 				 * 1 we can migrate it with another KSM page
1644 				 * without adding it to the chain.
1645 				 */
1646 				if (page_mapcount(page) > 1)
1647 					goto chain_append;
1648 			}
1649 
1650 			if (!stable_node_dup) {
1651 				/*
1652 				 * If the stable_node is a chain and
1653 				 * we got a payload match in memcmp
1654 				 * but we cannot merge the scanned
1655 				 * page in any of the existing
1656 				 * stable_node dups because they're
1657 				 * all full, we need to wait the
1658 				 * scanned page to find itself a match
1659 				 * in the unstable tree to create a
1660 				 * brand new KSM page to add later to
1661 				 * the dups of this stable_node.
1662 				 */
1663 				return NULL;
1664 			}
1665 
1666 			/*
1667 			 * Lock and unlock the stable_node's page (which
1668 			 * might already have been migrated) so that page
1669 			 * migration is sure to notice its raised count.
1670 			 * It would be more elegant to return stable_node
1671 			 * than kpage, but that involves more changes.
1672 			 */
1673 			tree_page = get_ksm_page(stable_node_dup,
1674 						 GET_KSM_PAGE_TRYLOCK);
1675 
1676 			if (PTR_ERR(tree_page) == -EBUSY)
1677 				return ERR_PTR(-EBUSY);
1678 
1679 			if (unlikely(!tree_page))
1680 				/*
1681 				 * The tree may have been rebalanced,
1682 				 * so re-evaluate parent and new.
1683 				 */
1684 				goto again;
1685 			unlock_page(tree_page);
1686 
1687 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1688 			    NUMA(stable_node_dup->nid)) {
1689 				put_page(tree_page);
1690 				goto replace;
1691 			}
1692 			return tree_page;
1693 		}
1694 	}
1695 
1696 	if (!page_node)
1697 		return NULL;
1698 
1699 	list_del(&page_node->list);
1700 	DO_NUMA(page_node->nid = nid);
1701 	rb_link_node(&page_node->node, parent, new);
1702 	rb_insert_color(&page_node->node, root);
1703 out:
1704 	if (is_page_sharing_candidate(page_node)) {
1705 		get_page(page);
1706 		return page;
1707 	} else
1708 		return NULL;
1709 
1710 replace:
1711 	/*
1712 	 * If stable_node was a chain and chain_prune collapsed it,
1713 	 * stable_node has been updated to be the new regular
1714 	 * stable_node. A collapse of the chain is indistinguishable
1715 	 * from the case there was no chain in the stable
1716 	 * rbtree. Otherwise stable_node is the chain and
1717 	 * stable_node_dup is the dup to replace.
1718 	 */
1719 	if (stable_node_dup == stable_node) {
1720 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1721 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1722 		/* there is no chain */
1723 		if (page_node) {
1724 			VM_BUG_ON(page_node->head != &migrate_nodes);
1725 			list_del(&page_node->list);
1726 			DO_NUMA(page_node->nid = nid);
1727 			rb_replace_node(&stable_node_dup->node,
1728 					&page_node->node,
1729 					root);
1730 			if (is_page_sharing_candidate(page_node))
1731 				get_page(page);
1732 			else
1733 				page = NULL;
1734 		} else {
1735 			rb_erase(&stable_node_dup->node, root);
1736 			page = NULL;
1737 		}
1738 	} else {
1739 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1740 		__stable_node_dup_del(stable_node_dup);
1741 		if (page_node) {
1742 			VM_BUG_ON(page_node->head != &migrate_nodes);
1743 			list_del(&page_node->list);
1744 			DO_NUMA(page_node->nid = nid);
1745 			stable_node_chain_add_dup(page_node, stable_node);
1746 			if (is_page_sharing_candidate(page_node))
1747 				get_page(page);
1748 			else
1749 				page = NULL;
1750 		} else {
1751 			page = NULL;
1752 		}
1753 	}
1754 	stable_node_dup->head = &migrate_nodes;
1755 	list_add(&stable_node_dup->list, stable_node_dup->head);
1756 	return page;
1757 
1758 chain_append:
1759 	/* stable_node_dup could be null if it reached the limit */
1760 	if (!stable_node_dup)
1761 		stable_node_dup = stable_node_any;
1762 	/*
1763 	 * If stable_node was a chain and chain_prune collapsed it,
1764 	 * stable_node has been updated to be the new regular
1765 	 * stable_node. A collapse of the chain is indistinguishable
1766 	 * from the case there was no chain in the stable
1767 	 * rbtree. Otherwise stable_node is the chain and
1768 	 * stable_node_dup is the dup to replace.
1769 	 */
1770 	if (stable_node_dup == stable_node) {
1771 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1772 		/* chain is missing so create it */
1773 		stable_node = alloc_stable_node_chain(stable_node_dup,
1774 						      root);
1775 		if (!stable_node)
1776 			return NULL;
1777 	}
1778 	/*
1779 	 * Add this stable_node dup that was
1780 	 * migrated to the stable_node chain
1781 	 * of the current nid for this page
1782 	 * content.
1783 	 */
1784 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1785 	VM_BUG_ON(page_node->head != &migrate_nodes);
1786 	list_del(&page_node->list);
1787 	DO_NUMA(page_node->nid = nid);
1788 	stable_node_chain_add_dup(page_node, stable_node);
1789 	goto out;
1790 }
1791 
1792 /*
1793  * stable_tree_insert - insert stable tree node pointing to new ksm page
1794  * into the stable tree.
1795  *
1796  * This function returns the stable tree node just allocated on success,
1797  * NULL otherwise.
1798  */
1799 static struct stable_node *stable_tree_insert(struct page *kpage)
1800 {
1801 	int nid;
1802 	unsigned long kpfn;
1803 	struct rb_root *root;
1804 	struct rb_node **new;
1805 	struct rb_node *parent;
1806 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1807 	bool need_chain = false;
1808 
1809 	kpfn = page_to_pfn(kpage);
1810 	nid = get_kpfn_nid(kpfn);
1811 	root = root_stable_tree + nid;
1812 again:
1813 	parent = NULL;
1814 	new = &root->rb_node;
1815 
1816 	while (*new) {
1817 		struct page *tree_page;
1818 		int ret;
1819 
1820 		cond_resched();
1821 		stable_node = rb_entry(*new, struct stable_node, node);
1822 		stable_node_any = NULL;
1823 		tree_page = chain(&stable_node_dup, stable_node, root);
1824 		if (!stable_node_dup) {
1825 			/*
1826 			 * Either all stable_node dups were full in
1827 			 * this stable_node chain, or this chain was
1828 			 * empty and should be rb_erased.
1829 			 */
1830 			stable_node_any = stable_node_dup_any(stable_node,
1831 							      root);
1832 			if (!stable_node_any) {
1833 				/* rb_erase just run */
1834 				goto again;
1835 			}
1836 			/*
1837 			 * Take any of the stable_node dups page of
1838 			 * this stable_node chain to let the tree walk
1839 			 * continue. All KSM pages belonging to the
1840 			 * stable_node dups in a stable_node chain
1841 			 * have the same content and they're
1842 			 * write protected at all times. Any will work
1843 			 * fine to continue the walk.
1844 			 */
1845 			tree_page = get_ksm_page(stable_node_any,
1846 						 GET_KSM_PAGE_NOLOCK);
1847 		}
1848 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1849 		if (!tree_page) {
1850 			/*
1851 			 * If we walked over a stale stable_node,
1852 			 * get_ksm_page() will call rb_erase() and it
1853 			 * may rebalance the tree from under us. So
1854 			 * restart the search from scratch. Returning
1855 			 * NULL would be safe too, but we'd generate
1856 			 * false negative insertions just because some
1857 			 * stable_node was stale.
1858 			 */
1859 			goto again;
1860 		}
1861 
1862 		ret = memcmp_pages(kpage, tree_page);
1863 		put_page(tree_page);
1864 
1865 		parent = *new;
1866 		if (ret < 0)
1867 			new = &parent->rb_left;
1868 		else if (ret > 0)
1869 			new = &parent->rb_right;
1870 		else {
1871 			need_chain = true;
1872 			break;
1873 		}
1874 	}
1875 
1876 	stable_node_dup = alloc_stable_node();
1877 	if (!stable_node_dup)
1878 		return NULL;
1879 
1880 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1881 	stable_node_dup->kpfn = kpfn;
1882 	set_page_stable_node(kpage, stable_node_dup);
1883 	stable_node_dup->rmap_hlist_len = 0;
1884 	DO_NUMA(stable_node_dup->nid = nid);
1885 	if (!need_chain) {
1886 		rb_link_node(&stable_node_dup->node, parent, new);
1887 		rb_insert_color(&stable_node_dup->node, root);
1888 	} else {
1889 		if (!is_stable_node_chain(stable_node)) {
1890 			struct stable_node *orig = stable_node;
1891 			/* chain is missing so create it */
1892 			stable_node = alloc_stable_node_chain(orig, root);
1893 			if (!stable_node) {
1894 				free_stable_node(stable_node_dup);
1895 				return NULL;
1896 			}
1897 		}
1898 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1899 	}
1900 
1901 	return stable_node_dup;
1902 }
1903 
1904 /*
1905  * unstable_tree_search_insert - search for identical page,
1906  * else insert rmap_item into the unstable tree.
1907  *
1908  * This function searches for a page in the unstable tree identical to the
1909  * page currently being scanned; and if no identical page is found in the
1910  * tree, we insert rmap_item as a new object into the unstable tree.
1911  *
1912  * This function returns pointer to rmap_item found to be identical
1913  * to the currently scanned page, NULL otherwise.
1914  *
1915  * This function does both searching and inserting, because they share
1916  * the same walking algorithm in an rbtree.
1917  */
1918 static
1919 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1920 					      struct page *page,
1921 					      struct page **tree_pagep)
1922 {
1923 	struct rb_node **new;
1924 	struct rb_root *root;
1925 	struct rb_node *parent = NULL;
1926 	int nid;
1927 
1928 	nid = get_kpfn_nid(page_to_pfn(page));
1929 	root = root_unstable_tree + nid;
1930 	new = &root->rb_node;
1931 
1932 	while (*new) {
1933 		struct rmap_item *tree_rmap_item;
1934 		struct page *tree_page;
1935 		int ret;
1936 
1937 		cond_resched();
1938 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1939 		tree_page = get_mergeable_page(tree_rmap_item);
1940 		if (!tree_page)
1941 			return NULL;
1942 
1943 		/*
1944 		 * Don't substitute a ksm page for a forked page.
1945 		 */
1946 		if (page == tree_page) {
1947 			put_page(tree_page);
1948 			return NULL;
1949 		}
1950 
1951 		ret = memcmp_pages(page, tree_page);
1952 
1953 		parent = *new;
1954 		if (ret < 0) {
1955 			put_page(tree_page);
1956 			new = &parent->rb_left;
1957 		} else if (ret > 0) {
1958 			put_page(tree_page);
1959 			new = &parent->rb_right;
1960 		} else if (!ksm_merge_across_nodes &&
1961 			   page_to_nid(tree_page) != nid) {
1962 			/*
1963 			 * If tree_page has been migrated to another NUMA node,
1964 			 * it will be flushed out and put in the right unstable
1965 			 * tree next time: only merge with it when across_nodes.
1966 			 */
1967 			put_page(tree_page);
1968 			return NULL;
1969 		} else {
1970 			*tree_pagep = tree_page;
1971 			return tree_rmap_item;
1972 		}
1973 	}
1974 
1975 	rmap_item->address |= UNSTABLE_FLAG;
1976 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1977 	DO_NUMA(rmap_item->nid = nid);
1978 	rb_link_node(&rmap_item->node, parent, new);
1979 	rb_insert_color(&rmap_item->node, root);
1980 
1981 	ksm_pages_unshared++;
1982 	return NULL;
1983 }
1984 
1985 /*
1986  * stable_tree_append - add another rmap_item to the linked list of
1987  * rmap_items hanging off a given node of the stable tree, all sharing
1988  * the same ksm page.
1989  */
1990 static void stable_tree_append(struct rmap_item *rmap_item,
1991 			       struct stable_node *stable_node,
1992 			       bool max_page_sharing_bypass)
1993 {
1994 	/*
1995 	 * rmap won't find this mapping if we don't insert the
1996 	 * rmap_item in the right stable_node
1997 	 * duplicate. page_migration could break later if rmap breaks,
1998 	 * so we can as well crash here. We really need to check for
1999 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2000 	 * for other negative values as an underflow if detected here
2001 	 * for the first time (and not when decreasing rmap_hlist_len)
2002 	 * would be sign of memory corruption in the stable_node.
2003 	 */
2004 	BUG_ON(stable_node->rmap_hlist_len < 0);
2005 
2006 	stable_node->rmap_hlist_len++;
2007 	if (!max_page_sharing_bypass)
2008 		/* possibly non fatal but unexpected overflow, only warn */
2009 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2010 			     ksm_max_page_sharing);
2011 
2012 	rmap_item->head = stable_node;
2013 	rmap_item->address |= STABLE_FLAG;
2014 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2015 
2016 	if (rmap_item->hlist.next)
2017 		ksm_pages_sharing++;
2018 	else
2019 		ksm_pages_shared++;
2020 }
2021 
2022 /*
2023  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2024  * if not, compare checksum to previous and if it's the same, see if page can
2025  * be inserted into the unstable tree, or merged with a page already there and
2026  * both transferred to the stable tree.
2027  *
2028  * @page: the page that we are searching identical page to.
2029  * @rmap_item: the reverse mapping into the virtual address of this page
2030  */
2031 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2032 {
2033 	struct mm_struct *mm = rmap_item->mm;
2034 	struct rmap_item *tree_rmap_item;
2035 	struct page *tree_page = NULL;
2036 	struct stable_node *stable_node;
2037 	struct page *kpage;
2038 	unsigned int checksum;
2039 	int err;
2040 	bool max_page_sharing_bypass = false;
2041 
2042 	stable_node = page_stable_node(page);
2043 	if (stable_node) {
2044 		if (stable_node->head != &migrate_nodes &&
2045 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2046 		    NUMA(stable_node->nid)) {
2047 			stable_node_dup_del(stable_node);
2048 			stable_node->head = &migrate_nodes;
2049 			list_add(&stable_node->list, stable_node->head);
2050 		}
2051 		if (stable_node->head != &migrate_nodes &&
2052 		    rmap_item->head == stable_node)
2053 			return;
2054 		/*
2055 		 * If it's a KSM fork, allow it to go over the sharing limit
2056 		 * without warnings.
2057 		 */
2058 		if (!is_page_sharing_candidate(stable_node))
2059 			max_page_sharing_bypass = true;
2060 	}
2061 
2062 	/* We first start with searching the page inside the stable tree */
2063 	kpage = stable_tree_search(page);
2064 	if (kpage == page && rmap_item->head == stable_node) {
2065 		put_page(kpage);
2066 		return;
2067 	}
2068 
2069 	remove_rmap_item_from_tree(rmap_item);
2070 
2071 	if (kpage) {
2072 		if (PTR_ERR(kpage) == -EBUSY)
2073 			return;
2074 
2075 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2076 		if (!err) {
2077 			/*
2078 			 * The page was successfully merged:
2079 			 * add its rmap_item to the stable tree.
2080 			 */
2081 			lock_page(kpage);
2082 			stable_tree_append(rmap_item, page_stable_node(kpage),
2083 					   max_page_sharing_bypass);
2084 			unlock_page(kpage);
2085 		}
2086 		put_page(kpage);
2087 		return;
2088 	}
2089 
2090 	/*
2091 	 * If the hash value of the page has changed from the last time
2092 	 * we calculated it, this page is changing frequently: therefore we
2093 	 * don't want to insert it in the unstable tree, and we don't want
2094 	 * to waste our time searching for something identical to it there.
2095 	 */
2096 	checksum = calc_checksum(page);
2097 	if (rmap_item->oldchecksum != checksum) {
2098 		rmap_item->oldchecksum = checksum;
2099 		return;
2100 	}
2101 
2102 	/*
2103 	 * Same checksum as an empty page. We attempt to merge it with the
2104 	 * appropriate zero page if the user enabled this via sysfs.
2105 	 */
2106 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2107 		struct vm_area_struct *vma;
2108 
2109 		mmap_read_lock(mm);
2110 		vma = find_mergeable_vma(mm, rmap_item->address);
2111 		if (vma) {
2112 			err = try_to_merge_one_page(vma, page,
2113 					ZERO_PAGE(rmap_item->address));
2114 		} else {
2115 			/*
2116 			 * If the vma is out of date, we do not need to
2117 			 * continue.
2118 			 */
2119 			err = 0;
2120 		}
2121 		mmap_read_unlock(mm);
2122 		/*
2123 		 * In case of failure, the page was not really empty, so we
2124 		 * need to continue. Otherwise we're done.
2125 		 */
2126 		if (!err)
2127 			return;
2128 	}
2129 	tree_rmap_item =
2130 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2131 	if (tree_rmap_item) {
2132 		bool split;
2133 
2134 		kpage = try_to_merge_two_pages(rmap_item, page,
2135 						tree_rmap_item, tree_page);
2136 		/*
2137 		 * If both pages we tried to merge belong to the same compound
2138 		 * page, then we actually ended up increasing the reference
2139 		 * count of the same compound page twice, and split_huge_page
2140 		 * failed.
2141 		 * Here we set a flag if that happened, and we use it later to
2142 		 * try split_huge_page again. Since we call put_page right
2143 		 * afterwards, the reference count will be correct and
2144 		 * split_huge_page should succeed.
2145 		 */
2146 		split = PageTransCompound(page)
2147 			&& compound_head(page) == compound_head(tree_page);
2148 		put_page(tree_page);
2149 		if (kpage) {
2150 			/*
2151 			 * The pages were successfully merged: insert new
2152 			 * node in the stable tree and add both rmap_items.
2153 			 */
2154 			lock_page(kpage);
2155 			stable_node = stable_tree_insert(kpage);
2156 			if (stable_node) {
2157 				stable_tree_append(tree_rmap_item, stable_node,
2158 						   false);
2159 				stable_tree_append(rmap_item, stable_node,
2160 						   false);
2161 			}
2162 			unlock_page(kpage);
2163 
2164 			/*
2165 			 * If we fail to insert the page into the stable tree,
2166 			 * we will have 2 virtual addresses that are pointing
2167 			 * to a ksm page left outside the stable tree,
2168 			 * in which case we need to break_cow on both.
2169 			 */
2170 			if (!stable_node) {
2171 				break_cow(tree_rmap_item);
2172 				break_cow(rmap_item);
2173 			}
2174 		} else if (split) {
2175 			/*
2176 			 * We are here if we tried to merge two pages and
2177 			 * failed because they both belonged to the same
2178 			 * compound page. We will split the page now, but no
2179 			 * merging will take place.
2180 			 * We do not want to add the cost of a full lock; if
2181 			 * the page is locked, it is better to skip it and
2182 			 * perhaps try again later.
2183 			 */
2184 			if (!trylock_page(page))
2185 				return;
2186 			split_huge_page(page);
2187 			unlock_page(page);
2188 		}
2189 	}
2190 }
2191 
2192 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2193 					    struct rmap_item **rmap_list,
2194 					    unsigned long addr)
2195 {
2196 	struct rmap_item *rmap_item;
2197 
2198 	while (*rmap_list) {
2199 		rmap_item = *rmap_list;
2200 		if ((rmap_item->address & PAGE_MASK) == addr)
2201 			return rmap_item;
2202 		if (rmap_item->address > addr)
2203 			break;
2204 		*rmap_list = rmap_item->rmap_list;
2205 		remove_rmap_item_from_tree(rmap_item);
2206 		free_rmap_item(rmap_item);
2207 	}
2208 
2209 	rmap_item = alloc_rmap_item();
2210 	if (rmap_item) {
2211 		/* It has already been zeroed */
2212 		rmap_item->mm = mm_slot->mm;
2213 		rmap_item->address = addr;
2214 		rmap_item->rmap_list = *rmap_list;
2215 		*rmap_list = rmap_item;
2216 	}
2217 	return rmap_item;
2218 }
2219 
2220 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2221 {
2222 	struct mm_struct *mm;
2223 	struct mm_slot *slot;
2224 	struct vm_area_struct *vma;
2225 	struct rmap_item *rmap_item;
2226 	int nid;
2227 
2228 	if (list_empty(&ksm_mm_head.mm_list))
2229 		return NULL;
2230 
2231 	slot = ksm_scan.mm_slot;
2232 	if (slot == &ksm_mm_head) {
2233 		/*
2234 		 * A number of pages can hang around indefinitely on per-cpu
2235 		 * pagevecs, raised page count preventing write_protect_page
2236 		 * from merging them.  Though it doesn't really matter much,
2237 		 * it is puzzling to see some stuck in pages_volatile until
2238 		 * other activity jostles them out, and they also prevented
2239 		 * LTP's KSM test from succeeding deterministically; so drain
2240 		 * them here (here rather than on entry to ksm_do_scan(),
2241 		 * so we don't IPI too often when pages_to_scan is set low).
2242 		 */
2243 		lru_add_drain_all();
2244 
2245 		/*
2246 		 * Whereas stale stable_nodes on the stable_tree itself
2247 		 * get pruned in the regular course of stable_tree_search(),
2248 		 * those moved out to the migrate_nodes list can accumulate:
2249 		 * so prune them once before each full scan.
2250 		 */
2251 		if (!ksm_merge_across_nodes) {
2252 			struct stable_node *stable_node, *next;
2253 			struct page *page;
2254 
2255 			list_for_each_entry_safe(stable_node, next,
2256 						 &migrate_nodes, list) {
2257 				page = get_ksm_page(stable_node,
2258 						    GET_KSM_PAGE_NOLOCK);
2259 				if (page)
2260 					put_page(page);
2261 				cond_resched();
2262 			}
2263 		}
2264 
2265 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2266 			root_unstable_tree[nid] = RB_ROOT;
2267 
2268 		spin_lock(&ksm_mmlist_lock);
2269 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2270 		ksm_scan.mm_slot = slot;
2271 		spin_unlock(&ksm_mmlist_lock);
2272 		/*
2273 		 * Although we tested list_empty() above, a racing __ksm_exit
2274 		 * of the last mm on the list may have removed it since then.
2275 		 */
2276 		if (slot == &ksm_mm_head)
2277 			return NULL;
2278 next_mm:
2279 		ksm_scan.address = 0;
2280 		ksm_scan.rmap_list = &slot->rmap_list;
2281 	}
2282 
2283 	mm = slot->mm;
2284 	mmap_read_lock(mm);
2285 	if (ksm_test_exit(mm))
2286 		vma = NULL;
2287 	else
2288 		vma = find_vma(mm, ksm_scan.address);
2289 
2290 	for (; vma; vma = vma->vm_next) {
2291 		if (!(vma->vm_flags & VM_MERGEABLE))
2292 			continue;
2293 		if (ksm_scan.address < vma->vm_start)
2294 			ksm_scan.address = vma->vm_start;
2295 		if (!vma->anon_vma)
2296 			ksm_scan.address = vma->vm_end;
2297 
2298 		while (ksm_scan.address < vma->vm_end) {
2299 			if (ksm_test_exit(mm))
2300 				break;
2301 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2302 			if (IS_ERR_OR_NULL(*page)) {
2303 				ksm_scan.address += PAGE_SIZE;
2304 				cond_resched();
2305 				continue;
2306 			}
2307 			if (PageAnon(*page)) {
2308 				flush_anon_page(vma, *page, ksm_scan.address);
2309 				flush_dcache_page(*page);
2310 				rmap_item = get_next_rmap_item(slot,
2311 					ksm_scan.rmap_list, ksm_scan.address);
2312 				if (rmap_item) {
2313 					ksm_scan.rmap_list =
2314 							&rmap_item->rmap_list;
2315 					ksm_scan.address += PAGE_SIZE;
2316 				} else
2317 					put_page(*page);
2318 				mmap_read_unlock(mm);
2319 				return rmap_item;
2320 			}
2321 			put_page(*page);
2322 			ksm_scan.address += PAGE_SIZE;
2323 			cond_resched();
2324 		}
2325 	}
2326 
2327 	if (ksm_test_exit(mm)) {
2328 		ksm_scan.address = 0;
2329 		ksm_scan.rmap_list = &slot->rmap_list;
2330 	}
2331 	/*
2332 	 * Nuke all the rmap_items that are above this current rmap:
2333 	 * because there were no VM_MERGEABLE vmas with such addresses.
2334 	 */
2335 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2336 
2337 	spin_lock(&ksm_mmlist_lock);
2338 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2339 						struct mm_slot, mm_list);
2340 	if (ksm_scan.address == 0) {
2341 		/*
2342 		 * We've completed a full scan of all vmas, holding mmap_lock
2343 		 * throughout, and found no VM_MERGEABLE: so do the same as
2344 		 * __ksm_exit does to remove this mm from all our lists now.
2345 		 * This applies either when cleaning up after __ksm_exit
2346 		 * (but beware: we can reach here even before __ksm_exit),
2347 		 * or when all VM_MERGEABLE areas have been unmapped (and
2348 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2349 		 */
2350 		hash_del(&slot->link);
2351 		list_del(&slot->mm_list);
2352 		spin_unlock(&ksm_mmlist_lock);
2353 
2354 		free_mm_slot(slot);
2355 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2356 		mmap_read_unlock(mm);
2357 		mmdrop(mm);
2358 	} else {
2359 		mmap_read_unlock(mm);
2360 		/*
2361 		 * mmap_read_unlock(mm) first because after
2362 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2363 		 * already have been freed under us by __ksm_exit()
2364 		 * because the "mm_slot" is still hashed and
2365 		 * ksm_scan.mm_slot doesn't point to it anymore.
2366 		 */
2367 		spin_unlock(&ksm_mmlist_lock);
2368 	}
2369 
2370 	/* Repeat until we've completed scanning the whole list */
2371 	slot = ksm_scan.mm_slot;
2372 	if (slot != &ksm_mm_head)
2373 		goto next_mm;
2374 
2375 	ksm_scan.seqnr++;
2376 	return NULL;
2377 }
2378 
2379 /**
2380  * ksm_do_scan  - the ksm scanner main worker function.
2381  * @scan_npages:  number of pages we want to scan before we return.
2382  */
2383 static void ksm_do_scan(unsigned int scan_npages)
2384 {
2385 	struct rmap_item *rmap_item;
2386 	struct page *page;
2387 
2388 	while (scan_npages-- && likely(!freezing(current))) {
2389 		cond_resched();
2390 		rmap_item = scan_get_next_rmap_item(&page);
2391 		if (!rmap_item)
2392 			return;
2393 		cmp_and_merge_page(page, rmap_item);
2394 		put_page(page);
2395 	}
2396 }
2397 
2398 static int ksmd_should_run(void)
2399 {
2400 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2401 }
2402 
2403 static int ksm_scan_thread(void *nothing)
2404 {
2405 	unsigned int sleep_ms;
2406 
2407 	set_freezable();
2408 	set_user_nice(current, 5);
2409 
2410 	while (!kthread_should_stop()) {
2411 		mutex_lock(&ksm_thread_mutex);
2412 		wait_while_offlining();
2413 		if (ksmd_should_run())
2414 			ksm_do_scan(ksm_thread_pages_to_scan);
2415 		mutex_unlock(&ksm_thread_mutex);
2416 
2417 		try_to_freeze();
2418 
2419 		if (ksmd_should_run()) {
2420 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2421 			wait_event_interruptible_timeout(ksm_iter_wait,
2422 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2423 				msecs_to_jiffies(sleep_ms));
2424 		} else {
2425 			wait_event_freezable(ksm_thread_wait,
2426 				ksmd_should_run() || kthread_should_stop());
2427 		}
2428 	}
2429 	return 0;
2430 }
2431 
2432 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2433 		unsigned long end, int advice, unsigned long *vm_flags)
2434 {
2435 	struct mm_struct *mm = vma->vm_mm;
2436 	int err;
2437 
2438 	switch (advice) {
2439 	case MADV_MERGEABLE:
2440 		/*
2441 		 * Be somewhat over-protective for now!
2442 		 */
2443 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2444 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2445 				 VM_HUGETLB | VM_MIXEDMAP))
2446 			return 0;		/* just ignore the advice */
2447 
2448 		if (vma_is_dax(vma))
2449 			return 0;
2450 
2451 #ifdef VM_SAO
2452 		if (*vm_flags & VM_SAO)
2453 			return 0;
2454 #endif
2455 #ifdef VM_SPARC_ADI
2456 		if (*vm_flags & VM_SPARC_ADI)
2457 			return 0;
2458 #endif
2459 
2460 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2461 			err = __ksm_enter(mm);
2462 			if (err)
2463 				return err;
2464 		}
2465 
2466 		*vm_flags |= VM_MERGEABLE;
2467 		break;
2468 
2469 	case MADV_UNMERGEABLE:
2470 		if (!(*vm_flags & VM_MERGEABLE))
2471 			return 0;		/* just ignore the advice */
2472 
2473 		if (vma->anon_vma) {
2474 			err = unmerge_ksm_pages(vma, start, end);
2475 			if (err)
2476 				return err;
2477 		}
2478 
2479 		*vm_flags &= ~VM_MERGEABLE;
2480 		break;
2481 	}
2482 
2483 	return 0;
2484 }
2485 EXPORT_SYMBOL_GPL(ksm_madvise);
2486 
2487 int __ksm_enter(struct mm_struct *mm)
2488 {
2489 	struct mm_slot *mm_slot;
2490 	int needs_wakeup;
2491 
2492 	mm_slot = alloc_mm_slot();
2493 	if (!mm_slot)
2494 		return -ENOMEM;
2495 
2496 	/* Check ksm_run too?  Would need tighter locking */
2497 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2498 
2499 	spin_lock(&ksm_mmlist_lock);
2500 	insert_to_mm_slots_hash(mm, mm_slot);
2501 	/*
2502 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2503 	 * insert just behind the scanning cursor, to let the area settle
2504 	 * down a little; when fork is followed by immediate exec, we don't
2505 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2506 	 *
2507 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2508 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2509 	 * missed: then we might as well insert at the end of the list.
2510 	 */
2511 	if (ksm_run & KSM_RUN_UNMERGE)
2512 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2513 	else
2514 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2515 	spin_unlock(&ksm_mmlist_lock);
2516 
2517 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2518 	mmgrab(mm);
2519 
2520 	if (needs_wakeup)
2521 		wake_up_interruptible(&ksm_thread_wait);
2522 
2523 	return 0;
2524 }
2525 
2526 void __ksm_exit(struct mm_struct *mm)
2527 {
2528 	struct mm_slot *mm_slot;
2529 	int easy_to_free = 0;
2530 
2531 	/*
2532 	 * This process is exiting: if it's straightforward (as is the
2533 	 * case when ksmd was never running), free mm_slot immediately.
2534 	 * But if it's at the cursor or has rmap_items linked to it, use
2535 	 * mmap_lock to synchronize with any break_cows before pagetables
2536 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2537 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2538 	 */
2539 
2540 	spin_lock(&ksm_mmlist_lock);
2541 	mm_slot = get_mm_slot(mm);
2542 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2543 		if (!mm_slot->rmap_list) {
2544 			hash_del(&mm_slot->link);
2545 			list_del(&mm_slot->mm_list);
2546 			easy_to_free = 1;
2547 		} else {
2548 			list_move(&mm_slot->mm_list,
2549 				  &ksm_scan.mm_slot->mm_list);
2550 		}
2551 	}
2552 	spin_unlock(&ksm_mmlist_lock);
2553 
2554 	if (easy_to_free) {
2555 		free_mm_slot(mm_slot);
2556 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2557 		mmdrop(mm);
2558 	} else if (mm_slot) {
2559 		mmap_write_lock(mm);
2560 		mmap_write_unlock(mm);
2561 	}
2562 }
2563 
2564 struct page *ksm_might_need_to_copy(struct page *page,
2565 			struct vm_area_struct *vma, unsigned long address)
2566 {
2567 	struct anon_vma *anon_vma = page_anon_vma(page);
2568 	struct page *new_page;
2569 
2570 	if (PageKsm(page)) {
2571 		if (page_stable_node(page) &&
2572 		    !(ksm_run & KSM_RUN_UNMERGE))
2573 			return page;	/* no need to copy it */
2574 	} else if (!anon_vma) {
2575 		return page;		/* no need to copy it */
2576 	} else if (anon_vma->root == vma->anon_vma->root &&
2577 		 page->index == linear_page_index(vma, address)) {
2578 		return page;		/* still no need to copy it */
2579 	}
2580 	if (!PageUptodate(page))
2581 		return page;		/* let do_swap_page report the error */
2582 
2583 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2584 	if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2585 		put_page(new_page);
2586 		new_page = NULL;
2587 	}
2588 	if (new_page) {
2589 		copy_user_highpage(new_page, page, address, vma);
2590 
2591 		SetPageDirty(new_page);
2592 		__SetPageUptodate(new_page);
2593 		__SetPageLocked(new_page);
2594 	}
2595 
2596 	return new_page;
2597 }
2598 
2599 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2600 {
2601 	struct stable_node *stable_node;
2602 	struct rmap_item *rmap_item;
2603 	int search_new_forks = 0;
2604 
2605 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2606 
2607 	/*
2608 	 * Rely on the page lock to protect against concurrent modifications
2609 	 * to that page's node of the stable tree.
2610 	 */
2611 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2612 
2613 	stable_node = page_stable_node(page);
2614 	if (!stable_node)
2615 		return;
2616 again:
2617 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2618 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2619 		struct anon_vma_chain *vmac;
2620 		struct vm_area_struct *vma;
2621 
2622 		cond_resched();
2623 		anon_vma_lock_read(anon_vma);
2624 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2625 					       0, ULONG_MAX) {
2626 			unsigned long addr;
2627 
2628 			cond_resched();
2629 			vma = vmac->vma;
2630 
2631 			/* Ignore the stable/unstable/sqnr flags */
2632 			addr = rmap_item->address & PAGE_MASK;
2633 
2634 			if (addr < vma->vm_start || addr >= vma->vm_end)
2635 				continue;
2636 			/*
2637 			 * Initially we examine only the vma which covers this
2638 			 * rmap_item; but later, if there is still work to do,
2639 			 * we examine covering vmas in other mms: in case they
2640 			 * were forked from the original since ksmd passed.
2641 			 */
2642 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2643 				continue;
2644 
2645 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2646 				continue;
2647 
2648 			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2649 				anon_vma_unlock_read(anon_vma);
2650 				return;
2651 			}
2652 			if (rwc->done && rwc->done(page)) {
2653 				anon_vma_unlock_read(anon_vma);
2654 				return;
2655 			}
2656 		}
2657 		anon_vma_unlock_read(anon_vma);
2658 	}
2659 	if (!search_new_forks++)
2660 		goto again;
2661 }
2662 
2663 #ifdef CONFIG_MIGRATION
2664 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2665 {
2666 	struct stable_node *stable_node;
2667 
2668 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2669 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2670 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2671 
2672 	stable_node = page_stable_node(newpage);
2673 	if (stable_node) {
2674 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2675 		stable_node->kpfn = page_to_pfn(newpage);
2676 		/*
2677 		 * newpage->mapping was set in advance; now we need smp_wmb()
2678 		 * to make sure that the new stable_node->kpfn is visible
2679 		 * to get_ksm_page() before it can see that oldpage->mapping
2680 		 * has gone stale (or that PageSwapCache has been cleared).
2681 		 */
2682 		smp_wmb();
2683 		set_page_stable_node(oldpage, NULL);
2684 	}
2685 }
2686 #endif /* CONFIG_MIGRATION */
2687 
2688 #ifdef CONFIG_MEMORY_HOTREMOVE
2689 static void wait_while_offlining(void)
2690 {
2691 	while (ksm_run & KSM_RUN_OFFLINE) {
2692 		mutex_unlock(&ksm_thread_mutex);
2693 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2694 			    TASK_UNINTERRUPTIBLE);
2695 		mutex_lock(&ksm_thread_mutex);
2696 	}
2697 }
2698 
2699 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2700 					 unsigned long start_pfn,
2701 					 unsigned long end_pfn)
2702 {
2703 	if (stable_node->kpfn >= start_pfn &&
2704 	    stable_node->kpfn < end_pfn) {
2705 		/*
2706 		 * Don't get_ksm_page, page has already gone:
2707 		 * which is why we keep kpfn instead of page*
2708 		 */
2709 		remove_node_from_stable_tree(stable_node);
2710 		return true;
2711 	}
2712 	return false;
2713 }
2714 
2715 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2716 					   unsigned long start_pfn,
2717 					   unsigned long end_pfn,
2718 					   struct rb_root *root)
2719 {
2720 	struct stable_node *dup;
2721 	struct hlist_node *hlist_safe;
2722 
2723 	if (!is_stable_node_chain(stable_node)) {
2724 		VM_BUG_ON(is_stable_node_dup(stable_node));
2725 		return stable_node_dup_remove_range(stable_node, start_pfn,
2726 						    end_pfn);
2727 	}
2728 
2729 	hlist_for_each_entry_safe(dup, hlist_safe,
2730 				  &stable_node->hlist, hlist_dup) {
2731 		VM_BUG_ON(!is_stable_node_dup(dup));
2732 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2733 	}
2734 	if (hlist_empty(&stable_node->hlist)) {
2735 		free_stable_node_chain(stable_node, root);
2736 		return true; /* notify caller that tree was rebalanced */
2737 	} else
2738 		return false;
2739 }
2740 
2741 static void ksm_check_stable_tree(unsigned long start_pfn,
2742 				  unsigned long end_pfn)
2743 {
2744 	struct stable_node *stable_node, *next;
2745 	struct rb_node *node;
2746 	int nid;
2747 
2748 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2749 		node = rb_first(root_stable_tree + nid);
2750 		while (node) {
2751 			stable_node = rb_entry(node, struct stable_node, node);
2752 			if (stable_node_chain_remove_range(stable_node,
2753 							   start_pfn, end_pfn,
2754 							   root_stable_tree +
2755 							   nid))
2756 				node = rb_first(root_stable_tree + nid);
2757 			else
2758 				node = rb_next(node);
2759 			cond_resched();
2760 		}
2761 	}
2762 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2763 		if (stable_node->kpfn >= start_pfn &&
2764 		    stable_node->kpfn < end_pfn)
2765 			remove_node_from_stable_tree(stable_node);
2766 		cond_resched();
2767 	}
2768 }
2769 
2770 static int ksm_memory_callback(struct notifier_block *self,
2771 			       unsigned long action, void *arg)
2772 {
2773 	struct memory_notify *mn = arg;
2774 
2775 	switch (action) {
2776 	case MEM_GOING_OFFLINE:
2777 		/*
2778 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2779 		 * and remove_all_stable_nodes() while memory is going offline:
2780 		 * it is unsafe for them to touch the stable tree at this time.
2781 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2782 		 * which do not need the ksm_thread_mutex are all safe.
2783 		 */
2784 		mutex_lock(&ksm_thread_mutex);
2785 		ksm_run |= KSM_RUN_OFFLINE;
2786 		mutex_unlock(&ksm_thread_mutex);
2787 		break;
2788 
2789 	case MEM_OFFLINE:
2790 		/*
2791 		 * Most of the work is done by page migration; but there might
2792 		 * be a few stable_nodes left over, still pointing to struct
2793 		 * pages which have been offlined: prune those from the tree,
2794 		 * otherwise get_ksm_page() might later try to access a
2795 		 * non-existent struct page.
2796 		 */
2797 		ksm_check_stable_tree(mn->start_pfn,
2798 				      mn->start_pfn + mn->nr_pages);
2799 		fallthrough;
2800 	case MEM_CANCEL_OFFLINE:
2801 		mutex_lock(&ksm_thread_mutex);
2802 		ksm_run &= ~KSM_RUN_OFFLINE;
2803 		mutex_unlock(&ksm_thread_mutex);
2804 
2805 		smp_mb();	/* wake_up_bit advises this */
2806 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2807 		break;
2808 	}
2809 	return NOTIFY_OK;
2810 }
2811 #else
2812 static void wait_while_offlining(void)
2813 {
2814 }
2815 #endif /* CONFIG_MEMORY_HOTREMOVE */
2816 
2817 #ifdef CONFIG_SYSFS
2818 /*
2819  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2820  */
2821 
2822 #define KSM_ATTR_RO(_name) \
2823 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2824 #define KSM_ATTR(_name) \
2825 	static struct kobj_attribute _name##_attr = \
2826 		__ATTR(_name, 0644, _name##_show, _name##_store)
2827 
2828 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2829 				    struct kobj_attribute *attr, char *buf)
2830 {
2831 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2832 }
2833 
2834 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2835 				     struct kobj_attribute *attr,
2836 				     const char *buf, size_t count)
2837 {
2838 	unsigned int msecs;
2839 	int err;
2840 
2841 	err = kstrtouint(buf, 10, &msecs);
2842 	if (err)
2843 		return -EINVAL;
2844 
2845 	ksm_thread_sleep_millisecs = msecs;
2846 	wake_up_interruptible(&ksm_iter_wait);
2847 
2848 	return count;
2849 }
2850 KSM_ATTR(sleep_millisecs);
2851 
2852 static ssize_t pages_to_scan_show(struct kobject *kobj,
2853 				  struct kobj_attribute *attr, char *buf)
2854 {
2855 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2856 }
2857 
2858 static ssize_t pages_to_scan_store(struct kobject *kobj,
2859 				   struct kobj_attribute *attr,
2860 				   const char *buf, size_t count)
2861 {
2862 	unsigned int nr_pages;
2863 	int err;
2864 
2865 	err = kstrtouint(buf, 10, &nr_pages);
2866 	if (err)
2867 		return -EINVAL;
2868 
2869 	ksm_thread_pages_to_scan = nr_pages;
2870 
2871 	return count;
2872 }
2873 KSM_ATTR(pages_to_scan);
2874 
2875 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2876 			char *buf)
2877 {
2878 	return sysfs_emit(buf, "%lu\n", ksm_run);
2879 }
2880 
2881 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2882 			 const char *buf, size_t count)
2883 {
2884 	unsigned int flags;
2885 	int err;
2886 
2887 	err = kstrtouint(buf, 10, &flags);
2888 	if (err)
2889 		return -EINVAL;
2890 	if (flags > KSM_RUN_UNMERGE)
2891 		return -EINVAL;
2892 
2893 	/*
2894 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2895 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2896 	 * breaking COW to free the pages_shared (but leaves mm_slots
2897 	 * on the list for when ksmd may be set running again).
2898 	 */
2899 
2900 	mutex_lock(&ksm_thread_mutex);
2901 	wait_while_offlining();
2902 	if (ksm_run != flags) {
2903 		ksm_run = flags;
2904 		if (flags & KSM_RUN_UNMERGE) {
2905 			set_current_oom_origin();
2906 			err = unmerge_and_remove_all_rmap_items();
2907 			clear_current_oom_origin();
2908 			if (err) {
2909 				ksm_run = KSM_RUN_STOP;
2910 				count = err;
2911 			}
2912 		}
2913 	}
2914 	mutex_unlock(&ksm_thread_mutex);
2915 
2916 	if (flags & KSM_RUN_MERGE)
2917 		wake_up_interruptible(&ksm_thread_wait);
2918 
2919 	return count;
2920 }
2921 KSM_ATTR(run);
2922 
2923 #ifdef CONFIG_NUMA
2924 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2925 				       struct kobj_attribute *attr, char *buf)
2926 {
2927 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2928 }
2929 
2930 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2931 				   struct kobj_attribute *attr,
2932 				   const char *buf, size_t count)
2933 {
2934 	int err;
2935 	unsigned long knob;
2936 
2937 	err = kstrtoul(buf, 10, &knob);
2938 	if (err)
2939 		return err;
2940 	if (knob > 1)
2941 		return -EINVAL;
2942 
2943 	mutex_lock(&ksm_thread_mutex);
2944 	wait_while_offlining();
2945 	if (ksm_merge_across_nodes != knob) {
2946 		if (ksm_pages_shared || remove_all_stable_nodes())
2947 			err = -EBUSY;
2948 		else if (root_stable_tree == one_stable_tree) {
2949 			struct rb_root *buf;
2950 			/*
2951 			 * This is the first time that we switch away from the
2952 			 * default of merging across nodes: must now allocate
2953 			 * a buffer to hold as many roots as may be needed.
2954 			 * Allocate stable and unstable together:
2955 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2956 			 */
2957 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2958 				      GFP_KERNEL);
2959 			/* Let us assume that RB_ROOT is NULL is zero */
2960 			if (!buf)
2961 				err = -ENOMEM;
2962 			else {
2963 				root_stable_tree = buf;
2964 				root_unstable_tree = buf + nr_node_ids;
2965 				/* Stable tree is empty but not the unstable */
2966 				root_unstable_tree[0] = one_unstable_tree[0];
2967 			}
2968 		}
2969 		if (!err) {
2970 			ksm_merge_across_nodes = knob;
2971 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2972 		}
2973 	}
2974 	mutex_unlock(&ksm_thread_mutex);
2975 
2976 	return err ? err : count;
2977 }
2978 KSM_ATTR(merge_across_nodes);
2979 #endif
2980 
2981 static ssize_t use_zero_pages_show(struct kobject *kobj,
2982 				   struct kobj_attribute *attr, char *buf)
2983 {
2984 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2985 }
2986 static ssize_t use_zero_pages_store(struct kobject *kobj,
2987 				   struct kobj_attribute *attr,
2988 				   const char *buf, size_t count)
2989 {
2990 	int err;
2991 	bool value;
2992 
2993 	err = kstrtobool(buf, &value);
2994 	if (err)
2995 		return -EINVAL;
2996 
2997 	ksm_use_zero_pages = value;
2998 
2999 	return count;
3000 }
3001 KSM_ATTR(use_zero_pages);
3002 
3003 static ssize_t max_page_sharing_show(struct kobject *kobj,
3004 				     struct kobj_attribute *attr, char *buf)
3005 {
3006 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3007 }
3008 
3009 static ssize_t max_page_sharing_store(struct kobject *kobj,
3010 				      struct kobj_attribute *attr,
3011 				      const char *buf, size_t count)
3012 {
3013 	int err;
3014 	int knob;
3015 
3016 	err = kstrtoint(buf, 10, &knob);
3017 	if (err)
3018 		return err;
3019 	/*
3020 	 * When a KSM page is created it is shared by 2 mappings. This
3021 	 * being a signed comparison, it implicitly verifies it's not
3022 	 * negative.
3023 	 */
3024 	if (knob < 2)
3025 		return -EINVAL;
3026 
3027 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3028 		return count;
3029 
3030 	mutex_lock(&ksm_thread_mutex);
3031 	wait_while_offlining();
3032 	if (ksm_max_page_sharing != knob) {
3033 		if (ksm_pages_shared || remove_all_stable_nodes())
3034 			err = -EBUSY;
3035 		else
3036 			ksm_max_page_sharing = knob;
3037 	}
3038 	mutex_unlock(&ksm_thread_mutex);
3039 
3040 	return err ? err : count;
3041 }
3042 KSM_ATTR(max_page_sharing);
3043 
3044 static ssize_t pages_shared_show(struct kobject *kobj,
3045 				 struct kobj_attribute *attr, char *buf)
3046 {
3047 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3048 }
3049 KSM_ATTR_RO(pages_shared);
3050 
3051 static ssize_t pages_sharing_show(struct kobject *kobj,
3052 				  struct kobj_attribute *attr, char *buf)
3053 {
3054 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3055 }
3056 KSM_ATTR_RO(pages_sharing);
3057 
3058 static ssize_t pages_unshared_show(struct kobject *kobj,
3059 				   struct kobj_attribute *attr, char *buf)
3060 {
3061 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3062 }
3063 KSM_ATTR_RO(pages_unshared);
3064 
3065 static ssize_t pages_volatile_show(struct kobject *kobj,
3066 				   struct kobj_attribute *attr, char *buf)
3067 {
3068 	long ksm_pages_volatile;
3069 
3070 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3071 				- ksm_pages_sharing - ksm_pages_unshared;
3072 	/*
3073 	 * It was not worth any locking to calculate that statistic,
3074 	 * but it might therefore sometimes be negative: conceal that.
3075 	 */
3076 	if (ksm_pages_volatile < 0)
3077 		ksm_pages_volatile = 0;
3078 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3079 }
3080 KSM_ATTR_RO(pages_volatile);
3081 
3082 static ssize_t stable_node_dups_show(struct kobject *kobj,
3083 				     struct kobj_attribute *attr, char *buf)
3084 {
3085 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3086 }
3087 KSM_ATTR_RO(stable_node_dups);
3088 
3089 static ssize_t stable_node_chains_show(struct kobject *kobj,
3090 				       struct kobj_attribute *attr, char *buf)
3091 {
3092 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3093 }
3094 KSM_ATTR_RO(stable_node_chains);
3095 
3096 static ssize_t
3097 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3098 					struct kobj_attribute *attr,
3099 					char *buf)
3100 {
3101 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3102 }
3103 
3104 static ssize_t
3105 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3106 					 struct kobj_attribute *attr,
3107 					 const char *buf, size_t count)
3108 {
3109 	unsigned long msecs;
3110 	int err;
3111 
3112 	err = kstrtoul(buf, 10, &msecs);
3113 	if (err || msecs > UINT_MAX)
3114 		return -EINVAL;
3115 
3116 	ksm_stable_node_chains_prune_millisecs = msecs;
3117 
3118 	return count;
3119 }
3120 KSM_ATTR(stable_node_chains_prune_millisecs);
3121 
3122 static ssize_t full_scans_show(struct kobject *kobj,
3123 			       struct kobj_attribute *attr, char *buf)
3124 {
3125 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3126 }
3127 KSM_ATTR_RO(full_scans);
3128 
3129 static struct attribute *ksm_attrs[] = {
3130 	&sleep_millisecs_attr.attr,
3131 	&pages_to_scan_attr.attr,
3132 	&run_attr.attr,
3133 	&pages_shared_attr.attr,
3134 	&pages_sharing_attr.attr,
3135 	&pages_unshared_attr.attr,
3136 	&pages_volatile_attr.attr,
3137 	&full_scans_attr.attr,
3138 #ifdef CONFIG_NUMA
3139 	&merge_across_nodes_attr.attr,
3140 #endif
3141 	&max_page_sharing_attr.attr,
3142 	&stable_node_chains_attr.attr,
3143 	&stable_node_dups_attr.attr,
3144 	&stable_node_chains_prune_millisecs_attr.attr,
3145 	&use_zero_pages_attr.attr,
3146 	NULL,
3147 };
3148 
3149 static const struct attribute_group ksm_attr_group = {
3150 	.attrs = ksm_attrs,
3151 	.name = "ksm",
3152 };
3153 #endif /* CONFIG_SYSFS */
3154 
3155 static int __init ksm_init(void)
3156 {
3157 	struct task_struct *ksm_thread;
3158 	int err;
3159 
3160 	/* The correct value depends on page size and endianness */
3161 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3162 	/* Default to false for backwards compatibility */
3163 	ksm_use_zero_pages = false;
3164 
3165 	err = ksm_slab_init();
3166 	if (err)
3167 		goto out;
3168 
3169 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3170 	if (IS_ERR(ksm_thread)) {
3171 		pr_err("ksm: creating kthread failed\n");
3172 		err = PTR_ERR(ksm_thread);
3173 		goto out_free;
3174 	}
3175 
3176 #ifdef CONFIG_SYSFS
3177 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3178 	if (err) {
3179 		pr_err("ksm: register sysfs failed\n");
3180 		kthread_stop(ksm_thread);
3181 		goto out_free;
3182 	}
3183 #else
3184 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3185 
3186 #endif /* CONFIG_SYSFS */
3187 
3188 #ifdef CONFIG_MEMORY_HOTREMOVE
3189 	/* There is no significance to this priority 100 */
3190 	hotplug_memory_notifier(ksm_memory_callback, 100);
3191 #endif
3192 	return 0;
3193 
3194 out_free:
3195 	ksm_slab_free();
3196 out:
3197 	return err;
3198 }
3199 subsys_initcall(ksm_init);
3200