1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/fs.h> 19 #include <linux/mman.h> 20 #include <linux/sched.h> 21 #include <linux/sched/mm.h> 22 #include <linux/sched/coredump.h> 23 #include <linux/rwsem.h> 24 #include <linux/pagemap.h> 25 #include <linux/rmap.h> 26 #include <linux/spinlock.h> 27 #include <linux/xxhash.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/wait.h> 31 #include <linux/slab.h> 32 #include <linux/rbtree.h> 33 #include <linux/memory.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/swap.h> 36 #include <linux/ksm.h> 37 #include <linux/hashtable.h> 38 #include <linux/freezer.h> 39 #include <linux/oom.h> 40 #include <linux/numa.h> 41 42 #include <asm/tlbflush.h> 43 #include "internal.h" 44 45 #ifdef CONFIG_NUMA 46 #define NUMA(x) (x) 47 #define DO_NUMA(x) do { (x); } while (0) 48 #else 49 #define NUMA(x) (0) 50 #define DO_NUMA(x) do { } while (0) 51 #endif 52 53 /** 54 * DOC: Overview 55 * 56 * A few notes about the KSM scanning process, 57 * to make it easier to understand the data structures below: 58 * 59 * In order to reduce excessive scanning, KSM sorts the memory pages by their 60 * contents into a data structure that holds pointers to the pages' locations. 61 * 62 * Since the contents of the pages may change at any moment, KSM cannot just 63 * insert the pages into a normal sorted tree and expect it to find anything. 64 * Therefore KSM uses two data structures - the stable and the unstable tree. 65 * 66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 67 * by their contents. Because each such page is write-protected, searching on 68 * this tree is fully assured to be working (except when pages are unmapped), 69 * and therefore this tree is called the stable tree. 70 * 71 * The stable tree node includes information required for reverse 72 * mapping from a KSM page to virtual addresses that map this page. 73 * 74 * In order to avoid large latencies of the rmap walks on KSM pages, 75 * KSM maintains two types of nodes in the stable tree: 76 * 77 * * the regular nodes that keep the reverse mapping structures in a 78 * linked list 79 * * the "chains" that link nodes ("dups") that represent the same 80 * write protected memory content, but each "dup" corresponds to a 81 * different KSM page copy of that content 82 * 83 * Internally, the regular nodes, "dups" and "chains" are represented 84 * using the same struct stable_node structure. 85 * 86 * In addition to the stable tree, KSM uses a second data structure called the 87 * unstable tree: this tree holds pointers to pages which have been found to 88 * be "unchanged for a period of time". The unstable tree sorts these pages 89 * by their contents, but since they are not write-protected, KSM cannot rely 90 * upon the unstable tree to work correctly - the unstable tree is liable to 91 * be corrupted as its contents are modified, and so it is called unstable. 92 * 93 * KSM solves this problem by several techniques: 94 * 95 * 1) The unstable tree is flushed every time KSM completes scanning all 96 * memory areas, and then the tree is rebuilt again from the beginning. 97 * 2) KSM will only insert into the unstable tree, pages whose hash value 98 * has not changed since the previous scan of all memory areas. 99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 100 * colors of the nodes and not on their contents, assuring that even when 101 * the tree gets "corrupted" it won't get out of balance, so scanning time 102 * remains the same (also, searching and inserting nodes in an rbtree uses 103 * the same algorithm, so we have no overhead when we flush and rebuild). 104 * 4) KSM never flushes the stable tree, which means that even if it were to 105 * take 10 attempts to find a page in the unstable tree, once it is found, 106 * it is secured in the stable tree. (When we scan a new page, we first 107 * compare it against the stable tree, and then against the unstable tree.) 108 * 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 110 * stable trees and multiple unstable trees: one of each for each NUMA node. 111 */ 112 113 /** 114 * struct mm_slot - ksm information per mm that is being scanned 115 * @link: link to the mm_slots hash list 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 118 * @mm: the mm that this information is valid for 119 */ 120 struct mm_slot { 121 struct hlist_node link; 122 struct list_head mm_list; 123 struct rmap_item *rmap_list; 124 struct mm_struct *mm; 125 }; 126 127 /** 128 * struct ksm_scan - cursor for scanning 129 * @mm_slot: the current mm_slot we are scanning 130 * @address: the next address inside that to be scanned 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list 132 * @seqnr: count of completed full scans (needed when removing unstable node) 133 * 134 * There is only the one ksm_scan instance of this cursor structure. 135 */ 136 struct ksm_scan { 137 struct mm_slot *mm_slot; 138 unsigned long address; 139 struct rmap_item **rmap_list; 140 unsigned long seqnr; 141 }; 142 143 /** 144 * struct stable_node - node of the stable rbtree 145 * @node: rb node of this ksm page in the stable tree 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 148 * @list: linked into migrate_nodes, pending placement in the proper node tree 149 * @hlist: hlist head of rmap_items using this ksm page 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 151 * @chain_prune_time: time of the last full garbage collection 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 154 */ 155 struct stable_node { 156 union { 157 struct rb_node node; /* when node of stable tree */ 158 struct { /* when listed for migration */ 159 struct list_head *head; 160 struct { 161 struct hlist_node hlist_dup; 162 struct list_head list; 163 }; 164 }; 165 }; 166 struct hlist_head hlist; 167 union { 168 unsigned long kpfn; 169 unsigned long chain_prune_time; 170 }; 171 /* 172 * STABLE_NODE_CHAIN can be any negative number in 173 * rmap_hlist_len negative range, but better not -1 to be able 174 * to reliably detect underflows. 175 */ 176 #define STABLE_NODE_CHAIN -1024 177 int rmap_hlist_len; 178 #ifdef CONFIG_NUMA 179 int nid; 180 #endif 181 }; 182 183 /** 184 * struct rmap_item - reverse mapping item for virtual addresses 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 187 * @nid: NUMA node id of unstable tree in which linked (may not match page) 188 * @mm: the memory structure this rmap_item is pointing into 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 190 * @oldchecksum: previous checksum of the page at that virtual address 191 * @node: rb node of this rmap_item in the unstable tree 192 * @head: pointer to stable_node heading this list in the stable tree 193 * @hlist: link into hlist of rmap_items hanging off that stable_node 194 */ 195 struct rmap_item { 196 struct rmap_item *rmap_list; 197 union { 198 struct anon_vma *anon_vma; /* when stable */ 199 #ifdef CONFIG_NUMA 200 int nid; /* when node of unstable tree */ 201 #endif 202 }; 203 struct mm_struct *mm; 204 unsigned long address; /* + low bits used for flags below */ 205 unsigned int oldchecksum; /* when unstable */ 206 union { 207 struct rb_node node; /* when node of unstable tree */ 208 struct { /* when listed from stable tree */ 209 struct stable_node *head; 210 struct hlist_node hlist; 211 }; 212 }; 213 }; 214 215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 218 219 /* The stable and unstable tree heads */ 220 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 221 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 222 static struct rb_root *root_stable_tree = one_stable_tree; 223 static struct rb_root *root_unstable_tree = one_unstable_tree; 224 225 /* Recently migrated nodes of stable tree, pending proper placement */ 226 static LIST_HEAD(migrate_nodes); 227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 228 229 #define MM_SLOTS_HASH_BITS 10 230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 231 232 static struct mm_slot ksm_mm_head = { 233 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 234 }; 235 static struct ksm_scan ksm_scan = { 236 .mm_slot = &ksm_mm_head, 237 }; 238 239 static struct kmem_cache *rmap_item_cache; 240 static struct kmem_cache *stable_node_cache; 241 static struct kmem_cache *mm_slot_cache; 242 243 /* The number of nodes in the stable tree */ 244 static unsigned long ksm_pages_shared; 245 246 /* The number of page slots additionally sharing those nodes */ 247 static unsigned long ksm_pages_sharing; 248 249 /* The number of nodes in the unstable tree */ 250 static unsigned long ksm_pages_unshared; 251 252 /* The number of rmap_items in use: to calculate pages_volatile */ 253 static unsigned long ksm_rmap_items; 254 255 /* The number of stable_node chains */ 256 static unsigned long ksm_stable_node_chains; 257 258 /* The number of stable_node dups linked to the stable_node chains */ 259 static unsigned long ksm_stable_node_dups; 260 261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 262 static int ksm_stable_node_chains_prune_millisecs = 2000; 263 264 /* Maximum number of page slots sharing a stable node */ 265 static int ksm_max_page_sharing = 256; 266 267 /* Number of pages ksmd should scan in one batch */ 268 static unsigned int ksm_thread_pages_to_scan = 100; 269 270 /* Milliseconds ksmd should sleep between batches */ 271 static unsigned int ksm_thread_sleep_millisecs = 20; 272 273 /* Checksum of an empty (zeroed) page */ 274 static unsigned int zero_checksum __read_mostly; 275 276 /* Whether to merge empty (zeroed) pages with actual zero pages */ 277 static bool ksm_use_zero_pages __read_mostly; 278 279 #ifdef CONFIG_NUMA 280 /* Zeroed when merging across nodes is not allowed */ 281 static unsigned int ksm_merge_across_nodes = 1; 282 static int ksm_nr_node_ids = 1; 283 #else 284 #define ksm_merge_across_nodes 1U 285 #define ksm_nr_node_ids 1 286 #endif 287 288 #define KSM_RUN_STOP 0 289 #define KSM_RUN_MERGE 1 290 #define KSM_RUN_UNMERGE 2 291 #define KSM_RUN_OFFLINE 4 292 static unsigned long ksm_run = KSM_RUN_STOP; 293 static void wait_while_offlining(void); 294 295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 297 static DEFINE_MUTEX(ksm_thread_mutex); 298 static DEFINE_SPINLOCK(ksm_mmlist_lock); 299 300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 301 sizeof(struct __struct), __alignof__(struct __struct),\ 302 (__flags), NULL) 303 304 static int __init ksm_slab_init(void) 305 { 306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 307 if (!rmap_item_cache) 308 goto out; 309 310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 311 if (!stable_node_cache) 312 goto out_free1; 313 314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 315 if (!mm_slot_cache) 316 goto out_free2; 317 318 return 0; 319 320 out_free2: 321 kmem_cache_destroy(stable_node_cache); 322 out_free1: 323 kmem_cache_destroy(rmap_item_cache); 324 out: 325 return -ENOMEM; 326 } 327 328 static void __init ksm_slab_free(void) 329 { 330 kmem_cache_destroy(mm_slot_cache); 331 kmem_cache_destroy(stable_node_cache); 332 kmem_cache_destroy(rmap_item_cache); 333 mm_slot_cache = NULL; 334 } 335 336 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 337 { 338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 339 } 340 341 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 342 { 343 return dup->head == STABLE_NODE_DUP_HEAD; 344 } 345 346 static inline void stable_node_chain_add_dup(struct stable_node *dup, 347 struct stable_node *chain) 348 { 349 VM_BUG_ON(is_stable_node_dup(dup)); 350 dup->head = STABLE_NODE_DUP_HEAD; 351 VM_BUG_ON(!is_stable_node_chain(chain)); 352 hlist_add_head(&dup->hlist_dup, &chain->hlist); 353 ksm_stable_node_dups++; 354 } 355 356 static inline void __stable_node_dup_del(struct stable_node *dup) 357 { 358 VM_BUG_ON(!is_stable_node_dup(dup)); 359 hlist_del(&dup->hlist_dup); 360 ksm_stable_node_dups--; 361 } 362 363 static inline void stable_node_dup_del(struct stable_node *dup) 364 { 365 VM_BUG_ON(is_stable_node_chain(dup)); 366 if (is_stable_node_dup(dup)) 367 __stable_node_dup_del(dup); 368 else 369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 370 #ifdef CONFIG_DEBUG_VM 371 dup->head = NULL; 372 #endif 373 } 374 375 static inline struct rmap_item *alloc_rmap_item(void) 376 { 377 struct rmap_item *rmap_item; 378 379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 380 __GFP_NORETRY | __GFP_NOWARN); 381 if (rmap_item) 382 ksm_rmap_items++; 383 return rmap_item; 384 } 385 386 static inline void free_rmap_item(struct rmap_item *rmap_item) 387 { 388 ksm_rmap_items--; 389 rmap_item->mm = NULL; /* debug safety */ 390 kmem_cache_free(rmap_item_cache, rmap_item); 391 } 392 393 static inline struct stable_node *alloc_stable_node(void) 394 { 395 /* 396 * The allocation can take too long with GFP_KERNEL when memory is under 397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 398 * grants access to memory reserves, helping to avoid this problem. 399 */ 400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 401 } 402 403 static inline void free_stable_node(struct stable_node *stable_node) 404 { 405 VM_BUG_ON(stable_node->rmap_hlist_len && 406 !is_stable_node_chain(stable_node)); 407 kmem_cache_free(stable_node_cache, stable_node); 408 } 409 410 static inline struct mm_slot *alloc_mm_slot(void) 411 { 412 if (!mm_slot_cache) /* initialization failed */ 413 return NULL; 414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 415 } 416 417 static inline void free_mm_slot(struct mm_slot *mm_slot) 418 { 419 kmem_cache_free(mm_slot_cache, mm_slot); 420 } 421 422 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 423 { 424 struct mm_slot *slot; 425 426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 427 if (slot->mm == mm) 428 return slot; 429 430 return NULL; 431 } 432 433 static void insert_to_mm_slots_hash(struct mm_struct *mm, 434 struct mm_slot *mm_slot) 435 { 436 mm_slot->mm = mm; 437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 438 } 439 440 /* 441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 442 * page tables after it has passed through ksm_exit() - which, if necessary, 443 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 444 * a special flag: they can just back out as soon as mm_users goes to zero. 445 * ksm_test_exit() is used throughout to make this test for exit: in some 446 * places for correctness, in some places just to avoid unnecessary work. 447 */ 448 static inline bool ksm_test_exit(struct mm_struct *mm) 449 { 450 return atomic_read(&mm->mm_users) == 0; 451 } 452 453 /* 454 * We use break_ksm to break COW on a ksm page: it's a stripped down 455 * 456 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 457 * put_page(page); 458 * 459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 460 * in case the application has unmapped and remapped mm,addr meanwhile. 461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 462 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 463 * 464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 465 * of the process that owns 'vma'. We also do not want to enforce 466 * protection keys here anyway. 467 */ 468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 469 { 470 struct page *page; 471 vm_fault_t ret = 0; 472 473 do { 474 cond_resched(); 475 page = follow_page(vma, addr, 476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 477 if (IS_ERR_OR_NULL(page)) 478 break; 479 if (PageKsm(page)) 480 ret = handle_mm_fault(vma, addr, 481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 482 NULL); 483 else 484 ret = VM_FAULT_WRITE; 485 put_page(page); 486 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 487 /* 488 * We must loop because handle_mm_fault() may back out if there's 489 * any difficulty e.g. if pte accessed bit gets updated concurrently. 490 * 491 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 492 * COW has been broken, even if the vma does not permit VM_WRITE; 493 * but note that a concurrent fault might break PageKsm for us. 494 * 495 * VM_FAULT_SIGBUS could occur if we race with truncation of the 496 * backing file, which also invalidates anonymous pages: that's 497 * okay, that truncation will have unmapped the PageKsm for us. 498 * 499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 501 * current task has TIF_MEMDIE set, and will be OOM killed on return 502 * to user; and ksmd, having no mm, would never be chosen for that. 503 * 504 * But if the mm is in a limited mem_cgroup, then the fault may fail 505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 506 * even ksmd can fail in this way - though it's usually breaking ksm 507 * just to undo a merge it made a moment before, so unlikely to oom. 508 * 509 * That's a pity: we might therefore have more kernel pages allocated 510 * than we're counting as nodes in the stable tree; but ksm_do_scan 511 * will retry to break_cow on each pass, so should recover the page 512 * in due course. The important thing is to not let VM_MERGEABLE 513 * be cleared while any such pages might remain in the area. 514 */ 515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 516 } 517 518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 519 unsigned long addr) 520 { 521 struct vm_area_struct *vma; 522 if (ksm_test_exit(mm)) 523 return NULL; 524 vma = find_vma(mm, addr); 525 if (!vma || vma->vm_start > addr) 526 return NULL; 527 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 528 return NULL; 529 return vma; 530 } 531 532 static void break_cow(struct rmap_item *rmap_item) 533 { 534 struct mm_struct *mm = rmap_item->mm; 535 unsigned long addr = rmap_item->address; 536 struct vm_area_struct *vma; 537 538 /* 539 * It is not an accident that whenever we want to break COW 540 * to undo, we also need to drop a reference to the anon_vma. 541 */ 542 put_anon_vma(rmap_item->anon_vma); 543 544 mmap_read_lock(mm); 545 vma = find_mergeable_vma(mm, addr); 546 if (vma) 547 break_ksm(vma, addr); 548 mmap_read_unlock(mm); 549 } 550 551 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 552 { 553 struct mm_struct *mm = rmap_item->mm; 554 unsigned long addr = rmap_item->address; 555 struct vm_area_struct *vma; 556 struct page *page; 557 558 mmap_read_lock(mm); 559 vma = find_mergeable_vma(mm, addr); 560 if (!vma) 561 goto out; 562 563 page = follow_page(vma, addr, FOLL_GET); 564 if (IS_ERR_OR_NULL(page)) 565 goto out; 566 if (PageAnon(page)) { 567 flush_anon_page(vma, page, addr); 568 flush_dcache_page(page); 569 } else { 570 put_page(page); 571 out: 572 page = NULL; 573 } 574 mmap_read_unlock(mm); 575 return page; 576 } 577 578 /* 579 * This helper is used for getting right index into array of tree roots. 580 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 581 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 582 * every node has its own stable and unstable tree. 583 */ 584 static inline int get_kpfn_nid(unsigned long kpfn) 585 { 586 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 587 } 588 589 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 590 struct rb_root *root) 591 { 592 struct stable_node *chain = alloc_stable_node(); 593 VM_BUG_ON(is_stable_node_chain(dup)); 594 if (likely(chain)) { 595 INIT_HLIST_HEAD(&chain->hlist); 596 chain->chain_prune_time = jiffies; 597 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 598 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 599 chain->nid = NUMA_NO_NODE; /* debug */ 600 #endif 601 ksm_stable_node_chains++; 602 603 /* 604 * Put the stable node chain in the first dimension of 605 * the stable tree and at the same time remove the old 606 * stable node. 607 */ 608 rb_replace_node(&dup->node, &chain->node, root); 609 610 /* 611 * Move the old stable node to the second dimension 612 * queued in the hlist_dup. The invariant is that all 613 * dup stable_nodes in the chain->hlist point to pages 614 * that are write protected and have the exact same 615 * content. 616 */ 617 stable_node_chain_add_dup(dup, chain); 618 } 619 return chain; 620 } 621 622 static inline void free_stable_node_chain(struct stable_node *chain, 623 struct rb_root *root) 624 { 625 rb_erase(&chain->node, root); 626 free_stable_node(chain); 627 ksm_stable_node_chains--; 628 } 629 630 static void remove_node_from_stable_tree(struct stable_node *stable_node) 631 { 632 struct rmap_item *rmap_item; 633 634 /* check it's not STABLE_NODE_CHAIN or negative */ 635 BUG_ON(stable_node->rmap_hlist_len < 0); 636 637 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 638 if (rmap_item->hlist.next) 639 ksm_pages_sharing--; 640 else 641 ksm_pages_shared--; 642 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 643 stable_node->rmap_hlist_len--; 644 put_anon_vma(rmap_item->anon_vma); 645 rmap_item->address &= PAGE_MASK; 646 cond_resched(); 647 } 648 649 /* 650 * We need the second aligned pointer of the migrate_nodes 651 * list_head to stay clear from the rb_parent_color union 652 * (aligned and different than any node) and also different 653 * from &migrate_nodes. This will verify that future list.h changes 654 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 655 */ 656 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 659 #endif 660 661 if (stable_node->head == &migrate_nodes) 662 list_del(&stable_node->list); 663 else 664 stable_node_dup_del(stable_node); 665 free_stable_node(stable_node); 666 } 667 668 enum get_ksm_page_flags { 669 GET_KSM_PAGE_NOLOCK, 670 GET_KSM_PAGE_LOCK, 671 GET_KSM_PAGE_TRYLOCK 672 }; 673 674 /* 675 * get_ksm_page: checks if the page indicated by the stable node 676 * is still its ksm page, despite having held no reference to it. 677 * In which case we can trust the content of the page, and it 678 * returns the gotten page; but if the page has now been zapped, 679 * remove the stale node from the stable tree and return NULL. 680 * But beware, the stable node's page might be being migrated. 681 * 682 * You would expect the stable_node to hold a reference to the ksm page. 683 * But if it increments the page's count, swapping out has to wait for 684 * ksmd to come around again before it can free the page, which may take 685 * seconds or even minutes: much too unresponsive. So instead we use a 686 * "keyhole reference": access to the ksm page from the stable node peeps 687 * out through its keyhole to see if that page still holds the right key, 688 * pointing back to this stable node. This relies on freeing a PageAnon 689 * page to reset its page->mapping to NULL, and relies on no other use of 690 * a page to put something that might look like our key in page->mapping. 691 * is on its way to being freed; but it is an anomaly to bear in mind. 692 */ 693 static struct page *get_ksm_page(struct stable_node *stable_node, 694 enum get_ksm_page_flags flags) 695 { 696 struct page *page; 697 void *expected_mapping; 698 unsigned long kpfn; 699 700 expected_mapping = (void *)((unsigned long)stable_node | 701 PAGE_MAPPING_KSM); 702 again: 703 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 704 page = pfn_to_page(kpfn); 705 if (READ_ONCE(page->mapping) != expected_mapping) 706 goto stale; 707 708 /* 709 * We cannot do anything with the page while its refcount is 0. 710 * Usually 0 means free, or tail of a higher-order page: in which 711 * case this node is no longer referenced, and should be freed; 712 * however, it might mean that the page is under page_ref_freeze(). 713 * The __remove_mapping() case is easy, again the node is now stale; 714 * the same is in reuse_ksm_page() case; but if page is swapcache 715 * in migrate_page_move_mapping(), it might still be our page, 716 * in which case it's essential to keep the node. 717 */ 718 while (!get_page_unless_zero(page)) { 719 /* 720 * Another check for page->mapping != expected_mapping would 721 * work here too. We have chosen the !PageSwapCache test to 722 * optimize the common case, when the page is or is about to 723 * be freed: PageSwapCache is cleared (under spin_lock_irq) 724 * in the ref_freeze section of __remove_mapping(); but Anon 725 * page->mapping reset to NULL later, in free_pages_prepare(). 726 */ 727 if (!PageSwapCache(page)) 728 goto stale; 729 cpu_relax(); 730 } 731 732 if (READ_ONCE(page->mapping) != expected_mapping) { 733 put_page(page); 734 goto stale; 735 } 736 737 if (flags == GET_KSM_PAGE_TRYLOCK) { 738 if (!trylock_page(page)) { 739 put_page(page); 740 return ERR_PTR(-EBUSY); 741 } 742 } else if (flags == GET_KSM_PAGE_LOCK) 743 lock_page(page); 744 745 if (flags != GET_KSM_PAGE_NOLOCK) { 746 if (READ_ONCE(page->mapping) != expected_mapping) { 747 unlock_page(page); 748 put_page(page); 749 goto stale; 750 } 751 } 752 return page; 753 754 stale: 755 /* 756 * We come here from above when page->mapping or !PageSwapCache 757 * suggests that the node is stale; but it might be under migration. 758 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 759 * before checking whether node->kpfn has been changed. 760 */ 761 smp_rmb(); 762 if (READ_ONCE(stable_node->kpfn) != kpfn) 763 goto again; 764 remove_node_from_stable_tree(stable_node); 765 return NULL; 766 } 767 768 /* 769 * Removing rmap_item from stable or unstable tree. 770 * This function will clean the information from the stable/unstable tree. 771 */ 772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 773 { 774 if (rmap_item->address & STABLE_FLAG) { 775 struct stable_node *stable_node; 776 struct page *page; 777 778 stable_node = rmap_item->head; 779 page = get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 780 if (!page) 781 goto out; 782 783 hlist_del(&rmap_item->hlist); 784 put_page(page); 785 786 if (!hlist_empty(&stable_node->hlist)) 787 ksm_pages_sharing--; 788 else 789 ksm_pages_shared--; 790 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 791 stable_node->rmap_hlist_len--; 792 793 put_anon_vma(rmap_item->anon_vma); 794 rmap_item->head = NULL; 795 rmap_item->address &= PAGE_MASK; 796 797 } else if (rmap_item->address & UNSTABLE_FLAG) { 798 unsigned char age; 799 /* 800 * Usually ksmd can and must skip the rb_erase, because 801 * root_unstable_tree was already reset to RB_ROOT. 802 * But be careful when an mm is exiting: do the rb_erase 803 * if this rmap_item was inserted by this scan, rather 804 * than left over from before. 805 */ 806 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 807 BUG_ON(age > 1); 808 if (!age) 809 rb_erase(&rmap_item->node, 810 root_unstable_tree + NUMA(rmap_item->nid)); 811 ksm_pages_unshared--; 812 rmap_item->address &= PAGE_MASK; 813 } 814 out: 815 cond_resched(); /* we're called from many long loops */ 816 } 817 818 static void remove_trailing_rmap_items(struct rmap_item **rmap_list) 819 { 820 while (*rmap_list) { 821 struct rmap_item *rmap_item = *rmap_list; 822 *rmap_list = rmap_item->rmap_list; 823 remove_rmap_item_from_tree(rmap_item); 824 free_rmap_item(rmap_item); 825 } 826 } 827 828 /* 829 * Though it's very tempting to unmerge rmap_items from stable tree rather 830 * than check every pte of a given vma, the locking doesn't quite work for 831 * that - an rmap_item is assigned to the stable tree after inserting ksm 832 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 833 * rmap_items from parent to child at fork time (so as not to waste time 834 * if exit comes before the next scan reaches it). 835 * 836 * Similarly, although we'd like to remove rmap_items (so updating counts 837 * and freeing memory) when unmerging an area, it's easier to leave that 838 * to the next pass of ksmd - consider, for example, how ksmd might be 839 * in cmp_and_merge_page on one of the rmap_items we would be removing. 840 */ 841 static int unmerge_ksm_pages(struct vm_area_struct *vma, 842 unsigned long start, unsigned long end) 843 { 844 unsigned long addr; 845 int err = 0; 846 847 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 848 if (ksm_test_exit(vma->vm_mm)) 849 break; 850 if (signal_pending(current)) 851 err = -ERESTARTSYS; 852 else 853 err = break_ksm(vma, addr); 854 } 855 return err; 856 } 857 858 static inline struct stable_node *page_stable_node(struct page *page) 859 { 860 return PageKsm(page) ? page_rmapping(page) : NULL; 861 } 862 863 static inline void set_page_stable_node(struct page *page, 864 struct stable_node *stable_node) 865 { 866 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 867 } 868 869 #ifdef CONFIG_SYSFS 870 /* 871 * Only called through the sysfs control interface: 872 */ 873 static int remove_stable_node(struct stable_node *stable_node) 874 { 875 struct page *page; 876 int err; 877 878 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 879 if (!page) { 880 /* 881 * get_ksm_page did remove_node_from_stable_tree itself. 882 */ 883 return 0; 884 } 885 886 /* 887 * Page could be still mapped if this races with __mmput() running in 888 * between ksm_exit() and exit_mmap(). Just refuse to let 889 * merge_across_nodes/max_page_sharing be switched. 890 */ 891 err = -EBUSY; 892 if (!page_mapped(page)) { 893 /* 894 * The stable node did not yet appear stale to get_ksm_page(), 895 * since that allows for an unmapped ksm page to be recognized 896 * right up until it is freed; but the node is safe to remove. 897 * This page might be in a pagevec waiting to be freed, 898 * or it might be PageSwapCache (perhaps under writeback), 899 * or it might have been removed from swapcache a moment ago. 900 */ 901 set_page_stable_node(page, NULL); 902 remove_node_from_stable_tree(stable_node); 903 err = 0; 904 } 905 906 unlock_page(page); 907 put_page(page); 908 return err; 909 } 910 911 static int remove_stable_node_chain(struct stable_node *stable_node, 912 struct rb_root *root) 913 { 914 struct stable_node *dup; 915 struct hlist_node *hlist_safe; 916 917 if (!is_stable_node_chain(stable_node)) { 918 VM_BUG_ON(is_stable_node_dup(stable_node)); 919 if (remove_stable_node(stable_node)) 920 return true; 921 else 922 return false; 923 } 924 925 hlist_for_each_entry_safe(dup, hlist_safe, 926 &stable_node->hlist, hlist_dup) { 927 VM_BUG_ON(!is_stable_node_dup(dup)); 928 if (remove_stable_node(dup)) 929 return true; 930 } 931 BUG_ON(!hlist_empty(&stable_node->hlist)); 932 free_stable_node_chain(stable_node, root); 933 return false; 934 } 935 936 static int remove_all_stable_nodes(void) 937 { 938 struct stable_node *stable_node, *next; 939 int nid; 940 int err = 0; 941 942 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 943 while (root_stable_tree[nid].rb_node) { 944 stable_node = rb_entry(root_stable_tree[nid].rb_node, 945 struct stable_node, node); 946 if (remove_stable_node_chain(stable_node, 947 root_stable_tree + nid)) { 948 err = -EBUSY; 949 break; /* proceed to next nid */ 950 } 951 cond_resched(); 952 } 953 } 954 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 955 if (remove_stable_node(stable_node)) 956 err = -EBUSY; 957 cond_resched(); 958 } 959 return err; 960 } 961 962 static int unmerge_and_remove_all_rmap_items(void) 963 { 964 struct mm_slot *mm_slot; 965 struct mm_struct *mm; 966 struct vm_area_struct *vma; 967 int err = 0; 968 969 spin_lock(&ksm_mmlist_lock); 970 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 971 struct mm_slot, mm_list); 972 spin_unlock(&ksm_mmlist_lock); 973 974 for (mm_slot = ksm_scan.mm_slot; 975 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 976 mm = mm_slot->mm; 977 mmap_read_lock(mm); 978 for (vma = mm->mmap; vma; vma = vma->vm_next) { 979 if (ksm_test_exit(mm)) 980 break; 981 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 982 continue; 983 err = unmerge_ksm_pages(vma, 984 vma->vm_start, vma->vm_end); 985 if (err) 986 goto error; 987 } 988 989 remove_trailing_rmap_items(&mm_slot->rmap_list); 990 mmap_read_unlock(mm); 991 992 spin_lock(&ksm_mmlist_lock); 993 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 994 struct mm_slot, mm_list); 995 if (ksm_test_exit(mm)) { 996 hash_del(&mm_slot->link); 997 list_del(&mm_slot->mm_list); 998 spin_unlock(&ksm_mmlist_lock); 999 1000 free_mm_slot(mm_slot); 1001 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1002 mmdrop(mm); 1003 } else 1004 spin_unlock(&ksm_mmlist_lock); 1005 } 1006 1007 /* Clean up stable nodes, but don't worry if some are still busy */ 1008 remove_all_stable_nodes(); 1009 ksm_scan.seqnr = 0; 1010 return 0; 1011 1012 error: 1013 mmap_read_unlock(mm); 1014 spin_lock(&ksm_mmlist_lock); 1015 ksm_scan.mm_slot = &ksm_mm_head; 1016 spin_unlock(&ksm_mmlist_lock); 1017 return err; 1018 } 1019 #endif /* CONFIG_SYSFS */ 1020 1021 static u32 calc_checksum(struct page *page) 1022 { 1023 u32 checksum; 1024 void *addr = kmap_atomic(page); 1025 checksum = xxhash(addr, PAGE_SIZE, 0); 1026 kunmap_atomic(addr); 1027 return checksum; 1028 } 1029 1030 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1031 pte_t *orig_pte) 1032 { 1033 struct mm_struct *mm = vma->vm_mm; 1034 struct page_vma_mapped_walk pvmw = { 1035 .page = page, 1036 .vma = vma, 1037 }; 1038 int swapped; 1039 int err = -EFAULT; 1040 struct mmu_notifier_range range; 1041 1042 pvmw.address = page_address_in_vma(page, vma); 1043 if (pvmw.address == -EFAULT) 1044 goto out; 1045 1046 BUG_ON(PageTransCompound(page)); 1047 1048 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1049 pvmw.address, 1050 pvmw.address + PAGE_SIZE); 1051 mmu_notifier_invalidate_range_start(&range); 1052 1053 if (!page_vma_mapped_walk(&pvmw)) 1054 goto out_mn; 1055 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1056 goto out_unlock; 1057 1058 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1059 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1060 mm_tlb_flush_pending(mm)) { 1061 pte_t entry; 1062 1063 swapped = PageSwapCache(page); 1064 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1065 /* 1066 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1067 * take any lock, therefore the check that we are going to make 1068 * with the pagecount against the mapcount is racey and 1069 * O_DIRECT can happen right after the check. 1070 * So we clear the pte and flush the tlb before the check 1071 * this assure us that no O_DIRECT can happen after the check 1072 * or in the middle of the check. 1073 * 1074 * No need to notify as we are downgrading page table to read 1075 * only not changing it to point to a new page. 1076 * 1077 * See Documentation/vm/mmu_notifier.rst 1078 */ 1079 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1080 /* 1081 * Check that no O_DIRECT or similar I/O is in progress on the 1082 * page 1083 */ 1084 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1085 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1086 goto out_unlock; 1087 } 1088 if (pte_dirty(entry)) 1089 set_page_dirty(page); 1090 1091 if (pte_protnone(entry)) 1092 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1093 else 1094 entry = pte_mkclean(pte_wrprotect(entry)); 1095 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1096 } 1097 *orig_pte = *pvmw.pte; 1098 err = 0; 1099 1100 out_unlock: 1101 page_vma_mapped_walk_done(&pvmw); 1102 out_mn: 1103 mmu_notifier_invalidate_range_end(&range); 1104 out: 1105 return err; 1106 } 1107 1108 /** 1109 * replace_page - replace page in vma by new ksm page 1110 * @vma: vma that holds the pte pointing to page 1111 * @page: the page we are replacing by kpage 1112 * @kpage: the ksm page we replace page by 1113 * @orig_pte: the original value of the pte 1114 * 1115 * Returns 0 on success, -EFAULT on failure. 1116 */ 1117 static int replace_page(struct vm_area_struct *vma, struct page *page, 1118 struct page *kpage, pte_t orig_pte) 1119 { 1120 struct mm_struct *mm = vma->vm_mm; 1121 pmd_t *pmd; 1122 pte_t *ptep; 1123 pte_t newpte; 1124 spinlock_t *ptl; 1125 unsigned long addr; 1126 int err = -EFAULT; 1127 struct mmu_notifier_range range; 1128 1129 addr = page_address_in_vma(page, vma); 1130 if (addr == -EFAULT) 1131 goto out; 1132 1133 pmd = mm_find_pmd(mm, addr); 1134 if (!pmd) 1135 goto out; 1136 1137 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1138 addr + PAGE_SIZE); 1139 mmu_notifier_invalidate_range_start(&range); 1140 1141 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1142 if (!pte_same(*ptep, orig_pte)) { 1143 pte_unmap_unlock(ptep, ptl); 1144 goto out_mn; 1145 } 1146 1147 /* 1148 * No need to check ksm_use_zero_pages here: we can only have a 1149 * zero_page here if ksm_use_zero_pages was enabled already. 1150 */ 1151 if (!is_zero_pfn(page_to_pfn(kpage))) { 1152 get_page(kpage); 1153 page_add_anon_rmap(kpage, vma, addr, false); 1154 newpte = mk_pte(kpage, vma->vm_page_prot); 1155 } else { 1156 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1157 vma->vm_page_prot)); 1158 /* 1159 * We're replacing an anonymous page with a zero page, which is 1160 * not anonymous. We need to do proper accounting otherwise we 1161 * will get wrong values in /proc, and a BUG message in dmesg 1162 * when tearing down the mm. 1163 */ 1164 dec_mm_counter(mm, MM_ANONPAGES); 1165 } 1166 1167 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1168 /* 1169 * No need to notify as we are replacing a read only page with another 1170 * read only page with the same content. 1171 * 1172 * See Documentation/vm/mmu_notifier.rst 1173 */ 1174 ptep_clear_flush(vma, addr, ptep); 1175 set_pte_at_notify(mm, addr, ptep, newpte); 1176 1177 page_remove_rmap(page, false); 1178 if (!page_mapped(page)) 1179 try_to_free_swap(page); 1180 put_page(page); 1181 1182 pte_unmap_unlock(ptep, ptl); 1183 err = 0; 1184 out_mn: 1185 mmu_notifier_invalidate_range_end(&range); 1186 out: 1187 return err; 1188 } 1189 1190 /* 1191 * try_to_merge_one_page - take two pages and merge them into one 1192 * @vma: the vma that holds the pte pointing to page 1193 * @page: the PageAnon page that we want to replace with kpage 1194 * @kpage: the PageKsm page that we want to map instead of page, 1195 * or NULL the first time when we want to use page as kpage. 1196 * 1197 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1198 */ 1199 static int try_to_merge_one_page(struct vm_area_struct *vma, 1200 struct page *page, struct page *kpage) 1201 { 1202 pte_t orig_pte = __pte(0); 1203 int err = -EFAULT; 1204 1205 if (page == kpage) /* ksm page forked */ 1206 return 0; 1207 1208 if (!PageAnon(page)) 1209 goto out; 1210 1211 /* 1212 * We need the page lock to read a stable PageSwapCache in 1213 * write_protect_page(). We use trylock_page() instead of 1214 * lock_page() because we don't want to wait here - we 1215 * prefer to continue scanning and merging different pages, 1216 * then come back to this page when it is unlocked. 1217 */ 1218 if (!trylock_page(page)) 1219 goto out; 1220 1221 if (PageTransCompound(page)) { 1222 if (split_huge_page(page)) 1223 goto out_unlock; 1224 } 1225 1226 /* 1227 * If this anonymous page is mapped only here, its pte may need 1228 * to be write-protected. If it's mapped elsewhere, all of its 1229 * ptes are necessarily already write-protected. But in either 1230 * case, we need to lock and check page_count is not raised. 1231 */ 1232 if (write_protect_page(vma, page, &orig_pte) == 0) { 1233 if (!kpage) { 1234 /* 1235 * While we hold page lock, upgrade page from 1236 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1237 * stable_tree_insert() will update stable_node. 1238 */ 1239 set_page_stable_node(page, NULL); 1240 mark_page_accessed(page); 1241 /* 1242 * Page reclaim just frees a clean page with no dirty 1243 * ptes: make sure that the ksm page would be swapped. 1244 */ 1245 if (!PageDirty(page)) 1246 SetPageDirty(page); 1247 err = 0; 1248 } else if (pages_identical(page, kpage)) 1249 err = replace_page(vma, page, kpage, orig_pte); 1250 } 1251 1252 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1253 munlock_vma_page(page); 1254 if (!PageMlocked(kpage)) { 1255 unlock_page(page); 1256 lock_page(kpage); 1257 mlock_vma_page(kpage); 1258 page = kpage; /* for final unlock */ 1259 } 1260 } 1261 1262 out_unlock: 1263 unlock_page(page); 1264 out: 1265 return err; 1266 } 1267 1268 /* 1269 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1270 * but no new kernel page is allocated: kpage must already be a ksm page. 1271 * 1272 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1273 */ 1274 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1275 struct page *page, struct page *kpage) 1276 { 1277 struct mm_struct *mm = rmap_item->mm; 1278 struct vm_area_struct *vma; 1279 int err = -EFAULT; 1280 1281 mmap_read_lock(mm); 1282 vma = find_mergeable_vma(mm, rmap_item->address); 1283 if (!vma) 1284 goto out; 1285 1286 err = try_to_merge_one_page(vma, page, kpage); 1287 if (err) 1288 goto out; 1289 1290 /* Unstable nid is in union with stable anon_vma: remove first */ 1291 remove_rmap_item_from_tree(rmap_item); 1292 1293 /* Must get reference to anon_vma while still holding mmap_lock */ 1294 rmap_item->anon_vma = vma->anon_vma; 1295 get_anon_vma(vma->anon_vma); 1296 out: 1297 mmap_read_unlock(mm); 1298 return err; 1299 } 1300 1301 /* 1302 * try_to_merge_two_pages - take two identical pages and prepare them 1303 * to be merged into one page. 1304 * 1305 * This function returns the kpage if we successfully merged two identical 1306 * pages into one ksm page, NULL otherwise. 1307 * 1308 * Note that this function upgrades page to ksm page: if one of the pages 1309 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1310 */ 1311 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1312 struct page *page, 1313 struct rmap_item *tree_rmap_item, 1314 struct page *tree_page) 1315 { 1316 int err; 1317 1318 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1319 if (!err) { 1320 err = try_to_merge_with_ksm_page(tree_rmap_item, 1321 tree_page, page); 1322 /* 1323 * If that fails, we have a ksm page with only one pte 1324 * pointing to it: so break it. 1325 */ 1326 if (err) 1327 break_cow(rmap_item); 1328 } 1329 return err ? NULL : page; 1330 } 1331 1332 static __always_inline 1333 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1334 { 1335 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1336 /* 1337 * Check that at least one mapping still exists, otherwise 1338 * there's no much point to merge and share with this 1339 * stable_node, as the underlying tree_page of the other 1340 * sharer is going to be freed soon. 1341 */ 1342 return stable_node->rmap_hlist_len && 1343 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1344 } 1345 1346 static __always_inline 1347 bool is_page_sharing_candidate(struct stable_node *stable_node) 1348 { 1349 return __is_page_sharing_candidate(stable_node, 0); 1350 } 1351 1352 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1353 struct stable_node **_stable_node, 1354 struct rb_root *root, 1355 bool prune_stale_stable_nodes) 1356 { 1357 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1358 struct hlist_node *hlist_safe; 1359 struct page *_tree_page, *tree_page = NULL; 1360 int nr = 0; 1361 int found_rmap_hlist_len; 1362 1363 if (!prune_stale_stable_nodes || 1364 time_before(jiffies, stable_node->chain_prune_time + 1365 msecs_to_jiffies( 1366 ksm_stable_node_chains_prune_millisecs))) 1367 prune_stale_stable_nodes = false; 1368 else 1369 stable_node->chain_prune_time = jiffies; 1370 1371 hlist_for_each_entry_safe(dup, hlist_safe, 1372 &stable_node->hlist, hlist_dup) { 1373 cond_resched(); 1374 /* 1375 * We must walk all stable_node_dup to prune the stale 1376 * stable nodes during lookup. 1377 * 1378 * get_ksm_page can drop the nodes from the 1379 * stable_node->hlist if they point to freed pages 1380 * (that's why we do a _safe walk). The "dup" 1381 * stable_node parameter itself will be freed from 1382 * under us if it returns NULL. 1383 */ 1384 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1385 if (!_tree_page) 1386 continue; 1387 nr += 1; 1388 if (is_page_sharing_candidate(dup)) { 1389 if (!found || 1390 dup->rmap_hlist_len > found_rmap_hlist_len) { 1391 if (found) 1392 put_page(tree_page); 1393 found = dup; 1394 found_rmap_hlist_len = found->rmap_hlist_len; 1395 tree_page = _tree_page; 1396 1397 /* skip put_page for found dup */ 1398 if (!prune_stale_stable_nodes) 1399 break; 1400 continue; 1401 } 1402 } 1403 put_page(_tree_page); 1404 } 1405 1406 if (found) { 1407 /* 1408 * nr is counting all dups in the chain only if 1409 * prune_stale_stable_nodes is true, otherwise we may 1410 * break the loop at nr == 1 even if there are 1411 * multiple entries. 1412 */ 1413 if (prune_stale_stable_nodes && nr == 1) { 1414 /* 1415 * If there's not just one entry it would 1416 * corrupt memory, better BUG_ON. In KSM 1417 * context with no lock held it's not even 1418 * fatal. 1419 */ 1420 BUG_ON(stable_node->hlist.first->next); 1421 1422 /* 1423 * There's just one entry and it is below the 1424 * deduplication limit so drop the chain. 1425 */ 1426 rb_replace_node(&stable_node->node, &found->node, 1427 root); 1428 free_stable_node(stable_node); 1429 ksm_stable_node_chains--; 1430 ksm_stable_node_dups--; 1431 /* 1432 * NOTE: the caller depends on the stable_node 1433 * to be equal to stable_node_dup if the chain 1434 * was collapsed. 1435 */ 1436 *_stable_node = found; 1437 /* 1438 * Just for robustneess as stable_node is 1439 * otherwise left as a stable pointer, the 1440 * compiler shall optimize it away at build 1441 * time. 1442 */ 1443 stable_node = NULL; 1444 } else if (stable_node->hlist.first != &found->hlist_dup && 1445 __is_page_sharing_candidate(found, 1)) { 1446 /* 1447 * If the found stable_node dup can accept one 1448 * more future merge (in addition to the one 1449 * that is underway) and is not at the head of 1450 * the chain, put it there so next search will 1451 * be quicker in the !prune_stale_stable_nodes 1452 * case. 1453 * 1454 * NOTE: it would be inaccurate to use nr > 1 1455 * instead of checking the hlist.first pointer 1456 * directly, because in the 1457 * prune_stale_stable_nodes case "nr" isn't 1458 * the position of the found dup in the chain, 1459 * but the total number of dups in the chain. 1460 */ 1461 hlist_del(&found->hlist_dup); 1462 hlist_add_head(&found->hlist_dup, 1463 &stable_node->hlist); 1464 } 1465 } 1466 1467 *_stable_node_dup = found; 1468 return tree_page; 1469 } 1470 1471 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1472 struct rb_root *root) 1473 { 1474 if (!is_stable_node_chain(stable_node)) 1475 return stable_node; 1476 if (hlist_empty(&stable_node->hlist)) { 1477 free_stable_node_chain(stable_node, root); 1478 return NULL; 1479 } 1480 return hlist_entry(stable_node->hlist.first, 1481 typeof(*stable_node), hlist_dup); 1482 } 1483 1484 /* 1485 * Like for get_ksm_page, this function can free the *_stable_node and 1486 * *_stable_node_dup if the returned tree_page is NULL. 1487 * 1488 * It can also free and overwrite *_stable_node with the found 1489 * stable_node_dup if the chain is collapsed (in which case 1490 * *_stable_node will be equal to *_stable_node_dup like if the chain 1491 * never existed). It's up to the caller to verify tree_page is not 1492 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1493 * 1494 * *_stable_node_dup is really a second output parameter of this 1495 * function and will be overwritten in all cases, the caller doesn't 1496 * need to initialize it. 1497 */ 1498 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1499 struct stable_node **_stable_node, 1500 struct rb_root *root, 1501 bool prune_stale_stable_nodes) 1502 { 1503 struct stable_node *stable_node = *_stable_node; 1504 if (!is_stable_node_chain(stable_node)) { 1505 if (is_page_sharing_candidate(stable_node)) { 1506 *_stable_node_dup = stable_node; 1507 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1508 } 1509 /* 1510 * _stable_node_dup set to NULL means the stable_node 1511 * reached the ksm_max_page_sharing limit. 1512 */ 1513 *_stable_node_dup = NULL; 1514 return NULL; 1515 } 1516 return stable_node_dup(_stable_node_dup, _stable_node, root, 1517 prune_stale_stable_nodes); 1518 } 1519 1520 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1521 struct stable_node **s_n, 1522 struct rb_root *root) 1523 { 1524 return __stable_node_chain(s_n_d, s_n, root, true); 1525 } 1526 1527 static __always_inline struct page *chain(struct stable_node **s_n_d, 1528 struct stable_node *s_n, 1529 struct rb_root *root) 1530 { 1531 struct stable_node *old_stable_node = s_n; 1532 struct page *tree_page; 1533 1534 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1535 /* not pruning dups so s_n cannot have changed */ 1536 VM_BUG_ON(s_n != old_stable_node); 1537 return tree_page; 1538 } 1539 1540 /* 1541 * stable_tree_search - search for page inside the stable tree 1542 * 1543 * This function checks if there is a page inside the stable tree 1544 * with identical content to the page that we are scanning right now. 1545 * 1546 * This function returns the stable tree node of identical content if found, 1547 * NULL otherwise. 1548 */ 1549 static struct page *stable_tree_search(struct page *page) 1550 { 1551 int nid; 1552 struct rb_root *root; 1553 struct rb_node **new; 1554 struct rb_node *parent; 1555 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1556 struct stable_node *page_node; 1557 1558 page_node = page_stable_node(page); 1559 if (page_node && page_node->head != &migrate_nodes) { 1560 /* ksm page forked */ 1561 get_page(page); 1562 return page; 1563 } 1564 1565 nid = get_kpfn_nid(page_to_pfn(page)); 1566 root = root_stable_tree + nid; 1567 again: 1568 new = &root->rb_node; 1569 parent = NULL; 1570 1571 while (*new) { 1572 struct page *tree_page; 1573 int ret; 1574 1575 cond_resched(); 1576 stable_node = rb_entry(*new, struct stable_node, node); 1577 stable_node_any = NULL; 1578 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1579 /* 1580 * NOTE: stable_node may have been freed by 1581 * chain_prune() if the returned stable_node_dup is 1582 * not NULL. stable_node_dup may have been inserted in 1583 * the rbtree instead as a regular stable_node (in 1584 * order to collapse the stable_node chain if a single 1585 * stable_node dup was found in it). In such case the 1586 * stable_node is overwritten by the calleee to point 1587 * to the stable_node_dup that was collapsed in the 1588 * stable rbtree and stable_node will be equal to 1589 * stable_node_dup like if the chain never existed. 1590 */ 1591 if (!stable_node_dup) { 1592 /* 1593 * Either all stable_node dups were full in 1594 * this stable_node chain, or this chain was 1595 * empty and should be rb_erased. 1596 */ 1597 stable_node_any = stable_node_dup_any(stable_node, 1598 root); 1599 if (!stable_node_any) { 1600 /* rb_erase just run */ 1601 goto again; 1602 } 1603 /* 1604 * Take any of the stable_node dups page of 1605 * this stable_node chain to let the tree walk 1606 * continue. All KSM pages belonging to the 1607 * stable_node dups in a stable_node chain 1608 * have the same content and they're 1609 * write protected at all times. Any will work 1610 * fine to continue the walk. 1611 */ 1612 tree_page = get_ksm_page(stable_node_any, 1613 GET_KSM_PAGE_NOLOCK); 1614 } 1615 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1616 if (!tree_page) { 1617 /* 1618 * If we walked over a stale stable_node, 1619 * get_ksm_page() will call rb_erase() and it 1620 * may rebalance the tree from under us. So 1621 * restart the search from scratch. Returning 1622 * NULL would be safe too, but we'd generate 1623 * false negative insertions just because some 1624 * stable_node was stale. 1625 */ 1626 goto again; 1627 } 1628 1629 ret = memcmp_pages(page, tree_page); 1630 put_page(tree_page); 1631 1632 parent = *new; 1633 if (ret < 0) 1634 new = &parent->rb_left; 1635 else if (ret > 0) 1636 new = &parent->rb_right; 1637 else { 1638 if (page_node) { 1639 VM_BUG_ON(page_node->head != &migrate_nodes); 1640 /* 1641 * Test if the migrated page should be merged 1642 * into a stable node dup. If the mapcount is 1643 * 1 we can migrate it with another KSM page 1644 * without adding it to the chain. 1645 */ 1646 if (page_mapcount(page) > 1) 1647 goto chain_append; 1648 } 1649 1650 if (!stable_node_dup) { 1651 /* 1652 * If the stable_node is a chain and 1653 * we got a payload match in memcmp 1654 * but we cannot merge the scanned 1655 * page in any of the existing 1656 * stable_node dups because they're 1657 * all full, we need to wait the 1658 * scanned page to find itself a match 1659 * in the unstable tree to create a 1660 * brand new KSM page to add later to 1661 * the dups of this stable_node. 1662 */ 1663 return NULL; 1664 } 1665 1666 /* 1667 * Lock and unlock the stable_node's page (which 1668 * might already have been migrated) so that page 1669 * migration is sure to notice its raised count. 1670 * It would be more elegant to return stable_node 1671 * than kpage, but that involves more changes. 1672 */ 1673 tree_page = get_ksm_page(stable_node_dup, 1674 GET_KSM_PAGE_TRYLOCK); 1675 1676 if (PTR_ERR(tree_page) == -EBUSY) 1677 return ERR_PTR(-EBUSY); 1678 1679 if (unlikely(!tree_page)) 1680 /* 1681 * The tree may have been rebalanced, 1682 * so re-evaluate parent and new. 1683 */ 1684 goto again; 1685 unlock_page(tree_page); 1686 1687 if (get_kpfn_nid(stable_node_dup->kpfn) != 1688 NUMA(stable_node_dup->nid)) { 1689 put_page(tree_page); 1690 goto replace; 1691 } 1692 return tree_page; 1693 } 1694 } 1695 1696 if (!page_node) 1697 return NULL; 1698 1699 list_del(&page_node->list); 1700 DO_NUMA(page_node->nid = nid); 1701 rb_link_node(&page_node->node, parent, new); 1702 rb_insert_color(&page_node->node, root); 1703 out: 1704 if (is_page_sharing_candidate(page_node)) { 1705 get_page(page); 1706 return page; 1707 } else 1708 return NULL; 1709 1710 replace: 1711 /* 1712 * If stable_node was a chain and chain_prune collapsed it, 1713 * stable_node has been updated to be the new regular 1714 * stable_node. A collapse of the chain is indistinguishable 1715 * from the case there was no chain in the stable 1716 * rbtree. Otherwise stable_node is the chain and 1717 * stable_node_dup is the dup to replace. 1718 */ 1719 if (stable_node_dup == stable_node) { 1720 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1721 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1722 /* there is no chain */ 1723 if (page_node) { 1724 VM_BUG_ON(page_node->head != &migrate_nodes); 1725 list_del(&page_node->list); 1726 DO_NUMA(page_node->nid = nid); 1727 rb_replace_node(&stable_node_dup->node, 1728 &page_node->node, 1729 root); 1730 if (is_page_sharing_candidate(page_node)) 1731 get_page(page); 1732 else 1733 page = NULL; 1734 } else { 1735 rb_erase(&stable_node_dup->node, root); 1736 page = NULL; 1737 } 1738 } else { 1739 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1740 __stable_node_dup_del(stable_node_dup); 1741 if (page_node) { 1742 VM_BUG_ON(page_node->head != &migrate_nodes); 1743 list_del(&page_node->list); 1744 DO_NUMA(page_node->nid = nid); 1745 stable_node_chain_add_dup(page_node, stable_node); 1746 if (is_page_sharing_candidate(page_node)) 1747 get_page(page); 1748 else 1749 page = NULL; 1750 } else { 1751 page = NULL; 1752 } 1753 } 1754 stable_node_dup->head = &migrate_nodes; 1755 list_add(&stable_node_dup->list, stable_node_dup->head); 1756 return page; 1757 1758 chain_append: 1759 /* stable_node_dup could be null if it reached the limit */ 1760 if (!stable_node_dup) 1761 stable_node_dup = stable_node_any; 1762 /* 1763 * If stable_node was a chain and chain_prune collapsed it, 1764 * stable_node has been updated to be the new regular 1765 * stable_node. A collapse of the chain is indistinguishable 1766 * from the case there was no chain in the stable 1767 * rbtree. Otherwise stable_node is the chain and 1768 * stable_node_dup is the dup to replace. 1769 */ 1770 if (stable_node_dup == stable_node) { 1771 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1772 /* chain is missing so create it */ 1773 stable_node = alloc_stable_node_chain(stable_node_dup, 1774 root); 1775 if (!stable_node) 1776 return NULL; 1777 } 1778 /* 1779 * Add this stable_node dup that was 1780 * migrated to the stable_node chain 1781 * of the current nid for this page 1782 * content. 1783 */ 1784 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1785 VM_BUG_ON(page_node->head != &migrate_nodes); 1786 list_del(&page_node->list); 1787 DO_NUMA(page_node->nid = nid); 1788 stable_node_chain_add_dup(page_node, stable_node); 1789 goto out; 1790 } 1791 1792 /* 1793 * stable_tree_insert - insert stable tree node pointing to new ksm page 1794 * into the stable tree. 1795 * 1796 * This function returns the stable tree node just allocated on success, 1797 * NULL otherwise. 1798 */ 1799 static struct stable_node *stable_tree_insert(struct page *kpage) 1800 { 1801 int nid; 1802 unsigned long kpfn; 1803 struct rb_root *root; 1804 struct rb_node **new; 1805 struct rb_node *parent; 1806 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1807 bool need_chain = false; 1808 1809 kpfn = page_to_pfn(kpage); 1810 nid = get_kpfn_nid(kpfn); 1811 root = root_stable_tree + nid; 1812 again: 1813 parent = NULL; 1814 new = &root->rb_node; 1815 1816 while (*new) { 1817 struct page *tree_page; 1818 int ret; 1819 1820 cond_resched(); 1821 stable_node = rb_entry(*new, struct stable_node, node); 1822 stable_node_any = NULL; 1823 tree_page = chain(&stable_node_dup, stable_node, root); 1824 if (!stable_node_dup) { 1825 /* 1826 * Either all stable_node dups were full in 1827 * this stable_node chain, or this chain was 1828 * empty and should be rb_erased. 1829 */ 1830 stable_node_any = stable_node_dup_any(stable_node, 1831 root); 1832 if (!stable_node_any) { 1833 /* rb_erase just run */ 1834 goto again; 1835 } 1836 /* 1837 * Take any of the stable_node dups page of 1838 * this stable_node chain to let the tree walk 1839 * continue. All KSM pages belonging to the 1840 * stable_node dups in a stable_node chain 1841 * have the same content and they're 1842 * write protected at all times. Any will work 1843 * fine to continue the walk. 1844 */ 1845 tree_page = get_ksm_page(stable_node_any, 1846 GET_KSM_PAGE_NOLOCK); 1847 } 1848 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1849 if (!tree_page) { 1850 /* 1851 * If we walked over a stale stable_node, 1852 * get_ksm_page() will call rb_erase() and it 1853 * may rebalance the tree from under us. So 1854 * restart the search from scratch. Returning 1855 * NULL would be safe too, but we'd generate 1856 * false negative insertions just because some 1857 * stable_node was stale. 1858 */ 1859 goto again; 1860 } 1861 1862 ret = memcmp_pages(kpage, tree_page); 1863 put_page(tree_page); 1864 1865 parent = *new; 1866 if (ret < 0) 1867 new = &parent->rb_left; 1868 else if (ret > 0) 1869 new = &parent->rb_right; 1870 else { 1871 need_chain = true; 1872 break; 1873 } 1874 } 1875 1876 stable_node_dup = alloc_stable_node(); 1877 if (!stable_node_dup) 1878 return NULL; 1879 1880 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1881 stable_node_dup->kpfn = kpfn; 1882 set_page_stable_node(kpage, stable_node_dup); 1883 stable_node_dup->rmap_hlist_len = 0; 1884 DO_NUMA(stable_node_dup->nid = nid); 1885 if (!need_chain) { 1886 rb_link_node(&stable_node_dup->node, parent, new); 1887 rb_insert_color(&stable_node_dup->node, root); 1888 } else { 1889 if (!is_stable_node_chain(stable_node)) { 1890 struct stable_node *orig = stable_node; 1891 /* chain is missing so create it */ 1892 stable_node = alloc_stable_node_chain(orig, root); 1893 if (!stable_node) { 1894 free_stable_node(stable_node_dup); 1895 return NULL; 1896 } 1897 } 1898 stable_node_chain_add_dup(stable_node_dup, stable_node); 1899 } 1900 1901 return stable_node_dup; 1902 } 1903 1904 /* 1905 * unstable_tree_search_insert - search for identical page, 1906 * else insert rmap_item into the unstable tree. 1907 * 1908 * This function searches for a page in the unstable tree identical to the 1909 * page currently being scanned; and if no identical page is found in the 1910 * tree, we insert rmap_item as a new object into the unstable tree. 1911 * 1912 * This function returns pointer to rmap_item found to be identical 1913 * to the currently scanned page, NULL otherwise. 1914 * 1915 * This function does both searching and inserting, because they share 1916 * the same walking algorithm in an rbtree. 1917 */ 1918 static 1919 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1920 struct page *page, 1921 struct page **tree_pagep) 1922 { 1923 struct rb_node **new; 1924 struct rb_root *root; 1925 struct rb_node *parent = NULL; 1926 int nid; 1927 1928 nid = get_kpfn_nid(page_to_pfn(page)); 1929 root = root_unstable_tree + nid; 1930 new = &root->rb_node; 1931 1932 while (*new) { 1933 struct rmap_item *tree_rmap_item; 1934 struct page *tree_page; 1935 int ret; 1936 1937 cond_resched(); 1938 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1939 tree_page = get_mergeable_page(tree_rmap_item); 1940 if (!tree_page) 1941 return NULL; 1942 1943 /* 1944 * Don't substitute a ksm page for a forked page. 1945 */ 1946 if (page == tree_page) { 1947 put_page(tree_page); 1948 return NULL; 1949 } 1950 1951 ret = memcmp_pages(page, tree_page); 1952 1953 parent = *new; 1954 if (ret < 0) { 1955 put_page(tree_page); 1956 new = &parent->rb_left; 1957 } else if (ret > 0) { 1958 put_page(tree_page); 1959 new = &parent->rb_right; 1960 } else if (!ksm_merge_across_nodes && 1961 page_to_nid(tree_page) != nid) { 1962 /* 1963 * If tree_page has been migrated to another NUMA node, 1964 * it will be flushed out and put in the right unstable 1965 * tree next time: only merge with it when across_nodes. 1966 */ 1967 put_page(tree_page); 1968 return NULL; 1969 } else { 1970 *tree_pagep = tree_page; 1971 return tree_rmap_item; 1972 } 1973 } 1974 1975 rmap_item->address |= UNSTABLE_FLAG; 1976 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1977 DO_NUMA(rmap_item->nid = nid); 1978 rb_link_node(&rmap_item->node, parent, new); 1979 rb_insert_color(&rmap_item->node, root); 1980 1981 ksm_pages_unshared++; 1982 return NULL; 1983 } 1984 1985 /* 1986 * stable_tree_append - add another rmap_item to the linked list of 1987 * rmap_items hanging off a given node of the stable tree, all sharing 1988 * the same ksm page. 1989 */ 1990 static void stable_tree_append(struct rmap_item *rmap_item, 1991 struct stable_node *stable_node, 1992 bool max_page_sharing_bypass) 1993 { 1994 /* 1995 * rmap won't find this mapping if we don't insert the 1996 * rmap_item in the right stable_node 1997 * duplicate. page_migration could break later if rmap breaks, 1998 * so we can as well crash here. We really need to check for 1999 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2000 * for other negative values as an underflow if detected here 2001 * for the first time (and not when decreasing rmap_hlist_len) 2002 * would be sign of memory corruption in the stable_node. 2003 */ 2004 BUG_ON(stable_node->rmap_hlist_len < 0); 2005 2006 stable_node->rmap_hlist_len++; 2007 if (!max_page_sharing_bypass) 2008 /* possibly non fatal but unexpected overflow, only warn */ 2009 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2010 ksm_max_page_sharing); 2011 2012 rmap_item->head = stable_node; 2013 rmap_item->address |= STABLE_FLAG; 2014 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2015 2016 if (rmap_item->hlist.next) 2017 ksm_pages_sharing++; 2018 else 2019 ksm_pages_shared++; 2020 } 2021 2022 /* 2023 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2024 * if not, compare checksum to previous and if it's the same, see if page can 2025 * be inserted into the unstable tree, or merged with a page already there and 2026 * both transferred to the stable tree. 2027 * 2028 * @page: the page that we are searching identical page to. 2029 * @rmap_item: the reverse mapping into the virtual address of this page 2030 */ 2031 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2032 { 2033 struct mm_struct *mm = rmap_item->mm; 2034 struct rmap_item *tree_rmap_item; 2035 struct page *tree_page = NULL; 2036 struct stable_node *stable_node; 2037 struct page *kpage; 2038 unsigned int checksum; 2039 int err; 2040 bool max_page_sharing_bypass = false; 2041 2042 stable_node = page_stable_node(page); 2043 if (stable_node) { 2044 if (stable_node->head != &migrate_nodes && 2045 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2046 NUMA(stable_node->nid)) { 2047 stable_node_dup_del(stable_node); 2048 stable_node->head = &migrate_nodes; 2049 list_add(&stable_node->list, stable_node->head); 2050 } 2051 if (stable_node->head != &migrate_nodes && 2052 rmap_item->head == stable_node) 2053 return; 2054 /* 2055 * If it's a KSM fork, allow it to go over the sharing limit 2056 * without warnings. 2057 */ 2058 if (!is_page_sharing_candidate(stable_node)) 2059 max_page_sharing_bypass = true; 2060 } 2061 2062 /* We first start with searching the page inside the stable tree */ 2063 kpage = stable_tree_search(page); 2064 if (kpage == page && rmap_item->head == stable_node) { 2065 put_page(kpage); 2066 return; 2067 } 2068 2069 remove_rmap_item_from_tree(rmap_item); 2070 2071 if (kpage) { 2072 if (PTR_ERR(kpage) == -EBUSY) 2073 return; 2074 2075 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2076 if (!err) { 2077 /* 2078 * The page was successfully merged: 2079 * add its rmap_item to the stable tree. 2080 */ 2081 lock_page(kpage); 2082 stable_tree_append(rmap_item, page_stable_node(kpage), 2083 max_page_sharing_bypass); 2084 unlock_page(kpage); 2085 } 2086 put_page(kpage); 2087 return; 2088 } 2089 2090 /* 2091 * If the hash value of the page has changed from the last time 2092 * we calculated it, this page is changing frequently: therefore we 2093 * don't want to insert it in the unstable tree, and we don't want 2094 * to waste our time searching for something identical to it there. 2095 */ 2096 checksum = calc_checksum(page); 2097 if (rmap_item->oldchecksum != checksum) { 2098 rmap_item->oldchecksum = checksum; 2099 return; 2100 } 2101 2102 /* 2103 * Same checksum as an empty page. We attempt to merge it with the 2104 * appropriate zero page if the user enabled this via sysfs. 2105 */ 2106 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2107 struct vm_area_struct *vma; 2108 2109 mmap_read_lock(mm); 2110 vma = find_mergeable_vma(mm, rmap_item->address); 2111 if (vma) { 2112 err = try_to_merge_one_page(vma, page, 2113 ZERO_PAGE(rmap_item->address)); 2114 } else { 2115 /* 2116 * If the vma is out of date, we do not need to 2117 * continue. 2118 */ 2119 err = 0; 2120 } 2121 mmap_read_unlock(mm); 2122 /* 2123 * In case of failure, the page was not really empty, so we 2124 * need to continue. Otherwise we're done. 2125 */ 2126 if (!err) 2127 return; 2128 } 2129 tree_rmap_item = 2130 unstable_tree_search_insert(rmap_item, page, &tree_page); 2131 if (tree_rmap_item) { 2132 bool split; 2133 2134 kpage = try_to_merge_two_pages(rmap_item, page, 2135 tree_rmap_item, tree_page); 2136 /* 2137 * If both pages we tried to merge belong to the same compound 2138 * page, then we actually ended up increasing the reference 2139 * count of the same compound page twice, and split_huge_page 2140 * failed. 2141 * Here we set a flag if that happened, and we use it later to 2142 * try split_huge_page again. Since we call put_page right 2143 * afterwards, the reference count will be correct and 2144 * split_huge_page should succeed. 2145 */ 2146 split = PageTransCompound(page) 2147 && compound_head(page) == compound_head(tree_page); 2148 put_page(tree_page); 2149 if (kpage) { 2150 /* 2151 * The pages were successfully merged: insert new 2152 * node in the stable tree and add both rmap_items. 2153 */ 2154 lock_page(kpage); 2155 stable_node = stable_tree_insert(kpage); 2156 if (stable_node) { 2157 stable_tree_append(tree_rmap_item, stable_node, 2158 false); 2159 stable_tree_append(rmap_item, stable_node, 2160 false); 2161 } 2162 unlock_page(kpage); 2163 2164 /* 2165 * If we fail to insert the page into the stable tree, 2166 * we will have 2 virtual addresses that are pointing 2167 * to a ksm page left outside the stable tree, 2168 * in which case we need to break_cow on both. 2169 */ 2170 if (!stable_node) { 2171 break_cow(tree_rmap_item); 2172 break_cow(rmap_item); 2173 } 2174 } else if (split) { 2175 /* 2176 * We are here if we tried to merge two pages and 2177 * failed because they both belonged to the same 2178 * compound page. We will split the page now, but no 2179 * merging will take place. 2180 * We do not want to add the cost of a full lock; if 2181 * the page is locked, it is better to skip it and 2182 * perhaps try again later. 2183 */ 2184 if (!trylock_page(page)) 2185 return; 2186 split_huge_page(page); 2187 unlock_page(page); 2188 } 2189 } 2190 } 2191 2192 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2193 struct rmap_item **rmap_list, 2194 unsigned long addr) 2195 { 2196 struct rmap_item *rmap_item; 2197 2198 while (*rmap_list) { 2199 rmap_item = *rmap_list; 2200 if ((rmap_item->address & PAGE_MASK) == addr) 2201 return rmap_item; 2202 if (rmap_item->address > addr) 2203 break; 2204 *rmap_list = rmap_item->rmap_list; 2205 remove_rmap_item_from_tree(rmap_item); 2206 free_rmap_item(rmap_item); 2207 } 2208 2209 rmap_item = alloc_rmap_item(); 2210 if (rmap_item) { 2211 /* It has already been zeroed */ 2212 rmap_item->mm = mm_slot->mm; 2213 rmap_item->address = addr; 2214 rmap_item->rmap_list = *rmap_list; 2215 *rmap_list = rmap_item; 2216 } 2217 return rmap_item; 2218 } 2219 2220 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2221 { 2222 struct mm_struct *mm; 2223 struct mm_slot *slot; 2224 struct vm_area_struct *vma; 2225 struct rmap_item *rmap_item; 2226 int nid; 2227 2228 if (list_empty(&ksm_mm_head.mm_list)) 2229 return NULL; 2230 2231 slot = ksm_scan.mm_slot; 2232 if (slot == &ksm_mm_head) { 2233 /* 2234 * A number of pages can hang around indefinitely on per-cpu 2235 * pagevecs, raised page count preventing write_protect_page 2236 * from merging them. Though it doesn't really matter much, 2237 * it is puzzling to see some stuck in pages_volatile until 2238 * other activity jostles them out, and they also prevented 2239 * LTP's KSM test from succeeding deterministically; so drain 2240 * them here (here rather than on entry to ksm_do_scan(), 2241 * so we don't IPI too often when pages_to_scan is set low). 2242 */ 2243 lru_add_drain_all(); 2244 2245 /* 2246 * Whereas stale stable_nodes on the stable_tree itself 2247 * get pruned in the regular course of stable_tree_search(), 2248 * those moved out to the migrate_nodes list can accumulate: 2249 * so prune them once before each full scan. 2250 */ 2251 if (!ksm_merge_across_nodes) { 2252 struct stable_node *stable_node, *next; 2253 struct page *page; 2254 2255 list_for_each_entry_safe(stable_node, next, 2256 &migrate_nodes, list) { 2257 page = get_ksm_page(stable_node, 2258 GET_KSM_PAGE_NOLOCK); 2259 if (page) 2260 put_page(page); 2261 cond_resched(); 2262 } 2263 } 2264 2265 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2266 root_unstable_tree[nid] = RB_ROOT; 2267 2268 spin_lock(&ksm_mmlist_lock); 2269 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2270 ksm_scan.mm_slot = slot; 2271 spin_unlock(&ksm_mmlist_lock); 2272 /* 2273 * Although we tested list_empty() above, a racing __ksm_exit 2274 * of the last mm on the list may have removed it since then. 2275 */ 2276 if (slot == &ksm_mm_head) 2277 return NULL; 2278 next_mm: 2279 ksm_scan.address = 0; 2280 ksm_scan.rmap_list = &slot->rmap_list; 2281 } 2282 2283 mm = slot->mm; 2284 mmap_read_lock(mm); 2285 if (ksm_test_exit(mm)) 2286 vma = NULL; 2287 else 2288 vma = find_vma(mm, ksm_scan.address); 2289 2290 for (; vma; vma = vma->vm_next) { 2291 if (!(vma->vm_flags & VM_MERGEABLE)) 2292 continue; 2293 if (ksm_scan.address < vma->vm_start) 2294 ksm_scan.address = vma->vm_start; 2295 if (!vma->anon_vma) 2296 ksm_scan.address = vma->vm_end; 2297 2298 while (ksm_scan.address < vma->vm_end) { 2299 if (ksm_test_exit(mm)) 2300 break; 2301 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2302 if (IS_ERR_OR_NULL(*page)) { 2303 ksm_scan.address += PAGE_SIZE; 2304 cond_resched(); 2305 continue; 2306 } 2307 if (PageAnon(*page)) { 2308 flush_anon_page(vma, *page, ksm_scan.address); 2309 flush_dcache_page(*page); 2310 rmap_item = get_next_rmap_item(slot, 2311 ksm_scan.rmap_list, ksm_scan.address); 2312 if (rmap_item) { 2313 ksm_scan.rmap_list = 2314 &rmap_item->rmap_list; 2315 ksm_scan.address += PAGE_SIZE; 2316 } else 2317 put_page(*page); 2318 mmap_read_unlock(mm); 2319 return rmap_item; 2320 } 2321 put_page(*page); 2322 ksm_scan.address += PAGE_SIZE; 2323 cond_resched(); 2324 } 2325 } 2326 2327 if (ksm_test_exit(mm)) { 2328 ksm_scan.address = 0; 2329 ksm_scan.rmap_list = &slot->rmap_list; 2330 } 2331 /* 2332 * Nuke all the rmap_items that are above this current rmap: 2333 * because there were no VM_MERGEABLE vmas with such addresses. 2334 */ 2335 remove_trailing_rmap_items(ksm_scan.rmap_list); 2336 2337 spin_lock(&ksm_mmlist_lock); 2338 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2339 struct mm_slot, mm_list); 2340 if (ksm_scan.address == 0) { 2341 /* 2342 * We've completed a full scan of all vmas, holding mmap_lock 2343 * throughout, and found no VM_MERGEABLE: so do the same as 2344 * __ksm_exit does to remove this mm from all our lists now. 2345 * This applies either when cleaning up after __ksm_exit 2346 * (but beware: we can reach here even before __ksm_exit), 2347 * or when all VM_MERGEABLE areas have been unmapped (and 2348 * mmap_lock then protects against race with MADV_MERGEABLE). 2349 */ 2350 hash_del(&slot->link); 2351 list_del(&slot->mm_list); 2352 spin_unlock(&ksm_mmlist_lock); 2353 2354 free_mm_slot(slot); 2355 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2356 mmap_read_unlock(mm); 2357 mmdrop(mm); 2358 } else { 2359 mmap_read_unlock(mm); 2360 /* 2361 * mmap_read_unlock(mm) first because after 2362 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2363 * already have been freed under us by __ksm_exit() 2364 * because the "mm_slot" is still hashed and 2365 * ksm_scan.mm_slot doesn't point to it anymore. 2366 */ 2367 spin_unlock(&ksm_mmlist_lock); 2368 } 2369 2370 /* Repeat until we've completed scanning the whole list */ 2371 slot = ksm_scan.mm_slot; 2372 if (slot != &ksm_mm_head) 2373 goto next_mm; 2374 2375 ksm_scan.seqnr++; 2376 return NULL; 2377 } 2378 2379 /** 2380 * ksm_do_scan - the ksm scanner main worker function. 2381 * @scan_npages: number of pages we want to scan before we return. 2382 */ 2383 static void ksm_do_scan(unsigned int scan_npages) 2384 { 2385 struct rmap_item *rmap_item; 2386 struct page *page; 2387 2388 while (scan_npages-- && likely(!freezing(current))) { 2389 cond_resched(); 2390 rmap_item = scan_get_next_rmap_item(&page); 2391 if (!rmap_item) 2392 return; 2393 cmp_and_merge_page(page, rmap_item); 2394 put_page(page); 2395 } 2396 } 2397 2398 static int ksmd_should_run(void) 2399 { 2400 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2401 } 2402 2403 static int ksm_scan_thread(void *nothing) 2404 { 2405 unsigned int sleep_ms; 2406 2407 set_freezable(); 2408 set_user_nice(current, 5); 2409 2410 while (!kthread_should_stop()) { 2411 mutex_lock(&ksm_thread_mutex); 2412 wait_while_offlining(); 2413 if (ksmd_should_run()) 2414 ksm_do_scan(ksm_thread_pages_to_scan); 2415 mutex_unlock(&ksm_thread_mutex); 2416 2417 try_to_freeze(); 2418 2419 if (ksmd_should_run()) { 2420 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2421 wait_event_interruptible_timeout(ksm_iter_wait, 2422 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2423 msecs_to_jiffies(sleep_ms)); 2424 } else { 2425 wait_event_freezable(ksm_thread_wait, 2426 ksmd_should_run() || kthread_should_stop()); 2427 } 2428 } 2429 return 0; 2430 } 2431 2432 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2433 unsigned long end, int advice, unsigned long *vm_flags) 2434 { 2435 struct mm_struct *mm = vma->vm_mm; 2436 int err; 2437 2438 switch (advice) { 2439 case MADV_MERGEABLE: 2440 /* 2441 * Be somewhat over-protective for now! 2442 */ 2443 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2444 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2445 VM_HUGETLB | VM_MIXEDMAP)) 2446 return 0; /* just ignore the advice */ 2447 2448 if (vma_is_dax(vma)) 2449 return 0; 2450 2451 #ifdef VM_SAO 2452 if (*vm_flags & VM_SAO) 2453 return 0; 2454 #endif 2455 #ifdef VM_SPARC_ADI 2456 if (*vm_flags & VM_SPARC_ADI) 2457 return 0; 2458 #endif 2459 2460 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2461 err = __ksm_enter(mm); 2462 if (err) 2463 return err; 2464 } 2465 2466 *vm_flags |= VM_MERGEABLE; 2467 break; 2468 2469 case MADV_UNMERGEABLE: 2470 if (!(*vm_flags & VM_MERGEABLE)) 2471 return 0; /* just ignore the advice */ 2472 2473 if (vma->anon_vma) { 2474 err = unmerge_ksm_pages(vma, start, end); 2475 if (err) 2476 return err; 2477 } 2478 2479 *vm_flags &= ~VM_MERGEABLE; 2480 break; 2481 } 2482 2483 return 0; 2484 } 2485 EXPORT_SYMBOL_GPL(ksm_madvise); 2486 2487 int __ksm_enter(struct mm_struct *mm) 2488 { 2489 struct mm_slot *mm_slot; 2490 int needs_wakeup; 2491 2492 mm_slot = alloc_mm_slot(); 2493 if (!mm_slot) 2494 return -ENOMEM; 2495 2496 /* Check ksm_run too? Would need tighter locking */ 2497 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2498 2499 spin_lock(&ksm_mmlist_lock); 2500 insert_to_mm_slots_hash(mm, mm_slot); 2501 /* 2502 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2503 * insert just behind the scanning cursor, to let the area settle 2504 * down a little; when fork is followed by immediate exec, we don't 2505 * want ksmd to waste time setting up and tearing down an rmap_list. 2506 * 2507 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2508 * scanning cursor, otherwise KSM pages in newly forked mms will be 2509 * missed: then we might as well insert at the end of the list. 2510 */ 2511 if (ksm_run & KSM_RUN_UNMERGE) 2512 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2513 else 2514 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2515 spin_unlock(&ksm_mmlist_lock); 2516 2517 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2518 mmgrab(mm); 2519 2520 if (needs_wakeup) 2521 wake_up_interruptible(&ksm_thread_wait); 2522 2523 return 0; 2524 } 2525 2526 void __ksm_exit(struct mm_struct *mm) 2527 { 2528 struct mm_slot *mm_slot; 2529 int easy_to_free = 0; 2530 2531 /* 2532 * This process is exiting: if it's straightforward (as is the 2533 * case when ksmd was never running), free mm_slot immediately. 2534 * But if it's at the cursor or has rmap_items linked to it, use 2535 * mmap_lock to synchronize with any break_cows before pagetables 2536 * are freed, and leave the mm_slot on the list for ksmd to free. 2537 * Beware: ksm may already have noticed it exiting and freed the slot. 2538 */ 2539 2540 spin_lock(&ksm_mmlist_lock); 2541 mm_slot = get_mm_slot(mm); 2542 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2543 if (!mm_slot->rmap_list) { 2544 hash_del(&mm_slot->link); 2545 list_del(&mm_slot->mm_list); 2546 easy_to_free = 1; 2547 } else { 2548 list_move(&mm_slot->mm_list, 2549 &ksm_scan.mm_slot->mm_list); 2550 } 2551 } 2552 spin_unlock(&ksm_mmlist_lock); 2553 2554 if (easy_to_free) { 2555 free_mm_slot(mm_slot); 2556 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2557 mmdrop(mm); 2558 } else if (mm_slot) { 2559 mmap_write_lock(mm); 2560 mmap_write_unlock(mm); 2561 } 2562 } 2563 2564 struct page *ksm_might_need_to_copy(struct page *page, 2565 struct vm_area_struct *vma, unsigned long address) 2566 { 2567 struct anon_vma *anon_vma = page_anon_vma(page); 2568 struct page *new_page; 2569 2570 if (PageKsm(page)) { 2571 if (page_stable_node(page) && 2572 !(ksm_run & KSM_RUN_UNMERGE)) 2573 return page; /* no need to copy it */ 2574 } else if (!anon_vma) { 2575 return page; /* no need to copy it */ 2576 } else if (anon_vma->root == vma->anon_vma->root && 2577 page->index == linear_page_index(vma, address)) { 2578 return page; /* still no need to copy it */ 2579 } 2580 if (!PageUptodate(page)) 2581 return page; /* let do_swap_page report the error */ 2582 2583 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2584 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) { 2585 put_page(new_page); 2586 new_page = NULL; 2587 } 2588 if (new_page) { 2589 copy_user_highpage(new_page, page, address, vma); 2590 2591 SetPageDirty(new_page); 2592 __SetPageUptodate(new_page); 2593 __SetPageLocked(new_page); 2594 } 2595 2596 return new_page; 2597 } 2598 2599 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2600 { 2601 struct stable_node *stable_node; 2602 struct rmap_item *rmap_item; 2603 int search_new_forks = 0; 2604 2605 VM_BUG_ON_PAGE(!PageKsm(page), page); 2606 2607 /* 2608 * Rely on the page lock to protect against concurrent modifications 2609 * to that page's node of the stable tree. 2610 */ 2611 VM_BUG_ON_PAGE(!PageLocked(page), page); 2612 2613 stable_node = page_stable_node(page); 2614 if (!stable_node) 2615 return; 2616 again: 2617 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2618 struct anon_vma *anon_vma = rmap_item->anon_vma; 2619 struct anon_vma_chain *vmac; 2620 struct vm_area_struct *vma; 2621 2622 cond_resched(); 2623 anon_vma_lock_read(anon_vma); 2624 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2625 0, ULONG_MAX) { 2626 unsigned long addr; 2627 2628 cond_resched(); 2629 vma = vmac->vma; 2630 2631 /* Ignore the stable/unstable/sqnr flags */ 2632 addr = rmap_item->address & PAGE_MASK; 2633 2634 if (addr < vma->vm_start || addr >= vma->vm_end) 2635 continue; 2636 /* 2637 * Initially we examine only the vma which covers this 2638 * rmap_item; but later, if there is still work to do, 2639 * we examine covering vmas in other mms: in case they 2640 * were forked from the original since ksmd passed. 2641 */ 2642 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2643 continue; 2644 2645 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2646 continue; 2647 2648 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2649 anon_vma_unlock_read(anon_vma); 2650 return; 2651 } 2652 if (rwc->done && rwc->done(page)) { 2653 anon_vma_unlock_read(anon_vma); 2654 return; 2655 } 2656 } 2657 anon_vma_unlock_read(anon_vma); 2658 } 2659 if (!search_new_forks++) 2660 goto again; 2661 } 2662 2663 #ifdef CONFIG_MIGRATION 2664 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2665 { 2666 struct stable_node *stable_node; 2667 2668 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2669 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2670 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2671 2672 stable_node = page_stable_node(newpage); 2673 if (stable_node) { 2674 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2675 stable_node->kpfn = page_to_pfn(newpage); 2676 /* 2677 * newpage->mapping was set in advance; now we need smp_wmb() 2678 * to make sure that the new stable_node->kpfn is visible 2679 * to get_ksm_page() before it can see that oldpage->mapping 2680 * has gone stale (or that PageSwapCache has been cleared). 2681 */ 2682 smp_wmb(); 2683 set_page_stable_node(oldpage, NULL); 2684 } 2685 } 2686 #endif /* CONFIG_MIGRATION */ 2687 2688 #ifdef CONFIG_MEMORY_HOTREMOVE 2689 static void wait_while_offlining(void) 2690 { 2691 while (ksm_run & KSM_RUN_OFFLINE) { 2692 mutex_unlock(&ksm_thread_mutex); 2693 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2694 TASK_UNINTERRUPTIBLE); 2695 mutex_lock(&ksm_thread_mutex); 2696 } 2697 } 2698 2699 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2700 unsigned long start_pfn, 2701 unsigned long end_pfn) 2702 { 2703 if (stable_node->kpfn >= start_pfn && 2704 stable_node->kpfn < end_pfn) { 2705 /* 2706 * Don't get_ksm_page, page has already gone: 2707 * which is why we keep kpfn instead of page* 2708 */ 2709 remove_node_from_stable_tree(stable_node); 2710 return true; 2711 } 2712 return false; 2713 } 2714 2715 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2716 unsigned long start_pfn, 2717 unsigned long end_pfn, 2718 struct rb_root *root) 2719 { 2720 struct stable_node *dup; 2721 struct hlist_node *hlist_safe; 2722 2723 if (!is_stable_node_chain(stable_node)) { 2724 VM_BUG_ON(is_stable_node_dup(stable_node)); 2725 return stable_node_dup_remove_range(stable_node, start_pfn, 2726 end_pfn); 2727 } 2728 2729 hlist_for_each_entry_safe(dup, hlist_safe, 2730 &stable_node->hlist, hlist_dup) { 2731 VM_BUG_ON(!is_stable_node_dup(dup)); 2732 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2733 } 2734 if (hlist_empty(&stable_node->hlist)) { 2735 free_stable_node_chain(stable_node, root); 2736 return true; /* notify caller that tree was rebalanced */ 2737 } else 2738 return false; 2739 } 2740 2741 static void ksm_check_stable_tree(unsigned long start_pfn, 2742 unsigned long end_pfn) 2743 { 2744 struct stable_node *stable_node, *next; 2745 struct rb_node *node; 2746 int nid; 2747 2748 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2749 node = rb_first(root_stable_tree + nid); 2750 while (node) { 2751 stable_node = rb_entry(node, struct stable_node, node); 2752 if (stable_node_chain_remove_range(stable_node, 2753 start_pfn, end_pfn, 2754 root_stable_tree + 2755 nid)) 2756 node = rb_first(root_stable_tree + nid); 2757 else 2758 node = rb_next(node); 2759 cond_resched(); 2760 } 2761 } 2762 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2763 if (stable_node->kpfn >= start_pfn && 2764 stable_node->kpfn < end_pfn) 2765 remove_node_from_stable_tree(stable_node); 2766 cond_resched(); 2767 } 2768 } 2769 2770 static int ksm_memory_callback(struct notifier_block *self, 2771 unsigned long action, void *arg) 2772 { 2773 struct memory_notify *mn = arg; 2774 2775 switch (action) { 2776 case MEM_GOING_OFFLINE: 2777 /* 2778 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2779 * and remove_all_stable_nodes() while memory is going offline: 2780 * it is unsafe for them to touch the stable tree at this time. 2781 * But unmerge_ksm_pages(), rmap lookups and other entry points 2782 * which do not need the ksm_thread_mutex are all safe. 2783 */ 2784 mutex_lock(&ksm_thread_mutex); 2785 ksm_run |= KSM_RUN_OFFLINE; 2786 mutex_unlock(&ksm_thread_mutex); 2787 break; 2788 2789 case MEM_OFFLINE: 2790 /* 2791 * Most of the work is done by page migration; but there might 2792 * be a few stable_nodes left over, still pointing to struct 2793 * pages which have been offlined: prune those from the tree, 2794 * otherwise get_ksm_page() might later try to access a 2795 * non-existent struct page. 2796 */ 2797 ksm_check_stable_tree(mn->start_pfn, 2798 mn->start_pfn + mn->nr_pages); 2799 fallthrough; 2800 case MEM_CANCEL_OFFLINE: 2801 mutex_lock(&ksm_thread_mutex); 2802 ksm_run &= ~KSM_RUN_OFFLINE; 2803 mutex_unlock(&ksm_thread_mutex); 2804 2805 smp_mb(); /* wake_up_bit advises this */ 2806 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2807 break; 2808 } 2809 return NOTIFY_OK; 2810 } 2811 #else 2812 static void wait_while_offlining(void) 2813 { 2814 } 2815 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2816 2817 #ifdef CONFIG_SYSFS 2818 /* 2819 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2820 */ 2821 2822 #define KSM_ATTR_RO(_name) \ 2823 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2824 #define KSM_ATTR(_name) \ 2825 static struct kobj_attribute _name##_attr = \ 2826 __ATTR(_name, 0644, _name##_show, _name##_store) 2827 2828 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2829 struct kobj_attribute *attr, char *buf) 2830 { 2831 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2832 } 2833 2834 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2835 struct kobj_attribute *attr, 2836 const char *buf, size_t count) 2837 { 2838 unsigned int msecs; 2839 int err; 2840 2841 err = kstrtouint(buf, 10, &msecs); 2842 if (err) 2843 return -EINVAL; 2844 2845 ksm_thread_sleep_millisecs = msecs; 2846 wake_up_interruptible(&ksm_iter_wait); 2847 2848 return count; 2849 } 2850 KSM_ATTR(sleep_millisecs); 2851 2852 static ssize_t pages_to_scan_show(struct kobject *kobj, 2853 struct kobj_attribute *attr, char *buf) 2854 { 2855 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2856 } 2857 2858 static ssize_t pages_to_scan_store(struct kobject *kobj, 2859 struct kobj_attribute *attr, 2860 const char *buf, size_t count) 2861 { 2862 unsigned int nr_pages; 2863 int err; 2864 2865 err = kstrtouint(buf, 10, &nr_pages); 2866 if (err) 2867 return -EINVAL; 2868 2869 ksm_thread_pages_to_scan = nr_pages; 2870 2871 return count; 2872 } 2873 KSM_ATTR(pages_to_scan); 2874 2875 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2876 char *buf) 2877 { 2878 return sysfs_emit(buf, "%lu\n", ksm_run); 2879 } 2880 2881 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2882 const char *buf, size_t count) 2883 { 2884 unsigned int flags; 2885 int err; 2886 2887 err = kstrtouint(buf, 10, &flags); 2888 if (err) 2889 return -EINVAL; 2890 if (flags > KSM_RUN_UNMERGE) 2891 return -EINVAL; 2892 2893 /* 2894 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2895 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2896 * breaking COW to free the pages_shared (but leaves mm_slots 2897 * on the list for when ksmd may be set running again). 2898 */ 2899 2900 mutex_lock(&ksm_thread_mutex); 2901 wait_while_offlining(); 2902 if (ksm_run != flags) { 2903 ksm_run = flags; 2904 if (flags & KSM_RUN_UNMERGE) { 2905 set_current_oom_origin(); 2906 err = unmerge_and_remove_all_rmap_items(); 2907 clear_current_oom_origin(); 2908 if (err) { 2909 ksm_run = KSM_RUN_STOP; 2910 count = err; 2911 } 2912 } 2913 } 2914 mutex_unlock(&ksm_thread_mutex); 2915 2916 if (flags & KSM_RUN_MERGE) 2917 wake_up_interruptible(&ksm_thread_wait); 2918 2919 return count; 2920 } 2921 KSM_ATTR(run); 2922 2923 #ifdef CONFIG_NUMA 2924 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2925 struct kobj_attribute *attr, char *buf) 2926 { 2927 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2928 } 2929 2930 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2931 struct kobj_attribute *attr, 2932 const char *buf, size_t count) 2933 { 2934 int err; 2935 unsigned long knob; 2936 2937 err = kstrtoul(buf, 10, &knob); 2938 if (err) 2939 return err; 2940 if (knob > 1) 2941 return -EINVAL; 2942 2943 mutex_lock(&ksm_thread_mutex); 2944 wait_while_offlining(); 2945 if (ksm_merge_across_nodes != knob) { 2946 if (ksm_pages_shared || remove_all_stable_nodes()) 2947 err = -EBUSY; 2948 else if (root_stable_tree == one_stable_tree) { 2949 struct rb_root *buf; 2950 /* 2951 * This is the first time that we switch away from the 2952 * default of merging across nodes: must now allocate 2953 * a buffer to hold as many roots as may be needed. 2954 * Allocate stable and unstable together: 2955 * MAXSMP NODES_SHIFT 10 will use 16kB. 2956 */ 2957 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2958 GFP_KERNEL); 2959 /* Let us assume that RB_ROOT is NULL is zero */ 2960 if (!buf) 2961 err = -ENOMEM; 2962 else { 2963 root_stable_tree = buf; 2964 root_unstable_tree = buf + nr_node_ids; 2965 /* Stable tree is empty but not the unstable */ 2966 root_unstable_tree[0] = one_unstable_tree[0]; 2967 } 2968 } 2969 if (!err) { 2970 ksm_merge_across_nodes = knob; 2971 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2972 } 2973 } 2974 mutex_unlock(&ksm_thread_mutex); 2975 2976 return err ? err : count; 2977 } 2978 KSM_ATTR(merge_across_nodes); 2979 #endif 2980 2981 static ssize_t use_zero_pages_show(struct kobject *kobj, 2982 struct kobj_attribute *attr, char *buf) 2983 { 2984 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 2985 } 2986 static ssize_t use_zero_pages_store(struct kobject *kobj, 2987 struct kobj_attribute *attr, 2988 const char *buf, size_t count) 2989 { 2990 int err; 2991 bool value; 2992 2993 err = kstrtobool(buf, &value); 2994 if (err) 2995 return -EINVAL; 2996 2997 ksm_use_zero_pages = value; 2998 2999 return count; 3000 } 3001 KSM_ATTR(use_zero_pages); 3002 3003 static ssize_t max_page_sharing_show(struct kobject *kobj, 3004 struct kobj_attribute *attr, char *buf) 3005 { 3006 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3007 } 3008 3009 static ssize_t max_page_sharing_store(struct kobject *kobj, 3010 struct kobj_attribute *attr, 3011 const char *buf, size_t count) 3012 { 3013 int err; 3014 int knob; 3015 3016 err = kstrtoint(buf, 10, &knob); 3017 if (err) 3018 return err; 3019 /* 3020 * When a KSM page is created it is shared by 2 mappings. This 3021 * being a signed comparison, it implicitly verifies it's not 3022 * negative. 3023 */ 3024 if (knob < 2) 3025 return -EINVAL; 3026 3027 if (READ_ONCE(ksm_max_page_sharing) == knob) 3028 return count; 3029 3030 mutex_lock(&ksm_thread_mutex); 3031 wait_while_offlining(); 3032 if (ksm_max_page_sharing != knob) { 3033 if (ksm_pages_shared || remove_all_stable_nodes()) 3034 err = -EBUSY; 3035 else 3036 ksm_max_page_sharing = knob; 3037 } 3038 mutex_unlock(&ksm_thread_mutex); 3039 3040 return err ? err : count; 3041 } 3042 KSM_ATTR(max_page_sharing); 3043 3044 static ssize_t pages_shared_show(struct kobject *kobj, 3045 struct kobj_attribute *attr, char *buf) 3046 { 3047 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3048 } 3049 KSM_ATTR_RO(pages_shared); 3050 3051 static ssize_t pages_sharing_show(struct kobject *kobj, 3052 struct kobj_attribute *attr, char *buf) 3053 { 3054 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3055 } 3056 KSM_ATTR_RO(pages_sharing); 3057 3058 static ssize_t pages_unshared_show(struct kobject *kobj, 3059 struct kobj_attribute *attr, char *buf) 3060 { 3061 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3062 } 3063 KSM_ATTR_RO(pages_unshared); 3064 3065 static ssize_t pages_volatile_show(struct kobject *kobj, 3066 struct kobj_attribute *attr, char *buf) 3067 { 3068 long ksm_pages_volatile; 3069 3070 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3071 - ksm_pages_sharing - ksm_pages_unshared; 3072 /* 3073 * It was not worth any locking to calculate that statistic, 3074 * but it might therefore sometimes be negative: conceal that. 3075 */ 3076 if (ksm_pages_volatile < 0) 3077 ksm_pages_volatile = 0; 3078 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3079 } 3080 KSM_ATTR_RO(pages_volatile); 3081 3082 static ssize_t stable_node_dups_show(struct kobject *kobj, 3083 struct kobj_attribute *attr, char *buf) 3084 { 3085 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3086 } 3087 KSM_ATTR_RO(stable_node_dups); 3088 3089 static ssize_t stable_node_chains_show(struct kobject *kobj, 3090 struct kobj_attribute *attr, char *buf) 3091 { 3092 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3093 } 3094 KSM_ATTR_RO(stable_node_chains); 3095 3096 static ssize_t 3097 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3098 struct kobj_attribute *attr, 3099 char *buf) 3100 { 3101 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3102 } 3103 3104 static ssize_t 3105 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3106 struct kobj_attribute *attr, 3107 const char *buf, size_t count) 3108 { 3109 unsigned long msecs; 3110 int err; 3111 3112 err = kstrtoul(buf, 10, &msecs); 3113 if (err || msecs > UINT_MAX) 3114 return -EINVAL; 3115 3116 ksm_stable_node_chains_prune_millisecs = msecs; 3117 3118 return count; 3119 } 3120 KSM_ATTR(stable_node_chains_prune_millisecs); 3121 3122 static ssize_t full_scans_show(struct kobject *kobj, 3123 struct kobj_attribute *attr, char *buf) 3124 { 3125 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3126 } 3127 KSM_ATTR_RO(full_scans); 3128 3129 static struct attribute *ksm_attrs[] = { 3130 &sleep_millisecs_attr.attr, 3131 &pages_to_scan_attr.attr, 3132 &run_attr.attr, 3133 &pages_shared_attr.attr, 3134 &pages_sharing_attr.attr, 3135 &pages_unshared_attr.attr, 3136 &pages_volatile_attr.attr, 3137 &full_scans_attr.attr, 3138 #ifdef CONFIG_NUMA 3139 &merge_across_nodes_attr.attr, 3140 #endif 3141 &max_page_sharing_attr.attr, 3142 &stable_node_chains_attr.attr, 3143 &stable_node_dups_attr.attr, 3144 &stable_node_chains_prune_millisecs_attr.attr, 3145 &use_zero_pages_attr.attr, 3146 NULL, 3147 }; 3148 3149 static const struct attribute_group ksm_attr_group = { 3150 .attrs = ksm_attrs, 3151 .name = "ksm", 3152 }; 3153 #endif /* CONFIG_SYSFS */ 3154 3155 static int __init ksm_init(void) 3156 { 3157 struct task_struct *ksm_thread; 3158 int err; 3159 3160 /* The correct value depends on page size and endianness */ 3161 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3162 /* Default to false for backwards compatibility */ 3163 ksm_use_zero_pages = false; 3164 3165 err = ksm_slab_init(); 3166 if (err) 3167 goto out; 3168 3169 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3170 if (IS_ERR(ksm_thread)) { 3171 pr_err("ksm: creating kthread failed\n"); 3172 err = PTR_ERR(ksm_thread); 3173 goto out_free; 3174 } 3175 3176 #ifdef CONFIG_SYSFS 3177 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3178 if (err) { 3179 pr_err("ksm: register sysfs failed\n"); 3180 kthread_stop(ksm_thread); 3181 goto out_free; 3182 } 3183 #else 3184 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3185 3186 #endif /* CONFIG_SYSFS */ 3187 3188 #ifdef CONFIG_MEMORY_HOTREMOVE 3189 /* There is no significance to this priority 100 */ 3190 hotplug_memory_notifier(ksm_memory_callback, 100); 3191 #endif 3192 return 0; 3193 3194 out_free: 3195 ksm_slab_free(); 3196 out: 3197 return err; 3198 } 3199 subsys_initcall(ksm_init); 3200