xref: /openbmc/linux/mm/ksm.c (revision 5b448065)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41 
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44 
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)		(x)
47 #define DO_NUMA(x)	do { (x); } while (0)
48 #else
49 #define NUMA(x)		(0)
50 #define DO_NUMA(x)	do { } while (0)
51 #endif
52 
53 /**
54  * DOC: Overview
55  *
56  * A few notes about the KSM scanning process,
57  * to make it easier to understand the data structures below:
58  *
59  * In order to reduce excessive scanning, KSM sorts the memory pages by their
60  * contents into a data structure that holds pointers to the pages' locations.
61  *
62  * Since the contents of the pages may change at any moment, KSM cannot just
63  * insert the pages into a normal sorted tree and expect it to find anything.
64  * Therefore KSM uses two data structures - the stable and the unstable tree.
65  *
66  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67  * by their contents.  Because each such page is write-protected, searching on
68  * this tree is fully assured to be working (except when pages are unmapped),
69  * and therefore this tree is called the stable tree.
70  *
71  * The stable tree node includes information required for reverse
72  * mapping from a KSM page to virtual addresses that map this page.
73  *
74  * In order to avoid large latencies of the rmap walks on KSM pages,
75  * KSM maintains two types of nodes in the stable tree:
76  *
77  * * the regular nodes that keep the reverse mapping structures in a
78  *   linked list
79  * * the "chains" that link nodes ("dups") that represent the same
80  *   write protected memory content, but each "dup" corresponds to a
81  *   different KSM page copy of that content
82  *
83  * Internally, the regular nodes, "dups" and "chains" are represented
84  * using the same struct stable_node structure.
85  *
86  * In addition to the stable tree, KSM uses a second data structure called the
87  * unstable tree: this tree holds pointers to pages which have been found to
88  * be "unchanged for a period of time".  The unstable tree sorts these pages
89  * by their contents, but since they are not write-protected, KSM cannot rely
90  * upon the unstable tree to work correctly - the unstable tree is liable to
91  * be corrupted as its contents are modified, and so it is called unstable.
92  *
93  * KSM solves this problem by several techniques:
94  *
95  * 1) The unstable tree is flushed every time KSM completes scanning all
96  *    memory areas, and then the tree is rebuilt again from the beginning.
97  * 2) KSM will only insert into the unstable tree, pages whose hash value
98  *    has not changed since the previous scan of all memory areas.
99  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100  *    colors of the nodes and not on their contents, assuring that even when
101  *    the tree gets "corrupted" it won't get out of balance, so scanning time
102  *    remains the same (also, searching and inserting nodes in an rbtree uses
103  *    the same algorithm, so we have no overhead when we flush and rebuild).
104  * 4) KSM never flushes the stable tree, which means that even if it were to
105  *    take 10 attempts to find a page in the unstable tree, once it is found,
106  *    it is secured in the stable tree.  (When we scan a new page, we first
107  *    compare it against the stable tree, and then against the unstable tree.)
108  *
109  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110  * stable trees and multiple unstable trees: one of each for each NUMA node.
111  */
112 
113 /**
114  * struct mm_slot - ksm information per mm that is being scanned
115  * @link: link to the mm_slots hash list
116  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118  * @mm: the mm that this information is valid for
119  */
120 struct mm_slot {
121 	struct hlist_node link;
122 	struct list_head mm_list;
123 	struct rmap_item *rmap_list;
124 	struct mm_struct *mm;
125 };
126 
127 /**
128  * struct ksm_scan - cursor for scanning
129  * @mm_slot: the current mm_slot we are scanning
130  * @address: the next address inside that to be scanned
131  * @rmap_list: link to the next rmap to be scanned in the rmap_list
132  * @seqnr: count of completed full scans (needed when removing unstable node)
133  *
134  * There is only the one ksm_scan instance of this cursor structure.
135  */
136 struct ksm_scan {
137 	struct mm_slot *mm_slot;
138 	unsigned long address;
139 	struct rmap_item **rmap_list;
140 	unsigned long seqnr;
141 };
142 
143 /**
144  * struct stable_node - node of the stable rbtree
145  * @node: rb node of this ksm page in the stable tree
146  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148  * @list: linked into migrate_nodes, pending placement in the proper node tree
149  * @hlist: hlist head of rmap_items using this ksm page
150  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151  * @chain_prune_time: time of the last full garbage collection
152  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154  */
155 struct stable_node {
156 	union {
157 		struct rb_node node;	/* when node of stable tree */
158 		struct {		/* when listed for migration */
159 			struct list_head *head;
160 			struct {
161 				struct hlist_node hlist_dup;
162 				struct list_head list;
163 			};
164 		};
165 	};
166 	struct hlist_head hlist;
167 	union {
168 		unsigned long kpfn;
169 		unsigned long chain_prune_time;
170 	};
171 	/*
172 	 * STABLE_NODE_CHAIN can be any negative number in
173 	 * rmap_hlist_len negative range, but better not -1 to be able
174 	 * to reliably detect underflows.
175 	 */
176 #define STABLE_NODE_CHAIN -1024
177 	int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 	int nid;
180 #endif
181 };
182 
183 /**
184  * struct rmap_item - reverse mapping item for virtual addresses
185  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187  * @nid: NUMA node id of unstable tree in which linked (may not match page)
188  * @mm: the memory structure this rmap_item is pointing into
189  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190  * @oldchecksum: previous checksum of the page at that virtual address
191  * @node: rb node of this rmap_item in the unstable tree
192  * @head: pointer to stable_node heading this list in the stable tree
193  * @hlist: link into hlist of rmap_items hanging off that stable_node
194  */
195 struct rmap_item {
196 	struct rmap_item *rmap_list;
197 	union {
198 		struct anon_vma *anon_vma;	/* when stable */
199 #ifdef CONFIG_NUMA
200 		int nid;		/* when node of unstable tree */
201 #endif
202 	};
203 	struct mm_struct *mm;
204 	unsigned long address;		/* + low bits used for flags below */
205 	unsigned int oldchecksum;	/* when unstable */
206 	union {
207 		struct rb_node node;	/* when node of unstable tree */
208 		struct {		/* when listed from stable tree */
209 			struct stable_node *head;
210 			struct hlist_node hlist;
211 		};
212 	};
213 };
214 
215 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
217 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
218 
219 /* The stable and unstable tree heads */
220 static struct rb_root one_stable_tree[1] = { RB_ROOT };
221 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222 static struct rb_root *root_stable_tree = one_stable_tree;
223 static struct rb_root *root_unstable_tree = one_unstable_tree;
224 
225 /* Recently migrated nodes of stable tree, pending proper placement */
226 static LIST_HEAD(migrate_nodes);
227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228 
229 #define MM_SLOTS_HASH_BITS 10
230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231 
232 static struct mm_slot ksm_mm_head = {
233 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234 };
235 static struct ksm_scan ksm_scan = {
236 	.mm_slot = &ksm_mm_head,
237 };
238 
239 static struct kmem_cache *rmap_item_cache;
240 static struct kmem_cache *stable_node_cache;
241 static struct kmem_cache *mm_slot_cache;
242 
243 /* The number of nodes in the stable tree */
244 static unsigned long ksm_pages_shared;
245 
246 /* The number of page slots additionally sharing those nodes */
247 static unsigned long ksm_pages_sharing;
248 
249 /* The number of nodes in the unstable tree */
250 static unsigned long ksm_pages_unshared;
251 
252 /* The number of rmap_items in use: to calculate pages_volatile */
253 static unsigned long ksm_rmap_items;
254 
255 /* The number of stable_node chains */
256 static unsigned long ksm_stable_node_chains;
257 
258 /* The number of stable_node dups linked to the stable_node chains */
259 static unsigned long ksm_stable_node_dups;
260 
261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
262 static int ksm_stable_node_chains_prune_millisecs = 2000;
263 
264 /* Maximum number of page slots sharing a stable node */
265 static int ksm_max_page_sharing = 256;
266 
267 /* Number of pages ksmd should scan in one batch */
268 static unsigned int ksm_thread_pages_to_scan = 100;
269 
270 /* Milliseconds ksmd should sleep between batches */
271 static unsigned int ksm_thread_sleep_millisecs = 20;
272 
273 /* Checksum of an empty (zeroed) page */
274 static unsigned int zero_checksum __read_mostly;
275 
276 /* Whether to merge empty (zeroed) pages with actual zero pages */
277 static bool ksm_use_zero_pages __read_mostly;
278 
279 #ifdef CONFIG_NUMA
280 /* Zeroed when merging across nodes is not allowed */
281 static unsigned int ksm_merge_across_nodes = 1;
282 static int ksm_nr_node_ids = 1;
283 #else
284 #define ksm_merge_across_nodes	1U
285 #define ksm_nr_node_ids		1
286 #endif
287 
288 #define KSM_RUN_STOP	0
289 #define KSM_RUN_MERGE	1
290 #define KSM_RUN_UNMERGE	2
291 #define KSM_RUN_OFFLINE	4
292 static unsigned long ksm_run = KSM_RUN_STOP;
293 static void wait_while_offlining(void);
294 
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299 
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301 		sizeof(struct __struct), __alignof__(struct __struct),\
302 		(__flags), NULL)
303 
304 static int __init ksm_slab_init(void)
305 {
306 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307 	if (!rmap_item_cache)
308 		goto out;
309 
310 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311 	if (!stable_node_cache)
312 		goto out_free1;
313 
314 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315 	if (!mm_slot_cache)
316 		goto out_free2;
317 
318 	return 0;
319 
320 out_free2:
321 	kmem_cache_destroy(stable_node_cache);
322 out_free1:
323 	kmem_cache_destroy(rmap_item_cache);
324 out:
325 	return -ENOMEM;
326 }
327 
328 static void __init ksm_slab_free(void)
329 {
330 	kmem_cache_destroy(mm_slot_cache);
331 	kmem_cache_destroy(stable_node_cache);
332 	kmem_cache_destroy(rmap_item_cache);
333 	mm_slot_cache = NULL;
334 }
335 
336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340 
341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343 	return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345 
346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347 					     struct stable_node *chain)
348 {
349 	VM_BUG_ON(is_stable_node_dup(dup));
350 	dup->head = STABLE_NODE_DUP_HEAD;
351 	VM_BUG_ON(!is_stable_node_chain(chain));
352 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
353 	ksm_stable_node_dups++;
354 }
355 
356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358 	VM_BUG_ON(!is_stable_node_dup(dup));
359 	hlist_del(&dup->hlist_dup);
360 	ksm_stable_node_dups--;
361 }
362 
363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365 	VM_BUG_ON(is_stable_node_chain(dup));
366 	if (is_stable_node_dup(dup))
367 		__stable_node_dup_del(dup);
368 	else
369 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371 	dup->head = NULL;
372 #endif
373 }
374 
375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377 	struct rmap_item *rmap_item;
378 
379 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380 						__GFP_NORETRY | __GFP_NOWARN);
381 	if (rmap_item)
382 		ksm_rmap_items++;
383 	return rmap_item;
384 }
385 
386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388 	ksm_rmap_items--;
389 	rmap_item->mm = NULL;	/* debug safety */
390 	kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392 
393 static inline struct stable_node *alloc_stable_node(void)
394 {
395 	/*
396 	 * The allocation can take too long with GFP_KERNEL when memory is under
397 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398 	 * grants access to memory reserves, helping to avoid this problem.
399 	 */
400 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402 
403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405 	VM_BUG_ON(stable_node->rmap_hlist_len &&
406 		  !is_stable_node_chain(stable_node));
407 	kmem_cache_free(stable_node_cache, stable_node);
408 }
409 
410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412 	if (!mm_slot_cache)	/* initialization failed */
413 		return NULL;
414 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416 
417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419 	kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421 
422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424 	struct mm_slot *slot;
425 
426 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427 		if (slot->mm == mm)
428 			return slot;
429 
430 	return NULL;
431 }
432 
433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434 				    struct mm_slot *mm_slot)
435 {
436 	mm_slot->mm = mm;
437 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439 
440 /*
441  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442  * page tables after it has passed through ksm_exit() - which, if necessary,
443  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
444  * a special flag: they can just back out as soon as mm_users goes to zero.
445  * ksm_test_exit() is used throughout to make this test for exit: in some
446  * places for correctness, in some places just to avoid unnecessary work.
447  */
448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450 	return atomic_read(&mm->mm_users) == 0;
451 }
452 
453 /*
454  * We use break_ksm to break COW on a ksm page: it's a stripped down
455  *
456  *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
457  *		put_page(page);
458  *
459  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460  * in case the application has unmapped and remapped mm,addr meanwhile.
461  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
462  * mmap of /dev/mem, where we would not want to touch it.
463  *
464  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465  * of the process that owns 'vma'.  We also do not want to enforce
466  * protection keys here anyway.
467  */
468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470 	struct page *page;
471 	vm_fault_t ret = 0;
472 
473 	do {
474 		cond_resched();
475 		page = follow_page(vma, addr,
476 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477 		if (IS_ERR_OR_NULL(page))
478 			break;
479 		if (PageKsm(page))
480 			ret = handle_mm_fault(vma, addr,
481 					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482 					      NULL);
483 		else
484 			ret = VM_FAULT_WRITE;
485 		put_page(page);
486 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487 	/*
488 	 * We must loop because handle_mm_fault() may back out if there's
489 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
490 	 *
491 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492 	 * COW has been broken, even if the vma does not permit VM_WRITE;
493 	 * but note that a concurrent fault might break PageKsm for us.
494 	 *
495 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 	 * backing file, which also invalidates anonymous pages: that's
497 	 * okay, that truncation will have unmapped the PageKsm for us.
498 	 *
499 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 	 * to user; and ksmd, having no mm, would never be chosen for that.
503 	 *
504 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 	 * even ksmd can fail in this way - though it's usually breaking ksm
507 	 * just to undo a merge it made a moment before, so unlikely to oom.
508 	 *
509 	 * That's a pity: we might therefore have more kernel pages allocated
510 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 	 * will retry to break_cow on each pass, so should recover the page
512 	 * in due course.  The important thing is to not let VM_MERGEABLE
513 	 * be cleared while any such pages might remain in the area.
514 	 */
515 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517 
518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519 		unsigned long addr)
520 {
521 	struct vm_area_struct *vma;
522 	if (ksm_test_exit(mm))
523 		return NULL;
524 	vma = find_vma(mm, addr);
525 	if (!vma || vma->vm_start > addr)
526 		return NULL;
527 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
528 		return NULL;
529 	return vma;
530 }
531 
532 static void break_cow(struct rmap_item *rmap_item)
533 {
534 	struct mm_struct *mm = rmap_item->mm;
535 	unsigned long addr = rmap_item->address;
536 	struct vm_area_struct *vma;
537 
538 	/*
539 	 * It is not an accident that whenever we want to break COW
540 	 * to undo, we also need to drop a reference to the anon_vma.
541 	 */
542 	put_anon_vma(rmap_item->anon_vma);
543 
544 	mmap_read_lock(mm);
545 	vma = find_mergeable_vma(mm, addr);
546 	if (vma)
547 		break_ksm(vma, addr);
548 	mmap_read_unlock(mm);
549 }
550 
551 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
552 {
553 	struct mm_struct *mm = rmap_item->mm;
554 	unsigned long addr = rmap_item->address;
555 	struct vm_area_struct *vma;
556 	struct page *page;
557 
558 	mmap_read_lock(mm);
559 	vma = find_mergeable_vma(mm, addr);
560 	if (!vma)
561 		goto out;
562 
563 	page = follow_page(vma, addr, FOLL_GET);
564 	if (IS_ERR_OR_NULL(page))
565 		goto out;
566 	if (PageAnon(page)) {
567 		flush_anon_page(vma, page, addr);
568 		flush_dcache_page(page);
569 	} else {
570 		put_page(page);
571 out:
572 		page = NULL;
573 	}
574 	mmap_read_unlock(mm);
575 	return page;
576 }
577 
578 /*
579  * This helper is used for getting right index into array of tree roots.
580  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
581  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
582  * every node has its own stable and unstable tree.
583  */
584 static inline int get_kpfn_nid(unsigned long kpfn)
585 {
586 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
587 }
588 
589 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
590 						   struct rb_root *root)
591 {
592 	struct stable_node *chain = alloc_stable_node();
593 	VM_BUG_ON(is_stable_node_chain(dup));
594 	if (likely(chain)) {
595 		INIT_HLIST_HEAD(&chain->hlist);
596 		chain->chain_prune_time = jiffies;
597 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
598 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
599 		chain->nid = NUMA_NO_NODE; /* debug */
600 #endif
601 		ksm_stable_node_chains++;
602 
603 		/*
604 		 * Put the stable node chain in the first dimension of
605 		 * the stable tree and at the same time remove the old
606 		 * stable node.
607 		 */
608 		rb_replace_node(&dup->node, &chain->node, root);
609 
610 		/*
611 		 * Move the old stable node to the second dimension
612 		 * queued in the hlist_dup. The invariant is that all
613 		 * dup stable_nodes in the chain->hlist point to pages
614 		 * that are write protected and have the exact same
615 		 * content.
616 		 */
617 		stable_node_chain_add_dup(dup, chain);
618 	}
619 	return chain;
620 }
621 
622 static inline void free_stable_node_chain(struct stable_node *chain,
623 					  struct rb_root *root)
624 {
625 	rb_erase(&chain->node, root);
626 	free_stable_node(chain);
627 	ksm_stable_node_chains--;
628 }
629 
630 static void remove_node_from_stable_tree(struct stable_node *stable_node)
631 {
632 	struct rmap_item *rmap_item;
633 
634 	/* check it's not STABLE_NODE_CHAIN or negative */
635 	BUG_ON(stable_node->rmap_hlist_len < 0);
636 
637 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
638 		if (rmap_item->hlist.next)
639 			ksm_pages_sharing--;
640 		else
641 			ksm_pages_shared--;
642 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
643 		stable_node->rmap_hlist_len--;
644 		put_anon_vma(rmap_item->anon_vma);
645 		rmap_item->address &= PAGE_MASK;
646 		cond_resched();
647 	}
648 
649 	/*
650 	 * We need the second aligned pointer of the migrate_nodes
651 	 * list_head to stay clear from the rb_parent_color union
652 	 * (aligned and different than any node) and also different
653 	 * from &migrate_nodes. This will verify that future list.h changes
654 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
655 	 */
656 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
657 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
659 #endif
660 
661 	if (stable_node->head == &migrate_nodes)
662 		list_del(&stable_node->list);
663 	else
664 		stable_node_dup_del(stable_node);
665 	free_stable_node(stable_node);
666 }
667 
668 enum get_ksm_page_flags {
669 	GET_KSM_PAGE_NOLOCK,
670 	GET_KSM_PAGE_LOCK,
671 	GET_KSM_PAGE_TRYLOCK
672 };
673 
674 /*
675  * get_ksm_page: checks if the page indicated by the stable node
676  * is still its ksm page, despite having held no reference to it.
677  * In which case we can trust the content of the page, and it
678  * returns the gotten page; but if the page has now been zapped,
679  * remove the stale node from the stable tree and return NULL.
680  * But beware, the stable node's page might be being migrated.
681  *
682  * You would expect the stable_node to hold a reference to the ksm page.
683  * But if it increments the page's count, swapping out has to wait for
684  * ksmd to come around again before it can free the page, which may take
685  * seconds or even minutes: much too unresponsive.  So instead we use a
686  * "keyhole reference": access to the ksm page from the stable node peeps
687  * out through its keyhole to see if that page still holds the right key,
688  * pointing back to this stable node.  This relies on freeing a PageAnon
689  * page to reset its page->mapping to NULL, and relies on no other use of
690  * a page to put something that might look like our key in page->mapping.
691  * is on its way to being freed; but it is an anomaly to bear in mind.
692  */
693 static struct page *get_ksm_page(struct stable_node *stable_node,
694 				 enum get_ksm_page_flags flags)
695 {
696 	struct page *page;
697 	void *expected_mapping;
698 	unsigned long kpfn;
699 
700 	expected_mapping = (void *)((unsigned long)stable_node |
701 					PAGE_MAPPING_KSM);
702 again:
703 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
704 	page = pfn_to_page(kpfn);
705 	if (READ_ONCE(page->mapping) != expected_mapping)
706 		goto stale;
707 
708 	/*
709 	 * We cannot do anything with the page while its refcount is 0.
710 	 * Usually 0 means free, or tail of a higher-order page: in which
711 	 * case this node is no longer referenced, and should be freed;
712 	 * however, it might mean that the page is under page_ref_freeze().
713 	 * The __remove_mapping() case is easy, again the node is now stale;
714 	 * the same is in reuse_ksm_page() case; but if page is swapcache
715 	 * in migrate_page_move_mapping(), it might still be our page,
716 	 * in which case it's essential to keep the node.
717 	 */
718 	while (!get_page_unless_zero(page)) {
719 		/*
720 		 * Another check for page->mapping != expected_mapping would
721 		 * work here too.  We have chosen the !PageSwapCache test to
722 		 * optimize the common case, when the page is or is about to
723 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
724 		 * in the ref_freeze section of __remove_mapping(); but Anon
725 		 * page->mapping reset to NULL later, in free_pages_prepare().
726 		 */
727 		if (!PageSwapCache(page))
728 			goto stale;
729 		cpu_relax();
730 	}
731 
732 	if (READ_ONCE(page->mapping) != expected_mapping) {
733 		put_page(page);
734 		goto stale;
735 	}
736 
737 	if (flags == GET_KSM_PAGE_TRYLOCK) {
738 		if (!trylock_page(page)) {
739 			put_page(page);
740 			return ERR_PTR(-EBUSY);
741 		}
742 	} else if (flags == GET_KSM_PAGE_LOCK)
743 		lock_page(page);
744 
745 	if (flags != GET_KSM_PAGE_NOLOCK) {
746 		if (READ_ONCE(page->mapping) != expected_mapping) {
747 			unlock_page(page);
748 			put_page(page);
749 			goto stale;
750 		}
751 	}
752 	return page;
753 
754 stale:
755 	/*
756 	 * We come here from above when page->mapping or !PageSwapCache
757 	 * suggests that the node is stale; but it might be under migration.
758 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
759 	 * before checking whether node->kpfn has been changed.
760 	 */
761 	smp_rmb();
762 	if (READ_ONCE(stable_node->kpfn) != kpfn)
763 		goto again;
764 	remove_node_from_stable_tree(stable_node);
765 	return NULL;
766 }
767 
768 /*
769  * Removing rmap_item from stable or unstable tree.
770  * This function will clean the information from the stable/unstable tree.
771  */
772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773 {
774 	if (rmap_item->address & STABLE_FLAG) {
775 		struct stable_node *stable_node;
776 		struct page *page;
777 
778 		stable_node = rmap_item->head;
779 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
780 		if (!page)
781 			goto out;
782 
783 		hlist_del(&rmap_item->hlist);
784 		unlock_page(page);
785 		put_page(page);
786 
787 		if (!hlist_empty(&stable_node->hlist))
788 			ksm_pages_sharing--;
789 		else
790 			ksm_pages_shared--;
791 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
792 		stable_node->rmap_hlist_len--;
793 
794 		put_anon_vma(rmap_item->anon_vma);
795 		rmap_item->head = NULL;
796 		rmap_item->address &= PAGE_MASK;
797 
798 	} else if (rmap_item->address & UNSTABLE_FLAG) {
799 		unsigned char age;
800 		/*
801 		 * Usually ksmd can and must skip the rb_erase, because
802 		 * root_unstable_tree was already reset to RB_ROOT.
803 		 * But be careful when an mm is exiting: do the rb_erase
804 		 * if this rmap_item was inserted by this scan, rather
805 		 * than left over from before.
806 		 */
807 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
808 		BUG_ON(age > 1);
809 		if (!age)
810 			rb_erase(&rmap_item->node,
811 				 root_unstable_tree + NUMA(rmap_item->nid));
812 		ksm_pages_unshared--;
813 		rmap_item->address &= PAGE_MASK;
814 	}
815 out:
816 	cond_resched();		/* we're called from many long loops */
817 }
818 
819 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
820 {
821 	while (*rmap_list) {
822 		struct rmap_item *rmap_item = *rmap_list;
823 		*rmap_list = rmap_item->rmap_list;
824 		remove_rmap_item_from_tree(rmap_item);
825 		free_rmap_item(rmap_item);
826 	}
827 }
828 
829 /*
830  * Though it's very tempting to unmerge rmap_items from stable tree rather
831  * than check every pte of a given vma, the locking doesn't quite work for
832  * that - an rmap_item is assigned to the stable tree after inserting ksm
833  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
834  * rmap_items from parent to child at fork time (so as not to waste time
835  * if exit comes before the next scan reaches it).
836  *
837  * Similarly, although we'd like to remove rmap_items (so updating counts
838  * and freeing memory) when unmerging an area, it's easier to leave that
839  * to the next pass of ksmd - consider, for example, how ksmd might be
840  * in cmp_and_merge_page on one of the rmap_items we would be removing.
841  */
842 static int unmerge_ksm_pages(struct vm_area_struct *vma,
843 			     unsigned long start, unsigned long end)
844 {
845 	unsigned long addr;
846 	int err = 0;
847 
848 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
849 		if (ksm_test_exit(vma->vm_mm))
850 			break;
851 		if (signal_pending(current))
852 			err = -ERESTARTSYS;
853 		else
854 			err = break_ksm(vma, addr);
855 	}
856 	return err;
857 }
858 
859 static inline struct stable_node *page_stable_node(struct page *page)
860 {
861 	return PageKsm(page) ? page_rmapping(page) : NULL;
862 }
863 
864 static inline void set_page_stable_node(struct page *page,
865 					struct stable_node *stable_node)
866 {
867 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
868 }
869 
870 #ifdef CONFIG_SYSFS
871 /*
872  * Only called through the sysfs control interface:
873  */
874 static int remove_stable_node(struct stable_node *stable_node)
875 {
876 	struct page *page;
877 	int err;
878 
879 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
880 	if (!page) {
881 		/*
882 		 * get_ksm_page did remove_node_from_stable_tree itself.
883 		 */
884 		return 0;
885 	}
886 
887 	/*
888 	 * Page could be still mapped if this races with __mmput() running in
889 	 * between ksm_exit() and exit_mmap(). Just refuse to let
890 	 * merge_across_nodes/max_page_sharing be switched.
891 	 */
892 	err = -EBUSY;
893 	if (!page_mapped(page)) {
894 		/*
895 		 * The stable node did not yet appear stale to get_ksm_page(),
896 		 * since that allows for an unmapped ksm page to be recognized
897 		 * right up until it is freed; but the node is safe to remove.
898 		 * This page might be in a pagevec waiting to be freed,
899 		 * or it might be PageSwapCache (perhaps under writeback),
900 		 * or it might have been removed from swapcache a moment ago.
901 		 */
902 		set_page_stable_node(page, NULL);
903 		remove_node_from_stable_tree(stable_node);
904 		err = 0;
905 	}
906 
907 	unlock_page(page);
908 	put_page(page);
909 	return err;
910 }
911 
912 static int remove_stable_node_chain(struct stable_node *stable_node,
913 				    struct rb_root *root)
914 {
915 	struct stable_node *dup;
916 	struct hlist_node *hlist_safe;
917 
918 	if (!is_stable_node_chain(stable_node)) {
919 		VM_BUG_ON(is_stable_node_dup(stable_node));
920 		if (remove_stable_node(stable_node))
921 			return true;
922 		else
923 			return false;
924 	}
925 
926 	hlist_for_each_entry_safe(dup, hlist_safe,
927 				  &stable_node->hlist, hlist_dup) {
928 		VM_BUG_ON(!is_stable_node_dup(dup));
929 		if (remove_stable_node(dup))
930 			return true;
931 	}
932 	BUG_ON(!hlist_empty(&stable_node->hlist));
933 	free_stable_node_chain(stable_node, root);
934 	return false;
935 }
936 
937 static int remove_all_stable_nodes(void)
938 {
939 	struct stable_node *stable_node, *next;
940 	int nid;
941 	int err = 0;
942 
943 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
944 		while (root_stable_tree[nid].rb_node) {
945 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
946 						struct stable_node, node);
947 			if (remove_stable_node_chain(stable_node,
948 						     root_stable_tree + nid)) {
949 				err = -EBUSY;
950 				break;	/* proceed to next nid */
951 			}
952 			cond_resched();
953 		}
954 	}
955 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
956 		if (remove_stable_node(stable_node))
957 			err = -EBUSY;
958 		cond_resched();
959 	}
960 	return err;
961 }
962 
963 static int unmerge_and_remove_all_rmap_items(void)
964 {
965 	struct mm_slot *mm_slot;
966 	struct mm_struct *mm;
967 	struct vm_area_struct *vma;
968 	int err = 0;
969 
970 	spin_lock(&ksm_mmlist_lock);
971 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
972 						struct mm_slot, mm_list);
973 	spin_unlock(&ksm_mmlist_lock);
974 
975 	for (mm_slot = ksm_scan.mm_slot;
976 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
977 		mm = mm_slot->mm;
978 		mmap_read_lock(mm);
979 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
980 			if (ksm_test_exit(mm))
981 				break;
982 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
983 				continue;
984 			err = unmerge_ksm_pages(vma,
985 						vma->vm_start, vma->vm_end);
986 			if (err)
987 				goto error;
988 		}
989 
990 		remove_trailing_rmap_items(&mm_slot->rmap_list);
991 		mmap_read_unlock(mm);
992 
993 		spin_lock(&ksm_mmlist_lock);
994 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
995 						struct mm_slot, mm_list);
996 		if (ksm_test_exit(mm)) {
997 			hash_del(&mm_slot->link);
998 			list_del(&mm_slot->mm_list);
999 			spin_unlock(&ksm_mmlist_lock);
1000 
1001 			free_mm_slot(mm_slot);
1002 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1003 			mmdrop(mm);
1004 		} else
1005 			spin_unlock(&ksm_mmlist_lock);
1006 	}
1007 
1008 	/* Clean up stable nodes, but don't worry if some are still busy */
1009 	remove_all_stable_nodes();
1010 	ksm_scan.seqnr = 0;
1011 	return 0;
1012 
1013 error:
1014 	mmap_read_unlock(mm);
1015 	spin_lock(&ksm_mmlist_lock);
1016 	ksm_scan.mm_slot = &ksm_mm_head;
1017 	spin_unlock(&ksm_mmlist_lock);
1018 	return err;
1019 }
1020 #endif /* CONFIG_SYSFS */
1021 
1022 static u32 calc_checksum(struct page *page)
1023 {
1024 	u32 checksum;
1025 	void *addr = kmap_atomic(page);
1026 	checksum = xxhash(addr, PAGE_SIZE, 0);
1027 	kunmap_atomic(addr);
1028 	return checksum;
1029 }
1030 
1031 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1032 			      pte_t *orig_pte)
1033 {
1034 	struct mm_struct *mm = vma->vm_mm;
1035 	struct page_vma_mapped_walk pvmw = {
1036 		.page = page,
1037 		.vma = vma,
1038 	};
1039 	int swapped;
1040 	int err = -EFAULT;
1041 	struct mmu_notifier_range range;
1042 
1043 	pvmw.address = page_address_in_vma(page, vma);
1044 	if (pvmw.address == -EFAULT)
1045 		goto out;
1046 
1047 	BUG_ON(PageTransCompound(page));
1048 
1049 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1050 				pvmw.address,
1051 				pvmw.address + PAGE_SIZE);
1052 	mmu_notifier_invalidate_range_start(&range);
1053 
1054 	if (!page_vma_mapped_walk(&pvmw))
1055 		goto out_mn;
1056 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1057 		goto out_unlock;
1058 
1059 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1060 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1061 						mm_tlb_flush_pending(mm)) {
1062 		pte_t entry;
1063 
1064 		swapped = PageSwapCache(page);
1065 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1066 		/*
1067 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1068 		 * take any lock, therefore the check that we are going to make
1069 		 * with the pagecount against the mapcount is racy and
1070 		 * O_DIRECT can happen right after the check.
1071 		 * So we clear the pte and flush the tlb before the check
1072 		 * this assure us that no O_DIRECT can happen after the check
1073 		 * or in the middle of the check.
1074 		 *
1075 		 * No need to notify as we are downgrading page table to read
1076 		 * only not changing it to point to a new page.
1077 		 *
1078 		 * See Documentation/vm/mmu_notifier.rst
1079 		 */
1080 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1081 		/*
1082 		 * Check that no O_DIRECT or similar I/O is in progress on the
1083 		 * page
1084 		 */
1085 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1086 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1087 			goto out_unlock;
1088 		}
1089 		if (pte_dirty(entry))
1090 			set_page_dirty(page);
1091 
1092 		if (pte_protnone(entry))
1093 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1094 		else
1095 			entry = pte_mkclean(pte_wrprotect(entry));
1096 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1097 	}
1098 	*orig_pte = *pvmw.pte;
1099 	err = 0;
1100 
1101 out_unlock:
1102 	page_vma_mapped_walk_done(&pvmw);
1103 out_mn:
1104 	mmu_notifier_invalidate_range_end(&range);
1105 out:
1106 	return err;
1107 }
1108 
1109 /**
1110  * replace_page - replace page in vma by new ksm page
1111  * @vma:      vma that holds the pte pointing to page
1112  * @page:     the page we are replacing by kpage
1113  * @kpage:    the ksm page we replace page by
1114  * @orig_pte: the original value of the pte
1115  *
1116  * Returns 0 on success, -EFAULT on failure.
1117  */
1118 static int replace_page(struct vm_area_struct *vma, struct page *page,
1119 			struct page *kpage, pte_t orig_pte)
1120 {
1121 	struct mm_struct *mm = vma->vm_mm;
1122 	pmd_t *pmd;
1123 	pte_t *ptep;
1124 	pte_t newpte;
1125 	spinlock_t *ptl;
1126 	unsigned long addr;
1127 	int err = -EFAULT;
1128 	struct mmu_notifier_range range;
1129 
1130 	addr = page_address_in_vma(page, vma);
1131 	if (addr == -EFAULT)
1132 		goto out;
1133 
1134 	pmd = mm_find_pmd(mm, addr);
1135 	if (!pmd)
1136 		goto out;
1137 
1138 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1139 				addr + PAGE_SIZE);
1140 	mmu_notifier_invalidate_range_start(&range);
1141 
1142 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1143 	if (!pte_same(*ptep, orig_pte)) {
1144 		pte_unmap_unlock(ptep, ptl);
1145 		goto out_mn;
1146 	}
1147 
1148 	/*
1149 	 * No need to check ksm_use_zero_pages here: we can only have a
1150 	 * zero_page here if ksm_use_zero_pages was enabled already.
1151 	 */
1152 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1153 		get_page(kpage);
1154 		page_add_anon_rmap(kpage, vma, addr, false);
1155 		newpte = mk_pte(kpage, vma->vm_page_prot);
1156 	} else {
1157 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1158 					       vma->vm_page_prot));
1159 		/*
1160 		 * We're replacing an anonymous page with a zero page, which is
1161 		 * not anonymous. We need to do proper accounting otherwise we
1162 		 * will get wrong values in /proc, and a BUG message in dmesg
1163 		 * when tearing down the mm.
1164 		 */
1165 		dec_mm_counter(mm, MM_ANONPAGES);
1166 	}
1167 
1168 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1169 	/*
1170 	 * No need to notify as we are replacing a read only page with another
1171 	 * read only page with the same content.
1172 	 *
1173 	 * See Documentation/vm/mmu_notifier.rst
1174 	 */
1175 	ptep_clear_flush(vma, addr, ptep);
1176 	set_pte_at_notify(mm, addr, ptep, newpte);
1177 
1178 	page_remove_rmap(page, false);
1179 	if (!page_mapped(page))
1180 		try_to_free_swap(page);
1181 	put_page(page);
1182 
1183 	pte_unmap_unlock(ptep, ptl);
1184 	err = 0;
1185 out_mn:
1186 	mmu_notifier_invalidate_range_end(&range);
1187 out:
1188 	return err;
1189 }
1190 
1191 /*
1192  * try_to_merge_one_page - take two pages and merge them into one
1193  * @vma: the vma that holds the pte pointing to page
1194  * @page: the PageAnon page that we want to replace with kpage
1195  * @kpage: the PageKsm page that we want to map instead of page,
1196  *         or NULL the first time when we want to use page as kpage.
1197  *
1198  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1199  */
1200 static int try_to_merge_one_page(struct vm_area_struct *vma,
1201 				 struct page *page, struct page *kpage)
1202 {
1203 	pte_t orig_pte = __pte(0);
1204 	int err = -EFAULT;
1205 
1206 	if (page == kpage)			/* ksm page forked */
1207 		return 0;
1208 
1209 	if (!PageAnon(page))
1210 		goto out;
1211 
1212 	/*
1213 	 * We need the page lock to read a stable PageSwapCache in
1214 	 * write_protect_page().  We use trylock_page() instead of
1215 	 * lock_page() because we don't want to wait here - we
1216 	 * prefer to continue scanning and merging different pages,
1217 	 * then come back to this page when it is unlocked.
1218 	 */
1219 	if (!trylock_page(page))
1220 		goto out;
1221 
1222 	if (PageTransCompound(page)) {
1223 		if (split_huge_page(page))
1224 			goto out_unlock;
1225 	}
1226 
1227 	/*
1228 	 * If this anonymous page is mapped only here, its pte may need
1229 	 * to be write-protected.  If it's mapped elsewhere, all of its
1230 	 * ptes are necessarily already write-protected.  But in either
1231 	 * case, we need to lock and check page_count is not raised.
1232 	 */
1233 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1234 		if (!kpage) {
1235 			/*
1236 			 * While we hold page lock, upgrade page from
1237 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1238 			 * stable_tree_insert() will update stable_node.
1239 			 */
1240 			set_page_stable_node(page, NULL);
1241 			mark_page_accessed(page);
1242 			/*
1243 			 * Page reclaim just frees a clean page with no dirty
1244 			 * ptes: make sure that the ksm page would be swapped.
1245 			 */
1246 			if (!PageDirty(page))
1247 				SetPageDirty(page);
1248 			err = 0;
1249 		} else if (pages_identical(page, kpage))
1250 			err = replace_page(vma, page, kpage, orig_pte);
1251 	}
1252 
1253 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1254 		munlock_vma_page(page);
1255 		if (!PageMlocked(kpage)) {
1256 			unlock_page(page);
1257 			lock_page(kpage);
1258 			mlock_vma_page(kpage);
1259 			page = kpage;		/* for final unlock */
1260 		}
1261 	}
1262 
1263 out_unlock:
1264 	unlock_page(page);
1265 out:
1266 	return err;
1267 }
1268 
1269 /*
1270  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1271  * but no new kernel page is allocated: kpage must already be a ksm page.
1272  *
1273  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1274  */
1275 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1276 				      struct page *page, struct page *kpage)
1277 {
1278 	struct mm_struct *mm = rmap_item->mm;
1279 	struct vm_area_struct *vma;
1280 	int err = -EFAULT;
1281 
1282 	mmap_read_lock(mm);
1283 	vma = find_mergeable_vma(mm, rmap_item->address);
1284 	if (!vma)
1285 		goto out;
1286 
1287 	err = try_to_merge_one_page(vma, page, kpage);
1288 	if (err)
1289 		goto out;
1290 
1291 	/* Unstable nid is in union with stable anon_vma: remove first */
1292 	remove_rmap_item_from_tree(rmap_item);
1293 
1294 	/* Must get reference to anon_vma while still holding mmap_lock */
1295 	rmap_item->anon_vma = vma->anon_vma;
1296 	get_anon_vma(vma->anon_vma);
1297 out:
1298 	mmap_read_unlock(mm);
1299 	return err;
1300 }
1301 
1302 /*
1303  * try_to_merge_two_pages - take two identical pages and prepare them
1304  * to be merged into one page.
1305  *
1306  * This function returns the kpage if we successfully merged two identical
1307  * pages into one ksm page, NULL otherwise.
1308  *
1309  * Note that this function upgrades page to ksm page: if one of the pages
1310  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1311  */
1312 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1313 					   struct page *page,
1314 					   struct rmap_item *tree_rmap_item,
1315 					   struct page *tree_page)
1316 {
1317 	int err;
1318 
1319 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1320 	if (!err) {
1321 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1322 							tree_page, page);
1323 		/*
1324 		 * If that fails, we have a ksm page with only one pte
1325 		 * pointing to it: so break it.
1326 		 */
1327 		if (err)
1328 			break_cow(rmap_item);
1329 	}
1330 	return err ? NULL : page;
1331 }
1332 
1333 static __always_inline
1334 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1335 {
1336 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1337 	/*
1338 	 * Check that at least one mapping still exists, otherwise
1339 	 * there's no much point to merge and share with this
1340 	 * stable_node, as the underlying tree_page of the other
1341 	 * sharer is going to be freed soon.
1342 	 */
1343 	return stable_node->rmap_hlist_len &&
1344 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1345 }
1346 
1347 static __always_inline
1348 bool is_page_sharing_candidate(struct stable_node *stable_node)
1349 {
1350 	return __is_page_sharing_candidate(stable_node, 0);
1351 }
1352 
1353 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1354 				    struct stable_node **_stable_node,
1355 				    struct rb_root *root,
1356 				    bool prune_stale_stable_nodes)
1357 {
1358 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1359 	struct hlist_node *hlist_safe;
1360 	struct page *_tree_page, *tree_page = NULL;
1361 	int nr = 0;
1362 	int found_rmap_hlist_len;
1363 
1364 	if (!prune_stale_stable_nodes ||
1365 	    time_before(jiffies, stable_node->chain_prune_time +
1366 			msecs_to_jiffies(
1367 				ksm_stable_node_chains_prune_millisecs)))
1368 		prune_stale_stable_nodes = false;
1369 	else
1370 		stable_node->chain_prune_time = jiffies;
1371 
1372 	hlist_for_each_entry_safe(dup, hlist_safe,
1373 				  &stable_node->hlist, hlist_dup) {
1374 		cond_resched();
1375 		/*
1376 		 * We must walk all stable_node_dup to prune the stale
1377 		 * stable nodes during lookup.
1378 		 *
1379 		 * get_ksm_page can drop the nodes from the
1380 		 * stable_node->hlist if they point to freed pages
1381 		 * (that's why we do a _safe walk). The "dup"
1382 		 * stable_node parameter itself will be freed from
1383 		 * under us if it returns NULL.
1384 		 */
1385 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1386 		if (!_tree_page)
1387 			continue;
1388 		nr += 1;
1389 		if (is_page_sharing_candidate(dup)) {
1390 			if (!found ||
1391 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1392 				if (found)
1393 					put_page(tree_page);
1394 				found = dup;
1395 				found_rmap_hlist_len = found->rmap_hlist_len;
1396 				tree_page = _tree_page;
1397 
1398 				/* skip put_page for found dup */
1399 				if (!prune_stale_stable_nodes)
1400 					break;
1401 				continue;
1402 			}
1403 		}
1404 		put_page(_tree_page);
1405 	}
1406 
1407 	if (found) {
1408 		/*
1409 		 * nr is counting all dups in the chain only if
1410 		 * prune_stale_stable_nodes is true, otherwise we may
1411 		 * break the loop at nr == 1 even if there are
1412 		 * multiple entries.
1413 		 */
1414 		if (prune_stale_stable_nodes && nr == 1) {
1415 			/*
1416 			 * If there's not just one entry it would
1417 			 * corrupt memory, better BUG_ON. In KSM
1418 			 * context with no lock held it's not even
1419 			 * fatal.
1420 			 */
1421 			BUG_ON(stable_node->hlist.first->next);
1422 
1423 			/*
1424 			 * There's just one entry and it is below the
1425 			 * deduplication limit so drop the chain.
1426 			 */
1427 			rb_replace_node(&stable_node->node, &found->node,
1428 					root);
1429 			free_stable_node(stable_node);
1430 			ksm_stable_node_chains--;
1431 			ksm_stable_node_dups--;
1432 			/*
1433 			 * NOTE: the caller depends on the stable_node
1434 			 * to be equal to stable_node_dup if the chain
1435 			 * was collapsed.
1436 			 */
1437 			*_stable_node = found;
1438 			/*
1439 			 * Just for robustness, as stable_node is
1440 			 * otherwise left as a stable pointer, the
1441 			 * compiler shall optimize it away at build
1442 			 * time.
1443 			 */
1444 			stable_node = NULL;
1445 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1446 			   __is_page_sharing_candidate(found, 1)) {
1447 			/*
1448 			 * If the found stable_node dup can accept one
1449 			 * more future merge (in addition to the one
1450 			 * that is underway) and is not at the head of
1451 			 * the chain, put it there so next search will
1452 			 * be quicker in the !prune_stale_stable_nodes
1453 			 * case.
1454 			 *
1455 			 * NOTE: it would be inaccurate to use nr > 1
1456 			 * instead of checking the hlist.first pointer
1457 			 * directly, because in the
1458 			 * prune_stale_stable_nodes case "nr" isn't
1459 			 * the position of the found dup in the chain,
1460 			 * but the total number of dups in the chain.
1461 			 */
1462 			hlist_del(&found->hlist_dup);
1463 			hlist_add_head(&found->hlist_dup,
1464 				       &stable_node->hlist);
1465 		}
1466 	}
1467 
1468 	*_stable_node_dup = found;
1469 	return tree_page;
1470 }
1471 
1472 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1473 					       struct rb_root *root)
1474 {
1475 	if (!is_stable_node_chain(stable_node))
1476 		return stable_node;
1477 	if (hlist_empty(&stable_node->hlist)) {
1478 		free_stable_node_chain(stable_node, root);
1479 		return NULL;
1480 	}
1481 	return hlist_entry(stable_node->hlist.first,
1482 			   typeof(*stable_node), hlist_dup);
1483 }
1484 
1485 /*
1486  * Like for get_ksm_page, this function can free the *_stable_node and
1487  * *_stable_node_dup if the returned tree_page is NULL.
1488  *
1489  * It can also free and overwrite *_stable_node with the found
1490  * stable_node_dup if the chain is collapsed (in which case
1491  * *_stable_node will be equal to *_stable_node_dup like if the chain
1492  * never existed). It's up to the caller to verify tree_page is not
1493  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1494  *
1495  * *_stable_node_dup is really a second output parameter of this
1496  * function and will be overwritten in all cases, the caller doesn't
1497  * need to initialize it.
1498  */
1499 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1500 					struct stable_node **_stable_node,
1501 					struct rb_root *root,
1502 					bool prune_stale_stable_nodes)
1503 {
1504 	struct stable_node *stable_node = *_stable_node;
1505 	if (!is_stable_node_chain(stable_node)) {
1506 		if (is_page_sharing_candidate(stable_node)) {
1507 			*_stable_node_dup = stable_node;
1508 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1509 		}
1510 		/*
1511 		 * _stable_node_dup set to NULL means the stable_node
1512 		 * reached the ksm_max_page_sharing limit.
1513 		 */
1514 		*_stable_node_dup = NULL;
1515 		return NULL;
1516 	}
1517 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1518 			       prune_stale_stable_nodes);
1519 }
1520 
1521 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1522 						struct stable_node **s_n,
1523 						struct rb_root *root)
1524 {
1525 	return __stable_node_chain(s_n_d, s_n, root, true);
1526 }
1527 
1528 static __always_inline struct page *chain(struct stable_node **s_n_d,
1529 					  struct stable_node *s_n,
1530 					  struct rb_root *root)
1531 {
1532 	struct stable_node *old_stable_node = s_n;
1533 	struct page *tree_page;
1534 
1535 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1536 	/* not pruning dups so s_n cannot have changed */
1537 	VM_BUG_ON(s_n != old_stable_node);
1538 	return tree_page;
1539 }
1540 
1541 /*
1542  * stable_tree_search - search for page inside the stable tree
1543  *
1544  * This function checks if there is a page inside the stable tree
1545  * with identical content to the page that we are scanning right now.
1546  *
1547  * This function returns the stable tree node of identical content if found,
1548  * NULL otherwise.
1549  */
1550 static struct page *stable_tree_search(struct page *page)
1551 {
1552 	int nid;
1553 	struct rb_root *root;
1554 	struct rb_node **new;
1555 	struct rb_node *parent;
1556 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1557 	struct stable_node *page_node;
1558 
1559 	page_node = page_stable_node(page);
1560 	if (page_node && page_node->head != &migrate_nodes) {
1561 		/* ksm page forked */
1562 		get_page(page);
1563 		return page;
1564 	}
1565 
1566 	nid = get_kpfn_nid(page_to_pfn(page));
1567 	root = root_stable_tree + nid;
1568 again:
1569 	new = &root->rb_node;
1570 	parent = NULL;
1571 
1572 	while (*new) {
1573 		struct page *tree_page;
1574 		int ret;
1575 
1576 		cond_resched();
1577 		stable_node = rb_entry(*new, struct stable_node, node);
1578 		stable_node_any = NULL;
1579 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1580 		/*
1581 		 * NOTE: stable_node may have been freed by
1582 		 * chain_prune() if the returned stable_node_dup is
1583 		 * not NULL. stable_node_dup may have been inserted in
1584 		 * the rbtree instead as a regular stable_node (in
1585 		 * order to collapse the stable_node chain if a single
1586 		 * stable_node dup was found in it). In such case the
1587 		 * stable_node is overwritten by the calleee to point
1588 		 * to the stable_node_dup that was collapsed in the
1589 		 * stable rbtree and stable_node will be equal to
1590 		 * stable_node_dup like if the chain never existed.
1591 		 */
1592 		if (!stable_node_dup) {
1593 			/*
1594 			 * Either all stable_node dups were full in
1595 			 * this stable_node chain, or this chain was
1596 			 * empty and should be rb_erased.
1597 			 */
1598 			stable_node_any = stable_node_dup_any(stable_node,
1599 							      root);
1600 			if (!stable_node_any) {
1601 				/* rb_erase just run */
1602 				goto again;
1603 			}
1604 			/*
1605 			 * Take any of the stable_node dups page of
1606 			 * this stable_node chain to let the tree walk
1607 			 * continue. All KSM pages belonging to the
1608 			 * stable_node dups in a stable_node chain
1609 			 * have the same content and they're
1610 			 * write protected at all times. Any will work
1611 			 * fine to continue the walk.
1612 			 */
1613 			tree_page = get_ksm_page(stable_node_any,
1614 						 GET_KSM_PAGE_NOLOCK);
1615 		}
1616 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1617 		if (!tree_page) {
1618 			/*
1619 			 * If we walked over a stale stable_node,
1620 			 * get_ksm_page() will call rb_erase() and it
1621 			 * may rebalance the tree from under us. So
1622 			 * restart the search from scratch. Returning
1623 			 * NULL would be safe too, but we'd generate
1624 			 * false negative insertions just because some
1625 			 * stable_node was stale.
1626 			 */
1627 			goto again;
1628 		}
1629 
1630 		ret = memcmp_pages(page, tree_page);
1631 		put_page(tree_page);
1632 
1633 		parent = *new;
1634 		if (ret < 0)
1635 			new = &parent->rb_left;
1636 		else if (ret > 0)
1637 			new = &parent->rb_right;
1638 		else {
1639 			if (page_node) {
1640 				VM_BUG_ON(page_node->head != &migrate_nodes);
1641 				/*
1642 				 * Test if the migrated page should be merged
1643 				 * into a stable node dup. If the mapcount is
1644 				 * 1 we can migrate it with another KSM page
1645 				 * without adding it to the chain.
1646 				 */
1647 				if (page_mapcount(page) > 1)
1648 					goto chain_append;
1649 			}
1650 
1651 			if (!stable_node_dup) {
1652 				/*
1653 				 * If the stable_node is a chain and
1654 				 * we got a payload match in memcmp
1655 				 * but we cannot merge the scanned
1656 				 * page in any of the existing
1657 				 * stable_node dups because they're
1658 				 * all full, we need to wait the
1659 				 * scanned page to find itself a match
1660 				 * in the unstable tree to create a
1661 				 * brand new KSM page to add later to
1662 				 * the dups of this stable_node.
1663 				 */
1664 				return NULL;
1665 			}
1666 
1667 			/*
1668 			 * Lock and unlock the stable_node's page (which
1669 			 * might already have been migrated) so that page
1670 			 * migration is sure to notice its raised count.
1671 			 * It would be more elegant to return stable_node
1672 			 * than kpage, but that involves more changes.
1673 			 */
1674 			tree_page = get_ksm_page(stable_node_dup,
1675 						 GET_KSM_PAGE_TRYLOCK);
1676 
1677 			if (PTR_ERR(tree_page) == -EBUSY)
1678 				return ERR_PTR(-EBUSY);
1679 
1680 			if (unlikely(!tree_page))
1681 				/*
1682 				 * The tree may have been rebalanced,
1683 				 * so re-evaluate parent and new.
1684 				 */
1685 				goto again;
1686 			unlock_page(tree_page);
1687 
1688 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1689 			    NUMA(stable_node_dup->nid)) {
1690 				put_page(tree_page);
1691 				goto replace;
1692 			}
1693 			return tree_page;
1694 		}
1695 	}
1696 
1697 	if (!page_node)
1698 		return NULL;
1699 
1700 	list_del(&page_node->list);
1701 	DO_NUMA(page_node->nid = nid);
1702 	rb_link_node(&page_node->node, parent, new);
1703 	rb_insert_color(&page_node->node, root);
1704 out:
1705 	if (is_page_sharing_candidate(page_node)) {
1706 		get_page(page);
1707 		return page;
1708 	} else
1709 		return NULL;
1710 
1711 replace:
1712 	/*
1713 	 * If stable_node was a chain and chain_prune collapsed it,
1714 	 * stable_node has been updated to be the new regular
1715 	 * stable_node. A collapse of the chain is indistinguishable
1716 	 * from the case there was no chain in the stable
1717 	 * rbtree. Otherwise stable_node is the chain and
1718 	 * stable_node_dup is the dup to replace.
1719 	 */
1720 	if (stable_node_dup == stable_node) {
1721 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1722 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1723 		/* there is no chain */
1724 		if (page_node) {
1725 			VM_BUG_ON(page_node->head != &migrate_nodes);
1726 			list_del(&page_node->list);
1727 			DO_NUMA(page_node->nid = nid);
1728 			rb_replace_node(&stable_node_dup->node,
1729 					&page_node->node,
1730 					root);
1731 			if (is_page_sharing_candidate(page_node))
1732 				get_page(page);
1733 			else
1734 				page = NULL;
1735 		} else {
1736 			rb_erase(&stable_node_dup->node, root);
1737 			page = NULL;
1738 		}
1739 	} else {
1740 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1741 		__stable_node_dup_del(stable_node_dup);
1742 		if (page_node) {
1743 			VM_BUG_ON(page_node->head != &migrate_nodes);
1744 			list_del(&page_node->list);
1745 			DO_NUMA(page_node->nid = nid);
1746 			stable_node_chain_add_dup(page_node, stable_node);
1747 			if (is_page_sharing_candidate(page_node))
1748 				get_page(page);
1749 			else
1750 				page = NULL;
1751 		} else {
1752 			page = NULL;
1753 		}
1754 	}
1755 	stable_node_dup->head = &migrate_nodes;
1756 	list_add(&stable_node_dup->list, stable_node_dup->head);
1757 	return page;
1758 
1759 chain_append:
1760 	/* stable_node_dup could be null if it reached the limit */
1761 	if (!stable_node_dup)
1762 		stable_node_dup = stable_node_any;
1763 	/*
1764 	 * If stable_node was a chain and chain_prune collapsed it,
1765 	 * stable_node has been updated to be the new regular
1766 	 * stable_node. A collapse of the chain is indistinguishable
1767 	 * from the case there was no chain in the stable
1768 	 * rbtree. Otherwise stable_node is the chain and
1769 	 * stable_node_dup is the dup to replace.
1770 	 */
1771 	if (stable_node_dup == stable_node) {
1772 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1773 		/* chain is missing so create it */
1774 		stable_node = alloc_stable_node_chain(stable_node_dup,
1775 						      root);
1776 		if (!stable_node)
1777 			return NULL;
1778 	}
1779 	/*
1780 	 * Add this stable_node dup that was
1781 	 * migrated to the stable_node chain
1782 	 * of the current nid for this page
1783 	 * content.
1784 	 */
1785 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1786 	VM_BUG_ON(page_node->head != &migrate_nodes);
1787 	list_del(&page_node->list);
1788 	DO_NUMA(page_node->nid = nid);
1789 	stable_node_chain_add_dup(page_node, stable_node);
1790 	goto out;
1791 }
1792 
1793 /*
1794  * stable_tree_insert - insert stable tree node pointing to new ksm page
1795  * into the stable tree.
1796  *
1797  * This function returns the stable tree node just allocated on success,
1798  * NULL otherwise.
1799  */
1800 static struct stable_node *stable_tree_insert(struct page *kpage)
1801 {
1802 	int nid;
1803 	unsigned long kpfn;
1804 	struct rb_root *root;
1805 	struct rb_node **new;
1806 	struct rb_node *parent;
1807 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1808 	bool need_chain = false;
1809 
1810 	kpfn = page_to_pfn(kpage);
1811 	nid = get_kpfn_nid(kpfn);
1812 	root = root_stable_tree + nid;
1813 again:
1814 	parent = NULL;
1815 	new = &root->rb_node;
1816 
1817 	while (*new) {
1818 		struct page *tree_page;
1819 		int ret;
1820 
1821 		cond_resched();
1822 		stable_node = rb_entry(*new, struct stable_node, node);
1823 		stable_node_any = NULL;
1824 		tree_page = chain(&stable_node_dup, stable_node, root);
1825 		if (!stable_node_dup) {
1826 			/*
1827 			 * Either all stable_node dups were full in
1828 			 * this stable_node chain, or this chain was
1829 			 * empty and should be rb_erased.
1830 			 */
1831 			stable_node_any = stable_node_dup_any(stable_node,
1832 							      root);
1833 			if (!stable_node_any) {
1834 				/* rb_erase just run */
1835 				goto again;
1836 			}
1837 			/*
1838 			 * Take any of the stable_node dups page of
1839 			 * this stable_node chain to let the tree walk
1840 			 * continue. All KSM pages belonging to the
1841 			 * stable_node dups in a stable_node chain
1842 			 * have the same content and they're
1843 			 * write protected at all times. Any will work
1844 			 * fine to continue the walk.
1845 			 */
1846 			tree_page = get_ksm_page(stable_node_any,
1847 						 GET_KSM_PAGE_NOLOCK);
1848 		}
1849 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1850 		if (!tree_page) {
1851 			/*
1852 			 * If we walked over a stale stable_node,
1853 			 * get_ksm_page() will call rb_erase() and it
1854 			 * may rebalance the tree from under us. So
1855 			 * restart the search from scratch. Returning
1856 			 * NULL would be safe too, but we'd generate
1857 			 * false negative insertions just because some
1858 			 * stable_node was stale.
1859 			 */
1860 			goto again;
1861 		}
1862 
1863 		ret = memcmp_pages(kpage, tree_page);
1864 		put_page(tree_page);
1865 
1866 		parent = *new;
1867 		if (ret < 0)
1868 			new = &parent->rb_left;
1869 		else if (ret > 0)
1870 			new = &parent->rb_right;
1871 		else {
1872 			need_chain = true;
1873 			break;
1874 		}
1875 	}
1876 
1877 	stable_node_dup = alloc_stable_node();
1878 	if (!stable_node_dup)
1879 		return NULL;
1880 
1881 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1882 	stable_node_dup->kpfn = kpfn;
1883 	set_page_stable_node(kpage, stable_node_dup);
1884 	stable_node_dup->rmap_hlist_len = 0;
1885 	DO_NUMA(stable_node_dup->nid = nid);
1886 	if (!need_chain) {
1887 		rb_link_node(&stable_node_dup->node, parent, new);
1888 		rb_insert_color(&stable_node_dup->node, root);
1889 	} else {
1890 		if (!is_stable_node_chain(stable_node)) {
1891 			struct stable_node *orig = stable_node;
1892 			/* chain is missing so create it */
1893 			stable_node = alloc_stable_node_chain(orig, root);
1894 			if (!stable_node) {
1895 				free_stable_node(stable_node_dup);
1896 				return NULL;
1897 			}
1898 		}
1899 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1900 	}
1901 
1902 	return stable_node_dup;
1903 }
1904 
1905 /*
1906  * unstable_tree_search_insert - search for identical page,
1907  * else insert rmap_item into the unstable tree.
1908  *
1909  * This function searches for a page in the unstable tree identical to the
1910  * page currently being scanned; and if no identical page is found in the
1911  * tree, we insert rmap_item as a new object into the unstable tree.
1912  *
1913  * This function returns pointer to rmap_item found to be identical
1914  * to the currently scanned page, NULL otherwise.
1915  *
1916  * This function does both searching and inserting, because they share
1917  * the same walking algorithm in an rbtree.
1918  */
1919 static
1920 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1921 					      struct page *page,
1922 					      struct page **tree_pagep)
1923 {
1924 	struct rb_node **new;
1925 	struct rb_root *root;
1926 	struct rb_node *parent = NULL;
1927 	int nid;
1928 
1929 	nid = get_kpfn_nid(page_to_pfn(page));
1930 	root = root_unstable_tree + nid;
1931 	new = &root->rb_node;
1932 
1933 	while (*new) {
1934 		struct rmap_item *tree_rmap_item;
1935 		struct page *tree_page;
1936 		int ret;
1937 
1938 		cond_resched();
1939 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1940 		tree_page = get_mergeable_page(tree_rmap_item);
1941 		if (!tree_page)
1942 			return NULL;
1943 
1944 		/*
1945 		 * Don't substitute a ksm page for a forked page.
1946 		 */
1947 		if (page == tree_page) {
1948 			put_page(tree_page);
1949 			return NULL;
1950 		}
1951 
1952 		ret = memcmp_pages(page, tree_page);
1953 
1954 		parent = *new;
1955 		if (ret < 0) {
1956 			put_page(tree_page);
1957 			new = &parent->rb_left;
1958 		} else if (ret > 0) {
1959 			put_page(tree_page);
1960 			new = &parent->rb_right;
1961 		} else if (!ksm_merge_across_nodes &&
1962 			   page_to_nid(tree_page) != nid) {
1963 			/*
1964 			 * If tree_page has been migrated to another NUMA node,
1965 			 * it will be flushed out and put in the right unstable
1966 			 * tree next time: only merge with it when across_nodes.
1967 			 */
1968 			put_page(tree_page);
1969 			return NULL;
1970 		} else {
1971 			*tree_pagep = tree_page;
1972 			return tree_rmap_item;
1973 		}
1974 	}
1975 
1976 	rmap_item->address |= UNSTABLE_FLAG;
1977 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1978 	DO_NUMA(rmap_item->nid = nid);
1979 	rb_link_node(&rmap_item->node, parent, new);
1980 	rb_insert_color(&rmap_item->node, root);
1981 
1982 	ksm_pages_unshared++;
1983 	return NULL;
1984 }
1985 
1986 /*
1987  * stable_tree_append - add another rmap_item to the linked list of
1988  * rmap_items hanging off a given node of the stable tree, all sharing
1989  * the same ksm page.
1990  */
1991 static void stable_tree_append(struct rmap_item *rmap_item,
1992 			       struct stable_node *stable_node,
1993 			       bool max_page_sharing_bypass)
1994 {
1995 	/*
1996 	 * rmap won't find this mapping if we don't insert the
1997 	 * rmap_item in the right stable_node
1998 	 * duplicate. page_migration could break later if rmap breaks,
1999 	 * so we can as well crash here. We really need to check for
2000 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2001 	 * for other negative values as an underflow if detected here
2002 	 * for the first time (and not when decreasing rmap_hlist_len)
2003 	 * would be sign of memory corruption in the stable_node.
2004 	 */
2005 	BUG_ON(stable_node->rmap_hlist_len < 0);
2006 
2007 	stable_node->rmap_hlist_len++;
2008 	if (!max_page_sharing_bypass)
2009 		/* possibly non fatal but unexpected overflow, only warn */
2010 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2011 			     ksm_max_page_sharing);
2012 
2013 	rmap_item->head = stable_node;
2014 	rmap_item->address |= STABLE_FLAG;
2015 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2016 
2017 	if (rmap_item->hlist.next)
2018 		ksm_pages_sharing++;
2019 	else
2020 		ksm_pages_shared++;
2021 }
2022 
2023 /*
2024  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2025  * if not, compare checksum to previous and if it's the same, see if page can
2026  * be inserted into the unstable tree, or merged with a page already there and
2027  * both transferred to the stable tree.
2028  *
2029  * @page: the page that we are searching identical page to.
2030  * @rmap_item: the reverse mapping into the virtual address of this page
2031  */
2032 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2033 {
2034 	struct mm_struct *mm = rmap_item->mm;
2035 	struct rmap_item *tree_rmap_item;
2036 	struct page *tree_page = NULL;
2037 	struct stable_node *stable_node;
2038 	struct page *kpage;
2039 	unsigned int checksum;
2040 	int err;
2041 	bool max_page_sharing_bypass = false;
2042 
2043 	stable_node = page_stable_node(page);
2044 	if (stable_node) {
2045 		if (stable_node->head != &migrate_nodes &&
2046 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2047 		    NUMA(stable_node->nid)) {
2048 			stable_node_dup_del(stable_node);
2049 			stable_node->head = &migrate_nodes;
2050 			list_add(&stable_node->list, stable_node->head);
2051 		}
2052 		if (stable_node->head != &migrate_nodes &&
2053 		    rmap_item->head == stable_node)
2054 			return;
2055 		/*
2056 		 * If it's a KSM fork, allow it to go over the sharing limit
2057 		 * without warnings.
2058 		 */
2059 		if (!is_page_sharing_candidate(stable_node))
2060 			max_page_sharing_bypass = true;
2061 	}
2062 
2063 	/* We first start with searching the page inside the stable tree */
2064 	kpage = stable_tree_search(page);
2065 	if (kpage == page && rmap_item->head == stable_node) {
2066 		put_page(kpage);
2067 		return;
2068 	}
2069 
2070 	remove_rmap_item_from_tree(rmap_item);
2071 
2072 	if (kpage) {
2073 		if (PTR_ERR(kpage) == -EBUSY)
2074 			return;
2075 
2076 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2077 		if (!err) {
2078 			/*
2079 			 * The page was successfully merged:
2080 			 * add its rmap_item to the stable tree.
2081 			 */
2082 			lock_page(kpage);
2083 			stable_tree_append(rmap_item, page_stable_node(kpage),
2084 					   max_page_sharing_bypass);
2085 			unlock_page(kpage);
2086 		}
2087 		put_page(kpage);
2088 		return;
2089 	}
2090 
2091 	/*
2092 	 * If the hash value of the page has changed from the last time
2093 	 * we calculated it, this page is changing frequently: therefore we
2094 	 * don't want to insert it in the unstable tree, and we don't want
2095 	 * to waste our time searching for something identical to it there.
2096 	 */
2097 	checksum = calc_checksum(page);
2098 	if (rmap_item->oldchecksum != checksum) {
2099 		rmap_item->oldchecksum = checksum;
2100 		return;
2101 	}
2102 
2103 	/*
2104 	 * Same checksum as an empty page. We attempt to merge it with the
2105 	 * appropriate zero page if the user enabled this via sysfs.
2106 	 */
2107 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2108 		struct vm_area_struct *vma;
2109 
2110 		mmap_read_lock(mm);
2111 		vma = find_mergeable_vma(mm, rmap_item->address);
2112 		if (vma) {
2113 			err = try_to_merge_one_page(vma, page,
2114 					ZERO_PAGE(rmap_item->address));
2115 		} else {
2116 			/*
2117 			 * If the vma is out of date, we do not need to
2118 			 * continue.
2119 			 */
2120 			err = 0;
2121 		}
2122 		mmap_read_unlock(mm);
2123 		/*
2124 		 * In case of failure, the page was not really empty, so we
2125 		 * need to continue. Otherwise we're done.
2126 		 */
2127 		if (!err)
2128 			return;
2129 	}
2130 	tree_rmap_item =
2131 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2132 	if (tree_rmap_item) {
2133 		bool split;
2134 
2135 		kpage = try_to_merge_two_pages(rmap_item, page,
2136 						tree_rmap_item, tree_page);
2137 		/*
2138 		 * If both pages we tried to merge belong to the same compound
2139 		 * page, then we actually ended up increasing the reference
2140 		 * count of the same compound page twice, and split_huge_page
2141 		 * failed.
2142 		 * Here we set a flag if that happened, and we use it later to
2143 		 * try split_huge_page again. Since we call put_page right
2144 		 * afterwards, the reference count will be correct and
2145 		 * split_huge_page should succeed.
2146 		 */
2147 		split = PageTransCompound(page)
2148 			&& compound_head(page) == compound_head(tree_page);
2149 		put_page(tree_page);
2150 		if (kpage) {
2151 			/*
2152 			 * The pages were successfully merged: insert new
2153 			 * node in the stable tree and add both rmap_items.
2154 			 */
2155 			lock_page(kpage);
2156 			stable_node = stable_tree_insert(kpage);
2157 			if (stable_node) {
2158 				stable_tree_append(tree_rmap_item, stable_node,
2159 						   false);
2160 				stable_tree_append(rmap_item, stable_node,
2161 						   false);
2162 			}
2163 			unlock_page(kpage);
2164 
2165 			/*
2166 			 * If we fail to insert the page into the stable tree,
2167 			 * we will have 2 virtual addresses that are pointing
2168 			 * to a ksm page left outside the stable tree,
2169 			 * in which case we need to break_cow on both.
2170 			 */
2171 			if (!stable_node) {
2172 				break_cow(tree_rmap_item);
2173 				break_cow(rmap_item);
2174 			}
2175 		} else if (split) {
2176 			/*
2177 			 * We are here if we tried to merge two pages and
2178 			 * failed because they both belonged to the same
2179 			 * compound page. We will split the page now, but no
2180 			 * merging will take place.
2181 			 * We do not want to add the cost of a full lock; if
2182 			 * the page is locked, it is better to skip it and
2183 			 * perhaps try again later.
2184 			 */
2185 			if (!trylock_page(page))
2186 				return;
2187 			split_huge_page(page);
2188 			unlock_page(page);
2189 		}
2190 	}
2191 }
2192 
2193 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2194 					    struct rmap_item **rmap_list,
2195 					    unsigned long addr)
2196 {
2197 	struct rmap_item *rmap_item;
2198 
2199 	while (*rmap_list) {
2200 		rmap_item = *rmap_list;
2201 		if ((rmap_item->address & PAGE_MASK) == addr)
2202 			return rmap_item;
2203 		if (rmap_item->address > addr)
2204 			break;
2205 		*rmap_list = rmap_item->rmap_list;
2206 		remove_rmap_item_from_tree(rmap_item);
2207 		free_rmap_item(rmap_item);
2208 	}
2209 
2210 	rmap_item = alloc_rmap_item();
2211 	if (rmap_item) {
2212 		/* It has already been zeroed */
2213 		rmap_item->mm = mm_slot->mm;
2214 		rmap_item->address = addr;
2215 		rmap_item->rmap_list = *rmap_list;
2216 		*rmap_list = rmap_item;
2217 	}
2218 	return rmap_item;
2219 }
2220 
2221 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2222 {
2223 	struct mm_struct *mm;
2224 	struct mm_slot *slot;
2225 	struct vm_area_struct *vma;
2226 	struct rmap_item *rmap_item;
2227 	int nid;
2228 
2229 	if (list_empty(&ksm_mm_head.mm_list))
2230 		return NULL;
2231 
2232 	slot = ksm_scan.mm_slot;
2233 	if (slot == &ksm_mm_head) {
2234 		/*
2235 		 * A number of pages can hang around indefinitely on per-cpu
2236 		 * pagevecs, raised page count preventing write_protect_page
2237 		 * from merging them.  Though it doesn't really matter much,
2238 		 * it is puzzling to see some stuck in pages_volatile until
2239 		 * other activity jostles them out, and they also prevented
2240 		 * LTP's KSM test from succeeding deterministically; so drain
2241 		 * them here (here rather than on entry to ksm_do_scan(),
2242 		 * so we don't IPI too often when pages_to_scan is set low).
2243 		 */
2244 		lru_add_drain_all();
2245 
2246 		/*
2247 		 * Whereas stale stable_nodes on the stable_tree itself
2248 		 * get pruned in the regular course of stable_tree_search(),
2249 		 * those moved out to the migrate_nodes list can accumulate:
2250 		 * so prune them once before each full scan.
2251 		 */
2252 		if (!ksm_merge_across_nodes) {
2253 			struct stable_node *stable_node, *next;
2254 			struct page *page;
2255 
2256 			list_for_each_entry_safe(stable_node, next,
2257 						 &migrate_nodes, list) {
2258 				page = get_ksm_page(stable_node,
2259 						    GET_KSM_PAGE_NOLOCK);
2260 				if (page)
2261 					put_page(page);
2262 				cond_resched();
2263 			}
2264 		}
2265 
2266 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2267 			root_unstable_tree[nid] = RB_ROOT;
2268 
2269 		spin_lock(&ksm_mmlist_lock);
2270 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2271 		ksm_scan.mm_slot = slot;
2272 		spin_unlock(&ksm_mmlist_lock);
2273 		/*
2274 		 * Although we tested list_empty() above, a racing __ksm_exit
2275 		 * of the last mm on the list may have removed it since then.
2276 		 */
2277 		if (slot == &ksm_mm_head)
2278 			return NULL;
2279 next_mm:
2280 		ksm_scan.address = 0;
2281 		ksm_scan.rmap_list = &slot->rmap_list;
2282 	}
2283 
2284 	mm = slot->mm;
2285 	mmap_read_lock(mm);
2286 	if (ksm_test_exit(mm))
2287 		vma = NULL;
2288 	else
2289 		vma = find_vma(mm, ksm_scan.address);
2290 
2291 	for (; vma; vma = vma->vm_next) {
2292 		if (!(vma->vm_flags & VM_MERGEABLE))
2293 			continue;
2294 		if (ksm_scan.address < vma->vm_start)
2295 			ksm_scan.address = vma->vm_start;
2296 		if (!vma->anon_vma)
2297 			ksm_scan.address = vma->vm_end;
2298 
2299 		while (ksm_scan.address < vma->vm_end) {
2300 			if (ksm_test_exit(mm))
2301 				break;
2302 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2303 			if (IS_ERR_OR_NULL(*page)) {
2304 				ksm_scan.address += PAGE_SIZE;
2305 				cond_resched();
2306 				continue;
2307 			}
2308 			if (PageAnon(*page)) {
2309 				flush_anon_page(vma, *page, ksm_scan.address);
2310 				flush_dcache_page(*page);
2311 				rmap_item = get_next_rmap_item(slot,
2312 					ksm_scan.rmap_list, ksm_scan.address);
2313 				if (rmap_item) {
2314 					ksm_scan.rmap_list =
2315 							&rmap_item->rmap_list;
2316 					ksm_scan.address += PAGE_SIZE;
2317 				} else
2318 					put_page(*page);
2319 				mmap_read_unlock(mm);
2320 				return rmap_item;
2321 			}
2322 			put_page(*page);
2323 			ksm_scan.address += PAGE_SIZE;
2324 			cond_resched();
2325 		}
2326 	}
2327 
2328 	if (ksm_test_exit(mm)) {
2329 		ksm_scan.address = 0;
2330 		ksm_scan.rmap_list = &slot->rmap_list;
2331 	}
2332 	/*
2333 	 * Nuke all the rmap_items that are above this current rmap:
2334 	 * because there were no VM_MERGEABLE vmas with such addresses.
2335 	 */
2336 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2337 
2338 	spin_lock(&ksm_mmlist_lock);
2339 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2340 						struct mm_slot, mm_list);
2341 	if (ksm_scan.address == 0) {
2342 		/*
2343 		 * We've completed a full scan of all vmas, holding mmap_lock
2344 		 * throughout, and found no VM_MERGEABLE: so do the same as
2345 		 * __ksm_exit does to remove this mm from all our lists now.
2346 		 * This applies either when cleaning up after __ksm_exit
2347 		 * (but beware: we can reach here even before __ksm_exit),
2348 		 * or when all VM_MERGEABLE areas have been unmapped (and
2349 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2350 		 */
2351 		hash_del(&slot->link);
2352 		list_del(&slot->mm_list);
2353 		spin_unlock(&ksm_mmlist_lock);
2354 
2355 		free_mm_slot(slot);
2356 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2357 		mmap_read_unlock(mm);
2358 		mmdrop(mm);
2359 	} else {
2360 		mmap_read_unlock(mm);
2361 		/*
2362 		 * mmap_read_unlock(mm) first because after
2363 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2364 		 * already have been freed under us by __ksm_exit()
2365 		 * because the "mm_slot" is still hashed and
2366 		 * ksm_scan.mm_slot doesn't point to it anymore.
2367 		 */
2368 		spin_unlock(&ksm_mmlist_lock);
2369 	}
2370 
2371 	/* Repeat until we've completed scanning the whole list */
2372 	slot = ksm_scan.mm_slot;
2373 	if (slot != &ksm_mm_head)
2374 		goto next_mm;
2375 
2376 	ksm_scan.seqnr++;
2377 	return NULL;
2378 }
2379 
2380 /**
2381  * ksm_do_scan  - the ksm scanner main worker function.
2382  * @scan_npages:  number of pages we want to scan before we return.
2383  */
2384 static void ksm_do_scan(unsigned int scan_npages)
2385 {
2386 	struct rmap_item *rmap_item;
2387 	struct page *page;
2388 
2389 	while (scan_npages-- && likely(!freezing(current))) {
2390 		cond_resched();
2391 		rmap_item = scan_get_next_rmap_item(&page);
2392 		if (!rmap_item)
2393 			return;
2394 		cmp_and_merge_page(page, rmap_item);
2395 		put_page(page);
2396 	}
2397 }
2398 
2399 static int ksmd_should_run(void)
2400 {
2401 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2402 }
2403 
2404 static int ksm_scan_thread(void *nothing)
2405 {
2406 	unsigned int sleep_ms;
2407 
2408 	set_freezable();
2409 	set_user_nice(current, 5);
2410 
2411 	while (!kthread_should_stop()) {
2412 		mutex_lock(&ksm_thread_mutex);
2413 		wait_while_offlining();
2414 		if (ksmd_should_run())
2415 			ksm_do_scan(ksm_thread_pages_to_scan);
2416 		mutex_unlock(&ksm_thread_mutex);
2417 
2418 		try_to_freeze();
2419 
2420 		if (ksmd_should_run()) {
2421 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2422 			wait_event_interruptible_timeout(ksm_iter_wait,
2423 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2424 				msecs_to_jiffies(sleep_ms));
2425 		} else {
2426 			wait_event_freezable(ksm_thread_wait,
2427 				ksmd_should_run() || kthread_should_stop());
2428 		}
2429 	}
2430 	return 0;
2431 }
2432 
2433 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2434 		unsigned long end, int advice, unsigned long *vm_flags)
2435 {
2436 	struct mm_struct *mm = vma->vm_mm;
2437 	int err;
2438 
2439 	switch (advice) {
2440 	case MADV_MERGEABLE:
2441 		/*
2442 		 * Be somewhat over-protective for now!
2443 		 */
2444 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2445 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2446 				 VM_HUGETLB | VM_MIXEDMAP))
2447 			return 0;		/* just ignore the advice */
2448 
2449 		if (vma_is_dax(vma))
2450 			return 0;
2451 
2452 #ifdef VM_SAO
2453 		if (*vm_flags & VM_SAO)
2454 			return 0;
2455 #endif
2456 #ifdef VM_SPARC_ADI
2457 		if (*vm_flags & VM_SPARC_ADI)
2458 			return 0;
2459 #endif
2460 
2461 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2462 			err = __ksm_enter(mm);
2463 			if (err)
2464 				return err;
2465 		}
2466 
2467 		*vm_flags |= VM_MERGEABLE;
2468 		break;
2469 
2470 	case MADV_UNMERGEABLE:
2471 		if (!(*vm_flags & VM_MERGEABLE))
2472 			return 0;		/* just ignore the advice */
2473 
2474 		if (vma->anon_vma) {
2475 			err = unmerge_ksm_pages(vma, start, end);
2476 			if (err)
2477 				return err;
2478 		}
2479 
2480 		*vm_flags &= ~VM_MERGEABLE;
2481 		break;
2482 	}
2483 
2484 	return 0;
2485 }
2486 EXPORT_SYMBOL_GPL(ksm_madvise);
2487 
2488 int __ksm_enter(struct mm_struct *mm)
2489 {
2490 	struct mm_slot *mm_slot;
2491 	int needs_wakeup;
2492 
2493 	mm_slot = alloc_mm_slot();
2494 	if (!mm_slot)
2495 		return -ENOMEM;
2496 
2497 	/* Check ksm_run too?  Would need tighter locking */
2498 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2499 
2500 	spin_lock(&ksm_mmlist_lock);
2501 	insert_to_mm_slots_hash(mm, mm_slot);
2502 	/*
2503 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2504 	 * insert just behind the scanning cursor, to let the area settle
2505 	 * down a little; when fork is followed by immediate exec, we don't
2506 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2507 	 *
2508 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2509 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2510 	 * missed: then we might as well insert at the end of the list.
2511 	 */
2512 	if (ksm_run & KSM_RUN_UNMERGE)
2513 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2514 	else
2515 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2516 	spin_unlock(&ksm_mmlist_lock);
2517 
2518 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2519 	mmgrab(mm);
2520 
2521 	if (needs_wakeup)
2522 		wake_up_interruptible(&ksm_thread_wait);
2523 
2524 	return 0;
2525 }
2526 
2527 void __ksm_exit(struct mm_struct *mm)
2528 {
2529 	struct mm_slot *mm_slot;
2530 	int easy_to_free = 0;
2531 
2532 	/*
2533 	 * This process is exiting: if it's straightforward (as is the
2534 	 * case when ksmd was never running), free mm_slot immediately.
2535 	 * But if it's at the cursor or has rmap_items linked to it, use
2536 	 * mmap_lock to synchronize with any break_cows before pagetables
2537 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2538 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2539 	 */
2540 
2541 	spin_lock(&ksm_mmlist_lock);
2542 	mm_slot = get_mm_slot(mm);
2543 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2544 		if (!mm_slot->rmap_list) {
2545 			hash_del(&mm_slot->link);
2546 			list_del(&mm_slot->mm_list);
2547 			easy_to_free = 1;
2548 		} else {
2549 			list_move(&mm_slot->mm_list,
2550 				  &ksm_scan.mm_slot->mm_list);
2551 		}
2552 	}
2553 	spin_unlock(&ksm_mmlist_lock);
2554 
2555 	if (easy_to_free) {
2556 		free_mm_slot(mm_slot);
2557 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2558 		mmdrop(mm);
2559 	} else if (mm_slot) {
2560 		mmap_write_lock(mm);
2561 		mmap_write_unlock(mm);
2562 	}
2563 }
2564 
2565 struct page *ksm_might_need_to_copy(struct page *page,
2566 			struct vm_area_struct *vma, unsigned long address)
2567 {
2568 	struct anon_vma *anon_vma = page_anon_vma(page);
2569 	struct page *new_page;
2570 
2571 	if (PageKsm(page)) {
2572 		if (page_stable_node(page) &&
2573 		    !(ksm_run & KSM_RUN_UNMERGE))
2574 			return page;	/* no need to copy it */
2575 	} else if (!anon_vma) {
2576 		return page;		/* no need to copy it */
2577 	} else if (anon_vma->root == vma->anon_vma->root &&
2578 		 page->index == linear_page_index(vma, address)) {
2579 		return page;		/* still no need to copy it */
2580 	}
2581 	if (!PageUptodate(page))
2582 		return page;		/* let do_swap_page report the error */
2583 
2584 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2585 	if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2586 		put_page(new_page);
2587 		new_page = NULL;
2588 	}
2589 	if (new_page) {
2590 		copy_user_highpage(new_page, page, address, vma);
2591 
2592 		SetPageDirty(new_page);
2593 		__SetPageUptodate(new_page);
2594 		__SetPageLocked(new_page);
2595 	}
2596 
2597 	return new_page;
2598 }
2599 
2600 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2601 {
2602 	struct stable_node *stable_node;
2603 	struct rmap_item *rmap_item;
2604 	int search_new_forks = 0;
2605 
2606 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2607 
2608 	/*
2609 	 * Rely on the page lock to protect against concurrent modifications
2610 	 * to that page's node of the stable tree.
2611 	 */
2612 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2613 
2614 	stable_node = page_stable_node(page);
2615 	if (!stable_node)
2616 		return;
2617 again:
2618 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2619 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2620 		struct anon_vma_chain *vmac;
2621 		struct vm_area_struct *vma;
2622 
2623 		cond_resched();
2624 		anon_vma_lock_read(anon_vma);
2625 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2626 					       0, ULONG_MAX) {
2627 			unsigned long addr;
2628 
2629 			cond_resched();
2630 			vma = vmac->vma;
2631 
2632 			/* Ignore the stable/unstable/sqnr flags */
2633 			addr = rmap_item->address & PAGE_MASK;
2634 
2635 			if (addr < vma->vm_start || addr >= vma->vm_end)
2636 				continue;
2637 			/*
2638 			 * Initially we examine only the vma which covers this
2639 			 * rmap_item; but later, if there is still work to do,
2640 			 * we examine covering vmas in other mms: in case they
2641 			 * were forked from the original since ksmd passed.
2642 			 */
2643 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2644 				continue;
2645 
2646 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2647 				continue;
2648 
2649 			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2650 				anon_vma_unlock_read(anon_vma);
2651 				return;
2652 			}
2653 			if (rwc->done && rwc->done(page)) {
2654 				anon_vma_unlock_read(anon_vma);
2655 				return;
2656 			}
2657 		}
2658 		anon_vma_unlock_read(anon_vma);
2659 	}
2660 	if (!search_new_forks++)
2661 		goto again;
2662 }
2663 
2664 #ifdef CONFIG_MIGRATION
2665 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2666 {
2667 	struct stable_node *stable_node;
2668 
2669 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2670 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2671 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2672 
2673 	stable_node = page_stable_node(newpage);
2674 	if (stable_node) {
2675 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2676 		stable_node->kpfn = page_to_pfn(newpage);
2677 		/*
2678 		 * newpage->mapping was set in advance; now we need smp_wmb()
2679 		 * to make sure that the new stable_node->kpfn is visible
2680 		 * to get_ksm_page() before it can see that oldpage->mapping
2681 		 * has gone stale (or that PageSwapCache has been cleared).
2682 		 */
2683 		smp_wmb();
2684 		set_page_stable_node(oldpage, NULL);
2685 	}
2686 }
2687 #endif /* CONFIG_MIGRATION */
2688 
2689 #ifdef CONFIG_MEMORY_HOTREMOVE
2690 static void wait_while_offlining(void)
2691 {
2692 	while (ksm_run & KSM_RUN_OFFLINE) {
2693 		mutex_unlock(&ksm_thread_mutex);
2694 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2695 			    TASK_UNINTERRUPTIBLE);
2696 		mutex_lock(&ksm_thread_mutex);
2697 	}
2698 }
2699 
2700 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2701 					 unsigned long start_pfn,
2702 					 unsigned long end_pfn)
2703 {
2704 	if (stable_node->kpfn >= start_pfn &&
2705 	    stable_node->kpfn < end_pfn) {
2706 		/*
2707 		 * Don't get_ksm_page, page has already gone:
2708 		 * which is why we keep kpfn instead of page*
2709 		 */
2710 		remove_node_from_stable_tree(stable_node);
2711 		return true;
2712 	}
2713 	return false;
2714 }
2715 
2716 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2717 					   unsigned long start_pfn,
2718 					   unsigned long end_pfn,
2719 					   struct rb_root *root)
2720 {
2721 	struct stable_node *dup;
2722 	struct hlist_node *hlist_safe;
2723 
2724 	if (!is_stable_node_chain(stable_node)) {
2725 		VM_BUG_ON(is_stable_node_dup(stable_node));
2726 		return stable_node_dup_remove_range(stable_node, start_pfn,
2727 						    end_pfn);
2728 	}
2729 
2730 	hlist_for_each_entry_safe(dup, hlist_safe,
2731 				  &stable_node->hlist, hlist_dup) {
2732 		VM_BUG_ON(!is_stable_node_dup(dup));
2733 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2734 	}
2735 	if (hlist_empty(&stable_node->hlist)) {
2736 		free_stable_node_chain(stable_node, root);
2737 		return true; /* notify caller that tree was rebalanced */
2738 	} else
2739 		return false;
2740 }
2741 
2742 static void ksm_check_stable_tree(unsigned long start_pfn,
2743 				  unsigned long end_pfn)
2744 {
2745 	struct stable_node *stable_node, *next;
2746 	struct rb_node *node;
2747 	int nid;
2748 
2749 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2750 		node = rb_first(root_stable_tree + nid);
2751 		while (node) {
2752 			stable_node = rb_entry(node, struct stable_node, node);
2753 			if (stable_node_chain_remove_range(stable_node,
2754 							   start_pfn, end_pfn,
2755 							   root_stable_tree +
2756 							   nid))
2757 				node = rb_first(root_stable_tree + nid);
2758 			else
2759 				node = rb_next(node);
2760 			cond_resched();
2761 		}
2762 	}
2763 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2764 		if (stable_node->kpfn >= start_pfn &&
2765 		    stable_node->kpfn < end_pfn)
2766 			remove_node_from_stable_tree(stable_node);
2767 		cond_resched();
2768 	}
2769 }
2770 
2771 static int ksm_memory_callback(struct notifier_block *self,
2772 			       unsigned long action, void *arg)
2773 {
2774 	struct memory_notify *mn = arg;
2775 
2776 	switch (action) {
2777 	case MEM_GOING_OFFLINE:
2778 		/*
2779 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2780 		 * and remove_all_stable_nodes() while memory is going offline:
2781 		 * it is unsafe for them to touch the stable tree at this time.
2782 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2783 		 * which do not need the ksm_thread_mutex are all safe.
2784 		 */
2785 		mutex_lock(&ksm_thread_mutex);
2786 		ksm_run |= KSM_RUN_OFFLINE;
2787 		mutex_unlock(&ksm_thread_mutex);
2788 		break;
2789 
2790 	case MEM_OFFLINE:
2791 		/*
2792 		 * Most of the work is done by page migration; but there might
2793 		 * be a few stable_nodes left over, still pointing to struct
2794 		 * pages which have been offlined: prune those from the tree,
2795 		 * otherwise get_ksm_page() might later try to access a
2796 		 * non-existent struct page.
2797 		 */
2798 		ksm_check_stable_tree(mn->start_pfn,
2799 				      mn->start_pfn + mn->nr_pages);
2800 		fallthrough;
2801 	case MEM_CANCEL_OFFLINE:
2802 		mutex_lock(&ksm_thread_mutex);
2803 		ksm_run &= ~KSM_RUN_OFFLINE;
2804 		mutex_unlock(&ksm_thread_mutex);
2805 
2806 		smp_mb();	/* wake_up_bit advises this */
2807 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2808 		break;
2809 	}
2810 	return NOTIFY_OK;
2811 }
2812 #else
2813 static void wait_while_offlining(void)
2814 {
2815 }
2816 #endif /* CONFIG_MEMORY_HOTREMOVE */
2817 
2818 #ifdef CONFIG_SYSFS
2819 /*
2820  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2821  */
2822 
2823 #define KSM_ATTR_RO(_name) \
2824 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2825 #define KSM_ATTR(_name) \
2826 	static struct kobj_attribute _name##_attr = \
2827 		__ATTR(_name, 0644, _name##_show, _name##_store)
2828 
2829 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2830 				    struct kobj_attribute *attr, char *buf)
2831 {
2832 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2833 }
2834 
2835 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2836 				     struct kobj_attribute *attr,
2837 				     const char *buf, size_t count)
2838 {
2839 	unsigned int msecs;
2840 	int err;
2841 
2842 	err = kstrtouint(buf, 10, &msecs);
2843 	if (err)
2844 		return -EINVAL;
2845 
2846 	ksm_thread_sleep_millisecs = msecs;
2847 	wake_up_interruptible(&ksm_iter_wait);
2848 
2849 	return count;
2850 }
2851 KSM_ATTR(sleep_millisecs);
2852 
2853 static ssize_t pages_to_scan_show(struct kobject *kobj,
2854 				  struct kobj_attribute *attr, char *buf)
2855 {
2856 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2857 }
2858 
2859 static ssize_t pages_to_scan_store(struct kobject *kobj,
2860 				   struct kobj_attribute *attr,
2861 				   const char *buf, size_t count)
2862 {
2863 	unsigned int nr_pages;
2864 	int err;
2865 
2866 	err = kstrtouint(buf, 10, &nr_pages);
2867 	if (err)
2868 		return -EINVAL;
2869 
2870 	ksm_thread_pages_to_scan = nr_pages;
2871 
2872 	return count;
2873 }
2874 KSM_ATTR(pages_to_scan);
2875 
2876 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2877 			char *buf)
2878 {
2879 	return sysfs_emit(buf, "%lu\n", ksm_run);
2880 }
2881 
2882 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2883 			 const char *buf, size_t count)
2884 {
2885 	unsigned int flags;
2886 	int err;
2887 
2888 	err = kstrtouint(buf, 10, &flags);
2889 	if (err)
2890 		return -EINVAL;
2891 	if (flags > KSM_RUN_UNMERGE)
2892 		return -EINVAL;
2893 
2894 	/*
2895 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2896 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2897 	 * breaking COW to free the pages_shared (but leaves mm_slots
2898 	 * on the list for when ksmd may be set running again).
2899 	 */
2900 
2901 	mutex_lock(&ksm_thread_mutex);
2902 	wait_while_offlining();
2903 	if (ksm_run != flags) {
2904 		ksm_run = flags;
2905 		if (flags & KSM_RUN_UNMERGE) {
2906 			set_current_oom_origin();
2907 			err = unmerge_and_remove_all_rmap_items();
2908 			clear_current_oom_origin();
2909 			if (err) {
2910 				ksm_run = KSM_RUN_STOP;
2911 				count = err;
2912 			}
2913 		}
2914 	}
2915 	mutex_unlock(&ksm_thread_mutex);
2916 
2917 	if (flags & KSM_RUN_MERGE)
2918 		wake_up_interruptible(&ksm_thread_wait);
2919 
2920 	return count;
2921 }
2922 KSM_ATTR(run);
2923 
2924 #ifdef CONFIG_NUMA
2925 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2926 				       struct kobj_attribute *attr, char *buf)
2927 {
2928 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2929 }
2930 
2931 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2932 				   struct kobj_attribute *attr,
2933 				   const char *buf, size_t count)
2934 {
2935 	int err;
2936 	unsigned long knob;
2937 
2938 	err = kstrtoul(buf, 10, &knob);
2939 	if (err)
2940 		return err;
2941 	if (knob > 1)
2942 		return -EINVAL;
2943 
2944 	mutex_lock(&ksm_thread_mutex);
2945 	wait_while_offlining();
2946 	if (ksm_merge_across_nodes != knob) {
2947 		if (ksm_pages_shared || remove_all_stable_nodes())
2948 			err = -EBUSY;
2949 		else if (root_stable_tree == one_stable_tree) {
2950 			struct rb_root *buf;
2951 			/*
2952 			 * This is the first time that we switch away from the
2953 			 * default of merging across nodes: must now allocate
2954 			 * a buffer to hold as many roots as may be needed.
2955 			 * Allocate stable and unstable together:
2956 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2957 			 */
2958 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2959 				      GFP_KERNEL);
2960 			/* Let us assume that RB_ROOT is NULL is zero */
2961 			if (!buf)
2962 				err = -ENOMEM;
2963 			else {
2964 				root_stable_tree = buf;
2965 				root_unstable_tree = buf + nr_node_ids;
2966 				/* Stable tree is empty but not the unstable */
2967 				root_unstable_tree[0] = one_unstable_tree[0];
2968 			}
2969 		}
2970 		if (!err) {
2971 			ksm_merge_across_nodes = knob;
2972 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2973 		}
2974 	}
2975 	mutex_unlock(&ksm_thread_mutex);
2976 
2977 	return err ? err : count;
2978 }
2979 KSM_ATTR(merge_across_nodes);
2980 #endif
2981 
2982 static ssize_t use_zero_pages_show(struct kobject *kobj,
2983 				   struct kobj_attribute *attr, char *buf)
2984 {
2985 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2986 }
2987 static ssize_t use_zero_pages_store(struct kobject *kobj,
2988 				   struct kobj_attribute *attr,
2989 				   const char *buf, size_t count)
2990 {
2991 	int err;
2992 	bool value;
2993 
2994 	err = kstrtobool(buf, &value);
2995 	if (err)
2996 		return -EINVAL;
2997 
2998 	ksm_use_zero_pages = value;
2999 
3000 	return count;
3001 }
3002 KSM_ATTR(use_zero_pages);
3003 
3004 static ssize_t max_page_sharing_show(struct kobject *kobj,
3005 				     struct kobj_attribute *attr, char *buf)
3006 {
3007 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3008 }
3009 
3010 static ssize_t max_page_sharing_store(struct kobject *kobj,
3011 				      struct kobj_attribute *attr,
3012 				      const char *buf, size_t count)
3013 {
3014 	int err;
3015 	int knob;
3016 
3017 	err = kstrtoint(buf, 10, &knob);
3018 	if (err)
3019 		return err;
3020 	/*
3021 	 * When a KSM page is created it is shared by 2 mappings. This
3022 	 * being a signed comparison, it implicitly verifies it's not
3023 	 * negative.
3024 	 */
3025 	if (knob < 2)
3026 		return -EINVAL;
3027 
3028 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3029 		return count;
3030 
3031 	mutex_lock(&ksm_thread_mutex);
3032 	wait_while_offlining();
3033 	if (ksm_max_page_sharing != knob) {
3034 		if (ksm_pages_shared || remove_all_stable_nodes())
3035 			err = -EBUSY;
3036 		else
3037 			ksm_max_page_sharing = knob;
3038 	}
3039 	mutex_unlock(&ksm_thread_mutex);
3040 
3041 	return err ? err : count;
3042 }
3043 KSM_ATTR(max_page_sharing);
3044 
3045 static ssize_t pages_shared_show(struct kobject *kobj,
3046 				 struct kobj_attribute *attr, char *buf)
3047 {
3048 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3049 }
3050 KSM_ATTR_RO(pages_shared);
3051 
3052 static ssize_t pages_sharing_show(struct kobject *kobj,
3053 				  struct kobj_attribute *attr, char *buf)
3054 {
3055 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3056 }
3057 KSM_ATTR_RO(pages_sharing);
3058 
3059 static ssize_t pages_unshared_show(struct kobject *kobj,
3060 				   struct kobj_attribute *attr, char *buf)
3061 {
3062 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3063 }
3064 KSM_ATTR_RO(pages_unshared);
3065 
3066 static ssize_t pages_volatile_show(struct kobject *kobj,
3067 				   struct kobj_attribute *attr, char *buf)
3068 {
3069 	long ksm_pages_volatile;
3070 
3071 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3072 				- ksm_pages_sharing - ksm_pages_unshared;
3073 	/*
3074 	 * It was not worth any locking to calculate that statistic,
3075 	 * but it might therefore sometimes be negative: conceal that.
3076 	 */
3077 	if (ksm_pages_volatile < 0)
3078 		ksm_pages_volatile = 0;
3079 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3080 }
3081 KSM_ATTR_RO(pages_volatile);
3082 
3083 static ssize_t stable_node_dups_show(struct kobject *kobj,
3084 				     struct kobj_attribute *attr, char *buf)
3085 {
3086 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3087 }
3088 KSM_ATTR_RO(stable_node_dups);
3089 
3090 static ssize_t stable_node_chains_show(struct kobject *kobj,
3091 				       struct kobj_attribute *attr, char *buf)
3092 {
3093 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3094 }
3095 KSM_ATTR_RO(stable_node_chains);
3096 
3097 static ssize_t
3098 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3099 					struct kobj_attribute *attr,
3100 					char *buf)
3101 {
3102 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3103 }
3104 
3105 static ssize_t
3106 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3107 					 struct kobj_attribute *attr,
3108 					 const char *buf, size_t count)
3109 {
3110 	unsigned long msecs;
3111 	int err;
3112 
3113 	err = kstrtoul(buf, 10, &msecs);
3114 	if (err || msecs > UINT_MAX)
3115 		return -EINVAL;
3116 
3117 	ksm_stable_node_chains_prune_millisecs = msecs;
3118 
3119 	return count;
3120 }
3121 KSM_ATTR(stable_node_chains_prune_millisecs);
3122 
3123 static ssize_t full_scans_show(struct kobject *kobj,
3124 			       struct kobj_attribute *attr, char *buf)
3125 {
3126 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3127 }
3128 KSM_ATTR_RO(full_scans);
3129 
3130 static struct attribute *ksm_attrs[] = {
3131 	&sleep_millisecs_attr.attr,
3132 	&pages_to_scan_attr.attr,
3133 	&run_attr.attr,
3134 	&pages_shared_attr.attr,
3135 	&pages_sharing_attr.attr,
3136 	&pages_unshared_attr.attr,
3137 	&pages_volatile_attr.attr,
3138 	&full_scans_attr.attr,
3139 #ifdef CONFIG_NUMA
3140 	&merge_across_nodes_attr.attr,
3141 #endif
3142 	&max_page_sharing_attr.attr,
3143 	&stable_node_chains_attr.attr,
3144 	&stable_node_dups_attr.attr,
3145 	&stable_node_chains_prune_millisecs_attr.attr,
3146 	&use_zero_pages_attr.attr,
3147 	NULL,
3148 };
3149 
3150 static const struct attribute_group ksm_attr_group = {
3151 	.attrs = ksm_attrs,
3152 	.name = "ksm",
3153 };
3154 #endif /* CONFIG_SYSFS */
3155 
3156 static int __init ksm_init(void)
3157 {
3158 	struct task_struct *ksm_thread;
3159 	int err;
3160 
3161 	/* The correct value depends on page size and endianness */
3162 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3163 	/* Default to false for backwards compatibility */
3164 	ksm_use_zero_pages = false;
3165 
3166 	err = ksm_slab_init();
3167 	if (err)
3168 		goto out;
3169 
3170 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3171 	if (IS_ERR(ksm_thread)) {
3172 		pr_err("ksm: creating kthread failed\n");
3173 		err = PTR_ERR(ksm_thread);
3174 		goto out_free;
3175 	}
3176 
3177 #ifdef CONFIG_SYSFS
3178 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3179 	if (err) {
3180 		pr_err("ksm: register sysfs failed\n");
3181 		kthread_stop(ksm_thread);
3182 		goto out_free;
3183 	}
3184 #else
3185 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3186 
3187 #endif /* CONFIG_SYSFS */
3188 
3189 #ifdef CONFIG_MEMORY_HOTREMOVE
3190 	/* There is no significance to this priority 100 */
3191 	hotplug_memory_notifier(ksm_memory_callback, 100);
3192 #endif
3193 	return 0;
3194 
3195 out_free:
3196 	ksm_slab_free();
3197 out:
3198 	return err;
3199 }
3200 subsys_initcall(ksm_init);
3201