xref: /openbmc/linux/mm/ksm.c (revision 5a170e9e)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)		(x)
48 #define DO_NUMA(x)	do { (x); } while (0)
49 #else
50 #define NUMA(x)		(0)
51 #define DO_NUMA(x)	do { } while (0)
52 #endif
53 
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same :c:type:`struct stable_node` structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113 
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122 	struct hlist_node link;
123 	struct list_head mm_list;
124 	struct rmap_item *rmap_list;
125 	struct mm_struct *mm;
126 };
127 
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138 	struct mm_slot *mm_slot;
139 	unsigned long address;
140 	struct rmap_item **rmap_list;
141 	unsigned long seqnr;
142 };
143 
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157 	union {
158 		struct rb_node node;	/* when node of stable tree */
159 		struct {		/* when listed for migration */
160 			struct list_head *head;
161 			struct {
162 				struct hlist_node hlist_dup;
163 				struct list_head list;
164 			};
165 		};
166 	};
167 	struct hlist_head hlist;
168 	union {
169 		unsigned long kpfn;
170 		unsigned long chain_prune_time;
171 	};
172 	/*
173 	 * STABLE_NODE_CHAIN can be any negative number in
174 	 * rmap_hlist_len negative range, but better not -1 to be able
175 	 * to reliably detect underflows.
176 	 */
177 #define STABLE_NODE_CHAIN -1024
178 	int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180 	int nid;
181 #endif
182 };
183 
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197 	struct rmap_item *rmap_list;
198 	union {
199 		struct anon_vma *anon_vma;	/* when stable */
200 #ifdef CONFIG_NUMA
201 		int nid;		/* when node of unstable tree */
202 #endif
203 	};
204 	struct mm_struct *mm;
205 	unsigned long address;		/* + low bits used for flags below */
206 	unsigned int oldchecksum;	/* when unstable */
207 	union {
208 		struct rb_node node;	/* when node of unstable tree */
209 		struct {		/* when listed from stable tree */
210 			struct stable_node *head;
211 			struct hlist_node hlist;
212 		};
213 	};
214 };
215 
216 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
218 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
219 #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220 				/* to mask all the flags */
221 
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227 
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231 
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234 
235 static struct mm_slot ksm_mm_head = {
236 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239 	.mm_slot = &ksm_mm_head,
240 };
241 
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245 
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248 
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251 
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254 
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257 
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260 
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263 
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266 
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269 
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272 
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275 
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278 
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281 
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes	1U
288 #define ksm_nr_node_ids		1
289 #endif
290 
291 #define KSM_RUN_STOP	0
292 #define KSM_RUN_MERGE	1
293 #define KSM_RUN_UNMERGE	2
294 #define KSM_RUN_OFFLINE	4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297 
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300 static DEFINE_MUTEX(ksm_thread_mutex);
301 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302 
303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304 		sizeof(struct __struct), __alignof__(struct __struct),\
305 		(__flags), NULL)
306 
307 static int __init ksm_slab_init(void)
308 {
309 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310 	if (!rmap_item_cache)
311 		goto out;
312 
313 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314 	if (!stable_node_cache)
315 		goto out_free1;
316 
317 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318 	if (!mm_slot_cache)
319 		goto out_free2;
320 
321 	return 0;
322 
323 out_free2:
324 	kmem_cache_destroy(stable_node_cache);
325 out_free1:
326 	kmem_cache_destroy(rmap_item_cache);
327 out:
328 	return -ENOMEM;
329 }
330 
331 static void __init ksm_slab_free(void)
332 {
333 	kmem_cache_destroy(mm_slot_cache);
334 	kmem_cache_destroy(stable_node_cache);
335 	kmem_cache_destroy(rmap_item_cache);
336 	mm_slot_cache = NULL;
337 }
338 
339 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340 {
341 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342 }
343 
344 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345 {
346 	return dup->head == STABLE_NODE_DUP_HEAD;
347 }
348 
349 static inline void stable_node_chain_add_dup(struct stable_node *dup,
350 					     struct stable_node *chain)
351 {
352 	VM_BUG_ON(is_stable_node_dup(dup));
353 	dup->head = STABLE_NODE_DUP_HEAD;
354 	VM_BUG_ON(!is_stable_node_chain(chain));
355 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
356 	ksm_stable_node_dups++;
357 }
358 
359 static inline void __stable_node_dup_del(struct stable_node *dup)
360 {
361 	VM_BUG_ON(!is_stable_node_dup(dup));
362 	hlist_del(&dup->hlist_dup);
363 	ksm_stable_node_dups--;
364 }
365 
366 static inline void stable_node_dup_del(struct stable_node *dup)
367 {
368 	VM_BUG_ON(is_stable_node_chain(dup));
369 	if (is_stable_node_dup(dup))
370 		__stable_node_dup_del(dup);
371 	else
372 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373 #ifdef CONFIG_DEBUG_VM
374 	dup->head = NULL;
375 #endif
376 }
377 
378 static inline struct rmap_item *alloc_rmap_item(void)
379 {
380 	struct rmap_item *rmap_item;
381 
382 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383 						__GFP_NORETRY | __GFP_NOWARN);
384 	if (rmap_item)
385 		ksm_rmap_items++;
386 	return rmap_item;
387 }
388 
389 static inline void free_rmap_item(struct rmap_item *rmap_item)
390 {
391 	ksm_rmap_items--;
392 	rmap_item->mm = NULL;	/* debug safety */
393 	kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395 
396 static inline struct stable_node *alloc_stable_node(void)
397 {
398 	/*
399 	 * The allocation can take too long with GFP_KERNEL when memory is under
400 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401 	 * grants access to memory reserves, helping to avoid this problem.
402 	 */
403 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405 
406 static inline void free_stable_node(struct stable_node *stable_node)
407 {
408 	VM_BUG_ON(stable_node->rmap_hlist_len &&
409 		  !is_stable_node_chain(stable_node));
410 	kmem_cache_free(stable_node_cache, stable_node);
411 }
412 
413 static inline struct mm_slot *alloc_mm_slot(void)
414 {
415 	if (!mm_slot_cache)	/* initialization failed */
416 		return NULL;
417 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418 }
419 
420 static inline void free_mm_slot(struct mm_slot *mm_slot)
421 {
422 	kmem_cache_free(mm_slot_cache, mm_slot);
423 }
424 
425 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426 {
427 	struct mm_slot *slot;
428 
429 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430 		if (slot->mm == mm)
431 			return slot;
432 
433 	return NULL;
434 }
435 
436 static void insert_to_mm_slots_hash(struct mm_struct *mm,
437 				    struct mm_slot *mm_slot)
438 {
439 	mm_slot->mm = mm;
440 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
441 }
442 
443 /*
444  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445  * page tables after it has passed through ksm_exit() - which, if necessary,
446  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
447  * a special flag: they can just back out as soon as mm_users goes to zero.
448  * ksm_test_exit() is used throughout to make this test for exit: in some
449  * places for correctness, in some places just to avoid unnecessary work.
450  */
451 static inline bool ksm_test_exit(struct mm_struct *mm)
452 {
453 	return atomic_read(&mm->mm_users) == 0;
454 }
455 
456 /*
457  * We use break_ksm to break COW on a ksm page: it's a stripped down
458  *
459  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
460  *		put_page(page);
461  *
462  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463  * in case the application has unmapped and remapped mm,addr meanwhile.
464  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
465  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466  *
467  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468  * of the process that owns 'vma'.  We also do not want to enforce
469  * protection keys here anyway.
470  */
471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
472 {
473 	struct page *page;
474 	vm_fault_t ret = 0;
475 
476 	do {
477 		cond_resched();
478 		page = follow_page(vma, addr,
479 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480 		if (IS_ERR_OR_NULL(page))
481 			break;
482 		if (PageKsm(page))
483 			ret = handle_mm_fault(vma, addr,
484 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
485 		else
486 			ret = VM_FAULT_WRITE;
487 		put_page(page);
488 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489 	/*
490 	 * We must loop because handle_mm_fault() may back out if there's
491 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 	 *
493 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 	 * COW has been broken, even if the vma does not permit VM_WRITE;
495 	 * but note that a concurrent fault might break PageKsm for us.
496 	 *
497 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 	 * backing file, which also invalidates anonymous pages: that's
499 	 * okay, that truncation will have unmapped the PageKsm for us.
500 	 *
501 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 	 * to user; and ksmd, having no mm, would never be chosen for that.
505 	 *
506 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 	 * even ksmd can fail in this way - though it's usually breaking ksm
509 	 * just to undo a merge it made a moment before, so unlikely to oom.
510 	 *
511 	 * That's a pity: we might therefore have more kernel pages allocated
512 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 	 * will retry to break_cow on each pass, so should recover the page
514 	 * in due course.  The important thing is to not let VM_MERGEABLE
515 	 * be cleared while any such pages might remain in the area.
516 	 */
517 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 }
519 
520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521 		unsigned long addr)
522 {
523 	struct vm_area_struct *vma;
524 	if (ksm_test_exit(mm))
525 		return NULL;
526 	vma = find_vma(mm, addr);
527 	if (!vma || vma->vm_start > addr)
528 		return NULL;
529 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530 		return NULL;
531 	return vma;
532 }
533 
534 static void break_cow(struct rmap_item *rmap_item)
535 {
536 	struct mm_struct *mm = rmap_item->mm;
537 	unsigned long addr = rmap_item->address;
538 	struct vm_area_struct *vma;
539 
540 	/*
541 	 * It is not an accident that whenever we want to break COW
542 	 * to undo, we also need to drop a reference to the anon_vma.
543 	 */
544 	put_anon_vma(rmap_item->anon_vma);
545 
546 	down_read(&mm->mmap_sem);
547 	vma = find_mergeable_vma(mm, addr);
548 	if (vma)
549 		break_ksm(vma, addr);
550 	up_read(&mm->mmap_sem);
551 }
552 
553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554 {
555 	struct mm_struct *mm = rmap_item->mm;
556 	unsigned long addr = rmap_item->address;
557 	struct vm_area_struct *vma;
558 	struct page *page;
559 
560 	down_read(&mm->mmap_sem);
561 	vma = find_mergeable_vma(mm, addr);
562 	if (!vma)
563 		goto out;
564 
565 	page = follow_page(vma, addr, FOLL_GET);
566 	if (IS_ERR_OR_NULL(page))
567 		goto out;
568 	if (PageAnon(page)) {
569 		flush_anon_page(vma, page, addr);
570 		flush_dcache_page(page);
571 	} else {
572 		put_page(page);
573 out:
574 		page = NULL;
575 	}
576 	up_read(&mm->mmap_sem);
577 	return page;
578 }
579 
580 /*
581  * This helper is used for getting right index into array of tree roots.
582  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584  * every node has its own stable and unstable tree.
585  */
586 static inline int get_kpfn_nid(unsigned long kpfn)
587 {
588 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
589 }
590 
591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592 						   struct rb_root *root)
593 {
594 	struct stable_node *chain = alloc_stable_node();
595 	VM_BUG_ON(is_stable_node_chain(dup));
596 	if (likely(chain)) {
597 		INIT_HLIST_HEAD(&chain->hlist);
598 		chain->chain_prune_time = jiffies;
599 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601 		chain->nid = -1; /* debug */
602 #endif
603 		ksm_stable_node_chains++;
604 
605 		/*
606 		 * Put the stable node chain in the first dimension of
607 		 * the stable tree and at the same time remove the old
608 		 * stable node.
609 		 */
610 		rb_replace_node(&dup->node, &chain->node, root);
611 
612 		/*
613 		 * Move the old stable node to the second dimension
614 		 * queued in the hlist_dup. The invariant is that all
615 		 * dup stable_nodes in the chain->hlist point to pages
616 		 * that are wrprotected and have the exact same
617 		 * content.
618 		 */
619 		stable_node_chain_add_dup(dup, chain);
620 	}
621 	return chain;
622 }
623 
624 static inline void free_stable_node_chain(struct stable_node *chain,
625 					  struct rb_root *root)
626 {
627 	rb_erase(&chain->node, root);
628 	free_stable_node(chain);
629 	ksm_stable_node_chains--;
630 }
631 
632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
633 {
634 	struct rmap_item *rmap_item;
635 
636 	/* check it's not STABLE_NODE_CHAIN or negative */
637 	BUG_ON(stable_node->rmap_hlist_len < 0);
638 
639 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640 		if (rmap_item->hlist.next)
641 			ksm_pages_sharing--;
642 		else
643 			ksm_pages_shared--;
644 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 		stable_node->rmap_hlist_len--;
646 		put_anon_vma(rmap_item->anon_vma);
647 		rmap_item->address &= PAGE_MASK;
648 		cond_resched();
649 	}
650 
651 	/*
652 	 * We need the second aligned pointer of the migrate_nodes
653 	 * list_head to stay clear from the rb_parent_color union
654 	 * (aligned and different than any node) and also different
655 	 * from &migrate_nodes. This will verify that future list.h changes
656 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 	 */
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
662 
663 	if (stable_node->head == &migrate_nodes)
664 		list_del(&stable_node->list);
665 	else
666 		stable_node_dup_del(stable_node);
667 	free_stable_node(stable_node);
668 }
669 
670 /*
671  * get_ksm_page: checks if the page indicated by the stable node
672  * is still its ksm page, despite having held no reference to it.
673  * In which case we can trust the content of the page, and it
674  * returns the gotten page; but if the page has now been zapped,
675  * remove the stale node from the stable tree and return NULL.
676  * But beware, the stable node's page might be being migrated.
677  *
678  * You would expect the stable_node to hold a reference to the ksm page.
679  * But if it increments the page's count, swapping out has to wait for
680  * ksmd to come around again before it can free the page, which may take
681  * seconds or even minutes: much too unresponsive.  So instead we use a
682  * "keyhole reference": access to the ksm page from the stable node peeps
683  * out through its keyhole to see if that page still holds the right key,
684  * pointing back to this stable node.  This relies on freeing a PageAnon
685  * page to reset its page->mapping to NULL, and relies on no other use of
686  * a page to put something that might look like our key in page->mapping.
687  * is on its way to being freed; but it is an anomaly to bear in mind.
688  */
689 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
690 {
691 	struct page *page;
692 	void *expected_mapping;
693 	unsigned long kpfn;
694 
695 	expected_mapping = (void *)((unsigned long)stable_node |
696 					PAGE_MAPPING_KSM);
697 again:
698 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
699 	page = pfn_to_page(kpfn);
700 	if (READ_ONCE(page->mapping) != expected_mapping)
701 		goto stale;
702 
703 	/*
704 	 * We cannot do anything with the page while its refcount is 0.
705 	 * Usually 0 means free, or tail of a higher-order page: in which
706 	 * case this node is no longer referenced, and should be freed;
707 	 * however, it might mean that the page is under page_ref_freeze().
708 	 * The __remove_mapping() case is easy, again the node is now stale;
709 	 * but if page is swapcache in migrate_page_move_mapping(), it might
710 	 * still be our page, in which case it's essential to keep the node.
711 	 */
712 	while (!get_page_unless_zero(page)) {
713 		/*
714 		 * Another check for page->mapping != expected_mapping would
715 		 * work here too.  We have chosen the !PageSwapCache test to
716 		 * optimize the common case, when the page is or is about to
717 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
718 		 * in the ref_freeze section of __remove_mapping(); but Anon
719 		 * page->mapping reset to NULL later, in free_pages_prepare().
720 		 */
721 		if (!PageSwapCache(page))
722 			goto stale;
723 		cpu_relax();
724 	}
725 
726 	if (READ_ONCE(page->mapping) != expected_mapping) {
727 		put_page(page);
728 		goto stale;
729 	}
730 
731 	if (lock_it) {
732 		lock_page(page);
733 		if (READ_ONCE(page->mapping) != expected_mapping) {
734 			unlock_page(page);
735 			put_page(page);
736 			goto stale;
737 		}
738 	}
739 	return page;
740 
741 stale:
742 	/*
743 	 * We come here from above when page->mapping or !PageSwapCache
744 	 * suggests that the node is stale; but it might be under migration.
745 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
746 	 * before checking whether node->kpfn has been changed.
747 	 */
748 	smp_rmb();
749 	if (READ_ONCE(stable_node->kpfn) != kpfn)
750 		goto again;
751 	remove_node_from_stable_tree(stable_node);
752 	return NULL;
753 }
754 
755 /*
756  * Removing rmap_item from stable or unstable tree.
757  * This function will clean the information from the stable/unstable tree.
758  */
759 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
760 {
761 	if (rmap_item->address & STABLE_FLAG) {
762 		struct stable_node *stable_node;
763 		struct page *page;
764 
765 		stable_node = rmap_item->head;
766 		page = get_ksm_page(stable_node, true);
767 		if (!page)
768 			goto out;
769 
770 		hlist_del(&rmap_item->hlist);
771 		unlock_page(page);
772 		put_page(page);
773 
774 		if (!hlist_empty(&stable_node->hlist))
775 			ksm_pages_sharing--;
776 		else
777 			ksm_pages_shared--;
778 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
779 		stable_node->rmap_hlist_len--;
780 
781 		put_anon_vma(rmap_item->anon_vma);
782 		rmap_item->address &= PAGE_MASK;
783 
784 	} else if (rmap_item->address & UNSTABLE_FLAG) {
785 		unsigned char age;
786 		/*
787 		 * Usually ksmd can and must skip the rb_erase, because
788 		 * root_unstable_tree was already reset to RB_ROOT.
789 		 * But be careful when an mm is exiting: do the rb_erase
790 		 * if this rmap_item was inserted by this scan, rather
791 		 * than left over from before.
792 		 */
793 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
794 		BUG_ON(age > 1);
795 		if (!age)
796 			rb_erase(&rmap_item->node,
797 				 root_unstable_tree + NUMA(rmap_item->nid));
798 		ksm_pages_unshared--;
799 		rmap_item->address &= PAGE_MASK;
800 	}
801 out:
802 	cond_resched();		/* we're called from many long loops */
803 }
804 
805 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
806 				       struct rmap_item **rmap_list)
807 {
808 	while (*rmap_list) {
809 		struct rmap_item *rmap_item = *rmap_list;
810 		*rmap_list = rmap_item->rmap_list;
811 		remove_rmap_item_from_tree(rmap_item);
812 		free_rmap_item(rmap_item);
813 	}
814 }
815 
816 /*
817  * Though it's very tempting to unmerge rmap_items from stable tree rather
818  * than check every pte of a given vma, the locking doesn't quite work for
819  * that - an rmap_item is assigned to the stable tree after inserting ksm
820  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
821  * rmap_items from parent to child at fork time (so as not to waste time
822  * if exit comes before the next scan reaches it).
823  *
824  * Similarly, although we'd like to remove rmap_items (so updating counts
825  * and freeing memory) when unmerging an area, it's easier to leave that
826  * to the next pass of ksmd - consider, for example, how ksmd might be
827  * in cmp_and_merge_page on one of the rmap_items we would be removing.
828  */
829 static int unmerge_ksm_pages(struct vm_area_struct *vma,
830 			     unsigned long start, unsigned long end)
831 {
832 	unsigned long addr;
833 	int err = 0;
834 
835 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
836 		if (ksm_test_exit(vma->vm_mm))
837 			break;
838 		if (signal_pending(current))
839 			err = -ERESTARTSYS;
840 		else
841 			err = break_ksm(vma, addr);
842 	}
843 	return err;
844 }
845 
846 static inline struct stable_node *page_stable_node(struct page *page)
847 {
848 	return PageKsm(page) ? page_rmapping(page) : NULL;
849 }
850 
851 static inline void set_page_stable_node(struct page *page,
852 					struct stable_node *stable_node)
853 {
854 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
855 }
856 
857 #ifdef CONFIG_SYSFS
858 /*
859  * Only called through the sysfs control interface:
860  */
861 static int remove_stable_node(struct stable_node *stable_node)
862 {
863 	struct page *page;
864 	int err;
865 
866 	page = get_ksm_page(stable_node, true);
867 	if (!page) {
868 		/*
869 		 * get_ksm_page did remove_node_from_stable_tree itself.
870 		 */
871 		return 0;
872 	}
873 
874 	if (WARN_ON_ONCE(page_mapped(page))) {
875 		/*
876 		 * This should not happen: but if it does, just refuse to let
877 		 * merge_across_nodes be switched - there is no need to panic.
878 		 */
879 		err = -EBUSY;
880 	} else {
881 		/*
882 		 * The stable node did not yet appear stale to get_ksm_page(),
883 		 * since that allows for an unmapped ksm page to be recognized
884 		 * right up until it is freed; but the node is safe to remove.
885 		 * This page might be in a pagevec waiting to be freed,
886 		 * or it might be PageSwapCache (perhaps under writeback),
887 		 * or it might have been removed from swapcache a moment ago.
888 		 */
889 		set_page_stable_node(page, NULL);
890 		remove_node_from_stable_tree(stable_node);
891 		err = 0;
892 	}
893 
894 	unlock_page(page);
895 	put_page(page);
896 	return err;
897 }
898 
899 static int remove_stable_node_chain(struct stable_node *stable_node,
900 				    struct rb_root *root)
901 {
902 	struct stable_node *dup;
903 	struct hlist_node *hlist_safe;
904 
905 	if (!is_stable_node_chain(stable_node)) {
906 		VM_BUG_ON(is_stable_node_dup(stable_node));
907 		if (remove_stable_node(stable_node))
908 			return true;
909 		else
910 			return false;
911 	}
912 
913 	hlist_for_each_entry_safe(dup, hlist_safe,
914 				  &stable_node->hlist, hlist_dup) {
915 		VM_BUG_ON(!is_stable_node_dup(dup));
916 		if (remove_stable_node(dup))
917 			return true;
918 	}
919 	BUG_ON(!hlist_empty(&stable_node->hlist));
920 	free_stable_node_chain(stable_node, root);
921 	return false;
922 }
923 
924 static int remove_all_stable_nodes(void)
925 {
926 	struct stable_node *stable_node, *next;
927 	int nid;
928 	int err = 0;
929 
930 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
931 		while (root_stable_tree[nid].rb_node) {
932 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
933 						struct stable_node, node);
934 			if (remove_stable_node_chain(stable_node,
935 						     root_stable_tree + nid)) {
936 				err = -EBUSY;
937 				break;	/* proceed to next nid */
938 			}
939 			cond_resched();
940 		}
941 	}
942 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
943 		if (remove_stable_node(stable_node))
944 			err = -EBUSY;
945 		cond_resched();
946 	}
947 	return err;
948 }
949 
950 static int unmerge_and_remove_all_rmap_items(void)
951 {
952 	struct mm_slot *mm_slot;
953 	struct mm_struct *mm;
954 	struct vm_area_struct *vma;
955 	int err = 0;
956 
957 	spin_lock(&ksm_mmlist_lock);
958 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
959 						struct mm_slot, mm_list);
960 	spin_unlock(&ksm_mmlist_lock);
961 
962 	for (mm_slot = ksm_scan.mm_slot;
963 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
964 		mm = mm_slot->mm;
965 		down_read(&mm->mmap_sem);
966 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
967 			if (ksm_test_exit(mm))
968 				break;
969 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
970 				continue;
971 			err = unmerge_ksm_pages(vma,
972 						vma->vm_start, vma->vm_end);
973 			if (err)
974 				goto error;
975 		}
976 
977 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
978 		up_read(&mm->mmap_sem);
979 
980 		spin_lock(&ksm_mmlist_lock);
981 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
982 						struct mm_slot, mm_list);
983 		if (ksm_test_exit(mm)) {
984 			hash_del(&mm_slot->link);
985 			list_del(&mm_slot->mm_list);
986 			spin_unlock(&ksm_mmlist_lock);
987 
988 			free_mm_slot(mm_slot);
989 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
990 			mmdrop(mm);
991 		} else
992 			spin_unlock(&ksm_mmlist_lock);
993 	}
994 
995 	/* Clean up stable nodes, but don't worry if some are still busy */
996 	remove_all_stable_nodes();
997 	ksm_scan.seqnr = 0;
998 	return 0;
999 
1000 error:
1001 	up_read(&mm->mmap_sem);
1002 	spin_lock(&ksm_mmlist_lock);
1003 	ksm_scan.mm_slot = &ksm_mm_head;
1004 	spin_unlock(&ksm_mmlist_lock);
1005 	return err;
1006 }
1007 #endif /* CONFIG_SYSFS */
1008 
1009 static u32 calc_checksum(struct page *page)
1010 {
1011 	u32 checksum;
1012 	void *addr = kmap_atomic(page);
1013 	checksum = xxhash(addr, PAGE_SIZE, 0);
1014 	kunmap_atomic(addr);
1015 	return checksum;
1016 }
1017 
1018 static int memcmp_pages(struct page *page1, struct page *page2)
1019 {
1020 	char *addr1, *addr2;
1021 	int ret;
1022 
1023 	addr1 = kmap_atomic(page1);
1024 	addr2 = kmap_atomic(page2);
1025 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1026 	kunmap_atomic(addr2);
1027 	kunmap_atomic(addr1);
1028 	return ret;
1029 }
1030 
1031 static inline int pages_identical(struct page *page1, struct page *page2)
1032 {
1033 	return !memcmp_pages(page1, page2);
1034 }
1035 
1036 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1037 			      pte_t *orig_pte)
1038 {
1039 	struct mm_struct *mm = vma->vm_mm;
1040 	struct page_vma_mapped_walk pvmw = {
1041 		.page = page,
1042 		.vma = vma,
1043 	};
1044 	int swapped;
1045 	int err = -EFAULT;
1046 	struct mmu_notifier_range range;
1047 
1048 	pvmw.address = page_address_in_vma(page, vma);
1049 	if (pvmw.address == -EFAULT)
1050 		goto out;
1051 
1052 	BUG_ON(PageTransCompound(page));
1053 
1054 	mmu_notifier_range_init(&range, mm, pvmw.address,
1055 				pvmw.address + PAGE_SIZE);
1056 	mmu_notifier_invalidate_range_start(&range);
1057 
1058 	if (!page_vma_mapped_walk(&pvmw))
1059 		goto out_mn;
1060 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1061 		goto out_unlock;
1062 
1063 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1064 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1065 						mm_tlb_flush_pending(mm)) {
1066 		pte_t entry;
1067 
1068 		swapped = PageSwapCache(page);
1069 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1070 		/*
1071 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1072 		 * take any lock, therefore the check that we are going to make
1073 		 * with the pagecount against the mapcount is racey and
1074 		 * O_DIRECT can happen right after the check.
1075 		 * So we clear the pte and flush the tlb before the check
1076 		 * this assure us that no O_DIRECT can happen after the check
1077 		 * or in the middle of the check.
1078 		 *
1079 		 * No need to notify as we are downgrading page table to read
1080 		 * only not changing it to point to a new page.
1081 		 *
1082 		 * See Documentation/vm/mmu_notifier.rst
1083 		 */
1084 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1085 		/*
1086 		 * Check that no O_DIRECT or similar I/O is in progress on the
1087 		 * page
1088 		 */
1089 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1090 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1091 			goto out_unlock;
1092 		}
1093 		if (pte_dirty(entry))
1094 			set_page_dirty(page);
1095 
1096 		if (pte_protnone(entry))
1097 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1098 		else
1099 			entry = pte_mkclean(pte_wrprotect(entry));
1100 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1101 	}
1102 	*orig_pte = *pvmw.pte;
1103 	err = 0;
1104 
1105 out_unlock:
1106 	page_vma_mapped_walk_done(&pvmw);
1107 out_mn:
1108 	mmu_notifier_invalidate_range_end(&range);
1109 out:
1110 	return err;
1111 }
1112 
1113 /**
1114  * replace_page - replace page in vma by new ksm page
1115  * @vma:      vma that holds the pte pointing to page
1116  * @page:     the page we are replacing by kpage
1117  * @kpage:    the ksm page we replace page by
1118  * @orig_pte: the original value of the pte
1119  *
1120  * Returns 0 on success, -EFAULT on failure.
1121  */
1122 static int replace_page(struct vm_area_struct *vma, struct page *page,
1123 			struct page *kpage, pte_t orig_pte)
1124 {
1125 	struct mm_struct *mm = vma->vm_mm;
1126 	pmd_t *pmd;
1127 	pte_t *ptep;
1128 	pte_t newpte;
1129 	spinlock_t *ptl;
1130 	unsigned long addr;
1131 	int err = -EFAULT;
1132 	struct mmu_notifier_range range;
1133 
1134 	addr = page_address_in_vma(page, vma);
1135 	if (addr == -EFAULT)
1136 		goto out;
1137 
1138 	pmd = mm_find_pmd(mm, addr);
1139 	if (!pmd)
1140 		goto out;
1141 
1142 	mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
1143 	mmu_notifier_invalidate_range_start(&range);
1144 
1145 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1146 	if (!pte_same(*ptep, orig_pte)) {
1147 		pte_unmap_unlock(ptep, ptl);
1148 		goto out_mn;
1149 	}
1150 
1151 	/*
1152 	 * No need to check ksm_use_zero_pages here: we can only have a
1153 	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1154 	 */
1155 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1156 		get_page(kpage);
1157 		page_add_anon_rmap(kpage, vma, addr, false);
1158 		newpte = mk_pte(kpage, vma->vm_page_prot);
1159 	} else {
1160 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1161 					       vma->vm_page_prot));
1162 		/*
1163 		 * We're replacing an anonymous page with a zero page, which is
1164 		 * not anonymous. We need to do proper accounting otherwise we
1165 		 * will get wrong values in /proc, and a BUG message in dmesg
1166 		 * when tearing down the mm.
1167 		 */
1168 		dec_mm_counter(mm, MM_ANONPAGES);
1169 	}
1170 
1171 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1172 	/*
1173 	 * No need to notify as we are replacing a read only page with another
1174 	 * read only page with the same content.
1175 	 *
1176 	 * See Documentation/vm/mmu_notifier.rst
1177 	 */
1178 	ptep_clear_flush(vma, addr, ptep);
1179 	set_pte_at_notify(mm, addr, ptep, newpte);
1180 
1181 	page_remove_rmap(page, false);
1182 	if (!page_mapped(page))
1183 		try_to_free_swap(page);
1184 	put_page(page);
1185 
1186 	pte_unmap_unlock(ptep, ptl);
1187 	err = 0;
1188 out_mn:
1189 	mmu_notifier_invalidate_range_end(&range);
1190 out:
1191 	return err;
1192 }
1193 
1194 /*
1195  * try_to_merge_one_page - take two pages and merge them into one
1196  * @vma: the vma that holds the pte pointing to page
1197  * @page: the PageAnon page that we want to replace with kpage
1198  * @kpage: the PageKsm page that we want to map instead of page,
1199  *         or NULL the first time when we want to use page as kpage.
1200  *
1201  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1202  */
1203 static int try_to_merge_one_page(struct vm_area_struct *vma,
1204 				 struct page *page, struct page *kpage)
1205 {
1206 	pte_t orig_pte = __pte(0);
1207 	int err = -EFAULT;
1208 
1209 	if (page == kpage)			/* ksm page forked */
1210 		return 0;
1211 
1212 	if (!PageAnon(page))
1213 		goto out;
1214 
1215 	/*
1216 	 * We need the page lock to read a stable PageSwapCache in
1217 	 * write_protect_page().  We use trylock_page() instead of
1218 	 * lock_page() because we don't want to wait here - we
1219 	 * prefer to continue scanning and merging different pages,
1220 	 * then come back to this page when it is unlocked.
1221 	 */
1222 	if (!trylock_page(page))
1223 		goto out;
1224 
1225 	if (PageTransCompound(page)) {
1226 		if (split_huge_page(page))
1227 			goto out_unlock;
1228 	}
1229 
1230 	/*
1231 	 * If this anonymous page is mapped only here, its pte may need
1232 	 * to be write-protected.  If it's mapped elsewhere, all of its
1233 	 * ptes are necessarily already write-protected.  But in either
1234 	 * case, we need to lock and check page_count is not raised.
1235 	 */
1236 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1237 		if (!kpage) {
1238 			/*
1239 			 * While we hold page lock, upgrade page from
1240 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1241 			 * stable_tree_insert() will update stable_node.
1242 			 */
1243 			set_page_stable_node(page, NULL);
1244 			mark_page_accessed(page);
1245 			/*
1246 			 * Page reclaim just frees a clean page with no dirty
1247 			 * ptes: make sure that the ksm page would be swapped.
1248 			 */
1249 			if (!PageDirty(page))
1250 				SetPageDirty(page);
1251 			err = 0;
1252 		} else if (pages_identical(page, kpage))
1253 			err = replace_page(vma, page, kpage, orig_pte);
1254 	}
1255 
1256 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1257 		munlock_vma_page(page);
1258 		if (!PageMlocked(kpage)) {
1259 			unlock_page(page);
1260 			lock_page(kpage);
1261 			mlock_vma_page(kpage);
1262 			page = kpage;		/* for final unlock */
1263 		}
1264 	}
1265 
1266 out_unlock:
1267 	unlock_page(page);
1268 out:
1269 	return err;
1270 }
1271 
1272 /*
1273  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1274  * but no new kernel page is allocated: kpage must already be a ksm page.
1275  *
1276  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1277  */
1278 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1279 				      struct page *page, struct page *kpage)
1280 {
1281 	struct mm_struct *mm = rmap_item->mm;
1282 	struct vm_area_struct *vma;
1283 	int err = -EFAULT;
1284 
1285 	down_read(&mm->mmap_sem);
1286 	vma = find_mergeable_vma(mm, rmap_item->address);
1287 	if (!vma)
1288 		goto out;
1289 
1290 	err = try_to_merge_one_page(vma, page, kpage);
1291 	if (err)
1292 		goto out;
1293 
1294 	/* Unstable nid is in union with stable anon_vma: remove first */
1295 	remove_rmap_item_from_tree(rmap_item);
1296 
1297 	/* Must get reference to anon_vma while still holding mmap_sem */
1298 	rmap_item->anon_vma = vma->anon_vma;
1299 	get_anon_vma(vma->anon_vma);
1300 out:
1301 	up_read(&mm->mmap_sem);
1302 	return err;
1303 }
1304 
1305 /*
1306  * try_to_merge_two_pages - take two identical pages and prepare them
1307  * to be merged into one page.
1308  *
1309  * This function returns the kpage if we successfully merged two identical
1310  * pages into one ksm page, NULL otherwise.
1311  *
1312  * Note that this function upgrades page to ksm page: if one of the pages
1313  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1314  */
1315 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1316 					   struct page *page,
1317 					   struct rmap_item *tree_rmap_item,
1318 					   struct page *tree_page)
1319 {
1320 	int err;
1321 
1322 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1323 	if (!err) {
1324 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1325 							tree_page, page);
1326 		/*
1327 		 * If that fails, we have a ksm page with only one pte
1328 		 * pointing to it: so break it.
1329 		 */
1330 		if (err)
1331 			break_cow(rmap_item);
1332 	}
1333 	return err ? NULL : page;
1334 }
1335 
1336 static __always_inline
1337 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1338 {
1339 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1340 	/*
1341 	 * Check that at least one mapping still exists, otherwise
1342 	 * there's no much point to merge and share with this
1343 	 * stable_node, as the underlying tree_page of the other
1344 	 * sharer is going to be freed soon.
1345 	 */
1346 	return stable_node->rmap_hlist_len &&
1347 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1348 }
1349 
1350 static __always_inline
1351 bool is_page_sharing_candidate(struct stable_node *stable_node)
1352 {
1353 	return __is_page_sharing_candidate(stable_node, 0);
1354 }
1355 
1356 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1357 				    struct stable_node **_stable_node,
1358 				    struct rb_root *root,
1359 				    bool prune_stale_stable_nodes)
1360 {
1361 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1362 	struct hlist_node *hlist_safe;
1363 	struct page *_tree_page, *tree_page = NULL;
1364 	int nr = 0;
1365 	int found_rmap_hlist_len;
1366 
1367 	if (!prune_stale_stable_nodes ||
1368 	    time_before(jiffies, stable_node->chain_prune_time +
1369 			msecs_to_jiffies(
1370 				ksm_stable_node_chains_prune_millisecs)))
1371 		prune_stale_stable_nodes = false;
1372 	else
1373 		stable_node->chain_prune_time = jiffies;
1374 
1375 	hlist_for_each_entry_safe(dup, hlist_safe,
1376 				  &stable_node->hlist, hlist_dup) {
1377 		cond_resched();
1378 		/*
1379 		 * We must walk all stable_node_dup to prune the stale
1380 		 * stable nodes during lookup.
1381 		 *
1382 		 * get_ksm_page can drop the nodes from the
1383 		 * stable_node->hlist if they point to freed pages
1384 		 * (that's why we do a _safe walk). The "dup"
1385 		 * stable_node parameter itself will be freed from
1386 		 * under us if it returns NULL.
1387 		 */
1388 		_tree_page = get_ksm_page(dup, false);
1389 		if (!_tree_page)
1390 			continue;
1391 		nr += 1;
1392 		if (is_page_sharing_candidate(dup)) {
1393 			if (!found ||
1394 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1395 				if (found)
1396 					put_page(tree_page);
1397 				found = dup;
1398 				found_rmap_hlist_len = found->rmap_hlist_len;
1399 				tree_page = _tree_page;
1400 
1401 				/* skip put_page for found dup */
1402 				if (!prune_stale_stable_nodes)
1403 					break;
1404 				continue;
1405 			}
1406 		}
1407 		put_page(_tree_page);
1408 	}
1409 
1410 	if (found) {
1411 		/*
1412 		 * nr is counting all dups in the chain only if
1413 		 * prune_stale_stable_nodes is true, otherwise we may
1414 		 * break the loop at nr == 1 even if there are
1415 		 * multiple entries.
1416 		 */
1417 		if (prune_stale_stable_nodes && nr == 1) {
1418 			/*
1419 			 * If there's not just one entry it would
1420 			 * corrupt memory, better BUG_ON. In KSM
1421 			 * context with no lock held it's not even
1422 			 * fatal.
1423 			 */
1424 			BUG_ON(stable_node->hlist.first->next);
1425 
1426 			/*
1427 			 * There's just one entry and it is below the
1428 			 * deduplication limit so drop the chain.
1429 			 */
1430 			rb_replace_node(&stable_node->node, &found->node,
1431 					root);
1432 			free_stable_node(stable_node);
1433 			ksm_stable_node_chains--;
1434 			ksm_stable_node_dups--;
1435 			/*
1436 			 * NOTE: the caller depends on the stable_node
1437 			 * to be equal to stable_node_dup if the chain
1438 			 * was collapsed.
1439 			 */
1440 			*_stable_node = found;
1441 			/*
1442 			 * Just for robustneess as stable_node is
1443 			 * otherwise left as a stable pointer, the
1444 			 * compiler shall optimize it away at build
1445 			 * time.
1446 			 */
1447 			stable_node = NULL;
1448 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1449 			   __is_page_sharing_candidate(found, 1)) {
1450 			/*
1451 			 * If the found stable_node dup can accept one
1452 			 * more future merge (in addition to the one
1453 			 * that is underway) and is not at the head of
1454 			 * the chain, put it there so next search will
1455 			 * be quicker in the !prune_stale_stable_nodes
1456 			 * case.
1457 			 *
1458 			 * NOTE: it would be inaccurate to use nr > 1
1459 			 * instead of checking the hlist.first pointer
1460 			 * directly, because in the
1461 			 * prune_stale_stable_nodes case "nr" isn't
1462 			 * the position of the found dup in the chain,
1463 			 * but the total number of dups in the chain.
1464 			 */
1465 			hlist_del(&found->hlist_dup);
1466 			hlist_add_head(&found->hlist_dup,
1467 				       &stable_node->hlist);
1468 		}
1469 	}
1470 
1471 	*_stable_node_dup = found;
1472 	return tree_page;
1473 }
1474 
1475 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1476 					       struct rb_root *root)
1477 {
1478 	if (!is_stable_node_chain(stable_node))
1479 		return stable_node;
1480 	if (hlist_empty(&stable_node->hlist)) {
1481 		free_stable_node_chain(stable_node, root);
1482 		return NULL;
1483 	}
1484 	return hlist_entry(stable_node->hlist.first,
1485 			   typeof(*stable_node), hlist_dup);
1486 }
1487 
1488 /*
1489  * Like for get_ksm_page, this function can free the *_stable_node and
1490  * *_stable_node_dup if the returned tree_page is NULL.
1491  *
1492  * It can also free and overwrite *_stable_node with the found
1493  * stable_node_dup if the chain is collapsed (in which case
1494  * *_stable_node will be equal to *_stable_node_dup like if the chain
1495  * never existed). It's up to the caller to verify tree_page is not
1496  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1497  *
1498  * *_stable_node_dup is really a second output parameter of this
1499  * function and will be overwritten in all cases, the caller doesn't
1500  * need to initialize it.
1501  */
1502 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1503 					struct stable_node **_stable_node,
1504 					struct rb_root *root,
1505 					bool prune_stale_stable_nodes)
1506 {
1507 	struct stable_node *stable_node = *_stable_node;
1508 	if (!is_stable_node_chain(stable_node)) {
1509 		if (is_page_sharing_candidate(stable_node)) {
1510 			*_stable_node_dup = stable_node;
1511 			return get_ksm_page(stable_node, false);
1512 		}
1513 		/*
1514 		 * _stable_node_dup set to NULL means the stable_node
1515 		 * reached the ksm_max_page_sharing limit.
1516 		 */
1517 		*_stable_node_dup = NULL;
1518 		return NULL;
1519 	}
1520 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1521 			       prune_stale_stable_nodes);
1522 }
1523 
1524 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1525 						struct stable_node **s_n,
1526 						struct rb_root *root)
1527 {
1528 	return __stable_node_chain(s_n_d, s_n, root, true);
1529 }
1530 
1531 static __always_inline struct page *chain(struct stable_node **s_n_d,
1532 					  struct stable_node *s_n,
1533 					  struct rb_root *root)
1534 {
1535 	struct stable_node *old_stable_node = s_n;
1536 	struct page *tree_page;
1537 
1538 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1539 	/* not pruning dups so s_n cannot have changed */
1540 	VM_BUG_ON(s_n != old_stable_node);
1541 	return tree_page;
1542 }
1543 
1544 /*
1545  * stable_tree_search - search for page inside the stable tree
1546  *
1547  * This function checks if there is a page inside the stable tree
1548  * with identical content to the page that we are scanning right now.
1549  *
1550  * This function returns the stable tree node of identical content if found,
1551  * NULL otherwise.
1552  */
1553 static struct page *stable_tree_search(struct page *page)
1554 {
1555 	int nid;
1556 	struct rb_root *root;
1557 	struct rb_node **new;
1558 	struct rb_node *parent;
1559 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1560 	struct stable_node *page_node;
1561 
1562 	page_node = page_stable_node(page);
1563 	if (page_node && page_node->head != &migrate_nodes) {
1564 		/* ksm page forked */
1565 		get_page(page);
1566 		return page;
1567 	}
1568 
1569 	nid = get_kpfn_nid(page_to_pfn(page));
1570 	root = root_stable_tree + nid;
1571 again:
1572 	new = &root->rb_node;
1573 	parent = NULL;
1574 
1575 	while (*new) {
1576 		struct page *tree_page;
1577 		int ret;
1578 
1579 		cond_resched();
1580 		stable_node = rb_entry(*new, struct stable_node, node);
1581 		stable_node_any = NULL;
1582 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1583 		/*
1584 		 * NOTE: stable_node may have been freed by
1585 		 * chain_prune() if the returned stable_node_dup is
1586 		 * not NULL. stable_node_dup may have been inserted in
1587 		 * the rbtree instead as a regular stable_node (in
1588 		 * order to collapse the stable_node chain if a single
1589 		 * stable_node dup was found in it). In such case the
1590 		 * stable_node is overwritten by the calleee to point
1591 		 * to the stable_node_dup that was collapsed in the
1592 		 * stable rbtree and stable_node will be equal to
1593 		 * stable_node_dup like if the chain never existed.
1594 		 */
1595 		if (!stable_node_dup) {
1596 			/*
1597 			 * Either all stable_node dups were full in
1598 			 * this stable_node chain, or this chain was
1599 			 * empty and should be rb_erased.
1600 			 */
1601 			stable_node_any = stable_node_dup_any(stable_node,
1602 							      root);
1603 			if (!stable_node_any) {
1604 				/* rb_erase just run */
1605 				goto again;
1606 			}
1607 			/*
1608 			 * Take any of the stable_node dups page of
1609 			 * this stable_node chain to let the tree walk
1610 			 * continue. All KSM pages belonging to the
1611 			 * stable_node dups in a stable_node chain
1612 			 * have the same content and they're
1613 			 * wrprotected at all times. Any will work
1614 			 * fine to continue the walk.
1615 			 */
1616 			tree_page = get_ksm_page(stable_node_any, false);
1617 		}
1618 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1619 		if (!tree_page) {
1620 			/*
1621 			 * If we walked over a stale stable_node,
1622 			 * get_ksm_page() will call rb_erase() and it
1623 			 * may rebalance the tree from under us. So
1624 			 * restart the search from scratch. Returning
1625 			 * NULL would be safe too, but we'd generate
1626 			 * false negative insertions just because some
1627 			 * stable_node was stale.
1628 			 */
1629 			goto again;
1630 		}
1631 
1632 		ret = memcmp_pages(page, tree_page);
1633 		put_page(tree_page);
1634 
1635 		parent = *new;
1636 		if (ret < 0)
1637 			new = &parent->rb_left;
1638 		else if (ret > 0)
1639 			new = &parent->rb_right;
1640 		else {
1641 			if (page_node) {
1642 				VM_BUG_ON(page_node->head != &migrate_nodes);
1643 				/*
1644 				 * Test if the migrated page should be merged
1645 				 * into a stable node dup. If the mapcount is
1646 				 * 1 we can migrate it with another KSM page
1647 				 * without adding it to the chain.
1648 				 */
1649 				if (page_mapcount(page) > 1)
1650 					goto chain_append;
1651 			}
1652 
1653 			if (!stable_node_dup) {
1654 				/*
1655 				 * If the stable_node is a chain and
1656 				 * we got a payload match in memcmp
1657 				 * but we cannot merge the scanned
1658 				 * page in any of the existing
1659 				 * stable_node dups because they're
1660 				 * all full, we need to wait the
1661 				 * scanned page to find itself a match
1662 				 * in the unstable tree to create a
1663 				 * brand new KSM page to add later to
1664 				 * the dups of this stable_node.
1665 				 */
1666 				return NULL;
1667 			}
1668 
1669 			/*
1670 			 * Lock and unlock the stable_node's page (which
1671 			 * might already have been migrated) so that page
1672 			 * migration is sure to notice its raised count.
1673 			 * It would be more elegant to return stable_node
1674 			 * than kpage, but that involves more changes.
1675 			 */
1676 			tree_page = get_ksm_page(stable_node_dup, true);
1677 			if (unlikely(!tree_page))
1678 				/*
1679 				 * The tree may have been rebalanced,
1680 				 * so re-evaluate parent and new.
1681 				 */
1682 				goto again;
1683 			unlock_page(tree_page);
1684 
1685 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1686 			    NUMA(stable_node_dup->nid)) {
1687 				put_page(tree_page);
1688 				goto replace;
1689 			}
1690 			return tree_page;
1691 		}
1692 	}
1693 
1694 	if (!page_node)
1695 		return NULL;
1696 
1697 	list_del(&page_node->list);
1698 	DO_NUMA(page_node->nid = nid);
1699 	rb_link_node(&page_node->node, parent, new);
1700 	rb_insert_color(&page_node->node, root);
1701 out:
1702 	if (is_page_sharing_candidate(page_node)) {
1703 		get_page(page);
1704 		return page;
1705 	} else
1706 		return NULL;
1707 
1708 replace:
1709 	/*
1710 	 * If stable_node was a chain and chain_prune collapsed it,
1711 	 * stable_node has been updated to be the new regular
1712 	 * stable_node. A collapse of the chain is indistinguishable
1713 	 * from the case there was no chain in the stable
1714 	 * rbtree. Otherwise stable_node is the chain and
1715 	 * stable_node_dup is the dup to replace.
1716 	 */
1717 	if (stable_node_dup == stable_node) {
1718 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1719 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1720 		/* there is no chain */
1721 		if (page_node) {
1722 			VM_BUG_ON(page_node->head != &migrate_nodes);
1723 			list_del(&page_node->list);
1724 			DO_NUMA(page_node->nid = nid);
1725 			rb_replace_node(&stable_node_dup->node,
1726 					&page_node->node,
1727 					root);
1728 			if (is_page_sharing_candidate(page_node))
1729 				get_page(page);
1730 			else
1731 				page = NULL;
1732 		} else {
1733 			rb_erase(&stable_node_dup->node, root);
1734 			page = NULL;
1735 		}
1736 	} else {
1737 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1738 		__stable_node_dup_del(stable_node_dup);
1739 		if (page_node) {
1740 			VM_BUG_ON(page_node->head != &migrate_nodes);
1741 			list_del(&page_node->list);
1742 			DO_NUMA(page_node->nid = nid);
1743 			stable_node_chain_add_dup(page_node, stable_node);
1744 			if (is_page_sharing_candidate(page_node))
1745 				get_page(page);
1746 			else
1747 				page = NULL;
1748 		} else {
1749 			page = NULL;
1750 		}
1751 	}
1752 	stable_node_dup->head = &migrate_nodes;
1753 	list_add(&stable_node_dup->list, stable_node_dup->head);
1754 	return page;
1755 
1756 chain_append:
1757 	/* stable_node_dup could be null if it reached the limit */
1758 	if (!stable_node_dup)
1759 		stable_node_dup = stable_node_any;
1760 	/*
1761 	 * If stable_node was a chain and chain_prune collapsed it,
1762 	 * stable_node has been updated to be the new regular
1763 	 * stable_node. A collapse of the chain is indistinguishable
1764 	 * from the case there was no chain in the stable
1765 	 * rbtree. Otherwise stable_node is the chain and
1766 	 * stable_node_dup is the dup to replace.
1767 	 */
1768 	if (stable_node_dup == stable_node) {
1769 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1770 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1771 		/* chain is missing so create it */
1772 		stable_node = alloc_stable_node_chain(stable_node_dup,
1773 						      root);
1774 		if (!stable_node)
1775 			return NULL;
1776 	}
1777 	/*
1778 	 * Add this stable_node dup that was
1779 	 * migrated to the stable_node chain
1780 	 * of the current nid for this page
1781 	 * content.
1782 	 */
1783 	VM_BUG_ON(!is_stable_node_chain(stable_node));
1784 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1785 	VM_BUG_ON(page_node->head != &migrate_nodes);
1786 	list_del(&page_node->list);
1787 	DO_NUMA(page_node->nid = nid);
1788 	stable_node_chain_add_dup(page_node, stable_node);
1789 	goto out;
1790 }
1791 
1792 /*
1793  * stable_tree_insert - insert stable tree node pointing to new ksm page
1794  * into the stable tree.
1795  *
1796  * This function returns the stable tree node just allocated on success,
1797  * NULL otherwise.
1798  */
1799 static struct stable_node *stable_tree_insert(struct page *kpage)
1800 {
1801 	int nid;
1802 	unsigned long kpfn;
1803 	struct rb_root *root;
1804 	struct rb_node **new;
1805 	struct rb_node *parent;
1806 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1807 	bool need_chain = false;
1808 
1809 	kpfn = page_to_pfn(kpage);
1810 	nid = get_kpfn_nid(kpfn);
1811 	root = root_stable_tree + nid;
1812 again:
1813 	parent = NULL;
1814 	new = &root->rb_node;
1815 
1816 	while (*new) {
1817 		struct page *tree_page;
1818 		int ret;
1819 
1820 		cond_resched();
1821 		stable_node = rb_entry(*new, struct stable_node, node);
1822 		stable_node_any = NULL;
1823 		tree_page = chain(&stable_node_dup, stable_node, root);
1824 		if (!stable_node_dup) {
1825 			/*
1826 			 * Either all stable_node dups were full in
1827 			 * this stable_node chain, or this chain was
1828 			 * empty and should be rb_erased.
1829 			 */
1830 			stable_node_any = stable_node_dup_any(stable_node,
1831 							      root);
1832 			if (!stable_node_any) {
1833 				/* rb_erase just run */
1834 				goto again;
1835 			}
1836 			/*
1837 			 * Take any of the stable_node dups page of
1838 			 * this stable_node chain to let the tree walk
1839 			 * continue. All KSM pages belonging to the
1840 			 * stable_node dups in a stable_node chain
1841 			 * have the same content and they're
1842 			 * wrprotected at all times. Any will work
1843 			 * fine to continue the walk.
1844 			 */
1845 			tree_page = get_ksm_page(stable_node_any, false);
1846 		}
1847 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1848 		if (!tree_page) {
1849 			/*
1850 			 * If we walked over a stale stable_node,
1851 			 * get_ksm_page() will call rb_erase() and it
1852 			 * may rebalance the tree from under us. So
1853 			 * restart the search from scratch. Returning
1854 			 * NULL would be safe too, but we'd generate
1855 			 * false negative insertions just because some
1856 			 * stable_node was stale.
1857 			 */
1858 			goto again;
1859 		}
1860 
1861 		ret = memcmp_pages(kpage, tree_page);
1862 		put_page(tree_page);
1863 
1864 		parent = *new;
1865 		if (ret < 0)
1866 			new = &parent->rb_left;
1867 		else if (ret > 0)
1868 			new = &parent->rb_right;
1869 		else {
1870 			need_chain = true;
1871 			break;
1872 		}
1873 	}
1874 
1875 	stable_node_dup = alloc_stable_node();
1876 	if (!stable_node_dup)
1877 		return NULL;
1878 
1879 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1880 	stable_node_dup->kpfn = kpfn;
1881 	set_page_stable_node(kpage, stable_node_dup);
1882 	stable_node_dup->rmap_hlist_len = 0;
1883 	DO_NUMA(stable_node_dup->nid = nid);
1884 	if (!need_chain) {
1885 		rb_link_node(&stable_node_dup->node, parent, new);
1886 		rb_insert_color(&stable_node_dup->node, root);
1887 	} else {
1888 		if (!is_stable_node_chain(stable_node)) {
1889 			struct stable_node *orig = stable_node;
1890 			/* chain is missing so create it */
1891 			stable_node = alloc_stable_node_chain(orig, root);
1892 			if (!stable_node) {
1893 				free_stable_node(stable_node_dup);
1894 				return NULL;
1895 			}
1896 		}
1897 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1898 	}
1899 
1900 	return stable_node_dup;
1901 }
1902 
1903 /*
1904  * unstable_tree_search_insert - search for identical page,
1905  * else insert rmap_item into the unstable tree.
1906  *
1907  * This function searches for a page in the unstable tree identical to the
1908  * page currently being scanned; and if no identical page is found in the
1909  * tree, we insert rmap_item as a new object into the unstable tree.
1910  *
1911  * This function returns pointer to rmap_item found to be identical
1912  * to the currently scanned page, NULL otherwise.
1913  *
1914  * This function does both searching and inserting, because they share
1915  * the same walking algorithm in an rbtree.
1916  */
1917 static
1918 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1919 					      struct page *page,
1920 					      struct page **tree_pagep)
1921 {
1922 	struct rb_node **new;
1923 	struct rb_root *root;
1924 	struct rb_node *parent = NULL;
1925 	int nid;
1926 
1927 	nid = get_kpfn_nid(page_to_pfn(page));
1928 	root = root_unstable_tree + nid;
1929 	new = &root->rb_node;
1930 
1931 	while (*new) {
1932 		struct rmap_item *tree_rmap_item;
1933 		struct page *tree_page;
1934 		int ret;
1935 
1936 		cond_resched();
1937 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1938 		tree_page = get_mergeable_page(tree_rmap_item);
1939 		if (!tree_page)
1940 			return NULL;
1941 
1942 		/*
1943 		 * Don't substitute a ksm page for a forked page.
1944 		 */
1945 		if (page == tree_page) {
1946 			put_page(tree_page);
1947 			return NULL;
1948 		}
1949 
1950 		ret = memcmp_pages(page, tree_page);
1951 
1952 		parent = *new;
1953 		if (ret < 0) {
1954 			put_page(tree_page);
1955 			new = &parent->rb_left;
1956 		} else if (ret > 0) {
1957 			put_page(tree_page);
1958 			new = &parent->rb_right;
1959 		} else if (!ksm_merge_across_nodes &&
1960 			   page_to_nid(tree_page) != nid) {
1961 			/*
1962 			 * If tree_page has been migrated to another NUMA node,
1963 			 * it will be flushed out and put in the right unstable
1964 			 * tree next time: only merge with it when across_nodes.
1965 			 */
1966 			put_page(tree_page);
1967 			return NULL;
1968 		} else {
1969 			*tree_pagep = tree_page;
1970 			return tree_rmap_item;
1971 		}
1972 	}
1973 
1974 	rmap_item->address |= UNSTABLE_FLAG;
1975 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1976 	DO_NUMA(rmap_item->nid = nid);
1977 	rb_link_node(&rmap_item->node, parent, new);
1978 	rb_insert_color(&rmap_item->node, root);
1979 
1980 	ksm_pages_unshared++;
1981 	return NULL;
1982 }
1983 
1984 /*
1985  * stable_tree_append - add another rmap_item to the linked list of
1986  * rmap_items hanging off a given node of the stable tree, all sharing
1987  * the same ksm page.
1988  */
1989 static void stable_tree_append(struct rmap_item *rmap_item,
1990 			       struct stable_node *stable_node,
1991 			       bool max_page_sharing_bypass)
1992 {
1993 	/*
1994 	 * rmap won't find this mapping if we don't insert the
1995 	 * rmap_item in the right stable_node
1996 	 * duplicate. page_migration could break later if rmap breaks,
1997 	 * so we can as well crash here. We really need to check for
1998 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1999 	 * for other negative values as an undeflow if detected here
2000 	 * for the first time (and not when decreasing rmap_hlist_len)
2001 	 * would be sign of memory corruption in the stable_node.
2002 	 */
2003 	BUG_ON(stable_node->rmap_hlist_len < 0);
2004 
2005 	stable_node->rmap_hlist_len++;
2006 	if (!max_page_sharing_bypass)
2007 		/* possibly non fatal but unexpected overflow, only warn */
2008 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2009 			     ksm_max_page_sharing);
2010 
2011 	rmap_item->head = stable_node;
2012 	rmap_item->address |= STABLE_FLAG;
2013 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2014 
2015 	if (rmap_item->hlist.next)
2016 		ksm_pages_sharing++;
2017 	else
2018 		ksm_pages_shared++;
2019 }
2020 
2021 /*
2022  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2023  * if not, compare checksum to previous and if it's the same, see if page can
2024  * be inserted into the unstable tree, or merged with a page already there and
2025  * both transferred to the stable tree.
2026  *
2027  * @page: the page that we are searching identical page to.
2028  * @rmap_item: the reverse mapping into the virtual address of this page
2029  */
2030 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2031 {
2032 	struct mm_struct *mm = rmap_item->mm;
2033 	struct rmap_item *tree_rmap_item;
2034 	struct page *tree_page = NULL;
2035 	struct stable_node *stable_node;
2036 	struct page *kpage;
2037 	unsigned int checksum;
2038 	int err;
2039 	bool max_page_sharing_bypass = false;
2040 
2041 	stable_node = page_stable_node(page);
2042 	if (stable_node) {
2043 		if (stable_node->head != &migrate_nodes &&
2044 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2045 		    NUMA(stable_node->nid)) {
2046 			stable_node_dup_del(stable_node);
2047 			stable_node->head = &migrate_nodes;
2048 			list_add(&stable_node->list, stable_node->head);
2049 		}
2050 		if (stable_node->head != &migrate_nodes &&
2051 		    rmap_item->head == stable_node)
2052 			return;
2053 		/*
2054 		 * If it's a KSM fork, allow it to go over the sharing limit
2055 		 * without warnings.
2056 		 */
2057 		if (!is_page_sharing_candidate(stable_node))
2058 			max_page_sharing_bypass = true;
2059 	}
2060 
2061 	/* We first start with searching the page inside the stable tree */
2062 	kpage = stable_tree_search(page);
2063 	if (kpage == page && rmap_item->head == stable_node) {
2064 		put_page(kpage);
2065 		return;
2066 	}
2067 
2068 	remove_rmap_item_from_tree(rmap_item);
2069 
2070 	if (kpage) {
2071 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2072 		if (!err) {
2073 			/*
2074 			 * The page was successfully merged:
2075 			 * add its rmap_item to the stable tree.
2076 			 */
2077 			lock_page(kpage);
2078 			stable_tree_append(rmap_item, page_stable_node(kpage),
2079 					   max_page_sharing_bypass);
2080 			unlock_page(kpage);
2081 		}
2082 		put_page(kpage);
2083 		return;
2084 	}
2085 
2086 	/*
2087 	 * If the hash value of the page has changed from the last time
2088 	 * we calculated it, this page is changing frequently: therefore we
2089 	 * don't want to insert it in the unstable tree, and we don't want
2090 	 * to waste our time searching for something identical to it there.
2091 	 */
2092 	checksum = calc_checksum(page);
2093 	if (rmap_item->oldchecksum != checksum) {
2094 		rmap_item->oldchecksum = checksum;
2095 		return;
2096 	}
2097 
2098 	/*
2099 	 * Same checksum as an empty page. We attempt to merge it with the
2100 	 * appropriate zero page if the user enabled this via sysfs.
2101 	 */
2102 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2103 		struct vm_area_struct *vma;
2104 
2105 		down_read(&mm->mmap_sem);
2106 		vma = find_mergeable_vma(mm, rmap_item->address);
2107 		err = try_to_merge_one_page(vma, page,
2108 					    ZERO_PAGE(rmap_item->address));
2109 		up_read(&mm->mmap_sem);
2110 		/*
2111 		 * In case of failure, the page was not really empty, so we
2112 		 * need to continue. Otherwise we're done.
2113 		 */
2114 		if (!err)
2115 			return;
2116 	}
2117 	tree_rmap_item =
2118 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2119 	if (tree_rmap_item) {
2120 		bool split;
2121 
2122 		kpage = try_to_merge_two_pages(rmap_item, page,
2123 						tree_rmap_item, tree_page);
2124 		/*
2125 		 * If both pages we tried to merge belong to the same compound
2126 		 * page, then we actually ended up increasing the reference
2127 		 * count of the same compound page twice, and split_huge_page
2128 		 * failed.
2129 		 * Here we set a flag if that happened, and we use it later to
2130 		 * try split_huge_page again. Since we call put_page right
2131 		 * afterwards, the reference count will be correct and
2132 		 * split_huge_page should succeed.
2133 		 */
2134 		split = PageTransCompound(page)
2135 			&& compound_head(page) == compound_head(tree_page);
2136 		put_page(tree_page);
2137 		if (kpage) {
2138 			/*
2139 			 * The pages were successfully merged: insert new
2140 			 * node in the stable tree and add both rmap_items.
2141 			 */
2142 			lock_page(kpage);
2143 			stable_node = stable_tree_insert(kpage);
2144 			if (stable_node) {
2145 				stable_tree_append(tree_rmap_item, stable_node,
2146 						   false);
2147 				stable_tree_append(rmap_item, stable_node,
2148 						   false);
2149 			}
2150 			unlock_page(kpage);
2151 
2152 			/*
2153 			 * If we fail to insert the page into the stable tree,
2154 			 * we will have 2 virtual addresses that are pointing
2155 			 * to a ksm page left outside the stable tree,
2156 			 * in which case we need to break_cow on both.
2157 			 */
2158 			if (!stable_node) {
2159 				break_cow(tree_rmap_item);
2160 				break_cow(rmap_item);
2161 			}
2162 		} else if (split) {
2163 			/*
2164 			 * We are here if we tried to merge two pages and
2165 			 * failed because they both belonged to the same
2166 			 * compound page. We will split the page now, but no
2167 			 * merging will take place.
2168 			 * We do not want to add the cost of a full lock; if
2169 			 * the page is locked, it is better to skip it and
2170 			 * perhaps try again later.
2171 			 */
2172 			if (!trylock_page(page))
2173 				return;
2174 			split_huge_page(page);
2175 			unlock_page(page);
2176 		}
2177 	}
2178 }
2179 
2180 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2181 					    struct rmap_item **rmap_list,
2182 					    unsigned long addr)
2183 {
2184 	struct rmap_item *rmap_item;
2185 
2186 	while (*rmap_list) {
2187 		rmap_item = *rmap_list;
2188 		if ((rmap_item->address & PAGE_MASK) == addr)
2189 			return rmap_item;
2190 		if (rmap_item->address > addr)
2191 			break;
2192 		*rmap_list = rmap_item->rmap_list;
2193 		remove_rmap_item_from_tree(rmap_item);
2194 		free_rmap_item(rmap_item);
2195 	}
2196 
2197 	rmap_item = alloc_rmap_item();
2198 	if (rmap_item) {
2199 		/* It has already been zeroed */
2200 		rmap_item->mm = mm_slot->mm;
2201 		rmap_item->address = addr;
2202 		rmap_item->rmap_list = *rmap_list;
2203 		*rmap_list = rmap_item;
2204 	}
2205 	return rmap_item;
2206 }
2207 
2208 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2209 {
2210 	struct mm_struct *mm;
2211 	struct mm_slot *slot;
2212 	struct vm_area_struct *vma;
2213 	struct rmap_item *rmap_item;
2214 	int nid;
2215 
2216 	if (list_empty(&ksm_mm_head.mm_list))
2217 		return NULL;
2218 
2219 	slot = ksm_scan.mm_slot;
2220 	if (slot == &ksm_mm_head) {
2221 		/*
2222 		 * A number of pages can hang around indefinitely on per-cpu
2223 		 * pagevecs, raised page count preventing write_protect_page
2224 		 * from merging them.  Though it doesn't really matter much,
2225 		 * it is puzzling to see some stuck in pages_volatile until
2226 		 * other activity jostles them out, and they also prevented
2227 		 * LTP's KSM test from succeeding deterministically; so drain
2228 		 * them here (here rather than on entry to ksm_do_scan(),
2229 		 * so we don't IPI too often when pages_to_scan is set low).
2230 		 */
2231 		lru_add_drain_all();
2232 
2233 		/*
2234 		 * Whereas stale stable_nodes on the stable_tree itself
2235 		 * get pruned in the regular course of stable_tree_search(),
2236 		 * those moved out to the migrate_nodes list can accumulate:
2237 		 * so prune them once before each full scan.
2238 		 */
2239 		if (!ksm_merge_across_nodes) {
2240 			struct stable_node *stable_node, *next;
2241 			struct page *page;
2242 
2243 			list_for_each_entry_safe(stable_node, next,
2244 						 &migrate_nodes, list) {
2245 				page = get_ksm_page(stable_node, false);
2246 				if (page)
2247 					put_page(page);
2248 				cond_resched();
2249 			}
2250 		}
2251 
2252 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2253 			root_unstable_tree[nid] = RB_ROOT;
2254 
2255 		spin_lock(&ksm_mmlist_lock);
2256 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2257 		ksm_scan.mm_slot = slot;
2258 		spin_unlock(&ksm_mmlist_lock);
2259 		/*
2260 		 * Although we tested list_empty() above, a racing __ksm_exit
2261 		 * of the last mm on the list may have removed it since then.
2262 		 */
2263 		if (slot == &ksm_mm_head)
2264 			return NULL;
2265 next_mm:
2266 		ksm_scan.address = 0;
2267 		ksm_scan.rmap_list = &slot->rmap_list;
2268 	}
2269 
2270 	mm = slot->mm;
2271 	down_read(&mm->mmap_sem);
2272 	if (ksm_test_exit(mm))
2273 		vma = NULL;
2274 	else
2275 		vma = find_vma(mm, ksm_scan.address);
2276 
2277 	for (; vma; vma = vma->vm_next) {
2278 		if (!(vma->vm_flags & VM_MERGEABLE))
2279 			continue;
2280 		if (ksm_scan.address < vma->vm_start)
2281 			ksm_scan.address = vma->vm_start;
2282 		if (!vma->anon_vma)
2283 			ksm_scan.address = vma->vm_end;
2284 
2285 		while (ksm_scan.address < vma->vm_end) {
2286 			if (ksm_test_exit(mm))
2287 				break;
2288 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2289 			if (IS_ERR_OR_NULL(*page)) {
2290 				ksm_scan.address += PAGE_SIZE;
2291 				cond_resched();
2292 				continue;
2293 			}
2294 			if (PageAnon(*page)) {
2295 				flush_anon_page(vma, *page, ksm_scan.address);
2296 				flush_dcache_page(*page);
2297 				rmap_item = get_next_rmap_item(slot,
2298 					ksm_scan.rmap_list, ksm_scan.address);
2299 				if (rmap_item) {
2300 					ksm_scan.rmap_list =
2301 							&rmap_item->rmap_list;
2302 					ksm_scan.address += PAGE_SIZE;
2303 				} else
2304 					put_page(*page);
2305 				up_read(&mm->mmap_sem);
2306 				return rmap_item;
2307 			}
2308 			put_page(*page);
2309 			ksm_scan.address += PAGE_SIZE;
2310 			cond_resched();
2311 		}
2312 	}
2313 
2314 	if (ksm_test_exit(mm)) {
2315 		ksm_scan.address = 0;
2316 		ksm_scan.rmap_list = &slot->rmap_list;
2317 	}
2318 	/*
2319 	 * Nuke all the rmap_items that are above this current rmap:
2320 	 * because there were no VM_MERGEABLE vmas with such addresses.
2321 	 */
2322 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2323 
2324 	spin_lock(&ksm_mmlist_lock);
2325 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2326 						struct mm_slot, mm_list);
2327 	if (ksm_scan.address == 0) {
2328 		/*
2329 		 * We've completed a full scan of all vmas, holding mmap_sem
2330 		 * throughout, and found no VM_MERGEABLE: so do the same as
2331 		 * __ksm_exit does to remove this mm from all our lists now.
2332 		 * This applies either when cleaning up after __ksm_exit
2333 		 * (but beware: we can reach here even before __ksm_exit),
2334 		 * or when all VM_MERGEABLE areas have been unmapped (and
2335 		 * mmap_sem then protects against race with MADV_MERGEABLE).
2336 		 */
2337 		hash_del(&slot->link);
2338 		list_del(&slot->mm_list);
2339 		spin_unlock(&ksm_mmlist_lock);
2340 
2341 		free_mm_slot(slot);
2342 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2343 		up_read(&mm->mmap_sem);
2344 		mmdrop(mm);
2345 	} else {
2346 		up_read(&mm->mmap_sem);
2347 		/*
2348 		 * up_read(&mm->mmap_sem) first because after
2349 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2350 		 * already have been freed under us by __ksm_exit()
2351 		 * because the "mm_slot" is still hashed and
2352 		 * ksm_scan.mm_slot doesn't point to it anymore.
2353 		 */
2354 		spin_unlock(&ksm_mmlist_lock);
2355 	}
2356 
2357 	/* Repeat until we've completed scanning the whole list */
2358 	slot = ksm_scan.mm_slot;
2359 	if (slot != &ksm_mm_head)
2360 		goto next_mm;
2361 
2362 	ksm_scan.seqnr++;
2363 	return NULL;
2364 }
2365 
2366 /**
2367  * ksm_do_scan  - the ksm scanner main worker function.
2368  * @scan_npages:  number of pages we want to scan before we return.
2369  */
2370 static void ksm_do_scan(unsigned int scan_npages)
2371 {
2372 	struct rmap_item *rmap_item;
2373 	struct page *uninitialized_var(page);
2374 
2375 	while (scan_npages-- && likely(!freezing(current))) {
2376 		cond_resched();
2377 		rmap_item = scan_get_next_rmap_item(&page);
2378 		if (!rmap_item)
2379 			return;
2380 		cmp_and_merge_page(page, rmap_item);
2381 		put_page(page);
2382 	}
2383 }
2384 
2385 static int ksmd_should_run(void)
2386 {
2387 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2388 }
2389 
2390 static int ksm_scan_thread(void *nothing)
2391 {
2392 	unsigned int sleep_ms;
2393 
2394 	set_freezable();
2395 	set_user_nice(current, 5);
2396 
2397 	while (!kthread_should_stop()) {
2398 		mutex_lock(&ksm_thread_mutex);
2399 		wait_while_offlining();
2400 		if (ksmd_should_run())
2401 			ksm_do_scan(ksm_thread_pages_to_scan);
2402 		mutex_unlock(&ksm_thread_mutex);
2403 
2404 		try_to_freeze();
2405 
2406 		if (ksmd_should_run()) {
2407 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2408 			wait_event_interruptible_timeout(ksm_iter_wait,
2409 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2410 				msecs_to_jiffies(sleep_ms));
2411 		} else {
2412 			wait_event_freezable(ksm_thread_wait,
2413 				ksmd_should_run() || kthread_should_stop());
2414 		}
2415 	}
2416 	return 0;
2417 }
2418 
2419 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2420 		unsigned long end, int advice, unsigned long *vm_flags)
2421 {
2422 	struct mm_struct *mm = vma->vm_mm;
2423 	int err;
2424 
2425 	switch (advice) {
2426 	case MADV_MERGEABLE:
2427 		/*
2428 		 * Be somewhat over-protective for now!
2429 		 */
2430 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2431 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2432 				 VM_HUGETLB | VM_MIXEDMAP))
2433 			return 0;		/* just ignore the advice */
2434 
2435 		if (vma_is_dax(vma))
2436 			return 0;
2437 
2438 #ifdef VM_SAO
2439 		if (*vm_flags & VM_SAO)
2440 			return 0;
2441 #endif
2442 #ifdef VM_SPARC_ADI
2443 		if (*vm_flags & VM_SPARC_ADI)
2444 			return 0;
2445 #endif
2446 
2447 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2448 			err = __ksm_enter(mm);
2449 			if (err)
2450 				return err;
2451 		}
2452 
2453 		*vm_flags |= VM_MERGEABLE;
2454 		break;
2455 
2456 	case MADV_UNMERGEABLE:
2457 		if (!(*vm_flags & VM_MERGEABLE))
2458 			return 0;		/* just ignore the advice */
2459 
2460 		if (vma->anon_vma) {
2461 			err = unmerge_ksm_pages(vma, start, end);
2462 			if (err)
2463 				return err;
2464 		}
2465 
2466 		*vm_flags &= ~VM_MERGEABLE;
2467 		break;
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 int __ksm_enter(struct mm_struct *mm)
2474 {
2475 	struct mm_slot *mm_slot;
2476 	int needs_wakeup;
2477 
2478 	mm_slot = alloc_mm_slot();
2479 	if (!mm_slot)
2480 		return -ENOMEM;
2481 
2482 	/* Check ksm_run too?  Would need tighter locking */
2483 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2484 
2485 	spin_lock(&ksm_mmlist_lock);
2486 	insert_to_mm_slots_hash(mm, mm_slot);
2487 	/*
2488 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2489 	 * insert just behind the scanning cursor, to let the area settle
2490 	 * down a little; when fork is followed by immediate exec, we don't
2491 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2492 	 *
2493 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2494 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2495 	 * missed: then we might as well insert at the end of the list.
2496 	 */
2497 	if (ksm_run & KSM_RUN_UNMERGE)
2498 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2499 	else
2500 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2501 	spin_unlock(&ksm_mmlist_lock);
2502 
2503 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2504 	mmgrab(mm);
2505 
2506 	if (needs_wakeup)
2507 		wake_up_interruptible(&ksm_thread_wait);
2508 
2509 	return 0;
2510 }
2511 
2512 void __ksm_exit(struct mm_struct *mm)
2513 {
2514 	struct mm_slot *mm_slot;
2515 	int easy_to_free = 0;
2516 
2517 	/*
2518 	 * This process is exiting: if it's straightforward (as is the
2519 	 * case when ksmd was never running), free mm_slot immediately.
2520 	 * But if it's at the cursor or has rmap_items linked to it, use
2521 	 * mmap_sem to synchronize with any break_cows before pagetables
2522 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2523 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2524 	 */
2525 
2526 	spin_lock(&ksm_mmlist_lock);
2527 	mm_slot = get_mm_slot(mm);
2528 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2529 		if (!mm_slot->rmap_list) {
2530 			hash_del(&mm_slot->link);
2531 			list_del(&mm_slot->mm_list);
2532 			easy_to_free = 1;
2533 		} else {
2534 			list_move(&mm_slot->mm_list,
2535 				  &ksm_scan.mm_slot->mm_list);
2536 		}
2537 	}
2538 	spin_unlock(&ksm_mmlist_lock);
2539 
2540 	if (easy_to_free) {
2541 		free_mm_slot(mm_slot);
2542 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2543 		mmdrop(mm);
2544 	} else if (mm_slot) {
2545 		down_write(&mm->mmap_sem);
2546 		up_write(&mm->mmap_sem);
2547 	}
2548 }
2549 
2550 struct page *ksm_might_need_to_copy(struct page *page,
2551 			struct vm_area_struct *vma, unsigned long address)
2552 {
2553 	struct anon_vma *anon_vma = page_anon_vma(page);
2554 	struct page *new_page;
2555 
2556 	if (PageKsm(page)) {
2557 		if (page_stable_node(page) &&
2558 		    !(ksm_run & KSM_RUN_UNMERGE))
2559 			return page;	/* no need to copy it */
2560 	} else if (!anon_vma) {
2561 		return page;		/* no need to copy it */
2562 	} else if (anon_vma->root == vma->anon_vma->root &&
2563 		 page->index == linear_page_index(vma, address)) {
2564 		return page;		/* still no need to copy it */
2565 	}
2566 	if (!PageUptodate(page))
2567 		return page;		/* let do_swap_page report the error */
2568 
2569 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2570 	if (new_page) {
2571 		copy_user_highpage(new_page, page, address, vma);
2572 
2573 		SetPageDirty(new_page);
2574 		__SetPageUptodate(new_page);
2575 		__SetPageLocked(new_page);
2576 	}
2577 
2578 	return new_page;
2579 }
2580 
2581 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2582 {
2583 	struct stable_node *stable_node;
2584 	struct rmap_item *rmap_item;
2585 	int search_new_forks = 0;
2586 
2587 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2588 
2589 	/*
2590 	 * Rely on the page lock to protect against concurrent modifications
2591 	 * to that page's node of the stable tree.
2592 	 */
2593 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2594 
2595 	stable_node = page_stable_node(page);
2596 	if (!stable_node)
2597 		return;
2598 again:
2599 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2600 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2601 		struct anon_vma_chain *vmac;
2602 		struct vm_area_struct *vma;
2603 
2604 		cond_resched();
2605 		anon_vma_lock_read(anon_vma);
2606 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2607 					       0, ULONG_MAX) {
2608 			unsigned long addr;
2609 
2610 			cond_resched();
2611 			vma = vmac->vma;
2612 
2613 			/* Ignore the stable/unstable/sqnr flags */
2614 			addr = rmap_item->address & ~KSM_FLAG_MASK;
2615 
2616 			if (addr < vma->vm_start || addr >= vma->vm_end)
2617 				continue;
2618 			/*
2619 			 * Initially we examine only the vma which covers this
2620 			 * rmap_item; but later, if there is still work to do,
2621 			 * we examine covering vmas in other mms: in case they
2622 			 * were forked from the original since ksmd passed.
2623 			 */
2624 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2625 				continue;
2626 
2627 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2628 				continue;
2629 
2630 			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2631 				anon_vma_unlock_read(anon_vma);
2632 				return;
2633 			}
2634 			if (rwc->done && rwc->done(page)) {
2635 				anon_vma_unlock_read(anon_vma);
2636 				return;
2637 			}
2638 		}
2639 		anon_vma_unlock_read(anon_vma);
2640 	}
2641 	if (!search_new_forks++)
2642 		goto again;
2643 }
2644 
2645 #ifdef CONFIG_MIGRATION
2646 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2647 {
2648 	struct stable_node *stable_node;
2649 
2650 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2651 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2652 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2653 
2654 	stable_node = page_stable_node(newpage);
2655 	if (stable_node) {
2656 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2657 		stable_node->kpfn = page_to_pfn(newpage);
2658 		/*
2659 		 * newpage->mapping was set in advance; now we need smp_wmb()
2660 		 * to make sure that the new stable_node->kpfn is visible
2661 		 * to get_ksm_page() before it can see that oldpage->mapping
2662 		 * has gone stale (or that PageSwapCache has been cleared).
2663 		 */
2664 		smp_wmb();
2665 		set_page_stable_node(oldpage, NULL);
2666 	}
2667 }
2668 #endif /* CONFIG_MIGRATION */
2669 
2670 #ifdef CONFIG_MEMORY_HOTREMOVE
2671 static void wait_while_offlining(void)
2672 {
2673 	while (ksm_run & KSM_RUN_OFFLINE) {
2674 		mutex_unlock(&ksm_thread_mutex);
2675 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2676 			    TASK_UNINTERRUPTIBLE);
2677 		mutex_lock(&ksm_thread_mutex);
2678 	}
2679 }
2680 
2681 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2682 					 unsigned long start_pfn,
2683 					 unsigned long end_pfn)
2684 {
2685 	if (stable_node->kpfn >= start_pfn &&
2686 	    stable_node->kpfn < end_pfn) {
2687 		/*
2688 		 * Don't get_ksm_page, page has already gone:
2689 		 * which is why we keep kpfn instead of page*
2690 		 */
2691 		remove_node_from_stable_tree(stable_node);
2692 		return true;
2693 	}
2694 	return false;
2695 }
2696 
2697 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2698 					   unsigned long start_pfn,
2699 					   unsigned long end_pfn,
2700 					   struct rb_root *root)
2701 {
2702 	struct stable_node *dup;
2703 	struct hlist_node *hlist_safe;
2704 
2705 	if (!is_stable_node_chain(stable_node)) {
2706 		VM_BUG_ON(is_stable_node_dup(stable_node));
2707 		return stable_node_dup_remove_range(stable_node, start_pfn,
2708 						    end_pfn);
2709 	}
2710 
2711 	hlist_for_each_entry_safe(dup, hlist_safe,
2712 				  &stable_node->hlist, hlist_dup) {
2713 		VM_BUG_ON(!is_stable_node_dup(dup));
2714 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2715 	}
2716 	if (hlist_empty(&stable_node->hlist)) {
2717 		free_stable_node_chain(stable_node, root);
2718 		return true; /* notify caller that tree was rebalanced */
2719 	} else
2720 		return false;
2721 }
2722 
2723 static void ksm_check_stable_tree(unsigned long start_pfn,
2724 				  unsigned long end_pfn)
2725 {
2726 	struct stable_node *stable_node, *next;
2727 	struct rb_node *node;
2728 	int nid;
2729 
2730 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2731 		node = rb_first(root_stable_tree + nid);
2732 		while (node) {
2733 			stable_node = rb_entry(node, struct stable_node, node);
2734 			if (stable_node_chain_remove_range(stable_node,
2735 							   start_pfn, end_pfn,
2736 							   root_stable_tree +
2737 							   nid))
2738 				node = rb_first(root_stable_tree + nid);
2739 			else
2740 				node = rb_next(node);
2741 			cond_resched();
2742 		}
2743 	}
2744 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2745 		if (stable_node->kpfn >= start_pfn &&
2746 		    stable_node->kpfn < end_pfn)
2747 			remove_node_from_stable_tree(stable_node);
2748 		cond_resched();
2749 	}
2750 }
2751 
2752 static int ksm_memory_callback(struct notifier_block *self,
2753 			       unsigned long action, void *arg)
2754 {
2755 	struct memory_notify *mn = arg;
2756 
2757 	switch (action) {
2758 	case MEM_GOING_OFFLINE:
2759 		/*
2760 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2761 		 * and remove_all_stable_nodes() while memory is going offline:
2762 		 * it is unsafe for them to touch the stable tree at this time.
2763 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2764 		 * which do not need the ksm_thread_mutex are all safe.
2765 		 */
2766 		mutex_lock(&ksm_thread_mutex);
2767 		ksm_run |= KSM_RUN_OFFLINE;
2768 		mutex_unlock(&ksm_thread_mutex);
2769 		break;
2770 
2771 	case MEM_OFFLINE:
2772 		/*
2773 		 * Most of the work is done by page migration; but there might
2774 		 * be a few stable_nodes left over, still pointing to struct
2775 		 * pages which have been offlined: prune those from the tree,
2776 		 * otherwise get_ksm_page() might later try to access a
2777 		 * non-existent struct page.
2778 		 */
2779 		ksm_check_stable_tree(mn->start_pfn,
2780 				      mn->start_pfn + mn->nr_pages);
2781 		/* fallthrough */
2782 
2783 	case MEM_CANCEL_OFFLINE:
2784 		mutex_lock(&ksm_thread_mutex);
2785 		ksm_run &= ~KSM_RUN_OFFLINE;
2786 		mutex_unlock(&ksm_thread_mutex);
2787 
2788 		smp_mb();	/* wake_up_bit advises this */
2789 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2790 		break;
2791 	}
2792 	return NOTIFY_OK;
2793 }
2794 #else
2795 static void wait_while_offlining(void)
2796 {
2797 }
2798 #endif /* CONFIG_MEMORY_HOTREMOVE */
2799 
2800 #ifdef CONFIG_SYSFS
2801 /*
2802  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2803  */
2804 
2805 #define KSM_ATTR_RO(_name) \
2806 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2807 #define KSM_ATTR(_name) \
2808 	static struct kobj_attribute _name##_attr = \
2809 		__ATTR(_name, 0644, _name##_show, _name##_store)
2810 
2811 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2812 				    struct kobj_attribute *attr, char *buf)
2813 {
2814 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2815 }
2816 
2817 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2818 				     struct kobj_attribute *attr,
2819 				     const char *buf, size_t count)
2820 {
2821 	unsigned long msecs;
2822 	int err;
2823 
2824 	err = kstrtoul(buf, 10, &msecs);
2825 	if (err || msecs > UINT_MAX)
2826 		return -EINVAL;
2827 
2828 	ksm_thread_sleep_millisecs = msecs;
2829 	wake_up_interruptible(&ksm_iter_wait);
2830 
2831 	return count;
2832 }
2833 KSM_ATTR(sleep_millisecs);
2834 
2835 static ssize_t pages_to_scan_show(struct kobject *kobj,
2836 				  struct kobj_attribute *attr, char *buf)
2837 {
2838 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2839 }
2840 
2841 static ssize_t pages_to_scan_store(struct kobject *kobj,
2842 				   struct kobj_attribute *attr,
2843 				   const char *buf, size_t count)
2844 {
2845 	int err;
2846 	unsigned long nr_pages;
2847 
2848 	err = kstrtoul(buf, 10, &nr_pages);
2849 	if (err || nr_pages > UINT_MAX)
2850 		return -EINVAL;
2851 
2852 	ksm_thread_pages_to_scan = nr_pages;
2853 
2854 	return count;
2855 }
2856 KSM_ATTR(pages_to_scan);
2857 
2858 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2859 			char *buf)
2860 {
2861 	return sprintf(buf, "%lu\n", ksm_run);
2862 }
2863 
2864 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2865 			 const char *buf, size_t count)
2866 {
2867 	int err;
2868 	unsigned long flags;
2869 
2870 	err = kstrtoul(buf, 10, &flags);
2871 	if (err || flags > UINT_MAX)
2872 		return -EINVAL;
2873 	if (flags > KSM_RUN_UNMERGE)
2874 		return -EINVAL;
2875 
2876 	/*
2877 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2878 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2879 	 * breaking COW to free the pages_shared (but leaves mm_slots
2880 	 * on the list for when ksmd may be set running again).
2881 	 */
2882 
2883 	mutex_lock(&ksm_thread_mutex);
2884 	wait_while_offlining();
2885 	if (ksm_run != flags) {
2886 		ksm_run = flags;
2887 		if (flags & KSM_RUN_UNMERGE) {
2888 			set_current_oom_origin();
2889 			err = unmerge_and_remove_all_rmap_items();
2890 			clear_current_oom_origin();
2891 			if (err) {
2892 				ksm_run = KSM_RUN_STOP;
2893 				count = err;
2894 			}
2895 		}
2896 	}
2897 	mutex_unlock(&ksm_thread_mutex);
2898 
2899 	if (flags & KSM_RUN_MERGE)
2900 		wake_up_interruptible(&ksm_thread_wait);
2901 
2902 	return count;
2903 }
2904 KSM_ATTR(run);
2905 
2906 #ifdef CONFIG_NUMA
2907 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2908 				struct kobj_attribute *attr, char *buf)
2909 {
2910 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2911 }
2912 
2913 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2914 				   struct kobj_attribute *attr,
2915 				   const char *buf, size_t count)
2916 {
2917 	int err;
2918 	unsigned long knob;
2919 
2920 	err = kstrtoul(buf, 10, &knob);
2921 	if (err)
2922 		return err;
2923 	if (knob > 1)
2924 		return -EINVAL;
2925 
2926 	mutex_lock(&ksm_thread_mutex);
2927 	wait_while_offlining();
2928 	if (ksm_merge_across_nodes != knob) {
2929 		if (ksm_pages_shared || remove_all_stable_nodes())
2930 			err = -EBUSY;
2931 		else if (root_stable_tree == one_stable_tree) {
2932 			struct rb_root *buf;
2933 			/*
2934 			 * This is the first time that we switch away from the
2935 			 * default of merging across nodes: must now allocate
2936 			 * a buffer to hold as many roots as may be needed.
2937 			 * Allocate stable and unstable together:
2938 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2939 			 */
2940 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2941 				      GFP_KERNEL);
2942 			/* Let us assume that RB_ROOT is NULL is zero */
2943 			if (!buf)
2944 				err = -ENOMEM;
2945 			else {
2946 				root_stable_tree = buf;
2947 				root_unstable_tree = buf + nr_node_ids;
2948 				/* Stable tree is empty but not the unstable */
2949 				root_unstable_tree[0] = one_unstable_tree[0];
2950 			}
2951 		}
2952 		if (!err) {
2953 			ksm_merge_across_nodes = knob;
2954 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2955 		}
2956 	}
2957 	mutex_unlock(&ksm_thread_mutex);
2958 
2959 	return err ? err : count;
2960 }
2961 KSM_ATTR(merge_across_nodes);
2962 #endif
2963 
2964 static ssize_t use_zero_pages_show(struct kobject *kobj,
2965 				struct kobj_attribute *attr, char *buf)
2966 {
2967 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2968 }
2969 static ssize_t use_zero_pages_store(struct kobject *kobj,
2970 				   struct kobj_attribute *attr,
2971 				   const char *buf, size_t count)
2972 {
2973 	int err;
2974 	bool value;
2975 
2976 	err = kstrtobool(buf, &value);
2977 	if (err)
2978 		return -EINVAL;
2979 
2980 	ksm_use_zero_pages = value;
2981 
2982 	return count;
2983 }
2984 KSM_ATTR(use_zero_pages);
2985 
2986 static ssize_t max_page_sharing_show(struct kobject *kobj,
2987 				     struct kobj_attribute *attr, char *buf)
2988 {
2989 	return sprintf(buf, "%u\n", ksm_max_page_sharing);
2990 }
2991 
2992 static ssize_t max_page_sharing_store(struct kobject *kobj,
2993 				      struct kobj_attribute *attr,
2994 				      const char *buf, size_t count)
2995 {
2996 	int err;
2997 	int knob;
2998 
2999 	err = kstrtoint(buf, 10, &knob);
3000 	if (err)
3001 		return err;
3002 	/*
3003 	 * When a KSM page is created it is shared by 2 mappings. This
3004 	 * being a signed comparison, it implicitly verifies it's not
3005 	 * negative.
3006 	 */
3007 	if (knob < 2)
3008 		return -EINVAL;
3009 
3010 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3011 		return count;
3012 
3013 	mutex_lock(&ksm_thread_mutex);
3014 	wait_while_offlining();
3015 	if (ksm_max_page_sharing != knob) {
3016 		if (ksm_pages_shared || remove_all_stable_nodes())
3017 			err = -EBUSY;
3018 		else
3019 			ksm_max_page_sharing = knob;
3020 	}
3021 	mutex_unlock(&ksm_thread_mutex);
3022 
3023 	return err ? err : count;
3024 }
3025 KSM_ATTR(max_page_sharing);
3026 
3027 static ssize_t pages_shared_show(struct kobject *kobj,
3028 				 struct kobj_attribute *attr, char *buf)
3029 {
3030 	return sprintf(buf, "%lu\n", ksm_pages_shared);
3031 }
3032 KSM_ATTR_RO(pages_shared);
3033 
3034 static ssize_t pages_sharing_show(struct kobject *kobj,
3035 				  struct kobj_attribute *attr, char *buf)
3036 {
3037 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3038 }
3039 KSM_ATTR_RO(pages_sharing);
3040 
3041 static ssize_t pages_unshared_show(struct kobject *kobj,
3042 				   struct kobj_attribute *attr, char *buf)
3043 {
3044 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3045 }
3046 KSM_ATTR_RO(pages_unshared);
3047 
3048 static ssize_t pages_volatile_show(struct kobject *kobj,
3049 				   struct kobj_attribute *attr, char *buf)
3050 {
3051 	long ksm_pages_volatile;
3052 
3053 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3054 				- ksm_pages_sharing - ksm_pages_unshared;
3055 	/*
3056 	 * It was not worth any locking to calculate that statistic,
3057 	 * but it might therefore sometimes be negative: conceal that.
3058 	 */
3059 	if (ksm_pages_volatile < 0)
3060 		ksm_pages_volatile = 0;
3061 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3062 }
3063 KSM_ATTR_RO(pages_volatile);
3064 
3065 static ssize_t stable_node_dups_show(struct kobject *kobj,
3066 				     struct kobj_attribute *attr, char *buf)
3067 {
3068 	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3069 }
3070 KSM_ATTR_RO(stable_node_dups);
3071 
3072 static ssize_t stable_node_chains_show(struct kobject *kobj,
3073 				       struct kobj_attribute *attr, char *buf)
3074 {
3075 	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3076 }
3077 KSM_ATTR_RO(stable_node_chains);
3078 
3079 static ssize_t
3080 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3081 					struct kobj_attribute *attr,
3082 					char *buf)
3083 {
3084 	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3085 }
3086 
3087 static ssize_t
3088 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3089 					 struct kobj_attribute *attr,
3090 					 const char *buf, size_t count)
3091 {
3092 	unsigned long msecs;
3093 	int err;
3094 
3095 	err = kstrtoul(buf, 10, &msecs);
3096 	if (err || msecs > UINT_MAX)
3097 		return -EINVAL;
3098 
3099 	ksm_stable_node_chains_prune_millisecs = msecs;
3100 
3101 	return count;
3102 }
3103 KSM_ATTR(stable_node_chains_prune_millisecs);
3104 
3105 static ssize_t full_scans_show(struct kobject *kobj,
3106 			       struct kobj_attribute *attr, char *buf)
3107 {
3108 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3109 }
3110 KSM_ATTR_RO(full_scans);
3111 
3112 static struct attribute *ksm_attrs[] = {
3113 	&sleep_millisecs_attr.attr,
3114 	&pages_to_scan_attr.attr,
3115 	&run_attr.attr,
3116 	&pages_shared_attr.attr,
3117 	&pages_sharing_attr.attr,
3118 	&pages_unshared_attr.attr,
3119 	&pages_volatile_attr.attr,
3120 	&full_scans_attr.attr,
3121 #ifdef CONFIG_NUMA
3122 	&merge_across_nodes_attr.attr,
3123 #endif
3124 	&max_page_sharing_attr.attr,
3125 	&stable_node_chains_attr.attr,
3126 	&stable_node_dups_attr.attr,
3127 	&stable_node_chains_prune_millisecs_attr.attr,
3128 	&use_zero_pages_attr.attr,
3129 	NULL,
3130 };
3131 
3132 static const struct attribute_group ksm_attr_group = {
3133 	.attrs = ksm_attrs,
3134 	.name = "ksm",
3135 };
3136 #endif /* CONFIG_SYSFS */
3137 
3138 static int __init ksm_init(void)
3139 {
3140 	struct task_struct *ksm_thread;
3141 	int err;
3142 
3143 	/* The correct value depends on page size and endianness */
3144 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3145 	/* Default to false for backwards compatibility */
3146 	ksm_use_zero_pages = false;
3147 
3148 	err = ksm_slab_init();
3149 	if (err)
3150 		goto out;
3151 
3152 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3153 	if (IS_ERR(ksm_thread)) {
3154 		pr_err("ksm: creating kthread failed\n");
3155 		err = PTR_ERR(ksm_thread);
3156 		goto out_free;
3157 	}
3158 
3159 #ifdef CONFIG_SYSFS
3160 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3161 	if (err) {
3162 		pr_err("ksm: register sysfs failed\n");
3163 		kthread_stop(ksm_thread);
3164 		goto out_free;
3165 	}
3166 #else
3167 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3168 
3169 #endif /* CONFIG_SYSFS */
3170 
3171 #ifdef CONFIG_MEMORY_HOTREMOVE
3172 	/* There is no significance to this priority 100 */
3173 	hotplug_memory_notifier(ksm_memory_callback, 100);
3174 #endif
3175 	return 0;
3176 
3177 out_free:
3178 	ksm_slab_free();
3179 out:
3180 	return err;
3181 }
3182 subsys_initcall(ksm_init);
3183